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The human genome exhibits a rich structure resulting from a long history of genomic

changes, including single base-pair mutations and larger scale rearrangements such as in-

versions, deletions, translocations, and duplications. The number and order of the genomic

changes that resulted in the present-day human genome is not known, but can sometimes

be inferred by comparison to the genomes of other species. In particular, genome rear-

rangements are modeled as operations on signed strings of characters representing blocks

of conserved sequences. Genome rearrangement distance measures quantify the similarity

between two or more genome sequences by counting the minimum, or most likely, number

of rearrangement operations needed to transform one sequence into another. The devel-

opment of efficient algorithms for computing genome rearrangement distances has been

instrumental both in computing phylogenies for sets of known genetic sequences (such as

gene families or the whole genomes of present-day species) and in constructing ancestral

genome sequences.

In this thesis, we develop algorithms to study recent genome rearrangements in human and

cancer genomes. We introduce a novel measure, called duplication distance, to quantify

the similarity between two genomic regions containing segmental duplications. We give

an efficient algorithm to compute the duplication distance between a pair of signed strings

and provide several generalizations of duplication distance that also measure inversions and

deletions. We demonstrate the utility of the duplication distance measure in constructing

the evolutionary history of segmental duplications in the human genome using both parsi-

mony and likelihood techniques. Further, motivated by recent cancer genome sequencing

studies, we present a new algorithm for the block ordering problem of inferring a whole

genome sequence from a partial assembly by maximizing its similarity to another genome.
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INTRODUCTION

Genome rearrangement events are large changes that occur in a genome sequence as the

result of a chromosomal rupture. The human genome contains evidence of many rear-

rangements that have occurred over the course of evolution. We model a genome as a

signed string on a multiset of synteny blocks that represent contiguous DNA sequences,

corresponding to genes or other markers, that are conserved across genomes. Common

types of sequence rearrangement events that have been studied are insertions (that augment

a sequence by inserting a string of blocks in the middle of it), deletions (in which a sub-

string of blocks is deleted from the middle of a sequence), reversals (in which the order of

a contiguous substring of blocks is reversed), translocations (which are similar to cut-paste

operations within a sequence), and duplication transpositions (which are similar to copy-

paste operations within a sequence). Genome rearrangement distances count the minimum

number of operations required to transform one genome into another. Sorting genomes

by rearrangements is a related problem in which the transforming sequence of rearrange-

ments between a pair of genomes is reconstructed. There has been much work in designing

efficient algorithms for computing rearrangement distances and for sorting genomes by re-

arrangements. They have been used by evolutionary biologists to infer phylogenetic trees

on genomes for different species, to construct putative ancestral genome sequences, and to

assign orthologous genes in related species, among other applications. Genome rearrange-

ments can also be used to model somatic mutations that occur within a single tissue, such

as in a tumor mass.

1.1 Contributions and Organization

In this thesis, we present a number of techniques for analyzing rearrangements that oc-

curred recently in the evolution of the human genome or that occur as the result of somatic

mutations in cancer genomes. The study of genome rearrangements has resulted in a rich

literature of algorithms for computing distance metrics between pairs or sets of genomes.

1
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We contribute to this body of work by introducing new distance metrics between genomes

that contain repeated elements, a traditionally confounding type of comparison. Computa-

tional biologists have used models of rearrangement, or rearrangement distances, to com-

pute putative rearrangement histories for genomic sequences. For example, rearrangement

distances have been used to characterize paralogous gene families within a genome, iden-

tify orthologous genes in different species, compare whole-genome sequences of different

species, infer ancestral versions of present-day genomes, and study somatic mutations in

cancer genomes. We also use our novel rearrangement distances to compute putative re-

arrangement histories for regions of the human genome containing duplicates using both

parsimony and likelihood criteria. Finally, we discuss a problem in which a genome rear-

rangement distance is used to complete a partially assembled genome sequence by max-

imizing its similarity to another known genome sequence. We suggest a multi-genome

generalization of this problem be used in efforts to sequence genomes from a sample of

cancer cells.

This thesis is organized into four main parts. In the rest of this chapter, we discuss how our

work relates to several relevant results on genome rearrangement distances and algorithms.

In Chapter 2, we consider the problem of comparing genomes that contain duplicated re-

gions. In Chapter 3, we present problem formulations for computing duplication histories

for regions containing segmental duplications and compute putative histories for a set of

segmental duplications in the human genome. Finally, in Chapter 4, we give an algo-

rithm for inferring a whole-genome sequence from a set of partially assembled contigs by

maximizing similarity to a known reference genome. We also formulate the problem of

inferring the content of a mixture of genomes from a set of measured rearrangements, a

problem motivated by cancer sequencing studies. We summarize our main results here:

Duplication Distance We present a novel genome rearrangement distance, called dupli-

cation distance, that counts the number of duplicate operations needed to construct a given

target sequence by copying and pasting substrings of a fixed source sequence. We present

several generalizations of this basic duplication model that allow also for certain types of

reversal and deletion operations. We give efficient algorithms for computing duplication

distance and its variants.

Most-Parsimonious Two-Step Duplication Tree We introduce an integer linear program

formulation of the problem of computing a putative history for a set of genomic regions
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containing duplicates that is based on a parsimony criterion. We use our problem formu-

lation to compute a putative two-generation evolutionary history for a set of segmental

duplications in the human genome using duplication distance as a measure of parsimony.

Maximum Parsimony Evolutionary History DAG We introduce an optimization prob-

lem for computing an evolutionary history for a set of genomic regions containing dupli-

cates where a history is represented as a directed acyclic graph (DAG). We use our problem

formulation to compute a putative evolutionary history DAG for a set of human segmental

duplications using duplication distance as a measure of parsimony.

Maximum Likelihood Evolutionary History DAG We develop a probabilistic model

of segmental duplication based on a partition function of the weighted ensemble of dupli-

cation scenarios. We give an efficient algorithm for computing the partition function of

an ensemble of duplication scenarios. We introduce a likelihood analog of the Maximum

Parsimony Evolutionary History DAG optimization problem using our probabilistic model

to compute likelihood scores. We use our problem formulation to compute a putative evo-

lutionary history DAG for a set of human segmental duplications, and we compare the

likelihood and parsimony solutions.

Completing a Partially Assembled Genome Using a Rearrangement Distance We give

a simple algorithm for the block ordering problem that constructs a genome assembly from

a set of partially assembled contigs so as to maximize the similarity between the resulting

genome and a known reference genome. We present a linear-time algorithm for the prob-

lem when the measure of similarity is defined as the double-cut-and-join (DCJ) distance

between a pair of genomes. We further provide a proof that given a pair of genomes, the

number of cycles in their breakpoint graph is equal to the number of cycles in their adja-

cency graph. Finally, we suggest the problem of computing a most-parsimonious set of k

genomes that collectively exhibit a set of measured rearrangements, motivated by recent

paired-end sequencing studies of cancer genomes.

1.2 Related Work

Although the work presented in this doctoral thesis falls into the broad category of al-

gorithms for analyzing genome rearrangements, the techniques and models employed are

varied and draw inspiration from many seminal works. Our work includes both results in

the design of rearrangement models and algorithms for computing rearrangement distances

and results in the computational analysis of genetic data from the human genome. Here we
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place our work into context with other related research efforts by other members of the

community.

1.2.1 Models of Genome Rearrangement

Genomes evolve via many types of mutations ranging in scale from single nucleotide mu-

tations to large genome rearrangements. In this thesis, we consider several types of large-

scale genome rearrangements that are caused by chromosomal ruptures. Computational

models of these mutational processes allow researchers to derive similarity measures, called

rearrangement distances, between genome sequences and to reconstruct evolutionary re-

lationships between genomes. For example, considering substring reversals as the only

type of mutation leads to the so-called reversal distance problem of finding the minimum

number of reversals that transform one genome into another [58, 53]. Developing genome

rearrangement models that are both biologically realistic and computationally tractable re-

mains an active area of research.

Traditionally, computational biologists model a genome as a string on an alphabet of syn-

teny blocks that may represent genes or other genomic sequences that are conserved (either

across multiple loci in a single genome or across multiple genomes exhibiting ortholo-

gous copies of the same sequence). In the literature, a genome that contains some synteny

block in duplicate is ambiguous and one without duplicates (i.e. a permutation) is non-

ambiguous. The first results in the area of genome rearrangement distances dealt with dis-

tances between non-ambiguous genomes. An early breakthrough in the study of genome

rearrangements is due to Hannenhalli and Pevzner [30] who introduced a polynomial-time

algorithm for computing the reversal distance between signed permutations (where every

integer has a +/- orientation) in which the only rearrangement event considered is a rever-

sal. For example, given a signed string X = +1 +2 +3 +4, a reversal of the substring,

+3 +4, yields X ′ = +1 +2−4 −3. This result was later improved in [10] and then again

in [4]. (For discussion see cf. [50] and references therein).

Several elegant extensions of the reversal distance model have also been considered. For

example, [23] extends the theory of [30] to compute the distance between a pair of genomes

that may not necessarily contain the same set of blocks by allowing insertions and deletions

of substrings. For instance, the reversal distance between X1 = +1 +2 +3 +4 and X2 =

+5 −3−2 +6 is undefined but [23] computes a reversal distance that also allows operations

that delete the blocks that only appear in one of the input genomes (i.e. blocks 1, 4, 5, and
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6). This was later improved by [41].

Ambiguous genomes present a particular challenge for genome rearrangement analysis and

often make the underlying computational problems more difficult. For instance, computing

reversal distance in signed genomes with duplicates is NP-hard [19].

There have been, however, several efficient solutions given to problems involving genomes

with duplicates. For example, the genome halving problem has been solved. The input

to the problem is a genome with exactly two copies of every character and the goal is

to construct a minimum sequence of reversals that transforms the input genome into any

doubled genome equal to the concatenation of two identical non-ambiguous genomes. This

problem was first explored by [25] who gave a solution that was later discovered to be

incomplete and was corrected in [1].

Another type of rearrangement that has been used to compare ambiguous genomes is the

tandem duplication model in which an operation copies a substring of the genome and

reinserts it into the genome right next to itself. For example, [18] presented the tandem-

duplication random-loss model. In one operation, a substring of the genome is duplicated

and inserted right next to itself and then exactly one copy of each of the newly duplicated

integers is deleted. [18] gives exact, polynomial-time algorithms for special cost functions.

In [11], the authors consider tandem duplications in the context of inferring a most par-

simonious sequence of tandem duplication, gene loss, speciation, and reversal events that

is consistent with a given gene tree and such that the total number of reversals is mini-

mized. In [26], the authors consider the problem of constructing the duplication history

(i.e. phylogenetic tree) for a set of tandemly repeated genes. In a duplication tree, each

leaf of the tree corresponds to one of the present-day paralogous genes, and each internal

node corresponds to the duplication of either a single gene or a set of adjacent genes. They

give a simple method for determining whether a given rooted phylogeny is also a partially

ordered duplication history (i.e. agrees with the order of the genes). They also give an

exhaustive search method for finding the max parsimony duplication history. In [3], the

authors consider tandem, alpha-satellite repeats in the human genome. They construct a

probabilistic framework for evaluating the likelihood that a particular set of tandem repeats

evolved by the physical process of unequal crossover. Finally, in [20], the authors give

a polynomial-time approximation scheme (PTAS) for computing the optimal history (i.e.

duplication tree) of tandem duplications for a given ambiguous genome where nodes may

correspond to tandem duplications of contiguous substrings, and the cost on an edge is the
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hamming distance between the two sequences at the endpoints.

There have also been many proposed models that compute the distance between a non-

ambiguous ancestral genome and a present-day ambiguous genome. In these models, the

sequence of transforming rearrangements must include operations that introduce arbitrary

duplicates into the genome. However, efficient algorithms to compute these distances ex-

actly are largely unknown.

For example, [24] gives a method for computing the minimum number of duplication

transpositions and reversals needed to transform any non-ambiguous ancestor into a given

present-day, ambiguous genome. The method is not efficient unless the present-day genome

contains no more than two copies of any duplicate, and even in this case, the algorithm pre-

sented in [24] is flawed. (See Appendix A for a discussion.) In [43], the authors give an

efficient approximation algorithm that computes the distance between the identity permu-

tation and an arbitrary (possibly ambiguous) genome under reversals, deletions, and dupli-

cating insertions. This work is extended by [56] who compute the distance between two

arbitrary (possibly ambiguous) genomes approximately. Unfortunately, no exact solution

for this problem is known. An exact algorithm to compute a minimum distance between

an arbitrary (ambiguous) genome and some non-ambiguous ancestral genome under dupli-

cation transpositions is given in [60], but the duplication transposition model relies on the

simplifying no-breakpoint-reuse assumption allowing a simple greedy method to suffice.

In Chapter 2, we discuss a novel rearrangement distance, called duplication distance, in-

troduced in [36], that models the duplication and transposition of contiguous genomic sub-

strings en bloc between disparate loci. The duplication distance from a source string x
to a target string y is the minimum number of substrings of x that can be sequentially

copied from x and pasted into an initially empty string in order to construct y. We de-

rive an efficient exact algorithm for computing the duplication distance between a pair of

strings. Note that the string x does not change during the sequence of duplication events.

Moreover, duplication distance does not model local rearrangements, like tandem duplica-

tions, deletions or inversions, that occur within a duplication block during its construction.

While such local rearrangements undoubtedly occur in genome evolution, the duplication

distance model focuses on identifying the duplicate operations that account for the con-

struction of repeated patterns within duplication blocks by aggregating substrings of other

duplication blocks from different loci. Thus, like nearly every other genome rearrange-

ment model, the duplication distance model makes some simplifying assumptions about
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the underlying biology to achieve computational tractability. In [33, 35], we extended the

duplication distance measure to include certain types of deletions and inversions, and we

give polynomial-time exact algorithms for computing these extensions. The reversals we

consider only occur within a particular duplicated segment of the source string before being

inserted into the target; we do not allow arbitrary reversals to occur in the target string. The

deletions we consider, however, are arbitrary substring deletions that can occur in the tar-

get string at any time during a sequence of operations. These extensions make our model

less restrictive – although we still maintain the restriction that x does not change during

the sequence of duplications – and allows the construction of more rich, and perhaps more

biologically plausible, duplication scenarios. While not explicitly modeling every type of

rearrangement that might occur within a sequence of operations that builds a target string,

duplication distance (and its extensions) provide an approximation of how a sequence of

operations might occur and is efficiently computable in polynomial time.

Moreover, the abstraction we make by distinguishing the fixed source string from the

changing target string is inspired by a known biological process by which mosaic patterns

of segmental duplications are composed within mammalian genomes. Thus, the source

and target strings represent two distinct genomic regions that might possibly be on differ-

ent chromosomes. This process, known as the two-step model of segmental duplication is

discussed in greater detail in Chapter 3.

1.2.2 Multiple Genome Rearrangement Algorithms

Computing rearrangement histories for a set of more than two genomes is used in construct-

ing phylogenies of species and identifying orthologous genes in different species among

other applications. The simplest problem to define on a set of multiple genomes is the me-

dian problem with respect to a certain rearrangement distance. Given a set {G1, G2, . . . , Gk}
of genomes, the median problem is to find a genome H that minimizes

∑k
i=1 d(Gi, H)

where d is some distance measure. The median problem has been shown to be NP-hard

with respect to reversal distance on signed permutations [17] and with respect to the sim-

pler breakpoint distance on both signed and unsigned permutations [49] where the break-

point distance between a pair of genomes is the number of character adjacencies that are

exhibited in one genome and not the other. A heuristic for computing a median permutation

with respect to breakpoint distance has been given by [55] and an approximation algorithm

for computing the median problem with respect to a special case of the tandem-duplication

random-loss distance was given by [18].
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The problem of constructing a phylogenetic tree to represent a rearrangement history for

a set of known genomes of common ancestry has been well-studied. In the phylogenetic

tree problem, the leaves of the tree are the set of known genomes. For example, [12]

describes a heuristic (BPAnalysis) for computing the unknown ancestral genomes in a fixed

phylogenetic tree with a breakpoint distance criterion. The method is exponential in both

the number of genomes and the size of the genomes. In [22], the authors improve the

method presented in [12]; their method is only exponential in the number of genomes. This

was improved further by [46] in a tool called GRAPPA that also computed phylogenies

with respect to reversal distance. This was then refined by [47] who also increased the

speed by a factor of one million. In [16], the authors introduce a new heuristic (MGR)

for computing phylogenies with respect to reversal distance that is shown to perform better

than the method given in [47] on real data.

1.2.3 Analysis of Duplicated Genomic Regions

Computational biologists use genome rearrangement distances to infer evolutionary rela-

tionships between species or to infer the history of genomic regions of interest. Many

computational biologists are interested in reconstructing the histories of regions containing

duplicated segments. For example, in [8], the authors construct a phylogeny for a set of

species using regions containing orthologous repeats under the “no homoplasy” assump-

tion.

The Alu family of repetitive elements has been studied in detail as certain Alu insertions

or mutations have been linked to several human diseases. In [45], the authors do a limited

Alu phylogeny reconstruction by recursively computing a maximum likelihood partition of

the elements. In [52], the authors partition Alu repeats into 213 subfamilies by recursively

splitting subfamilies whose members fail a statistical uniformity test. They look for pairs

of non-consensus nucleotide values at distinct positions. This allows them to find nested

subfamilies (which is impossible using the method of [45]). Finally, they build an evolu-

tionary tree of the subfamilies by computing a minimum spanning tree (MST) with respect

to the Hamming distance between subfamily consensus sequences.

In [48], the authors present a randomized method for computing the most likely phylogeny

of large sets (∼1,000,000) of mobile elements. The authors assume that only a small num-

ber of the elements actively replicate and that all the resultant copies are highly similar on

the sequence level and, therefore, elude distance-based clustering methods. Their method
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partitions the elements using a randomized clustering algorithm (not based on EM due to

its slow convergence). It is an extension of the method presented in [52]; the recursive

splitting into subfamilies is done by randomly testing pairs of positions for correlation (in

lieu of exhaustive testing), requiring only time that is linear in the repeat sequence length.

In Chapter 3, we use duplication distance to analyze a set of regions of the human genome

that contain segmental duplications. First, we find the most parsimonious duplication sce-

nario consistent with the so-called two-step model of segmental duplication using dupli-

cation distance as our measure of parsimony. We then refine our notion of a duplication

history and compute duplication history DAGs for the regions containing segmental dupli-

cations using both a parsimony and a likelihood criterion.



DUPLICATION DISTANCE: A
COMBINATORIAL MODEL OF
SEGMENTAL DUPLICATIONS

In this chapter, we introduce a novel measure of similarity between genomic regions con-

taining repeated elements, duplication distance. We begin by reviewing some definitions

and notation that were introduced in [36] and [37]. Let ∅ denote the empty string. For a

string x = x1 . . . xn, let xi,j denote the substring xixi+1 . . . xj . We define a subsequence

S of x to be a string xi1xi2 . . . xik with i1 < i2 < · · · < ik. We represent S by listing

the indices at which the characters of S occur in x. For example, if x = abcdef , then the

subsequence S = (1, 3, 5) is the string ace. Note that every substring is a subsequence,

but a subsequence need not be a substring since the characters comprising a subsequence

need not be contiguous. For a pair of subsequences S1, S2, denote by S1 ∩ S2 the maximal

subsequence common to both S1 and S2.

Definition 1. Subsequences S = (s1, s2) and T = (t1, t2) of a string x are alternating in x
if either s1 < t1 < s2 < t2 or t1 < s1 < t2 < s2.

Definition 2. Subsequences S = (s1, . . . , sk) and T = (t1, . . . , tl) of a string x are over-
lapping in x if there exist indices i, i′ and j, j′ such that 1 ≤ i < i′ ≤ k, 1 ≤ j < j′ ≤ l,

and (si, si′) and (tj, tj′) are alternating in x. See Fig. 2.1.

Definition 3. Given subsequences S = (s1, . . . , sk) and T = (t1, . . . , tl) of a string x, S is

inside of T if there exists an index i such that 1 ≤ i < l and ti < s1 < sk < ti+1. That is,

the entire subsequence S occurs in between successive characters of T . See Fig. 2.2.

Definition 4. A duplicate operation from x, δx(s, t, p), copies a substring xs . . . xt of the

source string x and pastes it into a target string at position p. Specifically, if x = x1 . . . xm

and Z = z1 . . . zn, then

Z ◦ δx(s, t, p) = z1 . . . zp−1xs . . . xtzp . . . zn. See Fig. 2.3.

10
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X
si si'tj tj'

Figure 2.1: The red subsequence is overlap-
ping with the blue subsequence in x. The in-
dices (si, si′) and (tj , tj′) are alternating in x.

X

ti ti+1

Figure 2.2: The red subsequence is inside the
blue subsequence T . All the characters of the
red subsequence occur between the indices ti
and ti+1 of T .

X
s t

Z
p p

Z ° ! (s,t,p)
x

Figure 2.3: A duplicate operation, δx(s, t, p). A substring xsxs+1 . . . xt of the source string x is
copied and inserted into the target string Z at index p.

Definition 5. The duplication distance from a source string x to a target string y is the

minimum number of duplicate operations from x that generates y from an initially empty

target string 1. That is, y = ∅ ◦ δx(s1, t1, p1) ◦ δx(s2, t2, p2) ◦ · · · ◦ δx(sl, tl, pl).

2.1 The Basic Recurrence

In this section we review the basic recurrence for computing duplication distance that was

introduced in [37]. The recurrence examines the characters of the target string, y, and

considers the sets of characters of y that could have been generated, or copied from the

source string in a single duplicate operation. Such a set of characters of y necessarily

correspond to a substring of the source x (see Def. 4). Moreover, these characters must

be a subsequence of y. This is because, in a sequence of duplicate operations, once a

string is copied and inserted into the target string, subsequent duplicate operations do not

affect the order of the characters in the previously inserted string. Because every character

of y is generated by exactly one duplicate operation, a sequence of duplicate operations

that generates y partitions the characters of y into disjoint subsequences, each of which

is generated in a single duplicate operation. A more interesting observation is that these

subsequences are mutually non-overlapping. We formalize this property as follows.

Lemma 1 (Non-overlapping Property). Consider a source string x and a sequence of du-

plicate operations of the form δx(si, ti, pi) that generates the final target string y from an

1We assume that every character in y appears at least once in x.
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initially empty target string. The substrings xsi,ti of x that are duplicated during the con-

struction of y appear as mutually non-overlapping subsequences of y.

Proof: Consider a sequence of duplicate operations δx(s1, t1, p1), . . . , δx(sk, tk, pk) that

generates y from an initially empty target string. For 1 ≤ i ≤ k, Let Zi be the intermediate

target string that results from δx(s1, t1, p1) ◦ · · · ◦ δx(si, ti, pi). Note that Zk = y. For

j ≤ i, let Sij be the subsequence of Zi that corresponds to the characters duplicated by

the jth operation. We shall show by induction on the length i of the sequence that that

Si1, S
i
2, . . . , S

i
i are pairwise non-overlapping subsequences of Zi. For the base case, when

there is a single duplicate operation, there is no non-overlap property to show. Assume now

that Si−1
1 , . . . Si−1

i−1 are mutually non-overlapping subsequences in Zi−1. For the induction

step note that, by the definition of a duplicate operation, Si is inserted as a contiguous

substring into Zi−1 at location pi to form Zi. Therefore, for any j, j′ < i, if Si−1
j and

Si−1
j′ are non overlapping in Zi−1 then Sij and Sij′ are non overlapping in Zi. It remains

to show that for any j < i Sij and Sii are non-overlapping in Zi. There are two cases: (1)

the elements of Sij are either all smaller or all greater than the elements of Sii or (2) Sii is

inside of Sij in Zi (Definition 3). In either case, Sj and Si are not overlapping in Zi as

required. �

The non-overlapping property leads to an efficient recurrence that computes duplication

distance. When considering subsequences of the final target string y that might have been

generated in a single duplicate operation, we rely on the non-overlapping property to iden-

tify substrings of y that can be treated as independent subproblems. If we assume that some

subsequence S of y is produced in a single duplicate operation, then we know that all other

subsequences of y that correspond to duplicate operations cannot overlap the characters in

S. Therefore, the substrings of y in between successive characters of S define subproblems

that are computed independently.

In order to find the optimal (i.e. minimum) sequence of duplicate operations that generate

y, we must consider all subsequences of y that could have been generated by a single

duplicate operation. The recurrence is based on the observation that y1 must be the first

(i.e. leftmost) character to be copied from x in some duplicate operation. There are then

two cases to consider: either (1) y1 was the last (or rightmost) character in the substring that

was duplicated from x to generate y1, or (2) y1 was not the last character in the substring

that was duplicated from x to generate y1.

The recurrence defines two quantities: d(x, y) and di(x, y). We shall show, by induction,
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X

Y

i

1

X

Y

Figure 2.4: y1 is generated from xi in a duplicate operation where y1 is the last (rightmost) character
in the copied substring (Case 1). The total duplication distance is one plus the duplication distance
for the suffix y2,|y|.

that for a pair of strings, x and y, the value d(x, y) is equal to the duplication distance from

x to y and that di(x, y) is equal to the duplication distance from x to y under the restriction

that the character y1 is copied from index i in x, i.e. xi generates y1. d(x, y) is found by

considering the minimum among all characters xi of x that can generate y1, see Eq. 2.1.

As described above, we must consider two possibilities in order to compute di(x, y). Either:

Case 1 : y1 was the last (or rightmost) character in the substring of x that was copied to

produce y1, (see Fig. 2.4), or

Case 2 : xi+1 is also copied in the same duplicate operation as xi, possibly along with other

characters as well (see Fig. 2.5).

For case one, the minimum number of duplicate operations is one – for the duplicate that

generates y1 – plus the minimum number of duplicate operations to generate the suffix

of y, giving a total of 1 + d(x, y2,|y|) (Fig. 4). For case two, Lemma 1 implies that the

minimum number of duplicate operations is the sum of the optimal numbers of operations

for two independent subproblems. Specifically, for each j > 1 such that xi+1 = yj we

compute: (i) the minimum number of duplicate operations needed to build the substring

y2,j−1, namely d(x, y2,j−1), and (ii) the minimum number of duplicate operations needed

to build the string y1yj,|y|, given that y1 is generated by xi and yj is generated by xi+1. To

compute the latter, recall that since xi and xi+1 are copied in the same duplicate operation,

the number of duplicates necessary to generate y1yj,|y| using xi and xi+1 is equal to the

number of duplicates necessary to generate yj,|y| using xi+1, namely di+1(x, yj,|y|), (see
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Fig. 2.5 and Eq. 2.2).

The recurrence is, therefore:

d(x, ∅) = 0

d(x, y) = min
{i:xi=y1}

di(x, y) (2.1)

di(x, ∅) = 0

di(x, y) = min

{
1 + d(x, y2,|y|)

min{j:yj=xi+1,j>1}{d(x, y2,j−1) + di+1(x, yj,|y|)}
(2.2)

Theorem 1. d(x, y) is the minimum number of duplicate operations that generate y from x.

For {i : xi = y1}, di(x, y) is the minimum number of duplicate operations that generate y
from x such that y1 is generated by xi.

Proof: Let OPT (x, y) denote minimum length of a sequence of duplicate operations that

generate y from x. Let OPTi(x, y) denote the minimum length of a sequence of operations

that generate y from x such that y1 is generated by xi. We prove by induction on | y | that

d(x, y) = OPT (x, y) and di(x, y) = OPTi(x, y).

For | y |= 1, since we assume there is at least one i for which xi = y1, OPT (x, y) =

OPTi(x, y) = 1. By definition, the recurrence also evaluates to 1. For the inductive step,

X

Y

i

1

X

Y

j

i+1

X

Y
j

i+1

Figure 2.5: y1 is generated from xi in a duplicate operation where y1 is not the last (rightmost)
character in a copied substring (Case 2). In this case, xi+1 is also copied in the same duplicate
operation (top). Thus, the duplication distance is the sum of d(x, y2,j−1), the duplication distance
for y2,j−1 (bottom left), and di+1(x, yj,|y|), the minimum number of duplicate operations to generate
yj,|y| given that xi+1 generates yj (bottom right).
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assume that OPT (x, y′) = d(x, y′) and OPTi(x, y′) = di(x, y′) for any string y′ shorter

than y. We first show that OPTi(x, y) ≤ di(x, y). Since OPT (x, y) = miniOPTi(x, y),

this also implies OPT (x, y) ≤ d(x, y). We describe different sequences of duplicate oper-

ations that generate y from x, using xi to generate y1:

• Consider a minimum-length sequence of duplicates that generates y2,|y|. By the in-

ductive hypothesis its length is d(x, y2,|y|). By duplicating y1 separately using xi we

obtain a sequence of duplicates that generates y whose length is 1 + d(x, y2,|y|).

• For every {j : yj = xi+1, j > 1} consider a minimum-length sequence of dupli-

cates that generates yj,|y| using xi+1 to produce yj , and a minimum-length sequence

of duplicates that generates y2,j−1. By the inductive hypothesis their lengths are

di+1(x, yj,|y|) and d(x, y2,j−1) respectively. By extending the start index s of the du-

plicate operation that starts with xi+1 to produce yj to start with xi and produce y1 as

well, we produce y with the same number of duplicate operations.

Since OPTi(x, y) is at most the length of any of these options, it is also at most their

minimum. Hence,

OPTi(x, y) ≤ min

{
1 + d(x, y2,|y|)

min{j:yj=xi+1,j>1}{d(x, y2,j−1) + di+1(x, yj,|y|)}
= di(x, y).

To show the other direction (i.e. that d(x, y) ≤ OPT (x, y) and di(x, y) ≤ OPTi(x, y)),

consider a minimum-length sequence of duplicate operations that generate y from x, using

xi to generate y1. There are a few cases:

• If y1 is generated by a duplicate operation that only duplicates xi, then OPTi(x, y) =

1 + OPT (x, y2,|y|). By the inductive hypothesis this equals 1 + d(x, y2,|y|) which is

at least di(x, y).

• Otherwise, y1 is generated by a duplicate operation that copies xi and also duplicates

xi+1 to generate some character yj . In this case the sequence ∆ of duplicates that

generates y2,j−1 must appear after the duplicate operation that generates y1 and yj
because y2,j−1 is inside (Definition 3) of (y1, yj). Without loss of generality, sup-

pose ∆ is ordered after all the other duplicates so that first y1yj . . . y|y| is gener-

ated, and then ∆ generates y2 . . . yj−1 between y1 and yj . Hence, OPTi(x, y) =

OPTi(x, y1yj,|y|) +OPT (x, y2,j−1). Since in the optimal sequence xi generates y1 in
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the same duplicate operation that generates yj from xi+1, we have

OPTi(x, y1yj,|y|) = OPTi+1(x, yj,|y|). By the inductive hypothesis,

OPT (x, y2,j−1) + OPTi+1(x, yj,|y|) = d(x, y2,j−1) + di+1(x, yj,|y|) which is at least

di(x, y).

�

This recurrence naturally translates into a dynamic programing algorithm that computes

the values of d(x, ·) and di(x, ·) for various target strings. To analyze the running time of

this algorithm, note that both y2,j and yj,|y| are substrings of y. Since the set of substrings

of y is closed under taking substrings, we only encounter substrings of y. Also note that

since i is chosen from the set {i : xi = y1}, there are O(µ(x)) choices for i, where µ(x) is

the maximal multiplicity of a character in x. Thus, there are O(µ(x) | y |2) different values

to compute. Each value is computed by considering the minimization over at most µ(y)

previously computed values, so the total running time is bounded by O(| y |2 µ(x)µ(y)),

which is O(| y |3| x |) in the worst case. We note that for applications where the size of

the alphabet on which the strings are built is large with respect to the length of the strings,

such that µ(x) ∈ O(1) and µ(y) ∈ O(1), the running time of the algorithm is O(| y |2)

in the worst case. As with most dynamic programming approaches, this algorithm (and all

others presented in subsequent sections) can be extended through trace-back to reconstruct

the optimal sequence of operations needed to build y. We omit the details.

2.2 Extending to Affine Duplication Cost

It is easy to extend the recurrence relations in Eqs. (2.1), (2.2) to handle costs for duplicate

operations. In the above discussion, the cost of each duplicate operation is 1, so the sum

of costs of the operations in a sequence that generates a string y is just the length of that

sequence. We next consider a more general cost model for duplication in which the cost of

a duplicate operation δx(s, t, p) is ∆1 + (t− s+ 1)∆2 (i.e., the cost is affine in the number

of duplicated characters). Here ∆1,∆2 are some non-negative constants. This extension is

obtained by assigning a cost of ∆2 to each duplicated character, except for the last character

in the duplicated string, which is assigned a cost of ∆1 + ∆2. We do that by adding a cost

term to each of the cases in Eq. 2.2. If xi is the last character in the duplicated string (case

1), we add ∆1 + ∆2 to the cost. Otherwise xi is not the last duplicated character (case 2),
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so we add just ∆2 to the cost. Eq. (2.2) thus becomes

di(x, y) = min

{
∆1 + ∆2 + d(x, y2,|y|)

min{j:yj=xi+1,j>1}{d(x, y2,j−1) + di+1(x, yj,|y|) + ∆2}
(2.3)

The running time analysis for this recurrence is the same as for the one with unit duplication

cost.

2.3 Extending the Model: Duplication-Deletion Distance

Here we provide several extensions to the duplication distance model; we generalize the

model to allow also for certain types of substring deletions in the target string.

Consider the intermediate string Z generated after some number of duplicate operations. A

deletion operation removes a contiguous substring zi, . . . , zj ofZ, and subsequent duplicate

and deletion operations are applied to the resulting string.

Definition 6. A delete operation, τ(s, t), deletes a substring zs . . . zt of the target string

Z, thus making Z shorter. Specifically, if Z = z1 . . . zs . . . zt . . . zm, then Z ◦ τ(s, t) =

z1 . . . zs−1zt+1 . . . zm. See Figure 6.

The cost associated with τ(s, t) depends on the number t− s+ 1 of characters deleted and

is denoted Φ(t− s+ 1).

Z
s t Z ° !(s,t)

Figure 2.6: A delete operation, τ(s, t). The substring Zs,t is deleted.

Definition 7. The duplication-deletion distance from a source string x to a target string y
is the cost of a minimum sequence of duplicate operations from x and deletion operations,

in any order, that generates y.

We now show that although we allow arbitrary deletions from the intermediate string, it

suffices to consider deletions from the duplicated strings before they are pasted into the

intermediate string, provided that the cost function for deletion, Φ(·) is non-decreasing and

obeys the triangle inequality.

Definition 8. A duplicate-delete operation from x, ηx(i1, j1, i2, j2, . . . , ik, jk, p), for i1 ≤
j1 < i2 ≤ j2 < · · · < ik ≤ jk copies the subsequence xi1 . . . xj1xi2 . . . xj2 . . . . . . xik . . . xjk
of the source string x and pastes it into a target string at position p. Specifically, if

x = x1 . . . xm and Z = z1 . . . zn, then Z ◦ ηx(i1, j1, . . . , ik, jk, p) =
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z1 . . . zp−1xi1 . . . xj1xi2 . . . xj2 . . . xik . . . xjkzp . . . zn.

The cost associated with such a duplicate-delete is ∆1+(jk−i1+1)∆2+
∑k−1

`=1 Φ(i`+1−j`−
1). The first two terms in the cost reflect the affine cost of duplicating an entire substring of

length jk− i1 +1, and the second term reflects the cost of deletions made to that substrings.

Lemma 2. If the affine cost for duplications is non-decreasing and Φ(·) is non-decreasing

and obeys the triangle inequality then the cost of a minimum sequence of duplicate and

delete operations that generates a target string y from a source string x is equal to the cost

of a minimum sequence of duplicate-delete operations that generates y from x.

Proof: Since duplicate operations are a special case of duplicate-delete operations, the cost

of a minimal sequence of duplicate-delete operations and delete operations that generates

y cannot be more than that of a sequence of just duplicate operations and delete operations.

We show the (stronger) claim that an arbitrary sequence of duplicate-delete and delete op-

erations that produces a string y with cost c can be transformed into a sequence of just

duplicate-delete operations that generates y with cost at most c by induction on the num-

ber of delete operations. The base case, where the number of deletions is zero, is trivial.

Consider the first delete operation, τ . Let k denote the number of duplicate-delete opera-

tions that precede τ , and let Z be the intermediate string produced by these k operations.

For i = 1, . . . , k, let Si be the subsequence of x that was used in the ith duplicate-delete

operation. By lemma 1, S1, . . . , Sk form a partition of Z into disjoint, non-overlapping

subsequences of Z. Let d denote the substring of Z to be deleted. Since d is a contiguous

substring, Si ∩ d is a (possibly empty) substring of Si for each i. There are several cases:

1. Si ∩ d = ∅. In this case we do not change any operation.

2. Si∩d = Si. In this case all characters produced by the ith duplicate-delete operation

are deleted, so we may omit the ith operation altogether and decrease the number of

characters deleted by τ . Since Φ(·) is non-decreasing, this does not increase the cost

of generating Z (and hence y).

3. Si ∩ d is a prefix (or suffix) of Si. Assume it is a prefix. The case of suffix is similar.

Instead of deleting the characters Si ∩ d we can avoid generating them in the first

place. Let r be the smallest index in Si \ d (that is, the first character in Si that is not

deleted by τ ). We change the ith duplicate-delete operation to start at r and decrease

the number of characters deleted by τ . Since the affine cost for duplications is non-

decreasing and Φ(·) is non-decreasing, the cost of generating Z does not increase.
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4. Si∩d is a non-empty substring of Si that is neither a prefix nor a suffix of Si. We claim

that this case applies to at most one value of i. This implies that after taking care of

all the other cases τ only deletes characters in Si. We then change the ith duplicate-

delete operation to also delete the characters deleted by τ , and omit τ . Since Φ(·)
obeys the triangle inequality, this will not increase the total cost of deletion. By the

inductive hypothesis, the rest of y can be generated by just duplicate-delete opera-

tions with at most the same cost. It remains to prove the claim. Recall that the set

{Si} is comprised of mutually non-overlapping subsequences of Z. Suppose that

there exist indices i 6= j such that Si ∩ d is a non-prefix/suffix substring of Si and

Sj ∩ d is a non-prefix/suffix substring of Sj . There must exist indices of both Si and

Sj in Z that precede d, are contained in d, and succeed d. Let ip < ic < is be three

such indices of Si and let jp < jc < js be similar for Sj . It must be the case also

that jp < ic < js and ip < jc < is. Without loss of generality, suppose ip < jp. It

follows that (ip, ic) and (jp, js) are alternating in Z. So, Si and Sj are overlapping

which contradicts Lemma 1.

�

To extend the basic recurrence to duplication-deletion distance, we must observe that be-

cause we allow deletions in the string that is duplicated from x, if we assume character xi
is copied to produce y1, it may not be the case that the character xi+1 also appears in y; the

character xi+1 may have been deleted. Therefore, we minimize over all possible locations

k > i for the next character in the duplicated string that is not deleted. The extension of the

recurrence from the previous section to duplication-deletion distance is:

d̂(x, ∅) = 0 , d̂(x, y) = min
{i:xi=y1}

d̂i(x, y), (2.4)

d̂i(x, ∅) = 0 ,

d̂i(x, y) = min


∆1 + ∆2 + d̂(x, y2,|y|),

mink>i min{j:yj=xk,j>1}

{
d̂(x, y2,j−1) + d̂k(x, yj,|y|)
(k − i)∆2 + Φ(k − i− 1)

}
.

(2.5)

Theorem 2. d̂(x, y) is the duplication-deletion distance from x to y. For {i : xi = y1},
d̂i(x, y) is the duplication-deletion distance from x to y under the additional restriction that

y1 is generated by xi.

The proof of Theorem 2 is an extension to that of Theorem 1. However, the running time

increases; while the number of entries in the dynamic programming table does not change,
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the time to compute each entry is multiplied by the possible values of k in the recurrence,

which is O(| x |). Therefore, the running time is O(| y |2| x | µ(x)µ(y)), which is

O(| y |3| x |2) in the worst case.

We now show, in the following lemma, that if both the duplicate and delete cost functions

are the identity function (i.e. one per operation), then the duplication-deletion distance is

equal to duplication distance without deletions.

Lemma 3. Given a source string x, a target string y, If the cost of duplication is 1 per

duplicate operation, and the cost of deletion is 1 per delete operation, then d̂(x, y) =

d(x, y).

Proof: First we note that if a target string y can be built from x in d(x, y) duplicate opera-

tions, then the same sequence of duplicate operations is a valid sequence of duplicate and

delete operations as well, so d(x, y) is at least d̂(x, y).

We claim that every sequence of duplicate and delete operations can be transformed into

a sequence of duplicate operations of the same length. The proof of this claim is similar

to that of Lemma 2. In that proof we showed how to transform a sequence of duplicate

and delete operations into a sequence of duplicate-delete operations of at most the same

cost. We follow the same steps, but transform the sequence into an a sequence that consists

of just duplicate operations without increasing the number of operations. Recall the four

cases in the proof of Lemma 2. In the the first three cases we eliminate the delete operation

without increasing the number of duplicate operations. Therefore we only need to consider

the last case (Si ∩ d is a non-empty substring of Si that is neither a prefix nor a suffix of

Si). Recall that this case applies to at most one value of i. Deleting Si ∩ d from Si leaves a

prefix and a suffix of Si. We can therefore replace the ith duplicate operation and the delete

operation with two duplicate operations, one generating the appropriate prefix of Si and the

other generating the appropriate suffix of Si. This eliminates the delete operation without

changing the number of operations in the sequence. Therefore, for any string y that results

from a sequence of duplicate and delete operations, we can construct the same string using

only duplicate operations (without deletes) using at most the same number of operations.

So, d(x, y) is no greater than d̂(x, y). �

2.4 Extending the Model: Duplication-Inversion Distance

Here we generalize the duplication distance model to allow also for substring inversions.

We now explicitly define characters and strings as having two orientations: forward (+) and
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inverse (-).

Definition 9. A signed string of length m over an alphabet Σ is an element of ({+,−} ×
Σ)m.

For example, (+b −c −a +d) is a signed string of length 4. An inversion of a signed string

reverses the order of the characters as well as their signs. Formally,

Definition 10. The inverse of a signed string x = x1 . . . xm is a signed string x̄ =

−xm . . . −x1.

For example, the inverse of (+b −c −a +d) is (−d +a +c −b).

In a duplicate-invert operation a substring is copied from x and inverted before being in-

serted into the target string y. We allow the cost of inversion to be an affine function in the

length ` of the duplicated inverted string, which we denote Θ1 + `Θ2, where Θ1,Θ2 ≥ 0.

We still allow for normal duplicate operations.

Definition 11. A duplicate-invert operation from x, δ̄x(s, t, p), copies an inverted substring

−xt, −xt−1 . . . , −xs of the source string x and pastes it into a target string at position p.

Specifically, if x = x1 . . . xm and Z=z1 . . . zn, then Z◦δ̄x(s, t, p) =

z1 . . . zp−1x̄tx̄t−1 . . . x̄szp . . . zn.

The cost associated with each duplicate-invert operation is Θ1 + (t− s+ 1)Θ2.

Definition 12. The duplication-inversion distance from a source string x to a target string

y is the cost of a minimum sequence of duplicate and duplicate-invert operations from x, in

any order, that generates y.

The recurrence for duplication distance (Eqs. 2.1, 2.3) can be extended to compute the

duplication-inversion distance. This is done by introducing a term for inverted duplications

whose form is very similar to that of the term for regular duplication (Eq. 2.3). Specifically,

when considering the possible characters to generate y1, we consider characters in x that

match either y1 or its inverse, −y1. In the former case, then, we use d̄+
i (x, y) to denote

the duplication-inversion distance with the additional restriction that y1 is generated by xi
without an inversion. The recurrence for d̄+

i is the same as for di in Eq. 2.3. In the latter

case, we consider an inverted duplicate in which y1 is generated by −xi. This is denoted

by d̄−i , which follows a similar recurrence. In this recurrence, since an inversion occurs, xi
is the last character of the duplicated string, rather than the first one. Therefore, the next

character in x to be used in this operation is −xi−1 rather than xi+1. The recurrence for d̄−i
also differs in the cost term, where we use the affine cost of the duplicate-invert operation.
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The extension of the recurrence to duplication-inversion distance is therefore:

d̄(x, ∅) = 0 , d̄(x, y) = min

{
min

{i:xi=y1}
d̄+
i (x, y), min

{i:xi=−y1}
d̄−i (x, y)

}
,

d̄+
i (x, ∅) = 0 , d̄−i (x, ∅) = 0,

d̄+
i (x, y) = min

 ∆1 + ∆2 + d̄(x, y2,|y|),

min{j:yj=xi+1,j>1}

{
d̄(x, y2,j−1) + d̄+

i+1(x, yj,|y|) + ∆2

}
,

d̄−i (x, y) = min

 Θ1 + Θ2 + d̄(x, y2,|y|),

min{j:yj=−xi−1,j>1}

{
d̄(x, y2,j−1) + d̄−i−1(x, yj,|y|) + Θ2

}
.

(2.6)

Theorem 3. d̄(x, y) is the duplication-inversion distance from x to y. For {i : xi = y1},
d̄+
i (x, y) is the duplication-inversion distance from x to y under the additional restriction

that y1 is generated by xi. For {i : xi = −y1}, d̄−i (x, y) is the duplication-inversion

distance from x to y under the additional restriction that y1 is generated by −xi.

The correctness proof is very similar to that of Theorem 1, only requiring an additional

case for handling the case of a duplicate invert operation which is symmetric to the case of

regular duplication. The asymptotic running time of the corresponding dynamic program-

ming algorithm is O(| y |2 µ(x)µ(y)). The analysis is identical to the one in section ??.

The fact that we now consider either a duplicate or a duplicate-invert operation does not

change the asymptotic running time.

2.5 Extending the Model: Duplication-Inversion-Deletion Distance

Here we extend the distance measure to include delete operations as well as duplicate and

duplicate-invert operations. Note that we only handle deletions after inversions of the same

substring. The order of operations might be important, at least in terms of costs. The cost of

inverting (+a +b +c) and then deleting −b may be different than the cost of first deleting

+b from (+a +b +c) and then inverting (+a +c).

Definition 13. The duplication-inversion-deletion distance from a source string x to a tar-

get string y is the cost of a minimum sequence of duplicate and duplicate-invert operations

from x and deletion operations, in any order, that generates y.

Definition 14. A duplicate-invert-delete operation from x,

η̄x(i1, j1, i2, j2, . . . , ik, jk, p), for i1 ≤ j1 < i2 ≤ j2 < · · · < ik ≤ jk pastes the string
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−xjk −xjk−1 . . . −xik −xjk−1
−xjk−1−1 . . .−xik−1

. . . . . .−xj1 −xj1−1 . . . −xi1
into a target string at position p. Specifically, if x = x1 . . . xm and Z=z1 . . . zn, then

Z◦η̄x(i1, j1, i2, j2, . . . , ik, jk, p) = z1 . . . zp−1 −xjk −xjk−1 . . .−xik −xjk−1
−xjk−1−1 . . .

−xik−1
. . . . . .−xj1 −xji−1 . . . −xi1 zp . . . zn.

The cost of such an operation is Θ1 + (jk − i1 + 1)Θ2 +
∑k−1

`=1 Φ(i`+1− j`− 1). Similar to

the previous section, it suffices to consider just duplicate-invert-delete and duplicate-delete

operations, rather than duplicate, duplicate-invert and delete operations.

Lemma 4. If Φ(·) is non-decreasing and obeys the triangle inequality and if the cost of

inversion is an affine non-decreasing function as defined above, then the cost of a minimum

sequence of duplicate, duplicate-invert and delete operations that generates a target string

y from a source string x is equal to the cost of a minimum sequence of duplicate-delete and

duplicate-invert-delete operations that generates y from x.

The proof of the lemma is essentially the same as that of Lemma 2. Note that in that proof

we did not require all duplicate operations to be from the same string x. Therefore, the

arguments in that proof apply to our case, where we can regard some of the duplicates from

x and some from the inverse of x.

The recurrence for duplication-inversion-deletion distance is obtained by combining the re-

currences for duplication-deletion (Eq. 2.5) and for duplication-inversion distance (Eq. 2.6).

We use separate terms for duplicate-delete operations ( ˆ̄d+
i ) and for duplicate-invert-delete

operations ( ˆ̄d−i ). Those terms differ from the terms in Eq. 2.6 in the same way Eq. 2.5

differs from Eq. 2.2; Because of the possible deletion we do not know that xi+1 (xi−1) is

the next duplicated character. Instead we minimize over all characters later (earlier) than

xi.

The recurrence for duplication-inversion-deletion distance is therefore:

ˆ̄d(x, ∅) = 0 , ˆ̄d(x, y) = min

{
min

{i:xi=y1}
ˆ̄d+
i (x, y), min

{i:xi=−y1}
ˆ̄d−i (x, y)

}
,

ˆ̄d+
i (x, ∅) = 0 , ˆ̄d−i (x, ∅) = 0,

ˆ̄d+
i (x, y) = min


∆1 + ∆2 + ˆ̄d(x, y2,|y|),

mink>i min{j:yj=xk,j>1}

{
ˆ̄d(x, y2,j−1) + ˆ̄d+

k (x, yj,|y|)
(k − i)∆2 + Φ(k − i− 1)

}
,

ˆ̄d−i (x, y) = min


Θ1 + Θ2 + ˆ̄d(x, y2,|y|),

mink<i min{j:yj=−xk,j>1}

{
ˆ̄d(x, y2,j−1) + ˆ̄d−k (x, yj,|y|)
+(i− k)Θ2 + Φ(i− k − 1)

}
.
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Theorem 4. ˆ̄d(x, y) is the duplication-inversion-deletion distance from x to y. For {i : xi =

y1}, ˆ̄d+
i (x, y) is the duplication-inversion-deletion distance from x to y under the additional

restriction that y1 is generated by xi. For {i : xi = −y1}, ˆ̄d−i (x, y) is the duplication-

inversion-deletion distance from x to y under the additional restriction that y1 is generated

by −xi.

The proof, again, is very similar to the proofs in the previous sections. The running time

of the corresponding dynamic programming algorithm is the same (asymptotically) as that

of duplication-deletion distance. It is O(| y |2| x | µ(y)µ(x)), where the multiplicity µ(y)

(or µ(x)) is the number of times a character appears in the string y (or x), regardless of its

sign.

In comparing the models of the previous section and the current one, we note that restricting

the model of rearrangement to allow only duplicate and duplicate-invert operations instead

of duplicate-invert-delete operations may be desirable from a biological perspective be-

cause each duplicate and duplicate-invert requires only three breakpoints in the genome,

whereas a duplicate-invert-delete operation can be significantly more complicated, requir-

ing more breakpoints.



ANALYSIS OF HUMAN SEGMENTAL
DUPLICATIONS

The duplication distance model we presented in Chapter 2 is inspired by biological models

for the emergence of segmental duplications (or low-copy repeats) in mammalian genomes.

Approximately 5% of the human genome consists of segmental duplications > 1 kb in

length with ≥ 90% sequence identity between copies[6]. Segmental duplications account

for a significant fraction of the differences between humans and other primate genomes, and

are enriched for genes that are differentially expressed between the species [15]. Human

segmental duplications contain novel fusion genes[57], genes under strong positive selec-

tion [21], and new gene families[40]. Moreover, the presence of segmental duplications

appears to render regions of the genome more susceptible to recurrent and disease-causing

rearrangements[42] as well as additional copy-number variants [6] and inversions [61].

Reconstructing the evolutionary history of these genomic regions is a non-trivial, but im-

portant task as segmental duplications harbor recent primate-specific and human-specific

innovations [31]. Moreover, since segmental duplications arise as copy-number variants

that become fixed in a population, the evolutionary history of segmental duplications re-

veals information about the mechanisms and temporal dynamics of copy-number variants

in the human genome [38].

The availability of genome sequences from multiple mammalian genomes has led to pro-

posals to reconstruct the genome sequence of the mammalian ancestor [13]. Segmental

duplications remain an extreme challenge for evolutionary reconstruction, as they are the

“most structurally complex and dynamic regions of the human genome” [2].

Human segmental duplications are frequently found within complicated mosaics (duplication
blocks) of duplicated fragments (duplicons) that bear sequence similarity to non-homologous

25
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regions on multiple human chromosomes [6, 7, 6]. A two-step model of segmental dupli-

cation (reviewed in [6]) has been proposed to explain these mosaic patterns in pericen-

tromeric regions. In the two-step model, duplicons from disparate regions of the genome

(possibly different chromosomes) are first copied and aggregated in a seeding event. Then

in a second phase of pericentromeric transfer, contiguous sequences of duplicons are trans-

ferred en bloc by duplication to non-homologous pericentromeric regions. The result is

that “the pericentromeric region consists of many juxtaposed duplicons that originate from

diverse ancestral regions,” [6]. By contrast, duplication blocks in subtelomeric regions

are thought to arise from the process of double-stranded breakage and repair, resulting in

interchromosomal translocations of contiguous subtelomeric regions. Finally, interstitial

regions gain duplication blocks as a result of multiple rounds of serial duplication. These

three proposed mechanisms for the creation of duplication blocks in the human genome in-

dicates the complexity of these regions. As a result, the convoluted nature of overlapping,

interleaved duplicated material in the genome makes segmental duplications refractory to

traditional sequence analysis.

Jiang et al. [32] recently produced a comprehensive annotation of this mosaic organiza-

tion: they derived an “alphabet” of approximately 11,000 duplicons, and identified 437

duplication blocks, or “strings” containing at least 10 (and typically dozens) of different

duplicons. They also examined the ancestral relationships between human segmental du-

plications, and identified “clades” of segmental duplications that share an abundance of

repeated subsequences. However, their approach ignored the order and orientation of these

repeated subsequences within the segmental duplications, and thus did not explicitly ex-

plain the mosaic organization of segmental duplications. The relationships between these

annotated duplication blocks are complex (Fig. 3.1) and straightforward analysis does not

immediately reveal the ancestral relationships between blocks.

Numerous authors have considered the problem of analyzing relationships between genome

sequences that contain duplicated segments. This work falls into roughly two categories.

The first focus is the problem of computing genome rearrangement distances, like reversal

distance, in the presence of duplicated genes or synteny blocks (see [54, 43, 24], for exam-

ple). However, such rearrangement distances do not model the creation of new duplicates

and thus are not well-suited to describe the evolutionary history of segmental duplications

in the genome. The second focus is to analyze regions with duplications under “local” op-

erations like tandem duplications (see [18, 39], for example). While tandem duplication is

undoubtedly important in the generation of duplication blocks, there is strong evidence that
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Figure 3.1: A graph of relationships between a subset of 357 duplication blocks in the human
genome. Each vertex is a duplication block, with edges joining blocks whose longest common
subsequence includes at least 3 duplicons.
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an important characteristic of the history of segmental duplications is the frequent duplica-

tion and transposition of long segments over large physical distances; as many as 50%-60%

of segmental duplications were transposed interchromosomally [6]. Several general models

of rearrangement that allowed for both local operations and duplication-transposition-like

operations between different strings were studied by [27], but the generality of those mod-

els meant that the distances were NP-hard to compute and only approximation algorithms

were given.

In this chapter we consider the problem of constructing evolutionary histories that can ac-

count for the emergence of the duplication blocks we observe in the present-day human

genome. In Section 3.1, we formulate the problem as an integer linear program, inspired

by the two-step model of segmental duplication, with an objective function that minimizes

the total number of duplicate operations needed to construct all the present-day duplication

blocks in a two duplication phases. We represent the resulting evolutionary relationships

between duplication blocks as a tree with height two. We use the duplication distance al-

gorithm presented in Chapter 2 to find the optimal tree solution. Then in Section 3.2, we

generalize the optimization problem formulation to allow for the construction of an evo-

lutionary history directed acyclic graph (DAG). We define the optimization problem with

respect to two criteria: a parsimony criterion that again uses duplication distance as a mea-

sure of parsimony and a likelihood criterion that uses a probabilistic model of duplication

based on a partition function of the ensemble of all possible duplication scenarios. In both

sections, we apply our methods to the analysis of segmental duplications in the human

genome using the set of duplication blocks and constituent duplicons annotated in [32].

3.1 The Most-Parsimonious Two-Step Duplication Tree

As described above, duplication blocks, or segments of the present-day genome that con-

tain duplicated material, contain complex mosaic patterns of smaller segments, known as

duplicons, that appear in multiplicity across the genome. We model both the ancestral

and present-day genomes as signed strings on an alphabet of duplicons. We assume the

present-day genome, which has incurred segmental duplications, is a superstring of the an-

cestral genome, and the duplication blocks are substrings of the present-day genome. See

Figure 3.2.

Recall that according to the the two-step model of duplication, duplicons are copied from

their ancestral loci and aggregated into larger, contiguous segments or seed duplication
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ancestral genome

present-day genome

duplication blocks

Figure 3.2: The present-day genome is a superstring of the ancestral genome. The duplicated
material comprises duplication blocks which are maximal contiguous substrings of the present-day
genome that were not part of the ancestral genome.

blocks during the first duplication phase. In the second phase, substrings of both the seed

blocks and the ancestral genome are copied and then reinserted into the genome at dis-

parate locations, creating secondary duplication blocks. We say that a seed duplication

block seeds a secondary duplication block if substrings of the seed block are used in the

construction of the secondary block in the second phase. See Figure 3.3(a). Note that a

seed block may seed multiple secondary duplication blocks but there may also exist some

seed blocks that do not seed any secondary blocks.

Here we build a duplication scenario that is consistent with a rather literal interpretation

of the two-step model of duplication and that minimizes the total number of duplication

operations needed to construct a given set of duplication blocks in two phases – first by

constructing a set of seed blocks by aggregating duplicons from the ancestral genome and

then by constructing a set of secondary blocks by copying substrings of the seed blocks as

well as singleton duplicons from their ancestral loci. We formulate this problem as an in-

teger linear program that is equivalent to the facility location problem, a classic problem in

operations research. The formulation requires a measure of the minimum number of dupli-

cate operations needed to build a target duplication block from a source duplication block;

we use the duplication distance measure described in Chaper 2. We apply our method to

duplication blocks derived in [32] and discover a two-step duplication scenario in which

64 seed duplication blocks are first constructed and then duplicated to create secondary

duplication blocks.

Note that we make four simplifying assumptions about the two-step model of duplication:

1. The ancestral genome contains exactly one copy of every duplicon.

2. No other type of rearrangement operations – such as inversions or deletions – occur.
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ancestral genome

seed duplication blocks

secondary duplication blocks

{
{

primary 
duplications

secondary 
duplications

(a) (b)

Figure 3.3: (a) The two-step model of duplication. Solid arrows indicate duplicons copied during
the first phase of duplication. Dashed arrows indicate duplicons copied during the second phase of
duplication. (b) The corresponding two-step duplication tree.

3. The seed blocks are a subset of the duplication blocks observed in the present-day

genome.

4. Each secondary duplication block is seeded by exactly one seed duplication block.

Under these assumptions, we can describe a duplication scenario in which a set of duplica-

tion blocks are constructed in two phases by representing it as a two-step duplication tree

on the set of duplication blocks.

Definition 15. Given ancestral and present-day genomes, a two-step duplication tree is

a tree of height three where the root is the ancestral genome and the descendants are the

duplication blocks. Nodes at depth one (i.e. the children of the root) are the seed blocks

created in the first phase of duplication, while nodes at depth two (i.e. children of seed

blocks) are the secondary duplication blocks constructed from substrings of one seed block

and of the ancestral genome. (See Figure 3.3b.)

For a given pair of ancestral and present-day genomes, a most-parsimonious two-step dupli-

cation tree is that which defines a partition of the duplication blocks into seed duplication

blocks and secondary duplication blocks and defines the ancestral relationships between

seed and secondary blocks such that the total number of duplication events needed to con-

struct first the seed blocks and then the secondary blocks is minimum.

The total duplication distance for a two-step duplication tree is the sum of the number of

duplicate operations needed to build all the duplication blocks. We express the number

of duplicate operations needed to build a seed block Bi from the ancestral genome G as

d(G, Bi). Secondary duplication blocks are built from substrings of both its parent seed

block and the ancestral genome. Thus, we express the number of duplicate operations

needed to build a secondary block Bj from its parent seed block Bi and G as d(Bi ◦G, Bj),
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where Bi ◦ G denotes the concatenation1 of the strings Bi and G.

We now have the following definition.

Definition 16. Given the ancestral genome G and a set duplication blocks B1, . . . , BN

from the present-day genome, a most-parsimonious two-step duplication tree is a two-step

duplication tree (Def. 15) with minimum total duplication distance on its edges.

We note that the definition of a most-parsimonious two-step duplication tree can be ex-

tended to more general distance measures. For example, a suitable measure of parsimony

could be duplication-inversion distance or any of the other extensions of duplication dis-

tance presented in Chapter 2.

Now we show how to formulate the problem of constructing a most-parsimonious two-step

duplication tree as an integer linear program (ILP).

A two-step duplication tree for a given ancestral genome and a set of duplication blocks

is defined by a labeling of each of the N duplication blocks as either seed blocks or as

secondary blocks. In addition to this labeling, we must also define for each secondary

block which seed duplication block seeded it, i.e. which seed block is its parent in the tree.

A most-parsimonious two-step duplication tree is a solution of the following integer linear

program.

min
U,V

[
N∑
i=1

(ui × d(G, Bi)) +
N∑
i=1

N∑
j=1

(vij × d(Bj ◦ G, Bi))

]
(3.1)

such that

∑
j

vij = 1 for all i (3.2)

vij − uj ≤ 0 for all i, j (3.3)

ui ∈ {0, 1} and vij ∈ {0, 1}. (3.4)

The binary variables U = [u1, . . . , uN ] and binary matrix V = [vij]
N
i,j=1 describe the topol-

ogy of the duplication tree. The binary variable ui indicates whether a duplication block

Bi is labeled as a seed block and thus defines an edge in the tree from the root G to Bi. The

binary variable vij indicates that secondary duplication block Bi is seeded by seed block

1We insert a “dummy character” between Bi and G in the concatenate to avoid copying substrings across
the boundary.
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Bj and thus block Bi is a child of Bj in the tree. Again, we note that the duplication dis-

tance function, d, in the above program could be substituted by any other suitable distance

function between strings with duplications, such as duplication-inversion distance.

We note that this program is equivalent to a special case of the facility location problem,

a classic NP-hard combinatorial optimization problem. The input to the facility location

problem is a set of customers and a set of potential facility sites. For each site, there is a cost

associated with opening a facility, and for each site-customer pair, there is a cost associated

with supplying that customer from a facility at that site. The objective is to minimize the

total cost of opening facilities and supplying customers such that every customer is supplied

by exactly one open facility. In the context of the two-step duplication tree, each duplication

block is both a customer to be supplied and the site of a potential facility. Opening a facility

at site Bi corresponds to classifying Bi as a seed duplication block and the cost of opening

a facility corresponds to the cost of constructing that seed block by aggregating singleton

duplicons from their ancestral loci. Supplying customer Bj from facility Bi corresponds to

classifyingBj as a secondary block that is constructed from substrings of seed blockBi and

the ancestral genome G, and the cost of supplying Bj from Bi is equal to the duplication

distance from Bj to Bi.

We implemented our two-step duplication tree method to analyze the ancestry of segmental

duplications in the human genome using duplication-inversion distance as the measure of

parsimony. We used data from [32] who identified 417 contiguous duplication blocks in

the human genome (hg17, May 2004). The duplication blocks were comprised of mosaic

patterns of a total of 4,692 distinct duplicon sequences. [32] delimited regions of homology

for each duplicon, respectively, within the set of duplication blocks with some duplication

blocks containing tens of thousands of duplicons. Then the authors partitioned the dupli-

cation blocks into 24 “clades” or groups that they believed to have been derived from a

common seed block ancestor. The clade analysis done by [32] was based on a hierarchi-

cal clustering of the duplication blocks by comparing their respective duplicon contents

without regard to the order or orientation of subsequences of duplicons within blocks.

To begin our analysis, we represented each of the 417 duplication block as a signed string

on the alphabet of integers between −4692 and +4692.2 We represented the ancestral

genome G, containing a unique copy of each of the non-homologous ancestral duplicons,

2A total of 437 duplication blocks were identified in the study by [32] but 20 of these blocks were missing
their duplicon annotations.
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as the non-ambiguous string of all duplicons (with positive orientations) with dummy char-

acters inserted in between every pair of characters, i.e. G = +1�+2�· · ·�+4692, where

� denotes a dummy character.

For each ordered pair of duplication blocks Bi, Bj , we computed the duplication-inversion

distance d̄(Bi ◦ G, Bj) using the algorithm presented in Chapter 2 (Eq. 2.6). Note that,

for every duplication block Bi, the distance d̄(G, Bi) from G to that block, is equal to the

length of the target block | Bi |. With these distances, we solved the ILP in Eq. 3.1 using

the optimization package CPLEX. Given a solution to the ILP, for every index i such that

the binary variable ui = 1 (i.e. such that facility i is opened), we labeled the block Bi as a

seed block. We labeled the remaining blocks as secondary blocks. For any pair of blocks

Bi, Bj , if the binary variable vij = 1 in the solution, we designated secondary block Bi

to be a child of seed block Bj (i.e. customer i is supplied from facility j). The resulting

two-step duplication tree is shown in Figure 3.4.3

The two-step duplication tree for the 417 human duplication blocks exhibits 64 seed blocks

with varying numbers of secondary blocks, respectively, ranging from 1 to 28. We com-

pared our analysis to the clade analysis of [32]. Note that the clade analysis represents

a partition of the duplication blocks into groups that are believed to have evolved from a

common seeding “ancestor” block. Similarly, our two-step duplication tree defines groups

of blocks that might have evolved from a common ancestor block, namely the groups of

blocks defined by a subtree rooted at a given seed block. Furthermore, our two-step dupli-

cation tree defines putative ancestral relationships between duplication blocks, indicating

which duplication blocks may have seeded others.

After computing our tree, we colored the nodes of the tree according to the clade parti-

tion computed by [32] in a post-process. A visual inspection of the two-step duplication

tree reveals an interesting relationship between our analysis and that of [32]: many of the

subtrees rooted at a seed block, called seed block groups, are monochromatic or nearly

so. (The largest seed block groups can be viewed in Fig. 3.5.) This concordance between

our analysis and that of [32] indicates that we discovered many of the same relationships

between groups of duplication blocks. However, many of our seed block groups were not

monochromatic. To quantify the agreeance of the two analyses, we computed a χ2 test of

independence for the set of seed block groups we derived and the set of clades derived by
3A previous version of this result appeared in [37]. Here we present a more recent, previously unpublished

result. The difference between the previously published tree and that shown here owes to a revised annotation
of the set of duplication blocks identified by [32].
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Clade

Figure 3.4: Most-parsimonious two-step duplication tree. The large, red node in the center is
the root and represents the ancestral genome. The 64 children of the root are seed duplication
blocks that were constructed during the first “seeding” phase of duplication. Children of seed
blocks were constructed during the second phase of duplication. For comparison, the duplication
blocks are colored according to the clade annotations computed in [32]. (Blocks labeled with
clade ‘s’ are members of small clades with five or fewer members.) The seed blocks are:
chr9:94148625-94280597, chr2:86972987-87534573, chr2:95487038-95584611, chr13:51949404-
52115934, chr2:131224724-131311234, chr17:21390703-21507201, chr6:58245619-58614492,
chrY:7321346-7583561, chr20:23590986-23799725, chr19:142690-301857, chr9:41693541-
41917754, chr13:22383730-22442581, chr18:14925636-15381131, chr2:111008489-111108421,
chr9:67819771-68015022, chr7:22302593-22353864, chr15:21883445-22374842, chr7:64400020-
64811464, chr21:32722334-32748407, chr22:21973667-22071991, chr17:16500312-16755448,
chr2:106442349-106590011, chr22:23318989-23413657, chr2:131763427-131992854,
chr6:5001-107014, chr19:59919900-60071479, chr7:45538339-45670718, chr15:30232700-
30686935, chr15:28156284-28697532, chr1:13071685-13302468, chr15:28722450-28924396,
chr15:75938308-76080230, chr18:14115138-14897871, chrY:2951337-3780270, chr16:21261363-
21477613, chr13:92057461-92135789, chr12:36142962-36276062, chr5:174269510-
174290127, chr2:97093305-97342494, chr7:63160249-63206018, chr17:23079959-
23123088, chr3:126882689-127197788, chr17:4963474-5027382, chr2:94748046-95035488,
chr5:49692886-49892733, chr15:26189051-26378746, chr1:561232-873944, chr2:97484061-
97718125, chr16:18074902-18712195, chr15:76779895-76886440, chr21:13291342-
14363850, chr7:56385628-56445155, chr1:145513740-145734052, chr7:56461815-
56554511, chr21:28138407-28357448, chrY:12885909-13066979, chr7:43774170-43854733,
chr22:15694297-15767503, chr1:142607398-142875550, chr20:23905387-23924629,
chr7:55505324-55618047, chr7:63313785-63361829, chr7:57180803-57309010, chr1:142299774-
142408068.
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Clade

Figure 3.5: Most-parsimonious two-step duplication tree showing only subtrees of size at least 12.
The large, red node in the center is the root and represents the ancestral genome. The 6 children
of the root are seed duplication blocks that were constructed during the first “seeding” phase of
duplication. Children of seed blocks were constructed during the second phase of duplication.
For comparison, the duplication blocks are colored according to the clade annotations computed in
[32]. The seed blocks are: chr2:106442349-106590011, chr9:41693541-41917754, chr12:8206636-
8492606, chr7:22302593-22353864, chr15:26189051-26378746, chr18:14925636-15381131.

[32]. For groups containing at least six members (of which 34 seed block groups qualified

and all 24 clades qualified), the probability that the correlation between the two categories

was due to chance was P < 0.35.

Without strong evidence by which to conclude that the analysis of [32] corroborates ours,

we sought to refine our analysis. Admittedly, our two-step duplication tree formulation

interprets the two-step model of segmental duplication rather literally. It is unlikely that

all the duplication blocks that exist in the human genome today were constructed in ex-

actly two phases of duplication; it seems more plausible that perhaps several rounds of

duplication took place with secondary blocks seeding tertiary blocks and tertiary blocks

seeding quaternary blocks, etc. Moreover, if the model of duplication block construction

via multiple rounds of duplication is plausible, then it seems reasonable to assume that any

particular duplication block might have been constructed from multiple duplication events

in which the duplicated material originated from more than one external seed block. That
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is, the tree structure of our two-step duplication tree solution may be overly restrictive as

some duplication blocks might have been seeded from multiple “parent” blocks.

In the next section, we refine our analysis of human duplication blocks by reformulating the

problem of constructing a duplication history as the problem of computing an optimal di-

rected acyclic graph (DAG) on the set of duplication blocks according to either a parsimony

or a likelihood criterion.

3.2 The Max Parsimony and Max Likelihood Duplication History DAGs

Here we present a novel formulation of the problem of computing an evolutionary history

for a set of segmental duplications that are organized in duplication blocks. We represent

evolutionary relationships between a set of duplication blocks as a directed acyclic graph

(DAG), relaxing some of the constraints of the problem formulation given in the previous

section. We formalize the evolutionary reconstruction problem as an optimization over the

space of DAGs.

We present two different methods for scoring a DAG: one based on parsimony and one

based on likelihood. The parsimony score for a DAG is a straightforward extension of du-

plication distance that describes the most-parsimonious sequence of duplicate operations

needed to construct a given target string. Because we have presented it in Chapter 2, here

we forgo a description of the duplication distance measure or algorithm for computing it.

The likelihood score for a DAG is the product of the likelihood scores for each of the dupli-

cation blocks, where a duplication block’s likelihood is derived by computing the weighted

ensemble of all possible duplication scenarios that could have generated it. We describe

how to compute the partition function of the ensemble efficiently using a dynamic pro-

gram that generalizes the duplication distance (i.e. parsimony score) recurrence. Deriving

a probabilistic model from a dynamic program this way is analogous to the approach of

[44] who applied dynamic programming to RNA folding to compute the partition function

of all secondary structures and to assign probabilities to certain substructures..

Finally, we solve these evolutionary reconstruction problems on the set of duplication

blocks identified by [32] using a local search technique based on simulated annealing.

We compare these reconstructions to the analysis of [32]. Our evolutionary reconstruction

recapitulates some of the properties of earlier analysis but also reveals additional and more

subtle relationships between segmental duplications.
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X = abcde

Y 0 = ∅
Y 1 = Y 0 ◦ δX(1, 3, 1) = abc

Y 2 = Y 1 ◦ δX(4, 5, 1) = deabc

Y = Y 2 ◦ δX(4, 5, 5) = deabdec

Figure 3.6: An example of a sequence of duplicate operations that constructs Y = deabdec
from X = abcde. The corresponding feasible generator is: ΨX = (X4,5, X1,3, X4,5) =
((de), (abc), (de)).

3.2.1 The Partition Function

We begin our discussion of the likelihood-based optimization problem with some prelimi-

naries. Recall from Chapter 2 the following. Given a source/target pairX, Y , any sequence

of duplicate operations of the form δX(s1, t1, p1), . . . , δX(sd, td, pd) that generates Y from

X uniquely partitions the characters of Y into non-overlapping subsequences correspond-

ing to characters that were copied conjointly from X .

Definition 17. Given a source string X , a generator ΨX = (Xi1,j1 , . . . , Xik,jk) is a se-

quence of substrings of X .

Definition 18. A generator ΨX = (Xi1,j1 , . . . , Xik,jk) is feasible for a target string Y , that

we denote as ΨX a Y , if:

1. The elements of ΨX partition the characters of Y into mutually non-overlapping

subsequences {S1, . . . , Sk}.
2. There exists a bijective mapping f : {Xi,j ∈ ΨX} → {S1, . . . , Sk} from substrings

of X to subsequences in Y corresponding to how the elements of ΨX partition Y .

3. The order of elements in ΨX corresponds to the order of the leftmost characters of

the subsequences f(Xi1,j1), . . . , f(Xik,jk) in Y .

See Fig. 3.6.

A sequence of k duplicate operations that constructs Y from X uniquely defines a feasible

generator ΨX with length k whose elements correspond, respectively, to substrings of X

that are duplicated conjointly in a single operation.

While a parsimony assumption is attractive from a theoretical perspective and can produce

useful biological insight, it might be overly restrictive, particularly when there are many
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different optimal or nearly optimal solutions. Consider, for example, the strings X =

abcdefghijkl and Y = agdbhecifdajebkfclg. The duplication distance, d(X, Y ), is 13

and there is a single feasible generator with this optimum length. However, there are 989

possible feasible generators for Y , 119 of which have length 14, just slightly suboptimal.

Because the space of all possible feasible generators is very large, a probabilistic model

might give very low probability to an optimal parsimony solution. Thus, here we present

a probabilistic model of segmental duplication that considers the weighted ensemble of all

feasible generators for a source/target string pair.

For a given source string X and positive integer k we consider the space of all length-

k generators ΨX . We define a probability distribution on the collection of generators by

defining Pr[ΨX ] ∝ ω(ΨX) where ω(ΨX) is the “score,” or weight, assigned to a generator,

and we compute the partition function Z(k)
X of the weighted ensemble of all possible length-

k generators ΨX . Given a source stringX and a target string Y , we define the event F to be

the event of choosing a length-k generator that is feasible for Y from the space of length-k

generators. We define a probabilistic model for segmental duplications that, given a target

string Y , assigns a probability to F : Pr[F | Y,X, k]. For a fixed target string Y , the

probability, Pr[F | Y,X, k], is the weighted ensemble of all possible length-k generators

that are feasible for Y , normalized by the partition function Z(k)
X . In particular, we can

express the probability as:

Pr[F | Y,X, k] =
1

Z
(k)
X

∑
ΨXaY :|ΨX |=k

ω(ΨX), (3.5)

where | ΨX | denotes the length of the generator. The likelihood of a target string Y , then

can be expressed as L(Y | F,X, k) = Pr(F | Y,X, k).

The score of a generator, ω(ΨX), can be defined according to various biological models.

Although different functions ω may require different algorithms for computing the value

Pr[F | Y,X, k], we found that functions of the form ω(ΨX) = σ(| ΨX |, l(ΨX)) where

l(ΨX) =
∑

Xi,j∈ΨX
| Xi,j | denotes the sum of the lengths of the elements of ΨX , admit

particularly efficient algorithms for computing Eq. (3.5). We discuss the score function

further in Sec. 3.2.2.

Now we give an algorithm to compute the partition function, Z(k)
X . Given a score function

of the form σ(| ΨX |, l(ΨX)), each length-k generator whose elements have lengths that

sum to l are scored the same, namely σ(k, l). Therefore, in order to compute Z(k)
X , we must
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calculate the total number of length-k generators whose lengths sum to l for all relevant

values of l. Let C(k)
X (l) equal the number of distinct length-k generators for which the sum

of the lengths of the elements equals l.4

Lemma 5. Let X = x1 . . . x|X| be a source string and let k and l be positive integers. The

function C(k)
X (l) satisfies the following recurrence.

C(1)
X (l) = | X | −l + 1,

C(k)
X (l) =

l−1∑
l′=l−|X|

C(k−1)
X (l′) · (| X | −(l − l′) + 1).

Proof: (Sketch) The base case, C(1)
X (l), counts the number of distinct substrings of X with

length l. In the case that k = 1, the number of substrings of X that have length l is equal

to X − l + 1 . Then, the value C(k)
X (l) can be computed recursively by summing over all

the ways of adding a kth element to a set of k − 1 substrings such that the resulting set of

k elements has total length l. For a set of k − 1 substrings of X whose lengths sum to l′,

there are X − (l − l′) + 1 substrings of X that could be added to the set to yield a set of k

substrings whose lengths sum to l.

For a source string X and integers k, l, if we are given C(k)
X (l), we can compute Z(k)

X ef-

ficiently by summing C(k)
X (l) over all relevant lengths l, weighting each feasible generator

appropriately according to the function σ(k, l). This gives the following theorem.

Theorem 5. Let X = x1 . . . x|X| be a source string and k be a positive integer. The

partition function Z(k)
X satisfies the following.

Z
(k)
X =

|X|·k∑
l=k

C(k)
X (l) · σ(k, l).

Note that the elements of a length-k list of substrings of X can have lengths that sum to at

least k and at most | X | ·k.

The recurrence in Lemma 5 can be computed in O(| X | k) time, so Z(k)
X can be computed

in O(| X |2 k2) time according to Theorem 5.

4The value C(k)
X (l) is related to the well-known integer partition function p(n) and corresponding Young

tableaux. If P(l, k) is the set of partitions of the integer l into k parts, we can express C(k)
X (l) =∑

P∈P(l,k)

∑
p∈P (| X | −p+ 1) · k!.
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3.2.2 The Score Function

We define the score of a generator ω(ΨX) to be some function that reflects the biological

plausibility of the event of choosing a particular generator ΨX from the space of all gener-

ators and then duplicating the substrings of ΨX in some duplication scenario. When infer-

ring a sequence of duplicate operations that can account for the construction of a particular

target string Y by copying substrings of a particular source string X , a reasonable assump-

tion is that the “simplest” explanation is the best. We consider the most-parsimonious

duplication scenario–that is, the one requiring the fewest number of duplicate operations–

to be the simplest. As noted above, the most-parsimonious solution can be computed using

the duplication distance algorithm presented in [36, 37]. Therefore, our first considera-

tion for scoring a generator is that one with small length, e.g. with length equal to the

duplication distance, ought to have a good score.

Given a source string X , and two different target strings Y1 and Y2, where | Y1 |<| Y2 |,
we assume that if the character contents of Y1 and Y2 are similar, then the construction

of Y1 from X is more likely than the construction of Y2 from X . Again, this assumption

favors simplicity. Therefore, two generators with length k that are feasible for Y1 and Y2,

respectively, should be scored in a way that the generator for Y1 is preferable to that for Y2.

Theorems 2.7 and 2.9 allow for a score function of the form σ(| ΨX |, l(ΨX)). However,

we impose two additional conditions that are biologically plausible.

a. For integers k1 < k2, σ(k1, l(ΨX)) > σ(k2, l(ΨX)). This property matches our

intuition that a feasible generator with lesser cardinality (corresponding to a shorter

sequence of duplicate operations needed to construct the target string) be more likely

than a feasible generator with higher cardinality.

b. For identical source and target strings, X = Y , of length | X |=| Y |> 1, σ(1, |
Y |) > ∑ΨX :|ΨX |=k σ(k, | Y |) for any k > 1. This will ensure that the event F of

choosing a length-k generator for any k > 1 is less probable than choosing a length-1

generator; i.e. Pr[F | Y,X, k] < Pr[F | Y,X, 1]. This matches our intuition that

the unique feasible generator of length 1 corresponding to the construction of Y by

simply duplicating all of X in a single operation, will have higher probability than

the combination of all feasible generators of length k > 1. Note that when X 6= Y ,

this property also ensures an analogous preference of feasible generators containing

any long, contiguous substring Xs,t that appears as a substring of Y over feasible
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generators that contain fragmented portions of Xs,t to generate the same substring in

Y , all other elements being equal.

A suitable score function that meets these criteria is:

σ(k, | Y |) =
1

| Y |k . (3.6)

Undoubtedly, there are other biologically motivated score functions that may produce mean-

ingful results.

3.2.3 Restricted Partition Function

In this section, we present the final ingredient necessary to compute the probability Pr[F |
Y,X, k], namely the sum in Eq. (3.5) that we define as Q(k)

X (Y ). We refer to the value

Q
(k)
X (Y ) as the restricted partition function of feasible generators, and it is equal to the

weighted ensemble of all length-k generators ΨX that are feasible for Y . HenceQ(k)
X (Y ) =∑

ΨXaY :|ΨX |=k ω(ΨX) =
∑

ΨXaY :|ΨX |=k σ(k, | Y |).

In order to compute this value, we generalize the recurrence presented in Chapter 2 for

computing duplication distance from source stringX to target string Y to count the number

of length-k generators that are feasible for Y .

Lemma 6. Given a source string X = x1 . . . x|X| and a target string Y = y1, . . . , y|Y |,

the number N (k)
X (Y ) of distinct length-k generators ΨX that are feasible for Y satisfies the

following recurrence.

N
(k)
X (Y ) =

∑
i:xi=y1

N
(k)
X (Y, i),

N
(1)
X (Y, i) =

1 if Y = Xi,i+|Y |−1,

0 otherwise,

N
(k)
X (Y, i) = N

(k−1)
X (Y2,|Y |) +

∑
j>1:yj=xi+1

k∑
l=1

[N
(l)
X (Y2,j−1) ·N (k−l)

X (Yj,|Y |, i+ 1)].

Here, the term N
(k)
X (Y, i) represents the number of feasible generators ΨX with length k

given that the character y1 is generated by a substring of X starting at xi.

First, we give intuition for the recurrence in Lemma 6, and then we sketch a proof of its

correctness. We note that the proof of correctness for Lemma 6 mirrors, in many ways,
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the proof of correctness of Theorem 1 that gives a recurrence for computing a minimum-

length feasible generator for a source string X and a target string Y ; here, instead, we want

to count the total number of feasible generators ΨX that have a fixed length k.

Recall the non-overlapping property stated as Lemma 1. The recurrence for computing

N
(k)
X (Y ) is efficient because the non-overlapping property allows us to subdivide the char-

acters of the target string Y into independent subproblems. For example, if we are consid-

ering the set of feasible generators that contain some subsequence S of Y , SS = {ΨX : S ∈
ΨX}, then for every ΨX ∈ SS , all other elements of ΨX cannot overlap the characters in S.

Therefore, the substrings of Y in between successive characters of S define subproblems

that can be computed independently.

Note that every character of Y must appear at least once inX . In order to count the number

of feasible generators ΨX with length k > 1, we must consider all subsequences of Y that

could have been generated by a single duplicate operation and the number of ways we could

combine exactly k of those subsequences to form a feasible generator ΨX . The recurrence

is based on the observation that in any feasible generator, ΨX , y1 must be the first (i.e.

leftmost) character in some element of ΨX . There are then two cases to consider: either

(1) y1 was the last (or rightmost) character in the substring that was duplicated from X to

generate y1, or (2) y1 was not the last character in the substring that was duplicated from X

to generate y1.

Proof: (sketch)

The recurrence defines two quantities: N (k)
X (Y ) and N (k)

X (Y, i). We shall show, by induc-

tion, on | Y | and k that for a pair of strings, X and Y , the value N (k)
X (Y ) is equal to the

number of length-k feasible generators ΨX , and that N (k)
X (Y, i) is equal to the number of

length-k feasible generators ΨX under the restriction that the character y1 is copied from

index i in X , i.e. xi generates y1. N (k)
X (Y ) is computed by summing over all characters xi

of X that can generate y1..

As described above, we must consider two possibilities in order to compute N (k)
X (Y ). In

every feasible generator ΨX , the character y1 must appear in some subsequence Sy1 ∈ ΨX

of Y that contains y1 as a leftmost character and that corresponds to a substring of X that

was copied conjointly to produce the subsequence Sy1 . Either:

• Case 1: y1 was the last (or rightmost) character in the substring of X that was copied

to produce y1, i.e. Sy1 has length 1, or
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• Case 2: xi+1 is also copied in the same duplicate operation as xi, possibly along with

other characters as well, i.e. Sy1 has length greater than 1.

For case one, number of length-k feasible generators ΨX is equal to the number of length-

(k − 1) feasible generators ΨX(Y2,|Y |) for source string X and target string Y2,|Y | (the

suffix of Y ); the union of the subsequence corresponding to the single character y1 and

any length-(k − 1) feasible generator ΨX(Y2,|Y |) results in a length-k feasible generator

ΨX . For case two, Lemma 1 implies that the total number of length-k feasible generators

ΨX is the product of two independent subproblems. Specifically, for each j > 1 such that

xi+1 = yj and for each l ∈ {1, 2, . . . , k}, we compute: (i) number of length-l feasible

generators for source string X and target string Y2,j−1, namely N (l)
X (Y2,j−1), and (ii) the

number of length-(k − l) feasible generators for source string X and target string y1Yj,|Y |

that include an element Sy1 in which y1 is generated by xi. To compute the latter, recall that

all relevant feasible generators (corresponding to case 2 above) ΨX must contain an element

that corresponds to a duplicate operation in which xi and xi+1 are copied conjointly. The

number of relevant length-(k − l) feasible generators for source string X and target string

y1Yj,|Y | that contain an element Sy1 that corresponds to a substring of X starting at xi and

also containing xi+1 is equal to the number of relevant length-(k − l) feasible generators

for source string X and target string Yj,|Y | that contain some element Syj
that corresponds

to a substring of X starting at xi+1, namely N (k−1)
X (Yj,|Y |, i+ 1). �

We compute the restricted partition function Q(k)
X (Y ) efficiently by first counting the num-

ber of relevant feasible generators, namely N (k)
X (Y ), and scoring each generator appropri-

ately by σ(k, | Y |). This gives us the following theorem.

Theorem 6. Let X = x1 . . . x|X|, Y = y1, . . . , y|Y | be a source/target string pair and let k

be a positive integer. The restricted partition function Q(k)
X (Y ) satisfies the following.

Q
(k)
X (Y ) = N

(k)
X (Y ) · σ(k, | Y |).

The recurrence given in Lemma 6 can be computed in time O(| Y |2 k2µ(Y )µ(X)) where

µ(Y ) (resp. µ(X)) is the maximum multiplicity of any character that appears in Y (resp.

X), so computing Q(k)
X (Y ) takes the same time.

The probabilistic model of duplication based on the ensemble of feasible generators pre-

sented in this chapter is just one of many possible models one could imagine. Ultimately,

a model ought to reflect a reasonable approximation of a biologically plausible events, but



44

should also admit an efficiently computable algorithm. We give another generative proba-

bilistic model of duplication in Appendix B.

3.2.4 Problem Formulation

Here we formalize the problem of computing a segmental duplication evolutionary history

for a set of duplication blocks in the human genome with respect to either a parsimony or

likelihood criterion.

The input to our problem is the set of duplication blocks found in the human genome, each

represented as a signed string on the alphabet of duplicons. Our goal is to compute a puta-

tive duplication history that accounts for the construction of all of the duplication blocks.

We assume that the ancestral genome is devoid of segmental duplications. A duplication

history is a sequence of duplicate events that first builds up a set of seed duplication blocks

by duplicating and aggregating duplicons from their ancestral loci and then successively

constructs the remaining duplication blocks by duplicating substrings of previously con-

structed blocks.

We observed in [36] strong evidence that many of the duplication blocks identified by [32]

had been constructed through the duplication and aggregation of substrings of duplicons

from several other blocks. Therefore, a tree cannot aptly represent an evolutionary history;

a more appropriate representation of the evolutionary relationships between duplication

blocks is a DAG in which the vertices represent duplication blocks and an edge directed

from a vertexX to a vertex Y indicates that substrings ofX were duplicated in the construc-

tion of Y . A vertex with multiple incoming edges and, therefore, multiple parents, is con-

structed using substrings of all of the parent blocks. Specifically, given a DAGG = (D, E),

for Y ∈ D, we define PG(Y ), the parent string of Y , by PG(Y ) = X1 � X2 � · · · � Xp

where Xi ∈ {D | (Xi, Y ) ∈ E} and � indicates the concatenation of two strings with a

dummy character inserted in between.

We make two simplifying assumptions. First, we assume that only duplicate events occur

and that there are no deletions, inversions, or other types of rearrangements within a dupli-

cation block. Second, we assume that a duplication block is not copied and used to make

another duplication block until after it has been fully constructed, ensuring the evolutionary

relationships cannot contain cycles. We acknowledge that our two simplifying assumptions

restrict the evolutionary history reconstruction problem significantly, but admit an efficient

and consistent method of scoring a solution. Similar assumptions were made, for example,
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by [52] to derive the evolutionary tree for Alu repeat elements.

We can define the optimal DAG with respect to a parsimony criterion using duplication

distance (see Ch. 2).

Definition 19. Given a set of duplication blocksD, the maximum parsimony evolutionary
history is the DAG G = (D, E) that minimizes f(G) =

∑
Y ∈D d(PG(Y ), Y ).

We can also define the optimal DAG with respect to a likelihood criterion. In phylogenetic

tree reconstruction, a max likelihood solution is a tree that maximizes the probability of

generating the characters at the leaf nodes over all possible tree topologies, branch lengths,

and assignments of ancestral states to the internal nodes. Typically, the evolutionary pro-

cess is assumed to be a Markov process so that the probabilities along different branches

are independent. We similarly define the maximum likelihood DAG using the probabilistic

model derived in Section ??. We maximize the likelihood of the solution over all DAG

topologies and–instead of branch lengths–the numbers of operations permitted to construct

each node.

Definition 20. Given a set of duplication blocks D, the maximum likelihood evolutionary
history is the DAG G = (D, E) that maximizes the likelihood:

L(G) =
∏

Y ∈D L(Y ),

=
∏

Y ∈D (maxk Pr[F | Y, PG(Y ), k]) ,

=
∏

Y ∈D

(
maxkQ

(k)
PG(Y )(Y )/Z

(k)
PG(Y )

)
,

where Z(k)
PG(X) and Q(k)

PG(Y ) are the partition function and restricted partition functions, re-

spectively.

3.2.5 Results

We analyzed a set of 391 duplication blocks identified by [32] that were represented as

signed strings on an alphabet of ≈ 5, 000 duplicons. We computed the maximum par-

simony evolutionary history (Def. 19) for the entire set of blocks (see Fig. 3.7). The

DAG exhibited multiple connected components. For comparison, we then computed the

maximum likelihood evolutionary histories (Def. 20) for several of the subgraphs induced

by connected components of the parsimony solution. We scored generators according to

σ(k, | Y |) = 1
|Y |k .

We used a simulated annealing strategy to find a maximum parsimony DAG for the entire
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Clade

Figure 3.8: A connected component of the maximum parsimony DAG. Nodes from clade ‘M1’ are
red and nodes from clade ‘chr7 2’ are green. Node labels correspond to duplication block IDs. The
blue edges represents the inheritance network for non-core duplicon 6970.

set of duplication blocks and to find maximum likelihood DAGs for several subgraphs.5

For each input, we ran our local search 300 times. We started the search an equal number

of times at each of three different types of initial graphs: (a) the empty graph with no edges;

(b) the directed minimum spanning tree (MST); and (c) a randomly chosen DAG (chosen

independently for each trial). Finally, to focus the search on the most important block rela-

tionships, we considered only edges between blocks whose longest common subsequence

(LCS) contained at least 20 duplicons. We describe the simulated annealing heuristic in

more detail in Section 3.2.8.

3.2.6 Maximum Parsimony Reconstruction

The maximum parsimony DAG contains 391 nodes and 479 edges. There are 9 connected

components with at least 4 duplication blocks, and nearly 40% of the blocks appear in the

largest connected component. Figure 3.8 shows a moderately-sized connected component.

The graph also contains a total of 105 singleton nodes for which we did not infer any

evolutionary relations with other duplication blocks, 97 of which did not exhibit an LCS of

length 20 with any other block.

The maximum parsimony DAG represents a scenario in which all 391 duplication blocks

5Both the max parsimony and max likelihood versions of the problem can be shown to be NP-hard by a
reduction from the problem of Learning Bayesian Networks.
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Figure 3.9: An example of duplication block recombination. The target duplication block in the
middle (chr9:65.9-66.5) exhibits subsequences that appear as contiguous substrings in four other
seeding duplication blocks. The nested relationships between subsequences in the target block (e.g.
the green subsequence is nested inside the purple one and the red subsequence is nested inside
the blue one) allow us to conclude the target block was composed of duplicated substrings from the
other four blocks and not vice versa. Moreover, the nested relationships between these subsequences
imply an order of duplication events (i.e. the green subsequence was duplicated after the purple one
and the red subsequence was duplicated after the blue one).

could have been constructed in a sequence of 17,431 total duplicate operations. As a base-

line comparison, a minimum spanning tree, with respect to duplication distance, on the set

of duplication blocks has a total parsimony score of 28,852 and, by definition, contains 390

edges.

A striking feature of the max parsimony DAG was the occurrence of duplication block

recombination, or the creation of a single target block by duplicating and aggregating sub-

strings from multiple parent blocks. See Fig. 3.9 for an example of a duplication block

that exhibits a subsequence composition that can best be described as the result of seed-

ing events involving multiple parents. The existence of a duplication block that contains

subsequences contributed by multiple parent blocks was not possible in the two-step du-

plication tree formulation presented in Section 3.1, underscoring the differences between

the two approaches. In total, 128 duplication blocks exhibited multiple parents. Of those,

105 exhibited at least two parents that contributed, respectively, at least 10% of the dupli-

con content of the target node (computed as the number of duplicons in the subsequences

contributed by a parent divided by the total number of duplicons in the target). Similarly,

66 blocks exhibited at least two parents that contributed, respectively, at least 20% of their

constituent duplicons. And 52 exhibited at least two parents that contributed, respectively,

at least 25% of the content of the target block.
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(a) (b)

Figure 3.10: (a) Component comprised entirely of duplication blocks from clade ‘chr16’ in the
maximum parsimony DAG. (b) Maximum likelihood DAG for subgraph induced on nodes in (a).

[32] performed an initial analysis of the duplication blocks. They defined 24 clades, or

groups of duplication blocks derived from a common ancestor block, by performing hierar-

chical clustering on a matrix representing the shared presence or absence of duplicons for

every pair of blocks. For a given clade they defined a core duplicon as one that appears in at

least 67% of the constituent duplication blocks. They posited that clades represent families

of evolutionarily related duplication blocks and that core duplicons “may have driven the

evolution of the duplication blocks” in a clade.

After constructing the max parsimony DAG, we colored the nodes in a post-process ac-

cording to the clades described in [32]. We found a strong correspondence between Jiang

et al.’s clades and connected subgraphs in our DAG; 5 of the 9 connected components with

at least 4 blocks were comprised of duplication blocks belonging to a single clade and 7

of the 9 components were comprised of blocks belonging to no more than 2 clades. For

example, see Fig. 3.10(a) and 3.11(a). In larger components, nodes from a single clade

frequently induce a connected subgraph. For example, see Fig. 3.8. We performed a χ2

test of independence between the members of the clades defined by [32] and the members

of connected components in our graph. We restricted the test to clade and components with

at least 18 members. We found that there was a strong relation between the partition of our

graph into connected components and the clade analysis done by [32] (P < 0.0001). The

analysis done by [32], therefore, corroborates our own conclusions.

Our DAG also reveals which duplication blocks may have seeded many other blocks (i.e.

those with high out-degree). For example, in Fig. 3.8, block 399 exhibits eight children and

is an inflection point for the component. Moreover, the edge from block 399 to 405 links
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(a) (b)

(a) (b)

Figure 3.11: (a) Component comprised entirely of duplication blocks from clade ‘chr10’ in the
maximum parsimony DAG. (b) Maximum likelihood DAG for subgraph induced on nodes in (a).

blocks from the the ‘M1’ and ‘chr7 2’ clades. Even though the blocks 399 and 405 belong

to different clades, 405 is very “close” to 399 in duplication distance: block 405 contains

only 71 duplicons, but it shares a subsequence of 29 duplicons with block 399. This link

suggests that the entirety of clade ‘chr7 2’ was descended from clade ‘M1’ in an optimal

duplication history.

Also implicit in the DAG is information about which duplicons are duplicated from one

block to another in an optimal duplication history. We define the inheritance network

for each duplicon as the subgraph induced on the edges on which that duplicon is passed

from parent to child. The average size of an inheritance network was 5.5 edges with a

standard deviation of 10.4. As expected, the 81 core duplicons identified by [32] were

more promiscuous, on average, than non-core duplicons with a mean inheritance network

size of 21. Interestingly, a comparison of the inheritance networks for core and non-core

duplicons revealed that many non-core duplicons exhibit larger inheritance networks within

subgraphs induced by a clade than many of the core duplicons. For example, non-core

duplicon 6970 appeared on 36 of the 63 total edges in the subgraph induced by clade ‘M1’

(shown in blue in Fig. 3.8) and does not appear on any other edge in the graph. We propose

6970 as a new core duplicon for this clade and suggest that others like it should also be

categorized as core duplicons.

Moreover, we found inheritance networks for many conserved subsequences of duplicons

that were nearly as prominent as those for individual core duplicons. For example, the

subsequence [6968, 6967, 6925, 6963, 6962] of duplicons appears on 23 of the edges in the
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subgraph induced by ‘M1’ clade nodes (shown as green edges in Fig. 3.7). Similarly, the

sequence [7039, 7036, 7037] exhibits a connected inheritance network of 7 edges within

the subgraph induced on clade ‘M2,’ and [9448, 9449] exhibits an inheritance network of

7 edges within the subgraph induced on clade ‘chr16’ that includes an inheritance path of

length 5 (shown also in Fig. 3.7). By delineating the inheritance networks of duplicon

subsequences that are conserved across duplication blocks, we can learn about which du-

plicons were duplicated and transposed conjointly. This type of analysis was impossible

using only the clade annotations of [32].

3.2.7 Maximum Likelihood Reconstruction

We computed the maximum likelihood DAGs (Def. 20) for the sets of duplication blocks

appearing within moderately-sized connected components of the maximum parsimony DAG

in order to compare the two methods. We chose the components comprised of blocks from

clades ‘chr16’ and ’chr10’, respectively (in Fig. 3.7). The maximum likelihood subgraphs

for these subproblems are shown in Fig. 3.10(b) and 3.11(b).

The two DAGs for the ‘chr16’ component in Fig. 3.10 share some characteristics. For

example, node 121 is a common ancestor of every other block and block 276 exhibits

high out-degree in both solutions. Both solutions are similarly “good” with respect to the

parsimony objective: the solution in (a) exhibits an optimal parsimony score of 397, and the

one in (b) exhibits a score of 401. However, the likelihood score for the parsimony solution

in (a) was nearly zero. One difference that accounts for this discrepancy is the higher

average in-degree for blocks in the parsimony solution (2.2) as compared to the likelihood

solution (1.3). Also, the parsimony solution exhibits a path with ten edges, whereas the

longest path in the likelihood solution has six.

Some of these differences are due to the fact that the parsimony criterion does not penalize

edges that do not directly improve the score. For example, block 291 has two parents

(276 and 25) in the parsimony DAG but only one parent (276) in the likelihood DAG.

However, the duplication distance with source 276 � 25 and target 291 is the same as

the duplication distance with source 276 and target 291. Therefore, the edge from 25 to

291 does not improve the parsimony score, underscoring that there are multiple optimal

parsimony solutions. In contrast, the likelihood of a target block generally increases as

the sum of the lengths of its parent blocks decreases, so the max likelihood DAG will not

include edges that do not directly improve the score.



52

3.2.8 The Simulated Annealing Heuristic

[29] describes an elegant approach for moving locally in the space of DAGs via three types

of simple moves- adding a new edge, removing an existing one, or reversing an existing

one.

Definition 21. Given DAG G = (V,E), the DAG G′ = (V,E ′) neighbors G if and only if

we can obtain G′ from G with a single move- adding a new edge, removing, or reversing

an existing edge.

Definition 22. Given an objective function f and two DAGsG1, G2 we call ∆G = f(G1)−
f(G2) the difference in their energies.

The simulated annealing strategy can be summarized as follows. Given a DAGG = (V,E)

and a randomly proposed move, we examine whether the move is legal (i.e. does not

induce a cycle) and, if so, we perform the move with probability p = exp(−∆G
T

), where

T is a temperature parameter. We note that depending on the complexity of the objective

function f(G) computing ∆G could be very expensive. In fact, this is the case for the

max likelihood reconstruction because computing Pr[Y | X, k] takes in the worst-case

O(| Y |3| X | k2). Therefore, we employ a hashtable to store the cost of every move we

have examined. As we do hundreds of independent trials we may often need to examine

the same move multiple times, and the hashtable helps significantly speed up the search for

good moves..

In our implementation we employ an exponential cooling schedule schedule. The temper-

ature is updated via the equation Tt+1 = Ttα. We determined empirically that α = 0.98

performs best in terms of efficiency and time.

The simulated annealing heuristic often terminated in local optima. For a particular in-

stance, the solutions found by all 300 trials would include many globally suboptimal so-

lutions. However, many of the locally optimal solutions encountered were “close” to the

score for the best solution found. For example, the search for the max parsimony evolu-

tionary history given in Fig. 3.10(a) resulted in a component whose objective score is 397;

more than 1/6 of the total trials returned solutions whose objective scores are no more than

407 and well over 1/2 of the total trials returned solutions whose objective scores are no

more than 437 (see Fig. 3.12).
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Figure 3.12: Results of 300 trials of simulated annealing (SA) heuristic: number of local optima
returned by SA vs. objective scores. Results are from search for max parsimony evolutionary history
for component comprised of duplication blocks from clade ‘chr16’ whose global optimum is given
in Fig.3(a).

3.3 Conclusion and Future Directions

We have given several methods for constructing a putative history of human segmental du-

plications. First, we defined the problem of computing a most-parsimonious duplication

history for segmental duplications that is consistent with the so-called two-step model of

segmental duplication. We computed an optimal putative duplication history for a set of

human segmental duplications using the duplication distance algorithm described in Chap-

ter 2 and an integer linear program problem formulation. We then refined the segmental

duplication history reconstruction problem by relaxing the constraint that the history must

be consistent with the two-step model, and instead be consistent more generally with a

multi-step model. We defined a probabilistic model of duplication and gave an efficient al-

gorithm for computing the probability of a duplication scenario for a pair of signed strings

by computing the partition function of the weighted ensemble of feasible sets of duplicated

segments. Then we defined the problem of constructing an optimal segmental duplication

history DAG with respect to both parsimony and likelihood criteria. Finally, we computed

a near-optimal putative duplication history DAG for the same set of human segmental du-

plications with respect to the parsimony criterion and a near-optimal putative duplication

history DAG for a subset of the same human segmental duplications with respect to the

likelihood criterion using.
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Our maximum parsimony and maximum likelihood DAG reconstructions show some dif-

ferences, both from each other and from the analysis of [32]. In particular, we identify

non-core duplicons and subsequences that are arguably as promiscuous within a clade as

core duplicons.

There are several directions for future work. From a theoretical perspective, one can in-

corporate other types of operations into the probabilistic model, such as deletions and

inversions (which we described in the parsimony setting in Chapter 2), as well as single

nucleotide mutations. Also, our method could be used to sample over the space of DAGs

using a Markov Chain Monte Carlo (MCMC) strategy. From the perspective of applica-

tions, a more comprehensive analysis of genes or other elements in the newly identified

core duplicons and core subsequences from our reconstruction is warranted, as is a further

refinement of the clade annotation by analyzing the clade-induced subgraphs of the DAGs.



COMPLETING A PARTIALLY
ASSEMBLED GENOME USING
REARRANGEMENT DISTANCE

The growing abundance of cancer genome sequence data (see [51], for example) under-

scores the need for efficient and reliable algorithms for whole-genome assembly. However,

assembling a genome accurately is still a costly and labor-intensive process. The need to

survey many tumor samples means that the sequencing and finishing efforts devoted to a

single genome are likely to be relatively small so we need computational methods to aid

the process.

Unfortunately, in order to keep the cost of sequencing a single cancer genome down, the

sequence coverage may be low. The effect is that a cancer genome may not be able to be

reconstructed fully from the sequence data. Instead, the reconstruction may consist of a

fragmented genome comprised of multiple DNA contigs whose sequences are known but

whose relative ordering cannot be inferred directly, and some regions may not have been

measured at all. While this fragmented representation of a cancer genome can be used,

for example, to identify regions of amplification or deletion, we cannot fully appreciate the

effects of large-scale rearrangements without full cancer genome reconstructions.

In some cases, we have a good idea of what the full genome should look like. Unlike when

sequencing a new species, in assembling a cancer genome, we know the architecture of the

“starting genome,” i.e. the human genome prior to somatic mutation. We assume, conser-

vatively, that a human cancer genome will exhibit some mutations, but will, by and large,

resemble a healthy human genome. Given a partially assembled cancer genome comprised

of multiple fragmented contigs, we can reconcile it with a reference (healthy) genome to

construct a full cancer genome that contains all the assembled contigs as subsequences but

that is otherwise as similar to the reference genome as possible. In particular, where regions

55
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may not have been measured in the cancer sequence data, we assume that the those regions

resemble the reference genome. Moreover, whenever there is ambiguity in how to arrange

the fragmented cancer genome contigs, we err on the side of conservatism and use the refer-

ence genome as our guide. This process, known as resequencing a cancer genome, requires

fewer clones and is less labor-intensive than de novo whole genome fragment assembly.

In this chapter, we consider the Block Ordering Problem (BOP) that was introduced by

Gaul and Blanchette [28]. The input to the BOP is a pair of partially assembled genomes

where all the regions of the genomes are sequenced, but the genomes are fragmented into

contigs (blocks) that need to be ordered and oriented such that the similarity between the

resulting pair of genomes is maximized. In the formulation of [28], the measure of similar-

ity between a pair of genomes is given by the number of cycles in their breakpoint graph

([5]), and they give a linear-time algorithm to solve it.

Here we consider a special case of the BOP where the input is one fully sequenced refer-

ence genome and one partially assembled genome where some regions may not have been

sequenced. This special case is motivated by the problem of resequencing a cancer genome:

given a fully sequenced reference genome and a partially assembled cancer genome com-

prised of multiple contigs possibly with some missing regions, complete the cancer genome

in such a way that it contains all the assembled contigs as subsequences and such that the

similarity between the cancer genome and the reference genome is maximized. We note,

however, that the techniques we present can be extended in a straightforward manner to

solve the general BOP in which both input genomes are only partially assembled.

Unlike [28], here we use the double-cut-and-join (DCJ) distance metric between genomes

as a measure of similarity. First introduced by [59], DCJ distance is an efficiently com-

putable metric that models a number of basic rearrangements, such as inversions, transloca-

tions, fusions, fissions, transpositions, and block interchanges. In [59], the authors present

a linear-time algorithm for computing DCJ distance between a pair of genomes using the

breakpoint graph data structure introduced by [5]. Later, [9] introduced a new data struc-

ture, the adjacency graph, that simplifies the algorithms for computing DCJ distance and

for computing a sorting sequence of DCJ operations.

In this chapter, we show that solving the BOP with respect to DCJ distance is equivalent

to solving it with respect to the number of cycles in the breakpoint graph; in fact, another

contribution of this thesis is a proof that the number of cycles in the breakpoint graph for
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a pair of genomes is equal to the number of cycles in their adjacency graph using cycle-

preserving graph transformations. Moreover, just as [9] simplified the presentation of the

algorithms for computing DCJ distance using an adjacency graph, here we simplify the

presentation of the algorithm for solving the BOP by using the adjacency graph (instead

of the breakpoint-graph-based framework used by [28]). We differentiate between two

variants of the problem and give linear-time algorithms to solve them both. Finally, [28] do

not give a full proof of correctness for their algorithm; we complete the proof of correctness

for our algorithm.

In the last section of this chapter, we discuss how our adjacency-graph-based framework

for solving the BOP might give insight into a more general problem of constructing a set

of unknown cancer genomes given an ambiguous set of sequence measurements.

4.1 Related Work

As mentioned previously, the work in this chapter is closely related to that of Gaul and

Blanchette [28] who introduced the Block Ordering Problem (BOP). The BOP was in-

spired by DNA sequencing technology that generates whole-genome sequencing data with

relatively low coverage, inevitably resulting in the construction of a fragmented genome

comprised of sequenced contigs whose relative ordering cannot be inferred directly. In par-

ticular, the problem is defined as follows: given two signed permutations (genomes) that

are broken into blocks, order and orient each set of blocks in such a way that the number

of cycles in the breakpoint graph of the resulting permutations is maximized, which they

note “has been shown to approximate very well the [minimum] reversal distance between

them.”

In this work we use a more recently introduced measure of similarity between genomes

as our objective criterion, namely the double-cut-and-join distance. Introduced in [59],

the double-cut-and-join (DCJ) operation cuts a genome in two locations and then fuses

the new ends in a different orientation. The authors present a linear-time algorithm for

computing the DCJ distance between a pair of permutations using the breakpoint graph

framework originally introduced in [5] to compute the reversal distance between a pair of

permutations. [59] shows that the DCJ distance between genomes A and B, dDCJ(A,B),

obeys:

dDCJ(A,B) = b(A,B)− c(BGA,B), (4.1)

where b(A,B) is the number of breakpoints and c(BGA,B) is the number of cycles in the
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breakpoint graph ofA and B. They give a quadratic-time algorithm for computing a sorting

sequence of DCJ operations based on the breakpoint graph of the two genomes. Interest-

ingly, [59] observe that reversals, transpositions, and block interchanges with weights one,

two, and two, respectively, can all be modeled by a single DCJ operation.

The DCJ operation was subsequently revisited by Bergeron et al. [9] who present a new

framework for computing DCJ distance without using the breakpoint graph of [5]. Instead,

in [9], the authors present a linear-time algorithm for computing the distance between two

signed permutations with respect to the DCJ metric based on an adjacency graph construc-

tion. In particular, they show the following.

Theorem 7 (Bergeron et al., Thm 1). Given genomesA and B on the same set of N genes,

the DCJ distance is:

dDCJ(A,B) = N −
(
c(AGA,B) +

i(AGA,B)

2

)
, (4.2)

where N is the number of genes, c(AGA,B) is the number of cycles in the adjacency graph

and i(AGA,B) is the number of paths with an odd number of edges in the adjacency graph.

They also give a linear-time algorithm for computing a sorting sequence of DCJ operations.

The connection between reversals and DCJ operations when applied to a single circular

chromosome was also described by [9]. In particular, a single DCJ operation when applied

to a circular chromosome can result in a reversal or in a cycle fission (in which the circular

chromosome becomes two circular chromosomes). Similarly, a DCJ operation on a pair of

circular chromosomes can result in a cycle fusion (in which the 2 chromosomes become

a single circular chromosome). Therefore, even if the start/end genomes are known to

be circular-unichromosomal, a sequence of DCJ operations transforming one genome into

another may create some intermediate genomes that are circular-multichromosomal.

Although the relationship between reversal operations and DCJ operations has been studied

previously, here we make explicit the relationship between the breakpoint graph framework

of [5] and the adjacency graph framework of [9]. In particular, we prove that the number

of cycles in a breakpoint graph for a pair of permutations is equal to the number of cycles

in the corresponding adjacency graph for the same pair. As a consequence, we can show

that the algorithm given by [28] for the BOP yields a pair of genomes whose DCJ distance

is minimum. The solution given in [28], however, is complicated; the algorithm relies on
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a breakpoint graph framework and requires the construction first of a fragmented break-

point graph (a generalization of the breakpoint graph requiring four colors to distinguish

different types of vertices) and then of a block ordering graph (a vertex-bicolored and edge-

bicolored graph constructed from the fragmented breakpoint graph). Finally, they give an

algorithm to processes each type of component in the block ordering graph in succession.

The algorithms we present below are simpler, relying on an adjacency graph framework.

Furthermore, the proof of correctness for the algorithm presented in [28] relies on some

assumptions that are not proven explicitly. As stated above, the authors solve the BOP by

ensuring the number of cycles in the resulting breakpoint graph is maximized. Given the

input pair of partially assembled genomes, they construct a fragmented breakpoint graph

(a generalization of a breakpoint graph) that exhibits, initially, some number of cycles.

The argument then is that the total number of new cycles constructed by their algorithm

is optimal. Although they quantify the number of new cycles that are constructed by their

algorithm, they do not argue that this number is an upper bound and therefore optimal. (See

Appendix C for additional discussion of the results presented in [28].) Here we prove the

optimality of the algorithms we present.

4.2 Preliminaries

A gene is an oriented sequence of nucleotides, starting from its tail and ending at its head.

The tail and head of a gene are referred to as its extremities. We denote the tail of a gene

a as at and its head as ah. For gene a, the extremities at and ah are obverse extremities,

denoted at = āh and ah = āt. When two genes appear consecutively on a chromosome,

two of their extremities form an adjacency. An adjacency is represented as an unordered

set of two extremities. For example, if genes a and b appear consecutively, they may form

any of four possible adjacencies: {ah, bt}, {ah, bh}, {at, bt}, {at, bh}. An extremity that

appears at the end of a linear chromosome and is therefore not adjacent to any other gene

extremity is called a telomere and is represented as a singleton set, such as {at}.

A genome on N genes is a set of adjacencies and telomeres in which each of the 2N

corresponding extremities is a member of exactly one element of the genome. The genome

graph for genome A, denoted GA, is a graph with nodes corresponding to the extremities

in elements of A and edges between pairs of obverse extremities and extremities that are

elements of the same adjacency in A, i.e. the set of edges is {(u, v) | u = v̄ or {u, v} ∈
A}. Note that GA is a graph that contains only nodes with degree one or two and that
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Figure 4.1: The genome graph for the genome A. There are 14 nodes, representing the extremities
of the 7 genes exhibited in A. Each pair of obverse extremities defines an edge, and each adjacency
in A defines an edge. The genome graph exhibits 3 connected components, corresponding to 3
constituent chromosomes. The top 2 chromosomes are linear and the bottom one is circular.

it may contain cycles. Given a genome A with N extremities, its genome graph can be

constructed in O(N) time in a straightforward manner.

A chromosome in a genomeA is the subset of adjacencies and telomeres containing all the

extremities in a single connected component in GA. The chromosomes of a genome can be

inferred directly from its genome graph. A chromosome is linear if it contains exactly two

telomeres and circular if it contains no telomeres. Note that a genome may contain either

linear or circular chromosomes or a mixture of both.

For example, consider the following genome and its genome graph given in Fig. 4.1.

A = {{at}, {ah, bt}, {bh, ch}, {ct}, {dh}, {dt, et}, {eh}, {ft, gh}, {gt, fh}}.

A contains seven genes and three chromosomes, two of which are linear and one of which

is circular.

We also define a partial genome on N genes to be a set of adjacencies and telomeres in

which each of the 2N extremities can be a member of no more than one element. Similarly,

the partial genome graph for a partial genome X on N nodes is the graph induced on

the 2N corresponding extremities of the N genes with edges between pairs of obverse

extremities and pairs of extremities that are elements of an adjacency in X . See Figure 4.2

for an example.

Definition 23. A genome is circular-unichromosomal if and only if it contains exactly one

chromosome and no telomeres.
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Figure 4.2: A partial genome graph for the partial genome X = {{ah, bh}, {ct, dt}, {dh, et}} on
genes a, b, c, d, e. The excluded adjacencies are E(X ) = {{at, bt}, {ch, eh}}.
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Figure 4.3: The adjacency graph for genomesA = {{ah, bt}, {bh, ch}, {dt, et}, {ct, dh}, {at, eh}}
and B = {{ah, bt}, {bh, dt}, {ch, et}, {ct, at}, {dh, eh}}. The graph contains 3 cycles.

For a pair of genomes,A and B, that contain the same set of genes, we define the adjacency

graph, denoted AGAB, as the bipartite graph whose vertices correspond to the elements of

A and B. For the pair a ∈ A, b ∈ B, there are | a ∩ b | edges between a and b in the

adjacency graph. Therefore, a node in an adjacency graph may have degree one (for a

telomere) or two (for an adjacency). An adjacency graph can contain only simple paths

and simple cycles. Note that an adjacency graph may contain parallel edges (or a simple

cycle of length two). The adjacency graph for a pair of genomes on N genes can contain at

most N cycles. See Fig. 4.3. Given a pair of genomes on N genes, we can construct their

adjacency graph in O(N) time in a straightforward manner.

Similarly, we can define a partial adjacency graph for a pair of partial genomes or one

complete genome and one partial genome. See Figure 4.4 for an example. Note that a node

may have degree 0 in a partial adjacency graph.

In [9], the authors proved that the DCJ distance between a pair of genomes defined on the

same set of N genes can be computed by analyzing the adjacency graph. (See Thm 7.)
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,"-(Figure 4.4: A partial adjacency graph for the genome A =
{{ah, bt}, {bh, ct}, {ch, dt}, {dh, et}, {eh, at}} and partial genome X =
{{ah, bh}, {ct, dt}, {dh, et}} on genes a, b, c, d, e. The missing extremities are M(X ) =
{at, bt, ch, eh}. The unsatisfied pairs are U(A,X ) = {{bt, ch}, {eh, at}}.

4.3 The Breakpoint Graph and the Adjacency Graph

In the previous sections, we described the adjacency graph for a pair of genomes. Here

we present the breakpoint graph structure introduced by [5]. We only discuss the break-

point graph structure for pairs of circular-unichromosomal genomes, although the structure

can be generalized for linear-unichromosomal genomes as well. First, in [5], the authors

assume that genomes are represented by signed permutations on an alphabet of genes. A

signed permutation π can be transformed into the equivalent set representation of a genome

Gπ described in Section 4.2. First, we transform π into an unsigned permutation π′ on 2N

markers: for each gene in π with positive orientation, such as +a, replace it in π′ by the

consecutive pair of extremities at, ah, for each gene in π with negative orientation, such

as −a, replace it in π′ by the consecutive pair of extremities ah, at. Then, for each pair of

successive extremities i, j such that i and j are not obverse extremities (i.e. i 6= j̄) in π′,

add the adjacency {i, j} to Gπ. Also add an adjacency corresponding to the first and last

extremities in π′.

A breakpoint graph for a pair A,B of circular-unichromosomal genomes on N genes con-

tains 2N nodes – one for each extremity. The breakpoint graph contains three types of

edges. Pairs of obverse extremities are connected with obverse edges. For every adjacency

{i, j} ∈ A, i and j are connected with a black edge. For every adjacency {i′, j′} ∈ B, i′

and j′ are connected with a green edge. A cycle in the breakpoint graph is a green-black

alternating cycle. See Figure 4.5 for an example.

In this section, we show explicitly the connection between the breakpoint graph and the
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Figure 4.5: The breakpoint graph for genomes A =
{{ah, bt}, {bh, ch}, {dt, et}, {ct, dh}, {at, eh}} andB = {{ah, bt}, {bh, dt}, {ch, et}, {ct, at}, {dh, eh}}.
Black edges correspond to adjacencies in A, and green edges correspond to adjacencies in B.
Dashed edges represent obverse edges. There are three green-black alternating cycles.

adjacency graph for a pair of genomes: we prove that the number of cycles in the break-

point graph for a pair of unichromosomal genomes is equivalent to the number of cycles

in their adjacency graph. That is, we prove that for unichromosomal genomes A and B,

c(BPA,B) = c(AGA,B). To our knowledge, this connection between the two graphs has not

been shown explicitly before.

Lemma 7. Given a pair of circular-unichromosomal genomes, A, B, on N genes, the

number of cycles in the breakpoint graph equals the number of cycles in the adjacency

graph.

Proof: To prove the equivalence of the two graphs, we give a series of cycle-preserving

graph transformation operations that converts the adjacency graph into the breakpoint graph.

Start with the adjacency graph AGA,B. For each adjacency in A, split the node into two –

corresponding to the two extremities – and connect them with a black edge. For each ad-

jacency in B, split the node into two – corresponding to the two extremities – and connect

them with a green edge. In both A and B, connect obverse extremities with obverse edges.

(Note that the set of vertices in A is equal to the set of vertices in B, and the obverse edges

between extremities in A will be the same as the set of obverse edges between extremities

in B.) We then merge all identical pairs of vertices fromA and B. We delete one of the two

parallel copies of each obverse edge. The resulting graph is a breakpoint graph for A and

B and there is a one-to-one correspondence between cycles in the original adjacency graph

and cycles in the resulting breakpoint graph. �

In [30], the authors show that for circular-unichromosomal genomes A and B on N genes,

the reversal distance obeys:

dreversal(A,B) = N − c(BPA,B) + t, (4.3)
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where c(BPA,B) is the number of cycles in the breakpoint graph and t is usually a small

constant that accounts for the number of operations needed to handle the so-called hurdles

and fortresses in the breakpoint graph. By comparison, [9] show that the DCJ distance

obeys:

dDCJ(A,B) = N − c(AGA,B), (4.4)

where c(AGA,B) is the number of cycles in the adjacency graph. Therefore, Lemma 7

implies that the only difference between the reversal distance and the DCJ distance for a

pair of genomes owes to the existence of hurdles or fortresses in the breakpoint graph and

can be quantified by t.

Another consequence of Lemma 7 is that the goal of solving the BOP with respect to the

number of cycles in the breakpoint graph is equivalent to solving the BOP with respect to

the number of cycles in the adjacency graph. Hence, although they state that their goal is to

minimize the approximate reversal distance between the two final genomes, the algorithm

of [28] maximizes the number of cycles in their adjacency graph and thus also minimizes

the DCJ distance between them.

4.4 Problem Formulation

Here, we use the formulation of [9] and an adjacency-graph approach to simplify the result

of [28] to solve the block ordering problem with respect to the DCJ metric. In our discus-

sion, we consider a special case of the problem, that we call the Completion Problem, in

which one of the two input genomes is a fully sequenced reference genome, and the goal

is to complete a partially assembled genome so as to maximize its similarity to the known

reference genome. We describe two variants of the completion problem – one in which the

form of the final assembled genome is unconstrained and one in which the final genome is

required to be comprised of a single, circular chromosome. We note that our algorithms for

the completion problem can be extended to solve the BOP more generally.

We begin with some definitions.

Definition 24. A completion of a partial genome X is a genome X̂ such that X ⊆ X̂ .

Definition 25. A circular-unichromosomal completion of a partial genomeX is a genome

X̂ such that X ⊆ X̂ and X̂ is circular-unichromosomal.

Definition 26. Given a circular-unichromosomal genome A on N genes and a partial

genome X onN genes containing only adjacencies, the Unrestricted Completion Problem
is to find a completion X̂ of X such that dDCJ(A, X̂ ) is minimum.
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Definition 27. Given a circular-unichromosomal genome A on N genes and a partial

genome X on N genes containing only adjacencies, the Restricted Completion Problem is

to find a circular-unichromosomal completion X̂ of X such that dDCJ(A, X̂ ) is minimum.

We note that, as its name suggests, the restricted version of the problem is more constrained

than the unrestricted version.

Claim 1. Given a circular-unichromosomal genome A, an optimal solution X̂U to the un-

restricted completion problem, and an optimal solution X̂R to the restricted completion

problem, dDCJ(A, X̂U) ≤ dDCJ(A, X̂R).

Proof: Any circular-unichromosomal completion X̂ ofX is also a completion ofX . There-

fore, an optimal solution X̂R to the restricted version of the completion problem is also a

(possibly not optimal) solution to the unrestricted version of the problem. Thus, the dis-

tance dDCJ(A, X̂R) is an upper bound on the distance dDCJ(A, X̂U) to an optimal solution

to the unrestricted version of the problem.

4.5 The Algorithm

4.5.1 The Unrestricted Problem

First, we give an algorithm for the unrestricted version of the completion problem. Our

input to the problem is a reference genome A that is circular-unichromosomal and a set

of measured adjacencies X that contain each extremity that appears in an element of A at

most once. The goal is to complete the partial genome X by adding new adjacencies and

telomeres to it in order to build the full genome that is most similar to A with respect to

DCJ distance.

By Thm. 7, any strategy that will complete a partial genome X in such a way that the DCJ

distance between the completion of that genome X̂ and a given reference genome A will

be minimal will maximize the value of c(AGA,X̂ ) + i(AGA,X̂ )/2 in the resulting adjacency

graph.

Let us consider the partial adjacency graph AGA,X for A and X . Recall that it is bipar-

tite. Note that because A is circular-unichromosomal, it contains only adjacencies – no

telomeres. Also note that X is defined to be a set of adjacencies. Moreover, because A is

a complete genome, all the 2N extremities are represented, so all the nodes in X will have

degree 2 in the partial adjacency graph. In other words, the partial adjacency graph must

contain exactly 2 | X | edges. Consequently, the partial adjacency graph contains only
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cycles of even length and even-length paths whose two endpoints are in A.

There are | X | adjacencies inX , and because each adjacency contains two extremities, that

means that 2 | X | of the 2N total extremities are represented in X . The rest are missing.

Definition 28. LetM(X ) be the set of 2N−2 | X |missing extremities that do not appear

in X .

For example, in Figure 4.4,M(X ) = {at, bt, ch, eh}. These are the extremities that must

be added to X in order to complete it.

Claim 2. Let X be a partial genome onN genes, and let P be any partition of the elements

ofM(X ) into |M(X )|
2

= N− | X | adjacencies. X ∪ P is a completion of X .

The claim follows from the definition of a completion; the set X ∪ P contains X and

exhibits all 2N extremities.

Claim 3. Given a partial genome X and a perfect matching M on M(X), X ∪M is a

completion of X .

The claim follows directly from Claim 2; the perfect matching M is a partition ofM(X )

into |M(X )|
2

adjacencies.

Consider again the partial adjacency graph. Note that an extremity m ∈ M(X ) must

appear as a member of a node a ∈ A that has degree zero or one in AGA,X .

Definition 29. Given a circular-unichromosomal genome A, and a partial genome X , let

u, v be extremities inM(X ). {u, v} is an unsatisfied pair provided either:

1. {u, v} ∈ A, or

2. there exist u′, v′ such that {u, u′} and {v, v′} are degree-one nodes at opposite ends

of an even path in AGA,X .

See Fig. 4.4 for an example.

Definition 30. Given a circular-unichromosomal genome A, and a partial genome X ,

U(A,X ) is the set of all unsatisfied pairs of extremities.

Note that | U(A,X ) |= N− | X |= |M(X )|
2

; every extremity inM(X ) is a member of an

unsatisfied pair.

Claim 4. Given a circular-unichromosomal genomeA, a partial genome X , and an unsat-

isfied pair {u, v} ∈ U(A,X ), the partial genome X ′ = X ∪ {{u, v}} will exhibit a partial

adjacency graph such that c(AGA,X ′) = c(AGA,X ) + 1, where c(AGA,X ) is the number of

cycles in the partial adjacency graph for A and X (and similar for c(AGA,X ′)).
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Figure 4.6: An illustration of Claim 4. The partial adjacency graph from Fig. 4.4 is augmented to
show both of the possible cases for processing an unsatisfied pair. The red node and edges illustrate
the first case – adding an adjacency to X that corresponds to an unsatisfied pair that is also an
adjacency in A, yielding a new cycle of length two. The green node and edges illustrate the second
case – adding an adjacency to X that corresponds to an unsatisfied pair that appear at opposite ends
of an even path, transforming the even path into a new cycle.

Proof: Let AGA,X be the partial adjacency graph for A and X . Because {u, v} is an

unsatisfied pair, there are two possible cases: either (1) {u, v} ∈ A or (2) there exist u′, v′

such that {u, u′} and {v, v′} are degree-one nodes at opposite ends of a path with l edges

in AGA,X where l is even. (In the partial adjacency graph in Fig. 4.4, the unsatisfied pair

{eh, at} is an example corresponding to the first case, and the unsatisfied pair {bt, ch} is

an unsatisfied pair corresponding to the second case.) Suppose we add {u, v} as a new

adjacency to X , yielding X ′. In the first case, the node {u, v} inA will have degree zero in

AGA,X . Therefore, adding {u, v} toX will create a new cycle of length two in the resulting

adjacency graph AGA,X ′ . In the second case, adding {u, v} to X as a new adjacency, will

induce edges between {u, v} in X ′ and {u, u′} in A and between {u, v} in X ′ and {v, v′}
in A, transforming the length-l path between {u, u′} and {v, v′} into a cycle with l + 2

edges in AGA,X ′ . (See Fig. 4.6 for an illustration.) �

As noted above, for the unrestricted completion problem, an optimal completion X̂ of

partial genome X must exhibit a maximum number of cycles and odd paths in the resulting

adjacency graph for the circular-unichromosomal reference genome A and the completion

X̂ , AGA,X̂ . Recall that a partial adjacency graph for a circular-unichromosomal genome

and a partial genome containing only adjacencies can contain only cycles and paths with

an even number of edges. Also recall that we may complete X by choosing a partition of

the elements of M(X ) into a perfect matching of size N− | X | and then adding those
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elements of the matching as new adjacencies in X̂ (by Claim 3). Note that the N− | X |
elements of U(A,X ) are a perfect matching on M(X ). Thus, X̂ = X ∪ U(A,X ) is a

completion of X . Furthermore, by Claim 4, X̂ contains c(AGA,X )+ | U(A,X ) | cycles,

where c(AGA,X ) denotes the number of cycles in the partial adjacency graph for A and X .

This is maximum because of the following bound.

Claim 5. Let A be a circular-unichromosomal genome and A be a partial genome. For

any completion X̂ , c(AGA,X̂ )− c(AGA,X ) ≤ |M(X )|
2

=| U(A,X ) |.

The claim follows from the fact that adding a new adjacency to X requires the selection of

two extremities fromM(X ) and each new adjacency can increase the number of cycles in

the adjacency graph by at most one.

Thus, there is a straightforward algorithm for solving the unrestricted version of the com-

pletion problem: construct the partial adjacency graph for the reference genome A and the

partial genome X , identify the unsatisfied pairs U(A,X ), and add the unsatisfied pairs to

X to complete the genome X̂ = X ∪ U(A,X ). The running time is linear in the number

of genes, N . Every unsatisfied pair will yield a new cycle in the resulting adjacency graph

AGA,X̂ , and this is optimal by Claim 5.

Theorem 8 (Unrestricted Completion Problem). Given a circular-unichromosomal genome

A and partial genome X on N genes, an optimal solution to the unrestricted completion

problem X̂ of X will exhibit the DCJ distance:

dDCJ(A, X̂ ) = N − [c(AGA,X )+ | U(A,X |],
= N − [c(AGA,X ) + (N− | X |)],
=| X | −c(AGA,X ).

(4.5)

where c(AGA,X ) is the number of cycles in the partial adjacency graph AG(A,X ).

We note that a solution to the unrestricted version of the problem can exhibit as many as

Ω(N) chromosomes. Allowing the construction of a genome to include arbitrarily many

chromosomes may not be desirable from a biological perspective. Instead, we may choose

to enforce that the constructed genome contain, for example, a single chromosome. In the

next section, we consider this more restricted version of the completion problem.

4.5.2 The Restricted Problem

Here we give an algorithm for solving the restricted completion problem. The input to this

problem is the same as for the unrestricted version. We can assume again that the input
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reference genome A only contains adjacencies because it is circular-unichromosomal and

that the input partial genome X only contains adjacencies by definition. Therefore, as

before, the partial adjacency graph AGA,X is comprised of only cycles of even length and

even-length paths that start and end at nodes in A.

In the restricted completion problem, we must complete X such that the resulting genome

X̂ is circular-unichromosomal. The definition of a circular-unichromosomal genome is that

it contains no telomeres and only one chromosome. The genome graph of a genome that

contains only one chromosome contains only a single connected component. Therefore,

we have the following.

Claim 6. The genome graph of a circular-unichromosomal genome on N genes is com-

prised of a single simple cycle that visits all the nodes (corresponding to all of the 2N

extremities).

Consider the partial genome graph GX . Any completion X̂ of X will contain GX as a

subgraph because all the original adjacencies in X will remain in the final completion X̂ .

If X is a valid input (i.e. it can be completed in such a way that the resulting genome is

circular-unichromosomal), we can assume that GX does not contain any cycles. Instead,

GX is comprised of a collection of simple paths.

Definition 31. Given a partial genome X with missing extremitiesM(X ), let u, v be ex-

tremities inM(X ). {u, v} is an excluded adjacency if u and v are both degree-one nodes

at opposite ends of the same simple path in the partial genome graph GX .

Definition 32. Given a partial genome X , E(X ) is the set of all excluded adjacencies.

See Fig. 4.2 for an example.

Lemma 8. For a partial genome X comprised of only adjacencies with genome graph

GX = (V,E) and a perfect matching M on M(X ), the completion X̂ = X ∪ M is

circular-unichromosomal if and only if GX̂ = (V,E ∪M) is a simple cycle.

Proof: The forward direction of the lemma is a consequence of Claim 6. For the backward

direction, suppose GX̂ is a simple cycle. Then every extremity in GX̂ has degree two and

belongs to the same the connected component. Therefore,GX̂ has exactly one chromosome

and no telomeres and is, thus, circular-unichromosomal. �

Lemma 9. Given a partial genome X that contains only adjacencies, let M be a perfect

matching onM(X ). For a partition of E(X ) into two sets E1(X ) and E2(X ), letM1(X )

denote the subset of M(X ) equal to M1(X ) = {u, v ∈ M(X ) | {u, v} ∈ E1(X )},
and similar for M2(X ). There exists a partition of E(X ) into two nonempty sets E1(X )
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and E2(X ) such that M can be partitioned into a perfect matching M1 on M1(X ) and

a perfect matching M2 on M2(X ), if and only if the completion X̂ = X ∪ M is not

circular-unichromosomal.

Proof: First we prove the forward direction. Suppose M can be partitioned into M1, a

perfect matching onM1(X ), and M2, a perfect matching onM2(X ). By the definition of

an excluded adjacency, for every {u, v} ∈ E(X ), the partial genome graph GX = (V,E)

contains a u-to-v path. Therefore, the partial genome graph induced on (V,E ∪M1) con-

tains a cycle that visits every extremity inM1(X ). And similarly, the partial genome graph

induced on (V,E ∪M2) contains a cycle that visits every extremity inM2(X ). Thus, the

genome graph GX̂ = (V,E ∪M1 ∪M2) contains two edge-disjoint cycles. Therefore, by

Lemma 8, X̂ is not circular-unichromosomal.

For the backward direction, suppose the completion X̂ = X∪M is not circular-unichromosomal.

We shall show the existence of a partition of E(X ) into two sets for which M can be par-

titioned into two perfect matchings. By Lemma 8, the genome graph GX̂ is not a simple

cycle. But because X contains only adjacencies and M is a perfect matching, every node

in GX̂ has degree two and, thus, it must be comprised of a collection of simple cycles.

Consider one such cycle C1. Let M1(X ) be the subset of M(X ) visited by C1. Note

that for every {u, v} ∈ E(X ), if u is in M1(X ), then v is in M1(X ) and C1 contains a

u-to-v subpath that does not contain any other element ofM1(X ). Let E1(X ) be the subset

E1(X ) = {{u, v} ∈ E(X ) | {u, v} ∈ M1(X )}. Also let M1 be the matching onM1(X )

defined by the set of edges in C1 that do not appear in GX . LetM2(X ) be the subset of

M(X ) visited by every cycle in GX̂ other than C1, i.e. M2(X ) = M(X ) \M1(X ). Let

M2 be the matching onM2(X ) defined by the set of edges in those other cycles that do not

appear in GX . M1 and M2 partition M , and E1(X ) and E2(X ) partition E(X ). Moreover,

M1 is a perfect matching onM1(X ) and M2 is a perfect matching onM2(X ). �

We state the contrapositive of the backward direction of Lemma 9 as a corollary.

Corollary 9. Given a partial genome X that contains only adjacencies, let M be a perfect

matching onM(X ). If there does not exist a partition of E(X ) into two sets E1(X ) and

E2(X ), such that M can be partitioned into perfect matchings on E1(X ) and E2(X ), then

the completion X̂ = X ∪M is circular-unichromosomal.

This corollary characterizes the types of adjacencies we can use to augment a partial

genome X in order to construct a circular-unichromosomal completion. In particular,

we must find a matching M on M(X ) and completion X̂ = X ∪M such that for each



71

{u, v} ∈ E(X ), GX̂ contains a simple u-to-v path that contains every edge in M .

Consider the augmentation of X by a single new adjacency {u, v} on elements ofM(X ),

yielding the new partial genomeX ′. If the pair {u, v} is not an excluded adjacency, then the

addition of the new adjacency merges two contigs into one longer contig. Suppose the pairs

{u, u′} and {v, v′} were excluded adjacencies in E(X ). The partial genome X ′ will contain

one fewer contig and the set of excluded adjacencies will now contain the extremities found

at opposite ends of that merged contig, namely {u′, v′}. u and v will no longer belong to

any excluded adjacencies because they are not elements ofM(X ′).

Recall that the objective of the restricted block ordering problem is to find a completion X̂
ofX that maximizes the number of cycles in the resulting adjacency graph for the reference

genomeA and X̂ . Recall too that augmentingX with a perfect matching onM(X ) induces

a number of new cycles in the adjacency graph without changing the number of cycles that

exist in the partial adjacency graph AGA,X . Again, the number of such new cycles is

bounded by | U(A,X ) |=| M(X ) | /2. In the unrestricted version of the problem, we

were able to achieve this upper bound by adding the adjacencies defined by U(A,X ) to

X . However, Lemma 9 limits our ability to select arbitrarily a set of adjacencies from

M(X ) to add to X . In particular, if the genome graph GX∪U(A,X ) contains more than one

cycle, the completion X ∪U(A,X ) is not circular-unichromosomal. For every cycle in the

genome graph for such a multi-chromosomal completion, at least one edge cannot appear

in a circular-unichromosomal completion.

Lemma 10. Given a circular-unichromosomal genome A and a set of adjacencies X , let

X̂ be a circular-unichromosomal completion of X . The number of cycles in the adjacency

graph for A and X̂ is bounded by:

c(AGA,X̂ ) ≤ c(AGA,X ) +
| M(X ) |

2
− c(GX∪U(A,X )) + 1. (4.6)

Proof: First, suppose c(GX∪U(A,X )) = 1. In this case, the lemma follows from the fact that

the maximum number of cycles that can be added to AGA,X by completing X is bounded

by |M(X )|
2

=| U(A,X ) |. Now suppose c(GX∪U(A,X )) > 1. Then the completion X ′ =

X ∪ U(A,X ) is not circular-unichromosomal. So, X̂ cannot contain all the unsatisfied

pairs U(A,X ). In particular, for each cycle induced in c(GX∪U(A,X )), at least one edge

from that cycle cannot be included in X̂ . Therefore, at least c(GX∪U(A,X )) elements of

U(A,X ) cannot appear in X̂ . The lemma follows. �

This upper bound is tight and we give an algorithm that achieves this upper bound. The

algorithm is described in Algorithm 1.
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Algorithm 1: Restricted Block Ordering Problem with DCJ
Data: A, circular-unichromosomal genome, X partial genome.
Result: X̂ , circular-unichromosomal genome with X ⊆ X̂ such that dDCJ(A, X̂ ) is

minimum.
begin1

GX ←− partial genome graph;2

M(X )←− missing extremities;3

AGA,X ←− partial adjacency graph;4

U(A,X )←− unsatisfied pairs;5

X̂ ←− X ;6

E(X̂ )←− excluded adjacencies;7

% main for loop;8

for {u, v} ∈ U(A,X ) do9

if {u, v} /∈ E(X̂ ) then10

let u′ be such that {u, u′} ∈ E(X̂ );11

let v′ be such that {v, v′} ∈ E(X̂ );12

E(X̂ )←− E(X̂ ) ∪ {u′, v′} \ {u, u′} \ {v, v′};13

X̂ ←− X̂ ∪ {u, v};14

M(X )←−M(X ) \ {u, v};15

whileM(X ) 6= ∅ do16

for i, j ∈M(X ) do17

if {i, j} /∈ E(X̂ ) then18

X̂ ←− X̂ ∪ {i, j};19

M(X )←−M(X ) \ {i, j};20

Output X̂ ;21

end22



73

The running time is linear in the number of genes, N .

The algorithm achieves the upper bound given in Lemma 10 by greedily adding unsatisfied

pairs to the partial genome X as long as they do not induce a cycle in the partial genome

graph GX̂ . This is verified in the main for loop by checking whether an unsatisfied pair is

also a member of the set of excluded adjacencies, i.e. the adjacencies whose addition to

the partial genome X̂ would induce a cycle in the partial genome graph. The final set of

adjacencies added to X̂ in the second loop connects all the remaining extremities in such

a way that no excluded adjacencies are added to X̂ and one final cycle is added to the

adjacency graph.

Theorem 10 (Restricted Completion). Given a circular-unichromosomal genome A and

partial genome X onN genes, an optimal solution to the restricted block ordering problem

X̂ of X will exhibit the DCJ distance:

dDCJ(A, X̂ ) = N −
(
c(AGA,X ) +

| M(X ) |
2

− c(GX∪ U(A,X )) + 1

)
, (4.7)

where c(AGA,X ) is the number of cycles in the partial adjacency graph AGA,X and

c(GX∪ U(A,X )) is the number of cycles in the genome graph for the complete genome X ∪
U(A,X ).

4.6 Future Directions

Traditionally, ESP reads are assumed to represent clones of a single cancer genome se-

quence. But current ESP sequencing technology uses approximately 1µg physical DNA

sample in order to generate and sequence clones. Even if the DNA extracted for use in

an ESP experiment represents molecules from a single tissue sample from a single patient,

there is no guarantee that all of the DNA comes from a single genome. In particular, humans

contain diploid genomes, so clones could be made from either copy of a patient’s genome.

Moreover, because cancer is characterized by a progressive series of somatic mutations, a

single tissue might contain many differently mutated versions of the cancer genome. As a

result, it is possible that a set of ESP reads represent clones taken from multiple different

cancer genomes even if they come from the same tissue sample. Therefore, it is reasonable

to take this assumption into consideration when characterizing tumor rearrangements using

ESP data.

Here we formalize the problem of inferring a set of differently mutated cancer genomes

from a set of measured adjacencies. As in our description of the completion problem, we
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assume that our measured data is incomplete, representing some set of breakpoints (i.e.

adjacencies) that are known to exist in the cancer sample but we do not assume that the set

of measured adjacencies from our unknown tumor sample is comprehensive.

Definition 33. A k-completion, X̂ k, of X is a set of k different genomes such that X ⊆⋃
X̂k .

Again, let A denote a reference healthy genome. We represent a set X̂ k of k cancer

genomes that represent mutations of a healthy genome as a rooted tree TX̂k on X̂ k ∪ {A},
rooted at A. We call TX̂k a mixture tree. Given a distance metric, such as DCJ, the total

distance on a mixture tree TX̂k = (V,E) is given by:

dDCJ(TX̂k) =
∑

(u,v)∈E

dDCJ(u, v). (4.8)

We now suggest the following parsimony-based problem.

Definition 34. Given a set of measured adjacencies, X , and an integer k > 0, the k-
Mixture Problem is to find a k-completion such that dDCJ(TX̂k) is minimum.

Again, we can distinguish between restricted and unrestricted versions of the problem.

Note that when k = 1, the (un)restricted k-mixture problem is equivalent to the (un)restricted

completion problem.

As a starting point, we consider here the k-mixture problem when k = 2. There are exactly

two different (unlabeled) rooted tree topologies on 3 nodes, namely the tree comprised of

a root and two daughter nodes, that we shall refer to as the branch topology, and the tree

comprised of a root, one internal node, and one leaf, that we shall refer to as the path

topology.

First, we provide a motivating example to show that both topologies must be considered

when solving an instance of the k-mixture problem for k = 2.

Consider the example on N = 4 genes with reference genome and with measured adjacen-

cies as follows:

A = {{ah, bt}, {bh, ct}, {ch, dt}, {dh, at}} ,

X = {{ah, bh}, {bt, ct}, {ch, dh}, {ah, ct}, {bh, ch}, {bt, dt}} .
(4.9)

Suppose we are interested in the restricted version of the problem wherein the k-completion

is required to be comprised of circular-unichromosomal genomes. In this example, there is
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only one way to partition the set of adjacencies into two sets representing partial genomes

(i.e. without repeated extremities), namely, the partition defined by the first three elements

listed in X above and the second three elements listed in X . That partition defines two par-

tial genomes for which there exist unique completions. The resulting completions are, re-

spectively, B = {{ah, bh}, {bt, ct}, {ch, dh}, {dt, at}} and C = {{ah, ct}, {bh, ch}, {bt, dt},
{dh, at}}. The mixture tree on B and C that corresponds to the branch topology admits a

total tree-distance of dDCJT = dDCJ(A,B)+dDCJ(A, C) = 2+2 = 4. There are two pos-

sible labelings of the nodes in a mixture tree corresponding to the path topology. The first

labeling admits a total tree-distance of dDCJT = dDCJ(A,B) + dDCJ(B, C) = 2 + 3 = 5.

The second labeling admits a total tree-distance of dDCJT = dDCJ(A, C) + dDCJ(C,B) =

2 + 3 = 5 as well. Therefore, in this example, a tree with the branch topology admits a

more parsimonious mixture than a tree with the path topology.

Conversely, consider the example with the same reference genome A and with measured

adjacencies as follows:

A = {{ah, bt}, {bh, ct}, {ch, dt}, {dh, at}} ,

X = {{ah, bh}, {ct, dt}, {ch, at}, {ah, ch}, {bh, at}, {bt, dt}} .
(4.10)

In this example, there are several different partitions ofX that represent two partial genomes,

and those partial genomes admit several different completions. However, an optimal mix-

ture with a branch topology admits a total score of 5 whereas an optimal mixture with a

path topology admits a total score of 4. Therefore, in this example, a tree with the path

topology admits a more parsimonious mixture than a tree with the branch topology.

We hope to characterize the instances in which the two tree topologies for k = 2 admit

solutions with different scores. Given a set of measured adjacencies, and a tree topology,

then, we hope to devise an efficient algorithm to construct the optimal k-completion of

X . We expect that the algorithms given in the previous section will be the basis for any

algorithms we devise to solve the k-mixture problem.

As a first step toward characterizing the inputs to the 2-mixture problem for which one of

the two possible tree topologies admits a more parsimonious solution than the other, we

note that for a reference genome A, a set of adjacencies X , and a 2-completion comprised

of genomes B and C, of X , we can directly determine the best topology if we know the

pairwise distances between A, B, and C, respectively. In particular, the total distance on a

tree with a branch topology is equal to dDCJ(A,B)+dDCJ(B, C). By contrast, the distance

on a tree with path topology is equal to either dDCJ(A,B) + dDCJ(B, C) or dDCJ(A, C) +
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dDCJ(C,B), depending on the placement of genomes at the nodes in the tree. This gives us

the following lemma.

Lemma 11. Given a circular-unichromosomal genome A on N genes and a set of adja-

cencies X in which each extremity appears no more than twice, let genomes B and C be a

2-completion of X . If dDCJ(B, C) < dDCJ(A, C) and dDCJ(B, C) < dDCJ(A,B), then a

path topology is more parsimonious than a branch topology. If dDCJ(A,B) < dDCJ(B, C)
and dDCJ(A, C) < dDCJ(B, C), then a branch topology is more parsimonious than a path

topology.

Therefore, given a pair of partial genomes, we can construct a 2-completion in linear

time using one of the approaches described in Sections 4.5.1 and 4.5.2. And given a 2-

completion of a set of adjacencies, we can decide which tree topology admits a more par-

simonious solution in linear time. However, it remains an open question as to whether the

there exists an efficient method for finding a partition of a set of adjacencies X into two

partial genomes whose completions will admit an optimal mixture tree.

In some cases, we find that a single genome completion of a set of adjacencies will be

as parsimonious as any k-completion for k > 1, indicating that the measured adjacencies

were most likely taken from a single tumor genome instead of from a mixture. We note

that if a set of adjacencies contains some extremity more than once then it is not possible

to construct a single genome that contains all the adjacencies represented. But in the case

that a set of adjacencies X contains each extremity at most once, we can show that, in the

unrestricted case, any 2-completion of X on a tree with branch topology is no better than a

(single genome) completion.

Lemma 12. Given a circular-unichromosomal genome A on N genes and a set of adja-

cencies X in which each extremity in A appears no more than once, let G = {X1,X2} be a

2-completion of X with branch topology and let X̂ be an optimal, unrestricted completion

of X . Then, dDCJ(TG) ≥ dDCJ(A, X̂ ).

Proof: First, we note that X1 and X2 partition the adjacencies in X , so | X |=| X1 | + |
X2 |. Moreover, for a partition {X1,X2} of X , the total number of cycles in their respective

partial adjacency graphs cannot exceed the number of cycles in the partial adjacency graph

for X , i.e. c(AGA,X ) ≥ c(AGA,X1) + c(AGA,X2). This is because the set of cycles in

AGA,X1 and the set of cycles in AGA,X2 are both disjoint subsets of the set of cycles in

AGA,X .

Now, in order to show the lemma, we must show that the total distance dDCJ(A,X1) +



77

dDCJ(A,X2) is at least as much as the distance dDCJ(A, X̂ ). By Thm 8, we have that

dDCJ(A, X̂ ) =| X | −c(AGA,X ). Thus, we can show the following bound.

dDCJ(A, X̂ ) ≤ dDCJ(A,X1) + dDCJ(A,X2),

| X | −c(AGA,X ) ≤ | X1 | −c(AGA,X1)+ | X2 | −c(AGA,X2),

| X | −c(AGA,X ) ≤ | X | − (c(AGA,X1) + c(AGA,X2)) ,

c(AGA,X ) ≥ c(AGA,X1) + c(AGA,X2).

�

We can extend this proof to any set of adjacencies in which each extremity appears no

more than d adjacencies; given such a set of adjacencies, an unrestricted d-completion

with “branch topology” (i.e. a star graph with d daughter nodes) will admit at least as

parsimonious a solution with respect to total DCJ distance on edges as any d+1 completion

with branch topology.

We believe that the techniques we introduced in this chapter for addressing the block or-

dering problem with respect to DCJ distance using the adjacency graph data structure is

an intuitive and simple framework. We conjecture that it may be possible to extend this

framework to address the k-mixture problem with respect to DCJ distance.

The k-mixture problem, however, might also prove interesting if we consider different

measures of parsimony, such as reversal distance. As we pointed out at the beginning of

this chapter, DCJ distance is a pretty good approximation for reversal distance between a

pair of signed genomes. However, there are examples for which DCJ distance is strictly

less than reversal distance. Due to this discrepancy, we cannot merely extrapolate the result

from Lemma 12 to a similar problem where the measure of parsimony is reversal distance.

Consider the following example.

Suppose that the reference genomeA is now linear-unichromosomal and is the identity per-

mutation on 6 genes. Let X = {{1h, 4h}, {2t, 5t}, {3h, 6h}, {4t}}. (Note that X contains

a telomere.) The genome X̂ = −5+2+3−6+1−4 is the completion (represented now as a

signed string instead of as a set of adjacencies and telomeres) that minimizes the reversal

distance to A: drev(A, X̂ ) = 3. For k = 2, a most-parsimonious k-completion on a tree

with branch topology is G = {B = (+1−4−3−2 +5 +6), C = (+1 +2 +3−6−5−4)}.
The optimal mixture tree with branch topology for the linear-unichromosomal case with

respect to reversal distance is given in Fig. 4.7. The total number of reversals on the tree is
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(1, 2, 3, 4, 5, 6)

(1, -4, -3, -2, 5, 6) (1, 2, 3, -6, -5, -4)

d = 1d = 1

Figure 4.7: A mixture tree T on genomes B = (+1,−4,−3,−2,+5,+6) and C =
(+1,+2,+3,−6,−5,−4). The distances from the root to each of its children are: d(A,B) =
d(A, C) = 1, and thus drev(T ) = 2.

only 2, which is less than the total number of reversals between A and the optimal (single

genome) completion X̂ .

The k-completion problem seems related to the well-studied problem of constructing a phy-

logenetic tree to represent a rearrangement history for a set of known genomes of common

ancestry. For example, [14] and [22] consider the problem of computing a phylogenetic

tree for a set of known genomes by minimizing the total breakpoint distance on the tree,

and [16] consider the a similar problem but minimize the total reversal distance on the

tree. However, in the phylogenetic tree problem, the leaves of the tree are a set of known

genomes and the goal is to compute a set of unknown ancestral genomes that represent

internal nodes in the tree. We, instead, are interested in constructing the genomes at all the

nodes in the tree from impartial data.

For a set of adjacencies and telomeres X and an integer k, finding a most-parsimonious

mixture of k of cancer genomes amounts to partitioning X into k sets such that we may

construct k genomes, each containing some subset of the elements in X . There are expo-

nentially many ways to do this; in particular, there are
∑k

i=1 S(| X |, i) different ways,

where S(n, k) is the Stirling number of the second kind. Then given an integer k, there are

(k + 1)k−1 different possible labeled trees on k + 1 nodes and thus as many mixture trees

on k permutations. Thus, an exhaustive search procedure could not find an optimal mixture

tree efficiently.
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APPENDIX A: A DISCUSSION OF
ANCESTRAL GENOME

RECONSTRUCTION USING
DUPLICATIONS AND REVERSALS

The problem of computing a minimum number of duplication transposition and reversal

operations needed to transform an ancestral genome (with no duplicates) into a present-day

genome (with duplicates) has been studied by El-Mabrouk in [24]. To simplify the problem,

El-Mabrouk [24] devises a model of evolution in which she gives a method for solving

the general problem of computing minimum reversal/duplication transposition distance by

solving an exponential number of polynomially solvable subproblems.

In particular, the subproblem considered in [24] is that of computing the minimum rever-

sal/duplication transposition distance between a non-ambiguous ancestral genome H (that

contains every character at most once) and a semi-ambiguous genomeG (in which no char-

acter appears more than twice). It is shown that the minimum number of reversals and

duplication transpositions needed to transform H into G can be computed by assuming the

rearrangements occur in two distinct phases. First, the non-ambiguous H undergoes a se-

ries of duplication transpositions, transforming it into an intermediate ancestor I having the

same character composition as G, but not necessarily in the same order. Then, the interme-

diate ancestor I evolves through a series of reversal operations, resulting in the present-day

genome G.

The problem of finding the reversal/duplication transposition distance between a semi-

ambiguous genome G and a non-ambiguous genome H then is merely the problem of

reconstructing a semi-ambiguous intermediate ancestor I that minimizes the sum of the

duplication transposition distance between any non-ambiguous ancestor H and I and the
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reversal distance between I and G.

In [24], the problem of computing the reversal/duplication transposition distance between a

non-ambiguous ancestral genome and a present-day semi-ambiguous genome G, RD(G),

is formalized as

RD(G) = min
I

[R(G, I) +D(I)] (A.1)

where R(G, I) is the reversal distance between G and I , D(I) is defined as the number of

maximal, repeated substrings of I , and the minimum is taken over all possible permutations

I of the set of characters comprising G.

The algorithm given in [24], therefore, implies that the minimum number of duplication

transpositions needed to transform a non-ambiguousH into a semi-ambiguous I is equal to

the number of maximal repeated substrings of I . However, this simplification is incorrect.

Claim 7. Let H be a non-ambiguous string and let I be a semi-ambiguous string that

evolved from H through a series of duplication transpositions. D(I), the number of maxi-

mal, repeated substrings of I , is not necessarily equal to the minimum number of duplica-

tion transposition operations needed to transform H into I .

Proof: We provide the following counterexample. Consider the strings:

H = abcdefg

I = abdecdbcefg

In this example, the maximal repeated substrings of I are {d, e, b, c}, so D(I) = 4. How-

ever, a sequence of three duplication transposition operations would suffice to create I:

first, duplicate bc in one operation, then duplicate d and e in two separate operations.

�

Note that in the example above, the duplication distance, d(H, I) is two. (See Chapter 2

for a description of duplication distance.) The only cases considered in [24] are cases in

which the ancestor genome H is non-ambiguous and the intermediate ancestor I is semi-

ambiguous. In these cases, the duplication distance is no greater than the duplication trans-

position distance.

Claim 8. If Y is semi-ambiguous and X is non-ambiguous, X is a subsequence of Y ,

and {Y } \ {X} = ∅ then d(X, Y ) ≤ DT (X, Y ), where DT (X, Y ) equals the number of

duplication transpositions needed to transform X into Y and {X} denotes the multiset of

characters that appear in Y (and similar for {X}).
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Proof: Because Y is semi-ambiguous, no character of X is copied more than once in any

sequence of duplication transposition or duplicate operations building Y from X . There-

fore, all the strings that are copied in a minimum sequence of either duplication transposi-

tion or duplicate operations are substrings of the original input string X .

Consider a minimum-length sequence of duplication transpositions that transforms X into

Y . Because all the duplication transpositions in such a sequence copy substrings of the

original stringX , there are corresponding duplicate operations, copying the same sequence

of substrings of X , giving rise to Y . However, as we noted above, the optimal sequence

of duplicate operations transforming X into Y may have strictly smaller length than that

of the optimal sequence of duplication transposition operations yielding the same Y . Thus,

d(X, Y ) ≤ DT (X, Y ). �

It follows that duplication distance may provide a simpler explanation than duplication

transposition distance in this subproblem of computing the minimum reversal/duplication

transposition distance between a non-ambiguous string and a semi-ambiguous string. More-

over, the computation implied in [24] for retrieving the ancestor genome H from the in-

termediate, semi-ambiguous genome, I , is to delete exactly one copy of every maximal

repeated substring of I . However, this may not yield an ancestor genome H such that

DT (H, I) is minimal. Consider, the example given in the proof of Claim 7. If we had

deleted the not-bolded copies of each of the repeated characters, we would construct the

ancestor genome H ′ = adebcfg. In this example, the duplication transposition distance

DT (H ′, I) is equal to four, the number of repeats. However, H ′ is not the ancestor genome

that minimizes the duplication transposition distance. Therefore, the algorithm in [24]

not only incorrectly computes the optimal value of the duplication transposition distance

between I and some non-ambiguous H , it might also output an ancestor genome that is

non-optimal.

Now we return to the reversal/duplication transposition distance problem posed in [24].

Under the assumption that a semi-ambiguous genome G evolved from a non-ambiguous

genome H by a series of duplication transpositions followed by a series of reversals, the

formulation of Equation A.1 can be corrected if we change the definition of D(I) so that it

no longer equals the number of repeats in I . Instead, let

D(I) = min
H∈A

DT (H, I) (A.2)

where A is defined as the set of all non-ambiguous subsequences of I that are obtained by
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deleting exactly one copy of every duplicated gene. Thus, if I has d duplicated genes, A
will contain 2d elements.

Unfortunately, there is no known algorithm for computing a minimum sequence of duplica-

tion transpositions needed to transform a non-ambiguous genome into one with duplicates.

The problem’s difficulty results from the fact that the set of substrings that can be dupli-

cated after the kth duplication transposition operation depends on the first k operations. On

the other hand, Claim 8 states that the duplication distance d(H, I) for any H ∈ A is a

lower bound for the duplication transposition distance.



APPENDIX B: ANOTHER
PROBABILISTIC MODEL OF

SEGMENTAL DUPLICATIONS

Here we present an alternative generative probabilistic model of segmental duplications

that could be used in place of the probabilistic model presented in Section 3.2.1 to compute

a maximum likelihood evolutionary history DAG. Given a source string X and an integer

k > 0, the model here considers the weighted ensemble of all sequences of k duplicate

operations that could result in the construction of some target string. Here the order of the

duplicate operations is important; unlike in the model presented in Section 3.2.1, here we

distinguish sequences of duplicate operations in which the substrings of X are duplicated

in different orders even if the resulting target strings are identical. Then the likelihood of

a particular target string Y , given the source X and integer k, depends on the weighted

ensemble of all sequences of k duplicate operations that could be used to generate Y from

X . In principle, this model explicitly considers all possible duplication scenarios and is,

therefore, a generative model. Ultimately, we did not implement this model because the

recurrence relation–although polynomial-time–was prohibitively slow.

Again, we assume that duplication blocks, represented as signed strings on an alphabet of

duplicons, are built up from other duplication blocks through successive rounds of duplicate

operations (see Def. 4). Recall the following definition.

Definition 17. Given a source string X , a generator ΨX = (Xi1,j1 , . . . , Xik,jk) is a se-

quence of substrings of X .

Here, we redefine what it means for a generator to be feasible for a particular target string.

As before, we define a generator to be feasible for a target string if the constituent substrings

partition the target into mutually nonoverlapping subsequences. However, we now require

the order of substrings that comprise the generator to correspond to an order in which they
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X = abcde

Y 0 = ∅
Y 1 = Y 0 ◦ δX(1, 3, 1) = abc

Y 2 = Y 1 ◦ δX(4, 5, 1) = deabc

Y = Y 2 ◦ δX(4, 5, 5) = deabdec

Figure B.1: An example of a sequence of duplicate operations that constructs Y = deabdec from
X = abcde. A feasible generator for Y is: ΨX = (X1,3, X4,5, X4,5) = ((abc), (de), (de)).

may have been duplicated from the source to build the given target. In particular, we have

the following redefinition.

Definition 35. A generator ΨX = (Xi1,j1 , . . . , Xik,jk) is feasible for a target string Y ,

that we denote as ΨX a Y , if there exists a sequence of indices (t1, . . . , tk) such that

Y = ∅ ◦ δX(i1, j1, t1) ◦ · · · ◦ δX(ik, jk, tk). (See Fig. B.1).

For a given source string X and positive integer k we consider the space of all length-k

generators ΨX . Again, we define a probability distribution on the collection of generators

and we compute the partition function Z(k)
X of the weighted ensemble of all possible length-

k generators. We define the event F as before: it is the event of choosing a length-k

generator that is feasible for Y from the space of all length-k generators. Thusly, we define

a probabilistic model that, given a target string Y , assigns a probability to F :

Pr[F | Y,X, k] =
1

Z
(k)
X

∑
ΨXaY :|ΨX |=k

ω(ΨX) , (B.1)

where | ΨX | denotes the length of the generator and ω(ΨX) is the weight assigned to a

generator. We assume the weight function has the same properties as in Section 3.2.2.

First, we review the algorithm to compute the partition function Z(k)
X . Because we have not

changed the definition of a generator, the partition function of the ensemble of all length-

k generators can be computed as before. Every length-k generator whose elements have

lengths that sum to l are scored the same (according to σ(k, l)), we can count the total

number of such generators and then multiply by the score function. Again, let C(k)
X (l)

equal the number of distinct length-k generators for which the sum of the lengths of the

elements equals l. Recall that we gave an O(| X | k)-time algorithm for computing C(k)
X (l)

in Lemma 5:

Lemma 5. Let X = x1 . . . x|X| be a source string and let k and l be positive integers. The
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function C(k)
X (l) satisfies the following recurrence.

C(1)
X (l) = | X | −l + 1,

C(k)
X (l) =

l−1∑
l′=l−|X|

C(k−1)
X (l′) · (| X | −(l − l′) + 1).

For a source string X and integers k, l, if we are given C(k)
X (l), we can compute Z(k)

X ef-

ficiently by summing C(k)
X (l) over all relevant lengths l, weighting each feasible generator

appropriately according to the function σ(k, l). Therefore, again we have the theorem:

Theorem 5. Let X = x1 . . . x|X| be a source string and k be a positive integer. The

partition function Z(k)
X satisfies the following.

Z
(k)
X =

|X|·k∑
l=k

C(k)
X (l) · σ(k, l).

The recurrence in Lemma 5 can be computed in O(| X | k) time, so Z(k)
X can be computed

in O(| X |2 k2) time according to Theorem 5.

Therefore, using the new probabilistic model, we can compute the partition function of

length-k generators for a given source string just as we did in Section 3.2.1.

However, the new definition of a feasible set requires that we augment our recurrence for

computing the restricted partition function Q(k) of feasible sets. Fortunately, there is an

easy extension we can make to do this. Since all length-k generators that are feasible for a

target string Y have lengths that sum to | Y |, we can score them all according to σ(k, | Y |).

We describe here a recurrence to compute the number of distinct length-k generators ΨX

that are feasible for a given string Y .

Lemma 13. Given a source string X = x1 . . . x|X| and a target string Y = y1, . . . , y|Y |,

the number η(k)
X (Y ) of distinct length-k generators ΨX that are feasible for Y satisfies the
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following recurrence.

η
(k)
X (Y ) =

∑
i:xi=y1

η
(k)
X (Y, i),

η
(k)
X (Y, i) =

k∑
d=1

η
(k)
X (Y, i, d),

η
(1)
X (Y, i, d) =

1 if Y = Xi,i+|Y |−1 ,

0 otherwise,

η
(k)
X (Y, i, d) = η

(k−1)
X (Y2,|Y |) +∑

j>1:yj=xi+1

k∑
l=0

η
(l)
X (Y2,j−1)η

(k−l)
X (Yj,|Y |, i+ 1, d) ·

l−1∑
s=0

(
l − 1

s

)(
k − l − d+ 1

s+ 1

)
.

For completeness, we define η(k)
X (Y, i, d) = 0 for values d > k.

This lemma is the analog to Lemma 6. Here, though, we cannot simply count the number

of ways we can partition Y into k mutually nonoverlapping subsequences that correspond

to substrings of X – we must consider how such a set of nonoverlapping subsequences

might be ordered corresponding to a sequence of duplicate operations. Moreover, we must

distinguish between generators that are comprised of the same set of substrings of X but

that are ordered differently.

Intuitively, the value η(k)
X (Y ) represents the number of length-k feasible generators for Y ,

the value η(k)
Xi (Y, i) represents the number of length-k f feasible generators for Y such

that xi generates y1, and the value η(k)
X (Y, i, d) represents the number of length-k feasible

generators for Y such that xi generates y1 and this character xi appears in a substring of X

that is dth in the order of elements in the generator.

The recurrence given in Lemma 13 differs from that given in Lemma 6 in the inclusion

of the function η
(k)
X (Y, i, d). Fundamentally, the two additive terms in the definition of

η
(k)
X (Y, i, d) correspond to two cases that are analogous to the two cases originally described

in the presentation of the duplication distance algorithm (see Thm. 1). In the first case, the

substring corresponding to the character xi generates the character at y1 in a duplicate

operation in which just a single character is copied, corresponding to an element of the

generator. In this case, the remaining suffix Y2,|Y | is generated in another k − 1 duplicate

operations. For every length-(k − 1) feasible generator for the suffix Y2,|Y |, we can insert
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the substring x1 into the dth position in the ordering to yield a length-k feasible generator

for Y in which the substring xi generates y1 and is ordered dth in the generator. In the

second case, the character at y1 is generated in a duplicate operation along with another

character at yj (for some j > 1). In this case, the suffix of Y can be broken into two

independent subproblems: the substring Y2,j−1 and the suffix Yj,|Y |. A length-l feasible

generator for Y2,j−1 and a length-(k − l) feasible generator for Yj,|Y | can be combined to

yield a length-k feasible generator for Y . Moreover, if the generator for Yj,|Y | contains

a substring that begins at index i + 1 in X to generate yj and that substring is ordered

dth within that generator, then the combined length-k generator will have the necessary

properties; in particular, the generator will include some substring that begins at xi (and

also includes xi+1 and possibly successive characters as well) that generates the characters

y1 (and yj and possibly successive characters as well) and that substring will be ordered dth

in the generator.

Now, the last multiplicative term in the definition of η(k)
X (Y, i, d) accounts for the number

of ways that we can construct a total order on k items that are partitioned into sets of l

and k − l items that are themselves, respectively, ordered. Note that the substring that

generates the characters at y1 and yj must appear dth in the combined total order and the

substrings that comprise the length-l feasible generator for Y2,j−1 (and therefore generate

subsequences of Y that are inside the subsequence containing y1 and yj) must come after

the dth position in the ordering of all k elements. For an integer 0 ≤ s ≤ l − 1, a sequence

of l items can be split at s positions in
(
l−1
s

)
different ways, yielding s + 1 subsequences.

There are k − l − d + 1 positions that come after the dth position in between successive

elements in the sequence of k − l items comprising the feasible generator for Yj,|Y |. There

are
(
k−l−d+1
s+1

)
ways of placing s+ 1 subsequences into these k− l− d+ 1 position to yield

a totally ordered sequence of k items.

We can compute the restricted partition function Q(k)
X (Y ) efficiently by first counting the

number of relevant feasible generators, namely η(k)
X (Y ), and scoring each generator appro-

priately by σ(k, | Y |). This gives us the following theorem.

Theorem 11. Let X = x1 . . . x|X|, Y = y1, . . . , y|Y | be a source/target string pair and let

k be a positive integer. The restricted partition function Q(k)
X (Y ) satisfies the following.

Q
(k)
X (Y ) = η

(k)
X (Y ) · σ(k, | Y |).

To compute the recurrence in Lemma 13, we must compute the value η(k)
X (Y, i, d) for every

substring of Y , every value in {i | xi = y1}, and every value d = 1, . . . , k; in total
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η
(k)
X (Y, i, d) must be computed O(| Y |2 ·µ(X) · k) times, where µ(X) is the maximum

multiplicity of any character in X . Each computation of η(k)
X (Y, i, d) takes then O(µ(Y )k)

time. Thus, the recurrence in Lemma 13 can be computed in time O(| Y |2 µ(X)µ(Y )k2);

the time to compute Q(k)
X (Y ) is the same. In the worst case, this is O(| Y |5 · | X |).



APPENDIX C: A DISCUSSION OF
THE BLOCK ORDERING PROBLEM

USING A BREAKPOINT GRAPH
FRAMEWORK

The Block Ordering Problem was originally introduced by Gaul and Blanchette in [28].

The authors present a solution to the problem of completing a pair of partially ordered

genomes so as to maximize the number of cycles in the resulting breakpoint graph. Recall

from Section 4.3 that maximizing the number of cycles in the breakpoint graph for a pair

of genomes is equivalent to maximizing the number of cycles in their adjacency graph.

Therefore, the algorithm presented in Section 4.5.2 and the algorithm presented in [28]

both produce a pair of complete genomes that satisfy the same optimality criterion.1

The solution in [28] begins with the construction of a fragmented breakpoint graph, a gen-

eralization of the breakpoint graph for a pair of genomes (see Section 4.3 for a description

of a breakpoint graph). The nodes in a fragmented breakpoint graph for a pair of partial

genomes on N genes correspond to the 2N extremities, and as in the breakpoint graph, the

bi-colored edges between nodes correspond to adjacencies in either of the two genomes

with each color corresponding to adjacencies in one of the two genomes. Obverse edges

are omitted. However, because a partially assembled genome may exhibit fewer than N

adjacencies, each extremity in the fragmented breakpoint graph may exhibit fewer than

two neighbors. Thus, a fragmented breakpoint graph is comprised of a collection of color-

alternating simple cycles and color-alternating simple paths. The process of completing the
1Note that the block ordering problem, as presented in [28], requires that the completed genomes be linear-

unichromosomal. Although the algorithm in Section 4.5.2 constructs completed genomes that are circular-
unichromosomal, the algorithm can be adapted easily to construct linear genomes instead by including a pair
of odd-length paths in the final adjacency graph.
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genomes optimally will result in the transformation of the collection of simple paths in the

fragmented breakpoint graph into a set of simple cycles whose cardinality is maximum.

In order to complete the genomes optimally in [28], the authors construct a block ordering

graph from the fragmented breakpoint graph. In this graph, the only vertices represented

correspond to those with degree zero or one in the fragmented breakpoint graph (i.e. those

for which adjacencies must be ascribed in order to complete the pair of genomes). Edges in

the block ordering graph are either dashed or solid. Dashed edges connect pairs of vertices

that appear at opposite ends of a simple path in the fragmented breakpoint graph, and solid

edges connect pairs of vertices that appear at opposite ends of a block of adjacencies in one

partial genomes.

The authors distinguish between different types of components in the block ordering graph

and prescribe a method for “processing” each type of component. In particular, they iden-

tify components comprised entirely of solid edges corresponding to blocks from a sin-

gle partial genome and dashed edges corresponding to paths in the fragmented breakpoint

graph whose starting and ending vertices appear at the ends of blocks from the same par-

tial genome, the so-called one-sided components. They note that the dashed edges can be

“processed” by joining together the two endpoint vertices, creating a new adjacency in the

genome and effectively merging together two blocks into one larger contig. Unfortunately,

they note that “not all [such] edges can simultaneously be ‘closed’ that way, because this

may lead to an invalid solution: since each [such] component is an alternating cycle in the

[block ordering graph], closing all its dashed edges would correspond to joining all the

corresponding block ends, ultimately resulting [in] a cycle of blocks.” A cycle of blocks

in a genome would correspond to a circular contig that cannot be merged with any other

blocks by adding new adjacencies which is invalid. They then note that “the good news is

that any [such dashed] edge can be sacrificed and the resulting partial ordering of blocks

can be inserted anywhere in the complete orderings, without changing the score of the so-

lution...” This relies on showing that for any pair of partial genomes whose block ordering

graph exhibits a set of ω one-sided components with a total of lα dashed edges among

them, there cannot exist a linear-unichromosomal completion of the genomes that exhibit

more than lα − ω new cycles derived from the processing of the dashed edges in one-sided

components. However, this is not explicitly shown in [28].

In particular, if we suppose that a block ordering graph is comprised of ω one-sided com-

ponents with a total of lα dashed edges among them, then there must exist (by definition)
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lα alternating paths in the fragmented breakpoint graph. Therefore, a naive upper bound

on the number of new cycles that can be constructed by closing those paths in the frag-

mented breakpoint graph is lα. Instead, the strategy described in [28] produces lα − ω new

cycles in the breakpoint graph by processing dashed edges. In the supplement to [28], the

authors provide, in Lemma 2, that it is possible to construct a solution in which there are

lα−ω new cycles in the fragmented breakpoint graph that result from processing one-sided

dashed edges, but they do not show explicitly that lα − ω is an upper bound.

Note that in proving the optimality of our algorithm for the restricted block ordering prob-

lem in Section 4.5.2, we do prove an analog of the necessary lemma that is not explicitly

shown in [28]. In Lemma 10, we state that the maximum number of cycles that can be

added to a partial adjacency graph for a pair of partial genomes by completing the genomes

is bounded by the number of missing adjacencies divided by two, |M(X )|
2

, (an analog of the

number of dashed edges in the block ordering graph) minus the number of cycles in the

genome graph defined by the genome obtained by augmenting the partial genome X with

the set of unsatisfied pairs, c(GX∪U(A,X )) (the analog of the number of one-sided compo-

nents in the block ordering graph). By then providing an algorithm that achieves this upper

bound, we complete the proof of optimality stated in Thm. 10.


