
Reliable Computing at the Nanoscale

by Eric Rachlin

ScB, Brown University, 2003

ScM, Brown University, 2006

A Dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2010

c© Copyright 2010 by Eric Rachlin

This dissertation by Eric Rachlin is accepted in its present form

by the Department of Computer Science as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Date

John E. Savage, Director

Recommended to the Graduate Council

Date

John E. Savage, Reader

Date

André DeHon, Reader

Date

Franco P. Preparata, Reader

Approved by the Graduate Council

Date

Sheila Bonde, Dean of the Graduate School

iii

Vitæ

After graduating from Stuyvesant High School in New York City, Eric Rachlin began his

multi-decade stint at Brown University. In 2003, Eric graduated magna cum laude with an

Sc.B. in Applied Math and Computer Science. In the summer of 2003, he began working

as a research assistant to Computer Science Professor John Savage. Collaborating closely

with Professor Savage, he investigated the resource requirements of stochastically assembled

nanowire-based memories. He also helped draft a successful NSF NIRT proposal that would

later fund the bulk of his PhD research.

In the fall of 2004, Eric reenrolled at Brown to pursue his Ph.D. in nanoscale comput-

ing. As a graduate student, Eric’s primary research interests included probabilistic analysis,

stochastic nanoscale assembly, information theory and reliable computation. Eric’s research

has focused on demonstrating how emerging nanoscale architectures can be modeled proba-

bilistically and made robust against random variations. He has analyzed a range of proposed

nanoscale devices, and has also explored how error-correcting codes can be employed to per-

form reliable nanoscale computations.

In addition to his work on nanoscale computing, Eric has collaborated with researchers

in computer vision, P2P networks and cryptography. He has also helped teach several

courses on computational complexity. Outside of the world of computer science research,

Eric is involved with the design and maintenance of several high-traffic blogs, including

passiveaggressivenotes.com, winner of a 2008 SXSWi WebAward. He is also an extremely

proficient juggler and avid drummer.

iv

Dedicated to my grandfather

for investing in my Brown education

v

Acknowledgements

First and foremost I would like to thank John Savage. During my time at Brown, John

has not only been an advisor and collaborator, but also a friend and mentor. His continual

advice and support with regard to research, my career, and life in general, will serve me for

years to come. I must also thank our primary collaborators, André DeHon, Ben Gojman and

Charles Lieber. André, in particular, brought crucial expertise to John and my research.

This thesis would not have been possible without his contribution on several publications, as

well as on the grants that funded my graduate career. His service on my thesis committee

is also greatly appreciated. Similarly, I thank Franco Preparata for serving on both my

research comps and thesis committees, and for taking an ongoing interest in my work.

In addition to my other collaborators, Mira Belenkiy, Melissa Chase, Chris Erway, John

Jannotti, Alp Kupcu, Anna Lysyanskaya and Yue Wu, I would also like to thank the many

friends who made my time at Brown more than just a research endeavor. In particular,

Chris Erway and Tibet Sprague continually got me out of the house and reminded me of

the importance of life beyond the CS department (while simultaneously showing me a thing

or two about how to write code). Harry Siple, David Segal and Daniel Bass not only made

living in Providence significantly more enjoyable, but conveniently provided me with a place

to stay during my many trips back to town while living in New York City.

Finally, I would like to thank my family, especially my parents for their perpetual

support and encouragement, my grandmothers for their remarkable interest in any and all

Eric-related activities (despite having never used a computer), and my grandfather for his

substantial contribution to my early years at Brown. Most importantly, I would like to

thank the lovely and talented Jessica Purmort for her continual reminder that, more than

anything, I needed to hurry up and finish this thing already!

vi

Contents

Dedication v

1 Introduction 1

1.1 Reliable Nanoscale Computation . 2

1.1.1 A Brief History of Nanocomputing 2

1.1.2 Device Reliability and General Purpose Computing 10

1.2 Fundamental Characteristics of Nanoscale Computing 12

1.2.1 Stochastic Assembly . 12

1.2.2 Post-Assembly Testing and Configuration 13

1.2.3 Strict Assembly Constraints . 13

1.2.4 Imperfect Operation . 14

1.3 An Overview of this Thesis . 14

2 Overview of Nanoscale Computing 16

2.1 Technology Overview . 16

2.1.1 Nanoscale Semiconductor-Based Architectures 17

2.1.2 DNA-Based Assemblage . 18

2.1.3 Quantum-Dot Cellular Automata . 20

2.1.4 Biological Computing . 21

2.2 Nanowire Crossbars . 21

2.2.1 Crossbar Assembly . 21

2.2.2 Crossbar-based Memories . 25

2.2.3 Crossbar-based Logic . 26

vii

3 Nanowire Decoders 29

3.1 Decoder Requirements . 29

3.1.1 Nanowire Addressing . 30

3.1.2 Address Requirements . 32

3.1.3 Simple Versus Compound Decoders 32

3.2 Decoding Technologies . 34

3.2.1 Encoded Nanowire Decoders . 34

3.2.2 Mask-Based Decoders . 37

3.2.3 The Randomized-Contact Decoder 37

3.2.4 Additional Decoding Technologies 39

3.3 Post-Assembly Configuration . 42

3.3.1 Address Discovery . 42

3.3.2 Address Translation Circuitry . 43

3.4 Modeling Nanowire Decoders . 44

3.4.1 The Binary Model of Nanowire Control with Errors 44

3.4.2 Real-valued Physical Models . 48

3.5 Decoder Analysis Framework . 51

3.5.1 Memory Area Estimate . 52

3.5.2 Memory Addressing Strategies . 53

3.5.3 Expectation versus with High Probability 55

4 The Randomized-Contact Decoder 57

4.1 Bounds Using Inclusion-Exclusion . 58

4.1.1 A Single Contact Group . 59

4.1.2 Multiple Contact Groups . 62

4.2 Bounds Using Expectation . 64

4.2.1 A Single Contact Group . 64

4.2.2 Multiple Contact Groups . 65

4.2.3 Additional Addressing Strategies Using Expectation 67

4.3 Comparison of Addressing Strategies . 68

4.4 Summary of Results . 69

viii

5 Encoded Nanowire Decoders 71

5.1 NW Encodings . 72

5.1.1 Code Requirements . 74

5.1.2 (h, M)-Hot Codes . 75

5.1.3 Binary Reflected Code . 77

5.1.4 Generating Random Ensembles of Axial Codewords 77

5.2 Analysis of Encoded NW Decoders . 79

5.2.1 Bounds Using Expectation . 79

5.2.2 Bounds Using Inclusion-Exclusion 84

5.2.3 Area Estimates . 87

5.3 Misalignment of Axial Codes . 89

5.4 Radially Encoded Nanowire Decoders . 90

5.4.1 The Linear Radially Encoded NW Decoder 91

5.4.2 The Linear-Logarithmic Radially Encoded NW Decoder 93

5.4.3 The Fully Logarithmic Radially Encoded NW Decoder 96

5.4.4 Fault-tolerant Etching Error Correction 98

5.4.5 Hybrid Nanowire Codes and Decoders 99

5.5 Summary of Results . 100

6 Masked-Based Decoders 102

6.1 Modeling Decoder Manufacture . 104

6.1.1 LR Manufacture . 104

6.1.2 Modeling Variation in Mask Placement 105

6.1.3 Modeling Variation in LR Boundary Placement 106

6.1.4 InterNW Regions . 106

6.1.5 Additional Sources of LR Boundary Variation 108

6.2 Analyzing the n-Cycle Mask-Based Decoder 109

6.2.1 Models for Decoder Analysis . 110

6.3 Coupon Collection . 113

6.3.1 The Coupon Collector Problem with Failures 113

6.3.2 The Targeted Coupon Collector Problem 114

ix

6.3.3 The Multi-Stage Targeted Coupon Collector Problem 116

6.4 Performance of the n-Cycle Mask-Based Decoder 119

6.4.1 The Coarse-Grained Model . 119

6.4.2 The Fine-Grained Model . 121

6.5 Additional Considerations . 123

6.5.1 Address Translation Circuitry . 123

6.5.2 Alternative Addressing Strategies . 124

6.6 Summary of Decoder Analysis . 127

7 Nanowire Addressing for Crossbar-based Logic 128

7.1 NW Decoders for Logic . 129

7.2 Stochastic Assembly of NW Logic Decoders 130

7.2.1 Unique Couplings . 131

7.2.2 Area Bounds . 132

7.3 Lower Bounding β . 137

7.3.1 A Lower Bound for RCDs . 139

7.3.2 A Lower Bound for Encoded NW Decoders 141

7.4 Stochastic Crossbar Interconnect . 141

8 Nanowire Address Discovery 143

8.1 Address Discovery via Read/Write Operations 144

8.1.1 Coping with Errors . 145

8.2 Exhaustive Search . 147

8.2.1 Parallel Exhaustive Search . 148

8.2.2 Coping With Codeword Errors . 149

8.3 Encoded NW decoders . 150

8.3.1 Binary Search . 151

8.3.2 Searching Across Contact Groups . 151

8.3.3 A Lower Bound . 152

8.3.4 Coping With Misalignment Errors 152

8.4 Arbitrary Codes . 153

x

8.4.1 Asymptotic analysis . 155

8.4.2 Experimental Results . 158

9 Coded Computation 160

9.1 Approaches to Reliable Computation . 161

9.1.1 Modular Redundancy . 162

9.1.2 Two-Tiered Reliability and Coded Computation 163

9.1.3 Previous Work on Coded Computation 165

9.2 A Model of Computation . 165

9.2.1 Formalizing the Model . 167

9.2.2 Examples . 168

9.3 The Coded Computation Framework . 172

9.3.1 One Step of Coded Computation . 173

9.3.2 Transcoding the Output . 175

9.3.3 Conditions on Permutations . 175

9.3.4 Spielman’s Model . 177

9.4 Interpolation Polynomials . 177

9.4.1 Examples of interpolation polynomials 178

9.4.2 Applying Polynomials to Linear Codes 180

9.5 Transcoding . 182

9.5.1 Transcoding Using 2D Codes . 183

9.5.2 Transcoding Using Checksums . 185

9.5.3 Transcoding in Parallel Architectures 186

9.6 Codeword Permutations . 187

9.6.1 Direct Application of Extension Permutations 187

9.6.2 Composing Permutations to Realize Extensions of Π 189

9.6.3 Data-Movement Overhead . 191

9.7 Families of Codes . 192

9.7.1 Reed-Solomon Codes . 192

9.7.2 Reed-Muller Codes . 193

9.7.3 Other Polynomial Codes . 194

xi

9.7.4 Multidimensional Codes . 195

9.8 Overhead . 195

9.8.1 Reliability via Repetition . 195

9.8.2 Basic Analysis Framework . 198

9.8.3 Coded Computation Using 2D Codes 203

9.8.4 Coded Computation Using 1D Codes 206

9.8.5 Summary of Results . 210

10 Exploring the Power of Coded Computation 213

10.1 Lower Bounds . 213

10.2 Efficiently Encoding Most-Boolean Function 217

10.2.1 Pippenger’s Construction . 219

10.3 Coded Prefix Computations . 220

10.3.1 Encoding a Parallel Prefix Computation 222

11 Conclusion 224

xii

List of Tables

10.1 A 3-step parallel prefix computation on a hypercube 221

xiii

List of Figures

1.1 Richard Feynman . 3

1.2 Early Integrated Circuits . 4

1.3 The etching of a chip via photolithography 5

1.4 Atomic scale microscopy from an STM and AFM 6

1.5 Wireframe models of fullerene and a carbon nanotube 7

1.6 A theoretical molecular machine . 8

2.1 A range of semiconductor-based nanoscale computing technologies 17

2.2 Stochastically assembled DNA structures 19

2.3 Circuits based on quantum-dot cellular automata 20

2.4 A programmable nanowire crossbar . 22

2.5 A nanowire crossbar-based memory performing read and write operations . 24

2.6 A level of reconfigurable crossbar-based logic 27

3.1 The two extreme cases when reading data from a nanowire crosspoint . . . 30

3.2 A compound nanowire decoder . 33

3.3 An axially encoded nanowire decoder . 35

3.4 A radially encoded nanowire decoder . 36

3.5 A masked-based nanowire decoder . 38

3.6 A randomized-contact nanowire decoder . 39

3.7 Rotational offset decoders . 40

3.8 MNAB . 41

3.9 Address translation circuity used to interface a nanowire decoder 43

4.1 Codewords in a randomized contact nanowire decoder 58

xiv

5.1 Axially encoded nanowire codewords . 73

5.2 Radially encoded nanowire codewords . 74

5.3 Schema for calculating the probability of axial misalignment 89

5.4 A linear radially encoded nanowire decoder 92

5.5 A linear radially encoded nanowire decoder 95

5.6 A logarithmic radially encoded nanowire decoder 97

6.1 A masked-based nanowire decoder . 103

6.2 A cycle of high-K dielectric lithographic regions 107

8.1 Codeword Discovery via Randomized Testing 159

9.1 A T -step regular computing network . 166

9.2 A T -step coded computation . 174

xv

Chapter 1

Introduction

Emerging nanoscale computing technologies necessitate fundamental changes in the way

computer architectures are designed and analyzed. The significant uncertainty associated

with the assembly and operation of nanoscale devices must not only be modeled and ac-

counted for, but actively embraced as part of the design process. In stark contrast with

today’s VLSI, probabilistic modeling and analysis are primary requirements for the success-

ful realization of nanoscale computer architectures.

In this thesis we examine how faults, defects and unavoidable nanoscale variation can

be tolerated in emerging nanoscale computer architectures. The first portion of this thesis

focuses on the nanowire crossbar, a particularly promising building block for near-term

nanoscale hardware. In the context of the crossbar, we describe how a range of stochastic

nanoscale fabrication technologies can be used to reliably address (i.e. control) nanoscale

wires. We provide tight analytic bounds on the resources required to cope with stochastic

nanoscale assembly. We also demonstrate a range of promising design strategies.

A technical overview of the nanowire crossbar and related nanowire addressing tech-

nologies is provided in Chapters 2 and 3. The chapters provide the background and models

utilized in the analysis of Chapters 4 through 8. These chapters collectively explore a num-

ber of related approaches for integrating stochastically assembled crossbar-based nanoscale

hardware with traditional lithographically produced mesoscale hardware. More importantly,

they explicitly demonstrate the type of probabilistic modeling and analysis that is vital to

the success of nanoscale computing.

1

The second portion of this thesis investigates the more general problem of performing re-

liable computations using unreliable devices. Designing architectures that function properly

in the presence of transient faults (for example, building circuits out of gates that occasion-

ally produce incorrect outputs) has been a longstanding challenge in the fields of computer

science and computer engineering. In the context of nanoscale technologies the problem

is particularly pressing, as it is anticipated that nanoscale devices will be significantly less

reliable than their current mesoscale counterparts.

To attack this problem, Chapter 9 demonstrates the promise of “two-tiered” reliability,

meaning the structuring of computations such that some operations are much more reliable

than others. Two-tiered reliability reflects the ability of highly reliable mesoscale devices

to supervise less reliable nanoscale devices. As such, it represents an important design

paradigm that is likely to become increasingly prominent as computer architectures continue

to shrink. What’s more, the utility of circuits and algorithms that employ tiered reliability

is not limited to nanoscale architectures. For example, up-and-coming multicore chips may

contain cores that operate at varying levels of reliability (since highly reliable cores likely

require more area, power or time per operation). Such cores could be used to implement

algorithms that have been designed with tiered reliability in mind.

1.1 Reliable Nanoscale Computation

This section presents the broader context for the research on reliable nanoscale computa-

tion contained in this thesis. It begins with a brief history of nanoscale computing. This

is followed by a discussion of the historic importance of device reliability in digital hard-

ware. Both sections highlight the significant challenges currently facing the design and

implementation of reliable nanoscale architectures.

1.1.1 A Brief History of Nanocomputing

One nanometer, or 10−9 meters, is the length of a single sugar molecule, and a cubic nanome-

ter provides only enough room for a few hundred carbon atoms. It may never be possible

to create novel arrangements of subatomic particles, and as such, a nanometer represents

2

Figure 1.1: The potential for nanoscale computing was first described by Richard Feynman

in his 1959 speech to the American Physical Society. In recognition of his early vision of

where computers were headed, the Foresight Nanotech Institute awards an annual Feynman

Prize for significant advancements in nanotechnology.

the approximate lower limit on the size of technology. While nanometer-scale technology,

or “nanotechnology”, has a wealth of applications, nanoscale computing is among the most

prominent. What’s more, the successful realization of reliable nanoscale computation would

serve as a crucial step towards the realization of other nanotechnologies that require the

integration of a large number of functional nanoscale devices.

The dream of nanoscale computing was first articulated by Richard Feynman (see Fig-

ure 1.1) in his 1959 speech given to the American Physical Society. He argued that no

known physical law would prevent the room-sized computers of the 1950s from being re-

placed with far more powerful, pin-sized computers built from nanoscale components. As

many at the time realized, general purpose computers were poised to become vastly more

useful once their computing power increased by several orders of magnitude. This has long

since come to pass, but we are only now approaching the nanoscale devices that Feynman

asserted we could one day produce.

At the time of Feynman’s speech, computer hardware was undergoing a major transi-

tion. The bulky vacuum tube-based logic of the 1950s was being replaced with solid-state

transistors (see Figure 1.2). Crucially, solid-state transistors can be manufactured using

3

(a) The first integrated circuit (b) An early integrated cir-

cuit produced using pho-

tolithography

Figure 1.2: In the late 1950s, two companies independently developed semiconductor-based

integrated circuits. In 1958, Jack Kilby developed the first integrated circuit (a) at Texas

Instruments as a summer research project. In 1959 Fairchild Semiconductor patented a pro-

cess for producing planar semiconductor devices. Soon after, Robert Noyce demonstrated

that this process could be adapted to produce general purpose integrated circuits within

silicon chips (b). In 1968, Noyce went on to cofound Intel with his colleague Gordon Moore.

light-based etching, known as photolithography. This allows for the efficient production of

microscopic circuits compactly embedded into the surface of a silicon chip. Modern com-

puter chips, which are often referred to as VLSI (very large scale integration) technology,

are manufactured using photolithography.

Since the 1960s, photolithography has allowed for ever-smaller, ever-faster VLSI proces-

sors comprised of semiconductor-based logic that operates at high speeds and high levels

of reliability. What’s more, it allows for millions of identical copies of a computer chip to

be produced from a single set of masks. These masks act like blueprints for a top-down

assembly process. By shining light through the masks, complex two-dimensional patterns

can be repeatedly etched into successive layers of a silicon wafers (see Figure 1.3). Selective

application of dopants to different portions of the pattern produces functional devices, like

logic gates. Metallic wires, which connect these devices, can also be produced by depositing

a conductor into etched regions.

Starting in the 1960s, it became apparent that photolithographically produced computer

hardware obeyed an empirical trend. With remarkable consistency, the area required for

4

negative photoresist

silicon
dioxide

light

positive photoresist

silicon

photoresist mask

Figure 1.3: In photolithography, light is shown through a mask to define which regions of

either positive or negative photoresist are removed. The remaining resist is then used to

etch patterns into layers of a silicon and silicon dioxide. Functional devices can then be

created by selectively depositing dopant, conductors, and other materials into the etched

away regions. By repeating this entire process, multilayer chip-based architectures are built

up one level at a time.

5

(a) STM image of Si(111) (b) AFM profile of nan-

otubes

Figure 1.4: Starting in the 1980s, scientists gained the ability to directly observe the struc-

ture of molecules. In a) a scanning tunneling microscope (STM) reveals the structure of a

5.4nm x 5.4nm segment of silicon crystal. In b) an atomic force microscope (AFM) provides

the three-dimensional profile of single-walled carbon nanotubes within a 15.8 nm x 15.8 nm

patch. Both images were obtained via Omicron Nanotechonlogy GmbH and are available

on their website at http://omicron.de/index2.html?/results/∼Omicron.

digital logic was cut in half approximately every 18 months. This in turn meant that the

number of transistors on a chip, and hence the number of computations it could perform,

approximately doubled every 18 months. This general trend, which is typically referred to

as “Moore’s Law”, has become increasingly difficult and costly to maintain. The feature

size of today’s chips, meaning the minimum spacing between wires and gates, is 45 nanome-

ters (nm). While computer manufactures would like nothing more than to shrink features

further, doing so necessarily means confronting the challenges of nanoscale manufacturing.

Feynman’s prescient, but highly speculative vision of nanoscale engineering gained sig-

nificant focus in the 1980s. The advent of the scanning tunneling microscope (STM), and

later the atomic force microscope (AFM) led to an increasingly precise understanding of

how atoms are configured within molecules. An STM scans across the surface of a material

with an atomic-scale tip. Electron tunneling between the tip and the surface produces a

current. By measuring this current (or alternatively, adjusting the height of tip to maintain

a constant current) STMs are able to obtain sub-nanometer resolution images of a suffi-

ciently clean surface (see Figure 1.4a). Prior to the STM electron-based microscopy (which

has existed since the 1930s) had great difficulty imaging molecular-scale structures. Soon

6

(a) Fullerene (b) A carbon nanotube

Figure 1.5: Both fullerene molecules and carbon nanotubes are comprised of carbon atoms

arranged in a highly regular geometric structure. Fullerene’s, for example, are so named be-

cause their structure is identical to that of a geodesic dome, a building design first patented

and popularized by Buckminster Fuller.

after the STM, AFMs provided scientists with additional molecular-scale imaging capabili-

ties. By precisely measuring the deflection an atomic-scale tip, AFMs are able to reveal the

three-dimensional profile of a surface at the atomic scale (see Figure 1.4b).

An improved understanding of molecular structures facilitated, among other things, the

discovery of fullerene, or “buckyballs”, in 1985 and carbon nanotubes in 1992. Both are

large carbon molecules in which individual carbon atoms serve as the building blocks of

highly regular geometric structures (see Figure 1.5). These structures, which closely re-

semble manmade geodesic domes, sparked a renewed enthusiasm for nanoscale engineering.

Suddenly it appeared feasible for macroscale designs to be recreated as nanoscale structures.

The capabilities of the AFM furthered this excitement, as its molecular tip could be

used not just to image surfaces, but to nudge and manipulate individual molecules. This

suggested to some the possibility of building, atom-by-atom, molecular scale machines that

could in turn facilitate the production of additional molecular scale components. An early

and highly prominent advocate of this research agenda was Eric Drexler. In his 1986 book,

Engines of Creation: The Coming Era of Nanotechnology [1], Drexler suggested that general

purpose molecular scale assemblers could one day be constructed and used to bootstrap a

wide array of modular nanoscale devices.

Nanosystems: Molecular Machinery, Manufacturing and Computation [2], Drexler’s

7

Figure 1.6: A differential gear of the type put forth in Drexler’s 1992 book, Nanosystems:

Molecular Machinery, Manufacturing and Computation. Here a molecular shaft, surrounded

by “bearings”, would be able to rotate independently of the molecular casing. This image

was produced by Institute for Molecular Manufacturing and is available a http://www.

imm.org/research/parts/gear/ (Copyright 1997 IMM, all rights reserved).

1992 book based on his PhD Thesis, further popularized his vision of nanoscale struc-

tures that act like thermodynamically powered, substantially scaled-down versions of tradi-

tional macroscale machinery (see Figure 1.6). Drexler’s writings also sparked concern that

nanoscale machinery had the potential to one day run amok as unstoppable, self-replicating

“grey goo”. Some scientists, however, became highly critical of Drexler’s view. Nanoscale

engineering, they argued, could only be expected to produce structures that are compatible

with highly stochastic assembly process. As a result, nanotechonlogy could not simply be

envisioned as miniscule recreations of traditional technology.

Chemist and Nobel Laureate Richard Smalley, was among the most vocal of Drexler’s

critics. In 2001, he asserted that the so-called “fat fingers” and “sticky fingers” of even mi-

croscale manufacturing technology pose a huge challenge when trying to deterministically

arrange the atomic building blocks of hypothetical nanoscale machinery [3]. In other words,

randomness is inherent to molecular assembly, and theoretical nanoscale designs that rely

on arbitrary arrangements of hundreds of molecules may well be impossible to realize in

practice. As such, nanotechnology must be designed and assembled in ways that are fun-

8

damentally different from how current technology is engineered. Probabilistic analysis is

crucial.

Smalley’s perspective is much more in line with the current state of nanotechnology

research. In the past decade, billions of dollars has gone into funding the work of chemists,

physicist and engineers. Although many novel nanoscale structures have been discovered

and analyzed, techniques for general purpose molecular assembly remain elusive. Instead,

slow and steady progress has resulted from the careful refinement of more traditional chem-

ical processes. Even if molecular assemblers are an eventual possibility, they are unlikely to

play a role in the manufacturing of near-term nanoscale computer architectures.

Since the year 2000, a number of individual nanoscale computing devices (e.g. wires,

logic gates and memory cells) have been demonstrated. Producing architectures from these

devices, however, is not simply a matter of substituting tiny wires and gates into today’s

architectures. Designers of nanoscale architectures must find ways to interconnect millions,

or billions of devices, even while our ability to place individual devices remains poor. Fur-

thermore, as we continue to push the limits of what can be reliably manufactured, we must

find new ways to mitigate device variation. If nanoscale architectures are to be realized

any time soon, they will have to function correctly even when individual devices fail. Al-

though no nanoscale architectures have yet been produced, most researchers believe that

they will incorporate stochastic assembly, reconfigurability, fault-tolerance and strict design

constraints [4, 5].

Below, Section 1.2 elaborates on these four requirements. As explained in the first half

of Chapter 2, they are relevant to a range of proposed nanoscale computing technologies.

Nonetheless, much of the analysis in this thesis focuses on today’s most viable nanotechnol-

ogy, the nanowire crossbar. Nanowire crossbars provide a relatively concrete model of what

nanoscale computing may look like (see Section 2.2), while at the same time highlighting

many of the more general issues facing alternative nanoscale computing technologies. To

date, the crossbar is the only nanoscale architectural component to have been demonstrated

[6, 7, 8]. Furthermore, a number of crossbar-based designs have been proposed, demonstrat-

ing how crossbars can serve as a basis for both memories and circuits [9, 10, 11, 12, 13] (see

Section 2.2).

9

1.1.2 Device Reliability and General Purpose Computing

Many of the fundamental ideas behind general purpose digital computing can be traced

back not just to Alan Turing in 1930s, but to Charles Babbage in the 19th century. Despite

his insights, however, Babbage was unable to construct his “Analytical Engine” using the

fabrication technology of his time. Without reliable components, general purpose computing

machines proved prohibitively difficult to implement. Instead, the successful realization of

digital computers would have to wait until 1940s, when electronic components with high

on/off ratios permitted the reliable implementation of digital logic.

Since then, the overwhelming success of general purpose computing has been continually

fueled by a stream of steadily shrinking, highly reliable hardware. Today, increasingly

complex architectures are designed using ever-smaller, ever-faster processors comprised of

logic gates that operate at astronomically high levels of reliability. Assume, for example,

a hypothetical representative architecture consisting of 1,024 3GHz processors with 109

gates/processor. During a full year of operation, this collection of processors might perform

as many as 1029 gate operations.

Now suppose that any given output of any given gate has probability pf of being in-

correct. If we assume that neither the processors, nor the programs run on them, are

designed to accommodate errors, a 99% chance of fault free operations potentially requires

that pf < 10−31! Even if we acknowledge that, at any given time, some fraction of the gates

do not effect the output of the computation, our required value of pf remains staggeringly

minute.

As the size of individual gates shrinks and the number of gates per chip increases, it

becomes increasingly burdensome to maintain such an astronomically high level of gate reli-

ability. Up-and-coming nanoscale devices and multicore architectures both point to an im-

pending need for fault-tolerant circuits and software. The ability to tolerate gate level faults

would not only pave the way for larger architectures with smaller features sizes, it could

allow current CMOS-based chips to operate at higher speeds or lower power. (“CMOS”,

or complementary metaloxidesemiconductor, refers to the design and manufacturing tech-

niques used to implement the digital logic on today’s chips.)

Early digital computers were built using vacuum tubes, which were unreliable. This pre-

10

sented the same type of scaling challenge we face today. As computers became increasingly

complex (i.e. used more logic gates), the probability that some component would fail during

a given computation approached 1. This motivated von Neumann, in his well-known 1956

paper [14], to propose a systematic approach to building logic from unreliable gates. He

described how an arbitrary circuit, C, built from perfectly reliable gates, could be converted

to a fault-tolerant circuit C ′, constructed from potentially faulty gates. This construction

involved repeating each gate r times, and then suppressing errors with constant-sized, but

potentially faulty, majority gates (see Chapter 9).

Although von Neumann’s work was a theoretical success (his conclusions were later

made more rigorous by Pippenger [15]) the overhead of repeating each individual computing

elements is high. In subsequent decades, solid-state technologies allowed gates and wires to

not only shrink, but become orders of magnitude more reliable. Indeed, modern transistors

produced using photolithography are expected to operate many trillions of times before

failing. As such, von Neumann style repetition is unnecessary.

Only now, as digital circuits continue to shrink, is the reliability of logic gates once again

becoming a major cause for concern. The near-term viability of nanoscale architectures is

closely tied to whether or not transient faults can be tolerated more efficiently than through

simple repetition. After all, if many redundant copies of each nanoscale gate are called for,

these copies could simply be replaced with a single lithographically produced CMOS gate.

Fortunately there is reason for optimism. Biological systems, for example the brain,

demonstrate a significant level of fault-tolerance but do not appear to embody von Neu-

mann style repetition. More concretely, von Nuemann’s approach to reliable computation

contrasts sharply with results from digital communication theory. Since the time of Claude

Shannon, it has been known that repetition is a highly inefficient error control mecha-

nism when encoding data. To achieve fault-tolerant communication, a reliable encoder and

decoder are used to send information across a noisy channel. When data is encoded in

an error-correcting code, information about each input is effectively “spread” across check

symbols. By allowing each transmitted check symbol to be a function of many informa-

tion symbols, only a constant factor overhead is required to protect against random bit

flips. Error-correcting codes have been embraced not only to transmit data, but to store

11

data. It is only natural to ask whether similar ideas can be applied to reliable computation.

This question is explored in Chapter 9, which presents a framework for computing using

error-correcting codes.

1.2 Fundamental Characteristics of Nanoscale Computing

This section highlights the major challenges novel modeling and analysis must address in

order for nanoscale computing to succeed. As was already noted in the opening paragraph

of this thesis, emerging nanoscale computing technologies necessitate fundamental changes

in the way computer architectures are designed and analyzed. Significant uncertainty is

associated with the assembly and operation of nanoscale devices. This uncertainty must

not only be modeled and accounted for, but actively embraced as part of the design process.

This is in stark contrast with today’s VLSI, where complex, meticulously optimized designs

are realized through a deterministic, top-down etching process. For emerging nanoscale ar-

chitectures, probabilistic modeling and analysis are primary requirements for the successful

realization of nanoscale computer architectures.

Listed below are four fundamental ways in which emerging nanoscale computing tech-

nology differs from today’s VLSI. In each case, we note the consequences with regard to

modeling, analysis and design.

1.2.1 Stochastic Assembly

Assembly of VSLI technology has traditionally been viewed as deterministic. A circuit is

designed, it is realized via a series of masks, and, in principle, each copy of the circuit

produced by those mask is identical. As feature sizes have shrunk, however, more and more

device-to-device variation has begun to appear. Consequently, circuit designers now see a

need to take this variation into account in order to avoid defects.

Emerging nanoscale computing technologies are expected to produce large-scale archi-

tectures through a bottom-up assembly process. Such a process, in which nanoscale devices

are deposited onto a chip in a directed fashion, potentially increases device-to-device vari-

ation by many orders of magnitude more. Designers will need to expect variation not only

12

in the placement and functionality of devices, but also in how they interconnect.

In order to reliably manufacture nanoscale architectures, randomness can no longer be

viewed as merely the potential for defects. Instead, it must be accepted as an expected

occurrence. It must be anticipated, modeled, and embraced by design. Consequently,

probabilistic analysis must be brought to the forefront of the design process.

1.2.2 Post-Assembly Testing and Configuration

A stochastic nanoscale assembly process will yield large amounts of device-to-device varia-

tion, and a significant number of permanent defects. To cope with this variation, nanoscale

architectures will need to be configured post-assembly. This introduces a new architectural

requirement, namely, chips must be configurable so as to provide consistent functionality

despite faults and variations in layout.

Today’s VLSI already requires testing to verify that chips are working properly. Nanoscale

architectures, however, will require testing simply to allow chips to work properly. Archi-

tectures will need to be designed such that information about their internal interconnect

and the locations of internal faults can be discovered efficiently. Once determined, relevant

information will need to be supplied to the many configurable components on each chip.

Ideally, this entire process will remain simple enough so that chips can test and configure

themselves.

1.2.3 Strict Assembly Constraints

VLSI is manufactured using photolithography, allowing complex circuit designs to be re-

peatedly reproduced by shining light through a mask. Although these masks are very

expensive to produce, they act as reusable templates in VLSI’s top-down assembly. In con-

trast, emergent nanoscale architectures are expected to be assembled from the bottom-up,

which implies that no reusable blueprint will be available. Instead millions of nanoscale

devices will be grown en masse, then deposited onto a chip in a directed fashion.

At least in the near term, it is not anticipated that the deposited devices will be able

to be arranged into arbitrary patterns. Instead they will be deposited to form relatively

simple structures that are locally regular. For example, photolithography can still be used

13

to define different regions on a chip, but within each region, nanoscale devices may be

organized into nanowire crossbars. The highly regular crossbars would then be configured,

or programmed, after assembly, not unlike today’s programmable logic arrays. In this way,

post-assembly configuration provides otherwise homogenous hardware with the additional

nanoscale structure required to perform useful computations.

1.2.4 Imperfect Operation

The success of VLSI has relied heavily on the extremely high reliability of transistors, and

hence logic gates. As feature sizes shrink, maintaining this level of reliability has become

quite challenging. The problem is only expected to get worse as features shrink to the

nanoscale. First, nanoscale devices may be much more likely to break over time. Second,

even when operating correctly, they will likely be susceptible to transient errors.

A logic gate that outputs an incorrect value one time in a billion would be completely

unacceptable in the context of today’s circuit designs. This places an enormous burden

on developing nanoscale technology. While it would be ideal if these technologies operated

with perfect reliability, near perfect reliability may be much easier to achieve. If we can

design circuits that are capable of tolerating gate errors, and algorithms that are capable

of tolerating circuit errors, nanoscale computing will be significantly easier to implement.

1.3 An Overview of this Thesis

Chapter 2 describes four broad categories of emergent nanoscale computing technology,

followed by a more detailed description of the nanowire crossbar. Chapter 3 provides a

detailed look at how nanowire crossbars can be interfaced with existing technology using

a device called a “nanowire decoder”. In Chapter 3 a range of potential decoder tech-

nologies is described and modeled. Using this model, Chapters 4, 5 and 6 analyze the

resources required to construct three different types of nanowire decoders; randomized-

contact decoders, encoded nanowire decoders, and masked-based decoders. A summarizing

comparison of all three decoder types is given at the end of Chapter 6. Chapter 7 considers

how decoder requirements change when they are used to control crossbar-based logic as

14

opposed to a memories. Chapter 8 looks at the post-assembly testing that stochastically

assembled nanowire decoders require. Chapter 9 investigates how nanoscale architectures

can cope with transient faults using error-correcting codes. Chapter 10 provides additional

examples of the promise and challenges of code-based fault-tolerance. Finally, a concluding

summary of the entire thesis is provided in Chapter 11

15

Chapter 2

Overview of Nanoscale Computing

The first half of this chapter, Section 2.1, presents four broad categories of up-and-coming

nanoscale computing technology; nanoscale semiconductor-based architectures (Subsec-

tion 2.1.1), DNA-based assemblage (Subsection 2.1.2), Quantum Dot Cellular Automata

(Subsection 2.1.3), and Biological Computing (Subsection 2.1.4). In each case, we high-

light how the technology embodies the fundamental characteristics of nanoscale computing

outlined at the end of the previous chapter.

The second half of this chapter, Section 2.2, provides a more detailed description of

semiconductor-base nanowire crossbars. Nanowire crossbars are seen as the current fron-

trunner for near-term nanoscale architectures and are the focus of much of the research

presented in subsequent chapters. Also, since a range of crossbar-related technology has

already been demonstrated, they provide the opportunity for practical and realistic models

that simultaneously illustrate the fundamental challenges faced by nanoscale computing.

2.1 Technology Overview

Broadly speaking, emergent nanoscale computing technology can be placed into four cate-

gories: nanoscale semiconductor-based architectures, DNA-based assemblage, quantum-dot

cellular automata (QCAs), and biological computing. Each of these categories is described

below.

16

(a) SNAP NWs [16] (b) CVD NWs [6] (c) Nanoscale crossbar-

based storage [17]

(d) Axially-doped CVD

NWs [18]

Figure 2.1: A range of semiconductor-based nanoscale computing technologies have already

been demonstrated. (a) Uniform semiconducting nanowires have been produced by Heath

et al at Caltech using a process known as SNAP [16]. (b) Lieber et al at Harvard have used

chemical vapor deposition (CVD) to grow nanowires off chip, then deposit them fluidically

in parallel [6]. (c) Molecular storage devices have been demonstrated by Williams et al at

Hewlett-Packard [17] capable of storing bits at nanowire crosspoints (d) CVD nanowires

can be grown with heavily and lightly doped regions along their axis, allowing them to form

field-effect transistors with orthogonally placed lithographically produced mesoscale wires

[18].

2.1.1 Nanoscale Semiconductor-Based Architectures

Today’s architectures are based on CMOS technology, which relies on doped silicon (a semi-

conductor) to implement transistor-based logic. A seemingly natural path toward nanoscale

computing would be to continue the downward scaling of today’s CMOS devices. Unfortu-

nately, the physical constraints of photolithography makes this extremely challenging, if not

impossible. As a result, a number of alternative methods for manufacturing semiconductor-

based architectures are being pursued.

Nanoscale silicon and germanium wires have been produced, and methods for doping

these nanowires (NWs) have been demonstrated, as have individual nanoscale devices (e.g.

diodes, field-effect transistors and memory cells) [19, 4] (see Figure 2.1). As explained in

Section 2.2 below, these devices can then be organized into large-scale architectures via

crossbars (i.e. grids) of NWs. Such crossbars offer a promising basis for both nanoscale

memories (see Section 2.2.2) and programmable logic (see Section 2.2.3).

17

Even with NW crossbars as a building block, it remains a significant challenge to un-

derstand how millions, or billions of nanoscale devices can be organized into general pur-

pose nanoscale architectures. Nanoscale manufacturing constraints, along with significant

amounts of device variation make the direct realization of existing chip designs infeasible.

Instead new designs and accompanying analysis are required to accommodate the assem-

bly constraints of emerging nanoscale semiconductor-based technologies. The design and

analysis of semiconductor-based NW crossbars is the primary focus of this thesis.

2.1.2 DNA-Based Assemblage

In 1994 Adleman observed that carefully selected strands of DNA, assembled in vitro, could

be used to carry out arbitrary computations [20]. His key insight was that the sequence

of nucleotides on each strand of DNA, which determines which other strands it will bind

with, can be viewed as a logical constraint. There are only certain allowed ways in which

large, multi-strand sequences can form when many copies of each stand are placed in a

fluid. By checking for the presence of a particular multi-strand sequence, one is effectively

checking whether a certain set of constraints has been satisfied. This allowed Adleman to use

DNA to solve a small instance of the Hamiltonian Path problem, albeit with questionable

efficiency (DNA-based computing is relatively slow, and requires a large number of strands).

DNA-based computation does not provide a viable alternative to today’s computers.

What is noteworthy, however, is the ability of DNA to be viewed as a means of program-

matically assembling complex structures. Rather than use single strands of DNA, Erik

Winfree has demonstrated that DNA-based tiles can be manufactured such that they com-

bine to form complex 2D patterns [24] (See Figure 2.2a). Square-shaped abstractions of

these tiles have also been the focus of significant theoretical analysis [25, 26, 22, 27](See

Figure 2.2b) as they represent a valuable stochastic generalization of traditional “Wang

Tiles” [28]. Along similar lines, Rothemund has studied, and demonstrated, how a long

strand of DNA can be directed to fold into arbitrary 2D shapes using a set of carefully

chosen “staple strands” (see Figure 2.2c) [23].

The appeal of DNA-based assembly is that a wide range of complex 2D, and even 3D

structures can be assembled systematically, thus allowing for a wide range of nanoscale

18

(a) DNA Tiles [21] (b) Tile-Based De-

coder Layout [22]

(c) DNA Smiley Faces [23]

Figure 2.2: Strands of DNA with appropriately chosen sequences of amino acids can come

together to form complex structures. In (a), nanoscale DNA tiles have assembled to form

Sierpinski Triangles [21] (erroneous connections are indicated with red X’s). In (b), a

hypothetical tile-based decoder circuit is illustrated [22]. In (c) long strands of DNA have

been guided by smaller “staple strands” to form multiple copies of an arbitrarily chosen 2D

shape [23].

19

(a) A QCA-based inverter (b) A QCA-based ma-

jority gate

Figure 2.3: In a QCA, the state of each cell influences the states of its neighbors. To

compute, the state of one or more input cells is held fixed while their influence propagates.

In the above figures, the black dots contained within each cell exert a repulsive force on each

other, and on the dots of neighboring cells. In (a) a QCA-based inverter is illustrated in

which a row of cells acts as wires and a forking path along that wire serves to invert the state

being transmitted. In (b) whichever three input cells are designated as inputs exert their

influence over the center cell. The state of that cell is the propagated to the output. (The

above figures are modified from http://www.ece.neu.edu/∼mottavi/research.htm)

designs. The shortcoming, however, is that the structures themselves cannot be used for

computation (they are just static structures). Ideally, computationally functional compo-

nents could be attached to the DNA, allowing the DNA to act as a scaffolding on which,

say, a nanoscale semiconductor-based architecture could be assembled. Unfortunately, the

ability to attach DNA to semiconductor-based logic remains undemonstrated. As such,

DNA’s immediate role in nanoscale computing appears limited.

2.1.3 Quantum-Dot Cellular Automata

The term “Quantum-dot cellular automata”, or QCA, refers to a system of cells in which

each cell influences its neighbors via quantum effects. If the cells are properly arranged, they

can emulate traditional logic circuits (i.e. implement wires and logic gates, see Figure 2.3)

[29, 30]. Although quantum effects are used to compute, the computation being performed

is classical (although QCAs capable of performing quantum computation have also been

proposed [31]). Since QCAs do not rely on currents or voltages to compute, they have the

potential to operate at significantly lower power and higher densities than today’s CMOS.

20

Although QCAs offer a nanoscale alternative to semiconductor-based logic, there is

currently no means of actually assembling and arranging large scale ensembles of nanoscale

quantum-dot cells. As such, much quantum-dot research has focused on the simulation and

layout of nanoscale quantum-dot circuits. These hypothetical QCA circuits typically rely

on complex and irregular arrangements of cells. Unless a means of fabricating QCA-based

circuits is developed that allows for a wide range of nanoscale features, nanoscale QCA

architectures cannot be realized.

2.1.4 Biological Computing

A very different approach to nanoscale computing involves the use of biological systems,

for example, in vivo protein production. This is not viewed as an alternative to traditional

computing, but rather an additional domain in which nanoscale computing is anticipated.

Within a cell, one protein can promote another protein, which can in turn suppress other

proteins. These dependencies can be modeled as a “biological circuit” capable of imple-

menting general logic [32, 33]. The inherent volatility of these systems, however, poses a

substantial design challenge, as does the fact that they are being carried out within a living

cell.

2.2 Nanowire Crossbars

All four of the above categories exhibit fundamental characteristics of nanoscale computing,

but the modeling and analysis of future chapters focuses on semiconductor-based nanowire

(NW) crossbars (see Figure 2.4). A significant range of crossbar-related technology has

already been demonstrated. As a result, NW crossbars are viewed as offering the greatest

current promise for nanoscale computing. This section provides an overview of NW crossbar

technology and explains how crossbars can serve as both memories and programmable logic.

2.2.1 Crossbar Assembly

Multiple approaches have been demonstrated for manufacturing NWs for use in crossbars.

One method, known as nanoimprint lithography, effectively stamps a set of parallel undif-

21

OC OC
OC

OC

OC
OC

Mesowires
Me

so
wi

re
s

Nanowires
Na

no
wi

re
s

PMs

Figure 2.4: A crossbar formed from two orthogonal sets of NWs with programmable

molecules (PMs) at the crosspoints defined by intersecting NWs. NWs are divided into

groups by connecting them to ohmic contacts (OCs). To address a NW in one dimension,

an OC is activated and mesoscale wires are used to turn off all but one NW in that group

(see Figure 2.5). Data is stored at a crosspoint by applying a large electric field across it.

Data is sensed with a smaller field.

22

ferentiated (i.e. identical) NWs onto a chip [34]. A related method, termed SNAP, also

transfers a pattern of undifferentiated NWs onto a chip [16]. A third, more distinct ap-

proach, grows many types of differentiated NWs (i.e. NWs comprised of different sequences

of materials) off chip, collects the NWs in a large ensemble, then deposits them onto the

chip fluidically [35, 36]. Once deposited, both undifferentiated and differentiated NWs can

interface with today’s photolithographically produced technology (see Chapter 3).

A NW crossbar is formed by depositing a layer of molecular devices between two or-

thogonal sets of parallel NWs. At each NW crosspoint, this device layer prevents the two

orthogonal NWs from coming into direct contact. Instead the NWs are each connected to

opposite ends of what is effectively a two-terminal device across which they may apply an

electric potential. One promising two-terminal device is a molecular diode that switches

between states of low and high resistance in the presence of a sufficiently large positive or

negative electric field [37, 38]. A layer of amorphous silicon has also been proposed as a

nanoscale programmable medium [39]. Molecular devices that do not behave like diodes

(e.g. programmable resistors and transistors) have been considered as well [19, 40]. Com-

parisons between these alternatives with regard to their information storage capacity and

ability to provide control over NWs can be found in [41, 42, 43].

Once a NW crossbar is assembled, g photolithographically produced ohmic contacts

(OCs) and M photolithographically produced MWs are placed along each dimension of the

crossbar (see Figure 2.4). Each OC is in electrical contact with a group of N consecutive

NWs. As such, the OCs allow voltages to be applied to blocks of NWs, while each MW

provides control over (i.e. makes nonconducting) subsets of NWs within each block. These

subsets, however, cannot be chosen deterministically. Instead, the subsets are determined

by a stochastic assembly process. As covered in Section 3.2, a number of methods have

been proposed for stochastically coupling MWs to NWs. When a MW is turned on during

crossbar operation all of the NWs it controls are turned off. This effectively disconnects

any molecular devices to which they are connected.

The interface between NWs and MWs is called a nanowire decoder, A simple

nanowire decoder is one in which all NWs are connected to a single OC. A compound

NW decoder consists of g simple decoders, arranged in parallel (i.e. side by side), which

23

OC OC

O
C

O
C

OC

O
C

OC OC

O
C

O
C

OC

O
C

Read

Write

Figure 2.5: A crossbar-based memory in which OCs and MWs read and write data to

programmable molecules at crosspoints. The darkened segments along each NW indicate

lightly doped regions. These regions become nonconducting when the adjacent MW is

turned on. In a read operation an OC at each end of a NW is disconnected from ground.

Current flows through any conducting NW crosspoints that are addressed by MWs. The

amount of current reveals the value stored at the crosspoints. In a write operation, NWs

along each dimension apply a larger electric field across their crosspoints. The direction

of the field determines the value stored at the crosspoints. In this figure, the same bit of

information is stored at two crosspoints.

24

share a common set of MWs (see Figure 2.4). In a compound NW decoder, we sometimes

refer to the N NWs within one of the g simple decoders (i.e. the N NWs connected to one

of the g OCs) as a contact group. A more detailed description of compound versus simple

decoders is given in Section 3.1.3.

A NW decoder is said to address a particular set of NWs if all NWs in the set remain

conducting, or on, while all other NWs are nonconducting, or off. A NW is said to be

individually addressed if it remains on while all other NWs are off. A more precise

definition of what it means to address one or more NWs is given in Section 3.1. If a NW is

individually addressed, the OC it is connected to is turned on along with all MWs that do

not control that NW. As explained in Chapter 3, MWs are coupled to NWs stochastically

during NW assembly, and thus not all NWs will be individually addressable.

When NWs along each dimension of a NW crossbar are addressed, the molecular devices

at their crosspoints can be accessed and controlled. To accomplish this, the OCs connected

to the addressed NWs are used to place either a small or large potential across just the

devices being accessed. Since all other NWs are off, the devices located at other NW

crosspoints are unaffected. The current flowing across the devices being accessed can also

be measured. As we now explain in Sections 2.2.2 and 2.2.3, this combination of addressing

NWs via MWs and applying electrical potentials via OCs allows both storage and logic

operations to be performed.

2.2.2 Crossbar-based Memories

When many NWs along each dimension of the NW crossbar are addressable, the crossbar

can function as a memory (see Figure 2.5). In the crossbar-based memory, read and write

operations are executed as follows:

• In a write operation, the molecular diodes at NW crosspoints are addressed by cre-

ating a sufficiently large potential between one or more addressed pairs of orthogonal

NWs. To apply this potential, the OCs at ends of the NWs in each dimension apply

the same voltage. This in turn applies a voltage across the crosspoints being ad-

dressed, the polarity of which determines their resistive state. By setting the resistive

state of a molecular diode to either high or low, a bit of data is written.

25

• In a read operation, crosspoints are again addressed using pairs of NWs. A smaller

potential is placed across the crosspoints, preserving their state, and allowing their

conductivity to be measured. In the read operation, the addressed NWs in each

dimension are disconnected from one of their OCs. As a result, current flows through

the crosspoint. The amount of current reveals the resistance of the crosspoint, and

hence the value being stored.

2.2.3 Crossbar-based Logic

A read operation can potentially be used to read from multiple crosspoints at once, which,

as described below, provides a basis for programmable logic by performing wired-ors. In

the context of crossbar-based logic, the NWs along one dimension of a crossbar are called

“input NWs”, and the NWs along the other dimension are called “output NWs”. The

output NWs from one crossbar can be supplied as input NWs to a second crossbar (see

Figure 2.6).

Consider a NW crossbar memory in which a set S of input NWs are addressed. Notice

that any output NW that is connected to one of these inputs via a conducting crosspoint

(i.e. a crosspoint that stores a “1”) will carry a current. In this sense, each output NW

performs a wired-or on whichever input NWs are connected to it. In other words, each

output NW carries a 1 if and only if at least one of the input NWs connected to it carries

a 1. We formalize this below.

• In a wired-or operation, NWs along one dimension of the crossbar serve as inputs

and NWs along the other dimension serve as outputs. Molecular diodes connect each

input NW to a subset of the output NWs. Multiple input NWs can be addressed, as in

a read operation (see above), or alternatively, these NWs can be the current-carrying

outputs of another crossbar.

In the absence of MW control over the output NWs, any output NW connected to an

input NW that carries a current will also carry a current (see Figure 2.6). This allows

each output NW to perform a wired-or over the NWs to which it is connected. If

MWs are used to address a subset of the output NWs, only those NWs will perform

26

OC

O
C

PMs

W
ired-O

R
s

OC FETs

Inputs Outputs

Figure 2.6: A level of reconfigurable crossbar-based logic in which a wired-or operation

is followed by a signal restoration operation that also implements negation. Light NWs

indicate that a boolean value of “1” is being applied, dark NWs indicate a “0”. The two

operations collectively implement a wired-nor, and thus form a complete basis for boolean

logic. The wired-or operation is implemented like a read operation (See Figure 2.5), ex-

cept that multiple vertical NWs, and all horizontal NWs, are addressed. Any horizontal

NW which is connected to an addressed input NW carries a current. The current carrying

horizontal NWs then gate (i.e. make nonconducting) a subset of the output NWs using field-

effect transistors (FETs). The diode connections used to perform the wired-or operation

can be configured via write operations using a NW decoder (not shown), which is discon-

nected during normal operation. The FETs used to implement the restoration operation

may be placed stochastically.

27

a wired-or. In either case, the current-carrying outputs can serve as inputs to a

second crossbar [4].

By supplying the outputs of one crossbar as inputs to another crossbar, multiple logical

operations can be carried out. If all of these operations are wired-ors, however, the

interconnected crossbars will not be able to implement general logic. Also, signal strength

will degenerate because an input NW may drive many outputs. DeHon’s proposed solution

achieves signal restoration via NW-based field effect transistors (FETs) [4] (see Figure 2.6).

Here pairs of orthogonal NWs form FETs, allowing each output NW to be coupled to an

input NW such that either an inverter or buffer is formed.

• In a signal restoration operation, NWs along one dimension of the crossbar serve

as inputs and NWs along the other dimension serve as outputs. Each output NW

forms an FET with at most one input NW. OCs are used to apply a voltage across

the output NWs. The configuration of the OCs and output NWs determines whether

each output computes the not of the input NW it forms an FET with, or instead

acts as a buffer (i.e. computes the identify function).

Since nanoscale programmable FET may not be technologically feasible, DeHon has

observed that randomly placed FETs can be used to implement this restoration operation

[4]. Though promising, the additional overhead associated with stochastic FET placement

has not been rigorously analyzed such that manufacturing errors are taken into account.

28

Chapter 3

Nanowire Decoders

The previous chapter summarized how NW crossbars can provide a promising basis for

nanoscale memories and programmable logic. This chapter focuses on the specific problem

of gaining control over individual NWs. One of the primary requirements for realizing

crossbar-based architectures is a method for addressing individual NWs with much larger,

lithographically-produced MWs. As explained in Section 2.2.1, this interface between MWs

and NWs is referred to as a nanowire decoder.

In this chapter, Section 3.1 provides explicit requirements that NW decoders must meet

in order to provide reliable control over memories and logic circuits. Section 3.2 reviews a

range of proposed decoder manufacturing technologies, highlighting in each case the stochas-

tic aspects of the decoder’s assembly process. Stochastic decoder assembly necessitates

post-assembly testing and configuration, which is the focus of Section 3.3. Section 3.4 then

describes how the behavior of stochastically-assembled NW decoders can be modeled. The

“binary model of nanowire control with errors”, defined in Section 3.4.1, is central to the

probabilistic analysis presented in subsequent chapters. Section 3.5 provides a framework

for this analysis.

3.1 Decoder Requirements

In subsequent chapters, we seek to bound the area required to gain control over N NWs

using different types of stochastically assembled NW decoders. In this section, we establish

the requirements that these decoders must meet in order to provide a sufficient level of

29

1 0

Figure 3.1: On the left, the crosspoint being read has a low resistance, indicating that a “1”

is being stored, but all other crosspoints have a high resistance. On the right, however, the

crosspoint being read has a high resistance, indicating that a “0” is being stored, but all

other crosspoints have a low resistance. To quickly and correctly determine the state of the

crosspoint in each case, the amount of current flowing from one dimension of the crossbar

to the other must be significantly greater on the left than on the right. This is accomplished

only if the on/off ratio of the addressed versus non-addressed NWs is sufficiently large. The

same requirement applies to the wired-or portion of crossbar-based logic.

control over the NWs. As explained below, the requirements we impose depend on whether

the NWs are part of a memory or a circuit.

3.1.1 Nanowire Addressing

First we revisit the definition of NW addressing given at the end of Section 2.2.1. Recall

that a NW decoder is said to address a set of NWs if all NWs in the set remain conducting,

or on, while all other NWs are nonconducting, or off. A NW is said to be individually

addressed if it remains on while all other NWs are off. In order for nanoscale architectures

to function fast and reliably, the on/off ratio of addressed versus non-addressed NWs should

be large. Sometimes we refer to the set of MWs used to individually address a particular

NW as that NW’s address.

More formally, consider a NW decoder in which each MW, when turned on, increases

30

each NW’s resistance by some amount. In this case, we can more formally define what it

means for a set of NWs to be addressed as follows [44].

• A set, S, of NWs is addressed if and only if a) every NW not in S has a resistance

that is at least α times that of every NW in S and b) the combined resistance of all

NWs not in S is at least α times that of the combined resistance of all NWs in S,

where α � 1.

In this definition, condition a) ensures that crossbar write operations function correctly

(i.e. it ensures that only the addressed crosspoints get written to), and condition b) ensures

that the read operations function correctly (see Figure 3.1). The choice of an actual value

of α is application specific. For example, a larger value would be required to read data from

molecular devices with poor on/off ratios. A larger value would also facilitate reading data

more quickly and reliably.

In the context of the above definition, a MW is said to control a NW if that MW, when

turned on, increases the NW’s resistance by a factor larger than α. A MW is said to not

control a NW if it increases the NWs resistance by a factor very close to 1 (The phrase

“very close” is quantified in Section 3.4.2). If the MW increases the NWs resistance by an

intermediate factor, the MW is said to partially control the NW.

It is also possible for MWs to control NWs in ways other than increasing their resistance.

For example, in a diode-based NW decoder (see Section 3.4.2) each MW is connected to

a subset of the NWs via diodes. When a MW is grounded, it provides control over NWs

by siphoning current from the NWs to which it is connected. For this decoder, the word

“resistance” in the above definitions is no longer appropriate, but the overall sentiment

of the definitions remains applicable. Namely, the combined current carrying capacity of

addressed NWs must still be significantly greater than that of the non-addressed NWs. Part

of the appeal of the model of decoder behavior introduced in Section 3.4.1 is that it avoids

the need to distinguish between different ways in which MWs control NWs.

31

3.1.2 Address Requirements

Having defined what it means for a NW decoder to address a set of NWs, we now es-

tablish requirements for the sets themselves. The analysis of subsequent chapters relies on

calculating the probability that stochastically assembled decoders fulfill these requirements.

Nanowire Decoders for Memories

As explained in Section 2.2.2, read/write memory operations are performed in a NW

crossbar-based memory by using a NW decoder to address NWs along both dimensions

of the crossbar. If the decoders along each dimension are each capable of addressing at

least NA disjoint sets of NWs, they can collectively control (NA)2 disjoint sets of NW cross-

points, each of which can store a bit of information. Since these decoders are comprised of

g ohmic contacts (OCs), each of which can be turned on independently, NA =
∑g

i=1 N i
A,

where N i
A denotes the number of disjoint sets of NWs that can be addressed when only the

ith OC is turned on. NW decoders for memories are analyzed in Chapters 4, 5 and 6.

Nanowire Decoders for Circuits

A NW decoder may also be used to supply patterns of NA inputs to crossbar-based logic

circuits. In order to provide a circuit with arbitrary patterns of inputs, it is not sufficient

for the decoder to be able to address NA disjoint sets of NWs. Instead there must exist a

set of NA NWs such that all subsets of the NWs are addressable. Such a set is said to be

fully addressable. NW decoders for logic are analyzed in Chapter 7.

3.1.3 Simple Versus Compound Decoders

From Section 2.2.1, recall that a simple NW decoder is one in which all NWs are connected

to a single OC. A compound NW decoder is g simple decoders, arranged in parallel, that

share a common set of MWs (see Figure 3.2). The NWs within a given simple decoder

are sometimes referred to as a contact group. Compound NW decoders are well-suited to

meeting the addressing requirements of crossbar-based memories, but are less useful in the

context of crossbar-based logic.

32

Simple
NW Decoder

Simple
NW DecoderO

C
O

C

Figure 3.2: A compound NW decoder in which two simple decoders are each connected to a

different OC, but share a common set of MWs. Since the OCs are controlled by mesoscale

circuitry, they can each be turned on or off independently. The NWs within a particular

simple decoder are referred to as a contact group.

When a compound NW decoder is used in a crossbar-based memory, dividing the NWs

into many contact groups greatly reduces the number of MWs required to address many

NWs. The simple NW decoders associated with the g OCs all share the same MWs, but

when NWs are addressed only a single OC is turned on at a time. As a result, whether or not

a given NW is individually addressable depends only on the NWs within its contact group.

This allows us to maximize the probability that many NWs are individually addressable by

making the number of NWs per OC, N , as small as manufacturing constraints allow. The

limits of photolithography suggest that N ≈ 10.

Interestingly, compound NW decoders are not as valuable for controlling crossbar-based

logic. In the absence of any MWs, providing NA fully addressable inputs to a circuit would

require NA OCs, and N ′ = N(NA) total NWs. To do better, we would hope that each OC

is connected to several of the NA fully addressable NWs. This implies, however, that most

input patterns to the circuit require most or all OCs be on. As a result, the subsets of MWs

that are used to supply most input patterns would still work if all NWs were connected

to a single, larger OC. The gain of using the compound decoder over a simple decoder is

modest. (This line of reasoning is revisited in Chapter 7.)

33

3.2 Decoding Technologies

There are a number of decoder technologies which appear capable of fulfilling the addressing

requirements described in the previous section. In this section we review these technologies.

Even though a wide range of NW decoders can plausibly be considered, Section 3.4 and 3.5

describe how most of these decoders can be modeled and analyzed in a unified fashion.

3.2.1 Encoded Nanowire Decoders

In an encoded NW decoder, many differently encoded NWs are grown separately, col-

lected in a large ensemble, then deposited onto a chip via fluidic methods. Two technologies

for encoding NWs have been considered. Both are analyzed in detail in Chapter 5.

Axially Encoded NW Decoders

The axially encoded NW decoder is produced using modulation-doped NWs [45, 46]. These

NWs are grown with sequences of lightly and heavily doped regions along their axis [18].

Once grown, many NWs with each encoding are collected in a large ensemble, and a random

subset of the NWs is deposited in parallel to form each dimension of a crossbar [6]. MWs are

then laid down along the periphery of the crossbar to form decoders. To prevent adjacent

NWs from coming into electrical contact, NWs can potentially be grown with an insulating

shell that would then be etched away before the MWs are placed.

When a MW is deposited on top of a NW’s lightly doped region, that MW provides

control over that NW by forming a field-effect transistor (FET). When the MW is turned

on, it applies an immobilizing electric field that greatly increases the resistance within the

adjacent lightly doped region. If NWs are properly encoded, NWs with each encoding can

addressed separately (see Chapter 5 Section 5.1). NWs are addressed by turning on all

MWs that do not control them (see Figure 3.3). As explained in Chapter 5, using more

encodings, and hence more MWs, increases the probability that many NWs are individually

addressable.

A potential challenge facing axially encoded NW decoders is that fluidic NW deposition

does not guarantee end-to-end alignment of NWs. As a result, a MW may only partially

34

Figure 3.3: An encoded NW decoder in which each NW has a sequence of lightly and heavily

doped regions along its axis. When a subset of the MWs is activated, all NWs with lightly

doped regions under those MWs become nonconducting. This allows MWs to address NWs

with a particular encoding. Since encodings are assigned randomly to NWs, the probability

that many NWs are individually addressable is determined by the total number of possible

encodings. Fluidic assembly cannot guarantee that lightly doped regions align with MWs.

lie on top of a particular lightly doped region, and thus only partially control a particular

MW. Radially encoded NWs offer a potential solution to this problem.

Radially Encoded Nanowire Decoders

In a radially encoded NW decoder, core-shell NWs are used in place of modulation-doped

NWs [47]. Core-shell NWs are produced by growing shells composed of separately etchable

materials around a lightly doped core. In this way, NWs are encoded using shell sequences

in place of doping sequences. As explained in Chapter 5 Section 5.4, there are multiple

approaches for gaining control over differently encoded core-shell NWs.

The simplest approach uses one MW to control NWs with each shell sequence (see

Figure 3.4). In the space reserved for each MW, a particular sequence of k shell materials

is etched away. If each NW has k shells initially, this process exposes only the lightly

doped core of NWs with one particular shell sequence. On all other NWs, at least one shell

remains. As a result, each MW controls only NWs with one specific shell sequence. Those

NWs are addressed by turning on all other MWs.

35

Figure 3.4: A radially encoded NW decoder in which a different shell sequence has been

etched away under each MW. When turned on, each MW only controls (i.e. makes non-

conducting) the NWs with an exposed lightly doped core under that MW. In this decoder,

each NW encoding is controlled by a different MW, but other decoder designs are possible

(see Chapter 5 Section 5.4).

36

3.2.2 Mask-Based Decoders

Encoded NW decoders require that NWs with different encodings be grown off chip, then

deposited fluidically. In contrast, mask-based decoders can be used to control any type of

straight uniformly-spaced lightly doped NW. This decoder was first proposed for use with

NWs produced by the superlattice nanowire pattern transfer method (SNAP) [16]. It can

also be used with NWs grown by nanoimprinting [34, 48].

In a mask-based decoder, lithograpically-defined high-K dielectric rectangles are de-

posited between NWs and MWs. These regions of high-K dielectric focus the field strength

of adjacent MWs, thereby causing the lightly doped NWs sitting under each region to turn

off when the adjacent MW is turned on. If the lithographically-defined rectangles could be

as small as the pitch of NWs and placed with nanometer accuracy, a mask-based decoder

with M = 2 log2 N MWs could be used to individually address N NWs (see Figure 3.5(a)).

Unfortunately, the rectangles cannot be manufactured with this level of precision. Thus, it

has been proposed that many copies of the smallest manufacturable lithographically-defined

rectangles be deposited and that the natural randomness in their placement be used to gain

control over individual NWs with high probability [7, 49, 50] (see Figure 3.5(b)). This

approach is analyzed in Chapter 6.

3.2.3 The Randomized-Contact Decoder

The randomized-contact decoder is another proposed method for addressing undiffer-

entiated NWs. In a randomized-contact decoder, MWs are randomly coupled to NWs by

a manufacturing process that makes each NW/MW junction controlling, noncontrolling,

or partially controlling independently at random (see Figure 3.6). There are a number of

ways such decoders might be produced. One proposed approach is to randomly deposit

impurities, such as gold particles, onto undifferentiated NWs [51]. Another approach is to

randomly deposit small regions of high-K dielectric, or alternatively, randomly etch or fill

holes in a low-K dielectric [52]. A randomized-contact decoder can also be constructed from

axially encoded NWs. If many sets of axially encoded NWs are produced with randomly

placed lightly doped regions, each NW/MW junction can be treated as an independent ran-

dom variable. As a result, analysis of randomized-contact decoders provides bounds that

37

(a) A logarithmic-sized mask-based decoder

(b) A randomized mask-based decoder

Figure 3.5: A masked-based NW decoder in which regions of high-K dielectric allow each

MW to control a different subset of NWs. (a) If arbitrarily small high-K dielectric regions

could be manufactured and placed with nanoscale precision, 2 log(N) MWs could be used

to address each of N NWs. (b) Since this is not possible, many randomly shifted copies of

the smallest manufacturable region can be used to gain control over individual NWs.

38

Figure 3.6: A randomized-contact decoder in which random particle deposition causes each

MW to control each NW independently at random

apply to encoded NW decoders as well. A detailed analysis of randomized-contact decoders

is presented in Chapter 4

3.2.4 Additional Decoding Technologies

Other methods for controlling NWs with MWs have been proposed. Each has uncertainties

in their construction that have not been fully analyzed. The decoders described in this

subsection are not the focus of later chapters.

Rotational Offset Decoders

Likharev et al have proposed a hybrid CMOS/nanoscale architecture know as “CMOL” in

which the NWs in a NW crossbar would be controlled by MWs in a MW crossbar [53].

To interface MWs with NWs, pins with nanoscale diameter tips would be formed at the

MW crosspoints. If the mesoscale grid is appropriately rotated relative to the nanoscale

grid, MW crosspoints can be coupled to NWs in a one-to-one fashion (see Figure 3.7(a)).

Currently this pin-based interface has not been demonstrated. Also, it appears sensitive

to small changes in the angle of rotation between the two crossbars, as well as nanoscale

variation in pin placement and orientation.

Franzon et al have proposed a NW decoder that is also based on the rotational offset

between two sets of wires [54]. Here a parallel set of insulated NWs would be interfaced

with MWs by first exposing NW-width regions that cut diagonally across multiple NWs (see

39

(a) A CMOL decoder

(b) A diagonal cut decoder

Figure 3.7: Several decoders have been proposed based on the rotational offset of two

parallel sets of NWs. Likharev et al have proposed (a), a NW decoder in which NWs are

interfaced with MWs via nanoscale pins placed at the crosspoints of a mesoscale grid [53].

Franzon et al have proposed (b), a NW decoder in which a second set of temporarily placed

NWs are used to define diagonal cuts. If angled appropriately, these nanoscale cuts would

expose a portion of each NW under a different MW [54].

40

gate electrode

gate electrode

Figure 3.8: A “micro to nano addressing block”, or MNAB, in which two opposing gate

electrodes produce a variable strength electric field to turn off all but one of the four

semiconducting NWs [39].

Figure 3.7(b)). These regions would be defined by a temporarily placed set of NWs acting

as a mask. Each MW, once laid down, would only control a NW if that NW’s adjacent

insulation had been removed. The angle of the exposed regions should be chosen so that

each NW has an exposed portion under a different MW. As with the CMOL decoder, this

manufacturing technique appears sensitive to small changes in the angle of the nanoscale

exposed region. Also, translational misalignment of the region relative to the MWs could

result in MWs that provide only partial control over NWs.

MNAB

Wickramasinghe et al have demonstrated control over NWs using a “micro to nano address-

ing block”, or MNAB [39]. Here a small number of parallel NWs are attached to each OC

and gate electrodes are positioned on either side of those NWs (see Figure 3.8). To address

individual NWs, the two gate electrodes must simultaneously apply different voltages cho-

sen so as to deplete (i.e. turn off) all but one of the lightly doped NWs. For this decoder to

function reliably, both the gate electrode voltages and the NW doping concentrations must

be chosen properly. As yet, no modeling of the variability in the assembly of MNAB has

41

been presented. It is also unclear if this method can control blocks of more than three or

four NWs with sub-10nm diameters.

3.3 Post-Assembly Configuration

Since NW decoders are assembled stochastically, post-assembly testing and configuration

are required before they can be used to control memories or logic. A testing algorithm is

needed to discover which sets of MWs can be used to address NWs. Configurable addressing

circuitry is needed to store these addresses and provide a consistent external interface to

the decoders.

3.3.1 Address Discovery

In a stochastically assembled NW decoder each NW has an address, or “codeword” (see

Section 3.4 below), determined by which MWs do and do not control it. Since NW addresses

are randomly generated during decoder assembly, they must be discovered through testing.

This is a difficult problem, as some addresses may mask others, and faults may make

test outputs unreliable. Several approaches to address discovery have been considered.

Chapter 8 analyzes the number of test operations these approaches require.

In [12] an efficient testing procedure involving read/write operations was given for en-

coded NW decoders. Although the procedure could be adapted for other decoders, its

reliance on nanoscale storage devices is a drawback. Tests using read/write operations are

relatively time consuming and possibly faulty. Also, in crossbar-based circuits they may

not even be possible, as not all NWs are used to control nanoscale storage devices.

As an alternative, one can consider testing algorithms that apply a voltage across the

N NWs within a single contact group, turn on a subset of the MWs, then measure if any

NW remains conducting [55, 56] (i.e. if the N NWs collectively carry any current). This

conductance test does not reveal which NW is on, nor does it reveal if multiple NWs are

on. Nonetheless, it is sufficiently powerful to determine which subsets of MWs address

individual NWs [56].

42

NW DecoderNW Decoder

NW DecoderNW Decoder NA
 N

W
Ou

tp
ut

s

M MW Inputs

B-bit External Address

log(g) bit address

ATCATC

OCOC
OCOC

De
m

ul
tip

lex
er

De
m

ul
tip

lex
er

Figure 3.9: In order to control a NW decoder and provide a consistent external interface,

programmable address translation circuitry (ATC) is required to map B-bit inputs to OCs

and MWs.

3.3.2 Address Translation Circuitry

When a memory is supplied with a particular external binary address, address translation

circuitry (ATC) along each dimension of the crossbar maps that address to an OC and

set of MWs to activate. This mapping depends on how the decoder was stochastically

assembled. To ensure each external address does in fact address some NW, the ATC must

store information about which MWs control some or all of the NWs (see Figure 3.9)

In order to make this ATC fast, reliable and easy to manufacture, it may be implemented

at the mesoscale. Any approximation of the area required to control a NW-crossbar must

take into account not just the area of MWs and OCs, but also the area used to store NW

addresses using a mesoscale ATC (the prospect of implementing the ATC using nanoscale

storage is considered in [40]). The size of the ATC is explicitly modeled in [12] and [56]

(see Section 3.5.1), but it has received less attention elsewhere. The appendix of [11] also

estimates the area required for the ATC, but does so without exploring how different address

mapping strategies affect area requirements.

43

The ATC must associate an OC and subset of MWs with each B-bit external address. In

the worst case, this requires log2 g +M bits of storage for each of the 2B addresses. In some

cases fewer bits are required. For example, if every NW is individually addressable, and

the number of NWs per contact group is a power of 2, the high order bits of each external

address can be used to index an OC. This fixed mapping between high order bits and OCs

allows the ATC to store only M bits per address. The way in which B-bit addresses are

mapped to OCs and MWs is called an addressing strategy. In Section 3.5.2 multiple

addressing strategies are discussed in detail. The analysis of subsequent chapters reveals

that some addressing strategies require significantly more overall area than others.

3.4 Modeling Nanowire Decoders

The goal of subsequent chapters is to bound the resources required to gain control over

NWs. More concretely, we wish to know how many MWs, M , are required to address N

NWs, and how much ATC area is required to control those MWs. To accomplish this,

we need an explicit model for how MWs address NWs. Rather than define a technology-

specific physical model of decoder behavior, which would be difficult to analyze probabilis-

tically, Section 3.4.1 defines a simpler, more abstract model termed the binary model

of nanowire control with errors. Section 3.4.2 contrasts this model with a real-valued

physical model, highlighting its simplicity and generality.

3.4.1 The Binary Model of Nanowire Control with Errors

For each NW, ni, we can describe the subset of MWs that control it using an M -tuple,

ci ∈ {0, 1, e}M , called its codeword. Let ci
j indicate the jth position of ci. Then

• ci
j = 1 if MW mj controls ni. In this case the MW/NW junction is said to be

controlling.

• ci
j = 0 if MW mj does not control ni. In this case the MW/NW junction is said to

be noncontrolling.

• ci
j = e if MW mj partially controls ni. In this case the MW/NW junction is said to

be partially controlling, or “in error”.

44

Since proposed NW decoders employ stochastic assembly processes, codewords are assigned

to NWs according to some probability distribution. This distribution is determined by how

the decoder is manufactured. For example, in a randomized-contact decoder each bit of

each codeword is an i.i.d random variable.

A NW decoder addresses a set of NWs by applying an electric field to a subset of the

MWs. These MWs are said to be activated or on. The set of activated MWs is called

an activation pattern. A particular activation pattern, a ∈ {0, 1}M , is represented as a

binary M -tuple where aj = 1 if and only if the jth MW is activated. Given a MW activation

pattern and a codeword associated with each NW, we model the decoder’s behavior as

follows.

• When a NW decoder is used to address NWs, NW ni is said to be reliably off if some

MW mj , for which ci
j = 1, is activated.

• ni is said to be reliably on if no MW for which ci
j = 1 or ci

j = e is activated.

• If a NW is neither reliably off nor reliably on, it is said to be in error. In other words,

a NW is in error if there is an activated MW, mj , such that ci
j = e and there is no

activated MW, mk, such that ci
k = 1.

• A decoder with junctions that are in error behaves reliably when activation patterns

are supplied such that no NW is in error.

Nanowire Addressability

From Section 3.1.1, recall that a NW is individually addressed if it remains on while all

other NWs are turned off. In an error-free decoder (i.e. a decoder where no MW/NW

junctions are in error), NW ni is individually addressable if and only if it is individually

addressed by the activation pattern a = ci. In other words, if ni is individually addressed

by any activation pattern, a′, it must also be individually addressed when any additional

noncontrolling MWs (for which ci
j = 0) are turned on.

This observation implies that if a ni is not individually addressable, it is not addressed

by a = ci, and thus there is some other codeword ck such that for each j it is not true that

ci
j = 0 and ck

j = 1. This is the mathematical definition of implication; that is, ck
j implies

45

ci
j . When this condition holds for all values of j, we say that ck implies ci, and write

ck ⇒ ci. From this, we can succinctly state that in an error-free decoder, ni is individually

addressable if and only if no NW’s codeword implies ci.

In the case of errors, a reasonable generalization of the above definition of codeword

implication is to say that ck
j “possibly implies” ci

j if it is not true that ci
j = 0 and ck

j = 1.

When this condition holds for all values of j, we say that ck possibly implies ci. This

definition still allows us to assert that ni is individually addressable if no NW’s codeword

“possibly implies” ci. In future chapters, when it is clear that we are using the binary

model with errors, we still write ck ⇒ ci and use the term “implies” when we technically

mean “possibly implies”.

Example 3.4.1 To better understand the above definitions, consider a simple NW decoder

with 5 MWs and 4 NWs. Suppose codewords c1 = 10100, c2 = 10101, c3 = 1e010 c4 =

ee011 are present on the four NWs.

In this case NW n1 is individually addressed by the MW activation pattern a = 01011.

When this pattern is applied, n2, n3 and n4 are all reliably turned off. Since c1 implies

c2, however, n2 cannot be individually addressed.

Even though c3 contains an error, n3 can still be individually addressed with the acti-

vation pattern a = 00101. The same guarantee cannot be made for n4, however, since c3

possibly implies c4.

As the above example illustrates, the binary model with errors provides a way of ac-

commodating errors. Even if NWs contain junctions which are in error, it is still possible

for them to be addressed reliably. An additional level of fault-tolerance can be added if

codewords are sufficiently far apart [57, 58, 44].

• Let the directed distance between two codewords, denoted ddir(ci, cj), be the num-

ber of positions in which ci has a 0 and cj has a 1. Let the symmetric distance

denoted dsym(ci, cj) be the minimum of ddir(ci, cj) and ddir(cj , ci).

If the symmetric distance between all codewords is at least 1, then all NWs are individ-

ually addressable (since no codeword possibly implies another). If the symmetric distances

46

are all greater than 1, then not only will all NWs be individually addressable, but the guar-

antee on their on/off ratios will have increased (see the end of Section 3.4.2). This can allow

for faster and more reliably decoders. It can also allow the decoder to cope with transient

faults in which a MW fails to adequately control a NW.

Monotone DNFs with Errors

Rather than describe the binary model with errors using codewords, we can also describe

the model using monotone disjunctive normal forms (DNFs) in which some variables are

designated as “in error”. The main advantage of this approach is that during testing (see

Section 3.3.1 above) selective queries are used to learn which NW addresses are present.

This can be recast as learning which clauses are present in the monotone DNF. As discussed

at the end of Chapter 8, monotone DNF learning algorithms have already been extensively

studied among computer scientists (although most of this work does not accommodate

variables which are in error).

In the case of a simple NW decoder consisting of N NWs and M MWs, the corresponding

DNF consists of N clauses, each with up to M boolean variables. In each clause, all variables

are negated. Each clause corresponds to a codeword as follows.

• In the N -term monotone DNF, φ = φ1 ∨ φ2, . . . ∨ φN , that models a simple NW

decoder, each clause, φi, corresponds to NW ni with codeword ci. Each boolean

variable, xj , corresponds to a MW, mj . If mj is activated, xj = 1.

• In each clause, φi, the literal xj (meaning the negation of xj) appears if ci
j = 1. In

other words, when φi contains xj , mj controls ni. The clause evaluates to 0 when

mj is activated, since in this case xj = 1 and the literal xj evaluates to 0.

• In each clause, φi, the literal xj appears in error if ci
j = e. When φi contains xj in

error, mj provides only partial control of ni. In this case, xj evaluates to 1 if xj = 0,

but evaluates to e if xj = 1. Literals that are in error cannot evaluate to 0.

• On a given binary input, φi evaluates to 1 if all literals, xj , that appear in the clause

are 1. It evaluates to 0 if at least one literal in the clause that is not in error is 0.

47

Otherwise, the clause evaluates to e and is said to be in error. In other words, when

some literals evaluate to e, e ∧ 1 = 1 ∧ e = e, e ∧ 0 = 0 ∧ e = 0 and e ∧ e = e.

• On a given binary input, φ evaluates to 0 if all clauses evaluate to 0, and evaluates to

1 if at least one clause evaluates to 1. Otherwise the entire DNF evaluates to e. In

other words, when some clauses evaluate to e, e∨ 1 = 1∨ e = 1, e∨ 0 = 0∨ e = e and

e ∧ e = e. When a DNF evaluates to e, it is said to be in error.

This DNF-based model is well-suited toward study of decoder testing, since testing

a given MW activation pattern corresponds to querying the DNF on a particular input.

When the underlying DNF evaluates to e, this reflects the fact that each NW is either

nonconducting or partially conducting. As a result, the observed value of the DNF (i.e.

the current measured between OCs) is unreliable. As explained in Chapter 8, the goal of a

NW testing algorithm is to learn as many clauses of the underlying DNF as possible, even

though certain tests may be unreliable.

Example 3.4.2 The example given at the end of the previous subsection can be restated

in terms of a monotone DNF. As before, consider a simple NW decoder in which M = 5,

N = 4 and the codewords c1 = 10100, c2 = 10101, c3 = 1e010 c4 = ee011 are present on

the four NWs.

These codewords correspond to the clauses φ1 = x1 ∧ x3, φ2 = x1 ∧ x3 ∧ x5, φ3 =

x1 ∧ x2
e ∧ x4 and φ4 = x1

e ∧ x2
e ∧ x4 ∧ x5 respectively. Here the superscript e indicates that

a particular variable is in error.

The entire decoder is then represented by the monotone DNF φ = φ1 ∨φ2 ∨φ3 ∨φ4. On

any given input, each clause either evaluates to 0, 1 or e. A clause evaluates to e if at least

one variable which is in error is 1, but no variable not in error is 1. The entire DNF, φ

evaluates to e if at least one clause evaluates to e, and no clause evaluates to 1.

3.4.2 Real-valued Physical Models

Instead of using the binary model of nanowire control with errors, a NW decoder can be

modeled as a simple physical system. The problem with this approach is that such a model

would be both difficult to analyze, and highly technology-specific. In this subsection we

48

give an example of a real-valued physical decoder model. We then highlight the difficulties

of working with such a model and explain why the binary model with errors provides an

appealing alternative.

Resistive Nanowire Decoders

Many of the proposed methods for constructing NW decoders discussed in Section 3.2

utilize stochastically placed FETs at MW/NW junctions. In such decoders each MW,

when activated, increases each NW’s resistance by some amount. Such decoders can be

modeled as follows [44].

• In the resistive model of NW control, each NW ni has initial resistance ηi when

no MWs are activated.

• Associated with each NW is a length-M vector of reals, or a real-valued nanowire

codeword, ri. The jth entry of ri, ri
j , is the amount by which the jth MW increases

the resistance of ni when activated.

• When the decoder is supplied with an activation pattern, a, the resistance of NW ni

is ηi + a · ri where a · ri is the inner product of a and ri.

The definition of NW addressing given in Section 3.1.1 directly applies to this model of

NW control, as do the decoder address requirements described in Section 3.1.2. Even so,

to analyze a stochastically assembled decoder using this real-valued model, one would need

to first specify a continuous probability distribution with which real-valued nanowire code-

words are assigned. One would also need to quantify the probability that these codewords

satisfy various addressability requirements. Both tasks are challenging and mathematically

cumbersome. It is much simpler to map the resistive model on to the binary model with

errors.

Consider the following approach for mapping each ri to a binary codeword with errors,

ci.

• ci
j = 0 if ri

j ≤ rlow

• ci
j = 1 if rhigh ≤ ri

j

49

• ci
j = e if rlow ≤ ri

j ≤ rhigh

Here rlow and rhigh must be chosen so that a set S of NWs can correctly be considered

addressed (as defined in Section 3.1.1) by any activation pattern, a, for which the following

two conditions hold.

• for each ni ∈ S, ci
j = 0 when aj = 1,

• for each nk 6∈ S, there exists a j such that ck
j = 1 and aj = 1.

To bound rhigh and rlow, suppose a meets these two conditions. Let rbase = maxi ηi.

Observe that every NW in S has resistance at most RL = rbase + (M − 1)rlow because at

most M − 1 MWs are activated. Also, note that every NW not in S has resistance at least

RH = rhigh. From definition of “addressed” in Section 3.1.1, it is clear that S is addressed

if RH ≥ α(N −1)RL or rhigh ≥ α(N −1)(rbase +(M −1)rlow). To simplify, let rlow = crbase

for some constant c > 0. Then, the condition becomes rhigh = α(N − 1)(cM − c + 1)rbase.

Using the above values of rhigh and rlow, the resistive model can be mapped to the binary

model with errors such that a NW ni is addressable in the binary model it is addressable

in the resistive model. Once again, we emphasize that the value of this approach is that the

binary model is significantly easier to work with in the context of probabilistic analysis.

As a generalization of the above mapping strategy, we could also lower the threshold

rhigh (or raise rlow), but require that the symmetric distance (as defined in Section 3.4.1)

between all NWs be at least d. In this case we would again set rlow = crbase and rhigh =

(k/d)(cM − c + 1)(N − 1)rbase.

Diode-Based Nanowire Decoders

Not all proposed NW decoding technologies are based on FETs that allow each to increase

the resistance of certain NWs. Another potential type of NW decoder is one in which diode

connections are made between MWs and NWs [57]. In a diode current only flows in one

direction. If each MW is connected to a subset of NWs via diodes, then that MW, when

activated (i.e. grounded), will siphon off current from just those NWs. As with FET-based

control over NWs, diode-based control can also be modeled using the binary model with

errors.

50

In a diode-based NW decoder, when MW mj is not connected to NW ni, it provides

no control over that NW, and hence ci
j = 0. When mj is connected to ni by a sufficiently

conductive diode it provides reliable control over ni, and thus ci
j = 1. Finally, if mj is

connected to ni by a faulty diode, and provides only partial control over ni, ci
j = e. Once

again, use of the binary model with errors avoids the need to work with a more complicated

real-valued physical model.

More Complex Behavior

Proposed NW/MW interfaces are not limited to diodes and FETs. For example, negative-

differential resistors have also been proposed. These are connections that actually demon-

strate a decrease in current when the voltage across them increases. Fortunately the binary

model with errors is accommodating to a wide range of decoding technologies.

The Difficulty with Real-Valued Models

As this subsection has illustrated, a key difficulty in using real-valued models to describe NW

decoder behavior is that very different models are required for different decoder technologies.

This fails to exploit the fact that the different technologies are being used to produce devices

that are, in essence, functionally equivalent (i.e. each MW provides control over a subset

of NWs). Also, since decoders are assembled stochastically, real-valued models require that

continuous probability distributions be associated with their various parameters. Not only

does this make probabilistic analysis more challenging, it requires fairly detailed assumptions

about the nature of a decoders assembly process itself. It is not currently known, for

example, how the resistances, ri
j , may be distributed for specific types of decoder. To cope

with all of the above complications, the analysis carried out in subsequent chapters utilizes

the binary model of NW control with errors.

3.5 Decoder Analysis Framework

Having established a general-purpose model of how MWs control NWs, we now wish to

determine the area required to implement different NW decoders. To accomplish this,

51

subsequent chapters derive bounds on M , the number of MWs required for various stochas-

tically assembled simple and compound NW decoders to be able to address NA out of N

NWs with some desired probability, 1− ε. Once a bound on M has been obtained in terms

of N , NA, g (the number of OCs) and ε, the bound can be translated into a bound on area

using the formula presented in Section 3.5.1.

The area required for a NW crossbar-based memory depends not only on N , M and

g, but on the amount of programmable storage required by the ATC. As was explained in

Section 3.3.2, this in turn depends on the addressing strategy being employed. Section 3.5.2

describes a number of possible addressing strategies. Chapters 4, 5 and 6 bound the num-

ber of MWs required to implement these addressing strategies using randomized-contact,

encoded NW and mask-based decoders, respectively. Section 3.5.3 briefly outlines the type

of probabilistic analysis these bounds require.

3.5.1 Memory Area Estimate

In the case of a crossbar-based memory, the total area, AT , required depends on the number

of NWs per OC, N , the number of MWs, M , the number of OCs, g, and the size of the

ATC. We use the approach of [12] and write:

AT ≈ 2χβ + 2λ2
mesogdlog2 ge+ (λmesoM + λnanoN

′)2

Here λmeso and λnano denote the pitch of MWs and NWs respectively, that is, the

center-to-center distance between wires. Also, χ denotes the area of a mesoscale memory

cell, and β denotes the number bits stored in each dimension of the memory’s ATC. In the

next subsection, β is given for a variety of addressing strategies.

In above formula, χβ approximates the area required for the ATC’s programmable

storage along each dimension of the crossbar. λ2
mesogdlog2 ge approximates the area required

for the standard demultiplexer used to individually turn on OCs along each dimension of

the crossbar. (λmesoM + λnanoN
′)2 approximates the area occupied by the N ′-by-N ′ NW

crossbar with M MWs along each dimension, where N ′ = gN . The storage capacity of the

memory, N2
A, depends on the addressing strategy being employed.

52

3.5.2 Memory Addressing Strategies

In this subsection we define a number of addressing strategies, that is, ways of using the

ATC to map a B-bit external binary address, E, to an activation pattern, a and a particular

OC, denoted σ. For each addressing strategy, we note the amount of programmable storage

it requires. The strategies we define are by no means exhaustive. It is interesting that such

a wide range of possibilities exists.

All Wires Addressable

Here we choose M so that, with probability at least 1− ε, all NWs in every contact group

are individually addressable. If we assume that the number of NWs in each contact group

is 2k, we can simply use the first b − k bits of E to select σ. This fixed mapping does not

depend on the particular NW codewords that are present, although the mapping of E to a

does. To execute the second mapping, the ATC stores each NW codeword that is present in

a lookup table. This requires N ′
aM bits of storage where N ′

a is the number of addressable

NWs in the decoder.

All Wires Almost Always Addressable

Here we choose M so that with probability at least 1 − ε, all NWs in nearly all contact

groups are addressable. Contact groups in which not all NWs are addressable are not used.

Since the particular contact groups that are not used will vary from decoder to decoder,

the ATC cannot use a fixed mapping from E to contact groups σ. Instead, a lookup table

is used to obtain an integer to be added to the first b−k bits of E so that it corresponds to

the proper contact group. Let g be the number of contact groups and g′ be the number for

which all NWs are addressable. Then g − g′ is an upper bound on the values in the table.

We also use a lookup table to map E to a. The two tables combined require approximately

g′dlog2(g − g′)e+ N ′
aM bits.

Half of Wires Addressable

The previous two addressing strategies require that all N NWs be individually addressable

in all or almost all, contact groups, with probability at least 1 − ε. The ATC required to

53

implement these two addressing strategies requires N ′
aM and g′dlog2(g−g′)e+N ′

aM bits per

address, respectively. As an extension of the two strategies, we can require that at least αN

NWs be individually addressable, for some α < 1. If more than αN NWs are addressable

within a particular contact group, only αN are used. Since the number of addresses per

contact group is still fixed, the amount of storage required by the ATC is unchanged.

Take What You Get (TWYG)

In this addressing strategy, the number of addresses per OC is no longer held fixed. Instead

we simply choose M so that a fixed fraction of all NWs are individually addressable with

probability at least 1− ε. In this case, some contact groups may have all NWs addressable,

but some may not. Since the number of addressable NWs per contact group varies, we

can no longer map fixed blocks of binary memory addresses to a particular contact group.

Instead, we store a value of σ and a for each addressable NW. This requires N ′
a(dlog2 ge+M)

bits.

All Present

Here we choose M to be small enough relative N such that all codewords are present at

each OC with probability at least 1− ε. This has the advantage of eliminating the need for

ATC, but since each address will likely be present multiple times, most NWs will not be

individually addressable. Also, this strategy only applies to decoders (such as the encoded

NW decoder) in which each codeword can be guaranteed to be individually addressable.

Address Sets Across Groups (ASAG)

Here a fixed set of individually addressable codewords, C, is preselected, then M is chosen

so that each codeword in C appears, and is individually addressable, at least t times across

all g ohmic contacts. Here t should be chosen such that t|C| ≥ N ′
a. If we assume |C| is a

power of 2, this strategy allows for a fixed mapping between the lower order bits of E and

codewords in C (and thus a). The high order of bits of E are then mapped to values of σ

using N ′
a(dlog2 ge) bits.

54

3.5.3 Expectation versus with High Probability

A simple NW decoder consists of N NWs connected to a single OC, controlled by M MWs.

When analyzing a simple decoder, in order to determine the number of MWs required for

the addressing strategies defined in the previous subsection, there are several questions it

may make sense to ask.

• How large must M be so that all NWs are individually addressable?

• How large must M be so that all NWs are fully addressable?

• How large must M be so that at least d NWs are individually addressable? fully

addressable?

• How large must M be so that at least d disjoint groups of NWs can be addressed.

• How large must M be so that there exists a group of d NWs such that all subsets of

the d NWs can be addressed (this is of interest if the decoder is being used to supply

inputs to a circuit).

Since NW decoders are assembled stochastically, each of the above conditions can only

be satisfied with some (ideally high) probability. Hence any bounds on M must be given

in terms of their probability of failure. In order to compute these bounds on M , we must

identify, for a particular type of NW decoder, the probability that a given NW will be

individually addressable. This, in turn, can be bounded by the probability that any two

NWs are independently controllable, meaning each can be turned off while the other

remains on. As we show in the subsequent chapters, once this probability has been identified,

various bounds on M can be determined.

Now consider a compound NW decoder consisting of g ohmic contacts arranged in

parallel. This can be viewed as g independently assembled simple decoders that share the

same set of M MWs. This gives rise to some potentially more complex questions. To

suggest a few:

1. How large must M and g be to ensure that some total number of NWs are individually

addressable

55

2. How large must M be so that at least d NWs are individually addressable in all g

OCs.

3. How large must M be so that in most OCs, at least d NWs are individually address-

able.

4. How large must M and g be so that each codeword appears at least d times across all

ohmic contacts.

Which of these questions should be asked depends on the addressing strategy being

considered. One general observation, however, is that when many contact groups are con-

sidered, it makes sense not only to give bounds in high probability, but also bounds in

expectation. In other words, if we can bound M such that the average number of individu-

ally addressable NWs per OC is large, then when g is large, we translate this into a bound

on the total number of addressable NWs across all OCs.

56

Chapter 4

The Randomized-Contact Decoder

In this chapter we analyze the randomized-contact decoder. The term “randomized-contact

decoder” (RCD) refers to any stochastically-assembled NW decoder in which NW/MW

junctions can be modeled as identically distributed independent random variables (see Fig-

ure 4.1 as well as Section 3.2.3). More formally, when an RCD is assembled, each NW/MW

junction becomes controlling with probability p, noncontrolling with probability q and in

error with probability r = 1−p+q (see Section 3.4.1 for a precise definition of “controlling”,

“noncontrolling” and “in error”). We note that this model of an RCD, first analyzed in

[59], is a very practical generalization of the earlier error-free model presented in [55].

In this chapter, we use this binary model with errors to analyze the relationship between

M , the number of MWs, and NA, the number of individually addressable NWs in a simple

RCD (an RCD in which all NWs are connected to a single OC). We then build on these

results to determine the area required to implement a number of the addressing strategies

defined in Section 3.5.2 using a compound RCD comprised of g OCs.

In [55], Hogg et al first explored the conditions under which all of the N NWs in an

error-free simple RCD can be addressed by M MWs. They observe through simulation

and asymptotic analysis that when M passes a threshold of approximately 4.8 log2 N , the

probability that all N NWs are individually addressable grows rapidly as N increases.

Their asymptotic analysis is in agreement with Corollary 4.1.1 below, but it does not make

explicit the dependence of M on the probability, ε, of failing to have all NWs be individually

addressable. It also fails to capture the impact of manufacturing errors (i.e. it assumes

57

0 e 0 0 0 1 1 1

1 0 1 1 0 1 0 0

0 0 1 1 0 1 0 e

1 0 0 0 0 1 e 0

0 0 1 0 1 0 e 1

0 1 0 0 1 0 0 1

0 0 0 0 1 0 0 1

1 0 1 e 1 0 0 0

Figure 4.1: A randomized contact decoder in which random particle deposition causes

each MW to control certain NWs. In this way, each junction behaves like an independent

random variable. Each symbol of each nanowire codeword is thus generated independently

at random. Errors (indicated in green) can occur when a particle is misaligned with a

particular junction. Fortunately these errors can be masked when junctions that are not in

error are used to reliably turn off each NW that is not being addressed.

r = 0).

In contrast, [56] (as well as [59] and [60]) bounds M in terms of N , ε, p, q and r. These

bounds are presented in this chapter. In Section 4.1 M is bounded such that all NWs are

individually addressable with probability 1−ε. In Section 4.2 M is bounded such that some

fixed fraction of all NWs are individually addressable. Both bounds are used in the decoder

area analysis presented in Section 4.3. A concluding summary of the chapter is given in

Section 4.4.

4.1 Bounds Using Inclusion-Exclusion

In this section we derive upper and lower bounds on the number of MWs, M , required

for all N NWs in an RCD to be individually addressable. These bounds are based on the

principle of inclusion-exclusion (stated below).

58

4.1.1 A Single Contact Group

Given n events, E1, E2, . . . , En, the principle of inclusion-exclusion states that

n∑
i=1

P (Ei)−
1
2

∑
i6=j

P (Ei ∩ Ej) ≤ P (E1 ∪ E2 ∪ . . . ∪ En) ≤
n∑

i=1

P (Ei)

In our case each Ei denotes the event that a particular pair of NWs is independently

controllable, meaning neither NW’s codeword possibly implies the other’s.

Theorem 4.1.1 In a simple RCD, consisting of a single OC and M NWs, let ε be the

probability that all N NWs are not individually addressable. Then ε satisfies the following

bounds,

Q(1−Q/2)−∆ ≤ ε ≤ Q

where Q = N(N−1)(1−pq)M , ∆ = 2N(N−1)(N−2)(µM
3 +µM

5 −2µ2M
1) and µ1 = (1−pq),

µ3 = (1− pq(p + 2q)), and µ5 = (1− pq(2p + q)).

Proof Let Ea,b (where a 6= b) be the event that ca possibly implies cb. Recall from

Section 3.4.1 that all NWs are individually addressable if no event Ea,b occurs. Thus

probability that not all NWs are individually addressable is

ε = P (
⋃
(a,b)

Ea,b)

where the union is over all pairs of NWs. By expressing ε as a union, we can now use

inclusion-exclusion to obtain a bound.

Codeword ci possibly implies ck if there is no j such that ci
j = 1 and ck

j = 0. P (Ea,b) =

(1 − pq)M . Let Q =
∑

a 6=b P (Ea,b). Since a and b can both take values from 1 to N , we

have

ε = P (
⋃
(a,b)

Ea,b) ≤ Q = N(N − 1)(1− pq)M

This serves as the inclusion portion of the inclusion-exclusion bound on ε. For the

exclusion portion of the bound, We must now bound
∑

(a,b) 6=(c,d) P (Ea,b ∩ Ec,d). Here

1 ≤ a, b, c, d ≤ N provided that (a, b) 6= (c, d), i.e. either a 6= b or c 6= d or both.

To compute P (Ea,b ∩ Ec,d), we consider 3 cases:

59

In case (1), a, b, c and d are all different. There are N(N − 1)(N − 2)(N − 3) ways of

selecting them. Since Ea,b and Ec,d are independent, P (Ea,b ∩ Ec,d) = P (Ea,b)P (Ec,d) =

µ2M
1 , where µ1 = (1− pq).

In case (2), two of the four variables are equal. Here either a = c, a = d, b = c or

b = d. As stated earlier, we do not allow a = b or c = d. There are N(N − 1)(N − 2)

ways to choose indices in each case. These cases are considered below.

In case (3), there are only two different values for a, b, c, and d. Since (a, b) 6= (c, d),

a = d and b = c, which can occur in N(N −1) ways. Here P (Ea,b∩Ec,d) = P (Ea,b∩Eb,a),

which is the probability that, for no j is ca
j = 0 and cb

j = 1, or ca
j = 1 and cb

j = 0. So

P (Ea,b ∩ Eb,a) = µM
2 where µ2 = (1− 2pq).

Returning to case 2, we have four subcases to consider.

Let Fa,b(m) be the event that ca
m = 0 and cb

m = 1. Let Ea,b(m) be the complement

of Fa,b(m). Since the probability of Fa,b(m) is pq, it follows that the probability of event

Ea,b(m) is P (Ea,b(m)) = 1− pq. Since the event Ea,b is
∏

m Ea,b(m), P (Ea,b) = µM
1 .

1. na = nc. Fa,b(m)∪Fa,d(m) occurs only if (ca,m, cb,m, cd,m) assumes the value (0, 1, 0),

(0, 1, 1), or (0, 0, 1). Thus, P (Fa,b(m)∪Fa,d(m)) = pq(p+2q) and P (Ea,b∩Ec,d) = µM
3

where µ3 = (1− pq(p + 2q)).

2. na = nd. Thus, Fa,b(m) ∪ Fc,a(m) occurs if (ca,m, cb,m, cc,m) assumes the value

(0, 1, 0), (0, 1, 1), (1, 1, 0), or (1, 0, 0). Thus, P (Fa,b(m) ∪ Fc,a(m)) = 2pq(p + q) and

P (Ea,b) ∩ Ec,a) = µM
4 where µ4 = (1− 2pq(p + q)).

3. nb = nc. Thus, Fa,b(m) ∪ Fb,d(m) occurs if (ca,m, cb,m, cd,m) assumes the value

(0, 1, 0), (0, 1, 1), (0, 0, 1), or (1, 0, 1). Thus, P (Fa,b(m) ∪ Fc,b(m)) = 2pq(p + q) and

P (Ea,b) ∩ Eb,d) = µM
4 .

4. nb = nd. Thus, Fa,b(m) ∪ Fc,b(m) occurs if (ca,m, cb,m, cc,m) assumes the value

(0, 1, 0), (0, 1, 1), or (1, 1, 0). Thus, P (Fa,b(m)∪Fc,b(m)) = pq(2p+ q) and P (Ea,b)∩

Ec,a) = µM
5 where µ5 = (1− pq(2p + q)).

Let D =
∑

(a,b) 6=(c,d) P (Ea,b ∩ Ec,d). Then,

D/(N(N − 1)) = (N − 2)(N − 3)µ2M
1 + µM

2 + (N − 2)
(
µM

3 + 2µM
4 + µM

5

)
60

where µ1 = (1 − pq), µ2 = (1 − 2pq), µ3 = (1 − pq(p + 2q)), µ4 = (1 − 2pq(p + q)), and

µ5 = (1− pq(2p + q)).

The behavior of D is dominated by the largest term µM
i . Note that µ2 ≤ µ2

1 and

µ4 ≤ min(µ3, µ5) ≤ (µ3 +µ5)/2. It follows that (N −2)(N −3)µ2M
1 +µM

2 ≤ ((N −2)(N −

3)+1)µ2M
1 ≤ N(N − 1)µ2M

1 − 4(N − 2)µ2M
1 and (µM

3 +2µM
4 +µM

5) ≤ 2(µM
3 +µM

5). Thus,

D satisfies the following bound.

D ≤ Q2 + 2N(N − 1)(N − 2)
(
µM

3 + µM
5 − 2µ2M

1

)
The lower bound to ε follows directly from the above.

Theorem 4.1.1 implies upper and lower bounds on M in terms of N and ε. For the cases

examined below, when p = q and ε is small, these bounds are tight, meaning the upper and

lower bounds they imply on M agree. Slightly weaker, but simpler bounds, are given in the

following corollary, in which upper and lower bounds on M differ by ln(2)/ ln(1− pq).

Corollary 4.1.1 In a simple RCD, consisting of a single OC and N NWs, let M be the

minimum number of MWs such that all NWs are individually addressable with probability

1− ε. Then M satisfies the following bounds,

ln(N(N − 1)/2ε)
− ln(1− pq)

≤ M ≤ ln(N(N − 1)/ε)
− ln(1− pq)

where the lower bound holds when q > r, p > r, ε ≤ 1/6, and the true value of M is itself

at least M ≥ ln(ε/4N)/ ln[1− pq min(q − r, p− r)/(1− pq)].

Proof The upper bound on M ,

M ≤ ln(N(N − 1)/ε)
− ln(1− pq)

follows directly from the righthand side of Theorem 4.1.1, ε ≤ Q, where Q = N(N −

1)(1− pq)M .

For the lower bound, consider the lefthand side of Theorem 4.1.1, Q(1−Q/2)−∆ ≤ ε,

where ∆ = 2N(N − 1)(N − 2)(µM
3 + µM

5 − 2µ2M
1), µ1 = (1− pq), µ3 = (1− pq(p + 2q)),

and µ5 = (1 − pq(2p + q)). In ∆, (µM
3 + µM

5 − 2µ2M
1)M can be replaced with a larger

quantity, 2 max(µ3, µ5)M .

61

Since µ3 = (1−pq(1−r+p)) = µ1−pq(p−r) and µ5 = (1−pq(1−r+q)) = µ1−pq(q−r),

this gives Q(1−Q/2)− 4N(N − 1)(N − 2)(µ1 −min(pq(q − r), pq(p− r)))M ≤ ε, or

Q(1−Q/2− 4N(1− pq min(q − r, p− r)/µ1)M) ≤ ε

To continue, we require q > r and p > r, which allows us to further require that

M ≥ ln(ε/4N)/ ln[1− pq min(q − r, p− r)/µ1]. Since ε ≤ Q, this implies that

Q(1− (3/2)Q) ≤ Q(1−Q/2− ε) ≤ ε

Finally, notice that if ε ≤ 1/6, the above inequality implies that Q ≤ 1/3, and so

Q ≤ 2ε

Thus, since M = ln(N(N−1)/Q)/−ln(1−pq), we have M ≥ ln(N(N−1)/2ε)/−ln(1−pq),

the desired lower bound.

4.1.2 Multiple Contact Groups

We now use Corollary 4.1.1 to obtain upper bounds on the number of MWs in compound

RCDs with g OCs.

Corollary 4.1.2 In a compound RCD with g OCs, N NWs per contact group, and N ′ = gN

NWs total, all NWs are individually addressable with probability (1− ε) if

M ≥ ln(N ′(N − 1)/ε)
− ln(1− pq)

Proof Let δ be the probability of failure of all NWs in a contact group to be individually

addressable. Then, the probability that one or more contact groups fails to have all its

NWs be individually addressable is at most gδ. If gδ ≤ ε, the probability that all N ′ NWs

are addressable is at least 1− ε. We use the upper bound on M given in Corollary 4.1.1

when N is replaced by N ′/g and ε by ε/g.

The utility of Corollary 4.1.2 and Corollary 4.1.1 are illustrated by the following two

examples.

62

Example 4.1.1 To bound the area required to control a crossbar-based memory using a

compound RCD, we wish to bound the number of MWs required to implement the “All

Wires Addressable” addressing strategy (see Section 3.5.2).

In a compound RCD with g = 128 OCs, N = 8 NWs per OC and N ′ = 8 ∗ 128 =

1, 024 total NWs, Corollary 4.1.2 asserts that all N ′ NWs are individually addressable with

probability 1− ε = .99 or better when M ≥ 47.

What’s more, evaluating Theorem 4.1.1 numerically for these values of N and M shows

this threshold value of M is exact.

Example 4.1.2 In the previous example, the number of MWs can be reduced if we don’t

require that all NWs in each contact group be individually addressable. As an alternative, we

can implement the “Almost All Wires Addressable” addressing strategy (see Section 3.5.2) in

which all NWs are individually addressable in almost all (as opposed to all) contact groups.

Corollary 4.1.1 says that a failure rate of at most ε = .01 can be achieved with a simple

RCD when p = q = .5 and N = 8 if M ≥ 30 (as noted in the above example, this threshold

value of M is in fact exact). The number of individually addressable NWs in each OC

is statistically independent. If all N NWs in a particular contact group are individually

addressable with probability 1− ε, the probability that f or fewer contact groups fail to have

all NWs addressable is φ(ε, f, g) =
∑f

i=0

(
g
i

)
εi(1− ε)g−i.

Let ε = .01, g = 133 and f = 5. Because φ(.01, 5, 133) ≥ .99, at least 128 of g = 133

OCs have all NWs addressable with probability 0.99. Thus when M = 30, g = 133, and

N = 8∗133 = 1064, N ′
a = 8∗128 = 1, 024 NWs are individually addressable with probability

0.99.

The Impact of Errors

The bounds on M given in Corollary 4.1.1 and Corollary 4.1.2 are proportional to α =

−1/ ln(1−pq). This quantity is maximized when p = q = 1/2, in which case α = 1/ ln(4/3).

In an error-free RCD, r = 1−p−q = 0, but if errors occur p+q < 1, in which case pq < .25.

Thus as r increases α must also increase. For example, if pq = .2 then α = 1/ ln(5/4), in

which case the bound on M grows by a factor of ln(4/3)/ ln(5/4) = 1.29. If pq = .1, the

factor is ln(4/3)/ ln(10/9) = 2.73. Even for relatively high error rates, M is not prohibitively

63

large.

Additional Fault-Tolerance

Corollary 4.1.1 and Corollary 4.1.2 (as well as Corollary 4.2.2 below) show that logarithmic

number of MWs can reliably address many NWs in an RCD even when some fraction of

MW/NW junctions are in error. As noted at the end of Section 3.4.1, an additional level

of fault-tolerance is provided if the symmetric distances between NWs is greater than 1. In

other words, if M is increased beyond the bounds given in Corollary 4.1.1 or Corollary 4.1.2,

not only can all NWs be guaranteed to be individually addressable, but the unaddressed

NWs can be guaranteed to be turned off by multiple activated MWs.

If each unaddressed NW is turned off by multiple controlling MWs, the on/off ratio

of addressed to non-addressed NWs will be larger (see the end of Section 3.4.2). This in

turn allows for faster and more reliably decoders. It also allows the decoder to cope with

transient faults in which a MW fails to adequately control a NW [57, 58, 44]. In the case

of an RCD, where each bit of each codeword is generated independently at random, as M

increases, the average symmetric distance between codewords approaches Mpq.

4.2 Bounds Using Expectation

In this section we derive bounds on M in terms of N and NA based on the expected number

of individually addressable NWs in simple and compound RCDs.

4.2.1 A Single Contact Group

First we bound the expected number of individually addressable NWs, E[NA], in a single

contact group.

Theorem 4.2.1 In a simple RCD, consisting of a single OC and M NWs, let Na be the

number of individually addressable NWs. The expected number of individually addressable

NWs, E[Na], is bounded as follows.

N(1− (N − 1)(1− pq)M) ≤ E[Na] ≤ N(1− (N − 1)(1− pq)M + ∆)

where ∆ = (1/2)N(N − 1)(1− 2pq + qp2)M .

64

Proof Let xi = 1 if NW ni is individually addressable and 0 otherwise. Since Na =∑N
i=1 xi, we have

E[Na] =
N∑

i=1

E[xi] = NE[x1] = NP (x1 = 1)

since the xi are all identically distributed 0-1 random variables.

Let Ek,i be the event that ck “possibly implies” ci. (See Chapter 3 Section 3.4.1)

P (x1 = 1) = 1− P (x1 = 0) = 1− P (E2,1 ∪ E3,1 ∪ . . . ∪ EN,1).

By inclusion-exclusion we have

N∑
k=2

P (Ek,1)− (1/2)
N∑

k 6=l

P (Ek,1 ∩ El,1) ≤ P (E2,1 ∪ E3,1 ∪ . . . ∪ EN,1) ≤
N∑

k=2

P (Ek,1)

Since P (E2,1) = P (E3,1) = . . . = P (EN,1), and similarly P (Ek,1∩El,1) = P (E2,1∩E3,1)

for all k 6= l,

1− (N − 1)P (E2,1) ≤ P (x1 = 1) ≤ 1− (N − 1)P (E2,1) + (1/2)N(N − 1)P (E2,1 ∩ E3,1)

c2 possibly implies c1 if for all 1 ≤ j ≤ M it is not the case that both c1
j = 0 and

c2
j = 1, thus P (E2,1) = (1 − pq)M . Similarly c2 and c3 possibly implies c1 if for all

1 ≤ j ≤ M it is not the case that (c1
j , c

2
j , c

3
j) take values (0, 1, 0), (0, 1, e), (0, 1, 1), (0, e, 1)

or (0, 0, 1), thus P (E2,1 ∩ E3,1) = (1− 2qp + qp2)M . This gives

1−(N−1)(1−pq)M ≤ P (x1 = 1) ≤ 1−(N−1)(1−pq)M +(1/2)N(N−1)(1−2pq+qp2)M

We note that in [56] (as well as [59] and [60]), Theorem 4.2.1 is given with the weaker

upper bound E[Na] ≤ N(1− (1− pq)M).

4.2.2 Multiple Contact Groups

Theorem 4.2.1 can be extended to compound RCDs with g OCs using the following corollary.

Corollary 4.2.1 In a compound RCD with g OCs, N NWs per contact group, and N ′ = gN

NWs total, let N ′
a be the total number of individually addressable NWs across all g contact

65

groups. The expected number of individually addressable NWs, E[N ′
a], obeys the following

bounds.

N ′(1− (N − 1)(1− pq)M) ≤ E[N ′
a] ≤ N ′(1− (N − 1)(1− pq)M + ∆)

where ∆ = (1/2)N(N − 1)(12pq + qp2)M .

Proof N ′
a is the sum of the number of individually addressable NWs, NA, in each contact

group. Since each contact group has N NWs, E[N ′
a] = gE[Na]. Substituting the bounds

from Theorem 4.2.1 yields the desired result.

Of course Corollary 4.2.1 only gives the expected number of addressable NWs across g

contact groups. Really we are interested in the number that can be guaranteed with high

probability. To obtain such a bound, we use Hoeffding’s inequality.

Let S = n1 + n2 + ... + nt be the sum of t independent random variables, where each ni

ranges from ai to bi. Hoeffding’s Inequality [61, p. 303] states that

P (E[S]− S ≥ d) ≤ e−2d2/
P

c2i

where ci = bi − ai, and d ≥ 0. We use this to bound the total number of individually

addressable NWs with high probability.

Theorem 4.2.2 Let N ′
a be the total number of addressable NWs in a NW decoder with g

contact groups, N NWs per contact group, and N ′ = gN NWs in total.

P (N ′
a ≤ E[N ′

a]−N ′k) ≤ e−2k2N ′N/(N−1)2 = e−2k2g∗

for any k ≥ 0 where g∗ = g(N/(N − 1))2.

Proof In Hoeffding’s Inequality, let t = g, d = N ′k, S = N ′
a and ci = (N − 1). This

gives P (E[N ′
a]−N ′

a ≥ N ′k) ≤ e−2(N ′k)2/g(N−1)2 = e−2k2N ′N/(N−1)2 . We can then rewrite

P (E[N ′
a]−N ′

a ≥ N ′k) as P (N ′
a ≤ E[N ′

a]−N ′k).

Theorem 4.2.2 is not specific to RCDs. It is applied to RCDs in the following corollary.

Corollary 4.2.2 Let N ′
a be the total number of addressable NWs in an RCD with g contact

groups, N NWs per contact group, N ′ = gN NWs in total and M MWs.

P (N ′
a > κN ′) ≥ 1− ε

66

if κ ≤ 1−
√
− ln ε/(2g∗)− (N − 1)(1− pq)M where g∗ = g(N/(N − 1))2.

Proof From Corollary 4.2.1 we have E[N ′
a] ≥ N ′(1− (N −1)(1−pq)M) and by the above

theorem,

P (N ′
a ≤ N ′(1− (N − 1)(1− pq)M)−N ′k) ≤ e−2k2g∗

Thus, if k = (1− (N − 1)(1− pq)M)− κ, then

P (N ′
a ≤ κN ′) ≤ e−2g∗(1−(N−1)(1−pq)M−κ)2

Thus, when e−2g∗(1−(N−1)(1−pq)M−κ)2 ≤ ε the desired conclusion follows. This occurs when

ln ε ≥ −2g∗(1− (N − 1)(1− pq)M −κ)2 or
√
− ln ε/(2g∗) ≤ (1−κ)− (N − 1)(1− pq)M .

Example 4.2.1 Corollary 4.2.2 is useful in bounding the number of MWs required to im-

plement the “Take What You Get” (TWYG) addressing strategy (see Section 3.5.2) in

which a significant fraction of all NWs are individually addressable. As an example, sup-

pose p = q = 1/2, g = 175, N = 8, N ′ = 1400, ε = .01, and κ = .733. When M = 13,

κ = .733 ≤ 1−
√
− ln .01/(2 ∗ 175 ∗ (8/7)2)−7∗ (3/4)13. Thus at least d.733∗1400e = 1027

NWs are addressable with probability .99.

The Impact of Errors

As in Corollary 4.1.1 and Corollary 4.1.2, the bound on M implied by Corollary 4.2.2 is

proportional to α = −1/ ln(1 − pq). If g and N are held constant, but the decoders error

rate, r, increases, M must also increase in order to hold the term (N − 1)(1 − pq)M , and

hence κ, constant. In an error-free decoder, (1 − pq) is maximized when p = q = 1/2,

in which case pq = .25. If r is increased such that pq = .2, M must grow by a factor of

ln(4/3)/ ln(5/4) = 1.29. If pq = .1, the factor is ln(4/3)/ ln(10/9) = 2.73. Manufacturing

errors increase M by only a small constant factor.

4.2.3 Additional Addressing Strategies Using Expectation

Corollary 4.2.2 bounds the total number of individually addressable NWs across g OCs. This

is directly applicable to bounding the number of MWs required by the TWYG addressing

strategy. Hoeffding’s Ineqaulty, can potentially be used to analyze additional addressing

strategies.

67

In the ASAG addressing strategy (see Section 3.5.2), M is chosen so that all of the

codewords in some preselected set of codewords, C, are each present and addressable in at

least t contact groups. As discussed in Chapter 5, this strategy is well-suited to encoded

NW decoders, where C can simply be the set of all codewords. This is not viable for an

RCD, since some codewords are very unlikely to be individually addressable (those with

almost all 1’s). As a work around, one could limit C to contain only codewords with close to

the average number of 1’s, Mp. More precisely, C would contain all codewords with Mp± δ

1s, where δ is several standard deviations (
√

Mpq), about the mean. This would ensure

that most NWs have codewords in C.

Given C and M , Hoeffding’s inequality can be used to to bound the probability that each

codeword in C is individually addressable in at least t OCs. As evident from the discussion

in the proof of Theorem 4.2.1, a NW with at most Mp + δ 1’s is individually addressable

with probability at least 1− (N − 1)(1− q)M−Mp−δ. This in turn provides a bound on the

probability that any given codeword in C appears and is individually addressable in a given

OC. Hoeffding’s inequality, or alternatively a Chernov bound (see Chapter 5), can then be

used to bound the number of contact groups, t, in which each NW in C can be guaranteed

to appears with probability ε/|C| (for additional details, see the corresponding analysis of

the ASAG addressing strategy in Chapter 5, Section 5.2).

4.3 Comparison of Addressing Strategies

To compare addressing strategies, we estimate their area when used to produce a memory

with a given storage capacity. In our comparison, we fix ε, the probability of failure, and

N , the number of NWs per contact group. Given these values, we would ideally like to also

fix N ′
a, the number of addresses along each dimension of the crossbar, then estimate AT for

all three strategies (see Section 3.5.1). Unfortunately, for a given strategy, it is difficult to

choose M and N ′ to yield an exact value for N ′
a. In all three cases below we choose M and

N ′ so that close to 1, 024 NWs are individually addressable along each dimension.

To compare addressing strategies, we draw on the examples of the previous two sections

and consider the case when p = q = 1/2.

68

• All Wires Addressable:

Here M = 47, g = 128, and N ′ = N ′
a = 1024 with probability at least .99. The ATC

requires β = N ′
aM = 47, 990 bits. This gives

AT ≈ 95, 982χ + λ2
meso1, 792 + (λmeso49 + λnano1, 600)2

• All Wires Almost Always Addressable:

Here M = 30, g = 133, and N ′ = 1, 064 yields N ′
a = 1, 024 and g′ = 128 with

probability at least .99. The ATC requires β = g′dlog g − g′e + N ′
AM = 31, 104 bits.

This gives

AT ≈ 62, 208χ + 1, 877λ2
meso + (λmeso30 + λnano1, 064)2

• Take What You Get:

Here M = 13, g = 175 and N ′ = 1400, yields N ′
a of 1,027 with probability at least

.99. The ATC requires β = N ′
a(dlog ge+ M) = 21, 567 bits. This gives

AT ≈ 43, 134χ + 2, 800λ2
meso + (λmeso13 + λnano1, 400)2

Since the parameter χ, the area of a mesoscale memory unit, will be many times λ2
meso,

and it is expected that λmeso ≥ 10λnano, the Take What You Get addressing strategy is

clearly best.

4.4 Summary of Results

In this chapter we have analyzed the area required to control NA out of N NWs using

an RCD. As explained at the beginning of this chapter, the term RCD refers to any

stochastically-assembled NW decoder in which NW/MW junctions can be modeled as iden-

tically distributed independent random variables. As such, RCDs can potentially be realized

through a wide range of assembly techniques (see Section 3.2.3 for several examples). Im-

portantly, our model of RCDs accounts for the possibility of manufacturing errors, meaning

some MWs may provide only partial control over some NWs. In our model each NW/MW

junction is controlling with probability p, noncontrolling with probability q and in error

with probability r = 1− p− q.

69

The analysis of Sections 4.1 and 4.2 demonstrates that RCDs remain efficient in their

use of MWs even when manufacturing errors occur. In Section 4.1, Corollary 4.1.1 reveals

that in a simple RCD with M MWs and a single OC connected to N NWs, all N NWs are

individually addressable with probability at least 1− ε when M = − ln(N(N −1)/ε)/ ln(1−

pq). If we set p = q = 0.5, this gives M ≈ 3.5 ln(N(N − 1)/ε). If we assume p = q = 0.45,

and r = 0.1, the bound becomes M ≈ 4.4 ln(N(N − 1)/ε). This is a very modest increase

in area given a 10% error rate.

Section 4.2 shows that the number of required MWs can be reduced further if we elim-

inate the requirement that all NWs connected to all (or almost all) OCs be individually

addressable. In a compound RCD comprised of M MWs, g OCs, and N NWs per OC,

Corollary 4.2.2 bounds the number of MWs required for κN ′ of the N ′ = gN total NWs to

be individually addressable with probability at least 1− ε. As g increases, our bound on M

approaches ln((1 − κ)/(N − 1))/ ln(1 − pq). As demonstrated in Section 4.3, this reduced

value of M leads to a reduction in the area required to construct a NW crossbar-based

memory with 1Mb of storage. Furthermore, this more lenient condition on M once again

increases by only a small constant factor when manufacturing errors occur. As such, it is

perfectly reasonable to consider constructing RCDs with fewer than 15 MWs, even in the

presence of errors, capable of individually addressing most NWs. A comparison between

RCDs, encoded NW decoders and mask-based decoders is given at the end of Chapter 6.

70

Chapter 5

Encoded Nanowire Decoders

In this chapter we analyze the encoded nanowire decoder. The term “encoded nanowire

decoder” refers to stochastically-assembled NW decoders constructed from differentiated

NWs (see Section 3.2.1). To produce such a decoder, many differently encoded NW types

are grown off chip, then many copies of each NW type are placed in a large ensemble. From

the ensemble, random subsets of N NWs are collected, deposited fluidically, and connected

to OCs. Fluidic assembly can ensure that the NWs are deposited in parallel, but it cannot

guarantee that their endpoints are aligned, nor can it control how NWs are ordered [6].

Once NWs are deposited, the MWs that control a particular NW are determined by that

NW’s encoding. This is in contrast with randomized-contact and mask-based decoders,

in which N identical NWs are deposited, and then M MWs are coupled to NWs via a

stochastic process.

As with randomized-contact decoders in Chapter 4, we wish to bound the area required

to construct encoded NW decoders using a variety of addressing strategies. This is achieved

by bounding both the expected number of individually addressable NWs per contact group,

and the probability that all N NWs in a contact group are individually addressable.

In order to calculate these bounds, we must first compute the probability that any

two NWs are independently controllable (i.e. that each of the two NWs can be turned

off independently of the other). Two NWs are independently controllable if neither NW’s

codeword implies the other (see Section 3.4.1). The probability distribution from which

codewords are assigned, however, depends on how the NWs have been encoded during

71

growth.

Section 5.1 explores how NWs can be encoded, and how the encodings of axially encoded

NWs correspond to codewords once these NWs are deposited on chip. After a method of

encoding NWs has been selected, it is straightforward to compute the probability that

two NWs are independently controllable. This probability is used in Section 5.2 to bound

the number of MWs, and thus the area, that encoded NW decoders require to implement

various addressing strategies. Encoded NW decoders are quite efficient, but as Section 5.3

explains, misalignment of axially encoded NWs may make the decoders difficult to realize in

practice. Section 5.4 demonstrates how radially encoded NWs offer a way of constructing

efficient encoded NW decoders while avoiding errors associated with axial misalignment.

Section 5.5 provides a concluding summary of this chapter.

5.1 NW Encodings

As noted in Section 3.2.1, two different methods have been considered for differentiating

NWs during manufacture. An axially encoded NW decoder is formed from NWs with

patterns of lightly and heavily doped regions along their lengths. A radially encoded NW

decoder is formed from NWs with a sequence of shells surrounding their lightly doped cores.

Both types of NW can be used to generate a range of possible codewords. The relation of

each type of encoding to the codewords it generates is discussed below.

Axially Encoded NW Decoders

Axially encoded NW decoders are formed from modulation-doped NWs. These NWs are

grown off chip with a sequence of lightly and heavily doped regions along their length

[45, 18], then deposited. When M MWs are placed on top of the NWs, only the MWs

that are adjacent to a NW’s lightly doped regions control the NW (see Figure 5.1 in which

controlling, noncontrolling and partially controlling MW/NW junctions are labelled 1, 0

and e, respectively). When deposited fluidically, it may not be possible to guarantee the

alignment of a particular lightly doped region with a particular MW. To accommodate large

amounts of random axial displacement of NWs relative to MWs, the same pattern of M

lightly and heavily doped regions can be repeated several times along the NW. As a result,

72

1 0 1 1 0 1 0 0

0 1 1 0 1 0 0 1

1 1 0 0 0 0 1 1

e 1 1 e 1 e 0 1

0 0 1 1 1 1 0 0

0 1 0 1 1 0 1 0

0 1 0 1 1 0 1 0

1 0 1 0 0 1 0 1

Figure 5.1: An axially encoded NW decoder in which each NW has a sequence of lightly

and heavily doped regions along its axis. When a subset of the MWs is activated, all NWs

with lightly doped regions under those MWs become nonconducting. To accommodate large

amounts of axial shift, the sequences are repeated multiple times along the lengths of NWs.

Notice that the lightly doped regions (indicated in dark red) are not guaranteed to align

with MWs. Such axial misalignment can cause certain MW/NW junctions to be in error,

denoted by e’s.

the set of codewords axially encoded NWs can generate as they shift is closed under cyclic

shift. Sections 5.1.3 and 5.1.2 describe two ways in which axially encoded NWs can be

encoded: (h, b)-hot codes and binary reflected codes.

Radially Encoded NW Decoders

Radially encoded NW decoders are formed from core-shell NWs [47]. These NWs consist

of a lightly doped core surrounded by thin layers of insulating material, called “shells”. As

with modulation-doped NWs, they are grown off-chip then deposited fluidically. Instead

of being grown with different sequences of lightly and heavily doped regions, different NW

types are grown with different sequences of shell materials. The ability to grow a single

shell around a lightly doped core has already been demonstrated [62]. As explained in

Section 5.4, radially encoded NWs can be used to generate the same type of codewords

as axially encoded NWs. After radially encoded NWs are deposited on chip, codewords

are assigned by etching away different shell materials under each MW (the etching takes

place before MWs are laid down). This exposes the lightly doped cores of only certain NWs

under each MW, and hence each MW provides control over a different subset of NWs (see

73

Etching Sequences

0 0

0

0

0

1

1

1 0

Figure 5.2: Portions of three radially encoded NWs constructed from three different shell

materials. Each NW has two shells surrounding a lightly doped core. Under the three

MWs, three different etching sequences have been applied. As a result, each of the MWs

controls a different NW type.

Figure 5.2)

5.1.1 Code Requirements

When a differentiated NW is deposited on a chip, its encoding, along with its axial displace-

ment in the case of an axially encoded NW, determines which MWs control it and thus its

codeword. In a NW crossbar-based memory, the objective is to have many individually ad-

dressable NWs, and hence encodings should be selected such that each potential codeword

is individually addressable. In other words, NW encodings should generate codewords that

do not imply each other. Also, since the axial displacement of NWs cannot be precisely

controlled, axial encodings will be repeated along the length of a NW. This means that the

set of codewords they generate must be closed under cyclic shift [45]. In this section we

present two families of codes that meet these requirements. As explained, they are natu-

ral choices even if the cyclic shift requirement is removed. At the end of this chapter, we

demonstrate how the codes apply to radially encoded NWs as well, even though these NWs

74

are not sensitive to shifting.

5.1.2 (h, M)-Hot Codes

Suppose each NW is divided into M regions along its axis with the same center-to-center

distance, λmeso, as MWs. An (h, M)-hot code [9] is one in which h of M regions are

lightly doped (i.e. controllable) and the (M−h) remaining regions are heavily doped (i.e. not

controllable). In this code, assuming no misalignment errors occur (see Section 5.3 below)

there are C =
(
M
h

)
M -bit codewords, each with h 1’s and (M − h) 0’s. Since no codeword

implies any other codeword, all codewords are individually addressable. Furthermore, the

code is closed under cyclic shifts. As a result, the sequence of M regions can be repeated

multiple times along the NW. In this way, an axial shift of a NW (relative to the MWs) by

λmeso has the effect of cyclically shifting that NW’s codeword.

To bound M in terms of C, Consider an (h, M)-hot code where M is even and h = M/2.

In this case C =
(

M
M/2

)
= M !/(M/2)!2. By Stirling’s approximation, which is quite tight,

lnM ! ≈ M lnM −M + 1
2 ln(2πM) and thus 2 ln(M/2)! ≈ M lnM/2 −M + ln(πM). This

implies that

log2 C ≈ M − 1
2

log2 M − 1
2

log2(π/2)

To simplify this bound, we observe that M < 2 log2 C (this is implied by the size of BRC

codes, as defined in Section 5.1.3 below), and so log2 M < log2 2 log2 C = log2 log2 C + 1.

This gives

M < log2 C +
1
2

log2 log2 C +
1
2

log2 π

Thus the number of MWs required to generate C individually addressable codewords is

very close to log2 C. We now show that, (dM/2e,M)-hot codes are optimal in their use of

MWs.

Lemma 5.1.1 Let C ⊆ {0, 1}M be a set of codewords which are all individually addressable.

If the minimum weight codeword has weight w < bM/2c, there exists a code C′, such that

|C′| > |C|, all codewords in C′ have weight at least w + 1, and all codewords are individually

addressable.

75

Proof No codeword in C implies any other codeword in C. Let Cw be the set of w-weight

codewords in C. Let Cw+1 be the set of (w + 1)-weight codewords implied by at least one

codeword in Cw. Consider the code C′ = (C − Cw) ∪ Cw+1.

Each codeword in Cw implies M − w codewords in Cw+1, but each codeword in Cw+1

is implied by at most w + 1 codewords in Cw. Thus |Cw+1| ≥ |Cw|(M −w)/(w + 1). Since

(M − w)/(w + 1) > 1, |C′| = |C| − |Cw|+ |Cw+1| ≥ |C|.

Let A = C′∩C. Since no codeword in C implies any other codeword in C, no codeword

in A implies any other codeword in A. The remaining codewords in C′, C′ − C = Cw+1,

are all implied by some codeword in Cw. Since no codeword in Cw implies any codeword

in A, no codeword in Cw+1 implies any codeword in A. Finally, since codewords can only

imply codewords of greater weight, no codeword in C′ implies a codeword in Cw+1. Thus

no codeword in Cw+1 implies any codewords in C′, and all codewords are individually

addressable.

Lemma 5.1.2 Let C ⊆ {0, 1}M be a set of codewords which are all individually addressable.

If all codewords have weight bM/2c or dM/2e, there exists a code C′ such that |C′| ≥ |C| and

all codewords have weight dM/2e.

Proof If M is odd, consider the same replacement operation described in the proof of

Lemma 5.1.1 for w = bM/2c. Now (M −w)/(w + 1) = 1, thus the code will not decrease

in size.

Theorem 5.1.1 Given M MWs, there exist at most
(

M
dM/2e

)
addressable codewords.

Proof Consider any length M code, C, that maximizes the number of individually ad-

dressable codewords. Let C denote the code consisting of the complement of all codewords

in C. For any two codewords, ca, cb ∈ C, neither implies the other, thus the same holds

true for any ca, cb ∈ C. Since |C| = |C|, C also maximizes the number of individually

addressable codewords.

Lemma 5.1.1 implies that both C and C have minimum weight codewords of weight at

least bM/2c. This means that all codewords in either code have weight bM/2c or dM/2e.

Lemma 5.1.2 states that an equal size code exists where all codewords have weight

dM/2e. There are at most
(

M
dM/2e

)
such codewords.

76

5.1.3 Binary Reflected Code

An M -bit binary reflected code (BRC) consists of codewords of the form ci = xx

where x ∈ {0, 1}M/2, M is even, and x denotes the complement of x. As in (h, M)-hot

codes, 1 and 0 denote lightly and heavily doped regions, respectively. The code contains

C = 2M/2 codewords, none of which imply each other. When using a BRC

M = 2 log2 C

From the previous subsection, we know that this is within a factor of 2 of optimal.

Like (h, M)-hot codes, BRCs are closed under cyclic shifting. To see why, observe that

codewords in a BRC have the property that bits are separated by M/2 positions from their

complement. Cyclically shifting a codeword one position to the left or right leaves this

property unchanged.

The main advantage of BRC codes is that each codeword directly corresponds to an

M -bit tuple. This makes address translation circuitry particularly simple to construct, and

also facilitates efficient testing (see Chapter 8). In addition, BRCs are well-suited to radially

encoded NWs, as discussed in Section 5.4. Also in some cases, BRCs can potentially allow

for multiwrite operations based on “wildcarding” (see [12] as well as Section 8.3).

5.1.4 Generating Random Ensembles of Axial Codewords

We have just described two classes of NW encodings such that all NW codewords, in the

absence of misalignment, are individually addressable. In an axially encoded NW decoder,

each NW’s codeword depends on its encoding and its axial displacement once deposited on

chip. In order to maximize the probability that many different codewords appear within

each contact group, our goal is to create an ensemble of axially encoded NWs such that

each NW codeword is equally likely.

As explained, axial displacement causes a NW’s codeword to shift cyclically. This allows

a single axial encoding to produce multiple codewords, which suggests that not all NW

encodings need be manufactured. In order to correctly determine how many NWs to produce

with each encoding, the periodicity of the encoding must be taken into account.

Consider a codeword, ci, which has length M . Let Rt(ci) denote the cyclic shift of ci by

77

t places to the right and let H(ci) = {ci, R(ci), . . . , RM (ci)} be the set of codewords that

result from all possible cyclic shifts of ci. Let p(ci) = |H(ci)| be the number of distinct

codewords in H(ci). p(ci) is the period of ci.

Let ca and cb be two codewords. Then either H(ca) = H(cb) or H(ca) ∩H(cb) = ∅,

the empty set. We call H(ca) the equivalence class containing ca. Any member of

an equivalence class can be thought of as a “seed” because under cyclic shifts it generates

each member of the class. If one seed can generate all members of a large set, this reduces

manufacturing costs. In contrast, when core-shell NWs are used (see Section 5.4) shift-

ing does not produce different NWs and thus each codeword corresponds to a separately

manufactured encoding.

Given a code, suppose that a single seed encoding is selected for each equivalence class,

and that K copies of each seed are present in the ensemble from which NWs are selected.

If p(ci) = M for all codewords, then each seed will generate exactly M codewords and each

codeword will be equally likely.

On the other hand, suppose some seeds have period M
2 . These seeds will generate only

M
2 codewords, and as a result these codewords will be generated twice as often as those

generated from seeds with period M . If the ensemble contains K copies of each seed with

period M , it should only contain K
2 copies of each seed with period M

2 . More generally,

if codewords have length M , a seed with period p will generate p codewords and should

be have multiplicity Kp
M , where K is some large constant. This condition ensures that all

codewords are equally likely.

To summarize, we can generate ensembles of C codewords, where all codewords are

individually addressable and equally likely. In the absence of misalignment, the probability

that any two NWs connected to an OC are individually addressable is simply the probability

that they have distinct codewords, 1/C. Since C depends on M , this gives us the probability

that two codewords are distinct in terms of M . For both BRCs and (h, M)-hot codes,

log2 C < M ≤ 2 log2 C.

78

5.2 Analysis of Encoded NW Decoders

As in the previous chapter on RCDs, we first bound the expected number of individually

addressable NWs, NA, per OC as a function of M . We then bound the number of MWs

required for many or all NWs to be individually addressable with high probability. These

results are used to determine the number of MWs required to implement various addressing

strategies.

5.2.1 Bounds Using Expectation

As in Section 4.2, we bound the average number of individually addressable NWs in a simple

encoded NW decoder with M MWs and N NWs connected to a single OC.

Theorem 5.2.1 In a simple encoded NW decoder in which each of the N NWs is assigned

one of C individually addressable codewords with equal probability, let Na be the number of

individually addressable NWs. The expected number of individually addressable NWs is

E[Na] = N(1− 1/C)N−1

where C = 2M/2 when binary reflected codes are used, and C =
(

M
dM/2e

)
when (dM/2e,M)-

hot codes are used.

Proof Let xi be a zero-one random variable that takes value 1 iff NW ni is individually

addressable. NA =
∑N

i=1 xi, which gives

E[NA] =
N∑

i=1

E[xi] =
N∑

i=1

P (xi = 1) = N · P (x1 = 1)

since the xi are identically distributed.

The probability that a NW is individually addressable is the probability that no other

NW shares its codeword, thus P (xi = 1) = (1− 1/C)N−1.

The following corollary follows immediately from Theorem 5.2.1.

Corollary 5.2.1 Let N ′
a be the total number of addressable NWs in a compound encoded

NW decoder with g contact groups, N NWs per contact group, N ′ = gN NWs in total and

M MWs.

E[N ′
a] = gE[Na] = N ′(1− 1/C)N−1

79

where C = 2M/2 when binary reflected codes are used, and C =
(

M
dM/2e

)
when (dM/2e,M)-

hot codes are used.

We can now use Hoeffding’s inequality (see Section 4.2.2) to bound the total number of

individually addressable NWs, N ′
a, in a compound encoded NW decoder with high proba-

bility. As in Section 4.2.2, we begin with the following theorem.

Theorem 5.2.2 Let N ′
a be the total number of individually addressable NWs in a compound

encoded NW decoder with g contact groups, N NWs per contact group, and N ′ = gN NWs

in total.

P (N ′
a ≤ E[N ′

a]−N ′k) ≤ e−2k2N ′N/(N−1)2 = e−2k2g∗

for any k ≥ 0 where g∗ = g(N/(N − 1))2.

Proof See proof of Theorem 4.2.2 in the previous chapter. The proof applies to encoded

NW decoders as well.

From this we obtain a corollary.

Corollary 5.2.2 Let N ′
a be the total number of addressable NWs in a compound encoded

NW decoder with g contact groups, N NWs per contact group, N ′ = gN NWs in total and

M MWs.

P (N ′
a > κN ′) ≥ 1− ε

if κ ≤ 1−
√
− ln ε/(2g∗)− (N−1)/C where g∗ = g(N/(N−1))2 and C = 2M/2 when binary

reflected codes are used or C =
(

M
dM/2e

)
when (dM/2e,M)-hot codes are used.

Proof From Corollary 5.2.1 we have E[N ′
a] = N ′(1−1/C)N−1 and by the above theorem,

P (N ′
a ≤ N ′(1− 1/C)N−1 −N ′k) ≤ e−2k2g∗

Thus, if k = (1− 1/C)N−1 − κ, then

P (N ′
a ≤ κN ′) ≤ e−2g∗((1−1/C)N−1−κ)2

When e−2g∗((1−1/C)N−1−κ)2 ≤ ε, the desired conclusion follows. This occurs when ln ε ≥

−2g∗((1− 1/C)N−1 − κ)2 or
√
− ln ε/(2g∗) ≤ (1− κ)− (1− 1/C)N−1.

80

Since (1 − 1/C)N−1 ≥ 1 − (N − 1)/C, The requirement that κ ≤ (1 − 1/C)N−1 −√
− ln ε/(2g∗) can be replaced with the stricter requirement that κ ≤ 1−

√
− ln ε/(2g∗)−

(N − 1)/C.

The above theorem and corollary describe how many individually addressable NWs, N ′
A,

are present with probability 1 − ε, given C codewords, g OCs, and N NWs per OC. To

produce a bound on NA in terms of the number of MWs, we need only express C in terms

of M , which of course depends on which code is used to encode NWs.

Example 5.2.1 Corollary 5.2.2 is useful in bounding the number of MWs required to

implement the “Take What You Get” (TWYG) addressing strategy (see Section 3.5.2)

in which a significant fraction of all NWs are individually addressable. As an example,

suppose g = 157, N = 8, N ′ = 1256, ε = .01, and κ = .820. When C = 64 and

κ = .820 ≤ 1 −
√
− ln .01/(2 · 157 · (8/7)2) − 7/64. Thus at least d.820 · 1256e = 1030

NWs are addressable with probability .99 using M = 12 MWs when a BRC is used, or

M = 8 MWs when an (8, 4)-hot code is used.

Besides the total number of individually addressable NWs, N ′
A, we may also be interested

in the total number of individually addressable codewords, N ′
C , or the number of OCs in

which each codeword appears. Both quantities can be bounded using a similar approach.

In the case of N ′
C , the following theorem bounds the expected number of unique code-

words across g OCs. As motivation, consider two NWs in a particular contact group with

same codeword. Neither will be individually addressable, but it is possible to address both

NWs simultaneously, effectively treating them as a single NW. As such, rather than only

bound the total number of individually addressable NWs, N ′
A, it makes sense to also bound

the total number of distinct codewords per contact group, summed over all contact groups,

N ′
C .

Theorem 5.2.3 Let N ′
C be the total number of individually addressable codewords in a

compound encoded NW decoder with g contact groups, M MWs, N NWs per contact group,

and N ′ = gN NWs in total. The expected number of individually addressable codewords is

E[N ′
C] = gC(1− (1− 1/C)N) ≥ N ′(1−N/(2C))

81

where C = 2M/2 when binary reflected codes are used, and C =
(

M
dM/2e

)
when (dM/2e,M)-

hot codes are used.

Proof For a particular contact group, let xi be a zero-one variable that takes value 1 iff

the ith codeword is present. Then the total number of codewords in the contact group is

NC =
∑C

i=1 = xi, and

E[NC] = C · Prob(xi = 1) = C(1− (1− 1/C)N)

since (1− 1/C)N is the probability that a particular codeword does not appear among N

NWs. Finally, by a taylor series expansion, C(1 − (1 − 1/C)N) ≥ N − N2/(2C). Since

E[N ′
C] = gE[NC], multiplying by g yields the desired conclusion.

From the above theorem and Theorem 5.2.2 above, it is straightforward to derive the

equivalent of Corollary 5.2.2 with N ′
C in place of N ′

A.

Corollary 5.2.3 Let N ′
C be the total number of individually addressable codewords in a

compound encoded NW decoder with g contact groups, M MWs, N NWs per contact group,

and N ′ = gN NWs in total.

P (N ′
C > κN ′) ≥ 1− ε

if κ ≤ 1−
√
− ln ε/(2g∗)−N/(2C) where g∗ = g(N/(N − 1))2 and C = 2M/2 when binary

reflected codes are used or C =
(

M
dM/2e

)
when (dM/2e,M)-hot codes are used.

Proof Since E[N ′
C] ≥ N ′(1−N/(2C)), by Theorem 5.2.2

P (N ′
a ≤ N ′(1−N/(2C))−N ′k) ≤ e−2k2g∗

Thus, if k = 1−N/(2C)− κ, then

P (N ′
a ≤ κN ′) ≤ e−2g∗(1−N/(2C)−κ)2

When e−2g∗(1−N/(2C)−κ)2 ≤ ε, the desired conclusion follows. This occurs when ln ε ≥

−2g∗(1−N/(2C)− κ)2 or
√
− ln ε/(2g∗) ≤ 1− κ−N/(2C).

82

Example 5.2.2 Corollary 5.2.3 is useful in bounding the number of MWs required to im-

plement the “Take What You Get” (TWYG) addressing strategy (see Section 3.5.2) when

it is acceptable if NWs with the same codeword are addressed at once. As an example,

suppose g = 160, N = 8, N ′ = 1280, ε = .01, and κ = .805. When C = 32 and

κ = .805 ≤ 1 −
√
− ln .01/(2 · 160 · (8/7)2) − 8/64. Thus at least d.804 · 1280e = 1030

NWs are addressable with probability .99 using M = 10 MWs when a BRC is used, or

M = 7 MWs when an (7, 3)-hot code is used.

The above bounds on N ′
A and N ′

C in terms of g, N , M and ε are useful in bounding

the area required to implement the TWYG addressing strategy. In order to bound the area

required to implement the “Address Sets Across Groups” (ASAG) addressing strategy (see

Section 3.5.2), it is necessary to bound, Gi, the number of contact groups in which codeword

ci appears. To do this, first recall from the proof of Theorem 5.2.3 that the probability a

particular codeword appears in a particular contact group is (1−(1−1/C)N). The expected

number value of Gi is thus E[Gi] = g(1 − (1 − 1/C)N). While Hoeffding’s inequeality can

be used to obtain a bound on Gi in terms of g, N , M and ε, a Chernov bound gives better

results.

Let S = x1 + x2 + ... + xt be the sum of t independent binary random variables, and let

pi denote Pr(xi = 1). The well-known Chernov bound for this sum [61, p. 64] states that

for any 0 < δ < 1

Pr(S ≤ (1− δ)E[S]) ≤ (e−δ/(1− δ)1−δ)E[S]

where E[S] =
∑t

i=1 pi.

It is also possible to put the above bound in a weaker, but more convenient form [61, p.

64]

Pr(S ≤ (1− δ)E[S]) ≤ e−E[S]δ2/2

where again E[S] =
∑t

i=1 pi.

This bound yields the following theorem.

Theorem 5.2.4 In an encoded NW decoder with g OCs and N NWs per contact group, let

Gi be the total number of contact groups in which the ith codeword appears. Then

Pr(Gi > κg) ≥ 1− ε

83

where κ = (1−
√

(−2 ln ε)/g(1− (1− 1/C)N))(1− (1− 1/C)N)

Proof A given codeword appears in a given contact group with probability (1 − (1 −

1/C)N), thus E[Gi] = g(1 − (1 − 1/C)N). From the above Chernov bound, substituting

κ/(1− (1−1/C)N) = (1− δ) we have Pr(Gi ≤ κg) ≤ e−g(1−(1−1/C)N)(1−κ/(1−(1−1/C)N))2/2

Thus Pr(Gi > κg) ≥ 1− ε if κ ≤ (1−
√

(−2 ln ε)/g(1− (1− 1/C)N))(1− (1− 1/C)N)

Example 5.2.3 Corollary 5.2.3 is useful in bounding the number of MWs required to im-

plement the “Address Sets Across Groups” (ASAG) addressing strategy (see Section 3.5.2)

in which each codeword is guaranteed to appear in at least κg contact groups. As an ex-

ample, let g = 256, N = 8, N ′ = 1856, ε = .000625 and κ = .25. When C = 16,

κ = .25 ≤ (1 −
√
−2 ln .000625/(256 · (1− (1− 1/16)8))) · (1 − (1 − 1/16)8). This means

that all C codewords appear in at least .243g with probability at least 1−C ∗ .000625 = .99.

Thus at least d.25 · 16 · 256e = 1024 NWs are addressable with probability .99 using M = 8

MWs when a BRC is used, or M = 6 MWs when an (6, 3)-hot code is used.

5.2.2 Bounds Using Inclusion-Exclusion

In this section we derive upper and lower bounds on the number of codewords, C, and

number of MWs, M , required for all NWs in an encoded NW decoder to be individually

addressable with probability 1 − ε. These bounds are based on the principle of inclusion-

exclusion (see Section 4.1).

Theorem 5.2.5 In a simple encoded NW decoder in which N NWs are each assigned one of

C codewords with equal probability, let ε be the probability that all NWs are not individually

addressable. Then ε satisfies the following bounds

Q(1−Q/2) ≤ ε ≤ Q

where Q =
(
N
2

)
(1/C). Here C = 2M/2 when binary reflected codes are used, and C =

(
M

dM/2e
)

when (dM/2e,M)-hot codes are used.

Proof Let Ea,b, where a < b, be the event that ca = cb. The probability that all NWs

84

are not individually addressable is

ε = P (
⋃
a<b

Ea,b)

where the union is over all pairs of NWs. By expressing ε as a union, we can now use

inclusion-exclusion to obtain upper and lower bounds on ε in terms of C. This gives

∑
a<b

P (Ea,b)−
∑

(a,b) 6=(c,d)

P (Ea,b ∩ Ec,d) ≤ ε ≤
∑
a<b

P (Ea,b)

For the inclusion portion of the bound, we simply note that P (Ea,b) = 1/C, and thus

∑
a<b

P (Ea,b) =
∑
a<b

1/C =
(

N

2

)
(1/C)

For the exclusion portion of the bound, we must compute
∑

(a,b) 6=(c,d) P (Ea,b ∩ Ec,d)

where a < b and c < d. Here we have two cases.

In case (1), a, b, c and d are all different. There are
(
N
4

)
ways of selecting them, and

since Ea,b and Ec,d are independent, P (Ea,b ∩ Ec,d) = 1/C2.

In case (2), either a = c or b = d. In both of these two subcases, there are
(
N
3

)
ways

of selecting a, b, c and d, and P (Ea,b ∩ Ec,d) = 1/C2.

This gives

∑
(a,b) 6=(c,d),a<b,c<d

P (Ea,b ∩ Ec,d) =
(

N

4

)
1/C2 +

(
N

3

)
1/C2

which by the inclusion-exclusion bound above gives(
N

2

)
(1/C)−

(
N

4

)
1/C2 −

(
N

3

)
1/C2 ≤ ε ≤

(
N

2

)
(1/C)

Since
(
N
2

)
= N(N −1)/2,

(
N
3

)
= N(N −1)(N −2)/6 and

(
N
4

)
= N(N −1)(N −2)(N −

3)/24, we have
(
N
4

)
<
(
N
2

)2
/6, and

(
N
3

)
<
(
N
2

)2
/4, which gives(

N

2

)
(1/C)− (1/2)

(
N

2

)2

1/C2 ≤ ε ≤
(

N

2

)
(1/C)

Factoring out
(
N
2

)
(1/C) on the left hand side gives the desired result.

This theorem implies upper and lower bounds on C (and hence M) in terms of N and

ε. For the cases when Q and ε are small, these bounds are tight, meaning the upper and

lower bounds they imply on M agree.

85

Corollary 5.2.4 In a compound encoded NW decoder with g contact groups and N NWs

per contact group, the minimum value of C such that all N ′ = gN NWs are individually

addressable with probability 1− ε satisfies the following bounds. C ≥ N ′(N − 1)/(2ε) where

C = 2M/2 when binary reflected codes are used, and C =
(

M
dM/2e

)
when (dM/2e,M)-hot

codes are used.

Proof Let δ = ε/g. Suppose all N NWs connected to any given OC fail to be individually

addressable with probability at most δ. Then the probability that any of the g OCs fail

to have all N NWs be individually addressable is at most gδ = ε.

Now let γ be the actual probability that all NWs in a contact group of N NWs are

not individually addressable. From Theorem 5.2.5, we have γ ≤
(
N
2

)
(1/C). Thus if

C ≥ N(N − 1)/(2δ), γ ≤ δ.

Example 5.2.4 To bound the area required to control a crossbar-based memory using a

compound encoded NW decoder, we wish to bound the number of MWs required to implement

the “All Wires Addressable” addressing strategy (see Section 3.5.2).

In a compound encoded NW decoder with g = 128 OCs, N = 8 NWs per OC and

N ′ = 8 · 128 = 1, 024 total NWs, Corollary 5.2.4 asserts that all N ′ NWs are individually

addressable with probability 1 − ε = .99 or better when C ≥ 358, 400. When BRC codes

are used, this value of C is achieved with M = 38 MWs. If M/2-hot codes are used, only

M = 22 MWs are required.

What’s more, evaluating Theorem 5.2.5 numerically for these values of N and M shows

this threshold value of M is exact.

Example 5.2.5 In the previous example, the number of MWs can be reduced if we don’t

require that all NWs in each contact group be individually addressable. As an alternative, we

can implement the “Almost All Wires Addressable” addressing strategy (see Section 3.5.2) in

which all NWs are individually addressable in almost all (as opposed to all) contact groups.

Corollary 5.2.4 implies that a failure rate of at most ε = .01 can be within a single

contact group when N = 8 if C ≥ 2, 800 (as noted in the above example, this threshold value

of C is in fact exact). When BRC codewords are used, this requires M = 24 MWs. When

(M/2)-hot codes are used, M = 14 MWs suffice.

86

The number of individually addressable NWs in each OC is statistically independent.

If all N NWs in a particular contact group are individually addressable with probability

1 − ε, the probability that f or fewer contact groups fail to have all NWs addressable is

φ(ε, f, g) =
∑f

i=0

(
g
i

)
εi(1− ε)g−i.

Let ε = .01, g = 133 and f = 5. Because φ(.01, 5, 133) ≥ .99, at least 128 of g = 133

OCs have all NWs addressable with probability 0.99. Thus when M = 14, g = 133, and

N = 8 · 133 = 1064, N ′
a = 8 · 128 = 1, 024 NWs are individually addressable with probability

0.99.

5.2.3 Area Estimates

To compare addressing strategies, we estimate their area when used to produce a memory

with a given storage capacity. In our comparison, we fix ε, the probability of failure, and

N , the number of NWs per contact group. Given these values, we would ideally like to also

fix N ′
a, the number of addresses along each dimension of the crossbar, then estimate AT for

all three strategies (see Section 3.5.1). Unfortunately, for a given strategy, it is difficult to

choose M and N ′ to yield an exact value for N ′
a. In all three cases below we choose M and

N ′ so that close to 1, 024 NWs are individually addressable along each dimension.

To compare addressing strategies, we draw on the examples of the previous two sections.

To minimize area, we assume that (dM/2e,M)-hot codes are used.

• All Wires Addressable:

Here when g = 128, N = 8, and M = 22 (C = 358, 400) all N ′ = N ′
a = 1, 024 NWs are

addressable with probability at least .99. The ATC requires β = N ′
adlog Ce = 22, 538

bits. This gives

AT ≈ 22, 538χ + λ2
meso1, 792 + (λmeso22 + λnano1, 024)2

• All Wires Almost Always Addressable:

Here when g = 133, N = 8, and M = 14 (C = 2, 800), all N NWs in at least g′ = 128

contact groups are individually addressable with probability at least .99. In this case,

at least N ′
a = 1, 024 NWs out of the N ′ = 1, 064 are individually addressable and the

87

ATC requires β = g′dlog g − g′e+ N ′
adlog Ce = 12, 672 bits.

AT ≈ 12, 672χ + λ2
meso1, 792 + (λmeso14 + λnano1, 064)2

• Take What You Get:

Here when g = 160, N = 8, and M = 7 (C = 32) at least N ′
A = 1030 addresses are

present among the N ′ = 1, 280 NWs with probability at least .99. The ATC requires

β = N ′
a(dlog Ce+ dlog ge) = 13, 390 bits. This gives

AT ≈ 13, 390χ + λ2
meso2, 560 + (λmeso7 + λnano1, 280)2

• Address Sets Across Groups:

Here when g = 256, N = 8, and M = 6 (C = 16) all codewords appear in at least

64 contact groups with probability at least .99. This gives N ′
A = 64 ∗ C = 1, 024

addresses and requires an ATC with β = N ′
a(dlog ge) = 8, 192 bits. This gives

AT ≈ 8, 192χ + λ2
meso4, 096 + (λmeso6 + λnano2, 048)2

Unlike for RCDs in Chapter 4, the “All Wires Almost Always Addressable” address-

ing strategy outperforms all others in terms of area. Unlike for RCDs, a relatively small

number of MWs, M = 14, are required to ensure that all NWs within a contact group are

individually addressable with probability 1− ε.

Code Size

We note that area is not the only issue worth considering when manufacturing encoded

NW decoders. The size of the code is also a consideration. As noted in Section 5.1.4,

when a pattern of lightly and heavily doped regions is repeated along the length of a NW,

each NW type generates at most M different codewords. Even when the number of MWs

required for a particular addressing strategy is modest, say 15, there is still be a need to

grow hundreds of different NW types off chip. This is particularly true for radially encoded

NWs (discussed in Section 5.4 below), because here each NW type generates only a single

codeword. Furthermore, growing a large number of types of radially encoded NWs likely

requires that each NW have many shells, and thus be relatively large compared to axially

encoded NWs.

88

Mesowire Pitch
Region of
Influence
of Mesowire
Field

woverlapwoverlap

Mesowire Cross Sections

Axially Encoded
Nanowire

Figure 5.3: In [45], the above schema is used for calculating the probability of misalignment

errors occurring. The NW’s lightly doped region (shown in red) is controllable, meaning its

resistance increases in the presence of a sufficiently strong electric field. When the overlap of

the region and a MWs electric field is Woverlap or less, the NW is not sufficiently controlled

by the MW. The MW, when activated, will only partially increase the NWs resistance,

resulting in an error. Notice that the lightly doped region is wide enough so that it is

always controlled by at least one MW, regardless of axial misalignment.

5.3 Misalignment of Axial Codes

As discussed in Section 5.1 and illustrated in Figure 5.1, axially encoded NWs are not

guaranteed to align with MWs when deposited on chip. Once deposited, let δ denote the

distance between a NW’s endpoint and some MW. As noted in Section 5.1.2, if δ increases

or decreases by a factor of λmeso (the pitch of the MWs), this displacement has the effect

of cyclically shifting the NWs codeword. Nanoscale displacement, however, can cause some

MWs to only partially control certain lightly doped regions. In other words, certain values

of δnano = δ mod λmeso result in some NW/MW junctions being in error.

In [45], it is shown that when NWs are axially encoded to produce a particular set of

codewords, C, there is always a chance that a particular MW activation pattern, a = ci, will

cause certain NWs to be in error. Specifically, since a will address NWs with codeword ci,

there is always a chance that some NWs with that codeword will be shifted by an amount

that causes them to be only partially conducting when a is applied. As a result, the best

possible approach to coping with nanoscale misalignment appears to be to make sure that

each lightly doped region is wide enough such that it is always controlled by at least one

89

MW. In other words, no region should be small enough so that it falls between two adjacent

MWs, and isn’t controlled by either MW. This ensures that each NW is addressed by either

one or zero activation patterns of the form a = ci. It also ensure that at most one such

activation pattern causes the NW to be in error.

To quantify the probability of misalignment errors, let woverlap be the minimal length

overlap needed between the field of a MW and a NW’s lightly doped region to reduce the

region’s conductivity to a satisfactory level (see Figure 5.3). Also, let λmeso be the pitch of

MWs (i.e. their center to center distance). Since we assume NWs can shift by large amounts,

we treat δnano = δ mod λmeso as a uniform random variable ranging from 0 to λmeso. It

follows that the probability, pf , that misalignment errors occur is pf = (1−2woverlap/λmeso)

[45]. This implies that some small fraction of NWs will have codewords that contain errors

and suggests that it is not reasonable to require all NWs be addressable. This is not a

significant setback, however, since other addressing strategies use less area regardless (see

Section 5.2.3).

When an axially encoded NW is misaligned, many MW/NW junctions are likely to be

in error simultaneously. This is in contrast to randomized-contact decoders (RCDs), in

which errors occur with statistical independence. If one did wish to design an encoded NW

decoder such that all NWs are addressable, one approach would be to encode NWs in in

a sufficiently random fashion such that the RCD analysis of Section 4.1 applies. Although

this would increase the number of required MWs by a small constant factor, it would also

allows the encoded NW decoder to tolerate manufacturing errors that are not caused by

misalignment. As noted in [44], and analyzed in [63], it is also possible to explicitly design

NW encodings that are capable of tolerating random errors.

5.4 Radially Encoded Nanowire Decoders

This section describes how encoded NW decoders can be produced using core-shell NWs in

place of modulation-doped NWs. As described at the beginning of Section 5.1, core-shell

NWs are encoded radially, whereas modulation-doped NWs are encoded axially. Core-shell

NWs consist of a lightly doped silicon core surrounded by a sequence of insulating shells.

Shells are comprised of a thin layer of separately-etchable materials. We refer to shell

90

materials as “shell types”. As with modulation-doped NWs, many differently encoded core-

shell NWs are grown off-chip using chemical vapor deposition, then deposited fluidically.

Once deposited, however, a distinct etching sequence is applied to the region under each

MW. If etching sequences are chosen properly, NWs with each shell sequence will be given

an individually addressable codeword.

Given a shell type, x, we use E(x) to denote the etching process that removes only shells

of type x. If two NWs, na and nb, have materials x and y in their outer shells respectively,

E(x) removes the outer shell of na, but leaves nb unaffected. In order to ensure that

multiple shells are not removed by a single etching operation, it is assumed that adjacent

shells are always of different shell types. If a particular etching sequence exposes a given

NW’s core (i.e. removes all of its shells) under a particular MW, that MW will control the

NW.

By growing NWs with appropriately chosen shell sequences, then applying specific etch-

ing sequences, it is possible to produce an encoded NW decoder in which codewords are

drawn from BRC or 1-hot codes. Furthermore, since the etched away regions of NWs are

guaranteed to align with MWs, these encoders do not suffer from axial misalignment. This

section presents the shell sequences and etching sequences required to efficiently construct

radially encoded NW decoders from core-shell NWs. At the end of this section, error-

correcting codes are discussed as a way to protect against potential etching errors.

5.4.1 The Linear Radially Encoded NW Decoder

Assume that t shell types are used to produce radially encoded NWs with k shells. Since

all adjacent shells must be of different types, C = t(t − 1)k−1 different shell sequences are

possible. If NWs with all C shell sequences are grown and deposited to form a radially

encoded NW decoder, 1-hot codewords can be produced as follows:

1. Consider t shell types s1, . . . , st. Let M = C and associate a different shell sequence

with each of the M MWs. Let si = sa(i,1), sa(i,2), . . . , sa(i,k) be the sequence associated

with MW mi, where a(i, j) simply indexes shells to shell types. Here sa(i,1) denotes

the material of the inner most shell, and sa(i,k) denotes the material of the outermost

shell.

91

Etching Sequences

Figure 5.4: In a linear radially encoded nanowire decoder, one MW controls each type of

NW. Given t shell types, and k shells per NW, C = t(t− 1)k−1 shell sequences are possible.

Each shell sequence also corresponds to an etching sequence applied under one of the MWs.

The result is that the core of NWs with a particular shell sequence are exposed under

exactly one MW. In the above figure, t = 3 and k = 2. Dashed lines indicate the regions

under MWs, to which all 6 possible etching sequences have been applied. All 6 NW types

are present, but in an actual radially encoded NW decoder, a randomly selected subset of

NW types would be present.

2. Before laying down MW mi, apply the etching sequence E(sa(i,k)), . . . , E(sa(i,1)) to

the region under mi. Here E(sa(i,k)), . . . , E(sa(i,1)) denotes the application of each of

individual etchants, one after the other. This k-step etching process will expose only

the cores of NWs with shell sequence si. If a NW has a different shell sequence, at

least one shell will remain.

3. By associating a MW with each shell sequence, each NW is given a 1-hot codeword,

since exactly one MW controls it (see Figure 5.4). If NW na has a different shell

sequence then all other NWs connected to a its OC, it will be individually addressable.

Since M = C, this decoder is called a linear radially encoded NW decoder. Fortu-

nately, as demonstrated in Section 5.2.1, C need not be large when the TWYG addressing

strategy is employed. For example, if k = 2 and n = 4, C = 12, which is sufficient. In [47]

92

four separately etchable shell types have been proposed.

Etching Time

The etching procedure for the linear radially encoded NW decoder requires that a k-step

etching sequence be applied under each of the M = C = t(t−1)k−1 MWs. If each of the M

etching sequences were carried out sequentially, kC = kt(t− 1)k−1 total etching operations

would be required. By parallelizing the etching sequences, however, this number can be

reduced to kt. In a parallel etching operation, a particular etchant, E(x), is applied to

the regions under multiple MWs simultaneously.

To understand how etching operations can be parallelized, consider the first step of each

of the M etching sequences. When steps correspond to the same etching operation, they

can be performed in parallel. As such, only t parallel etching operations are required to

execute the first step of each of the M etching sequences. At this point, the second steps

can also parallelized, and so on, until all k-steps have been carried out using kt total parallel

etching operations.

5.4.2 The Linear-Logarithmic Radially Encoded NW Decoder

As explained in Section 5.1.1, an axially encoded NW decoder can be constructed such that

M = O(log2 C). In fact, the same bound on M can be obtained for radially encoded NW

decoders. The linear decoder above uses M = C MWs to select one of C NW types. In

this section we describe how to construct a linear-logarithmic radially encoded NW

decoder in which M = kt and C = (t/2)k. In this case, M is logarithmic in C if t is

treated as a constant. In the following section, we show how M can be made logarithmic

in t, and then explain how the two constructions can be easily combined.

In the linear decoder, the only requirement imposed on the NW shell sequences is that

consecutive shells be of different types, and thus C = n(n − 1)k−1. In this decoder, we

divide the t shell types into two equal sized sets (if t is odd, it is acceptable for the sets

to be different sizes). In all NW shell sequences, the odd numbered shells are chosen from

the first t/2 shell types, and the even numbered shells are chosen from the remaining shell

types. This allows for C = (t/2)k possible NW types, and allows for more powerful etching

93

operations.

1. Let si
1, s

i
2, . . . , s

i
t/2 denote the t/2 shell types permitted to appear in a NWs ith shell.

Let Ei denote the etching process E(si
1), E(si

2), . . . , E(si
t/2) that removes all material

in the ith shell (the order in which the t/2 etchants are applied is unimportant).

2. Consider each etching process of the form E(i, j) = Ek, . . . , Ei+1, E(si
j), Ei−1, . . . , E1.

E(i, j) removes the k− i outermost shells of every NW, a single shell from every NW

with shell type si
j in its ith shell, then the remaining i− 1 shells of those NWs. Only

these NWs have all k shells removed and their cores exposed.

3. Associate each etching process, E(i, j) with a different MW, mi,j , where 1 ≤ i ≤ k,

1 ≤ j ≤ t/2. Apply the etching processes E(i, j) to the region under mi,j . As a result,

mi,j controls only the NWs with shell type si
j in their ith shell (see Figure 5.5).

4. MWs are grouped into k groups of t/2 MWs each, and each of a NWs k shells deter-

mines k bits of its codeword. Each NW type is controlled by exactly k of the k(t/2)

MWs and all C = (t/2)k distinct codewords are individually addressable.

The linear-logarithmic decoder controls C = (t/2)k NW types with M = k(t/2) MWs.

Of course, as k increases, the pitch of core-shell NWs increases as well. As a result, it

appears more desirable to increase t, if possible. The next section describes how M can be

reduced to k log2 t, thus accommodating large values of t.

Etching Time

As with the linear radially encoded NW decoder, etching operations for the linear-logarithmic

radially encoded NW decoder can be parallelized. In this decoder, a k-step etching sequence

is applied under each MW. k− 1 of these steps involve the application of t/2 etchants in an

arbitrary order and one step involves the application of a single etchant. This implies that

the ith step of all etching sequences can be carried out using t/2 parallel etching operations.

As a result, kt/2 parallel etching operations are required in total.

94

Etching Sequences

Figure 5.5: In a linear-logarithmic radially encoded nanowire decoder, each MW controls

NWs with a particular shell type in their ith layer. To construct this decoder, shell types

are partitioned into to two sets. In each NW’s shell sequence, the odd shells are drawn only

from the first set (here green and purple), while the even shells are drawn only from the

second set (here orange and brown). Given t shell types, and k shells per NW, C = (t/2)k

shell sequences are possible. Here t = 4 and k = 3.

Under MW mi,j (1 ≤ i ≤ k, 1 ≤ j ≤ t/2) an etching sequence is applied that re-

moves the k − i outermost shells of all NWs, an additional shell from only NWs with the

jth shell type in their ith shell, and then the i− 1 remaining shells from these NWs. In the

above figure, dashed lines indicate the regions under MWs to which all 6 etching sequences

have been applied. Each NW is controlled by exactly 3 of the 6 MWs. All 8 NW types

are shown, but in an actual radially encoded NW decoder, a random subset of NW types

would be selected.

95

5.4.3 The Fully Logarithmic Radially Encoded NW Decoder

In order to understand how the number of MWs, M , in a radially encoded NW decoder

can be made logarithmic in both the number of shell types, t, and the number of shells, k.

First consider the case where k = 1.

1. Assign each shell type a unique L-bit binary number. L need be no larger than

dlog2 te. Let xi be the binary number associated with shell type s1, and ci = xixi be

the “codeword” associated with that shell type.

2. Let Sl, 1 ≤ l ≤ 2L be the set of all shell types assigned a codeword with a 1 as its lth

bit. Let E(Sl) be an etching process that removes each shell type in Sl, one after the

other, in some arbitrary order.

3. Associate each E(Sl) with a different MW. If MW ml is associated with E(Sl) it will

control only NWs with shell types in Sl.

4. Since a different MW is associated with each bit of ci, NWs are assigned codewords

from a BRC (see Figure 5.6)

This decoder controls t shell types with dlog2 te MWs. It is readily incorporated into the

linear-logarithmic radially encoded NW decoder, creating a fully logarithmic radially

encoded NW decoder. To do this, the etching processes E(i, j) = Ek, . . . , E(si
j), . . . , E1

are replaced with the processes E(i, l) = Ek, . . . , E(Sl), . . . , E1. Since shell types are divided

into two sets, Sl can be restricted to the t/2 shell types that appear in the ith layer. As

such, it is acceptable for a shell type in the first set to use the same codeword, ci, as those

in the second set.

The resulting decoder controls N = (t/2)k NW types with 2 log2 C = 2kdlog2 t/2e MWs.

In this decoder, each NWs codeword is the concatenation of the of the codewords associated

with each of the shell types in each layer. If MWs are reordered appropriately, this codeword

will be of the form xx. Note that the codeword associated with each shell material, ci, can

be drawn from an h-hot code instead of a BRC. This will result in a slightly more efficient

decoder.

96

Etching Sequences

Figure 5.6: A logarithmic radially encoded NW decoder in which NWs only have a single

shell. A codeword, ci, from a length 6 BRC is associated with each of the 8 shell materials.

These codewords are used to define the etching sequences that are applied to the regions

under the MWs. In this way, each NW type is itself assigned a codeword from a BRC. This

approach can be generalized to NWs with multiple shells.

97

Etching Time

The etching operations used to construct a fully logarithmic radially encoded NW decoder

can be parallelized using the same approach as described for the linear-logarithmic decoder.

In the fully logarithmic decoder, a k-step etching sequence is applied under each MW. Each

of these steps involves the application of at most t/2 etchants in an arbitrary order. As

a result, the ith step of all etching sequences can be carried out using t/2 parallel etching

operations. Once again only kt/2 parallel etching operations are required in total.

5.4.4 Fault-tolerant Etching Error Correction

The etching processes we have described may behave imperfectly. Shells which should

remain may be removed, and shells that should be removed may remain. Either error can

alter a NW’s codeword. Consider, for example two NWs, na and nb, with distinct error-free

codewords, and a third NW, nc, with an erroneous codeword caused by an etching error

that turned a 1 to a 0. If, as a result, nc now implies na and nb, neither na or nb will be

individually addressable. In other words, etching errors have the potential to significantly

reduce the number of useable NWs.

From the end of Section 3.4.1, recall that when the symmetric hamming distance between

codewords is greater than 1, manufacturing errors can be tolerated. Specifically, if the

symmetric distance between codewords is d, at least d− 1 etching errors can be tolerated.

In the fully logarithmic decoder, such codeword can be produced by replacing the L-bit

strings assigned to shell types with codewords from an error-correcting code. If the strings

all have minimum distance d, so will the resulting NW codewords.

In the case of a linear axially encoded NW decoder, a less efficient approach can be

considered. In the linear decoder, as described in Section 5.4.1, each of the M = C MWs

corresponds to a different k-step etching sequence. All t(t− 1)k−1 k-step etching sequences

are used, but unfortunately a single etching error could render all NWs unaddressable, since

it could cause a single NW to type to not be controlled by any MW. As a more fault-tolerant

alternative, one could use C ′ = t(t − 1)k′ MWs, for some k′ > k, each corresponding to a

different k′-step etching sequence.

Using this approach, each of the C NWs types would be controlled by many of the C ′

98

MWs. More importantly, any two NWs with different shell sequences will now be controlled

by many different MWs. For example, if k′ = k + 1, the number of MWs is increased by a

factor of t− 1, but each NW is now controlled by C/C ′ = t− 1 MWs. Furthermore, if two

NWs differ in at least 1 position, their addresses only have two MWs in common. Thus the

symmetric distance between NWs is increased from 1 to t− 3

5.4.5 Hybrid Nanowire Codes and Decoders

In this chapter, we have described how core-shell NWs can be encoded radially and how

modulation-doped NWs can be encoded axially. It is natural to ask if these two approaches

can be combined. A NW with a hybrid encoding has a core that has been grown with

an axial encoding surround by shells that form a radial encoding. As with axially encoded

NWs, the axial encoding is repeated along the lengths of hybrid encoded NWs to cope with

axial misalignment.

As described in [47], axial and radial encoded NW decoders can be efficiently combined

to form a hybrid encoded NW decoder. Consider an axially encoded NW decoder with MA

MWs using an length MA BRC, and a radially encoded NW decoder that uses MB MWs.

Let MA = 2MB (or alternatively, let 2MB be a multiple of MA). If the axially encoded NW

decoder controls CA NW codewords, and the radially encoded NW decoder controls CB

NW codewords, a hybrid encoded NW decoder can be constructed to control C = CA · CB

codewords.

A hybrid encoded NW decoder is implemented using MA + 2MB total MWs. The

first set of MA MWs forms an axially encoded NW decoder. Under these MWs, all shells are

removed, and thus the MWs can be used to address NWs with a particular axial encoding.

The next set of 2MB MWs forms two copies of a radially encoded NW decoder. In other

words, among the 2MB MWs, the same etching sequence is applied under jth MW, and the

(j + MB)th MW. Since the core of any given NW is encoded using a BRC, it is guaranteed

that one of these MWs (in the absence of axial misalignment) lies over a lightly doped region.

Thus, regardless of a NW’s axial encoding, the two sets of MB MWs can be used in tandem

as a radially encoded NW decoder to address NWs with a particular radial encoding.

Although the hybrid encoded NW decoder is efficient in terms of MWs, as noted in

99

[47], it requires that NWs be manufactured with multiple shells, and it is still susceptible

to misalignment errors. As such, it may in fact represent the worst of both worlds, thicker

NWs, and the possibility of axial misalignment. Recall from Section 3.2.1, however, that

axially encoded NWs may still be constructed from NWs with a single shell in order to

prevent adjacent NWs from coming into contact. If multiple shell types are used, the

hybrid encoded NW decoder offers a way of increasing the number of NW types without

requiring longer axial encodings.

5.5 Summary of Results

In this chapter we have analyzed the area and number of NW types required to control NA

out of N NWs using encoded NW decoders. As explained at the beginning of the chapter,

an encoded NW decoder is constructed such that each of the N NWs is assigned one of

C possible codewords independently at random. A NW’s codeword is determined by its

encoding, which is defined either axially or radially. Section 5.1 describes several encoding

schemes such that all NW codewords (in the absence of manufacturing errors) are both

individually addressable and equally likely.

Increasing C, the total number of possible codewords, increases the probability that

each NW is individually addressable. Increasing C, however, also increases M , the num-

ber of required MWs, as well as the total number of NW types that must be separately

manufactured. Section 5.1.2 shows that M can be minimized for a particular value of C

by employing (dM/2e,M)-hot codes. In this case M < log2 C + 1
2 log2 log2 C + 1

2 log2 π.

Section 5.1.3 defines a second potentially useful family of codes, binary reflected codes, for

which M = 2 log2 C.

Section 5.2 demonstrates that small values of M and C suffice to construct efficient

encoded NW decoders. In Section 5.2.2, Corollary 5.2.4 shows that in a simple encoded NW

decoder with M MWs and a single OC connected to N NWs, all N NWs are individually

addressable with probability at least 1 − ε when C ≥ N(N − 1)/(2ε). Section 5.2.1 shows

that C, and hence M , can be significantly reduced if we eliminate the requirement that

all NWs be individually addressable. In a compound encoded NW decoder comprised of

100

M MWs, g OCs, and N NWs per OC, Corollary 4.2.2 bounds C such that at least κN ′

of the N ′ = gN total NWs are individually addressable with probability at least 1 − ε.

As g increases, this bound on C approaches (N − 1)/(1 − κ). As such, it is reasonable to

consider constructing encoded NW decoders capable of individually addressing most NWs

using, say, 10 or fewer different NW types.

When NWs are encoded axially, Section 5.3 explains that some small fraction of all NWs

will suffer from nanoscale axial misalignment. These faulty NWs will need to be detected

and ignored. Section 5.4 demonstrates that radially encoded NWs provide a potential

solution to this problem. In a radially encoded NW decoder, NWs are encoded using

a sequence of separately etchable shell materials. In order to minimize the number of

shell materials required, Section 5.4.1 explains how radially encoded NW decoders can be

constructed using (1,M)-hot codes. Sections 5.4.2 and 5.4.3 go on to explain how these

decoders can employ a range of more efficient encodings. Both axially and radially encoded

NW decoders can potentially be constructed using fewer than 10 MWs and still be able to

individually address most NWs. A comparison between encoded NW decoders, RCDs and

mask-based decoders is given at the end of Chapter 6.

101

Chapter 6

Masked-Based Decoders

In this chapter, we model and analyze the masked-based NW decoder. As described in

Section 3.2.2, a masked-based decoder is a NW decoder in which lithographically-defined

rectangular regions of high-K dielectric (LRs) are deposited between NWs and MWs. These

regions of high-K dielectric focus the field strength of adjacent MWs, thereby causing the

lightly doped NWs sitting under each region to turn off when the MW laid on top of the

region is turned on. If LRs could be as small as the pitch of NWs and placed with nanometer

precision, a mask-based decoder with only M = 2 log2 N MWs would suffice to individually

address N NWs (see Figure 6.1(a)).

Due to the limits of photolithography, it is not realistic to assume that nanoscale regions

can be lithographically defined. As an alternative, 2N copies of the smallest manufacturable

LR could theoretically be arranged in a step-like pattern which we refer to as a “cycle” (see

Figure 6.1(b) and Section 6.1.2 below). Unfortunately, this too is unrealistic, as it still

assumes that all regions can be placed with nanoscale precision. As a plausible alternative,

it has been proposed that many copies of the smallest manufacturable LR be deposited in

a roughly cyclic pattern while natural randomness in region placement still permits MWs

to gain control over individual NWs with high probability [7, 49, 50] (see Figure 6.1(c)).

Even though LR placement is subject to random variation, the intended location of

each region is defined lithographically using a mask. The boundaries of each region are

effectively “targeted” at a specific location via openings in the mask. A model for how LR

boundaries vary about their intended location is the focus of Section 6.1. Section 6.2 then

102

(a) A logarithmic-sized mask-based decoder (b) A linear-sized mask-based decoder

(c) A randomized mask-based decoder

Figure 6.1: Masked-based NW decoders in which regions of high-K dielectric allow each MW

to control a different subset of NWs. These regions are illustrated as dark gray rectangles

under each MW. When a MW is turned on (indicated with yellow) all NWs under its

adjacent high-K dielectric regions are turned off. (a) If arbitrarily small high-K dielectric

regions could be manufactured and placed with nanoscale precision, 2 log(N) MWs would

suffice to address each of N NWs connected to each OC (here N = 8). (b) Even if regions

with nanoscale width are not possible, 2N copies of the smallest manufacturable regions can

still be shifted cyclically in order to control all N NWs connected to an OC (here N = 4). (c)

Using only 2N MWs still requires that the lithographically defined regions be placed with

nanoscale precision. Since this is not realistic, it has been proposed that many randomly

shifted copies of the smallest manufacturable region be used to gain control over individual

NWs with high probability. In this way, NW codewords are assigned stochastically. Notice

that random shifting may result in MWs that only partially control certain NWs.

103

describes how this model of targeted region placement can be analyzed to determine how

many MWs are required to control all N NWs connected to a single OC.

This analysis rests on a novel variant of the well-known coupon collector problem.

In the classic problem, one of C “coupons” is collected independently at random for each

of T trials. One asks how large T must be so that all C coupons are collected with high

probability. Section 6.3 analyzes a modified version of this problem in which each trial is able

to target a certain coupon (rather then selecting from all coupons with equal probability).

The theorems of Section 6.3 are applied in Section 6.4 to bound the number of MWs

required for a mask-based NW decoder to individually address all NWs. Additional practical

considerations for the size and design of masked-based decoders are presented in Section 6.5.

Section 6.6 provides a summarizing comparison between masked-based decoders, encoded

NW decoders and RCDs.

6.1 Modeling Decoder Manufacture

Unlike the randomized-contact and encoded NW decoders, the NW codewords in a masked-

based decoder are not assigned independently. Two NWs which are adjacent to each other

are more likely to have the same codeword (i.e. be controlled by the same MWs), since they

are more likely to be covered by the same set of LRs. Before we can analyze masked-based

decoders, we must develop a reasonable model for how LRs are placed, and hence how

codewords are assigned.

6.1.1 LR Manufacture

To deposit LRs on a chip using photolithography one or more masks are constructed con-

taining multiple rectangular openings. When openings are first made in masks, a one-time

process, the separation between the rectangles as well as their size can vary somewhat from

their intended values. Additionally, when a mask is used, it is difficult to control the precise

alignment of its openings with the NWs already on chip. The offset of a mask from its

intended location may be large.

Once a mask is positioned over the NWs, light is passed through the openings in the mask

104

onto a photoresist. This controls an etching process that either removes the lithographi-

cally defined regions (positive photoresist) or their complement (negative photoresist). The

duration of the etching process, which cannot be precisely controlled, causes variation in

the length and width of the LRs.

When a mask is in position above the NWs, we refer to the intended location of a given

LR’s right or left boundary, relative to the NWs, as its nominal location. Variation in mask

manufacture and mask application both cause a LR’s endpoint to vary from its nominal

location. In the absence of variation, 2N left and 2N right LR boundaries would suffice

to control N NWs connected to an OC (see Figure 6.1(b) as well as Lemma 6.2.1 below).

Random variation in LR placement, however, introduces the need for additional LRs, and

hence additional MWs.

E-beam lithography is currently too expensive for mass production, but it sets a limit

on the best possible conditions for LR manufacture. Using it a) mask placement relative

to NWs can vary by 50 to 100nms, b) the length and relative placement of rectangular

mask openings can vary by 5 to 10nms from their intended locations on a mask, and c)

etching of photoresist can increase the length of LRs by up to 5nms on a chip [64]. If

photolithography is used, the longer wavelength of the radiation results in larger variations

in these parameters. Uncertainty in mask placement and variation in mask manufacture

are independent of the type of lithography employed.

6.1.2 Modeling Variation in Mask Placement

In producing a masked-based decoder, we assume that one or more masks are used to

produce one or more cycles of LRs. If each OC is connected to N NWs, each cycle contains

2N rows of LRs. Let ρ denote the pitch (center-to-center distance) of NWs. In each cycle,

the nominal location of the row of LRs under each MW are offset by ρ from those under

the previous row (see Figure 6.2). When n cycles are produced we refer to the resulting

decoder as an n-cycle mask-based decoder. These cycles can be placed using either one

or multiple masks.

Let doff be the offset of a mask from its ideal location, which we assume places the

nominal locations of LR boundaries at the midpoint between NWs. doff is defined in terms

105

of the location of a particular but arbitrary LR boundary that we call the canonical LR

boundary, LR0. We assume that doff can be large relative to NW pitch, ρ. The cyclic

placement of LRs, however, means that if doff increases or decreases by a multiple ρ, it

has no effect on the probability that any particular NW is individually addressable. This

observation allows us to replace doff by the phase difference θ, where θ = doff mod ρ−ρ/2

is restricted to the interval −ρ/2 ≤ θ ≤ ρ/2. Note that θ = 0 corresponds to the nominal

position of LR0 being at the middle of the space between two NWs. It is not important

which two NWs it lies between.

Because we assume that the variation of doff is large relative to ρ, we model θ as a

uniform random variable over the interval [−ρ/2, ρ/2]. If the variation in doff is small, as

would be the case when the spacing between NWs is large, a non-uniform distribution for

θ would be appropriate. We do not consider this case.

6.1.3 Modeling Variation in LR Boundary Placement

When θ is fixed, uncertainties in LR boundary locations result from uncertainties in a)

the inscribing of rectangles on masks, b) the exposure of photoresist by electromagnetic

radiation through mask rectangles, and c) the photoresist etching time. We collect all these

variations in a random variable, d, associated with each LR boundary. The actual location

of a LR boundary is determined by θ, the offset of the nominal location of the boundary

relative to the adjacent NWs, and d, the change in the position of the boundary relative to

its nominal location.

We assume that d has a symmetric probability distribution f(d) that decreases mono-

tonically with d from d = 0. This reflects the fact that small variations in d are expected

and variations are equally likely to be positive or negative. We also assume that the {di}

associated with LR left and right boundaries are statistically independent and identically

distributed.

6.1.4 InterNW Regions

In a mask-based decoder, the locations of the LRs determine which MWs control which

NWs. Consider adjacent NWs na and nb where na is to the left of nb. If a LR under a

106

�ρ

LR0

Nρ

doff

Figure 6.2: In a compound mask-based decoder with g OCs and N NWs per OC, LRs are

placed in cycles of 2N rows. In this figure, N = 2, which is unrealistically small (N = 8

would be more plausible). Once MWs are laid down, each row of LRs allows a particular

MW to gain control over NWs within each contact group. Once a mask is in position over the

NWs, each LR has a nominal location, indicated here by dashed lines. Once deposited, an

LR’s actual endpoints vary randomly about these nominal locations. The location of a mask

is specified by the offset, doff , of some canonical LR, denoted LR0, from its ideal location.

Since NWs have periodicity ρ, and each row of LRs is offset by ρ from the previous row, a

change in doff by ±ρ has no effect on the addressability of NWs. Instead, we are concerned

only with the “phase difference” between the NWs and LRs, θ = doff mod ρ− ρ/2. In this

figure θ = −ρ/4.

107

MW has a left boundary between na and nb, nb is controlled by the MW and na is not

controlled. As the LR’s left boundary shifts rightward there is a point at which nb goes

from being controlled to partially controlled. Similarly, as the boundary moves leftward

there is a point at which na goes from being not controlled to partially controlled. The

region between these two limits is called the interNW region.

In the following section, Lemma 6.2.1 shows that for all NWs to be addressable, a LR

right and left boundary must fall in the interNW region between each pair of consecutive

NWs. If a LR boundary does not fall into an interNW region, the LR boundary is said to

fail. If a boundary does not fail, it may fall in the interNW region closest to its nominal

location, or some other interNW region. We refer to the interNW region closest to the

nominal location as the targeted interNW region.

For each LR boundary we let pi(θ) be the probability, given a mask phase difference

of θ, that a LR boundary moves i regions to the right (left) from its targeted interNW

region, when i is positive (negative). Because the random variables {di} are statistically

independent when θ is fixed, the conditional joint probability that LR boundaries on a given

mask fall into particular interNW regions is the product of the pi(θ).

The facts cited in Section 6.1.1 suggest that a LR boundary will vary by at most a few

NW pitches when the mask offset doff is fixed. That is, pi(θ) will be non-zero only for small

absolute values of i. We assume, pi(θ) = 0 for i ≥ N . Since the nominal locations of the

right (and left) boundaries of LRs under the same MW are separated by 2 NWs, only one

such boundary has a nonzero probability of landing in any particular interNW region.

6.1.5 Additional Sources of LR Boundary Variation

LRs can also be placed using a stamping process [64]. The LRs in a stamp could then be

inscribed using E-beam lithography and the stamp used multiple times. Two issues arise

in the use of a stamp, a) uncertainties in the length and separation of LRs grow with the

number of stampings and b) large uncertainties arise in the angular orientation of a stamp

relative to NWs. It is estimated that the latter could be as large as 20 degrees. E-beam

lithography may also introduce a small amount of angular uncertainty.

We do not explicitly model either the degradation of stamps nor the angular uncertainty

108

introduced by both stamping and E-beam lithography in this paper. We believe, however,

that these sources of variation can still be analyzed using our methods. Both have the effect

of increasing the length of LRs, and decreasing the amount of space between NWs. As a

result, the width of an interNW region shrinks because sections of NWs that would otherwise

be noncontrollable become partially controllable. This reduction in interNW region width

would then be reflected by reducing each pi(θ), as defined in the previous subsection.

6.2 Analyzing the n-Cycle Mask-Based Decoder

During operation, the n-cycle mask-based decoder uses standard CMOS to activate a con-

tact group of N NWs. The high-K dielectric regions are then used to turn off all but one

NW in a group. As described in Section 6.1.1 the regions are arranged in n cycles where a

cycle contains 2N rows of LRs and thus requires M = 2N MWs (one over each row). We

assume the n-cycle decoder is designed to be able to individually address all N NWs in a

contact group with high probability. As shown in the following lemma, this requires both

a left and right LR boundary fall into each of the N − 1 interNW regions.

Lemma 6.2.1 Assume that the length of and separation between LRs both span at least

N NWs. All NWs N in a contact group are individually addressable if and only if the left

boundary and right boundary of two different LRs fall in the interNW region associated with

each of the N − 1 pairs of consecutive NWs.

Proof A NW ni is individually addressable if and only if there exists a subset of MWs,

denoted Si, such that no MW in Si controls or partially controls ni and all N − 1 other

NWs are controlled by at least one MW in Si.

For the “if” case assume all consecutive pairs of NWs have left and right LR boundaries

in the interNW regions between them and consider an arbitrary NW na. There exists a

MW m1 that lies on top of a LR whose left boundary is in the interNW region to the

right of na. Since the LR must have a length spanning at least N NWs, MW m1 controls

all NWs in question to the right of na. Similarly, there exists a MW m2 that lies on

top of a LR whose right boundary is in the interNW region to the left of na. This MW

controls all the NWs in question to the left of na. The set Sa = {m1,m2} individually

109

addresses na.

For the “only if” case, assume all NWs are independently addressable. Consider any

two adjacent NWs, na and nb, where na is to the left of nb and Iab is the interNW region

between them. If na is individually addressable, there must be a MW in Sa that controls

nb but not na. This implies that the LR under this MW has its left boundary in Iab.

Similarly, since nb is individually addressable, there exists a MW that controls na but

not nb, and thus some LR has its right boundary in Iab as well.

This lemma proves that N consecutive NWs are controllable when right and left LR

boundaries lie in each of N − 1 interNW regions. As explained in Section 6.1.1 below,

LR boundaries are placed stochastically. Consequently, many rows of LRs are necessary to

ensure that these conditions hold with high probability. We also note that if LRs do not

span N NWs, all NWs will still be individually addressable, provided that the N − 1 left

(and right) boundaries that lie in the interNW regions all lie under different MWs.

The requirement that LR boundaries fall within interNW regions closely resembles the

classic coupon collector problem in which a random “coupon” (here an interNW region)

is collected at each of T trials (here a row of LRs). One then asks how large T must be for

each of C coupons to be collected with high probability. It is well-known that T must be

proportional to C lnC. In Section 6.3 we introduce variants of the coupon collector problem

that are directly relevant to the analysis of mask-based decoders.

6.2.1 Models for Decoder Analysis

During manufacture, the n cycles of the mask-based decoder are placed using some number

of masks. Associated with each mask is a phase difference, θ. The θ’s are uniformly

distributed independent random variables. Given θ, we know the nominal positions of all LR

boundaries produced by that mask. We assume that each LR boundary varies independently

about its nominal position according to some unimodal symmetric distribution centered at

0, f(d).

We consider two models for assignment of cycles to masks. In the first, the coarse-

grained model, we assume that the row of LRs under each MW are on separate masks.

This model has 2Nn different masks. In the second, the fine-grained model, we assume

110

each mask places one or more cycles of 2N MWs each. In both models, an independent

phase difference random variable, θi, is associated with each mask. Given m masks, we use

θ to denote the sequence of m phase differences, θ1, . . . , θm, associated with those masks.

A n-cycle mask-based decoder has g contact groups of N NWs. The decoder controls

all N ′ = gN NWs if each NW in each group of N NWs is individually addressable. For

1 ≤ i ≤ g, let Fi(θ) denote the failure to control all N NWs associated with the ith group

of NWs given a value for θ. Conditioned on any given value of θ, the Fi(θ) are assumed

independent.

Let F (θ) be the event that some NW in some group of g NWs is not individually

addressable. It follows that F (θ) is the union of the events Fi(θ), 1 ≤ i ≤ g. That is,

F (θ) = F1(θ) ∪ · · · ∪ Fg(θ)

The unconditional probability of failure to control all N ′ NWs, P (F), is the average of

P (F (θ)) over all the m values of the phase difference.

P (F) =
(

1
ρ

)m ∫ ρ/2

−ρ/2
· · ·
∫ ρ/2

−ρ/2
P (F (θ)) dθ1 · · · dθm

Below we use the principle of inclusion-exclusion to bound P (F).

Theorem 6.2.1 The probability P (F) has the following bounds when Q ≤ 1/2.

Q(1−Q/2) < P (F) ≤ Q

where Q = ρ−mg
∫ ρ/2
−ρ/2 · · ·

∫ ρ/2
−ρ/2 P (F1(θ)) dθ1 · · · dθm.

Proof By the principle of inclusion-exclusion (see Section 4.1), the conditional probability

P (F (θ)) has the following bounds.

Q(θ)−
∑
i<j

P (Fi(θ) ∩ Fj(θ)) ≤ P (F (θ)) ≤ Q(θ)

where Q(θ) =
∑g

l=1 P (Fi(θ)). Because the conditioned events Fi(θ) are assumed to be

statistically independent, P (Fi(θ) ∩ Fj(θ)) = P (Fi(θ))P (Fj(θ)).

Let Q be the average of Q(θ), that is, Q = ρ−m
∫ ρ/2
−ρ/2 · · ·

∫ ρ/2
−ρ/2 Q(θ) dθ1 · · · dθm. Be-

cause the events Fi(θ) are identically distributed, Q = gP (F1(θ)) where P (F1(θ)) is as

follows.

P (F1(θ)) = ρ−m

∫ ρ/2

−ρ/2
· · ·
∫ ρ/2

−ρ/2
P (F1(θ)) dθ1 · · · dθm

111

The sum
∑

i<j P (Fi(θ) ∩ Fj(θ)) in the above lower bound has g(g − 1)/2 terms.

Each term P (Fi(θ))P (Fm(θ)) is a product of statistically independent and identically

distributed random variables. Thus, its average over θ is g(g − 1)
(
P (F1(θ))

)2
/2. Be-

cause Q = gP (F1(θ)), this average becomes ((g − 1)/g) Q2/2 which is less than Q2/2,

giving the desired result.

Since the goal is to make Q very small, Q and P (F) are very close. In the remainder of

this chapter we approximate the probability of failure to control all N ′ NWs by Q.

Finally, recall that Fi(θ) is the event that between every pair of N NWs we collect at

least one left LR boundary and one right LR boundary given the phase differences θ. Let L

(R) be the event that some left (right) LR boundary fails to be collected. Then P (L∪R) is

the probability that one or the other type of boundary fails to be collected. It follows that

max(P (L), P (R)) ≤ P (L ∪R) ≤ P (L) + P (R)

Since there is no reason why left boundaries should be more or less difficult to collect than

right boundaries, we can reasonably assume that P (L) = P (R). This gives the following

lemma.

Lemma 6.2.2 The probability of a failure to collect both left LR and right LR boundaries

between every pair of N ′ NWs is within a factor of two of the probability of a failure to

collect just left (or right) LR boundaries between every pair of N ′ NWs.

In light of this lemma, we can reasonably consider only the collection of only left LR

boundaries. If P (L) is small, then P (R) is also small, as is P (L ∪ R). In Section 6.4 we

model the collection of left LR boundaries as variants of the coupon collector problem.

When there is one mask for each LR under each MW, this problem is modeled by the

coupon collector problem with failures (Section 6.3.1). When all LRs are produced by one

mask, this is modeled by the targeted coupon collector problem (Section 6.3.2). In the final

case when multiple cycles are produced by multiple masks, the problem is a multi-stage

version of the latter problem (Section 6.3.3).

112

6.3 Coupon Collection

In this section we analyze three increasingly general variants of the standard coupon collec-

tor problem: a) the coupon collector problem with failures, b) the targeted coupon collector

problem, and c) the multi-stage targeted coupon collector problem. These generalizations

are motivated by the cyclic placement of LRs in mask-based decoders. They are used in

Section 6.4 to analyze the n-cycle mask-based decoder.

6.3.1 The Coupon Collector Problem with Failures

In the classic coupon collector problem, one of C coupons is randomly collected during each

of T trials. Trials are independent and each coupon is selected with probability 1/C. We

introduce the coupon collector problem with failures (CCF) in which on each trial

either a coupon fails to be collected with probability pf (this models a LR boundary that

falls outside of an interNW region) or a coupon is collected with probability (1− pf)/C. T

is chosen so that all coupons are collected with high probability.

Theorem 6.3.1 Consider the coupon collector problem with failures, in which each trial

has probability of failure pf , and the probability of selecting the ith coupon is pi = ps/C for

1 ≤ i ≤ C, where ps = 1−pf . Let ΓCCF be the probability of failing to collect all C coupons

in T trials. Then, ΓCCF and T satisfy the following bounds:

z(1− z/2) ≤ ΓCCF ≤ z

where z = C(1 − ps/C)T . Let φCCF = −C ln(1 − ps/C). When z is small, minimizing z

minimizes the bound on ΓCCF . Then,

C

φCCF
ln
(

C

ΓCCF (1 + ΓCCF)

)
≤ T ≤ C

φCCF
ln
(

C

ΓCCF

)
when ΓCCF ≤

√
2− 1. φCCF satisfies ps ≤ φCCF ≤ ps(1 + ps/C) if C ≥ 2.

Proof Theorem 6.3.1 is a special case of Theorem 6.3.2 below. When pr = ps/C for all

r, z and φ are the same as defined above.

113

6.3.2 The Targeted Coupon Collector Problem

We further generalize the coupon collector problem by allowing each trial to “target” a

certain coupon. We call this the targeted coupon collector problem. As in the coupon

collector problem with failures, trials fail with probability pf , but when a failure does not

occur, each coupon is collected with a probability that is a function of the distance of

the coupon from the targeted location. Let p0, p1, ..., pC−1 be these probabilities, where

pf +
∑C−1

r=0 pr = 1. The targeted coupon collector problem reduces to the coupon collector

problem with failures when pr = ps/C for all r.

Associated with each trial is a targeted coupon tj , 1 ≤ j ≤ T . The probability that the

jth trial collects the ith coupon is pr(i,j), where r(i, j) = (i− tj) mod C. This has the effect

of targeting the coupons in a cyclic fashion.

To better understand this model of coupon collection, imagine C bins arranged in a

circle. At each of T trials, a ball is thrown from directly overhead. A trial collects the ith

coupon if it lands in the ith bin. Each throw is aimed at a particular bin, tj . The likelihood

that a ball hits its target is always p0. The probability that a ball deviates one bin to the

right is p1. The probability that a ball deviates one bin to the left is pC−1. The probability

that a ball fails to land in any bin at all is pf , which is independent of tj .

As before, we wish to know how large T must be so that all coupons are collected with

high probability. We are free to assign any value to each tj , but we require these values to

be chosen in advance. Each tj cannot be based on the outcomes of previous trials. In our

analysis we assume that each value of tj is chosen an equal number of times and that T is

a multiple of C. This is equivalent to cycling through all C coupons multiple times. Thus,

we let tj = j mod C and call this the cyclic targeted coupon collector problem (CCC).

Theorem 6.3.2 Consider the cyclic targeted coupon collector problem, in which each trial

has probability of failure pf and the probability of collecting the ith coupon on the jth trial is

pr(i,j), where r(i, j) = (i− j) mod C. Let ΓCCC be the probability of failing to collect all C

coupons in T trials, where T is a multipole of C. Then, ΓCCC and T satisfy the following

bounds

z(1− z/2) ≤ ΓCCC ≤ z

114

where z = C
∏C−1

r=0 (1− pr)
T/C = Ce−φCCCT/C and φCCC = −

∑C−1
r=0 ln(1− pr). When z is

small, minimizing z minimizes the bound on ΓCCC . Then,

C

φCCC
ln
(

C

ΓCCC(1 + ΓCCC)

)
≤ T ≤ C

φCCC
ln
(

C

ΓCCC

)
when ΓCCC ≤

√
2 − 1. ps ≤ φCCC ≤ ps +

∑C−1
r=0 p2

r when pr ≤ .5 where ps =
∑C−1

r=0 pr =

1− pf . The bounds on T are minimized by maximizing φCCC .

Proof We use the principle of inclusion-exclusion (see Section 4.1). Let Ei be the event

that ith coupon is not collected after T trials and let ΓCCC = P (E0 ∪ . . . ∪ EC−1).

Let E′
i be the event that the ith coupon is not collected after C trials. The probability

that the ith coupon is not collected on the jth trial is (1 − pr(i,j)), where r(i, j) = (i −

j) mod C. In C consecutive trials, r(i, j) will take on every value from 0 to C − 1. Since

trials are independent,

P (E′
i) =

C−1∏
r=0

(1− pr)

Now let Ei be the event that the ith coupon is not collected in any of the T trials, T a

multiple of C. Since P (Ei) = P (E′
i)

T/C ,

P (Ei) =
C−1∏
r=0

(1− pr)
T/C

which is independent of i.

Now bound P (Eh ∩ Ei) = P (E′
h ∩ E′

i)
T/C . Observe that the hth and ith coupons are

not collected on the jth trial with probability (1 − pr(h,j) − pr(i,j)). Since (1 − a − b) ≤

(1−a)(1− b), (1−pr(h,j)−pr(i,j)) ≤ (1−pr(h,j))(1−pr(i,j)). As before, over C consecutive

trials, r(h, j) and r(i, j) range over all values from 0 to C − 1. Reordering terms allows

us to write,

P (Eh ∩ Ei) = P (E′
h ∩ E′

i)
T/C ≤

[
C−1∏
r=0

(1− pr)
C−1∏
r=0

(1− pr)

]T/C

≤ P (Ei)2

Applying the principle of inclusion-exclusion we have that

C−1∑
i=0

P (Ei)−
∑
h<i

P (Ei)2 ≤ ΓCCC ≤
C−1∑
i=0

P (Ei)

and since
∑

h<i P (Ei)2 ≤
(∑C−1

i=0 P (Ei)
)2

/2, this yields the bound

z(1− z/2) ≤ ΓCCC ≤ z

115

where z =
∑C−1

i=0 P (Ei).

The inequality z(1 − z/2) ≤ δ implies that z ≤ 1 −
√

1− 2δ. This in turn implies

that z ≤ δ(1 + δ) when δ ≤
√

2 − 1 (since in this case
√

1− 2δ ≥ 1 − δ − δ2). Thus, if

ΓCCC ≤
√

2− 1

ΓCCC ≤ z ≤ ΓCCC(1 + ΓCCC)

Substituting in z = C
∏C−1

r=0 (1− pr)
T/C = Ce−φCCCT/C , where φCCC = −

∑C−1
r=0 ln(1 −

pr), gives,
C

φCCC
ln
(

C

ΓCCC(1 + ΓCCC)

)
≤ T ≤ C

φCCC
ln
(

C

ΓCCC

)
.

Finally since −x(1+x) ≤ ln(1−x) ≤ −x when x ≤ .5,
∑C−1

r=0 pr ≤ φCCC ≤
∑C−1

r=0 (pr+p2
r).

Thus, ps ≤ φCCC ≤ ps +
∑C−1

r=0 p2
r when pr ≤ .5, where ps =

∑C−1
r=0 pr = 1− pf .

It is of interest to know how sensitive the bounds on T are to the probability distribution

{p0, p1, . . . , pC−1}. When all probabilities are the same, that is, pi = ps/C, the cyclic

targeted coupon collector problem is equivalent to the coupon collector problem with failure

described in Section 6.3.1. In this case, φCCC = φCCF = −C ln(1− ps/C).

Now consider a distribution that is far from uniform, one that is concentrated on just

3 points. If p0 = p1 = p2 = 1/4 and ps = 3/4, then φCCC = 3 ln(4/3) = .86. On the other

hand, for even small values of C, φCCF = −C ln(1 − ps/C) ≈ ps. Since ps = 3/4, φCCF

and φCCC differ by only a small factor close to 1. In other words, even when each trial’s

ability to target a specific coupon is relatively good, the bounds on T continue to grow as

C ln(C/Γ), where Γ is the probability of failing to collect all coupons.

6.3.3 The Multi-Stage Targeted Coupon Collector Problem

The cyclic targeted coupon collector problem is now generalized to m “stages” where each

stage captures the variation introduced by using a new mask. In this problem, for some

integer Tµ divisible by C, a stage is a set of Tµ trials where the jth coupon, tj , is targeted

Tµ/C times. Associated with each stage is a uniformly distributed random variable θ ∈

[−ρ/2, ρ/2] such that the probability of collecting a coupon targeted at a location i places

away is pi(θ), 0 ≤ i ≤ C − 1, a continuous function of θ. Also, ps(θ) = 1 − pf (θ) =

p0(θ)+· · ·+pC−1(θ) where pf (θ) is the failure to collect any coupon on one trial. The random

116

variables associated with the stages, θ = (θ1, θ2, . . . , θm), are statistically independent. We

call this the multi-stage targeted coupon collector problem.

Because this problem models an n-cycle mask-based decoder, we are free to consider

putting either one or multiple cycles on one stage. Thus, we would like to know how the

failure probability ΓMM = P (E0 ∪ E1 ∪ . . . ∪ EC−1) depends on the number of cycles per

stage. We demonstrate that it is smallest when each stage contains one cycle.

Theorem 6.3.3 Let ΓMS be the probability of failure to collect all coupons in the multi-

stage targeted coupon collector problem with m stages in T trials when there are Tµ cycles in

the µth stage, Tµ a multiple of C, 1 ≤ µ ≤ m, and T = T1 + · · ·Tm where the stage random

variables θ are statistically independent. Then, ΓMS and T satisfy the following bounds.

z(1− z/2) ≤ ΓMS ≤ z

where z = Ce−φMST/C ,

φMS = − ln
m∏

µ=1

1
ρ

∫ ρ/2

−ρ/2

(
C−1∏
r=0

(1− pr(θµ))

)Tµ/C

dθµ


and

C

φMS
ln
(

C

ΓMS(1 + ΓMS)

)
≤ T ≤ C

φMS
ln
(

C

ΓMS

)
when ΓCCC ≤

√
2− 1.

When z is small, minimizing z (by maximizing φMS) minimizes the bound on ΓMS. The

quantity z is minimized by placing each cycle in a separate stage in which case z satisfies

the following bound.

z ≥ C

(
1
ρ

∫ ρ/2

−ρ/2

C−1∏
r=0

(1− pr(θ)) dθ

)T/C

Proof We use the principle of inclusion-exclusion in which Ei is the event that the ith

coupon is not collected after T trials and we let ΓMS = P (E0 ∪ . . . ∪ EC−1).

We derive bounds on the failure event conditioned on the random variables θ, namely,

ΓMS(θ) = P (E0 ∪ E1 ∪ . . . ∪ EC−1 | θ) and then average the bounds over all values of θ.

Let Eµ
i be the event that the ith coupon fails to be collected during Tµ trials in the

µth stage. It follows that Ei = E1
i ∩ · · · ∩ Em

i where E1
i , E2

i , . . . , Em
i are statistically

117

independent given the parameters θ. Thus we have

P (Ei | θ) = P (E1
i | θ1) · · ·P (Em

i | θm)

To employ the principle of inclusion-exclusion we must derive a bound on the con-

ditional probability P (Eh ∩ Ei | θ). Using the definition of these two events and the

reasoning employed in the proof of Theorem 6.3.2 we have the following bound.

P (Eh ∩ Ei | θ1, θ2, . . . , θm) ≤
m∏

µ=1

P (Eµ
i | θµ)2

Here P (Eµ
i | θµ) is independent of i although it is dependent on θµ.

Averaging the bounds over θ and applying the reasoning of the proof of Theorem 6.3.2,

we have that z(1− z/2) ≤ ΓMS ≤ z where

z =
(

1
ρ

)m ∫ ρ/2

−ρ/2
· · ·
∫ ρ/2

−ρ/2

C∑
i=1

P (Ei | θ) dθ

=
C∑

i=1

m∏
µ=1

(
1
ρ

∫ ρ/2

−ρ/2
P (Eµ

i | θµ) dθµ

)

= C

m∏
µ=1

1
ρ

∫ ρ/2

−ρ/2

(
C−1∏
r=0

(1− pr(θµ))

)Tµ/C

dθµ


= Ce−φMST/C

The latter result follows because P (Eµ
i | θµ) is independent of i.

A lower bound to z follows from a lower bound to 1
ρ

∫ ρ/2
−ρ/2

(∏C−1
r=0 (1− pr(θµ))

)Tµ/C
dθµ.

Holder’s inequality is stated below where 1/p + 1/q = 1 and p, q ≥ 1.∫
X
|f(y)g(y)| dy ≤

(∫
X
|f(y)|p dy

)1/p(∫
X
|g(y)|q dy

)1/q

Let X = [−ρ/2, ρ/2], f(y) =
(∏C−1

r=0 (1− pr(θµ))
)

and g(y) = 1/ρ. Then, the inequality

becomes the following.∫ ρ/2

−ρ/2

1
ρ
f(y) dy ≤

(∫ ρ/2

−ρ/2
f(y)p dy

)1/p(∫ ρ/2

−ρ/2
ρ−q dy

)1/q

=

(∫ ρ/2

−ρ/2

1
ρ
f(y)p dy

)1/p

Here we have used the fact that (1/q)− 1 = −1/p. Consequently, when p = Tµ/C

1
ρ

∫ ρ/2

−ρ/2

(
C−1∏
r=0

(1− pr(θµ))

)Tµ/C

dθµ ≥

(
1
ρ

∫ ρ/2

−ρ/2

C−1∏
r=0

(1− pr(θµ)) dθµ

)Tµ/C

118

which implies the following lower bound to z.

z ≥ C

m∏
µ=1

(
1
ρ

∫ ρ/2

−ρ/2

C−1∏
r=0

(1− pr(θµ)) dθµ

)Tµ/C

= C

(
1
ρ

∫ ρ/2

−ρ/2

C−1∏
r=0

(1− pr(θ)) dθ

)T/C

This is the bound that applies when each cycle is placed on a separate stage.

6.4 Performance of the n-Cycle Mask-Based Decoder

In this section we bound the number of MWs required to control all NWs in a n-cycle

mask-based decoder. As explained in Section 6.2.1, we consider two models for the random

placement of LRs a) the coarse-grained model in which each row of LRs is placed inde-

pendently using a separate mask, and b) the fine-grained model in which rows of LRs are

placed using masks that contain one or more cycles. The course grained-model provides a

very conservative upper bound on the number of MWs required to control all NWs with

high probability. The fine-grained model provides an upper bound on the number of MWs

required using more optimistic assumptions.

6.4.1 The Coarse-Grained Model

In the coarse-grained model each row of LRs is placed using a separate mask. We assume

that mask displacement, doff , can be at least 50-100nms. Since this is comparable to the

width of each contact group, we model LR boundaries as untargeted. In other words, within

a given contact group, the left (and right) LR boundary under a particular MW is equally

likely to fall between any of the N − 1 pairs of NWs.

During operation, the n-cycle mask-based decoder activates one of g contact groups,

then uses M MWs to individually address one of the N NWs within that contact group.

Theorem 6.2.1 provides tight bounds on the probability, P (F), that not all N ′ = gN

NWs are individually addressable. P (F) is upper bounded by gP (Fi), where P (Fi) is the

probability that all N NWs in a particular contact group fail to be individually addressable.

By Lemma 6.2.1, all N NWs in a particular contact group are individually addressable

if a left and a right LR boundary falls within each of the N − 1 interNW regions. As

119

explained at the end of Section 6.2, we can reasonable consider only the left LR boundaries.

The requirement that there be a left LR boundary boundary within all N − 1 InterNW

regions is well-modeled by the coupon collector problem with failures. Here the probability

of failing to collect all C coupons is bounded in Theorem 6.3.1. This allows us to upper

bound M , the number of MWs required to individually address all N ′ NWs with probability

1− P (Fcg).

Theorem 6.4.1 In the coarse-grained model, let P (Fcg) be the probability that all N ′ = gN

NWs in a masked-based decoder fail to be individually addressable. P (Fcg) ≤ ε when M , the

number of MWs in the decoder, is chosen as follows.

M =
N − 1

ps
ln
[
2(N ′ − g)

ε

]
Here ps = 1 − pf , where pf is the probability that a particular LR boundary fails to fall

within an InterNW region.

Proof As shown in Section 6.2 P (Fcg) is at most twice the sum of the probabilities of

failing to collect all LR left boundaries within each of the g groups of N NWs. That is,

P (Fcg) ≤ 2gΓCCF where ΓCCF is the probability of failure to collect C = N − 1 coupons

when the ith coupon is collected with probability pi = ps/C. Here ps = 1− pf , where pf

is the probability of failing to collect any coupon.

If M is chosen so that ΓCCF = ε/2g, then P (Fcg) ≤ ε. We use the bounds of Theo-

rem 6.3.1 to bound M when ΓCCF = (ε)/(2g). In particular, if M = (C/ps) ln(C/ΓCCF),

P (Fcg) ≤ ε.

In the proof of this theorem, notice that when ε, and hence ΓCCF , is small, Theorem 6.3.1

implies an upper bound on M that is very close to the implied lower bound.

Performance of the Model

In the coarse-grained model, the minimum number of MWs, M , required to ensure that

all N ′ NWs in a masked-based decoder are individually addressable is very close ((N −

1)/ps) ln(2(N ′−g)/ε). Here ps = 1−pf , where pf is the probability that, under a particular

MW, no left LR boundary falls within one of the N − 1 interNW regions contained in a

120

particular contact group. We can reasonably assume that ps is between 1/4 and 1/2. To see

why, notice that under approximately half of the MWs, no left boundary appears within a

given contact group (recall that the width and spacing of LRs both span N NWs). When

a left boundary does lie within a contact group, it falls within an interNW region with

probability close to 1/2. If contact groups are made to contain more than N NWs (say

2N), or LRs could span fewer than N NWs (say N/2) then ps would be closer to 1/2.

We now consider a concrete example in which N = 8, g = 128 and N ′ = 1024 and

ε = .01. In this case, if ps = 1/4, M = 339, and if ps = 1/2, M = 170. In either case, the

number of MWs is large. In contrast, Chapters 4 and 5 demonstrated that randomized-

contact and encoded NW decoders are able to control all N ′ = 1024 NWs using fewer than

50 MWs. Under the fine-grained model, the mask-based decoder is also able to employ

fewer MWs.

6.4.2 The Fine-Grained Model

In the fine-grained model each mask contains one or more cycles of LRs. As in the coarse-

grained model, the phase differences, θi, associated with the m masks are independent

uniformly distributed random variables. In the fine-grained model, however, the cyclic

placement of LRs ensures that each InterNW region is targeted by one LR left boundary,

and one LR right boundary per cycle. As explained in Sections 6.1.3 and 6.1.4, the stochastic

displacement of an LR boundary from its targeted location, d, is relatively small, and thus

the fine-grained model is well-modeled by the multi-stage targeted coupon collector problem.

Before analyzing the fine-grained model using the multi-stage targeted coupon collector

problem, we must address a small discrepancy. An n-cycle mask-based decoder, as defined

thus far, contains N NWs (and hence N − 1 interNW regions), but 2N MWs per cycle. As

in our analysis of the course grained-model in Theorem 6.4.1, interNW regions correspond

to coupons and MWs correspond to trials. In the multi-stage targeted coupon collector

problem, however, cycles are supposed have the same number of trials as coupons. As

such, we can either modify our definition of the n-cycle mask-based decoder so that OCs

contain 2N + 1 NWs, or assume that the periodicity of LRs can be reduced to N − 1 NWs.

The former assumption is conservative, it makes it more difficult to individually address

121

all NWs, the latter assumption is optimistic, it makes gaining control of NWs easier. We

choose the latter.

In either case, the probability of failing to individually address all N NWs within a

contact group is well-approximated as ΓMS , the probability of failing to collect all C coupons

in Theorem 6.3.3. As with the coarse-grained model, the probability of all N ′ NWs not

being individually addressable, P (Ffg), is very close to 2gΓMS . This allows us to upper

bound M , the number of MWs required to individually address all N ′ NWs with probability

1− P (Fcg).

Theorem 6.4.2 In the fine-grained model, let P (Fcg) be the probability that all N ′ = gN

NWs in a masked-based decoder fail to be individually addressable. As in Section 6.1.4, let

pi mod N−1(θ) be the probability, given a mask phase difference of θ, that a LR boundary

moves i regions to the right (left) from its targeted interNW region, when i is positive

(negative). P (Fcg) ≤ ε when M , the number of MWs in the decoder, is chosen as follows,

M =
N − 1
φMS

ln
[
2(N ′ − g)

ε

]
where φMS is defined as

φMS = − ln

(
1
ρ

∫ ρ/2

−ρ/2

N−2∏
r=2

(1− pr(θ)) dθ

)

and each cycle is placed on a separate mask.

Proof As in the proof of Theorem 6.4.1, we observe that P (Fcg) is at most twice the

sum of the probabilities of failing to collect all LR left boundaries within each of the g

groups of N NWs. That is, P (Fcg) ≤ 2gΓMS where ΓMS is the probability of failure to

collect C = N −1 coupons in the multi-stage coupon collector problem with displacement

probabilities pi(θ).

If M is chosen so that ΓMS = ε/2g, then P (Fcg) ≤ ε. We use the bounds of Theo-

rem 6.3.3 to bound M when ΓMS = ε)/2g. In particular, if M = (C/φMS) ln(C/ΓMS),

P (Fcg) ≤ ε. As noted in Theorem 6.3.3, φMS is maximized (and M minimized) by placing

all cycles on separate masks.

The bound on M for the fine-grained case is identical to that given for the coarse-grained

122

model except that the denominator term ps is replaced by φMS . We approximate φMS using

the following lemma.

Lemma 6.4.1 The factor φMS satisfies the following bound where ps(θ) is the probability

that a LR left boundary falls into an interNW region.

φMS ≤ −ln

(
1
ρ

∫ ρ/2

−ρ/2
1−

N−1∑
r=1

pr(θ)dθ

)
= −ln

(
1− 1

ρ

∫ ρ/2

−ρ/2
ps(θ)dθ

)

where ps(θ) =
∑N−2

r=0 pr(θ).

Proof The proof follows from the fact that (1− a)(1− b) ≥ (1− a− b).

Performance of the Model

As in Section 6.4.1, we assume that the width and spacing between NWs are equal, and

thus that 1
ρ

∫ ρ/2
−ρ/2 ps(θ)dθ, the average value of ps, is close to 1/2. In this case, φMS is close

to ln 2 = .7. Recall that ps, from the bound for the coarse-grained model, is about .5. Given

that Theorems 6.4.1 and 6.4.2 are identical otherwise, we conclude that under the fined-

grained the number of required MWs is reduced by a factor of approximately (.5/.7) ≈ 0.7.

Even under this much more optimistic model of decoder manufacture, M = 122 MWs are

still required. The mask-based decoder appears inefficient even when the location of LR

boundaries can be tightly controlled.

6.5 Additional Considerations

The mask-based decoder requires a large number of MWs to control all NWs with high

probability. In this section we describe several practical considerations, relating to address

translation, that may make mask-based decoders more attractive.

6.5.1 Address Translation Circuitry

To use a NW crossbar as a memory, each external binary address must be mapped to a

different pair of orthogonal NWs. This requires programmable address translation circuitry

(ATC) to map binary addresses to subsets of MWs (see Section 3.3.2). The ATC along

123

each dimension of the NW crossbar maps the supplied binary string, B, to a contact group

σ and a subset of MWs, a.

For each B, the ATC must store a value for a. The number of bits required for each

a is at most M , since any subset of M MWs can be specified using M bits. M bits are

necessary if most of the 2M possible subsets are used with approximately equal frequency.

This holds for both encoded NW decoders and randomized-contact decoders, which require

Ω(M) = Ω(log N) bits of ATC storage per address.

In mask-based decoders, however, each NW can be addressed using just two MWs, one

MW to turn off the NWs to its left and the other to turn off the NWs to its right. Since each

a is a subset of two MWs, it can be stored using 2 log(M) = Ω(log N) bits. Even though

mask-based decoders require a large number of MWs, they do not require significantly larger

ATC than other decoders.

6.5.2 Alternative Addressing Strategies

In Section 6.4 M was bounded such that every NW in every contact group is individually

addressable with probability 1−ε. In previous chapters, this was referred to as the “All Wires

Addressable” addressing strategy (see Section 3.3.2). As explained in Section 6.4, it implies

that all N NWs in a particular contact group are individually addressable with probability

approximately ε/g. As demonstrated in Chapters 4 and 5, the number of required MWs

can be reduced if we relax this requirement.

All Wires Almost Always Addressable

The “All Wires Almost Always Addressable” addressing strategy (see Section 3.3.2) requires

that all N NWs in most contact groups be individually addressable. To bound the number

of MWs this strategy requires, we recall examples 4.1.2 and 5.2.5 of Chapters 4 and 5,

respectively. If g = 133, and all N NWs in a particular contact group are individually

addressable with probability .99, then all NWs in at least 128 of the contact groups are

individually addressable with probability at least .99. In this case, a small fraction of the

decoder’s N ′ total NWs go unused, and the amount of ATC required increases slightly,

but the number of required MWs is significantly reduced. The bounds in Theorems 6.4.1

124

and 6.4.1 are both reduced by a factor of .6 (compare ln(2 ∗ 896/.01) to ln(2 ∗ 7/.01)). Of

course this still implies that over 70 MWs are required, whereas for randomized-contact and

encoded NW decoders 30 MWs or fewer suffice.

Take What You Get (TWYG)

A second addressing strategy worth considering is TWYG (see Section 3.3.2), which simply

requires that N ′
a addresses exist across all OCs, but places no limit on the number of

addresses per OC. This increases the amount of ATC required, as an OC, σ, and MW

activation pattern, a, must be stored for each of the Na addresses. Also N ′ − N ′
a of the

NWs go unused. Even so, the number of required MWs can be reduced substantially. As

in Chapters 4 and 5, Hoeffding’s Inequality can be applied to bound N ′
a in terms of g and

M (see Section 4.2). To apply the Hoeffding’s inequality, we must first establish a bound

on E[Na], the expected number of addresses per contact group.

To bound E[Na], let s1, . . . , sNa , be the separately addressable groups of NWs, from left

to right, within an OC. Notice that the rightmost NW of each si (with the exception of sNa)

must have the left boundary of an LR immediately to its right. Similarly leftmost of each

si (with the exception of s1) must have the right boundary of an LR immediately to its left.

Hence if we consider the interNW regions from left to right, a new separately addressable

group appears only after the appearance of a left boundary, then a right boundary. Now to

bound E[Na] we need only bound the expected number of interNW regions, E[r], required

for a left boundary followed by a right boundary to appear, since E[Na] = 1+(N −1)/E[r].

Taking a conservative approach, we can look to the course grained model, where each

LR boundary is equally likely to appear in any interNW region. Here the probability

that a given LR’s right (or left) boundary appears in an interNW region is ps/(N − 1),

and thus the probability that some LR’s right boundary appears in the interNW region

at least 1 − (1 − ps/(N − 1))M . This implies that if M is at least (N − 1)/ps, most

interNW regions contain a right and left boundary, which in turn implies that E[r] ≤ 2 and

E[Na] ≥ 1 + (N − 1)/2.

We now bound NA in terms of E[Na] ≥ N/α. First recall Theorem 4.2.2 in Section 4.2.

Theorem 6.5.1 Let N ′
a be the total number of addressable NWs in an NW decoder with g

125

contact groups, N NWs per contact group, and N ′ = gN NWs in total.

P (N ′
a ≤ E[N ′

a]−N ′k) ≤ e−2k2N ′N/(N−1)2 = e−2k2g∗

for any k ≥ 0 where g∗ = g(N/(N − 1))2.

Proof See proof of Theorem 4.2.2 in Chapter 4. The proof applies to masked-based NW

decoders as well.

From which we obtain a corollary

Corollary 6.5.1 Let N ′
a be the total number of addressable NWs in a NW decoder with g

contact groups, N NWs per contact group, N ′ = gN NWs in total, M MWs and at least an

average of αN addresses per contact group.

P (N ′
a > κN ′) ≥ 1− ε

if κ ≤ 1−
√
− ln ε/(2g∗)− α where g∗ = g(N/(N − 1))2.

Proof E[N ′
a] = gE[Na] ≥ N ′α, and by the above theorem,

P (N ′
a ≤ N ′α−N ′k) ≤ e−2k2g∗

Thus, if k = α− κ, then

P (N ′
a ≤ κN ′) ≤ e−2g∗(α−κ)2

Thus, when e−2g∗(α−κ)2 ≤ ε the desired conclusion follows. This occurs when ln ε ≥

−2g∗(α− κ)2 or
√
− ln ε/(2g∗) ≤ α− κ.

As an example, g = 260, N = 8, N ′ = 2080, ε = .01, and κ = .493. As discussed

above, when M = 16, we might conservatively assert that α > 1/2, in which case κ =

.493 ≤ 1−
√
− ln .01/(2 ∗ 260 ∗ (8/7)2)− 1/2. Thus at least d.493 ∗ 2000e = 1025 NWs are

addressable with probability .99.

In this context, it is clear that the mask-based decoder looks significantly more appeal-

ing, but still less efficient than other NW decoders. Also, we have allowed the number of

NW per address to vary, which may make decoder operation less reliable.

126

6.6 Summary of Decoder Analysis

In this and the previous two chapters, we have analyzed the number of MWs required

to control NA out of N NWs using masked-based, encoded NW, and randomized-contact

decoders. In all three cases we have obtained tight bounds on the number of MWs, M ,

required to individually address all N NWs connected to a single OC. The bound obtained

on M for masked-based decoders, M ≈ 1.4(N − 1) ln(2(N − 1)/ε), is by far the largest,

as it is super-linear in N (see Section 6.4.2). In contrast, randomized-contact decoders

require M ≈ 3.5 ln(N(N − 1)/ε) MWs (see Section 4.4), and encoded NW decoders require

M ≈ log2 C + 1/2 log2 log2 C + 1 MWs, where C = N(N − 1)/(2ε) (see Section 5.5).

The number of MWs required by encoded NW decoders is smallest, although there is the

additional challenge of manufacturing a large number of NW types.

The area required by all three types of NW decoders can be reduced by relaxing the

requirement that all NWs connected to all (or almost all) OCs be individually addressable.

We have bounded the number of MWs required to individually address κN ′ of the N ′ = gN

total NWs in compound NW decoders comprised of M MWs, g OCs, and N NWs per

OC. In this case, the above discussion following Corollary 6.5.1 reveals that mask-based

decoders no longer requires M to be super-linear in N . Instead M may be a small multiple

of N , provided the decoder’s interNW regions are sufficiently large relative to the pitch

of NWs. Even so, encoded NW decoders and randomized-contact decoders both appear

more promising. For randomized-contact decoders M = 3.5 ln((1 − κ)/(N − 1)) MWs

are sufficient as g increases (see Section 4.4). For Encoded NW decoders, M approaches

log2 C + 1/2 log2 log2 C + 1, where C = (N − 1)/(1− κ) (see Section 5.5). Not only is this

quite efficient in terms of M , but it also means that only a small number of NW types are

required. Both randomized-contact and encoded NW decoders appear to be very viable

options for providing efficient control over NW crossbar-based memories using the TWYG

addressing strategy (defined in Section 3.3.2).

127

Chapter 7

Nanowire Addressing for

Crossbar-based Logic

The previous three chapters have bounded the overhead associated with the stochastic

assembly of NW decoders for use in crossbar-based memories. In this chapter we refer to

such decoders as NW memory decoders. In a crossbar-based memory, NW memory

decoders along each dimension of the crossbar must be able to individually address NA

NWs (or alternatively, address NA disjoint subsets of NWs). As discussed in Section 3.1.2,

however, the requirement imposed on NW decoders used to supply inputs to crossbar-based

logic circuits is substantially stricter. These NW logic decoders are the focus of this

chapter. We bound the area of stochastically assembled NW logic decoders and compare

this area to that of a deterministic construction proposed by DeHon in [4].

Section 7.1 reviews the conditions that a NW logic decoder must satisfy to provide

an interface to a nanoscale logic circuit with NA inputs. Section 7.2 begins by quantifying

the area of DeHon’s proposed construction, then demonstrates how stochastically assembled

RCDs and encoded NW decoders can use less area. Section 7.3 presents a novel lower bound

on the area stochastically assembled NW logic circuit decoders require. Finally, Section 7.4

explains how the bounds of the previous two sections also apply to the area associated with

the stochastically-assembled inversion and buffering layers that may be incorporated into

programmable nanoscale logic circuits (see Section 2.2.3).

128

7.1 NW Decoders for Logic

In programmable NW crossbar-based logic circuits, as described in Section 2.2.3, there

are two different ways in which NW decoders are used. First, the programmable NW

interconnect within the crossbar-based logic must be configured. This can be accomplished

by addressing pairs of orthogonal NWs using NW memory decoders. Second, when the

logic circuit is used to compute, its NA inputs must be supplied via MWs. In order to

simultaneously specify all NA inputs, a NW logic decoder is required.

As with memory decoders, NW logic decoders can be constructed stochastically. For a

stochastically assembled memory decoder, we require that NA NWs (or alternatively, NA

codewords) be individually addressable with high probability. In a logic decoder, a stricter

condition is needed. Consider a nanoscale circuit that takes NA bits as input. The NW

decoder used to supply those inputs must be able to address arbitrary subsets of a set of

NA NWs. If this condition holds, the set of NA NWs is said to be fully addressable. As a

generalization, one could also consider circuits that do not require all 2NA possible inputs.

In a nanoscale circuit, if NA out of N input NWs are fully addressable, the remaining N−

NA NWs should be ignored. In crossbar-based logic, this can be accomplished by configuring

the programmable wired-or portion of the circuit (see Section 2.2.3 and Figure 2.6) such

that the N−NA input NWs are disconnected from all perpendicular output NWs. Initially,

all N input NWs are disconnected from all output NWs. Each of the NA fully addressable

input NWs can then be connected to the appropriate output NWs via write operations.

As noted above, a memory decoder is used to address individual output NWs during these

write operations.

Arguably, one might expect that the logic decoder itself could be constructed via sim-

ilar post-assembly configuration [40]. In this scenario, a stochastically assembled memory

decoder would first be constructed to individually address NA input NWs, then write op-

erations would permanently couple each of the NWs to a different MW. If this approach

proves technologically feasible, it would be quite efficient. The resulting logic decoder would

consist of exactly NA NWs and NA MWs, and the only additional overhead required would

be that associated with the stochastically assembled memory decoder. In the remainder of

129

this chapter, we assume that connections between MWs and NWs are not programmable.

If they are programmable, and the above construction is feasible, then the analysis of the

previous three chapters bounds the required overhead. Furthermore, the bounds derived

in the following two sections remain applicable to stochastically-assembled inversion and

buffering layers (as discussed in Section 7.4).

7.2 Stochastic Assembly of NW Logic Decoders

In our analysis of memory decoders we considered compound NW decoders in which g OCs

are each connected to w NWs. Here w is chosen to be as small as manufacturing constraints

allow (approximately 10). As noted in Section 3.1.3, one approach for producing a set of

NA fully addressable NWs is to simply connect NA OCs to groups of w NWs and use only

a single NW from each group. This is the deterministic approach proposed by DeHon in

[4]. It uses M = NA MWs to fully address NA out of N = 2wNA NWs. Here the factor of

2 is approximate, it accounts for the space between the groups of w NWs. Depending on

how tightly the lithographically produced OCs can be spaced, the factor may be closer to 1.

Assuming MWs are at right angles to NWs, the deterministic approach to NW addressing

uses area

A ≈ (2wMλ)(Nwλ) ≈ 4w2N2
Aλ2

where λ is the pitch of NWs and 2wλ is the pitch of MWs.

It is natural to ask whether a stochastically assembled NW decoder can use significantly

less area. In such a decoder, multiple NWs from each OC would be used to form a subset

of NA fully addressable NWs. Notice, however, that this implies that when the decoder

addresses most subsets of the NA NWs, all or almost all OCs must be turned on. As a

result, the g OCs could be replaced with a single larger OC without a significant reduction in

the number of fully addressable NWs (this reasoning is clarified at the end of the following

subsection). In other words, if a simple NW decoder, consisting of a single OC, cannot

outperform the deterministic construction described above, a compound NW decoder will

not offer a significant improvement either. Consequently the analysis of this chapter focuses

on simple NW decoders.

130

7.2.1 Unique Couplings

In order to analyze the probability that a simple decoder contains a set of NA fully address-

able NWs, we begin with a simple lemma. Given a set of NA NWs and a set of NA MWs,

we say the sets are uniquely coupled if each of the NA NWs is controlled by a unique

MW. In other words, each of the NA MWs provides individual control over a distinct NW.

This directly relates to the criteria NW logic decoders must satisfy.

Lemma 7.2.1 In a simple NW decoder, a set of NA NWs is fully addressable if and only

if their exists a set of NA MWs to which it is uniquely coupled.

Proof Let S be the fully addressable set of NA NWs. For each NW ni, consider the set

Si = S − ni. Since Si is addressable, there must be a MW that uniquely controls ni,

but no other NW in S. For the other direction, simply note that any subset of S can be

addressed by activating the MWs that uniquely control the NWs not in the set.

In order to bound the area required for stochastically assembled NW logic decoders, we

wish to bound the number of MWs, M , and NWs, N , such that there exists a set of NA fully

addressable NWs with probability at least 1− ε. By the above lemma, the probability that

such a set exists is equal to the probability that there exists NA NWs and NA MWs such

that each of the NWs is controlled by a unique MW. Furthermore, this condition applies

even to decoders that contain errors (i.e. MWs that only partially control certain NWs).

Before proceeding with our area analysis, let us briefly revisit the assertion that it suffices

to consider simple NW decoders. First notice that if a set of NA NWs is uniquely coupled

to NA MWs, the NA NWs are fully addressable whether or not they are all connected to a

single OC. Now consider a compound NW decoder with g OCs, N = gw total NWs and a

set, S, of NA fully addressable NWs. If NWs ni,nj ∈ S are both connected to the same

OC, then for the decoder to address the set Si = S−ni there must be a MW that controls

ni, but no other NW in S. Thus for every NW in S that shares an OC with some other NW

in S, there must be a MW that controls only that NW in S. It follows that if most NWs

in S share an OC with at least one other NW in S, there must exist close to NA uniquely

coupled NWs and MWs.

131

This observation implies that if the g OCs were replaced with a single larger OC, the

resulting simple decoder would still have close to NA fully addressable NWs. Also, by

replacing g OCs with a single OC, the added space between the g OCs can be eliminated. If

additional NWs are then added such that NA (as opposed to close to NA) fully addressable

NWs exist with probability at least 1 − ε, we can expect the resulting simple decoder to

have close to the same area as the compound NW decoder it replaced. For this reason, the

remainder of this chapter is focused on bounding the area of simple NW decoders.

7.2.2 Area Bounds

From the beginning of this section, recall that 2wMNλ2 is the area of a NW decoder with N

NWs controlled by M perpendicular MWs. To minimize this area, our goal is to minimize

MN while choosing M and N (along with any other decoder assembly parameters) such

that their exists a set of NA fully addressable NWs with probability at least 1 − ε. To

outperform the deterministic construction proposed by DeHon, MN must be less than

wN2
A (or 2wN2

A if we assume there are w NWs between the NA contact groups of w NWs).

To bound MN , we first consider the two extreme cases in which either N = NA, or

M = NA. As we explain shortly, neither of these represent particularly efficient choices

(and hence the accompanying analysis is kept relatively brief). We then consider a more

efficient hybrid approach in which N = M = βNA for some relatively small value of β. This

approach uses less area than the deterministic construction for realistic values of w.

In this section we consider both RCDs and encoded NW decoders. Mask-based decoders

are not considered because they require that each MW controls (on average) groups of

w consecutive NWs. This implies that close to N = wNA NWs are required before a

stochastically assembled masked-based decoder even has a chance at fully addressing a set

of NA NWs.

Randomized-Contact Logic Decoder

From Chapter 4, recall that an RCD refers to any NW decoder in which NW/MW junctions

are modeled as independent random variables. Each NW/MW junction is controlling with

probability p, noncontrolling with probability q and in error with probability r = 1− p− q.

132

In an RCD, the probability that a particular NW is controlled by exactly one MW is

ps = MpqM−1.

Now consider the case when M = NA. If we optimistically assume that r = 0, we see

that ps = NAp(1− p)NA−1 is maximized when p = 1/NA. If we wish to account for errors,

we can instead set p = α/NA and r = (1 − α)/NA, for some α relatively close to 1. This

gives

ps = α(1− 1/NA)NA−1

As NA increases, ps rapidly approaches αe−1(1− 1/NA)−1 which in turn approaches αe−1

(and since NA denotes the number of input bits to the nanoscale circuit, we expect it to be

reasonable large).

So when p = α/NA each NW is controlled by exactly one MW with constant probability,

ps, close to αe−1. Since each NW is equally likely to be controlled by any of the NA

MWs, and NWs are coupled to MWs independently, we can bound the probability that

the NA MWs are uniquely coupled to some subset of NA NWs using the “coupon collector

problem with failures” (see Section 6.3.1 of the previous chapter). Here MWs correspond to

coupons, NWs correspond to trials, and the probability that a trial fails to collect a coupon

is pf = 1− ps = 1− αe−1(1− 1/NA)−1. Theorem 6.3.1 immediate reveals that the desired

unique coupling exists with probability 1− ε when N = (NA/ps) ln(NA/ε), which gives

N = (eN2
A/α(NA − 1)) ln(NA/ε)

Furthermore, the above analysis is unchanged if N = NA. The rolls of NWs and MWs are

merely reversed. Instead of MWs acting as coupons, NWs act as coupons and MWs act as

trials. In this case M = (eN2
A/α(NA − 1)) ln(NA/ε), and in either case we have

MN ≈ (e/α)N2
A ln(NA/ε)

Even if no codeword errors occur, in which case α = 1, this will not outperform the

deterministic construction (for which MN ≤ 2wN2
A) unless 2w > e ln(NA/ε). Setting

w = 10 and ε = .01, requires that NA < 16.

133

Encoded NW Logic Decoder

In an encoded NW decoder, the distribution with which codewords are assigned is deter-

mined by how NWs are encoded (see Chapter 5). As explained in Section 5.1, (1,M)-hot

encodings ensure that each NW is controlled by exactly one MW (in the absence of a mis-

alignment error). When M = NA MWs are used, this is an ideal choice. Once again we

have an instance of the coupon collector problem with failures in which MWs correspond

to coupons and NWs correspond to trials. In the absence of misalignment errors, each trial

collects a coupon and pf = 0. Otherwise pf denotes the probability of a misalignment error

(see Section 5.3). In either case we have

N = NA/ps ln(NA/ε)

where ps = 1 − pf . When pf is relatively small (e.g. less than .25) this does out perform

the deterministic construction for reasonable values of NA, but the gains are modest. For

example, when NA = 128, ps = .9, and ε = .01, N = 10.5NA. This gives NM = 10.5N2
A,

whereas for the deterministic construction, when w = 10, MN < 20N2
A.

Now consider the case when N = NA. In contrast with the analysis of RCDs, this

case is not identical. For instance, it is no longer guaranteed that each MW is coupled to

exactly one NW. Also, since MWs now correspond to trials and NWs to coupons, trials

can no longer be viewed as independent. Even so, inclusion-exclusion can still be used

bound the number of trials, M , required to collect all coupons with probability ε. The key

observation is that the relevant probabilities (the probability that a particular coupon fails

to be collected, and the probability that a particular pair of coupons fail to be collected)

both approach that of an RCD as NA increases (here p = h/M and q = 1−h/M , assuming

(h, M)-hot codes are used).

A Hybrid Approach

For both RCDs and encoded NW decoders, setting N = NA or M = NA yields a decoder

area that is O(ln(NA/ε)N2
A). This offers, at best, a modest improvement over DeHon’s

proposed deterministic construction, for which MN = O(w2N2
A). Fortunately, it is possible

to obtain a better area bound by employing a hybrid approach in which N = M = βNA

134

for some relatively small value of β.

First, consider an encoded NW decoder in which (1,M)-hot codes are used. In the

absence of misalignment errors, each NW is controlled by exactly one MW. As above,

we can view MWs as coupons and NWs as trials, but now only require that C/β of the

C = M = βNA coupons be collected. To see the promise of this approach, let ti be the

number of trials required to collect the ith coupon after the (i − 1)th coupon has been

collected (here t1 = 1). When i−1 coupons have been collected, the probability that a trial

collects a new coupon is (C − i + 1)/C, so E[ti] = C/(C − i + 1).

The number of trials required to collect κC coupons is Tκ =
∑κC

i=1 ti, and thus expected

number of trials is

E[Tκ] =
κC∑
i=1

C/(C − i + 1) = C(1/C + . . . + C/(C − κC + 1)) = C(H(C)−H(C − κC))

where H(N) = 1 + 1/2 + . . . + 1/N . It is well-known that ln n ≤ H(n) ≤ lnn + 1 [61, p. 33]

and that H(n)−H(αn) approaches lnn− lnαn = − lnα as n increases. This reveals that

E[Tκ] ≈ −C ln(1 − κ). Thus for fixed κ < 1, only O(C) trials, on average, are required to

collect κC coupons.

In the case of an encoded NW logic decoder for which M = βNA, this bounds the

expected number of NWs required to collect (1/β)M = NA coupons. To bound the number

of NWs required with probability 1− ε, we use the following lemma.

Lemma 7.2.2 Consider the classic coupon collector problem in which one of C coupons is

collected independently at random during each of T trials. Each coupon is collected with

equal probability.

Let SC denote the number of distinct coupons collected after T = C trials. Then for

0 > κ > 1

P [SC < κC] ≤ (e−δ/(1− δ)1−δ)C(1−κ+κ2/2)

where δ = (1− κ/(1− κ + κ2/2)).

Proof Let xi be a 0-1 random variable that denotes whether a new coupon is collected

during the ith trial. Notice that p(xi = 1) ≥ (C − i + 1)/C, since by the ith trial at most

i − 1 coupons have already been collected. Furthermore, if fewer than κC coupons have

been collected by the ith trial, p(xi = 1) > 1− κ.

135

We wish to bound the probability that SC =
∑C

i=1 xi < κC. To do this, we instead

consider the sum of C independent 0-1 random variables, yi. Here p(yi = 1) = (C−i+1)/C

for i ≤ κC and p(yi = 1) = 1 − κ for i > κC. Let S′
C =

∑C
i=1 yi. By the logic of the

previous paragraph, P [SC < κC] ≤ P [S′
C < κC].

Since S′
C is the sum of independent random variables, P [S′

C < κC] can be bounded

using a Chernov bound (see Section 5.2.1):

Pr(S′
C ≤ (1− δ)E[S′

C]) ≤ (e−δ/(1− δ)1−δ)E[S′
C]

where δ = 1− κC/E[S′
C].

Here E[S′
C] =

∑C
i=1 E[yi] =

∑κC
i=1(C − i + 1)/C +

∑C
i=κC+1 1 − κ > C(1 − κ/2)κ +

C(1−κ)(1−κ) = C(1−κ+κ2/2). This gives δ = 1−κ/(1−κ+κ2/2), the desired result.

Using the above lemma, we can easily consider the case when M = N = (5/2)NA, in

which case κ = 2/5, 1− κ + κ2/2 = 17/25 and (1− κ/(1− κ + κ2/2)) = 7/17. This gives

P [SC < 1/2C] ≤ (e−7/17/(10/17)10/17)17C/25

which is less than 0.0131 when C = NA ≥ 64. As NA increases further, a larger value of κ

can be used. When κ = 1/2, we have 1− κ + κ2/2 = 5/8 and (1− κ/(1− κ + κ2/2)) = 1/5.

This gives

P [SC < 1/2C] ≤ (e−1/5/(4/5)4/5)5C/8

which is less than .01 when C ≥ 343.

Thus if we consider an error-free encoded NW decoder where M = N = βNA, and choose

β such that a set of at least NA MWs exists with probability 1− ε, then MN < (5/2)2N2
A

when NA ≥ 64, and MN < 22N2
A when NA ≥ 343. This outperforms DeHon’s deterministic

construction, for which MN > w2N2
A, if w > (2.5)2 = 6.25 in the first case and w > 4 in

the second case. Lemma 7.2.2 also yields the following asymptotic result.

Theorem 7.2.1 Consider an error-free encoded NW decoder with M MWs and N NWs

using (1,M)-hot encodings. For any ε > 0 and β > 1/(2−
√

2) there exists a threshold Nε,β,

such that if NA ≥ Nε,β and M = N = βNA, then there exists uniquely coupled sets of NA

MWs and NA NWs with probability at least 1− ε.

136

Proof In the encoded NW decoder, each NW is controlled by exactly one randomly

selected MW. As such, each NW can be thought of as collecting one of C = M = βNA

coupons independently at random and with equal probability. We wish to guarantee that

at least C/β distinct coupons are collected among the N = C independent trials, given

that each trial collects each coupon with probability 1/C.

Let SC denote the number of distinct coupons collected after C trials, and let κ = 1/β.

In the proof of Lemma 7.2.2, it is shown that

Pr(SC ≤ (1− δ)E[S′
C]) ≤ (e−δ/(1− δ)1−δ)E[S′

C]

where E[S′
C] = C(1 − κ + κ2/2) and δ = 1 − κC/E[S′

C]. This implies that for any fixed

δ > 0, Pr(SC ≤ (1 − δ)E[S′
C]) approaches 0 as C increases. Requiring that δ > 0 is

equivalent to requiring that 1 − κ/(1 − κ + κ2/2) > 0, or 1 > κ/(1 − κ + κ2/2). This

becomes κ2 − 4κ + 2 > 0, which holds when κ < 2−
√

2.

Note: The bounds on β given above apply to an encoded NW decoder that is error free.

If misalignment errors occur with probability pf , then for any particular value of NA, the

corresponding required value of β scales by a factor of at most 1/(1 − pf). To see why,

notice that in the proof of Lemma 7.2.2, E[xi] and E[yi] are simply scaled by a factor of

1/(1 − pf), as are E[SC] and E[S′
C]. This same scaling bound on β applies to RCDs, for

which pf ≈ 1− αe−1 when p = α/N .

7.3 Lower Bounding β

As above, consider a stochastically assembled NW decoder with M MWs and N NWs, in

which each NW is controlled by exactly one NW with probability 1 − pf . The previous

section demonstrated that setting M = N = βNA, where β > 1/((1− pf)(2−
√

2)), allows

for a logic decoder with NA outputs and area O(MN) = O(β2N2
A). This section provides an

information theoretic lower bound on β as NA increases. Part of the appeal of our approach

is that it can potentially be applied to other stochastically assembled structures as well.

To begin, let the configuration, C, of a decoder denote the state of its MN MW/NW

junctions (i.e. codewords c1 . . . cN). A configuration is successful if it contains sets of

137

NA NWs and NA MWs, N and M, that are uniquely coupled. When a NW decoder is

stochastically assembled, let 1 − ε be the probability that the resulting configuration is

successful.

The basic approach used to lower bound β is relatively straightforward. Before a NW

decoder is assembled, there is a probability distribution associated with C. Depending on the

parameters of the assembly process, there is a certain amount of entropy (i.e. uncertainty),

denoted h(C), associated with C. For RCDs and encoded NW decoders h(C) is easy to

compute. Given β, it is possible to upper bound the entropy of C given that C is successful.

This bound implies a lower bound on β. Specifically, β must be large enough so any upper

bound on the entropy of all successful configurations is at least (1− ε)h(C).

More formally, imagine the repeated assembly of a stochastically assembled NW decoder

with M MWs and N NWs. Here h(C) represents the minimum number of bits, on average,

required to specify C after each assembly process, among all possible configurations. In

other words, suppose that after each decoder is assembled its configuration, C, is recorded

in binary using a predetermined encoding scheme. For any such scheme, the average number

of bits required per decoder is at most h(C). Also, the bound is asymptotically achievable

[65].

If C is successful with probability 1 − ε, Shannon’s source coding theorem implies that

as ε shrinks and MN = βN2
A increases, the entropy of C, when restricted to only successful

configurations, approaches (1 − ε)h(C) [65]. This in turn implies that for arbitrarily large

values of NA, the average number of bits required by an encoding scheme that describes

only successful configurations is at least (1− ε)h(C).

In a successful decoder, let S denote the set of the N2
A junctions of the uniquely coupled

sets M and N . Also let C − S denote the set of the remaining MN − N2
A junctions. To

obtain a lower bound on β, we observe that the average number of bits required to specify

a successful configuration is at most the average number of bits required to specify S,

denoted h(S), plus the average number of bits required to specify C − S given S, denoted

h(C − S|S). As explained above, the average number of bits required to specify a successful

configuration is at least (1− ε)h(C). Thus

(1− ε)h(C) ≤ h(S) + h(C − S|S) (7.1)

138

which we now apply to both RCDs and encoded NW decoders. For simplicity we consider

the bound (which holds for all ε > 0) as ε → 0. This gives:

h(C) ≤ h(S) + h(C − S|S) (7.2)

7.3.1 A Lower Bound for RCDs

To lower bound β for RCDs we can assume decoders are error-free. Here ci
j = 1 with

probability p and ci
j = 0 with probability 1− p. The ci

j are independent random variables,

so h(C) = MNh(p), where h(p) = −p log p− (1−p) log(1−p) is the binary entropy function

[65] (log is base 2).

h(S) is upper bounded below. h(C − S|S) ≤ (MN −N2
A)h(p∗), where p∗ is the proba-

bility that a given junction in C − S is controlling. From inequality 7.2, this gives

MNh(p) ≤ h(S) + (MN −N2
A)h(p∗) (7.3)

which implies a bound on β in terms of ε and NA, since h(S) and p∗ are both functions of

β, NA and ε.

To compute p∗, note that in C − S exactly NA controlling junctions are removed from

C. Thus p∗ = (MNp − NA)/(MN − N2
A). Since MN = β2N2

A this gives p∗ = (β2N2
Ap −

NA)/(N2
A(β2 − 1)) = (β2p− 1/NA)/(β2 − 1). Thus for fixed p, p∗ approaches pβ2/(β2 − 1)

as NA increases. Also p ≤ p∗ ≤ pβ2/(β2 − 1) when p ≥ 1/NA.

The average number of bits required to specify S, h(S), is at most the number of bits

required to specify N and M plus the number required to give an ordering of one of the sets

(this specifies which MW is coupled to each NW). This requires log
(

M
NA

)
+log

(
N
NA

)
+log NA!

bits. Inequality 7.3 becomes

MNh(p) ≤ log
(

M

NA

)
+ log

(
N

NA

)
+ log NA! + (MN −N2

A)h(p∗)

Stirling’s approximation tells us log NA! rapidly approaches NA log NA − NA log e +

1
2 log(2πNA). This implies that log

(
βNA
NA

)
= log(βNA)! − log(βNA − NA)! − log NA! <

βNAh(1/β). From this we get MNh(p)−MNh(p∗)+N2
Ah(p∗) ≤ 2βNAh(1/β)+NA log NA−

NA log e + 1
2 log(2πNA). Since MN = β2N2

A we have

NA

(
β2h(p)− (β2 − 1)h(p∗)

)
≤ 2βh(1/β) + γ(NA) (7.4)

139

where γ(NA) = log NA − log e + 1
2NA

log(2πNA). This implies a lower bound β given NA

and p. To obtain an explicit bound, we show the implied bound is weakest when p is small.

Observe that as NA increases, p → 0 if β remains constant (i.e. it is not possible for

MN = O(N2
A) unless p → 0). To see why, notice that for fixed β the right-hand side of

the above inequality increases logarithmically in NA. The left-hand side, however, increases

linearly in NA unless the coefficient β2h(p)− (β2 − 1)h(p∗) goes to zero. This implies that

as NA increases, β2h(p)− (β2 − 1)h(p∗) must approach 0 for the inequality to hold. Since

p∗ → p as NA increases, h(p∗) → h(p) and β2h(p) − (β2 − 1)h(p∗) → h(p). Thus as NA

increases h(p), and hence p, must go to 0.

Having established that p goes to zero as NA increases, we now consider two cases:

p ≥ 1/NA and p ≤ 1/NA. The second case is considered below. In the first case p ≤ p∗ ≤

pβ2/(β2− 1) and as we now show, the expression C(p) = β2h(p)− (β2− 1)h(p∗) is smallest

when p = 1/NA.

When p = 1/NA we have p∗ = p and C(p) = h(1/NA). Since p∗ = (β2p−1/NA)/(β2−1),

dp∗

dp = β2/(β2 − 1). Now consider the derivative of C(p). C ′(p) = β2h′(p) − dp∗

dp (β2 −

1)h′(p∗) = β2h′(p)−β2h′(p∗) = β2(h′(p)−h′(p∗)). Here h(p) = −p log p− (1− p) log(1− p)

and h′(p) = log((1 − p)/p), so h′(p) > h′(p∗) when p < p∗ < 1/2. Thus for p > 1/NA,

C ′(p) > 0 and when p ≥ 1/NA, C(p) is smallest when p = 1/NA. Inequality 7.4 now

becomes

NAh(1/NA) ≤ 2βh(1/β) + log NA − log e + (1/2NA) log(2πNA)

Since log(1− 1/NA) ≤ −1/NA, we have h(1/NA) ≥ 1/NA log NA + 1/NA − 1/N2
A and thus

1 + log e ≤ 2βh(1/β)

which reveals that β > 1.25 if p ≥ 1/NA and NA increases.

Finally, we return to the case when p ≤ 1/NA = β/N . The probability that a NW isn’t

controlled by any MW is (1− β/N)N , which rapidly approaches e−β as NA, and hence N ,

increases. Since on average e−β NWs are not controlled by any MW, (1− e−β)N ≥ NA for

a unique coupling to exist with high probability. Since N = βNA we have (1− e−β)β ≥ 1,

which implies that β > 1.349. For an RCD with M = N = βNA, we have demonstrated

that β > 1.25 as ε → 0.

140

7.3.2 A Lower Bound for Encoded NW Decoders

The above approach can also be adapted for encoded NW decoders with (h, M)-hot codes.

Here, in the absence of misalignment errors, C has entropy N log
(
M
h

)
, S once again has

entropy at most log
(

M
NA

)
+ log

(
N
NA

)
+ log NA! and C − S, given S, has entropy at most

(N −NA) log
(
M
h

)
+ NA log

(
M

h−1

)
. Inequality 7.2 then yields

NA log
(

M

h

)
≤ log

(
M

NA

)
+ log

(
N

NA

)
+ log NA! + NA log

(
M

h− 1

)
or

log
(

M

h

)
− log

(
M

h− 1

)
≤ 2βh(1/β) + log NA − log e +

1
2NA

log(2πNA)

and since log
(
M
h

)
− log

(
M

h−1

)
= log

(
M
h

)
/
(

M
h−1

)
= log(M − h + 1)/h, we have

log(βNA − h + 1)/h− log NA + log e ≤ 2βh(1/β) +
1

2NA
log(2πNA)

Finally, since log(βNA − h + 1)/h − log NA = log(β/h − 1/NA + 1/hNA), as NA increases

we have

log(β/h) + log e ≤ 2βh(1/β) (7.5)

If h = 1, this becomes log e ≤ 2βh(1/β) − log β, which implies that β > 1.24. When

h = 2 or more, log(β/h) changes sign and the bound becomes quite weak. Still, as NA

increases, we would not expect h ≥ 2 to outperform h = 1 when M = N . It is also possible

to consider a mix of (1,M)-hot and (2,M)-hot encoded NWs, but it is unclear if this yields

a smaller value of β.

7.4 Stochastic Crossbar Interconnect

A stochastically assembled logic decoder requires sets of NA MWs and NA NWs such that

the MWs are uniquely coupled to the NWs. This is exactly the same condition required

for stochastically assembled inversion or buffering layers within NW crossbar logic (see

Section 2.2.3). The only difference is that instead of considering MWs coupled to NWs, we

now consider input NWs coupled to a second set of output NWs.

To construct inversion and buffering layers, DeHon has suggested the use of (1,M)-hot

encodings [4]. The analysis of the previous two sections shows that the overhead associated

141

with stochastic assembly of the inversion or buffering layer is a small constant factor, even

when NW misalignment errors occur with probability pf . Specifically, if N input NWs are

coupled to N output NWs, and N = βNA, β can be close to (1− pf)−1/(2−
√

2) ≈ 1.71, if

not smaller. Here pf denotes the probability that an output NW is misaligned.

142

Chapter 8

Nanowire Address Discovery

Previous chapters have bounded the area required to implement a stochastically assembled

NW decoder along with the mesoscale address translation circuity (ATC) required to control

it. In order to provide a consistent external interface to the NW decoder, the ATC’s

programmable storage must contain information about which MWs control which NWs

(see Section 3.3.2). Recall from Section 3.3, however, that an address discovery procedure

is require before the ATC can be properly configured. In other words, testing is required

after a NW decoder is stochastically assembled in order to determine which NW codewords

are present.

This chapter investigates two general approaches to address discovery. The first ap-

proach, discussed in Section 8.1, relies on read/write operations to test whether a particu-

lar codeword is present. The second approach, which is the focus of the remainder of the

chapter, relies only on measuring whether the current flowing across all N NWs within a

contact group is above some preselected threshold. Although the read/write approach to

testing is simple and efficient, its reliance of nanoscale storage is problematic. Tests us-

ing read/write operations are relatively time consuming and possibly unreliable (since the

nanoscale storage may itself require testing). More importantly, read/write operations are

not even possible if the NWs being tested are not connected to nanoscale storage.

To avoid a reliance on nanoscale storage, most of this chapter focuses on conductance-

based tests. Here a voltage is applied across the N NWs within a single contact group, a

subset of MWs is activated, then current is measurement to determine if any NW remains

143

conducting [55, 56] (i.e. if the N NWs collectively carry a current that is above some

threshold). Such a test does not reveal which NW is on, nor does it reveal if multiple NWs

are on. Nonetheless, as explained in Section 8.2, it is sufficiently powerful to determine which

subsets of MWs address individual NWs. The main challenge surrounding this approach

is to bound the number of current measurements it requires. Section 8.3 shows that when

encoded NWs are used, it is possible to discover each NW’s codeword with optimal efficiency.

Section 8.4 then considers the more challenging problem of discovering each NW’s codeword

when arbitrary codewords may be present. We demonstrate through asymptotic analysis,

as well as experimental simulation, that efficient testing remains possible. We also connect

this work to research being done on the learning of monotone DNFs.

8.1 Address Discovery via Read/Write Operations

In this section, we explain how NW codewords can be discovered via read/write operations.

We demonstrate that if read/write-based testing is deemed feasible, the resulting address

discovery algorithm is simple and efficient. To discover the N codewords within a particular

contact group via read/write operations, two contact groups must be addressed, one in each

dimension of the crossbar-based memory. In one of the contact groups all N NWs can be

addressed whenever a read or write operations is performed (i.e. none of the controlling

MWs are activated). In the other contact group progressively larger subsets of MWs are

activated, allowing individual NW codewords to be identified. This is accomplished as

follows.

When testing begins, a “1” can be written to all N2 NW/NW junctions. This sets all

junctions to a conductive state, and ensures that when any of the N NWs being tested is

addressed, current flows from one dimension of the crossbar to the other (i.e. a 1 is read).

Now suppose codeword ci has been discovered (using the procedure described below). That

codeword can be addressed and a “0” can be written to the N NW/NW junctions controlled

by each NW with that codeword. This disconnects the NW from the other dimension of the

crossbar, which in turn ensures that subsequent testing will not reflect whether or not the

codeword in question is addressed. In other words, the discovered codeword is effectively

144

“removed” from future testing.

We now describe the discovery of individual codewords. Let activation pattern a be

an M -bit binary vector denoting the set of activated MWs. At the start of each run of

the testing algorithm, a is all 0’s. For each of the M MWs, in some fixed order, MW mi

is turned on (i.e ai is set to 1), and a read operation is performed to test if at least one

of the “unremoved” NWs is addressed by a. If no NW is addressed, ai is set back to 0.

Otherwise, ai remains activated as subsequent MWs are turned on. In other words, we have

the following procedure.

DiscoverCodewordV iaReadWriteTesting():

a = 0

for i = 1 to M do

ai = 1

if read(a) == 0 then ai = 0

write(a) = 0

At the end of a run of the above procedure, once all M MWs have been turned on and

tested, a addresses at least one NW and turning on any additional MWs will result in no

NWs being addressed. Such an activation pattern is referred to as maximal. Any maximal

activation pattern corresponds to the complement of one of the NW codewords which are

present. Since the codeword ci = a is now discovered, it can be removed via the write

operation described above.

Each run of our procedure requires M read tests and results in a new codeword being

discovered. Thus all M bits of N codewords are discovered after MN read operations,

which is optimal. It is noteworthy that the above procedure even discovers codewords that

are not individually addressable. To see why, notice that if codeword ci implies codeword

cj , ci will be discovered once cj is removed.

8.1.1 Coping with Errors

In the read/write-based test procedure described above, we can consider two classes of

errors. First, the NW/NW junctions being written to and read from may be defective.

Second, the NW codewords may contain errors (see Section 3.4).

145

Storage Errors

Storage-related errors are relatively easy to protect against. First consider the case when

some NW/NW junctions are permanently stuck at 0. Since each read operation is actually

reading from N junctions in parallel, they still function properly (i.e. measure a sufficiently

large current if at least one NW is being addressed) if some of the junctions are stuck at 0.

Now consider the case when some junctions are permanently stuck at 1. These errors

do effect the ability of write operations to “remove” NWs. Fortunately, such errors can be

detected by initially writing a 0 to all N2 junctions. If current still flows between the two

OCs after the 0’s have been written, some junction is stuck at 1. If such an error is present,

a different patch of N2 junctions can be used.

Finally, in order to protect against transient, or one-time errors, each write operation

can be followed by a read operation to verify it succeeded. Also, all read operations can be

performed multiple times for added redundancy.

Codeword Errors

If a MW/NW junction is in error, the MW provides only partial control over that NW. As

a result, some MW activation patterns can leave the NW in a partially conductive state

(see Section 3.4). Recall that in read/write-based testing, MWs are turned on one at a

time, while read operations are used to verify that some NW remains addressed (if no NW

is addressed, the MW is turned back off). When certain MWs provide only partial control

over certain NWs, it may be the case that a particular activation pattern does not address

any NWs, but does leave multiple NWs in a partially conductive state. In this case, a read

operation that applies that activation pattern could incorrectly return a 1 even though no

NW is addressed.

If such an error occurs, the discovery algorithm will incorrectly proceed as if some NW

were being addressed. Once all MWs have been turned on and tested, the activation pattern,

a, that is returned will not correspond to the complement of any codeword. Fortunately,

such an error can be detected by attempting to write, then read, data to the NW (or NWs)

that a is supposed to address. If a does not address any NW, and instead leaves multiple

NWs in a partially conductive state, the write operation will not succeed. If, on the other

146

hand, the write operation does succeed, a does in fact correspond to the complement of a

codeword.

In the event that a does not correspond to a codeword, two possible workarounds can be

used during subsequent run of the discovery algorithm. First, the algorithm can continue

by activating MWs in different order. As discussed in Section 8.4, the order in which MWs

are activated determines the order in which codewords are discovered. By activating MWs

in a different order, additional codewords can be discovered. Alternatively, the algorithm

can proceed by reactivating MWs in the same order, only now write operations can be

performed after each read operation to verify that some NW is, in fact, being addressed.

The only complication with this approach is that after write operations are performed and

verified, it may be necessary to re-remove some of the previously removed codewords via

additional write operations (since writing a 1 to the activation pattern being tested may

have unremoved them). This can potentially increase the discovery algorithm’s runtime by

a factor of N .

8.2 Exhaustive Search

In the absence of read/write operations, current measurements can be used to determine

which codewords are present. The simplest such address discovery algorithm is exhaustive

search. For each contact group, all 2M MW activation patterns can be applied, and in each

case, we can test if the total current flowing across all N NWs is above some preselected

threshold (see Sections 3.1.1 and 3.4.2 for a discussion of this threshold). In the absence of

decoder errors, the threshold can be chosen such that for any activation pattern, a:

1. If the current flowing is below the threshold, no NW is addressed.

2. If the current flowing is above the threshold, at least one NW is addressed.

When all 2M activation patterns are applied and tested, the binary outputs of all 2M

tests can be reviewed offline to determine which addressable codewords are present (un-

like for read/write-based tests, a codeword that is implied by another codeword, will not

be discovered). To detect the addressable codewords, we need only identify the maximal

147

activation patterns. As defined above in Section 8.1, activation pattern a is maximal if it

addresses at least one NW and if the activation of any additional NWs turns off all NWs.

Activation pattern a is maximal if and only if ci = a is individually addressable.

The runtime of exhaustive search is exponential in M , but as demonstrated in previous

chapters, M may be relatively small. In our analysis of the “Take What You Get” addressing

strategy for RCDs, for example, we demonstrated that M = 13 suffices (see Section 4.2.2).

Smaller values of M are possible if one is willing to tolerate a smaller fraction of individually

addressable NWs. Smaller values of M are also possible for encoded NW decoders (see

Section 5.2.1).

8.2.1 Parallel Exhaustive Search

When M is small, performing 2M current measurements is acceptable. Furthermore, this

exponential runtime can be amortized across contact groups if the ATC is designed to allow

for current measurements to be performed across all g contact groups simultaneously. The

following argument illustrates why performing this type of parallel exhaustive search, if

technologically feasible, is superior to a more efficient serial search algorithm when M is

small.

Consider testing all contact groups in parallel in a randomized-contact decoder (RCD)

when M = 13, N = 8, g = 175 (as in the example in Section 4.2.2). Using a parallel

exhaustive search, the number of tests per contact group is 2M/g = 8192/175 < 47. We

show that more tests are required by any discovery algorithm that performs binary tests on

contact groups one at a time.

Any address discovery procedure must produce the codeword for each individually ad-

dressable NW in a contact group. As shown in Theorem 4.2.1 of Chapter 4, the expected

number of addressable NWs in a contact group is at least N(1 − (N − 1)(1 − pq)M) =

1 − 7(3/4)13 > 6.6 (here p = q = 1/2). This demonstrates that at least six NWs are ad-

dressable at least 1/2 the time. (Given that N = 8, if less than six NWs are addressable half

the time, the average number of addressable NWs is at most (5 + 8)/2 = 6.5). There are

2MN assignments of M -bit codewords to the N NWs. We refer to each of these assignments

as a “configuration”. Since all configurations are equally likely, at least (1/2)2MN of these

148

have six individually addressable NWs. The codewords of these NWs must be produced by

any address discovery algorithm.

Now let σ be the maximum number of configurations that contain any fixed set of

six individually addressable codewords. When a discovery algorithm produces six or more

codewords as output, one of at most σ configurations is present. σ ≤ 6!
(
8
2

)
22M . Here 6!

(
8
2

)
bounds the number of ways a set of six codewords can be assigned to N = 8 NWs, and 22M

bounds the number of codewords that can be appear on the remaining 2 NWs.

It follows that any discovery algorithm must be able to identify at least (1/2)2MN/σ

configurations. Let T be the number of tests required to identify a set of codewords. Then,

since each test produces a binary outcome, T is at least log2[(1/2)2MN/σ] = MN − 1 −

2M − log2(6! · 28). When M = 13 and N = 8, T ≥ 63. Thus, an algorithm that examines

one contact group at a time will need to perform at least 63 tests per group. This is more

than required by a parallel exhaustive search.

8.2.2 Coping With Codeword Errors

As explained in Section 8.1.1, codeword errors can cause certain activation patterns that do

not address any NW to leave multiple NWs in a partially conductive state. Even though no

individual NW is addressed, the combined current flowing across the partially conducting

NWs may be above the designated threshold. As with read/write based testing, this can

cause certain activation patterns to be incorrectly designated as maximal.

One approach to solving this problem is to use a slightly more robust current measure-

ment procedure. Instead of a single threshold, current can be measured with regard to

two thresholds, t1 and t2. As before, each current measurement test returns “false” if the

current is below t1, but now “true” is returned only if the current is above t2 (otherwise

an error is returned). In this case, an output of true ensures that some NW is carrying a

current of at least t2/N . If t2 is sufficiently large, this in turn ensures that some NW is

addressed.

Let the union of two activation patterns be their bitwise or. Using this dual-threshold

test, if two activation patterns return true, but their union returns false, they must address

different NWs. Two such activation patterns are said to be “disjoint”.

149

In order to discover N NW addresses after all 2M activation patterns are tested, it suffices

to identify N patterns that are all disjoint. One method for identifying these patterns from

the testing data is to construct a graph, G, with a vertex associated with each activation

pattern that returned true. An edge is placed between any two vertices that are disjoint.

A clique of N vertices in G corresponds to a set of N activation patterns that all address

disjoint sets of NWs.

The disadvantage of this approach is that it requires slightly more complex testing cir-

cuitry (since two thresholds are used instead of one). More importantly, the on/off ratio of

addressed to nonaddressed NWs must be sufficiently large not only for the decoder to func-

tion properly, but for the dual-threshold testing procedure to succeed (since t2 is specifically

chosen to be N times larger than necessary.) An alternative approach to tolerating errors

based on the minimum distance between codewords is described in section Section 8.4.

8.3 Encoded NW decoders

In an encoded NW decoder, as discussed in Chapter 5, codewords are determined by how

NWs have been encoded during off-chip growth. This allows NW codewords to be restricted

such that all codewords are drawn from a code in which no codeword implies any other.

One such code is a binary reflected code (BRC), in which all codewords are of the form xx

where x ∈ {0, 1}k and M = 2k (see Section 5.1.3). Using such a code allows codewords to

be discovered via a binary search algorithm within each contact group.

To begin, consider testing for a particular codeword, ci = xx within a particular

contact group. By applying the activation pattern a = ci, only NWs with that code-

word will be addressed. Now let x(b) denote the first b bits of x and let w(x, b) =

x(b)1 . . . 1x(b)1 . . . 1 where the two groups of 1’s are of length k − b, and thus w(x, b)

is of length 2k. Notice that the activation pattern a = w(x, b) addresses all codewords

of the form x(b) ∗ . . . ∗ x(b) ∗ . . . ∗, where ∗ indicates either a 0 or 1. As noted in [12],

this same approach, known as “wildcarding”, can be used to write to multiple locations in

memory simultaneously.

150

8.3.1 Binary Search

Using wildcarding, we can test whether any codewords with a particular prefix exist. This in

turn allows all N codewords to be discovered in M/2 stages. At stage one, we test whether

any codewords that begin with a “0” and a “1” are present. If both prefixes are present,

stage two continues the binary search within both sets. In other words, stage two checks

for codewords that being with “00”, “01”, “10” and “11”. Once it has been determined

that no codewords with a particular prefix exist, subsequent stages no long include tests

with that prefix. Since at most N codewords are present, no more than 2N prefixes will be

tested at each of stage of this algorithm. Since the algorithm will discover all bits of a BRC

codeword by the M/2th stage, at most MN total tests are required. Here M , the number

of MWs, is equal to 2 log2 C, where C is the total number of possible BRC codewords.

8.3.2 Searching Across Contact Groups

The above search procedure can be employed to discovery the N NWs within each of the

g contact groups, one at a time. In order to discover N ′ = gN NW codewords across all

g contact groups, this approach requires 2N ′ log2 C current measurements. Impressively,

even fewer measurements are needed if a binary search is conducted across contact groups.

Suppose the g contact groups are partitioned into groups of g′, and each of these groups

is searched separately. For each codeword, ci, activation pattern a = ci can be applied all g′

contact groups simultaneously. A binary search can then be used to determine which contact

group, or groups, the codeword appears in. We note that this binary search procedure does

not assume multiple current measurements can be taken in parallel (as in Section 8.2.1).

Instead, it merely assumes that multiple contact groups can be activated simultaneously,

and their collective current flow measured.

Using the above procedure, each NW’s codeword is discovered using at most 2 log2 g′

current measurements (by the same reasoning employed in the previous section). All g′N

NW codewords are discovered using at most 2g′N log2 g′ current measurement operations,

plus C ′ additional measurement operations for the codewords that are tested, but not

present on any of the g′N NWs. For maximum efficiency, g′ should be selected so that C ′

is small. This is accomplished if g′ = C/N , in which case each codeword is expected to

151

occur one time. Furthermore, since C ′ < C = g′N , we can immediately assert that at most

2g′N log2 C/N + g′N = 2g′N log2 2C/N current measurements are required.

When summed over all g/g′ groups of g′ contact groups, the above algorithm uses at

most 2N ′ log 2C/N tests to discovery all N ′ = gN NW codewords. Also note that the

algorithm does not rely on codewords being drawn from a BRC, since no wildcarding is

employed. The algorithm instead relies on all codewords being individually addressable,

thus (h, M)-hot codes can also be used (see Section 5.1.2). In the next section, we show

that using 2N ′ log 2C/N tests is within a factor of optimal.

8.3.3 A Lower Bound

We wish to lower bound the number of binary test operations required to identify the

codewords on N NWs within a contact group. Let αN be the average number of distinct

codewords per ohmic region. It follows that the NW codewords can be chosen in at least(
C

αN

)
different ways in each contact group, and at least

(
C

αN

)g
ways across all contact groups.

This means that at least g log
(

C
αN

)
binary tests are required to distinguish between these

possibilities. Since(
C

αN

)
=

C!
(C − αN)!(αN)!

=
C

αN
· C − 1
αN − 1

· . . . · C − αN + 1
1

≥
(

C

αN

)αN

g log
(

C
αN

)
≥ gαN log(C/αN). Since it does not make sense to design the decoder such that

α is very small, this lower bound is very close to the number of tests used by our algorithm.

8.3.4 Coping With Misalignment Errors

The discovery algorithm described above relies on the assumption that all NW codewords

are drawn from a set of C individually addressable codewords. This ensures that each

activation pattern of the form a = ci addresses only NWs with codeword ci. This is a rea-

sonable assumption, since encoded NWs can given binary reflected or (h, M)-hot codewords

(see Section 5.1), but as explained in Section 5.3, axially encoded NWs are susceptible to

misalignment errors. Such errors may cause certain NWs to be only partially conducting

when certain activation patterns are applied.

Fortunately, even when misalignment errors can occur, it is still possible to guarantee

that each axially encoded NW is addressed by at most one activation pattern of the form

152

a = ci (see Section 5.3). Furthermore, if a misalignment error does occur, the misaligned

NW will be made partially conducting by at most one such activation pattern, while all

other activation patterns turn off that NW. As such, the presence of misaligned NWs does

not prevent the discovery algorithms described in this section from discovering the codeword

of each properly aligned NWs.

The only remaining concern, which was already highlighted in Section 8.2.2, is that

multiple misaligned NWs within a single OC may be made partially conducting by the

same activation pattern. These NWs may collectively carry the same amount of current as

a single, fully conducting NW. To protect against false positives, it makes sense to explicitly

test each alleged codeword (perhaps using a single a write operation) after all codewords

have been discovered. The dual-threshold test proposed in Section 8.2.2 could also be

employed.

8.4 Arbitrary Codes

When M is large, enumerating over all codewords becomes prohibitively slow. Section 8.3.1

provided a more efficient approach to determining which codewords are within a given OC,

but this approach does not work when arbitrary codewords may be present, as in an RCD.

In this section we consider a simple alternative, which is similar to the read/write-based

algorithm presented in Section 8.1, and bound the number of current measurements it

requires. A less efficient version of this algorithm was introduced in [55]. As explained in

[56], however, the accompanying analysis was based on faulty assumptions.

As in Section 8.1, the objective of each run of the discovery procedure is to generate

a maximal activation pattern, a. Each run of the procedure, sketched below, begins by

selecting a random permutation of the MWs, π. MWs are then activated one at a time, in

the order specified by π, until no current is produced (i.e. all NWs are turned off). When

current is turned off, the last MW to be turned on is deactivated, and the process continues.

In other words, we have the following codeword discovery procedure.

153

procedure DiscoverCodewords()

a = 0

π = RandomPermutation(1, 2, . . . ,M)

for each i in π do

ai = 1

if test(a) == 0 then ai = 0

After each execution of the DiscoverCodewords() procedure, above, a maximal activa-

tion pattern is identified (assuming no codeword errors are present), and its complement

yields the discovered codeword (see Section 8.1). The procedure is to be executed repeat-

edly until all (or almost most) individually addressable codewords have been discovered.

For ease of simulation, it is convenient to note that the discovered codeword is the code-

word that comes first when all codewords are sorted lexicographically according to π. Also,

as an optimization, we note that it is not actually necessary to activate subsets of MWs

when they do not turn off all of the codewords that have already been discovered. In this

case, the outcome of the test would already be known (a current will be measured). This

observation was also made in [66], which evaluates a similar codeword discovery algorithm

through simulation.

Each execution of DiscoverCodewords() requires M tests. After each test some code-

word is discovered. The total time required for codeword discovery thus depends on the

relative likelihood of discovering each codeword. If all codewords are equally likely to

be discovered, the classic coupon collector problem (see Chapter 6) shows that close to

Na log(Na/ε) runs are required to discover all Na individually addressable codewords with

probability 1 − ε. Unfortunately, as explained below, all codewords are not guaranteed to

be equally likely to be discovered.

This is the faulty assumption made in [55]. In fact, experiments indicate that for small

values or medium-sized values of M , some codewords will often be much less likely to be

discovered than others. For example, when M is 30, all NWs in a contact group of N = 8

NWs are addressable with very high probability. If all NWs were equally likely to be

discovered, N log(N/.01) = 69 runs of DiscoverCodewords() are required with probability

.01. Our simulations reported in Section 8.4.2 show this value to be approximately 270.

154

When M is 100, however, the value shrinks to 72.

The reason for this discrepancy is that, when M is small, some NWs that are addressable

are much less likely to be discovered than others. For example, when M = 30, more than

1/10 of the time there was at least one NW that had only a 1/70 chance being discovered on

each run. For intuition as to why this occurs, consider the following four codewords: c1 =

111100000000, c2 = 000011110000, c3 = 000000001111, c4 = 011101110111. By symmetry,

c1, c2 and c3 are equally likely to be discovered, but c4 can only be discovered if at least

two of MW1, MW5 and MW9 are activated before any of the other MWs. This observation

reveals that c4 is discovered is with probability 3/12 ∗ 2/12 ∗ 1/4 = 1/96, where as all other

codewords are discovered with probability (1− 1/96)/3 = 95/288. When M is small, these

sorts of extreme examples are much more likely to occur.

8.4.1 Asymptotic analysis

As suggested in the previous section, and demonstrated in [56], the number of runs of the

procedure DiscoverCodewords() required to discover N individually addressable codewords

can be bounded probabilistically by establishing a lower bound on the minimum probability

with which any particular codeword is discovered. Specifically, consider a NW decoder with

N individually addressable codewords. If each codeword is discovered by a particular run

of our discovery algorithm with probability at least pmin, then the following lemma bounds

the expected number of runs required to discover all codewords.

Lemma 8.4.1 Consider a coupon collector problem in which coupons are not collected with

equal probability, but each trial still collects one of N coupons independently at random. Let

T be the number of trials before all N coupons get collected. If, on each trial, each coupon

is collected with probability at least pmin, the expected number of trials required to collect all

coupons is at most

E[T] ≤ 1 +
1

pmin
H(N − 1)

where H(N − 1) = 1 + 1
2 + ... 1

N−1 .

Proof The average time to collect N coupons is E[T] =
∑N

i=1 E[xi], where xi is the

number of trials needed to collect the ith new coupon once i − 1 coupons have been

155

collected. Let p1, p2, . . . , pN denote the probabilities with which coupons are collected

and let j1, j2, . . . , jN be the order in which coupons end up being collected.

Because the first new coupon is always collected on the first trial, E[x1] = 1. For i ≥ 2

the probability distribution for xi is geometric with probability 1−(pj1 +pj2 + . . .+pji−1).

Thus, E[xi] = 1/(1− (pj1 + pj2 + . . . + pji−1)).

It follows that E[T] is maximized by maximizing (pj1 + pj2 + . . . + pjN−1). Since

pN ≥ pmin, E[xN] is largest when pN = pmin. Similarly, the remaining terms in the sum for

E[T] are maximized by setting pj = pmin for 2 ≤ j ≤ N and setting p1 = 1− (N −1)pmin.

This yields the desired result.

Theorem 8.4.1, given below, was proven in [56] to apply the above lemma to RCDs.

To make sense of this theorem, it should be explicitly understood that when a randomized

discovery procedure is applied to a stochastically assembled decoder, there are really two

distinct sets of random events under consideration. First, within each contact group, N

codewords are randomly assigned to N NWs. Each possible resulting decoder configuration,

C, has a probability associated with it. Second, with the decoder’s configuration held fixed,

the procedure DiscoverCodewords() is repeatedly applied. During each run, there is a

probability, pi, associated with each of the N codewords being discovered.

Our goal is to bound the probability that our randomized algorithm discovers all code-

words efficiently. To do this, we let Cpmin , be the set of decoder configurations (within a

single contact group) such that for each C ∈ Cpmin , pi ≥ pmin for all N codewords. We

then let Q(pmin) denote the probability that a decoder’s stochastic assembly process yields

a configuration in Cpmin . In the case of RCDs, recall from Chapter 4 that each NW/MW

junction becomes controlling with probability p, noncontrolling with probability q and in

error with probability r = 1 − p + q (the following theorem assumes r = 0). If pmin is

close to 1/N , and Q(pmin) is close to 1, then Lemma 8.4.1 implies that with high prob-

ability, O(N log N) runs of DiscoverCodewords() are needed to discover the individually

addressable NWs within almost all contact groups (since H(N) ≤ lnN + 1).

The following theorem, proven in [56], bounds Q(pmin) in terms of pmin, M , N , p and

q.

156

Theorem 8.4.1 Consider RCD configurations consisting of N codewords of length M in

which 0s (1s) occur independently with probability q (p). Let Q(pmin) be the probability

that all N codewords are discovered by DiscoverCodewords() with probability at least pmin.

Then pmin satisfies

pmin ≤
1
2
(4N)−

1
γ
(ln q−k1/M)

e
−

„
(ln 4N)2

γ2M

«“
1

q−k1/M
−1

”

when γ = (Mq−k1)/(Mq2+k2) > 1 and k1 and k2 are chosen so k1 ≥
√

2Mq ln(2N/(1−Q(pmin))),

and k2 ≥
√

2M(1− q2) ln(N2/(1−Q(pmin))).

Unfortunately, the above bound is rather weak numerically. Choosing k1 = 10 and

k2 = 12 when N = 8 yields Q(u) = 0.93 when u = .005. That is, for 93% of RCDs each

codeword is discovered with probability of at least 1/2 of one percent. In practice a much

higher value of pmin is achieved, as the simulations in the following demonstrate.

Connection to PAC Learning

In this section we have bounded the number of MWs, M , required so that, with high

probability, each NW codeword in an RCD is discoverable with probability at least u after M

current measurements are taken. This is similar to the well-known “probably approximately

correct” (PAC) learning framework, as applied to learning of random monotone DNFs [67].

In PAC learning of random monotone DNFs, the goal is to give an efficient algorithm (in

terms of the number of required queries) capable of identifying, with high probability, most

randomly generated t-clause DNFs. As described in Section 3.4.1, our model of binary NW

codewords with errors can also be described in terms of N -clause monotone DNFs. Here

activating a subset of the MWs, and then measuring whether at least one NW conducts, is

equivalent to querying the DNF.

The results of [67] can potentially be applied to error-free NW decoders with a sufficiently

large number of NWs and MWs. Unfortunately [67], like most work on PAC learning, does

not deal with the possibility that certain inputs are “in error”, as defined in Section 3.4.1.

In our model, codeword errors effectively cause the N -clause monotone DNF that represents

a particular NW decoder to behave like a monotone function that is merely close to some

N -clause monotone DNF. As a result, queries near the boundary of the would-be N -clause

157

monotone DNF are unreliable, in that they no longer correspond to the value of an N -clause

DNF (here the term “boundary” refers to those inputs at which the DNF switches from 0

to 1). This model of learning in the presence of unreliable boundary queries is presented

and analyzed by Blum et al in [68] with regard to monotone DNFs, as well as other classes

of functions, but their results do not yield tight bounds, particularly when N is small.

8.4.2 Experimental Results

In Matlab, 2000 runs of the Discover Codewords procedure on each of 5000 randomly gen-

erated, error-free contact groups. Each contact group had 8 NWs. Figure 8.1 plots the

cumulative distribution of the number of runs before all individually addressable codewords

were discovered for both 30 and 100 MWs. Also shown is the cumulative distribution of

the fraction of runs that discovered whichever codeword was discovered least often, that is,

an empirical estimate of u, the minimum probability with which a codeword is discovered.

As discussed at the beginning of this section, as the number of MWs increases from 30

to 100, the minimum probability with which a codeword is discovered increases. Similarly,

the number of runs to discover nearly all codewords with high probability decreases as

M increases. In fact, approximately 270 runs are needed to discover all codewords with

probability 0.99 when M = 30 and approximately 72 when M = 100. The latter number is

very close to the number predicted when all codewords are equally likely to be discovered

using the coupon collector problem. This is further illustrated by the right-hand plots in

Figure 8.1, which show that when M = 100, u is usually close to 1/8. In other words, when

more MWs are used, it is usually the case that each codeword has an approximately equal

chance of being discovered on each run of the discovery algorithm.

158

Figure 8.1: Shown are empirical plots obtained by simulating 2,000 runs of Dis-

cover Codewords on 5,000 randomly generated, error-free contact groups each of which

has 8 NWs. The plots show the cumulative distribution of the number of runs before all

individually addressable codewords are discovered and the fraction of the runs in which the

least frequently discovered codeword were found.

159

Chapter 9

Coded Computation

Previous chapters have illustrated that stochastically assembled nanoscale architectures are

well-equipped to cope with post-assembly variation. In NW decoders, compensating for

permanent decoder-to-decoder variation requires a small constant factor redundancy, along

with configurable, highly reliable mesoscale address translation circuitry (see Section 3.3.2).

A similar approach can be used to compensate for randomly varying interconnect within

crossbar-based logic, as well to route around permanent defects within both logic and mem-

ories.

A more daunting challenge, that has not yet been resolved, is whether nanoscale archi-

tectures can efficiently cope with transient faults. In the case of nanoscale memories, the

use of traditional error-correcting codes is a viable option [69]. By encoding data before it

is stored, transient faults can be periodically detected and corrected. In digital logic, how-

ever, the traditional approach to fault-tolerance is simply to repeat each computing element

multiple times (see Section 9.1.1 below). Unfortunately, this approach, often referred to as

“modular redundancy,” requires a prohibitive amount of overhead. If each nanoscale gate

needs to be repeated many times, it could sensibly be replaced with a single, highly reliable

CMOS gate.

It is natural to ask whether there is a more efficient approach to tolerating transient run-

time errors within digital logic. This chapter investigates a two-tiered approach to reliable

computing that is similar in spirit to the approach used to tolerate assembly-time nanoscale

variation. Specifically, we consider using reliable mesoscale CMOS to interface with less

160

reliable nanoscale devices. We refer to this model, in which different computing elements

operate at different levels of reliability, as two-tiered reliability. By employing this model,

we are able to pursue an approach to reliable computation that is markedly different from the

bulk of theoretical work that has been pursued previously (see Section 9.1.1). Though the

concept of two-tiered reliability has been used implicitly in algorithm-based fault-tolerance

(see Section 9.1.2), we use it here to investigate fault-tolerance using error-correcting codes.

This approach is referred to as coded computation.

In coded computation, the input and output to a lengthy computation are encoded in

an error-correcting code. Highly reliable logic gates can perform the encoding and decoding,

while noisy gates perform successive steps of computation on the encoded data. As long

as the encoded data isn’t corrupted by too many errors, the data can be corrected and

eventually decoded. Such an approach to fault-tolerance is analogous to using a reliable

encoder and decoder to transmit data over a noisy channel. As we demonstrate, coded

computation introduces a wide range of design possibilities.

Section 9.1 briefly reviews previous work on reliable computing and motivates the use

of error-correcting codes. Section 9.2 provides a model of “regular” computation that is

amenable to encoding. Section 9.3 outlines a general approach for making regular compu-

tations reliable via error-correcting codes. Sections 9.4, 9.5 and 9.6 discuss the details of

how codewords can be manipulated in order to compute on the encoded data. Section 9.7

presents specific codes that can be used for coded computation. Finally Section 9.8 bounds

the overhead associated with code-based fault-tolerance.

9.1 Approaches to Reliable Computation

In this section we review the traditional model of reliable computation, originally proposed

by von Neumann in 1956. His model, in which all gates fail with constant probability, has

been the basis for the majority of subsequent theoretical work on reliable computation. We

also briefly discuss a more practical, but less systematic approach to fault-tolerance known

as “algorithm-based fault-tolerance”. Finally we outline a more novel approach to fault-

tolerance, coded computation, that has potential to yield both theoretical and practical

results. Describing a framework for performing reliable coded computations is the focus of

161

the remainder of this chapter.

9.1.1 Modular Redundancy

Early digital computers relied on vacuum tubes, which were unreliable. This suggested the

same type of scaling challenge we face today: As computers became increasingly complex

(i.e. used more logic gates), the probability that some component fails during a given com-

putation approaches 1. This motivated von Neumann, in his well-known 1956 paper [14], to

propose a systematic approach to building logic from unreliable gates. He described how an

arbitrary circuit, C, built from perfectly reliable gates could be converted to a fault-tolerant

circuit C′, constructed from potentially faulty gates. Here “fault-tolerant” means that, re-

gardless of the size of C, the error rate of each output of C′ is constrained to be no more

than a constant multiple of the failure rate of each gate.

To model gate failures, von Neumann assumed that each unreliable gate’s binary output

could flip independently at random from 0 to 1, or 1 to 0, with probability pf . His goal was

to construct a new circuit C′ from an arbitrary fault-free circuit, C, using unreliable gates.

His construction ensured that the output of C′ was incorrect with probability O(pf). As

von Neumann noted, any such circuit C′ could not only tolerate transient faults but also

permanent failures.

Von Neumann used a randomized construction, assembling C′ by repeating each gate in

C r times, then after each group of repeated gates, using r randomly connected majority

gates to suppress errors. This approach is very similar to protecting transmitted data

using a repetition code. The main subtlety is that the majority gates can themselves

fail. Von Neumann’s key observation was that r potentially faulty, constant-sized majority

gates would still correct a fixed fraction of errors with high probability. As such, the total

number of errors present after each group of r majority gates would only rise above some

fixed threshold, αr, with a probability that is exponentially small in r.

Thirty years later, Pippenger successfully analyzed von Neumann’s construction and

made it deterministic using expander graphs [15]. As von Neumann hypothesized, for

arbitrary C the size of C′, denoted |C′|, need only be O(|C| log |C|). Similarly, when r =

O(log |C|) the probability that a particular group of r majority gates produces more than

162

αr erroneous outputs is O(1/|C|). An excellent description of this analysis can be found

in [70]. Unfortunately this analysis also suggests that the constant associated with the

O(log |C|) bound is large.

After Pippenger obtained an upper bound on |C′|, he and others obtained matching lower

bounds for a number of simple functions that are “sensitive” to all inputs, for example, xor

[71, 72, 73]. In some sense, this showed that von Neumann’s approach was optimal. The

derivations of these bounds, however, also highlighted a shortcoming of the von Neumann

fault model. Since all gates fail with probability pf , the gates at the input and output

of a circuit always have probability pf of being incorrect. Thus, in order to compute the

xor of N inputs, each input must be connected to O(log N) gates simply to ensure that

information about its correct value reaches the output with high probability.

Since inputs must be repeatedly sampled, they are effectively encoded using a repetition

code with rate O(1/ log N) = O(1/ log |C|). Notice that this repetition-based approach

to reliable computation contrasts sharply with results from digital communication theory.

Since the time of Shannon, it has been known that repetition is a highly inefficient error

control mechanism. To achieve efficient fault-tolerant communication, a reliable encoder

and decoder are used to send information across a noisy channel. When data is encoded,

information about each input to the channel is “spread” across many check symbols. By

allowing these transmitted check symbols to be functions of a large number of inputs, only

constant factor overhead is required to protect against random bit flips. It is only natural

to ask whether similar ideas can be applied to reliable computation.

9.1.2 Two-Tiered Reliability and Coded Computation

In order to allow for more efficient error protection, and to overcome the lower bounds

referenced above, we must alter the von Neumann model. Using the concept of two-tiered

reliability we consider a more general, but also a more realistic model of noisy computation

in which gates operate at different levels of reliability. Some gates can be larger, but

highly reliable (much like today’s CMOS gates), while most gates are small and susceptible

to transient failures (an anticipated characteristic of nanoscale devices). By allowing two

levels of gate reliability, expensive, power-hungry, but highly-reliable mesoscale gates can

163

potentially “supervise” less reliable nanotechnology. This two-tiered model allows us pursue

designs that cannot be considered under the von Neumann model.

Perhaps the most straight-forward application of two-tiered reliability, which we do not

focus on here, is to exploit the fact that many algorithms have relatively simple checks.

After a computation is performed by noisy gates, it may be possible to use a small number

of highly reliable gates to check the computation’s output. This type of algorithm-specific

approach to tolerating faults is sometimes referred to as “algorithm-based fault-tolerance”

[74]. Although promising for specific problems, it is difficult to know how broadly such

techniques can be employed. To draw a loose analogy, the problem of making an algorithm

fault-tolerant, through periodic check computations, has a similar flavor as trying to par-

allelize an algorithm, in that it is currently more art than science. Furthermore, unlike

parallelization, fault-tolerant versions of many widely used algorithms are not known, and

thus there is a shortage of standard techniques on which to draw.1

Instead of focusing on algorithm-specific solutions to fault-tolerance, we employ two-

tiered reliability in the context of coded computation. Here highly reliable logic gates

encode the inputs (and decode the output) of a lengthy computation. The computation

itself is performed by noisy gates. Each step of the computation is performed on encoded

data. After each step, error correction takes places, as well as “transcoding” and “data-

movement” operations (see Section 9.2). In this way, a long computation is divided into

a series of steps, each of which is made fault-tolerant using (ideally) a small amount of

overhead. The overhead associated with coded computation depends both on the code

being used and the amount of additional operations needed to compute on encoded (as

opposed to unencoded) data. Both sources of overhead are bounded in subsequent sections.
1Although most work on algorithm-based fault-tolerance does not explicitly mention the notion of tiered

reliability, we suspect that future work in this area will benefit from explicitly assigning a reliability level to

each operation within an algorithm. This model would be particularly well-suited to multicore architectures

in which all cores may not operate at the same level of reliability. In this context, one can attempt to

quantify the fraction of reliable operations a particular algorithm requires.

164

9.1.3 Previous Work on Coded Computation

The earliest work on coded computation considered only bitwise operations performed on

pairs of codewords [75, 76, 77]. This is overly restrictive. Later certain algorithm-specific

encodings were considered. For example, arithmetic codes can be used for addition and

multiplication [78], and check sums for linear matrix operations [79].

More recent work by Spielman [80] suggests that a much more general approach to

code-based fault-tolerance is possible. Spielman’s work is based on encoding the operations

performed by a hypercube. We work with a somewhat more general of model of computation

that is better tailored to circuits. The key differences between hypercubes and circuits being

the possibility of arbitrary data-movement, and the use of boolean logic gates in place of

processors. Although processors, unlike gates, can have memory, Spielman doesn’t actually

use this fact (i.e. processors are assumed to be memoryless).

In Spielman’s approach to coded computation, data is encoded using 2D Reed-Solomon

codes. He provides a way of computing on encoded data such that the result of each

computation step is also encoded data in Reed-Solomon code with smaller error correction

capability than the original code [80]. This necessitates that the differently encoded data

be “transcoded” back to the original code so that subsequent computation steps can be

performed. Both computation and transcoding steps are done in a noisy environment.

The overhead of the Spielman approach is quite large. Reed-Solomon codes, along with

the use of processor-based hypercube networks both introduce significant overhead. In our

framework we demonstrate that this overhead can be reduced. We describe how other codes

and network topologies can be employed. Overall, we explore a much wider range of design

possibilities.

9.2 A Model of Computation

Before we examine how a computation can be made fault-tolerant through coding, we must

define the computation itself. The model of computation used in this paper is the regular

computing network, defined below. This model, as illustrated in Figure 9.1, divides a

computation into T steps. A computation step consists of applying k m-input functions

165

w1
1 1 11 1 1 1w2 w3 w4 w5 wk-1 wk

step 1

step 2

step T

y1x1 y2x2 y3x3 y4x4 y5x5 yk-1xk-1 ykxk

w1
2 2 22 2 2 2w2 w3 w4 w5 wk-1 wk

w1
T T TT T T Tw2 w3 w4 w5 wk-1 wk

 z1
T T TT T T T

 z2 z3 z4 z5 zk-1 zk

κ κ κ κ κ κ κ

κ κ κ κ κ κ κ

κ κ κ κ κ κ κ

Figure 9.1: A T -step regular network in which each computation step consists of k 3-

input functions applied in parallel. In step 1, functions κ1, κ2, . . . , κk are applied to inputs

x1, x2, . . . xk and y1, y2, . . . , yk. Here κj is the result of applying a generic function κ with

input (instruction) wj . The resulting output vector is duplicated and each copy is permuted.

The two permuted copies provide the input vectors to step 2, in which a potentially different

set of functions are applied. The alternation between data-movement and computation

continues until step T , at which point k outputs are produced.

in parallel to m sequences of k symbols. Each of these sequences is called an input vector,

and the resulting sequence of k outputs is called an output vector. The k functions that

are applied to the m input vectors can be thought of as representing k processors or logic

gates.

The network’s input is supplied to the first computation step, and the network’s output

is produced by the final computation step. With the exception of the first step, all of a

step’s input vectors are permuted output vectors from previous steps.

A regular computing network meets the following conditions:

1. Each of the m input vectors to a computation step are permutations of the output

vectors from previous computation steps. It is acceptable for one output vector to be

166

supplied to multiple subsequent steps as an input vector. It is also acceptable if the

input vectors to a particular step come from multiple previous steps.

2. All input and output vectors are length k. Each computation step consists of the appli-

cation of k m-input function in parallel. Here the k functions are applied component-

wise to the m input vectors.

3. We refer to the permuting of a step’s output vector as a data-movement opera-

tion. During data-movement operations, the set of permutations that are applied are

restricted to some set, Π (discussed below).

These regularity conditions are general enough to model computations performed by

both circuits and structured networks (e.g. hypercubes and meshes). Examples of both are

given in Section 9.2.2.

9.2.1 Formalizing the Model

We now make explicit the computational model when m = 2. Let F denote some fi-

nite field, for example GF (2) = {0, 1}. Let x,y ∈ F k, x = (x1, x2, . . . , xk) and y =

(y1, y2, . . . , yk), denote two k-element input vectors. In a computation step, k two-input

function, φi : F 2 7→ F , are applied in parallel to the k pairs of inputs (xi, yi). The use of

two input functions (as opposed to, say, m-input functions) is not required, but it is suffi-

ciently illustrative for this discussion. The output vector of a computation step, z ∈ F k, is

z = (φ1(x1, y1), . . . , φk(xk, yk)).

For a given computation step, let H = {h1, h2, . . . , h|H|} denote the set of distinct

functions among φ1, ..., φk, and let W = {1, ..., |H|} denote a set of instructions used to

index into H. Now each φi can be indexed to one of the |H| functions in H. For a given

computation step, we define its instruction vector as w ∈ W k, where wi is the index of

φi in H, or more succinctly, where hwi = φi. Finally we define the step’s computation

function as κ : F × F ×W 7→ F where κ(x, y, wi) = hwi(x, y) = φi(x, y).

The output vector of a computation step, z, can now be expressed as zi = κ(xi, yi, wi),

1 ≤ i ≤ k. Thus instead of applying k distinct two input functions to the input vectors,

x and y, we are now applying a single three input function to the input vectors plus an

167

instruction vector, w. To describe this component-wise application of κ more concisely we

will frequently use the notation κ(k) where

z = κ(k)(x,y,w) = (κ(x1, y1, w1), . . . , κ(xk, yk, wk))

Each computation step, as defined by a particular κ and w, is followed by a data-

movement operation. Data-movement is described using permutations drawn from a set,

Π, of k-element permutations. In a data-movement operation, the output of some previously

executed computation step, z, is copied and permuted according to some π ∈ Π. This allows

us to express zt, the output vector of computation step t, in terms of the output vectors of

two previous steps, za and zb (where a, b < t). To express zt we select the appropriate κ,

wt ∈ W k and πt,1, πt,2 ∈ Π then write

zt = κ(k)(πt,1(za), πt,2(zb),wt) (9.1)

For our purposes, namely providing fault-tolerance through coding, it is acceptable if

H, W and κ vary from step to step (hence we could have reasonably written Ht, Wt and

κt above). Π, by contrast, must remain fixed. The actual choice of Π, which is illustrated

in the following subsection, depends on the computation being implemented, as well as the

code one intends to use for fault-tolerance. The motivation behind restricting Π, as well

imposing our other two regularity conditions, will be made apparent in Section 9.3.

9.2.2 Examples

We now illustrate how regular computing networks can implement the same computations

as logic circuits and common network topologies. In both cases, our task is to modify the

computation performed by the network of computing elements (either gates or processors)

so that it meets our regularity conditions. Once this is accomplished it is straightforward

to define, H, W , and κ for each computation step. We also discuss the choice of Π.

Circuits

First consider how a regular computing network can implement the computation performed

by a logic circuit. The basic approach is to “levelize” the circuit, then add additional buffer

168

gates so that each level contains the same number of gates. The level of a gate is the length

of the longest path between it and some input to the circuit.

To model a circuit let F = {0, 1} and let H be a set of functions such as and(x, y),

or(x, y) and notx(x, y) = 1−x. In not(x, y) the second unused input is needed to maintain

our regularity conditions.

Let H also contain the buffer functions buffx(x, y) = x and buffy(x, y) = y. These

functions are also important for maintaining our regularity conditions, as demonstrated by

the following five-step construction.

In our construction an arbitrary circuit is converted to a regular computing network in

which data-movement is unrestricted, meaning Π can contain all k-element permutations.

After the construction we describe how Π can be restricted.

1. Given an arbitrary boolean circuit, represented as a directed acyclic graph, the fan-out

of each gate is reduced to two by adding additional one-input buffer gates, buff(x) = x

[81, p. 395]. These gates are replaced with two input buffer gates in step 4.

2. Partition the gates of the circuit into levels. The level of a gate is the number of

edges on the longest path from that gate to one of the circuit’s inputs. Add one-input

buffer gates along any wires that pass through a level. This ensures that the outputs

of gates in level i are supplied as inputs only to gates in level i− 1.

3. Add disconnected one-input buffer gates to the circuit so that each level has the same

number of gates.

4. Replace all of the one-input buff and not gates with equivalent two-input gates

buffx and notx (defined above) in which the second input (which is ignored) is

disconnected.

5. One at a time, connect the disconnected inputs of the newly added two-input gates

to any gate at the previous level which does not already have fan-out two.

To see that all disconnected inputs can be connected in this fashion, notice that each

level contains the same number of gates, all gates have two inputs, and each gate’s

169

inputs come for the outputs of the previous level. This implies that if no gate is given

fan-out greater than two, all gates can be connected with fan-out exactly two.

The circuit resulting from this five-step construction contains the same number of

gates on each level, each of which has fan-in and fan-out 2. Hence it is readily repre-

sented as a regular computing network in which Π is unrestricted and both of computation

step’s input vectors are permutations of the previous step’s output vector. Each comput-

ing step corresponds to a level of the circuit, each φi corresponds to a logic gate, and

H = {and,or,notx,buffx}. Since Π is unrestricted, the data-movement operations that

occur between computation steps can involve arbitrary permutations.

In order to restrict Π, these arbitrary permutations can be implemented using a struc-

tured switching network. For example, a Beneš network [82], which consists of two back-

to-back butterfly (or FFT) graphs [81, p. 310], can permute its k inputs arbitrarily using

2 log k + 1 levels of k switches (each with fan-in and fan-out 2). This network, when placed

between levels of our newly constructed circuit, maintains the other two regularity condi-

tions given in Section 9.2, while allowing Π to contain only log k permutations. Furthermore,

the newly added levels of switches, which implement a fixed permutation, only requires com-

putation steps in which H = {buffx,buffy}, and hence κ(x, y, w) = xw + y(1− w).

It is also possible to restrict Π further and implement each butterfly network using only

cyclic shifts via a shuffle exchange protocol [83, 84]. In this case, |Π| = 2, as it need only

contain one place cyclic shifts in either direction. In the next section we show how restricting

Π makes it easier to implement a regular network’s computation on encoded data.

Networks

Now consider the regular computing network model as applied to structured networks of

processors. Computations performed on structured parallel machines, such as a 2D mesh or

hypercube, can be mapped directly to our model. These machines consist of k processors

connected according to some k vertex graph, G. Before each step of computation, processors

exchange data with their neighbors in G.

For simplicity, assume that data is exchanged with only a single neighbor before each

computation step. Also assume that, before the start of the computation, each processor,

170

pi, has an initial state, si. These assumptions allow us to easily represent the k operations

performed in parallel on a given computation step as k two-input functions φ1, . . . , φk. The

input to each φi is the state of processor pi and the state of a neighboring processor pj

(alternatively, partial information about states can be used). The output of φi determines

the new state of pi. Here states are represented as elements in some (possibly large) finite

field, F . It is also acceptable if states are represented as s-tuples in F s, in which case output

vectors from s different computation steps collectively represent the state of each processor

(this approach allows processors to have memory).

By representing the k operations performed during each computation step as two-input

functions over states, our first and second regularity conditions are satisfied. To illustrate

how the third regularity condition can be satisfied, namely that data-movement permuta-

tions are restricted to some set Π, we consider some specific network topologies.

In a 2D mesh of processors, G is an m-by-m grid. Instead of writing pi to denote a

particular processor, we write pi,j to refer to the processor in row i and column j. Let zi,j

denote the state of processor pi,j . In G, each processor has 4 neighbors (with the exception

of processors on the periphery), so on the next computation step φi,j is applied to zi,j and

either zi+1,j , zi−1,j , zi,j+1 or zi,j−1.

In order to implement this data-movement in a regular computing network, the output

vector z can be copied four times, and each copy differently permuted by a cyclic shift

along its rows or columns. Before the next computation is performed, an intermediate

computation step can be added in which m2 4-input buffer gates are used to select the

appropriate entries from the four shifted copies of z. Each φi,j can then be applied to z and

the output of this newly added selection step. Successive steps of the mesh’s computation

can be implemented using the same approach, thus |Π| = 4. In order to avoid the need

for 4-input buffer gates, the selection step can also be implemented in stages using 2-input

buffer gates.

Consider next data-movement in a hypercube. In a k = 2b-processor hypercube, each

processor is indexed using b = log2 k bits. Without loss of generality, we can consider normal

algorithms on the hypercube. These are algorithms for which, after each computation step,

data is only swapped between pairs of processors whose b-bit indices differ in one particular

171

position. (This is the class of computations for which Spielman defined coded computation

in [80].) In a normal algorithm, data-movement always corresponds to applying one of

b permutations to the values stored at the processors, hence when implemented using a

regular computing network, |Π| = b. As with a mesh, each φi corresponds to the operation

performed by a processor at a given step of computation.

9.3 The Coded Computation Framework

Now that we can describe computations in terms of regular computing networks, we can

return to our goal of making these computations fault-tolerant though coding. To accom-

plish this, we would ideally find a way to add redundancy to each computation step by

increasing the width of a regular computing network from k to n so that the input and

output vectors of each computation step belong to the same efficient error-correcting code,

C. This would allow us to periodically detect and suppress errors before they propagate too

much and corrupt the entire computation (i.e. before the number of errors in some step’s

output vector surpasses the error-correction capability of C).

Unfortunately, this simple approach to fault-tolerant computation is not viable. As

proven in Section 10.1, if each computation step consists of n constant-depth functions,

applied in parallel, C cannot be an asymptotically good code (meaning as n increases, the

code’s rate must go to 0). Furthermore, if the n functions are applied component-wise to

the encoded input vectors, C cannot outperform basic repetition in which each symbol is

repeated r times. As a result we consider a modified approach.

1. First, the input vectors to a regular network are encoded in an error-correcting code,

C. We limit our attention to linear systematic2 codes.

2. Second, an encoded computation step is performed on the encoded input vectors

by applying n copies of a constant-depth function component-wise in parallel. The

resulting encoded output vector provides a fault-tolerant encoding of the original,

unencoded computation step’s output. This encoded output vector, however, is no
2In a systematic code the input data to be encoded appears in the output codeword

172

longer a codeword in C. Instead it is a codeword in another linear systematic code

C∗ of reduced error correction capability.

3. Third, a transcoding operation is performed which, in the case of error-free compu-

tation, projects the encoded output vector from C∗ to the codeword in C that encodes

the results of the computation on the input data. During transcoding, some errors in

the encoded output vector can also be corrected.

4. Data-movement operations are implemented by permuting the encoded output vector

either before, after, or during transcoding. The set of allowed permutations, Π∗, will

depend on C and C∗.

5. After transcoding and data-movement operations have been performed on an encoded

output vector, the vector can be supplied as an encoded input vector to a subsequent

encoded computation step.

This process of performing an encoded computation step, followed by transcoding and

data-movement operations, is repeated for each of the original regular network’s compu-

tation steps. In this way, the regular network is “encoded”, and its computation becomes

fault-tolerant (see Figure 9.2).

9.3.1 One Step of Coded Computation

In Section 9.2.1, one step of unencoded computation is described in (9.1), as shown below.

zt = κ(k)(πt,1(za), πt,2(zb),wt)

To describe one step of coded computation, let xt = πt,1(za) and yt = πt,2(zb). Let

E : F k 7→ Gn, where F ⊆ G, be the encoding function for a linear, systematic error-

correcting code C used to encode the inputs to a computation step. To compute, the

function Φ : G3 7→ G is applied component-wise to the encodings of xt, yt and wt, namely,

the n-tuples E(xt), E(yt) and E(wt). Let Φ(n) : G3n 7→ Gn denote the component-wise

application of Φ : G3 7→ G.

173

E(y)1E(x)1 E(y)2E(x)2 E(y)k-1E(x)k-1 E(y)kE(x)k E(y)k+1E(x)k+1 E(y)k+2E(x)k+2 E(x)n E(x)n

Φ Φ Φ Φ

Φ Φ Φ Φ

Φ Φ Φ Φ

Φ Φ Φ

Φ Φ Φ

Φ Φ Φ

Transcoding Operation

Transcoding Operation

Transcoding Operation

step 1

step 2

step T

Information
Symbols

Check
Symbols

Figure 9.2: A T -step coded computation in which each step of a T -step regular computation

has been encoded.

Since we want the result of a computation step to be a codeword in a linear systematic

code, Φ : G3 7→ G should satisfy that the condition that Φ(u, v, w) = κ(u, v, w) when

u, v, w ∈ F . This condition doesn’t specify how Φ should be defined when its inputs are

from G but not F ⊆ G. This is done using an idea due to Spielman [80], namely, by

letting Φ be a polynomial interpolation of κ : F 3 7→ F over G3. In other words, Φ is a

multivariate polynomial chosen to agree with κ over F 3 ⊆ G3. A detailed discussion of Φ

is given Section 9.4.

Given C and Φ an encoded computation step is expressed as

Φ(n)(E(xt), E(yt), E(wt))

This results in some encoding of zt in a new code C∗. It is useful to denote this encoding

as E∗(zt), and thus write

E∗(zt) = Φ(n)(E(xt), E(yt), E(wt)), (9.2)

We note that given some C and Φ, any given output vector zt generally has multiple

representations in C∗, even in the absence of errors. In other words, we typically cannot

choose for C∗ a code with only k information symbols, and thus E∗(zt) may not be well

defined unless, as in Equation 9.2, it is clear how the encoding of zt is computed.

174

With this consideration in mind, we can safely define C∗ as follows. First we note

that Φ(n) is chosen so as to be “difference preserving” with regard to κ(k) and C, meaning

that for any two sets of inputs such that, κ(k)(x,y,w) 6= κ(k)(x′,y′,w′), we will have

Φ(n)(E(x), E(y), E(w)) 6= Φ(n)(E(x′), E(y′), E(w′)). Given such a Φ and C, let C∗ be the

smallest possible linear code that contains all possible vectors that result from applying

Φ(n) to three encoded input vectors in C. The relationship between C and C∗, along with

their potential error-correction capabilities, is the focus of Sections 9.4.2 and 9.7.

In the remainder of this chapter, when we denote an encoded output vector as E∗(zt)

it is clear from the context how the encoded output vector is defined. Equation 9.2, for

example, makes it clear that E∗(zt) denotes the encoded output vector that results from

applying Φ(n) to a particular set of encoded input vectors.

9.3.2 Transcoding the Output

As explained at the beginning of this section, the transcoding step implements a mapping

TC,C∗ : Gn 7→ Gn that in the absence of errors maps the output of a computation step,

a codeword E∗(zt) ∈ C∗, to E∗(zt) ∈ C. This allows the encoding of zt to be supplied

to subsequent steps as input. If the encoded output of a computation step is close to a

codeword E∗(zt) (i.e. certain positions are in error), then TC,C∗ should map it to a word

that is equal or close to E(zt). When there is equality (meaning no errors occurred during

transcoding) the output of a coded computation step followed by transcoding is expressed

as follows.

E(zt) = TC,C∗(Φ(n)(E(xt), E(yt), E(wt))) = E(κ(k)(yt,yt,wt)). (9.3)

9.3.3 Conditions on Permutations

As defined above xt = πt,1(za) and yt = πt,2(zb), that is, the input vectors to computation

step t result from the application of permutations πt,1 and πt,2 to output vectors za and zb.

As we have explained, each π ∈ Π is a permutation over k elements. Given a permutation

π∗ over n elements, we say that π∗ is an extension of π if π∗ applies π to the first k of

the n elements. Given a set of permutations Π, our objective for the purpose of encoding

a regular network’s computation is to define a set of n-element permutations, Π∗, that can

175

be used to realize the permutations in Π. We note that in the encoded version of a regular

computing network a permutation, π∗ ∈ Π∗ can be applied either before, during, or after a

transcoding step.

Codes are often closed under some set of permutations. For example, cyclic codes are

closed under cyclic shifts. Suppose C and C∗ are closed under some set of permutations ΠC

and ΠC∗ respectively. Then any permutations from ΠC can be applied to an output vector

after it has been transcoded, and any permutation from ΠC∗ can be applied to the output

vector prior to transcoding. Furthermore, the transcoding operation which projects some

E∗(zt) to E(zt) typically involves decoding codewords in C∗, then encoding these results in

C (see Section 9.5 for details). During this decoding/reencoding process there generally is

some set of permutations, ΠT , that can be applied to permute zt such that the transcoded

output remains in C.

If ΠC and ΠC∗ are permutations that preserve the codes C and C∗, and ΠT are the

permutations that can be applied during transcoding.3 Then, Π∗ = ΠC
⋃

ΠC∗
⋃

ΠT is

a set of permutations that can be applied to the encoded output of a computation step

to implement data-movement. Consider an unencoded computation step after which some

π ∈ Π is applied. We wish to realize an equivalent data-movement operation on the encoded

data. If C and C∗ are systematic, and if a particular π ∈ Π has an extension π∗ ∈ Π∗, then

π can be realized simply by applying π∗. If π∗ ∈ ΠC∗ is an extension of π, then

E(π(zt)) = TC,C∗(π∗(Φ(n)(E(za), E(zb), E(wt))))

since π∗ is applied prior to transcoding to permute the information symbols in accordance

with π. If π∗ ∈ ΠC is an extension of π, then

E(π(zt)) = π∗(TC,C∗(Φ(n)(E(za), E(zb), E(wt))))

This latter case is advantageous because multiple different π∗ ∈ ΠC can be applied

to different copies of a transcoded output, avoiding the need to transcode each differently

permuted copy separately.
3During transcoding it may be possible to permute the information symbols, zt, while modifying (as op-

posed to permuting) certain check symbols. Though this type of data-movement operation is not technically

a permutation over n-elements, it can still be thought of as a data-movement operation contained in ΠT .

176

Sometimes we may want to implement a data-movement operation, π ∈ Π, which does

not have an extension π∗ ∈ Π∗. In this case we can compose several permutations in Π∗

to produce an extension of π. We say that π∗1, π
∗
2 ∈ Π∗ are composed to produce a third

permutation, π∗, if the results of applying π∗1 and π∗2 separately to E(zt) can be combined

via an additional step of coded computation such that the result is π∗(E(zt)). It may also

be useful to compose π∗1 and π∗2 in this way such that the result is E(π(zt)). In other

words, permutations π∗1, π
∗
2 ∈ Π∗ can be potentially be composed via an additional encoded

computation step to produce a permutation in Π∗ or a permutation in Π. A more detailed

look at permutation composition is given in Section 9.6. In that section we also consider

how Π can be chosen so as to accommodate a particular Π∗.

9.3.4 Spielman’s Model

The framework for coded computation described in this section is directly inspired by the

approach used by Spielman in [80]. Spielman’s implementation of coded computation applies

to normal algorithms on a k-processor hypercube. As stated in Section 9.2.2 these are

algorithms in which, before each computation step, data is permuted by moving it between

processors whose addresses differ in the jth bit position. In this case it is easy to extend a

particular permutation over k elements, πj , to a permutation over n elements, π∗j . To do

this one can apply the equivalent π∗j to an n-vertex hypercube. As Spielman observed, this

approach is very well-suited to Reed-Solomon codes over GF (2q), for q ≥ log2 n, since these

codes are closed under this class of data-movement. The use of Reed-Solomon codes as C

and C∗ is discussed in Section 9.7.

9.4 Interpolation Polynomials

As explained in Section 9.3.1, a single step of coded-computation consists of applying an

interpolation polynomial, Φ : G3 7→ G, component-wise to two encoded input vectors, E(x)

and E(y), and an encoded instruction vector, E(w). This produces an encoded output

vector. Recall that the input and instruction vectors are encoded in a linear code C, and

the output vector is encoded in a different linear code, C∗. For a particular C we must

177

select C∗ and Φ such that the encoded output vector encodes the correct output (i.e. the

output produced by the unencoded computation step, z = κ(k)(x,y,w)).

In order to simplify this task, we assume that C and C∗ are systematic linear codes. In

this case, the first k symbols of E(x), E(y) and E(w) are x, y and w respectively. This

allows us to choose Φ : G3 7→ G to be a polynomial interpolation of κ : F 3 7→ F over G3.

In other words, Φ is a multivariate polynomial in G chosen to agree with κ over F 3 ⊆ G3.

Thus the first k symbols of the encoded output vector will necessarily be z = κ(k)(x,y,w).

We can formally define an interpolation polynomial Φ(r, s, t) : G3 7→ G for a function

κ : F 3 7→ F using the function Mx,X(r) =
∏

ρ∈X−{x}
r−ρ
x−ρ , where X ⊆ G, x ∈ X, and

arithmetic over G. Notice that Mx,X is constructed so as to take value 1 when r = x and

0 for all other r ∈ X. For other values of r ∈ G −X, Mx,X(r) can take values in G other

than 0 or 1. Also, Mx,X(r) is a degree |X| − 1 polynomial.

Now let X, Y,W ⊆ F denote the sets of values of x, y, and w, respectively, for which

κ(x, y, w) is defined. Then, Φ(r, s, t) is defined as follows.

Φ(r, s, t) =
∑

x∈X,y∈Y,w∈W

κ(x, y, w)Mx,XMy,Y Mw,W

It follows that Φ(r, s, t) = κ(r, s, t) when r ∈ X, s ∈ Y and t ∈ W . Unlike κ(x, y, z),

however, Φ(r, s, t) is also defined for all r, s, t ∈ G. The degrees of Φ(r, s, t) in r, s and t are

|X| − 1, |Y | − 1, and |Z| − 1, respectively.

By defining Φ in this way, we ensure that if C is systematic, C∗ is systematic. We also

ensure that if C is linear, C∗ is linear over some larger basis. This observation is explained

in detail in Section 9.4.2 below.

9.4.1 Examples of interpolation polynomials

In this section we consider some practical examples of Φ and illustrate that there is con-

siderable flexibility in how Φ is implemented. First, consider a coded computation that

corresponds to a regular computation comprised entirely of nand gates. A single step of

computation consists of k nand functions applied in parallel. The instruction vector is

constant (say all 0’s), and the input alphabet is F = GF (2). The interpolation polynomial,

which doesn’t depend on the instruction t, is Φ(r, s) = (1−rs) for all choice G. Over GF (2)

178

Φ(r, s) has the same value as nand.

Now consider the more realistic case where the computation contains both nand and

buffx gates (these act as pass-through gates that produce their first input as output). Now

the interpolation polynomial becomes Φ(r, s, t) = (1 − rs)t + r(1 − t). When r, s ∈ {0, 1},

this polynomial returns the value of the nand(r, s) when the instruction is t = 1. When

the instruction is t = 0 it returns r unchanged.

In practice, interpolation polynomials need not have only one variable for each input

and instruction. For example, when encoding circuits with and, or and not, we can let

F = GF (3) and apply the polynomial Φ(r, s, t) = rs(1− t)(2− t)/2 + (r + s− rs)t(2− t) +

(1−r)t(t−1)/2, where x, y ∈ {0, 1}, w ∈ {0, 1, 2} and arithmetic is over GF (3). Notice that

Φ(r, s, 0) = rs = and(r, s), Φ(r, s, 1) = r+s−rs = or(r, s) and Φ(r, s, 2) = 1−r = not(r).

Thus Φ(r, s, t) is an interpolation polynomial for the function κ(x, y, w) that computes either

and, or, and not when t = 0, 1 or 2, respectively.

Now suppose we wish to use a binary code, and thus do not want t ∈ {0, 1, 2}. As an

alternative, we can add a second instruction variable and use F = GF (2). In this case we

have Φ(r, s, t0, t1) = rst0t1 +(r + s+ rs)t0(1− t1)+(1− r)(1− t0)(1− t1), where r, s, t0, t1 ∈

{0, 1} and arithmetic is over GF (2). Now Φ(r, s, 1, 1) = and(r, s), Φ(r, s, 1, 0) = or(r, s)

and Φ(r, s, 0, 0) = not(x). The advantage of this construction, which refer to as a binary

expansion of Φ, is that a computation with more than two instructions can still be encoded

using binary codes.

If, instead of a boolean circuit with several types of logic gates, we wish to encode a

computation performed by a hypercube, then Φ depends on the processors being employed.

Complex processors, for which F is large, can potentially require very high degree interpo-

lation polynomials. In later sections it will become clear that applying a sufficiently high

degree Φ eliminates any error correction capability. In other words, when the degree of Φ

is sufficiently high, C∗ must contain all codewords of length n, and thus encoded outputs

have a minimum distance of 1.

To address this limitation, a high degree interpolation polynomial can be implemented

through successive applications of lower degree polynomials, with a transcoding operation

performed after each application. For example if Φ(r, s, t) = r4s4t4, Φ has total degree

179

12. Instead of applying Φ directly, Φ can be realized by first applying Φ′(r, s, t) = rst

component-wise to all three codewords in C, then transcoding the output, applying Φ′′(r) =

r2 to the result (which is once again a codeword in C), transcoding once more, and finally

applying Φ′′(r) a second time. By computing Φ in stages, C∗ avoids the need to accommo-

date the component-wise application of a Φ with total degree 12.

More generally, the idea of decomposing Φ can be used to avoid ever applying a poly-

nomial of total degree greater than 2. Consider our earlier example, Φ(r, s, t) = (1− rs)t +

r(1 − t) = t − rst + r − rt. Each product term of this polynomial can be implemented in

stages using successive applications of the polynomial Φ′(x, y) = xy. After each application

of Φ′(x, y) a transcoding operation is performed. This avoids the need for C∗ to accommo-

date any polynomial with degree greater than two. Once each product term is computed the

terms can be summed. We refer to this approach for computing Φ in stages as the product

decomposition of Φ. Since C and C∗ are linear no transcoding is required when terms

are summed (although if a large number of terms are being summed, there may be a need

for intermediate error correction).

To conclude, we note that the product decomposition and binary expansion of an ar-

bitrary polynomial can be applied simultaneously to avoid ever applying any Φ other than

AND(x, y) = xy or XOR = x + y. In the later case, no transcoding is required.

9.4.2 Applying Polynomials to Linear Codes

Assume C is linear, has generator matrix M , and is closed under some set of permutations.

In this section we examine the properties of C∗, the code that results when we apply a

polynomial Φ to codewords in C (see Section 9.3.1 for a formal definition of C∗ in terms of

C and Φ).

We first express the encoded input vectors, and encoded instruction vector, as E(x) =

xM , E(y) = yM and E(w) = wM . Let B0 = {b1,b2, . . . ,bk} be the set of basis n-

vectors of M . Then,

E(x) = (. . . ,
k∑

i=1

xibi,j , . . .), E(y) = (. . . ,
k∑

i=1

yibi,j , . . .) and E(w) = (. . . ,
k∑

i=1

wibi,j , . . .)

When Φ(r, s, t) is applied component-wise to the encoded inputs, it produces the encoded

180

output E∗(z) whose jth component is given below.

E∗(z)j = Φ(
k∑

i=1

xibi,j ,

k∑
i=1

yibi,j ,

k∑
i=1

wibi,j)

If Φ(r, s, t) is a multivariate polynomial, it contains products of powers of r, s, and t plus

a constant term. Thus E∗(z)j is the sum of products of powers of bi,j . This allows us to

express E∗(z) as the sum of products of basis vectors. The total degree of a term in

an interpolation polynomial Φ(r, s, t) is the sum of the degrees of the factors containing r,

s, and t. The degree of an interpolation polynomial Φ(r, s, t) is the degree of a maximal

degree term.

Let a∧b = (a1 ∗ b1, a2 ∗ b2, . . . , am ∗ bm) denote the parallel product of basis vectors a

and b where ai ∗ bi is multiplication in the field G. Then, the output codeword E∗(z) ∈ C∗

can be expressed as a linear combination of the parallel product of powers of the basis

vectors in B0. For example, if Φ(r, s, t) = rst2 + rt + s, then E∗(z) is the sum of parallel

products of up to four basis vectors.

To express this categorization of C∗ more clearly, we define the parallel product of a

basis.

Definition 9.4.1 Let B1 = ∧(B0) denote the set of all possible parallel products of pairs

of basis vectors in B0 (including the parallel product of a basis vectors with itself). Let

Bi = ∧(Bi−1)
⋃

Bi−1. Thus, Bi consists of the parallel products of up to i vectors, selected

with repetition, from B0. Finally, let Ci be the code consisting of all linear combinations of

vectors in Bi.

Lemma 9.4.1 The size of Bi, denoted |Bi|, satisfies the following bound.

|Bk| ≤ (|B0|+ k)2
k

Proof The proof is by induction. The basis for induction is that the bound has value

|B0| when k = 0. Let the inductive hypothesis be that |Bi| ≤ (|B0| + i)2
i

for i ≤ k − 1.

We show that it holds when i = k.

It follows from the definition of Bi that

181

|Bi| ≤ |Bi−1|2 + |Bi−1| = |Bi−1|(|Bi−1|+ 1)

≤ (|Bi−1|+ 1)2

|Bk| ≤ ((|B0|+ k − 1)2
k−1

+ 1)2

= (|B0|+ k − 1)2
k

+ 2(|B0|+ k − 1)2
k−1

+ 1

On the other hand, using the binomial theorem and discarding terms we have the

following expansion.

(|B0|+ k)2
k

= ((|B0|+ k − 1) + 1)2
k

=
2k∑

j=0

(
2k

j

)
(|B0|+ k − 1)j

≥ (|B0|+ k − 1)2
k

+
(

2k

2k−1

)
(|B0|+ k − 1)2

k−1
+ 1

Because
(

2k

2k−1

)
≥ 2 for k ≥ 1, the result follows.

Lemma 9.4.2 Consider m codewords in Ci in Bi, c1 . . . cm, and Φ, a degree d polynomial

in m variables. The result of applying Φ component-wise to the m codewords in Ci is a

codeword in Cdi.

Proof Each ci is a linear combination of vectors in Bi. As a result, ∧(ci, cj) is a linear

combination of vectors in Bi+1. It follows that the codeword resulting from the application

of Φ is in Bdi.

9.5 Transcoding

Recall from Section 9.3.2 that in the absence of errors the transcoding operation that follows

a step of coded computation is described as follows:

E(zt) = T
(n)
C,C∗(E∗(zt))

where zt and E∗(zt) are defined below (here a, b < t).

zt = κ(k)(π1(za), π2(zb),wt)

E∗(zt) = Φ(n)(π∗1(E(za)), π∗2(E(zb)), E(wt))

182

Here the permutation π∗i is an extension of the permutation πi and Φ(n) is an extension

of the function κ(k) : F k 7→ F k, defined through interpolation. The input and instruction

vectors, za, zb and wt, are encoded in the code C and the output vector zt is in the code

C∗. Transcoding is needed to project E∗(zt) to E(zt).

If the number of errors that occur during a computation step and the subsequent

transcoding step is small enough, the result of transcoding will be equal to or close to

E(z). For the transcoding operation T
(n)
C,C∗ to be fault-tolerant it must satisfy the following

requirements.

1. Transcoding must be able to tolerate (i.e. correct) a small fraction of errors in E∗(zt).

These errors will have been introduced during component-wise application of Φ, or

during the previous transcoding operation.

2. Since errors can occur during transcoding, these errors should be correctable by a

subsequent transcoding operation with very high probability.

The first requirement is met if C∗ has a sufficiently large error-correcting capability and an

efficient error-correction algorithm. As we explain below, the second requirement can be

met if C and C∗ are linear (and possibly multidimensional) and the transcoding operation

is structured appropriately.

To better understand the second requirement, consider the naive approach to transcod-

ing: Simply decode E∗(zt) to zt then re-encode the result as E(zt). The problem with

this approach is that a single error in zt will corrupt E(zt). Such an error will not be

correctable, thus additional fault-tolerance is required. One approach to fault-tolerant

transcoding would be to develop code-specific fault-tolerant transcoding algorithms. In this

section, however, we present two much more general techniques for tolerating transcoding

errors based on the use of two-dimensional linear codes.

9.5.1 Transcoding Using 2D Codes

Spielman [80] addresses the need for fault-tolerant transcoding by letting C and C∗ be

two-dimensional Reed Solomon (RS) codes. In a 2D RS code both the rows and columns of

183

each 2D codeword belong to a 1D RS code. Using such a code, or more generally any 2D

linear code, E∗(zt) ∈ C∗ can be transcoded as follows.

1. Assume C and C∗ are 2D linear codes. Let CR and CC denote the row and column

codes of C, and let C∗
R and C∗

C be the row and column codes of C∗.

2. To transcode E∗(zt) to E(zt), first error-correct and decode each row of E∗(zt) ∈ C∗

using an arbitrary decoding algorithm for C∗
R.

3. Encode each of the decoded rows in the row code of C, CR. The result is a codeword

in an intermediate 2D code in which the columns belong to the column code C∗
C , but

the rows belong to the row code CR.

4. Error-correct and decode each column of the intermediate 2D codeword using an

arbitrary decoding algorithm for C∗
C .

5. Encode each of the decoded columns in the column code of C, CC . In the absence of

errors this results in E(zt) ∈ C.

This transcoding algorithm can, in fact, be described very succinctly as “Transcode the

rows of E∗(zt), then transcode the columns”. Here the transcoding of a row or a column

simply entails decoding it, then re-encoding it in a different linear code. We emphasize that

no assumption is made about the decoding or encoding algorithms being employed. We also

note that when a row or column is re-encoded, it can potentially be placed in a new code.

In other words, transcoding can be used to allow C to vary from one coded computation

step to the next.

When a row is transcoded an error may occur which causes many symbols within that

row to be in error. In this case, the row may no longer be close to the correct codeword

in CR. Notice, however, that any such error affects only one position in each column,

hence column transcoding can correct these errors (as long as not too many rows become

corrupted). Similarly, if a column transcoding error occurs, it results in at most one error

per row. As such, these errors can be corrected during the row transcoding operations that

take place after the next computation step. This analysis is quantified in Section 9.8.3.

184

This approach to fault-tolerant transcoding can be generalized to higher dimensional

codes (e.g. 3D codes instead of just working with rows and columns), although it is unclear

if there is any benefit. It is also possible to apply this technique recursively if CR, CL,

C∗
R and C∗

L are themselves 2D linear codes. In this case C∗
R and C∗

L could themselves be

transcoded (in steps 2 and 4, respectively) first by rows, then by columns.

9.5.2 Transcoding Using Checksums

In the previous section C and C∗ are assumed to be 2D linear codes. During each compu-

tation step Φ(n) is applied to codewords in C to produce a codeword in C∗. This implies

that both the row and column codes of C and C∗ must be chosen so as to accommodate

component-wise application of Φ. In this section we propose an approach to fault-tolerant

transcoding that relaxes this requirement.

1. Instead of assuming that C and C∗ are 2D linear codes, assume that each encoded

k-tuple is divided into m words, each of length k/m (assume m divides k). Each word

is encoded in a linear code, C1. A codeword in C consists of the m separately encoded

codewords. Similarly a codeword in C∗ consists of m separately encoded codewords

in C∗
1 .

2. To transcode E∗(zt) ∈ C∗, form a 2D codeword from E∗(zt) by treating the m sep-

arately encoded codewords in C∗
1 as rows in a 2D code, then employ a second linear

code, C2, to encode the columns of the m rows.

3. As in Section 9.5.1 decode each row using an arbitrary decoding algorithm for C∗
1 ,

then encode the result in C1.

4. To correct row transcoding errors, decode each of column using an arbitrary decoding

algorithm for C2.

Notice that during coded computation steps Φ is only applied to codewords in C1, not

C2. As long as this application of Φ does not introduce too many errors, the resulting m

codewords in C∗
1 will not contain too many errors. Furthermore, when the columns of these

codewords are encoded to produce codewords in C2, not too many of the columns will be

185

corrupted by these errors. As such, if some row transcoding operations fail, the columns

will still be able to correct these failures. This analysis is formalized in Section 9.8.4.

The advantage of this approach is that C2 can be an arbitrary linear code, and thus it

can have better error-correcting capabilities and more efficient encoding and decoding algo-

rithms than C1. The disadvantage of this approach is that, since columns are encoded in C2

after Φ is applied, any column that contains an error prior to transcoding will contain in-

correct check symbols. Still, as long as not too many such errors exists, the row transcoding

will correct these errors. At that point, the column codes will successfully protect against

row transcoding errors. Since row transcoding is much more likely to fail than applications

of Φ (since many more logic gates are involved) this appears to be a reasonable tradeoff.

Finally, we note that both transcoding procedures we have described allow for permuting

of encoded data. In both cases the encoded columns can be rearranged when rows are

decoded, but have not yet been re-encoded. Similarly encoded rows can be rearranged when

the columns are decoded. As noted in Section 9.3.3 these permutations of the information

symbols can be used to implement data-movement.

9.5.3 Transcoding in Parallel Architectures

In order to make transcoding operations fault-tolerant, multiple codewords are transcoded

in parallel. This might be taken to imply that any given computation step must be large

enough to accommodate a sufficiently large number of codewords. We emphasize that

another alternative would be to consider parallel (or pipelined) architectures in which the

transcoding operations for multiple computation step, of multiple concurrent computations,

are transcoded in parallel. For example, in a 2D code, each row codeword could correspond

to completely different computation step in a fault-tolerant parallel architecture. This is an

important point, because otherwise coded computation could only be applied if each indi-

vidual computation step were sufficiently wide to accommodate extremely large codewords.

It also suggests designing a fault-tolerant architecture in which a number of centrally located

“transcoding units” are used to transcode the outputs of a number of concurrent computa-

tion steps. Checksum-based transcoding is particularly well-suited to this approach, since

here m distinct codewords come together as rows in 2D code only during transcoding.

186

9.6 Codeword Permutations

This section examines the role of codeword permutations, first discussed in Section 9.3.3, in

greater detail. As explained previously, an encoded computation must not only implement

the computation steps of a regular computing network (through component-wise application

of interpolation polynomials), but also implement the network’s data-movement operations.

This is accomplished by applying some restricted set of permutations to the encoded data.

Recall from Section 9.2 that the output vector, zt, of each step of a regular network’s

computation is permuted by some π ∈ Π before it is supplied as input to a subsequent com-

putation step. In the corresponding encoded computation, this data-movement operation

may be implemented by permuting the encoded output vector either before, during, or after

the transcoding operation that follows each computation step. As defined in Section 9.3.3,

we use Π∗ to denote the set of permutations that can be applied to the encoded data. In

this section we discuss how permutations in Π∗ can be used to realize permutations in Π.

Section 9.6.1 considers the case when each π ∈ Π has an extension (defined below) in Π∗.

Section 9.6.2 then describes how permutations in Π∗ can be composed via a small number

of additional computation steps to produce extensions of π ∈ Π.

9.6.1 Direct Application of Extension Permutations

In this section we assume that each π ∈ Π has an extension π∗ ∈ Π∗. Recall from Sec-

tion 9.3.3 that a permutation over n elements, π∗, is an extension of a permutation over

k < n elements, π, if π∗ applies π to the first k of the n elements. If π∗ is an extension of π,

any data-movement operation that applies π after a step of unencoded computation can be

realized through application of π∗ after a step of encoded computation. At first glance, it

may appear overly optimistic to expect that every permutation in Π has an extension Π∗.

Fortunately, the following examples suggest otherwise.

First, consider the case described by Spielman in [80] (see Section 9.3.4). Here the regular

computing network being encoded corresponds to a normal algorithm on a hypercube.

In this case all data-movement permutations correspond to swapping data along a single

dimension of a k-processor hypercube. When data is encoded, each information symbol

187

corresponds to the data located at a particular processor. As such, each information symbol

is indexed by a binary string of length log2 k, and each permutation in Π is extended by

any permutation that flips the appropriate bit of each information symbol’s index string.

Spielman’s construction encodes data using length n Reed-Solomon (RS) codes con-

structed over a field GF (2q). As Spielman observes, when n = 2q (or a smaller power of

two) these codes are closed under permutations that correspond to swapping data along

the dimensions of an n-processor hypercube. More specifically, when n = 2q each codeword

symbol can be indexed using a binary string of length q and Π∗ contains all permutations

that corresponding to flipping the same bit in each binary index (Section 9.7.1 provides an

explanation of why this statement holds). Since k is also a power of two, each permutation

in Π has an extension in Π∗, provided that the information symbols are located in the

positions indexed by binary strings in which the first q − log2 k bits are 0 (in other words,

the vertices in a k-vertex hypercube are embedded in an n-vertex hypercube by padding

each vertex’s index with 0’s). The same holds true if multidimensional RS codes are used,

and if Reed-Muller codes are used (see Section 9.7.2).

As a second example in which Π∗ contains an extension of each π ∈ Π, suppose Π con-

tains only cyclic shifts (as noted at the end of Section 9.2.2 this is still sufficient to perform

arbitrary computations with limited overhead). If n is a multiple of k, Π∗ can contain

permutations that simultaneously shift the k information symbols, and n − k information

symbols, in blocks of k. For example, suppose C is chosen to be a length n RS code over

the field GF (p2), where p is an arbitrary prime. Let n = cp, where c is a constant less

than p. If k = p information symbols are encoded, this information can be indexed by the

tuples (0, 0), . . . , (0, p− 1) and the check symbols indexed by the tuples (i, 0), . . . , (i, p− 1)

for 1 ≤ i < c. As explained in Section 9.7.1, this code is closed under any permutation

that adds a constant to the second position of each symbol’s index. This means that the p

information symbols can be cyclicly shifted if each block of p check symbols is also cyclicly

shifted by the same amount. For intuition as to why such permutations are permitted, note

that RS codes are constructed by evaluating a polynomial, p(x), of bounded degree at a n

locations. Adding a constant to x shifts the polynomial but does change its degree.

As a final very general example of how Π∗ can effectively contain an extension of each

188

π ∈ Π, recall the observation at the end of Section 9.5.2. Namely, during the transcoding of

2D codes, it is possible to rearrange both the rows and columns of the encoded data (i.e. the

columns containing the information symbols can be permuted, followed by the rows). This

type of data-movement, though not technically a permutation (some check symbols may

be modified instead of permuted) is sufficient to implement two-dimensional cyclic shifts.

This in turn allows the encoded network to implement the data-movement required by a

2D mesh (see Section 9.2.2). Also, if the number of encoded information symbols is a power

of two, shuffling their rows or columns during transcoding is sufficient to implement the

data-movement required by a normal hypercube algorithm.

9.6.2 Composing Permutations to Realize Extensions of Π

Sometimes it may be necessary to implement a data-movement operation for which π ∈ Π

does not have an extension in Π∗. To do this, the permutations in Π∗ must be combined, via

computation steps, to form permutations that are extensions of those in Π. This problem

is very similar to implementing an arbitrary computation on a regular computing network

for which Π is restricted.

Section 9.2.2 described how arbitrary permutations over k elements can be performed

by a switching network of logarithmic depth. A Beneš switching network [82], for example,

consists of two back-to-back butterfly (or FFT) graphs [81, p. 310]. At each stage of

this network two pieces of data are moved to a node and potentially swapped (i.e. each

node acts as a switch). The necessary data-movement at each stage of the network can be

implemented by performing two cyclic shifts, one to the right and one to the left, each by

a number of places that is a power of two.

Let E(z) be the transcoded output of some stage of the encoded network. As long as

Π∗ contains cyclic shifts, a Beneš network can be implemented as an encoded computation

and used to realize an arbitrary permutation of z. To implement each stage of the Beneš

network, E(z) can be copied twice, and each copy shifted by the appropriate power of two.

The computation step performed by the switching network simply corresponds to each

node selecting the appropriate entry from either E(z), or one of the two shifted copies of

E(z). This selection operation can be implemented using two applications of the polynomial

189

Φ(r, s, t) = rt + s(1− t), where t is used to determine which element is selected.

After each application of Φ a transcoding operation is required, but even if Π contains ar-

bitrary permutations, the entire switching network will require at most 4 log2 n transcoding

operations. In other words, arbitrary permutations can be carried out with only logarithmic

overhead provided Π∗ contains cyclic shifts. Furthermore, one suspects that Π would not

contain arbitrary permutations and that Π∗ may contain more than just cyclic shifts. This

may allow for a shallower switching network.

Composing Multiple Permutations Via Masking

In the above example, encoded output vectors are copied, permuted in two different ways,

and then the differently permuted copies are combined via an interpolation polynomial that

acts as a switch. It is worth noting that this approach can be extended to an arbitrary

number of differently permuted copies of the output vector. To see how, call a codeword,

E(m) ∈ C, a “mask” if its information symbols, m, consist only of 0’s and 1’s. Now suppose

that an arbitrary codeword E(x) ∈ C is multiplied by E(m), meaning the polynomial

Φ(r, s) = rs is applied component-wise, and the product transcoded. The result, E(z) =

T
(n)
C,C∗(Φ(n)(E(x), E(m))), is a codeword C in which some of the information symbols in x

are now set to 0 while the others remain unchanged.

Now consider m copies of E(x), each of which has been permuted by a different per-

mutation π∗i ∈ Π∗. To combine these m differently permuted copies, each copy can be

multiplied by a different mask, E(mi). The m products, E∗(zi) = Φ(n)(π∗i (E(x)), E(mi)),

are codewords in C∗. Since C∗ is linear, these m codewords can be summed and their sum

transcoded. The resulting codeword in C is equal to
∑m

i=1 E(zi) (even though only a single

transcoding operation was required). Finally, suppose we have chosen the masks such that

at most one mi has a 1 in each position. Then each information symbol of
∑m

i=1 E(zi)

comes from a differently permuted copy of E(x), as specified by which ever mi has a 1 in

each position.

This general idea of “masking” different positions in differently permuted copies of E(x),

then combining these copies via addition, allows us to realize a substantial range of permuta-

tions using only a single additional transcoding step. For example, the switching operations

190

described in the previous section can be implemented using masks. This avoids the need

to perform two transcoding operations to implement each stage of the switching network,

thus reducing the total number of transcoding operations from 4 log2 n to 2 log2 n. What’s

more, when masking is used, the masks themselves can be pre-computed and hard-wired

into a circuit. Finally, masking makes it easy to consider encoding each step computation

in multiple blocks. If each computation step is extremely wide (i.e. k, and hence n, are very

large), it may make sense to simply divide the steps up into b blocks and encode each block

separately. In this case, each encoded input vector corresponds to b separately encoded

blocks of information symbols. The b encoded blocks can be computed on and transcoded

separately, but there is still the need to move data between blocks. Masking allows for this.

To exchange data between several blocks, a different mask can be applied to each block and

the results combined via addition.

9.6.3 Data-Movement Overhead

The constructions described in this section demonstrate that a wide range of data-movement

operations can be implemented efficiently during coded computation. The exact overhead

associated with realizing an arbitrary permutation depends on Π∗ and the overhead associ-

ated with transcoding. As we have noted Π∗ can contain a fairly wide range of permutations

simply by virtue of how information symbols can be permuted during transcoding. Further-

more, the technique of masking provides significant flexibility regarding how permutations

are composed.

In general, the overhead associated with realizing arbitrary data-movement permuta-

tions is at most logarithmic. We note, however, that today’s hardware employs circuits

that are embedded on a chip. As such, they do not implement arbitrary data-movement.

We suspect that the data-movement used in practice would require only constant factor

overhead. Furthermore, it is often possible to design circuits and algorithms with specific

data-movement constraints in mind. We thus conclude that transcoding, and not data-

movement, appears to be the primary source of overhead associated with coded computa-

tion. Even so, it will still be necessary going forward to investigate how the constructions

of this section can be applied to specific embedded architectures.

191

9.7 Families of Codes

In this section we examine specific families of parallel product codes and consider the

overhead associated with using these codes for coded computation. For a family of codes to

allow for efficient use in our coded computation framework, it must have a reasonably good

rate and be relatively simple to transcode (i.e. it must have efficient decoding and encoding

algorithms). In his work on coded computation, Spielman proposed using Reed-Solomon

(RS) codes [80]. In this section we consider these and other codes based on polynomial

interpolation, such as Reed-Muller (RM) codes.

9.7.1 Reed-Solomon Codes

An [n, k, d]q code is one that has block length n, k information symbols, minimum distance

d, and code alphabet of size q. Given a finite field, G, an [n, k, d]|G| RS code, which

we denote RS[n, k, d]|G| is defined using degree d − 1 polynomials over G. A systematic

RS[n, k, d]|G| code is defined in terms of an arbitrary subset H = {h0, ..., hk−1} of G. Given

the k information symbols, a = (a0, a1, . . . , ak−1), ai ∈ G, let pa(u) denote the degree

k − 1 interpolation polynomial such that, for each hi, pa(hi) = ai. The encoding of a in

RS[n, k, d]|G| is simply the value of pa(u) evaluated at all points in G, or if |G| > n, a

subset S of G of size n where H ⊂ S.

Since any two degree k−1 polynomials agree on at most k−1 points in G, RS[n, k, d]|G|

codewords have minimum distance, d = n − k + 1. Furthermore, since degree k − 1 poly-

nomials are closed under addition, the code is guaranteed to be linear. To see that RS

codes are examples of parallel product codes, it suffices to observe that one possible basis

for RS[n, k, d]|G| is bi = (1i, αi, ..., α(|G|−2)i), where α is the generator of G and i ranges

from 1 to k−1. We note, however, that this is not the basis used in the construction above,

since it does not cause RS codes to be systematic.

To better illustrate how RS codes allow for coded computation, consider the computa-

tion E∗(zt+1) = Φ(n)(π∗1(E(zt)), π∗2(E(zt)), E(wt)) on a hypercube using normal algorithms

where Φ(n) has degree δ. Because the codeword E(zt) is closed under normal algorithm

permutations, the three codewords π∗1(E(zt)), π∗2(E(zt)), and E(wt) are the values of the

192

polynomials p̃x(u), p̃y(u) and p̃z(u), respectively. The result of applying Φ(n) to each of

the n codeword symbols is a codeword in C∗ = RS[n, δ(k− 1) + 1, d∗]|G| which corresponds

to the degree δ(k−1) polynomial Φ(p̃x(u), p̃y(u), p̃w(u)) evaluated at the same n elements

of G. Here the minimum distance between codewords in C∗ satisfies d∗ = n− δ(k − 1). In

order for C∗ to have error correction capability, d∗ ≥ 3 and hence k ≤ (n− 3)/δ + 1.

Overhead

RS codes have a large minimum distance, they can be encoded with logarithmic overhead

(i.e. via an O(n log n) algorithm) and decoded deterministically using polylogarithmic over-

head [85, 86]. Unfortunately, they also have a significant drawback in that their alphabet-

size, |G|, must be at least as large as their length, n. This means that even a simple

extension polynomial, such as Φ(r, s, t) = rt+s(1− t) (here δ = 2), must be applied to each

check symbol in a codeword using finite field arithmetic. When encoding an arithmetic

circuit (a circuit in which each gate is a finite field operation), this is not unreasonable,

but when encoding a logic circuit, in which gates are simple binary operations, the over-

head associated with computing on check symbols is o(log(n)) (since each check symbol

computation operates on at least log(n) bits).

9.7.2 Reed-Muller Codes

Reed-Muller (RM) codes can be used in lieu of RS codes for C and C∗. They are also defined

by evaluating a polynomial. However, instead of a using a one-dimensional bounded-degree

polynomial over an arbitrary field G, an r-dimensional, bounded-degree polynomial over

the field GF (2)r is used. Each codeword in the Reed-Muller code RM [n, k, d]2 corresponds

to an r-dimensional, degree-m polynomial, pa(u1, ..., ur) over all n = 2r values in GF (2)r.

Since there are only
∑m

i=0

(
r
i

)
such polynomials, we require k ≤

∑m
i=0

(
r
i

)
. It is not hard to

show that d = 2r−m [87] and hence it is desirable for m to be as small as k allows.

Like RS codes, RM codes are linear since the set of r-dimensional degree-m polynomials

used to define RM [n, k, d]2 is closed under addition. Furthermore, like RS codes, RM

codes can be made systematic by selecting polynomials via interpolation. Also as with RS

codes, RM codes allow for application of a polynomial Φ. For example, when the extension

193

polynomial Φ(r, s, t) = rt is applied to two codewords in C = RM [2r,
∑m

i=0

(
r
i

)
, 2r−m]2, the

result is a codeword in C∗ = RM [2r,
∑2m

i=0

(
r
i

)
, 2r−2m]2. Notice that the minimum distance

between codewords has been reduced from 2r−m to 2r−2m.

Overhead

In the example above, the rate of C and error-correcting capabilities of C∗ are not nearly as

good as for RS codes. However, for RM codes Φ can be a simple binary operation (in this

case and), which can greatly reduce the complexity of other operations. RM codes are also

simpler to encode and decode than RS codes. Like RS codes, RM codes can be encoded

via a simple O(n log n) algorithm, but now only binary arithmetic is required. They can

also be decoded using O(n log n) arithmetic operations [88]. We also note that both RS

and RM codes are closed under a wide range of permutations including, for example, those

corresponding to data movement on a hypercube.

9.7.3 Other Polynomial Codes

RS and RM codes are actually two extreme examples of more general polynomial-based

codes. RS codes are formed by interpolating over 1-dimensional polynomials over an al-

phabet G, for which |G| > k. RM codes, in contrast, use a binary alphabet and an m-

dimensional polynomial, and thus require k < 2m. It is perfectly reasonable to consider

codes with an intermediate-sized alphabet, say |G| > log k, constructed from polynomials

with intermediate dimension.

In general, an m-dimensional polynomial over G of degree d can interpolate over k =

(d + 1)m information symbols. Here d denotes the maximum degree of any given variable,

and thus the total degree of the polynomial is at most md. If p(x1, . . . xm) interpolates over

k points in Gm, a systematic codeword is generated by evaluating p at n points in Gm.

One standard approach for selecting these n points is to consider a set S ⊆ G such that

n = |S|m. If two distinct m-dimensional polynomials, p1 and p2, of total degree md are

evaluated at all n points in Sm, the well-known Schwartz-Zippel Lemma reveals that they

will differ in at least n− nmd/|S| locations [89, p. 29].

Now consider the code, C, with codewords produced by evaluating all m dimensional

194

polynomials, pi, of total degree at most md at all n points in Sm. C can tolerate errors

as long as |S| > md. Furthermore, if the Φ(r, s, t) = rt is applied to two codewords in C,

the resulting codeword in C∗ corresponds to the polynomial p1p2, which has total degree at

most 2md. Thus C∗ can tolerate errors as long as |S| > 2md. Finally, since n = |S|m and

k = (d + 1)m, C has rate k/n = (|S|/(d + 1))m.

9.7.4 Multidimensional Codes

As explained in Section 9.5, multidimensional codes play a very important role in ensuring

that errors can be corrected during transcoding operations. This is an important advantage

of using linear codes, such as codes based on interpolation polynomials of bounded degree.

If C is a systematic linear [n, k, d] code, a systematic two-dimensional code, C × C, can

be formed from C by encoding a grid of k-by-k information symbols first by rows, then by

columns. The new code has parameters [n2, k2, d′], where d′ ≥ d2. If one-dimensional codes

C and C∗ can be used for coded computation (i.e. component-wise application of Φ), so can

two-dimensional codes C ×C and C∗×C∗. It is also acceptable if a different pair of codes,

C and C∗, are used in each dimension of the 2D codes. Higher dimensional codes can be

constructed from C and C∗ as well.

9.8 Overhead

In this section we bound the overhead required to implement each level of a regular com-

puting network, Ci, using coded computation. We use C′i to denote the corresponding level

of the encoded computation. Here each C′i consists of a computation step, followed by a

transcoding step. Both steps must be implemented in a way that allows them to tolerate

gates that fail with probability pf . This is accomplished through a combination of gate

repetition and code-based fault-tolerance.

9.8.1 Reliability via Repetition

As explained in Section 9.1.1, repetition-based fault-tolerance is one method for making an

arbitrary network of computing elements fault-tolerant. In this approach each computing

195

element (in our case logic gates) is assumed to fail independently at random with probability

pf . As long as pf is below some critical threshold, it suffices to repeat each gate r =

O(log |C|) times, then use r constant-sized majority gates to suppress the number of errors

among the r repeated outputs. Here |C| denotes the total number of gates in the circuit.

In the case of a T -step regular computing network |C| ≤ T max |Ci|, which implies that

r = O(log max |Ci|+ log T). Thus if T is much larger than |Ci|, which may well be the case

for a lengthy computation, log T is the dominant term.

Notice that using a repetition-based approach to fault-tolerance is equivalent to encoding

each layer of the computing network, Ci, with a repetition code. Using such a code no

transcoding is required, merely error suppression via a layer of |Ci|r constant-sized majority

gates. The total overhead is thus O(r) = O(log |C|) = O(log T + log max |Ci|). As we

demonstrate, when T or max |Ci| is sufficiently large, it is possible to provide more efficient

fault-tolerance using coded computation. Since gate repetition can serve as a building

block of coded computation (as explained below) we begin with some repetition-related

terminology.

In this section we refer to each group of r repeated gates, along with the accompanying

r majority gates, as a cluster. We also refer to the r wires coming out of a cluster, and

the two sets of r wires coming into a cluster as bundles (we assume that each repeated

gate takes two inputs). For a given circuit we use the terms output clusters and input

clusters to refer to clusters that contain output gates and input gates, respectively. Each

cluster takes two bundles as input, and produces one bundle as output. Each bundle is said

to be α-correct if no more than αr of the values it transmits are in error. For a given value

of α, a cluster is said to fail if both of its input bundles are α-correct, its output bundle is

not α-correct.

In the context of the von Neumann model, in which all gates can fail with probability

pf , it is standard to take the output bundles of each output cluster and “decode” them

to single-bit outputs via tree of unreliable majority gates. If a given bundle of outputs is

α-correct, it can be shown that for sufficiently small value of α, the output of the tree of

majority gates that takes that bundle as input will be correct with probability 1 − O(pf)

[70]. In this section we do not employ this tree-based construction, since in the context of

196

coded computation it is acceptable for outputs (and inputs) to be encoded in a repetition

code (i.e. it is OK if each output remains in repeated form). Furthermore, we will find

it extremely useful to compose bit-repetition with other codes. To this end, we consider

r-repeated Reed-Muller and r-repeated Reed-Solomon codes in which each bit of

each symbol in a Reed-Muller or Reed-Solomon codeword is repeated r times. This allows

a circuit operating on these codewords to employ repetition-based fault-tolerance without

needing to worry about decoding (or reencoding) the repeated outputs via trees of unreliable

gates.

By employing r-repeated codewords, repetition-based error correction can act as a build-

ing block for more efficient code-based fault-tolerance. As such, the overhead associated

with coded computation will itself be dependent on the O(log |C|) overhead associated with

gate repetition. For intuition behind this overhead, notice that the expected number of

gate failures among r gates is rpf , thus the probability that a particular set of r repeated

gates introduces more than cpfr errors, for c > 1, grows exponentially small in r (for proof,

consider the Chernov bound in Section 5.2.1). As such, if the two input bundles to a cluster

are both α-correct, then with very high probability at most 2αr+cpfr errors will be present

among the r repeated outputs supplied to the cluster’s r majority gates. As long as cpf is

O(α) and α is not too large, it can be shown that the majority gates will be able to correct

a large fraction of these errors with very high probability [70]. This shows that when the

two input bundles supplied to a cluster are α-correct, the cluster fails to produce an output

bundle that is α-correct with probability that is exponentially small in r. Finally, notice

that the entire computation performed by all |C| clusters succeeds with probability at least

1− ε as long as each of the |C| clusters fails with probability at most ε/|C|. For fixed ε this

requires that r = O(log |C|).

When a tree of majority gates is used to decode each output cluster’s output bundle,

each single-bit output must fail with probability at least pf (since the majority gate at the

root of each tree fails with probability pf). As such, there is no particular advantage to

choosing r such that ε (the probability that some output bundle is not α-correct) is much

smaller than pf . When the majority tree construction is not employed, and the outputs are

left in encoded (i.e. repeated) form, there may in fact be a reason to choose r such that each

197

cluster fails with probability much less than pf/|C|. Suppose, for example, that a particular

value of r is sufficient to ensure that each cluster fails with probability O(pf/|C|). In this case

doubling r will ensure that each cluster fails with probability O(p2
f/|C|2). More generally

we can use gate repetition with r = O(log |C|) to ensure that each cluster’s failure rate is

polynomially small in |C|. In other words, von Neumann gate repetition with r = O(log |C|)

can be used to ensure that all output bundles of the circuit represent the correct value not

just with probability O(pf), but with probability O((pf/|C|)c) for any fixed constant c. If

these bundles are decoded using reliable majority gates, the entire computation will succeed

with probability 1−O((pf/|C|)c).

In the context of coded computation, we will use gate repetition to ensure that each step

of coded computation produces output bundles that have a polynomially small chance of

representing an incorrect value. These output bundles will each correspond to a repeated bit

in an r-repeated codeword. Coded computation will then be performed on the r-repeated

codewords in some code C. If C can tolerate up to e errors, the coded computation will

be able tolerate up to e incorrect bundles. As we explain, the probability of e such failures

occurring after any given step of coded computation can be made to decrease exponentially

in e. Thus, as demonstrated below, coded computation employed on top of gate repetition

is able ensure that any given computation step, Ci, fails to produce a correct output with

exponentially small probability using polylogarithmic overhead. In contrast, gate repetition

requires r = O(|Ci|) overhead to achieve an exponentially small failure rate for a given

computation step. As such, coded-computation is asymptotically superior to repetition-

based fault-tolerance.

9.8.2 Basic Analysis Framework

The computation of a fault-tolerant regular network is divided into T steps. Each step

consists of a computation step, followed by a transcoding step. During coded computation

the input to a particular computation step, or the output from a particular transcoding

step, is said to correct if the codeword it is closest to in C is the codeword that would

be present in an error-free coded computation. Also, for codes C∗ and C, let the set of

correctable codewords in C∗ be those vectors that an error-free transcoding operation

198

will map to the correct codeword in C. For a computation to fail there must be some step

in which one of the two events occurs.

1. A computation step failure: The inputs to the computation step are correct, but

the output is no longer a correctable codeword.

2. A transcoding step failure: The input to the transcoding step is a correctable

codeword representing the correct value, but the step’s output is no longer correct.

We can bound the probability that a coded computation fails by bounding the prob-

ability that either of these two events occurs on any given step. Let P (E1) and P (E2)

denote these probabilities for whichever step has the largest chance of failing (in practice,

we expect all steps to have an approximately equal chance of failure). The probability that

the computation fails, denoted Pf , is at most Pf ≤ T (P (E1) + P (E2)). Thus our goal is to

bound P (E1) and P (E2).

By definition, an error-free transcoding step will be able to correct any correctable code-

word that the computation step outputs. Thus a transcoding failure occurs only if a suffi-

cient number gate failures occur during the transcoding operation. Too many such failures

will corrupt a potentially correctable codeword. Thus P (E2) depends on how transcoding

is implemented. The following subsections consider several approaches to transcoding.

In a computation step, if two correct codewords are supplied as inputs, the output may

not be correctable. The probability of a computation step failure will depend on how many,

and where, errors within the correctable inputs have occurred. To get a very precise bound

on P (E1), we would need to associate a probability distribution with where errors occur in

a transcoding step’s correctable output. We would then need to consider the likelihood that

a particular distribution of errors, among a pair of correct inputs, results in computation

step failure.

This calculation would be extremely cumbersome. As such, it makes sense to designate

a subset of all possible encoded inputs as sustainable codewords. An input vector to a

computation step is sustainable if it is correct (i.e. it is closest to the correct codeword in C),

and the errors it contains fulfill some pre-chosen criteria. This criteria, which will depend

on the code being used, must ensure that any two sustainable inputs to a computation step

199

are very likely to produce a correctable output.

Along similar lines, it is also useful to designate some subset of the correctable codewords

as highly correctable codewords. These are vectors that are very likely to be mapped

to a correct output by a transcoding operation in which gates fail. Using the idea of both

highly correctable and sustainable codewords we can redefine events E1 and E2 as follows.

1. A computation step failure: The inputs to the computation step are sustainable,

but the output of the computation step is not highly correctable.

2. A transcoding step failure: The input to the transcoding step is highly correctable,

but the output is not sustainable.

Note that the bound, Pf ≤ T (P (E1) + P (E2)), still holds, since as before, if neither of

the two events occurs on any step, the computation succeeds. Now, however, P (E1) and

P (E2) are much easier to bound.

As a simple example, consider the above events when a repetition code is used (here C

and C∗ are the same code). If each symbol is repeated r times, all codewords with fewer than

r/3 errors in each position can be considered highly correctable. Sustainable codewords can

then be defined as having fewer than r/7 errors in each position. This ensures that any

two sustainable codewords, when computed on, are likely to produce a correctable output

(provided pf is sufficiently small). As highlighted above, this is essentially the approach

taken in [70], although instead of a transcoding step majority-based error correction is

employed. Using groups of r constant-sized majority gates, any highly correctable codeword

can be mapped to a sustainable codeword with high probability.

Errors in Computation Steps

During a computation step, n functions, Φ, are computed in parallel. Let εc denote an

upper bound on the probability that any particular application of Φ fails (meaning that an

incorrect output is produced). Such a failure is called a computation error. Assume Φ

takes three inputs, in which case each computation step takes two sustainable codewords

200

as input vectors, and one instruction vector, which we assume is fault-free.4

If each of the n functions applied during a computation step is computed by a single

gate, εc = pf , the failure rate of individual gates. If however, codewords use a non-binary

alphabet, Φ will be more complex. If each function is computed using Gc gates, εc < Gcpf .

When Gc is sufficiently large, Gcpf will be too large to provide a useful bound. In this case,

additional repetition-based fault-tolerance can be added to ensure that εc remains close to

ε. By using r-repeated codewords, and repeating each bit of all codewords r times, Φ can

be computed by a circuit that employs von Neumann gate repetition. As noted above, this

allows O(log n) overhead to be used to ensure that εc is polynomially small in n.

It is also worth noting that since each computation step will involve finite field arith-

metic, it may be practical to employ algorithm-based fault-tolerance in lieu of, or in addition

to, gate repetition. For example, if the Gc gates are used to perform finite field arithmetic

in GF (2q), check arithmetic can be performed mod2. Although this alone may not be

sufficient to reduce εc to the desired value, it can be used in conjunction with repetition.

Theoretically, coded computation could even be applied recursively to boost the reliability

of each application of Φ.

Errors in Transcoding Steps

During each transcoding step, multiple transcoding operations will take place in parallel.

As with parallel applications of Φ, discussed above, there will be an error rate, εt, associ-

ated with each of these transcoding operations. When a particular transcoding operation

produces an incorrect output, this is called a transcoding error. If each transcoding op-

eration uses Gt total gates, than Gtpf provides a bound on εt. As Gt increases, however,

this fault rate becomes prohibitively high. Furthermore, Gt will typically be much larger

than Gc. Once again von Neumann style gate repetition provides a general way to reduce

εt as needed, regardless of the transcoding algorithm being employed. Specifically, εt can

be made polynomially small in n using O(log n) overhead.

Also, as in applications of Φ, algorithm-based fault-tolerance may also be useful. Since
4We make this assumption because, in practice, instructions can be hard coded into a circuit. If we did

not wish to make this assumption, we would simply increasing εc accordingly.

201

the decoding of linear error-correcting codes typically involves a significant amount of arith-

metic, modular arithmetic may once again provide a way of employing intermediate check

points. Also, when a codeword is decoded it is typically easy to check that the answer is

correct via a less expensive encoding operation. This once again suggests that algorithm-

based fault-tolerance may be used in conjunction with gate repetition in order to reduce

εt. Finally, certain codes may allow for encoding and decoding circuitry in which each gate

failure only corrupts a limited number of output bits. This idea is examined in [90] with

the goal of producing highly fault-tolerant memories. As noted in Section 9.8.4, iterative

decoding of low-density parity check codes also has this property.

A Reliable Step of Coded Computation

Each step of coded computation is comprised of a computation step, followed by a transcod-

ing step. The computation step consists of n applications of a function Φ, each of which

produces an incorrect output with probability εc. As noted at the end of Section 9.4.1, it

suffices to consider the case when Φ(r, s) = rs, since more complex Φ can be decomposed

into a series of multiplications. and additions. After a computation step, the transcoding

step consists of nt = O(n) transcoding operations each of which fails with probability εt. As

discussed above, both εc and εt can be made polynomially small in n using gate repetition

in which r = O(log(n)). Now suppose the coded computation is designed so that at least

e1 computation errors or e2 transcoding errors must occur for a particular step of coded

computation to fail. As long nεc < e1 and ntεt < e2, the probability that each step of coded

computation fails will decrease exponentially in n.

In the analysis that follows, we consider several approaches for reliably implementing

each step of coded computation using different codes and transcoding methods. The relia-

bility of a coded computation typically increases with its width. As described in Section 9.5,

for example, the fault-tolerance of each transcoding step relies on multiple codewords being

transcoded in parallel. As noted in Section 9.5.3, however, this does not necessarily require

that each computation step be wide enough so to accommodate multiple large codewords.

An alternative approach is to consider either a parallel, or pipelined architecture in which

multiple transcoding operations, for multiple different computation steps are carried out in

202

parallel.

9.8.3 Coded Computation Using 2D Codes

This section bounds the overhead required to make a regular computing network, C, fault-

tolerant via coded computation when C and C∗ are both n-by-n two-dimensional codes.

In this case each computation step consists of n2 applications of Φ in parallel, and each

transcoding step consists of n row transcoding operations followed by n column transcoding

operations (see Section 9.5.1). For simplicity, we assume that the row and column codes

of C are both the same [n, k, d] linear code, and that the row and column codes of C∗ are

both the same [n, k∗, d∗] linear code. Here k∗ > k and d∗ < d.

As discussed in Section 9.8.2, we can bound the probability that a given step of coded

computation fails by providing suitable definitions of “highly correctable” and “sustainable”

codewords.

Definition 9.8.1 When C and C∗ are 2D codes, an encoded vector in C∗ is called highly

correctable if at most d∗/3 rows contain more than d∗/2 errors each. An encoded vector in

C is called sustainable if no row contains more than d∗/6 errors. If r-repeated codewords

are used, and each bit is repeated r-times, the term “error” refers to at least αr of the r

copies of a bit being in error (see Section 9.8.1).

Now consider a computation step in which Φ is applied component-wise to two sus-

tainable inputs. If no computation errors occur, the encoded output will contain at most

2d∗/6 = d∗/3 errors per row. Thus, in order for a computation step to fail to produce

a highly correctable output from two sustainable inputs, more than d∗/2 − d∗/3 = d∗/6

computation errors must occur in more than d∗/3 rows. Now consider a transcoding step

in which a highly correctable input is transcoded row-wise then column-wise, as described

in Section 9.5.1. Since at most d∗/3 rows represent incorrect codewords the transcoding

step can fail to produce a sustainable output only if more than d∗/2 − d∗/3 = d∗/6 row

transcoding operations produce errors, or more than d∗/6 column transcoding operations

produce errors.

To bound the probability that a step of coded computation fails, let B(N,S, p) denote

203

the probability that a binomial random variable with parameters N and p takes value

greater than S. B(N,S, p) =
∑N

i>S

(
N
i

)
pi(1 − p)N−i, which grows exponentially small in

δ2Np when S ≤ (1− δ)Np for any fixed constant δ (see the Chernov bound in Section 5.2.1

where E[S] = Np). Also, recall from Section 9.8.2 that we use εc to denote the probability

that a particular application of Φ results in an error, and εt to denote the probability that

a particular transcoding operation results in an error (when a transcoding error occurs, all

positions in the output vector may be incorrect). The probability that a coded computation

fails is bounded by the following Lemma.

Lemma 9.8.1 Consider a T -step coded computation in which C and C∗ are 2D linear

codes whose row (and column) codes are have parameters [n, k, d] and [n, k∗, d∗], respectively.

Also, let εc and εt denote the probabilities of a computation error and a transcoding error,

respectively. Then the probability of a computation step failing is at most B(n2, d∗2/18, εc)

and the probability of a transcoding step failing is at most 2B(n, d∗/6, εt). Finally, the

probability, Pf , that some step of a T -step coded computation fails is bounded as follows:

Pf < T (B(n2, d∗2/18, εc) + 2B(n, d∗/6, εt))

Proof During each computation step Φ is applied n2 times and each application has

probability εc of producing an error. As discussed above, a computation step with two

sustainable inputs can tolerate at least (d∗/3) · (d∗/6) = d∗2/18 computation errors. Since

these errors occur independently, the probability of a computation step failing is at most

B(n2, d∗2/18, εc).

Similarly, during each transcoding step n row and n column transcoding operations

take place. Each operation results in an error with probability εt. For the transcoding step

to fail when given a highly correctable input more than d∗/6 row transcoding errors, or

d∗/6 column transcoding errors must occur. Since transcoding errors occur independently,

the probability of a transcoding step failing at less than 2B(n, d∗/6, εt).

Finally, as explained in Section 9.8.2, a T -step coded computation succeeds if none

of the T computation and T transcoding steps fail. Thus Pf ≤ T (B(n2, d∗2/18, εc) +

2B(n, d∗/6, εt))

Regardless of the code being used, εc and εt should be chosen so that εc < d∗2/18n2 and

204

εt < d∗/6n in order to successfully bound Pf . For example, suppose computation errors

occur with probability εc ≤ 10−7 and transcoding errors (which are significantly more likely,

due to the added circuity involved) occur with probability εt ≤ 10−3. Here reliable coded

computation can be implemented using a family of codes for which d∗ is large compared to

10−3 · 6n. Reed-Solomon codes can easily meet this criteria. For instance, a Reed-Solomon

code for which k = 32 and n = 100 yields d∗ = 38 if Φ has degree 2 (see Section 9.7.1). In

this case, the above lemma reveals that each step of coded computation fails with probability

at most Pf ≤ B(n2, d∗2/18, εc) + 2B(n, d∗/6, εt) = B(104, 80, 10−7) + 2B(102, 6.2, 10−3) <

1.5 · 10−11. As n increases, the bound on Pf decreases exponentially.

2D Reed-Solomon Codes

Now consider the use of n-by-n 2D Reed-Solomon (RS) codes as C and C∗, the case originally

analyzed by Spielman in [80]. As explained in Section 9.7.1, a one dimensional [n, k, d] RS

code requires that n = k+d−1 and that the code have alphabet size at least n. Furthermore,

d∗ = n−2(k−1) = d−k+1 when Φ has degree 2 (see Section 9.7.1). Also, one dimensional

RS codes can be transcoded via decoding, then re-encoding, using O(n log2 n) arithmetic

operations [91, 92] (also in [80] Spielman proposes a randomized transcoding algorithm

using the result of [93]).

As 1D RS codes grow in length, each symbol of each codeword requires O(log n) bits,

and d∗ = O(d) = O(n). Thus B(n2, d∗2/18, εc), above, is exponentially small in n when

εc < d∗2/(18n), and B(n, d∗/6, εt) is exponentially small in n when εt < d∗/(6n). In

both cases this requires εc and εt be held below some constant. To do this r-repeated RS

codewords can be used as described in the previous section. This requires r = O(log n). As

such, when 2D RS codes are used, a single computation step is made exponentially reliable in

n using at most O(log4 n) overhead. Finally, an additional factor of O(log(n)) overhead may

be required during the subsequent data-movement operation in order to realize an arbitrary

permutation over the information symbols. Since n = O(k), this implies that making each

step of a regular computing network with k2 operations per step (and potentially arbitrary

data movement between steps) exponentially reliable in k using RS codes requires at most

O(k log5 k) gates.

205

To review, there are several sources for this logarithmic overhead. First, the alphabet size

of RS codes must grow with their length. Second, r-repeated codewords must be employed

in order to hold εc and εt constant (here the need to hold εt constant, not εc, represents

the real bottleneck). Third, arbitrary data-movement operations may be required, and

fourth, there is a costly transcoding operation after each step. This transcoding, which

takes place after each step of coded computation, requires encoding and decoding of 2n 1D

RS codewords (n rows and n columns). This represents the single largest source of overhead.

In practice, it might make sense to consider using RS codes for which n, and hence d and d∗,

are O(k log k). This would allow for O(log(k)) applications of Φ before a transcoding step

is required. Alternatively, it may be possible to structure a computation so as to reduce

the total number of transcoding steps. For example, if Φ is applied to two codewords,

the result can be copied c times, each of these c copies permuted by different permutation

ΠC∗ (as defined in Section 9.3.3), and the c differently permuted copies summed. This

summation requires only a single transcoding operation, even though it is considerably more

powerful than a single application of Φ (the summation operation can also be combined with

“masking”, as described in Section 9.6.2).

9.8.4 Coded Computation Using 1D Codes

This section bounds the overhead required to make a regular computing network, C, fault-

tolerant via a coded computation that employs checksum-based transcoding, as described

in Section 9.5.2. This approach to coded computation no longer requires that C and C∗ be

2D codes. Instead, each step of coded computation is performed on m separate codewords

in some linear code, C. As before we use [n, k, d] and [n, k∗, d∗] to denote the parameters

of C and C∗ respectively. Once again k∗ > k and d∗ < d. As explained in Section 9.5.2 m

codewords from C∗ can be transcoded in a fault-tolerant manner if they are first encoded

in a 2D code. To do this the m codewords in C∗ are treated as m rows in a 2D code, then

a second linear code, C2, is used to encode their n columns. The result is a 2D codeword

in C∗ × C2. Here C2 can be an arbitrary systematic linear [n2,m, d2] code. In the newly

generated 2D codeword, we refer to the m original codewords as “information rows” and

the n2 −m newly generated rows as “check rows”.

206

As in Section 9.8.3 we can bound the probability that a given step of coded computation

fails by providing suitable definitions of “highly correctable” and “sustainable” codewords.

Definition 9.8.2 Consider m separately encoded rows in an m-by-n array. When the m

rows represent codewords in C∗ they are collectively called highly correctable if no more

than d∗/3 of their n columns contain any errors (i.e. at least n − d∗/3 columns are error

free). When the m rows represent codewords in C, they are collectively called sustainable

if at most d∗/8 of their columns contain errors. If r-repeated codewords are used, and each

bit is repeated r-times, the term “error” refers to at least αr of the r copies of a bit being

in error (see Section 9.8.1).

During a computation step, Φ is applied component-wise to two sets of sustainable

codewords. If no computation errors occur, at most d∗/4 of the encoded output’s columns

will contain errors. For the computation step to fail to produce a highly correctable output,

more than d∗/3 − d∗/4 = d∗/12 computation errors must occur. Since these errors occur

independently, the probability that a computation step fails is at most B(nm, d∗/12, εc).

Now consider a transcoding step that receives a highly correctable array of m codewords

in C∗. Initially the n columns are encoded in C2. Since at most d∗/3 of the columns contain

errors, more than d∗/6 encoding errors must occur for any row to contain more than d∗/2

errors. Next the n2 rows are transcoded. If no more than d2/2 transcoding errors occur,

each column will represent the correct codeword in C2. Finally the n2 columns are decoded.

If no more than d∗/8 decoding errors occur, the resulting array of m codewords in C will

be sustainable. Thus a transcoding step will produce a sustainable output from a highly

correctable input as long as fewer than d∗/6 encoding errors, d2/2 transcoding errors, and

d∗/8 decoding errors occur.

Since C2 can be chosen to be an arbitrary linear code, it is reasonable to assume that

the row transcoding operations are the most likely to result in errors. Thus we could use

εt as a bound on the probability of all three error types. Alternatively, we can provide a

more fine-grained analysis and use εt2 to denote the probability that a particular column

experiences either an encoding or a decoding error. This yields the following Lemma.

Lemma 9.8.2 Consider a T -step coded computation that employs checksum-based transcod-

207

ing, where C and C∗ are linear codes with parameters [n, k, d] and [n, k∗, d∗], respectively.

Also, C2 is the linear [n2,m, d2] column code used during transcoding. Let εc and εt de-

note the probabilities of a computation error and a transcoding error, respectively. Also,

let εt2 denote the probability that a particular column’s encoding or decoding operation re-

sults in an error during transcoding. Then the probability of a computation step failing

is at most B(nm, d∗/12, εc) and the probability of a transcoding step failing is at most

B(n, d∗/6, εt2) + B(n2, d2/2, εt). Finally, the probability, Pf , that some step of a T -step

coded computation fails is bounded as follows:

Pf ≤ T (B(nm, d∗/12, εc) + B(n, d∗/8, εt2) + B(n2, d2/2, εt))

Proof As explained above, a computation step can only fail if more than d∗/12 com-

putation errors occur. Thus the probability that a computation step fails is at most

B(nm, d∗/12, εc). Also, a transcoding step can fail only if more than d∗/6 encoding er-

rors, d2/2 transcoding errors, or d∗/8 decoding errors occur. This implies that more than

d∗/8 columns must experience either an encoding or a decoding error, thus the probability

that a transcoding step fails is at most B(n, d∗/8, εt2) + B(n2, d2/2, εt). Since a T -step

coded computation succeeds if none of the T computation and T transcoding steps fail,

Pf ≤ T (B(n2, d∗2/18, εc) + 2B(n, d∗/6, εt))

In order to obtain a bound on Pf , εc < d∗/12nm, εt < d2/2n2 and εt2 < d∗/6n. We note

that since C2 can be an arbitrary linear code, d2 can be chosen such that d2 = O(n2) = O(m)

and such that d2 > d∗. As such, the requirement on εt2 is more stringent. Fortunately the

overhead associated with keeping εt2 small can reduced when C2 is chosen appropriately.

For example, C2 can be a code that allows for linear-time encoding and decoding [94]. C2

can also be a low-density parity check code that allows for linear-time encoding and efficient

iterative decoding based on sparse matrices [95]. One advantage of iterative decoding is that

it is inherently fault-tolerant against the failure of gates (or in our case clusters of gates).

In iterative decoding the number of errors in a codeword is repeatedly reduced during

successive stages of the decoding algorithm. If errors are introduced during a particular

stage, they can be corrected by subsequent stages.

208

1D Reed-Solomon Codes

Now consider the use of 1D RS Codes as C and C∗. As explained in Section 9.7.1, a one

dimensional [n, k, d] RS code requires that n = k+d−1 and that the code have alphabet size

at least n. Also, d∗ = n− 2(k− 1) = d− k + 1 when Φ has degree 2 (see Section 9.7.1). As

noted in the previous section, these codes can be transcoded via decoding, then re-encoding,

using O(n log2 n) arithmetic operations [91, 92].

As in the previous section, we first observe that as 1D RS codes grow in length, each

symbol of each codeword requires O(log n) bits, and d∗ = O(d) = O(n). B(nm, d∗/12, εc)

is exponentially small in n when εc < d∗/12nm. Similarly 2B(n, d∗/6, εt2) is exponentially

small in n when εt2 < d∗/6n. In both cases, assuming m is polynomial in n, this can be

accomplished by using r-repeated RS codewords when r = O(log n). As explained at the

beginning of this section, this value of r is sufficient to ensure that all clusters fail with

probability O(pf/nc), for any constant c. Similarly, we can ensure that B(n2, d2/2, εt) is

exponentially small in n if we choose C2 such that n2 = O(m) = O(n) and d2 = O(n).

As such, we have shown that each computation step can once again be made exponentially

reliable in n using O(log4 n) overhead, with an additional factor of O(log n) potentially

required to permute data arbitrarily.

As noted above, when checksum-based transcoding is employed there is considerable

flexibility when choosing the column code, C2. For example, C2 can be chosen such that d2 =

O(n2), and n2 = O(m). Notice, however, that it is not necessarily optimal to set m = O(n).

For example, in [80], Spielman proposes a transcoding algorithm for RS codes using the

result of [93]. The algorithm is relatively efficient (it introduces polylogarithmic overhead),

but corrects only O(
√

n) errors. As such, each step of the resulting coded computation is

not exponentially reliable in d∗ = O(n), but exponentially reliable in
√

d∗ = O(
√

n). If

this algorithm is used in the context of checksum-based transcoding, it is sensible to set

m = O(
√

n), as opposed to O(n). This reduces the overhead associated with transcoding,

but maintains the exponential reliability in
√

d∗. In contrast, if m = O(n), each column

decoding operation is exponentially reliably in m = O(n), but the other portions of the

coded computation are not any more reliable.

209

1D Reed-Muller Codes

As explained in Section 9.7.2, Reed-Muller (RM) codes can be used in place of RS codes

for C and C∗. The key difference is that RM codes use only a binary alphabet, and provide

smaller values for d and d∗. This allows for much simpler computation and transcoding

steps, but worse fault-tolerance. If n = O(k log k), d and more importantly d∗, are not

O(n).

When RM codes are used, d = 2r−m and d∗ = 2r−2m, where r and m are parameters

of the particular RM code being used for C. As explained in Section 9.7.2, r and m

determine the length of codewords and bound the number of information symbols in C.

Specifically, n = 2r and k ≤
∑m

i=0

(
r
i

)
. To ensure that k can be at least as large as some

required threshold, kt, we can set r ≥ log2 2kt and m = log2 2kt/2. Since n = 2r, we

incur at most polylogarithmic overhead as long as r = log2 2kt + c log2 log2 2kt for a given

constant c. In this case n = 2kt logc
2 2kt and k can be at least kt. Unfortunately this gives

d∗ = 2r−2m = 2c log2 log2 2kt = logc
2 2kt. Since d∗ = O(n/k), this provides no better fault-

tolerance than repetition. Thus even though coded computation can be performed using

RM codes, it is unclear if the resulting construction can provide better fault-tolerance than

repetition-based fault-tolerance. Specifically, choosing m and r such that k is at least as

large as some desired threshold, kt, and n is no larger than 2kt logc
2 2kt, appears to imply

that d∗ = O(n/k). This highlights a very important point. In order for coded computation

to provide an exponentially high level of reliability, C and C∗ must be chosen such that

d∗ = O(n1/c), for some constant c.

9.8.5 Summary of Results

This chapter offers a framework for performing reliable computation using error-correcting

codes. Our framework extends the approach Spielman described in [80] in several signifi-

cant ways. First, we describe how a range of linear codes can be used, instead of relying

purely on 2D Reed-Solomon codes over GF (2q). Second, we offer multiple approaches for

transcoding from C∗ to C after each computation step. Third, we explore a range of strate-

gies for permuting data. As we explain, codewords can be permuted before, after or during

transcoding, and the permutations one applies need not be limited to those that correspond

210

to data-movement on a hypercube. Finally, we explicitly quantify the big-O overhead as-

sociated with performing coded computations using both Reed-Solomon and Reed-Muller

codes.

As described in this section, coded computation introduces overhead by 1) encoding data

through the addition of check symbols and performing computation operations on those

check symbols, 2) performing transcoding operations on encoded outputs, 3) performing

data-movement operations, and 4) potentially employing repetition-based fault-tolerance

to reduce the error rates associated with computation and transcoding operations. In

the case of 1) Reed-Solomon codes introduce O(log n) overhead, since each check symbol

requires at least log n bits, but it is possible to reduce this overhead by using a code with

a smaller alphabet. As an extreme example we consider Reed-Muller codes, which use a

binary alphabet and thus introduce only O(1) overhead. Unfortunately, Reed-Muller codes

have poor error-correction capabilities. In the future, it may be promising to consider codes

that require, say, O(log log n) bits per check symbol.

In the case of 2) the overhead associated with transcoding both Reed-Solomon and Reed-

Muller codes is determined by the efficiency of their decoding algorithms (in both cases,

encoding is significantly simpler than decoding). Decoding these codes involves O(n log2 n)

and O(n log n) arithmetic operations, respectively. Additionally, the number of errors that

can be tolerated during transcoding determines the reliability of each step of coded compu-

tation. We have introduced checksum-based transcoding as a means of employing a second,

more efficient error-correcting code in order to boost the reliability, and reduce the overhead,

associated with each transcoding step.

In the case of 3) both Reed-Solomon and Reed-Muller codes can directly implement data-

movement on a hypercube. As such, performing arbitrary permutations on encoded data

introduces at most O(log n) overhead. Furthermore, a number of algorithm-specific data-

movement optimizations appear feasible in practice. Finally, in order to reduce the O(log n)

overhead associated with 4), it may be possible to apply coded computation recursively.

Instead of using r-repeated codewords, this would involve using codewords in which subsets

of symbols are themselves encoded in a smaller error-correcting code.

To summarize, Section 9.8.3 demonstrates that each step of a regular computing network

211

with k2 operations per step (and potentially arbitrary data movement between steps) can

be made exponentially reliable in k using 2D Reed-Solomon codes and O(k log5 k) gates. In

contrast, as explained at the end of Section 9.8.1, repetition codes (i.e. modular redundancy)

allow each step of the same computation network to be polynomially reliable in k using

O(k log k) gates. As explained at the end of Section 9.8.4, 1D Reed-Muller codes also allow

each step of computation to be polynomially reliable, but they require greater overhead.

Even in the absence of data-movement, the overhead associated with adding check symbols,

and transcoding codewords, is O(log2 k).

To more directly compare 2D Reed-Solomon versus repetition-based fault-tolerance, we

can consider a T -step regular computing network with k2 operations per step. This network

has |C| = Tk2 gates in total. If T is exponential in k, then making each step of computation

exponentially reliable in k allows the entire computation to be polynomially reliable in k.

As stated above, this level of reliability requires a factor of O(log5 k) overhead. In contrast,

achieving the same level of reliability via repetition-based fault-tolerance requires a factor of

O(log |C|) = O(log T + log k2) = O(k) overhead (see discussion at the end of Section 9.8.1).

Thus for a sufficiently long computation, coded computation using Reed-Solomon codes is

superior to repetition-based fault-tolerance.

212

Chapter 10

Exploring the Power of Coded

Computation

Building on the framework established in Chapter 9, this chapter offers some examples of

the promise and challenges of coded computation. Section 10.1 provides a lower bound

that offers important insight into the overhead required to perform a single step of coded

computation. Section 10.2 highlights the fact that even though it remains a challenge to

encode specific functions efficiently (i.e. with constant factor overhead), most arbitrary

boolean functions, which already require an exponential number of gates, are amenable to

a simple and efficient encoding scheme. Finally, Section 10.3 provides a concrete example

of how parallel prefix computations can be implemented as coded computations.

10.1 Lower Bounds

Recall from Section 9.3.1 that a single step of coded computation is expressed as

E∗(z) = Φ(n)(E(x), E(y), E(w)), (10.1)

where Φ is chosen such that zt = κ(k)(x,y,w), and E and E∗ are the encoding functions

associated with two different error-correcting codes, C and C∗. As defined in Section 9.2.1,

κ(k) denotes the component-wise of application of some function, κ, to k sets of inputs,

(x1, y1, w1) . . . (xk, yk, wk). Similarly, Φ(n) denotes the component-wise application of Φ.

As explained in Section 9.3.2, after Φ(n) is applied a transcoding step is required to

213

project E∗(z) to E(z). This allows E(z) to be supplied as an input to future computation

steps. The major overhead associated with coded computation appears to be this need to

perform a transcoding operation after each computation step. The process of performing

multiple steps of coded computation would be dramatically simplified if no transcoding

operation were required and C and C∗ were the same code. For example, suppose κ denotes

xor (i.e addition mod 2). In this case, choosing any linear code over GF (2) as C allows

us to compute E(z) by computing E(x) + E(y) = E(x + y) = E(xor(k)(x,y)). Thus Φ is

simply addition, and C∗ is C.

Since xor alone does not form a complete basis, it is of great interest whether a similarly

simple choice of C and Φ exists for κ = and or κ = or. Some early work in coding theory,

however, pointed out an immediate difficulty [96, 76, 77].

Theorem 10.1.1 ([77]) Let κ(x, y) be an and-type function, meaning κ either computes

and, or computes a function that differs from and in that some of the inputs or outputs are

negated. Let C be a binary error-correcting code with encoding function E : {0, 1}k 7→ {0, 1}n

and minimum distance d. If a function Φ exists such that Φ(n)(E(x), E(y)) = E(κ(k)(x,y)),

then

n ≥ kd

Thus C is no more efficient than simply repeating each symbol d times (in which case

Φ = κ).

This lower bound demonstrates that you can’t do better than a repetition code when Φ

is applied component-wise with no transcoding. It does not, however, take into account the

possibility of applying Φ to more than one symbol per codeword (also it fails to account for

non binary codes). The next theorem considers the case which the code alphabet is non-

binary and each output symbol can be a function of up to c components of each codeword.

The following lower bound, first presented in [97], accounts for both possibilities.

Theorem 10.1.2 Let κ(x, y) be an and-type function, meaning κ either computes and,

or computes a function that differs from and in that some of the inputs or output are

negated. Let C be an error-correcting code over the alphabet G with encoding function

E : Gk 7→ Gn and minimum distance d. Let F : G2n 7→ Gn be a function such that

214

F (E(x), E(y)) = E(κ(k)(x,y)), If each output of F is a function of at most c symbols of

E(x) and E(y), then

n ≥ kd/(c log2 |G|)

Proof Without loss of generality, assume κ(x, y) = and(x, y). Let F (x,y)i denote the

ith component of F (x,y). By assumption F (x,y)i depends on at most c components of

x and of y. Let S(i) denote these components of x.

Let 1r be a k-tuple in which all components are 0 except for the rth component, which

has value 1. Also, let 0 be the k-tuple in which all components are 0. By definition of F ,

F (E(x), E(1r)) = E(1r) or E(0) depending on whether xr = 1 or xr = 0.

Let ζr
i (E(x)) = F (E(x), E(1r))i denote the ith component of F (E(x), E(1r)). ζr

i (E(x))

depends on |S(i)| components of x. By assumption, |S(i)| ≤ c.

Because the code has minimum distance d, there are at least d positions at which the

codewords E(1r) and E(0) differ. Let I(0, r) denote these positions. Observe that for

each r, we can select i in I(0, r) and compute ζr
i (E(x)). Since ζr

i (E(x)) = Ei(0) if and

only if xr = 0, knowing ζr
i (E(x)) reveals the value of xr.

Let ES(i)(x) denote the components of E(x) in positions S(i), |S(i)| ≤ c. It follows

that ES(i)(x) ∈ Gc.

Let Ri denote the values of r such that i ∈ I(0, r). Knowing ES(i)(x) reveals xr for

any r ∈ Ri. Since ES(i)(x) takes at most |G|c possible values and each variable xr takes

two values, 2Ri ≤ |G|c or |Ri| ≤ c log |G|.

Pairs (r, i) satisfying r ∈ Ri if and only if i ∈ I(0, r) are called linked pairs. The

total number of linked pairs, Q, can be counted two ways:

Q =
k∑

r=1

|I(0, r)| =
n∑

i=1

|Ri|

Since we know |I(0, r)| ≥ d, and |Ri| ≤ c log2 |G|, we have kd ≤ cn log2 |G|, the desired

bound.

The argument of the above proof applies to any and-like function such as nand, or, or

nor and any other Boolean functions of two or more variables that is “partially sensitive”,

meaning the function can be made either dependent on, or independent of, one of its

215

inputs depending on the values for the remaining variables. More precisely, we say that

a binary function of m inputs is partially sensitive if there exists some a2, . . . , am such

that κ(0, a2, . . . , am) = κ(1, a2, . . . , am), and some b2, . . . , bm such that κ(0, b2, . . . , bm) 6=

κ(1, b2, . . . , bm). The proof of the above theorem can be applied to any such function.

This allows us to apply the lower bound to the case where κ is a function of more than

two variables. It also allows us to consider the case where each κi in the component-wise

application of κ is not the same (but each is partially sensitive).

Implications

Theorem 10.1.2 implies that the only way for C to be asymptotically “good”, meaning both

n and d are proportional to k, is if the fanout of inputs to outputs is also proportional to

k. This immediately implies that a single step of coded computation cannot be constant

depth when a good code is being used. This is why the component-wise application of Φ(n),

which is constant depth, must be followed by a transcoding operation, which is not constant

depth. This also motivates the use of two codes, C and C ′, instead of just one.

Given that each step of fault-tolerant coded computation cannot be constant depth, it

would be quite interesting to know whether a single step of coded computation can use only

O(n) gates. Although no such construction is known, Theorem 10.1.2 is not strong enough

to preclude its existence. For example, as demonstrated in [94], asymptotically good error-

correcting codes exist that can be both encoded and decoded using O(n) gates. If such a

code is chosen as C, then a single step of coded computation, as defined for the purpose of

Theorem 10.1.2, can be carried out by first decoding both E(x) and E(y), then computing

κ(k)(x,y) directly, and finally reencoding the result. Though this construction would only

require O(n) gates, it offers no real fault-tolerance. Specifically, any error that occurs when

computing κ(k)(x,y) will not be correctable.

To address this shortcoming, it would be necessary to explicitly add some sort of fault-

tolerance condition to the definition of coded computation used in Theorem 10.1.2. For

example, in order to help avoid a bottleneck in which a single fault can corrupt an entire

computation, one can add the requirement that m disjoint paths exist between any set of

m inputs and m outputs. An acyclic directed graph with n inputs and n outputs that

216

fulfills this requirement is known as a “super concentrator” and in fact O(n) size super

concentrators exist [98]. It is noteworthy that the linear time encodable/decodable codes

in [94] also utilize a construction based on linear-sized super concentrators. It is unclear

whether a similar construction is applicable to coded-computation.

10.2 Efficiently Encoding Most-Boolean Function

As explained in Section 9.1.1, von Neumann’s repetition-based approach to fault-tolerance

relies on replicating each gate in a circuit, C, r times then using r constant-sized majority

gates to suppress errors with high probability. The resulting circuit, C ′, is reliable in the

sense that the error rate of each output is at most a constant multiple of the failure rate

of individual gates. In [15] Pippenger notes that while this construction requires each gate

in an arbitrary circuit be repeated r = O(log |C|) times (and hence |C ′| = O(|C| log |C|))

most boolean functions can be computed reliably using only constant factor redundancy

(meaning |C ′| = O(|C|)). In this section we note that Pippenger’s observation and his

accompanying construction naturally extend to coded computation.

Consider a random boolean function f(x1, . . . , xm), meaning f : {0, 1}m 7→ {0, 1} is

randomly drawn from the set of all possible 22m
m-input boolean functions. When realized

by a circuit, C, all but an exponentially small fraction of such functions require |C| =

Θ(2m/m) gates to compute [81]. Now suppose we wish to reliably compute f using a

circuit, C ′, constructed from noisy gates that fail independently at random with probability

pf . Pippenger showed that all f for which |C| = Θ(2m/m) can still be computed reliably

by C ′ (in the sense described above) using only |C ′| = Θ(2m/m) gates. To obtain this

result Pippenger efficiently modified Lupanov’s original Θ(2m/m) construction using gate

repetition. The key insight used to avoid the O(log |C|) factor overhead is that not all gates

need be repeated the same number of times. As Pippenger explains, most gates in Lupanov’s

Θ(2m/m)-sized circuit have a very low probability of influencing the circuits output when

they fail, and thus most gates need only be repeated O(1) times (see Section 10.2.1 below).

In order to extend Pippenger’s result to coded computation, suppose that instead of

evaluating a single random boolean function, z = f(x1, . . . , xm), we wish to evaluate k such

217

functions, z1 = f1(x1, . . . , xm), . . . , zk = fk(x1, . . . , xm). In other words, we wish to compute

a random function of m inputs and k outputs. With high probability, the k outputs will

not be able to share a substantial amount of common logic, and hence most such functions

require a circuit, C(k), of size |C(k)| = Θ(k2m/m). Such a circuit can be realized via k

copies of Lupanov’s construction and can be made fault tolerant via k copies of Pippenger’s

construction.

Now suppose that in addition to computing z1, . . . , zk, we wish to compute n− k check

bits using the encoding function, E(z1, . . . , zk), of a length n systematic error-correcting

code. Each checkbit of E(z1, . . . , zk), denoted zk+1 . . . zn, is itself a function of the origi-

nal m inputs, and hence the entire codeword can be computed by a circuit, C(n), of size

|C(n)| = Θ(n2m/m). Furthermore, Pippenger’s construction allows the entire codeword to

be computed reliably with a noisy circuit, C
′(n), of size |C ′(n)| = Θ(n2m/m). Here each out-

put of |C ′(n)| fails with probability O(pf), and hence if a sufficiently good constant rate code

is used the probability that the codeword gets corrupted falls exponentially with n. Since

|C ′(n)| = O(|C ′(k)|), the fault-tolerant computation has been implemented using constant

factor overhead.

In the above construction, it is crucial that the m inputs supplied to the computation are

reliable. Hence if multiple such computations were to be carried out in series (i.e. z1, . . . , zk

are supplied as inputs to a second fault-tolerant computation), reliable gates must be used

to decode E(z1, . . . , zk). Even so, the number of reliable gates required (O(k) if the codes

in [94] are used) is a tiny fraction of the total number of gates being used.

A key characteristic of the above construction is that the check bits being computed,

zk+1 . . . zn, belong to the same class of functions (namely, randomly selected boolean func-

tions) as the information symbols, z1, . . . , zk. This ensures that the total overhead devoted

to computing those check bits is proportional to the number gates in C(k). Furthermore

the Pippenger construction ensures that |C ′(n)| = |C(n)|. In order for this general approach

to be practical, other classes of functions that meet these criteria must be identified.

Classes of functions that can compute both checkbits and information symbols seem

relatively easy to come by. Since each checkbit can be linear sums of the information

symbols (meaning E(z1, . . . , zk) is a codeword in a linear error-correcting code), any class

218

of functions closed under addition would suffice. The class of randomly chosen polynomials

of k variables and at most degree d, is one appealing example. In this case we once again

have |C(n)| = O(|C(k)|) when all gates are reliable. An open question, however, is whether

a Pippenger-style construction can be adapted to circuits that compute polynomials of k

variables efficiently using noisy gates.

10.2.1 Pippenger’s Construction

Pippenger’s construction is a modification of the well-known Lupanov construction for com-

puting an arbitrary function using O(2n/n) gates. His construction relies on the following

two theorems, which are combined by composing gr and hi appropriately:

THEOREM 4.1: Let gr(x0, . . . , xr−1, y0, . . . , ys−1) = yt, where t = x0 + 2x1 + . . . +

2r−1xr−1. For every r and s = 2r, gr can be reliably computed by a network of O(s) noisy

gates.

THEOREM 4.2: Let ha,0(z0, . . . , za−1), . . . , ha,b−1(z0, . . . , za−1) denote the b Boolean

function of a Boolean arguments. For every a and b = 22a
, ha,0, . . . , ha,b−1 can be reliably

computed by a network of O(b) noisy gates.

Interestingly, both of these theorems rely on the functions being computed via switching

networks. In both cases, three input switches are used where one input, w, acts to control

which of the other two inputs is outputted. In such a network, it is acceptable if the switch

also applies some function to the input it outputs. The key criteria is that the switches

output is only a function of one of the two inputs.

In the first case, a switching network is a balanced tree. In the second case, the network

has an inverted tree-like structure. Each network, however, has only logarithmic depth, the

size of each level either grows (or shrinks) exponentially. The result is that von Neumann-

style repetition can be applied in different degrees. Small levels of the network are given

high levels of redundancy, and hence high levels of reliability, while the gates that make

up the largest level need not be repeated at all. To bound the reliability of an output, for

any given input, one need only traverse the logarithmic number of switches on which that

output depends. If rl is the redundancy associated with level r, the probability of an output

δ ≤
∑L

i=1 O(εrl). The output error is thus bounded by a geometric series. This suggests

219

that it is worth considering what other families of functions can be efficiently computed by

switching networks in which only a few of the levels contain most of the switches.

10.3 Coded Prefix Computations

To conclude this chapter, we look at a concrete example of coded computation. This

section describes how the framework of Chapter 9 can be employed to make a parallel

prefix computation fault-tolerant.

Prefix computations are used to parallelize many operations including integer addition

where it is used in the carry-lookahead adder. Let ⊗ : A2 7→ A be an associate operator.

Then, the prefix function P(n)
⊗ : An 7→ An maps input x = (x0, x1, . . . , xn−1), xi ∈ A to

output y = (y0, y1, . . . , yn−1) where y1 = x1 and yi = yi−1 ⊗ xi.

Prefix functions can be defined for any semigroup (A,⊗) consisting of a set A and an

associative operator ⊗. If a semigroup contains an identity element e with the property

that e � x = x � e = x, it is called a monoid.Three examples of monoids are a) the natural

numbers under addition (N ,+), b) the set of DNA strings under string concatenation

({C,G, T,A}, ·), and c) the set of pairs of Boolean variables under the diamond operator �

that combines two pairs of carry propagate and generate bits ({0, 1}2, �) where � is defined

below.

(p1, g1) � (p2, g2) = (p1 ∧ p2, (g1 ∧ p2) ∨ g2)

It is a simple exercise to show that � is associative.

Below we describe an algorithm to compute the prefix function on n = 2k inputs in

O(log n) steps using O(n log n) operations. It is not as efficient as other O(n)-operation

algorithms but it has the advantange that it maps exactly to a hypercube and performs the

same operation at each processor on each time step after sharing data with another process

across a dimension of the hypercube.

A k-hypercube (a.k.a. k-cube) has 2k vertices each assigned a binary k-tuple. Two

vertices are adjacent if their tuples differ in exactly one place. Each k-tuple is associated

with an integer in the set {0, 1, 2, . . . , n − 1} for n = 2k. Individual vertices form 0-cubes.

Two 0-cubes ((i− 1)-cubes) whose tuples have a common prefix of k− 1 (k− i) bits define

220

vi Step 0 Step 1 Step 2 Step 3

000 (x0, e) (x0, x1) (x0, x1 � x2 � x3) (x0, x1 � x2 � x3 � x4 � x5 � x6 � x7)

001 (x1, e) (x0 � x1, e) (x0 � x1, x2 � x3) (x0 � x1, x2 � x3 � x4 � x5 � x6 � x7)

010 (x2, e) (x2, x3) (x0 � x1 � x2, x3) (x0 � x1 � x2, x3 � x4 � x5 � x6 � x7)

011 (x3, e) (x2 � x3, e) (x0 � x1 � x2 � x3, e) (x0 � x1 � x2 � x3, x4 � x5 � x6 � x7)

100 (x4, e) (x4, x5) (x4, x5 � x6 � x7) (x0 � x1 � x2 � x3 � x4, x5 � x6 � x7)

101 (x5, e) (x4 � x5, e) (x4 � x5, x6 � x7) (x0 � x1 � x2 � x3 � x4 � x5, x6 � x7)

110 (x6, e) (x6, x7) (x4 � x5 � x6, x7) (x0 � x1 � x2 � x3 � x4 � x5 � x6, x7)

111 (x7, e) (x6 � x7, e) (x4 � x5 � x6 � x7, e) (x0 � x1 � x2 � x3 � x4 � x5 � x6 � x7, e)

Table 10.1: This table describes a 3-step parallel prefix computation as executed on an 8

vertex hypercube. At each step of the computation, each vertex, vi, stores only a pair of

values. Initially, each vertex contains the pair (xi, e), where e denotes the identity element

with regard to the associative operator �. During the jth computation step, each vertex

communicates only with its neighbor along the jth dimension of the hypercube. The �

operator is applied to subsets of the four values stored at each pair of neighboring vertices

in order to update the pair of values stored at each vertex.

a 1-cube (i-cube). For example, {v0, v1} is a 1-cube and {v0, v1, v2, v3} is a 2-cube.

The algorithm executes k steps on 2k values X = {x0, x1, . . . , xn−1}. Initially, vertex vj

contains the pair (xj , e). These vertices form 0-cubes. After one step two vertices vj and

vj+1 that form a 1-cube have their pairs combined to form new pairs (p(1)
t , s

(1)
t), t ∈ {j, j+1},

so as to maintain the property that p
(1)
t (s(1)

t) is the ordered combination of X values in

this 1-cube preceding and including (beyond) xt (see Table 10.1).

In step 1 vertices whose indices differ in the least significant bit receive the pair (p(0)
t , s

(0)
t)

from their neighbor across the smallest dimension of the hypercube. Since the product

p
(0)
t � s

(0)
t is the ordered combination of all the elements in the other 0-cube, each processor

can update its pair to the new value (p(1)
t , s

(1)
t) where p

(1)
t (s(1)

t) is the ordered combination

of elements in the 1-cube that precede or include (succeed) xt. Also, for each pair (p(1)
t , s

(1)
t)

the product p
(1)
t � s

(1)
t is the combination of elements in the 1-cube.

221

At the second algorithm step processors whose indices differ in the second least signif-

icant position receive a pair from their neighbor which contains sufficient information to

update the pairs so that the invariant again holds. (See the table.)

After k steps, the tth processor vt contains pk
t , which is the combination of the elements

in X preceding and including xt, as well as sk
t , which is not used.

The running time of this algorithm on a hypercube is T (n) = O(log n).

10.3.1 Encoding a Parallel Prefix Computation

As shown, a parallel prefix computation P(k)
⊗ over a monoid M is represented as successive

computations by a function κ(k)(x,y,w) in which x and y denote data stored at hypercube

processors and those adjacent across successive dimensions of the hypercube, respectively.

The computation is encoded with RM codes (see Section 9.7.2) by first representing M

as a set of binary tuples and ⊗ as an operation on these tuples, denoted as κ′(k)(x′,y′,w′).

The jth bit here is κ′(x′j , y
′
j , w

′
j). A binary RM codeword is formed from each bit in x′, y′

and w′. κ′(x′j , y
′
j , w

′
j) is extended by a polynomial Φ′ that is a function of the jth bit in

each codeword.

Each computation step produces a result, which in the absence of errors, is in a differ-

ent code from the input code. Transcoding converts it back to the input code so that a

subsequent step can procede.

Consider the prefix computation for the carry-lookahead computation in which data is

organized as pairs (pα, sα) ∈M2 and pairs are combined with ⊗ using the functions z0(w)

and z1(w) defined above. Here M = {0, 1}2 and (u0, u1)⊗(v0, v1) ≡ (u0∧u1, (v0∧u1)∨v1).

Each of pα and sα is represented as a pair (ui, vi). Since z0(w) and z1(w) are each represented

by two bits, four extension polynomials Φ′
i are computed, one for each output bit. Φ′

i is a

function of seven bits, two bits for each of the three values from M on which z0(w) and

z1(w) depends plus w. (In general, Φ′
i depends on 3∗log2|M|+1 bits.) Transcoding involves

decoding and re-encoding the four output codewords into the input code. For more detail

on transcoding see Section 9.5.

The prefix algorithm is implemented with log2(k) steps of coded computation, each of

which consists of O(k) binary operations and a constant number of transcoding operations.

222

The overhead associated with the coded-computation thus depends on the overhead of

transcoding. This is an important area for future research.

223

Chapter 11

Conclusion

Recall, from Chapter 1, the primary assertion of this thesis:

Emerging nanoscale computing technologies necessitate fundamental changes in

the way computer architectures are designed and analyzed. Significant uncer-

tainty is associated with the assembly and operation of nanoscale devices. This

uncertainty must not only be modeled and accounted for, but actively embraced

as part of the design process. This is in stark contrast with today’s VLSI, where

complex, meticulously optimized designs are realized through a deterministic,

top-down etching process. For emerging nanoscale architectures, probabilistic

modeling and analysis are primary requirements for the successful realization of

nanoscale computer architectures.

Section 1.2 described four fundamental characteristics of emerging nanoscale architec-

tures: a) stochastic assembly, b) post-assembly testing and configuration, c) strict assembly

constraints, and d) imperfect operation. Chapter 2 then described four broad categories of

emergent nanoscale computing technology, all of which embody these characteristics. Of

the four categories, semiconductor-based nanowire crossbars are seen as the current fron-

trunner for near-term nanoscale architectures. As such, they are the focus of the majority

of this thesis. Since a range of crossbar-related technology has already been demonstrated,

nanowire crossbars offer the opportunity to describe and analyze a simple, realistic model

of nanoscale computation. This analysis yields practical results, theoretical insights, and

224

a concrete approach for exploring the general challenges posed by the four fundamental

characteristics listed above.

Much of this thesis focuses on the specific problem of how nanowire crossbars can be

reliably controlled with mesoscale circuitry. Chapter 3 provides a detailed look at how

nanowires can be interfaced with mesoscale address wires via stochastically assembled

nanowire decoders. In Section 3.2 a range of proposed nanowire decoders are reviewed,

and in Section 3.4 a simple, but general approach to modeling these decoders is presented.

This simple model of decoder behavior, the “binary model with errors”, is powerful enough

to account for manufacturing errors, but avoids the need for mathematically cumbersome

physical modeling. Using this model, Chapters 4, 5 and 6 analyze the area, as well as other

resources, required to reliably implement stochastically assembled randomized-contact, en-

coded nanowire, and masked-based decoders, respectively. As explained in Section 3.5 there

are a number of possible addressing strategies for using programmable mesoscale address

translation circuitry to provide a consistent external interface to a stochastically assembled

decoder. For all three types of nanowire decoder listed above, the “Take What You Get”

addressing strategy appears most promising.

In Chapter 4, it is shown that randomized-contact decoders, which can potentially be

realized through a wide range of assembly methods, are both efficient and robust. Sec-

tions 4.1 and 4.2 provide tight bounds on the number of mesowires required to individually

address all, and most nanowires with high probability. In both cases, O(log2 N) mesowires

wires suffice when each contact group contains N nanowires. Furthermore, the constant

associated with this bound is small (between 2.4 and 5), and only increases by a small con-

stant factor when a constant fraction of all mesowire/nanowire junctions are in error. The

numerical examples that appear in Section 4.3 suggest that between 10 and 30 mesowires are

sufficient to reliably control 1Mb nanoscale memories using randomized-contact decoders.

In Chapter 5, encoded nanowire decoders are investigated as an alternative to randomized-

contact decoders. Section 5.1 describes two schemes for encoding nanowires that are appli-

cable to both axially and radially encoded nanowire decoders. Section 5.2 demonstrates that

axially encoded nanowire decoders are extremely area efficient. Like randomized-contact

decoders, they require O(log2 N) mesowires to individually address all or most, of the N

225

nanowires within each contact group, but here the associated constant is smaller (between 1

and 4). Furthermore, the numerical examples at the end of Section 5.2 suggest that between

5 and 20 mesowires are sufficient to control 1Mb nanoscale memories. In Section 5.4 it is

shown that similarly efficient decoders can be realized using radially encoded nanowires.

Chapter 6 analyzes masked-based nanowire decoders. These decoders are somewhat dif-

ferent from randomized-contact and encoded nanowire decoders in that nanowire codewords

are not assigned independently. Instead stochastically placed high-K dielectric regions cou-

ple mesowires to contiguous groups of nanowires. In order to bound the number of mesowires

required to individually address N nanowires, Section 6.3 introduces a novel variant of the

classic coupon collector problem in which each trial probabilistically targets a particular

coupon. Tight bounds are provided on the number of trials required to collect all coupons

with high probability. In Section 6.4, these bounds are shown to imply that masked-based

decoders require O(N log2 N) mesowires to individually address all N nanowires within a

contact group. In practice, this suggests that over 100 mesoscale wires are needed to control

a 1Mb memory. Fortunately, Section 6.5 demonstrates that substantially fewer mesoscale

wires are required when the “Take What You Get” addressing strategy is employed. In this

case under 20 mesoscale wires would likely suffice.

To complete our analysis of the size required for stochastically assembled nanowire

decoders, Chapter 7 investigates how a decoder’s requirements change when it is used

to control crossbar-based logic instead of a memory. Section 7.2 demonstrates that the

area needed to control NA nanowire inputs using either a randomized-contact or encoded

nanowire decoder is O(β2N2
A), where β is a small constant. This outperforms the determin-

istic construction proposed in [4]. As explained in Section 7.4, it also shows that only small

constant factor overhead is needed to accommodate stochastically assembled inversion and

buffering layers within nanoscale logic circuits. A novel information theoretic lower bound

on β is presented in Section 7.3.

Chapter 8 describes how nanowire codewords can be efficiently discovered after a decoder

has been stochastically assembled. This information is needed to configure the decoder’s

address translation circuitry. Section 8.1 gives an optimal algorithm for discovering all code-

words using read/write operations, then describes how the algorithm can cope with both

226

memory and decoder errors. Section 8.2, then describes how codewords can be discovered

using current measurement operations in place of read/write operations. As demonstrated in

Section 8.3, this approach is particularly well-suited to encoded nanowire decoders, for which

an optimal codeword discovery algorithm is given. Section 8.4 then considers the more chal-

lenging problem of efficiently discovering each NW’s codeword when arbitrary codewords

may be present. Asymptotic analysis, along with experimental simulation, demonstrates

that efficient codeword discovery remains possible. As explained, the problem of discover-

ing nanowire codewords through current measurements is directly connected to research in

PAC learning of monotone DNFs.

Having investigated the challenges associated with stochastic assembly and post-assembly

testing, Chapters 9 and 10 focus on the more daunting challenge of coping with transient

runtime faults. Once assembled, nanoscale devices are expected to be substantially less

reliable than their mesoscale counterparts. To this end, Section 9.1 explores the notion of

two-tiered reliability, that is, structuring a computation such that a limited number of gates

operate at very high levels of reliability, while most (nanoscale) gates are susceptible to ran-

dom faults. As explained, tiered reliability is a promising approach to fault-tolerance that

offers the flexibility required to move beyond traditional repetition-based fault-tolerance. If

some logic gates are highly reliable, while most are potentially faulty, the inputs to a lengthy

computation can be reliably encoded using an error-correcting code. Section 9.2 defines a

general, but highly regular model of computation which, is amenable to code-based fault

tolerance. Section 9.3 describes a general framework for performing fault-tolerant com-

putations on codewords. The flexibility of code-based fault-tolerance, termed coded com-

putation, is discussed in subsequent sections, and its overhead is bounded in Section 9.8.

Chapter 10 then provides additional examples of the promise and challenges of code-based

fault-tolerance, or coded computation. Coded computation, along with multi-tiered relia-

bility in general, appears to be a ripe area for future research.

This thesis has presented a wide range of probabilistic modeling and analysis in or-

der to demonstrate the feasibility of stochastically assembled crossbar-based architectures.

Even in the presence of large amounts decoder-to-decoder variation and randomly occur-

ring manufacturing errors, we have shown that the area overhead associated with designing

227

reliable stochastically assembled nanowire decoders can be kept to a small constant factor.

Furthermore, we have shown that the overhead associated with stochastically assembled

interconnect is not limited to the interconnect itself. The area and design of the associated

control circuitry must be accounted for, as must the need for reliable post-assembly testing.

Finally, we have provided a detailed framework for coping with transient faults via error-

correcting codes. Coded computation is appealing from both a theoretical and a practical

perspective, as it has the potential to significantly outperform traditional modular redun-

dancy. In total, this thesis has provided a robust set of tools for the design and analysis of

reliable nanoscale architectures.

228

Bibliography

[1] K. Eric Drexler. Engines of Creation: The Coming Era of Nanotechnology. Anchor

Books, New York, NY, USA, 1986.

[2] K. Eric Drexler. Nanosystems: molecular machinery, manufacturing, and computation.

John Wiley & Sons, Inc., New York, NY, USA, 1992.

[3] Richard E. Smalley. Of chemistry, love and nanobots. Scientific American, 285(3):76–

77, 2001.

[4] André DeHon. Nanowire-based programmable architectures. J. Emerg. Technol. Com-

put. Syst., 1(2):109–162, 2005.

[5] S. C. Goldstein and M. Budiu. NanoFabrics: spatial computing using molecular elec-

tronics. Procs. 28th Annl. Int. Symp. on Computer Architecture, pages 178–189, June

2001. see http://www.cs.cmu.edu/∼seth/papers/isca01.pdf.

[6] Dongmok Whang, Son Jin, Yue Wu, and C. M. Lieber. Large-scale hierarchical orga-

nization of nanowire arrays for integrated nanosystems. Nano Letters, 3(9):1255–1259,

2003.

[7] E. Johnston-Halperin, R. Beckman, Y. Luo, N. Melosh, J. Green, and J.R. Heath. Fab-

rication of conducting silicon nanowire arrays. J. Applied Physics Letters, 96(10):5921–

5923, 2004.

[8] Yong Chen, Gun-Young Jung, Doublas A. A. Ohlberg, Xuema Li, Duncan R. Stew-

art, Jon O. Jeppeson, Kent A. Nielson, J. Fraser Stoddart, and R. Stanley Williams.

Nanoscale molecular-switch crossbar circuits. Nanotechnology, 14:462–468, 2003.

229

[9] André DeHon. Array-based architecture for FET-based, nanoscale electronics. IEEE

Transactions on Nanotechnology, 2(1):23–32, Mar. 2003.

[10] Tad Hogg and Greg Snider. Defect-tolerant logic with nanoscale crossbar circuits. Tech-

nical report, HP Labs, 2004. see http://www.hpl.hp.com/research/idl/papers/

molecularAdder/.

[11] André DeHon, Seth Copen Goldstein, Philip Kuekes, and Patrick Lincoln. Nonpho-

tolithographic nanoscale memory density prospects. IEEE Transactions on Nanotech-

nology, 4(2):215–228, 2005.

[12] Benjamin Gojman, Eric Rachlin, and John E. Savage. Evaluation of design strategies

for stochastically assembled nanoarray memories. J. Emerg. Technol. Comput. Syst.,

1(2):73–108, 2005.

[13] K. K. Likharev and D. B. Strukov. Cmol: Devices, circuits, and architectures. In

G. Cuniberti et al., editor, Introduction to Molecular Electronics, pages 447–477, 2005.

[14] John von Neumann. Probabilistic logics and the synthesis of reliable organisms from

unreliable componets. In C. E. Shannon and J. McCarthy, editors, Automata Studies,

pages 43–98, 1956.

[15] Nicholas Pippenger. On networks of noisy gates. In Procs. 26th IEEE FOCS Sympo-

sium, pages 30–38, 1985.

[16] Nicholas A. Melosh, Akram Boukai, Frederic Diana, Brian Gerardot, Antonio Badolato,

Pierre M. Petroff, and James R. Heath. Ultrahigh-density nanowire lattices and cir-

cuits. Science, 300:112–115, Apr. 4, 2003.

[17] Yong Chen, Douglas A. A. Ohlberg, Xuema Li, Duncan R. Stewart, R. Stanley

Williams, Jan O. Jeppesen, Kent A. Nielsen, J. Fraser Stoddart, Deirdre L. Olyn-

ick, and Erik Anderson. Nanoscale molecular-switch devices fabricated by imprint

lithography. Applied Physics Letters, 82(10):1610–1612, 2003.

[18] Chen Yang, Zhaohui Zhon, and Charles M. Lieber. Encoding electronic properties by

synthesis of axial modulation-doped silicon nanowires. Science, 310:1304–1307, 2005.

230

[19] M.R. Stan, P.D. Franzon, S.C. Goldstein, J.C. Lach, and M.M. Ziegler. Molecular

electronics: from devices and interconnect to circuits and architecture. Proceedings of

the IEEE, 91(11):1940–1957, Nov 2003.

[20] LM Adleman. Molecular computation of solutions to combinatorial problems. Science,

266(5187):1021–1024, 1994.

[21] Paul W. K Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly

of dna sierpinski triangles. PLoS Biol, 2(12):e424, 12 2004.

[22] Matthew Cook, Paul W.K. Rothemund, and Erik Winfree. Self-assembled circuit pat-

terns. DNA Computers, 9(7):91–107, 2004.

[23] Paul W. K. Rothemund. Folding dna to create nanoscale shapes and patterns. Nature,

440(7082):297–302.

[24] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of

two-dimensional dna crystals. Nature, 394(6693):539–544, August 1998.

[25] Len Adleman, Qi Cheng, Ashish Goel, Ming-Deh Huang, David Kempe, Pablo Moisset

de Espanés, and Paul Wilhelm Karl Rothemund. Combinatorial optimization problems

in self-assembly. In STOC ’02: Procs. 34th Annual ACM symposium on Theory of

Computing, pages 23–32, New York, NY, USA, 2002. ACM Press.

[26] Erik Winfree and Renat Bekbolatov. Proofreading tile sets: Error correction for algo-

rithmic self-assembly. DNA Computers, 9(7):126–144, 2004.

[27] Aaron Sterling. Distributed agreement in tile self-assembly. CoRR, abs/0902.3631,

2009.

[28] H. Wang. Proving theorems by pattern recognition ii. Bell System Technical Journal,

40:1–42, 1961.

[29] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein. Quantum cellular automata.

Nanotechnology, 4:49–57, January 1993.

231

[30] Islamshah Amlani, Alexei O. Orlov, Geza Toth, Gary H. Bernstein, Craig S. Lent,

and Gregory L. Snider. Digital Logic Gate Using Quantum-Dot Cellular Automata.

Science, 284(5412):289–291, 1999.

[31] Géza Tóth and Craig S. Lent. Quantum computing with quantum-dot cellular au-

tomata. Phys. Rev. A, 63(5):052315, Apr 2001.

[32] Cabreve;lin C. Guet, Michael B. Elowitz, Weihong Hsing, and Stanislas Leibler. Com-

binatorial Synthesis of Genetic Networks. Science, 296(5572):1466–1470, 2002.

[33] Ronan Baron, Oleg Lioubashevski, Eugenii Katz, Tamara Niazov, and Itamar Willner.

Logic gates and elementary computing by enzymes;. The Journal of Physical Chemistry

A, 110(27):8548–8553, 2006.

[34] S. Y. Chou, P. R. Krauss, and P. J. Renstrom. Imprint lithography with 25-nanometer

resolution. Science, 272:85–87, 1996.

[35] Dongmok Whang, Song Jin, and Charles M. Lieber. Nanolithography using hierarchi-

cally assembled nanowire masks. Nano Letters, 3(7):951–954, 2003.

[36] Zhaohui Zhong, Deli Wang, Yi Cui, Marc W. Bockrath, and Charles M. Lieber.

Nanowire crossbar arrays as address decoders for integrated nanosystems. Science,

302:1377–1379, 2003.

[37] C. P. Collier, E. W. Wong, M. Belohradský, F. M. Raymo, J. F. Stoddart, P. J.

Kuekes, R. S. Williams, and J. R. Heath. Electronically configurable molecular-based

logic gates. Science, 285:391–394, 1999.

[38] Charles P. Collier, Gunter Mattersteig, Eric W. Wong, Yi Luo, Kristen Beverly, José

Sampaio, Francisco Raymo, J. Fraser Stoddart, and James R. Heath. A [2]catenate-

based solid state electronically reconfigurable switch. Science, 290:1172–1175, 2000.

[39] K. Gopalakrishnan, R. S. Shenoy, C. Rettner, R. King, Y. Zhang, B. Kurdi, L. D.

Bozano, J. J. Welser, M. B. Rothwell, M. Jurich, M. I. Sanchez, M. Hernandez, P. M.

Rice, W. P. Risk, and H. K. Wickramasinghe. The micro to nano addressing block. In

Procs. IEEE Int. Electron Devices Mtng., Dec. 2005.

232

[40] André Dehon. Deterministic addressing of nanoscale devices assembled at sublitho-

graphic pitches. IEEE Transactions on Nanotechnology, 4(6):681–687, 2005.

[41] P.P. Sotiriadis. Information capacity of nanowire crossbar switching networks. Infor-

mation Theory, IEEE Transactions on, 52(7):3019–3032, July 2006.

[42] G.S. Snider and W. Robinett. Crossbar demultiplexers for nanoelectronics based on

n-hot codes. Nanotechnology, IEEE Transactions on, 4(2):249–254, March 2005.

[43] W. Robinett, G.S. Snider, D.R. Stewart, J. Straznicky, and R. Williams. Demultiplex-

ers for nanoelectronics constructed from nonlinear tunneling resistors. Nanotechnology,

IEEE Transactions on, 6(3):289–254, May 2007.

[44] Eric Rachlin and John E Savage. Nanowire addressing in the face of uncertainty. In

J. Becker, A. Herkersdorf, A. Mukherjee, and A. Smailagic, editors, Procs. 2006 Int.

Symp. on VLSI, pages 225–230, Karlsruhe, Germany, March 2-3, 2006.

[45] André DeHon, Patrick Lincoln, and John E. Savage. Stochastic assembly of sublitho-

graphic nanoscale interfaces. IEEE Transactions on Nanotechnology, 2(3):165–174,

2003.

[46] Benjamin Gojman, Eric Rachlin, and John E Savage. Decoding of stochastically as-

sembled nanoarrays. In Procs 2004 Int. Symp. on VLSI, Lafayette, LA, Feb. 19-20,

2004.

[47] John E. Savage, Eric Rachlin, André DeHon, Charles M. Lieber, and Yue Wu. Radial

addressing of nanowires. J. Emerg. Technol. Comput. Syst., 2(2):129–154, 2006.

[48] G. Y. Jung, S. Ganapathiappan, A. A. Ohlberg, L. Olynick, Y. Chen, William M.

Tong, and R. Stanley Williams. Fabrication of a 34x34 crossbar structure at 50 nm

half-pitch by UV-based nanoimprint lithography. Nano Letters, 4(7):1225–1229, 2004.

[49] Eric Rachlin, John E Savage, and Benjamin Gojman. Analysis of a mask-based

nanowire decoder. In Procs 2005 Int. Symp. on VLSI, Tampa, FL, May 11-12, 2005.

[50] Eric Rachlin and John E. Savage. Analysis of mask-based nanowire decoders. IEEE

Trans. Comput., 57(2):175–187, 2008.

233

[51] R. S. Williams and P. J. Kuekes. Demultiplexer for a molecular wire crossbar network,

US Patent Number 6,256,767, July 3, 2001.

[52] Jennifer Long and John E Savage. Nanowire-based crossbar modeling and analysis

of a membrane-based randomized-contact decoder. In Procs. NSTI-Nanotech 2008,

volume 3, pages 80–83, June 1-5, 2008.

[53] X. Ma, D. B. Strukov, J. H. Lee, and K. K. Likharev. Afterlife for silicon: Cmol circuit

architectures. In Procs. IEEE-NANO, 2005.

[54] N.H. Di Spigna, D.P. Nackashi, C.J. Amsinck, S.R. Sonkusale, and P.D. Franzon. Deter-

ministic nanowire fanout and interconnect without any critical translational alignment.

Nanotechnology, IEEE Transactions on, 5(4):356–361, July 2006.

[55] Tad Hogg, Yong Chen, and Philip J. Kuekes. Assembling nanoscale circuits with

randomized connections. IEEE Trans. Nanotechnology, 5(2):110–122, 2006.

[56] Eric Rachlin and John E. Savage. Nanowire addressing with randomized-contact de-

coders. Theor. Comput. Sci., 408(2-3):241–261, 2008.

[57] Philip J Kuekes, Warren Robinett, Gabriel Seroussi, and R Stanley Williams. Defect-

tolerant interconnect to nanoelectronic circuits. Nanotechnology, 16:869–882, 2005.

[58] Philip J Kuekes, Warren Robinett, and R Stanley Williams. Improved voltage margins

using linear error-correcting codes in resistor-logic demultiplexers for nanoelectronics.

Nanotechnology, 16:1419–1432, 2005.

[59] Eric Rachlin and John E Savage. Nanowire addressing with randomized-contact de-

coders. In Procs. ICCAD, November, 2006.

[60] Eric Rachlin and John E. Savage. Reliable nanowire addressing via randomized-contact

decoders. In Procs. TECHCON 2007, Semiconductor Research Corporation (Septem-

ber), 2007.

[61] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algo-

rithms and Probabilistic Analysis. Cambridge University Press, Cambridge, 2005.

234

[62] Lincoln J. Lauhon, Mark S. Gudiksen, Deli Wang, and Charles M. Lieber. Epitaxial

core-shell and core-multishell nanowire heterostructures. Nature, 420:57–61, 2002.

[63] Yeow Meng Chee and Alan C. H. Ling. Limit on the addressability of fault-tolerant

nanowire decoders. IEEE Transactions on Computers, 58(1):60–68, 2009.

[64] Dr. Rob Beckman of Caltech Department of Chemistry. Personal communication, 2005.

[65] David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cam-

bridge University Press, 2003. available from http://www.inference.phy.cam.ac.

uk/mackay/itila/.

[66] Jia Wang, Ming-Yang Kao, and Hai Zhou. Address generation for nanowire decoders.

In GLSVLSI ’07: Proceedings of the 17th Great lakes symposium on VLSI, pages 525–

528, 2007.

[67] Jeffrey C. Jackson, Homin K. Lee, Rocco A. Servedio, and Andrew Wan. Learning

random monotone dnf. In APPROX ’08 / RANDOM ’08, pages 483–497, Berlin,

Heidelberg, 2008. Springer-Verlag.

[68] Avrim Blum, Prasad Chalasani, Sally A. Goldman, and Donna K. Slonim. Learning

with unreliable boundary queries. Journal of Computer and System Sciences, 56(2):209

– 222, 1998.

[69] Helia Naeimi and André DeHon. Fault tolerant nano-memory with fault secure encoder

and decoder. Submitted to the International Conference on Nano Networks, September

2007.

[70] Peter Gacs. Reliable computation. Technical report, Department of Computer Science,

Boston University, 2005.

[71] N. Pippenger, G.D. Stamoulis, and J.N. Tsitsiklis. On a lower bound for the redun-

dancy of reliable networks with noisy gates. Information Theory, IEEE Transactions

on, 37(3):639–643, May 1991.

[72] Gacs and Gal. Lower bounds for the complexity of reliable boolean circuits with noisy

gates. IEEETIT: IEEE Transactions on Information Theory, 40, 1994.

235

[73] William S. Evans. Information theory and noisy computation. Technical Report TR-

94-057, Berkeley, CA, 1994.

[74] M. Vijay and R. Mittal. Algorithm-based fault tolerance: a review. Microprocessors

and Microsystems, 21(3):151 – 161, 1997. Fault Tolerant Computing.

[75] Peter Elias. Computation in the presence of noice. IBM J. Res. Develop., 2:346–353,

1958.

[76] W. W. Peterson and M. O. Rabin. On codes for checking logical operations. IBM

Journal of Research and Development, 3(2):163–168, 1959.

[77] S. Winograd. Coding for logical operations. IBM Journal of Research and Development,

6(4):430–436, 1962.

[78] P.G. Neumann and T.R.N. Rao. Error-correcting codes for byte-organized arithmetic

processors. Computers, IEEE Transactions on, C-24(3):226–232, March 1975.

[79] Kuang-Hua Huang and J. A. Abraham. Algorithm-based fault tolerance for matrix

operations. IEEE Trans. Comput., 33(6):518–528, 1984.

[80] Daniel A. Spielman. Highly fault-tolerant parallel computation. In Procs. 37th IEEE

FOCS Symposium, pages 154–163, 1996.

[81] John E. Savage. Models of Computation: Exploring the Power of Computing. Addison

Wesley, 1998.

[82] V. E. Beneš. Permutation groups, complexes, and rearrangeable multistage connecting

networks. Bell Syst. Techn. J., 43:1619–1640, 1964.

[83] H. S. Stone. Parallel processing with the perfect shuffle. IEEE Trans. Computers,

C-20:153–161, 1971.

[84] Chuan-Lin Wu and Tse-Yun Feng. The universality of the shuffle-exchange network.

Computers, IEEE Transactions on, C-30(5):324–332, May 1981.

[85] J. Justesen. On the complexity of decoding reed-solomon codes (corresp.). IEEE Trans.

Information Theory, 22(2):237–238, 1976.

236

[86] D. V. Sarwate. On the complexity of decoding Goppa codes. IEEE Trans. Information

Theory, 23(4):515–516, 1977.

[87] Jacobus H. van Lint. Coding Theory. Springer-Verlag, Lecture Notes in Mathematics,

Berlin, 1973.

[88] Ilya Dumer and Kirill Shabunov. Recursive error correction for general reed-muller

codes. Discrete Appl. Math., 154(2):253–269, 2006.

[89] Steven Rudich and Avi Wigderson. Computational Complexity Theory. AMS Book-

store, 2004.

[90] H. Naeimi and A. DeHon. Fault secure encoder and decoder for nanomemory applica-

tions. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, 17(4):473–

486, April 2009.

[91] Shuhong Gao. A new algorithm for decoding reed-solomon codes. In in Commu-

nications, Information and Network Security, V.Bhargava, H.V.Poor, V.Tarokh, and

S.Yoon, pages 55–68. Kluwer, 2002.

[92] Chen Ning and Yan Zhiyuan. Complexity analysis of reed-solomon decoding over

gf(2m) without using syndromes. EURASIP J. Wirel. Commun. Netw., 2008:1–11.

[93] Erich Kaltofen and Victor Pan. Parallel solution of toeplitz and toeplitz-like linear

systems over fields of small positive characteristic. In of Lecture Notes Ser. Comput.

World Sci. Publishing, pages 225–233, 1994.

[94] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. In

STOC ’95: Proceedings of the twenty-seventh annual ACM symposium on Theory of

computing, pages 388–397, New York, NY, USA, 1995. ACM.

[95] T.J. Richardson and R.L. Urbanke. Efficient encoding of low-density parity-check

codes. Information Theory, IEEE Transactions on, 47(2):638–656, Feb 2001.

[96] Peter Elias. Computation in the presence of noise. IBM Journal on Research and

Development, 2:346–353, 1958.

237

[97] E. Rachlin and J.E. Savage. A framework for coded computation. Information Theory,

2008. ISIT 2008. IEEE International Symposium on, pages 2342–2346, July 2008.

[98] Leslie G. Valiant. Graph-theoretic properties in computational complexity. J. Comput.

Syst. Sci., 13(3):278–285, 1976.

238

