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This dissertation investigates learning dependency grammars for statistical natural language

parsing from corpora without parse tree annotations. Most successful work in unsupervised

dependency grammar induction has assumed that the input consists of sequences of parts-

of-speech, ignoring words and using extremely simple probabilistic models. However, su-

pervised parsing has long shown the value of more sophisticated models which use lexical

features. These more sophisticated models however requireprobability distributions with

complex conditioning information, which must be smoothed to avoid sparsity issues.

In this work we explore several dependency grammars that usesmoothing, and lexical fea-

tures. We explore a variety of different smoothing regimens, and find that smoothing is

helpful for even unlexicalized models such as the Dependency Model with Valence. Fur-

thermore, adding lexical features yields the highest accuracy dependency induction on the

Penn Treebank WJS10 corpus to date. In sum, this dissertation extends unsupervised gram-

mar induction by incorporating lexical conditional information, by investigating smoothing

in an unsupervised framework.
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Chapter 1

Introduction

The last decade has seen great strides in statistical natural language parsing. Supervised and

semi-supervised methods provide highly accurate parsers,but require training from corpora

hand-annotated with parse trees. Unfortunately, manuallyannotating corpora with parse

trees is expensive, so for languages and domains with minimal resources it is valuable to

find methods to parse without requiring annotated sentences. The topic of this dissertation

is unsupervised methods of learning syntactic models. In particular, our focus will be on

unsupervised dependency parsing. Informally, a dependency parse tree is a directed graph

structure whose nodes are words in a sentence and whose edgespoint from some word to

a syntactic dependent of that word. We can see an example in Figure 1.1. In this instance,

“dog” and “home” are dependents of the main verb “ran” and “big” modifies “dog”. The

edge from the word “root” to “ran” indicates that “ran” is theroot of the dependency tree.

Most supervised and unsupervised systems use parts-of-speech such as nouns, verbs,

   The big dog barks

Figure 1.1: A Dependency Tree

1
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and adjectives as a coarse proxy of the words in the sentence in determining their syntactic

relations. This is useful both for generalization, as well as when an individual word has

only been seen infrequently. However, the words themselvesare quite useful in determining

whether one is a dependency of the other or not. For instance,“pancake” is a far more likely

dependent for the verb “eat” than “juice” would be, even though both are nouns. Supervised

parsers have shown time and time again that word-to-word relations are extremely valuable

(see for instance (Charniak, 2000; Collins, 1999; McDonaldet al., 2005)). The use of these

features is calledlexicalization.

Unfortunately, to date unsupervised dependency parsing has not successfully incorpo-

rated lexical information. Most of the recent work has focused on variants of the Depen-

dency Model with Valence (DMV) of Klein and Manning (2004), which we describe below

in Section 2.1.2. DMV treats the parts-of-speech of a sentence as the observed variables

and learns the relations between pairs of parts-of-speech.

The main goals of this dissertation are twofold. The first is to investigate smoothing

in unsupervised dependency grammar induction, which will be required in order to model

more sophisticated conditioning events. We propose several frameworks for doing so, and

show how they can be estimated. We also present a model that successfully uses of one

of the frameworks. The second goal is to incorporate lexicalfeatures, which have been so

successful in supervised parsing. We present several models that use lexical features.

This dissertation presents and expands upon the models we described in our 2009

NAACL paper (III et al., 2009).

In the remander of this chapter we will first introduce syntactic dependencies and de-

pendency grammars. We then discuss the state of the literature regarding unsupervised

dependency induction. Finally we will end with an overview of the rest of the thesis.
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1.1 Syntactic Dependencies

In this thesis, the observed variables will generally be a corpus ofn sentences of texts,

where eachsi is a sequence ofmi wordssi1 . . . simi
. Each wordsij is associated with a

part-of-speechτij , which for most of the thesis will also be treated as observed.

The hidden variables with be dependency parse treest = {ti}i=1,n. A dependency tree

ti is a directed acyclic graph whose nodes are the words insi. The graph has a single

incoming edge for each wordsij, except one word, denoted as theroot of the graph. An

edge from wordsij to sij′ means thatsij′ is adependentof sij, or alternatively,sij is the

headof sij′. Note that each word token may be the dependent of only one head, but a head

may have several arguments.

For instance, in Figure 1.1, “barks” is the root of the graph,“dog” is a dependent of

barks, and “The” and “big” are both dependents of “dog”. In turn, “dog” is the head of

“The” and “big,” and “barks” is the head of “dog.”

1.2 A Short History of Unsupervised Dependency Gram-

mar Induction

Carroll and Charniak (1992) investigate a dependency grammar which generates all of the

argument parts-of-speech of a given head part-of-speech, using EM and a probabilistic

context free grammar. They report poor results, but note importantly that local maxima in

the likelihood function are a major problem in this space: each of their randomly initialized

grammars ended up in a different maxima.

Paskin (2001) presents a dependency model trained from words in which, given sen-

tence lengthl, first a dependency treet is generated uniformly of those withl edges. Then,

starting with the root, each edge is assigned an argument, given its head word (or ROOT)
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and the direction of the edge. The probability of the parsed sentences, t, given the sentence

lengthl is:

P (s, t|l) = P (t|l)P (s|t) = P (t|l)PROOT (sr)
∏

i→j∈t

P (sj|si, d)

This is trained using EM on 67 million words of untagged newswire text and evaluated

on the Penn Treebank Wall Street Journal. He reports 39.1 percent undirected accuracy on

unseen WSJ test data, which is below the baseline of attaching each word to the word next

to it.

Yuret (1998) describes a similar model, which is trained through a heuristic bootstrap-

ping method in which each sentence is parsed using the statistics of the previous sentences,

and then this single parse is used to update the word pair statistics.

1.2.1 Dependency Model with Valence

Klein and Manning (2004) introduced the Dependency Model with Valence, which due to

its success has been the focus of most of the dependency grammar induction work ever

since. Whereas in Paskin’s model the dependency tree structures are considered equally

likely, DMV conditions the number of arguments a particularhead has in a particular di-

rection on both the head, and whether or not this head has generated any arguments in this

direction previously. Additionally, DMV uses the parts-of-speech, rather than the words,

to determine these relations.

The DMV is a generative model of dependencies, in which the dependency trees are

generated according to the following generative process:

• Generate Root POS

• For each generated POSH, directiond ∈ {L,R} generateH ’s argumentsAdH :
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   The big dog barks

• Generate root ”barks”

• Decide to generate 1 left argument to ”barks”

• Decide to generate 0 right arguments to ”barks”

• Generate ”dog” as left argument of ”barks”

• Decide to generate 2 left arguments to ”dog”

• Decide to generate 0 right arguments to ”dog”

• Generate ”bad” as left argument to ”dog”

• Generate ”the” as left argument to ”dog”

• Decide to generate 0 left arguments to ”bad”

• Decide to generate 0 right arguments to ”bad”

• Decide to generate 0 left arguments to ”the”

• Decide to generate 0 right arguments to ”the”

Figure 1.2: Dependency Model with Valence Generative Story- Example
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– Decide whether to generate any arguments in directiond.

– Decide the number of argumentskHd greater than zero in directiond by repeat-

edly deciding whether to continue generating arguments in this direction, given

H and the fact that there is at least one argument.

– GeneratekHd parts-of-speech argumentsA1, ...AkHd
givend,H.

Let tH be the subtree rooted atH, and letAdH be a vector of dependencies ofH in direction

d. LetAdHi be theith element ofAdH . AdH0 is considered the nearest argument toH. This

yields the probability of a dependency tree as

P (s, t) = PROOT (sr)P (tsr |sr)

where

P (tH |H) =

∏

d∈{L,R}

∏khd−1
v=0 [Pstop (continue|H, d,min(v, 1))Parg(AdHi|H, d)P (tAdHi

|Ai)]

Pstop (stop|H, d,min(khd, 1))

Klein and Manning formulate this as a PCFG, supposing that right attachments are made

before left. This is then trained using the inside-outside algorithm (Baker, 1979), a variant

of the Expectation Maximization algorithm for PCFGs. This yields a model with 43.2 %

directed accuracy on the Penn Treebank Wall Street Journal corpus, stripped of punctuation,

sentences with 10 words or fewer (henceforth WSJ10), training and testing on the whole

corpus.

Key to their performance is their initialization: they start with an E-step in which the

posterior probability that thejth word is an argument of theith is proportional to 1
|i−j| ,
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and each word is equally likely to be the root. By combining DMV with their Constituent-

Context Model for constituent bracketing induction, they can improve this performance to

47.5%.

1.2.2 Other Estimation techniques for DMV

Smith and Eisner (2005) and Smith (2006) investigate using their Contrastive Estimation

technique to estimate DMV. Contrastive Estimation maximizes the conditional probability

of the observed sentencess given some similar sequences that were not seen. These similar

sequences are defined by a Neighborhood function, which defines for each sentencesi a set

N (si), consisting of all such sequences that can be made from some simple transformation

of si. Examples of such transformations include transposing a pair of words, or deleting

a word. The intuition is that for every observedsi, there are many sequences involving

words with the same semantic content, but which were not generated. These are treated as

“implicit negative examples”, and Contrastive Estimationplaces probability mass onsi at

the expense of them. The results of this approach vary widelybased on regularization and

neighborhood, but many of the solutions found are quite a bitbetter than when using EM.

Smith (2006) also investigates two techniques for maximizing likelihood, while incor-

porating the locality bias encoded in the Klein and Manning initializer for DMV. One,

skewed deterministic annealing, ameliorates the local maximum problem by raising to

some positive powerb ≤ 1 the posterior distribution over trees in the E-step of EM, flatten-

ing it, while interpolating in log space with the Klein and Manning initializer. The degree to

which the latter distribution is included is decreased withtime, eventually a local maximum

in the likelihood.

The second technique is structural annealing, introduced in Smith and Eisner (2006)

and explored more deeply by Smith (2006), which penalizes long dependencies at first.
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This penalty is gradually weakened during estimation. Thisis inspired by a notion that

short dependencies are easier to learn than long dependencies. If hand-annotated depen-

dencies on a held-out set are available for parameter selection, this performs far better than

EM; however performing parameter selection on a held-out set without the use of gold

dependencies does not perform as well.

The Baby Steps technique of Spitkovsky et al. (2009; Spitkovsky et al. (2010a) exploits

a similar idea that short sentences are easier to learn from than long sentences. This tech-

nique starts by training DMV using EM on sentences of length one, then incrementally

including sentences of length one longer in the training data, initializing with the previous

model.

Spitkovsky et al. (Spitkovsky et al., 2009; Spitkovsky et al., 2010a) note a tradeoff

between the addition of more training data by including longer sentences and the resulting

complexity of the sentences in question. They report that training on sentences up to length

15 using an initializer similar to that of Klein and Manning (2004) works better when

evaluated on test sets with varying sentence lengths. They additionally combine this idea

with the incremental aspect of Baby Steps to form what they call Leapfrog, (Spitkovsky

et al., 2010a) which initializes the model using a mixture ofthe outputs of this model and

Baby Steps on sentences of length 1 to 15. It then trains EM to convergence, and then

repeat this process on training sets with length cutoffs of 30 and 45, each time initializing

with the result of the previous model.

Spitkovsky et al. (2010b) investigate using Viterbi EM instead of traditional EM to

estimate DMV. Viterbi EM replaces the expected counts of theE-step with counts extracted

from the Viterbi parse of the current model. They find that this works better than traditional

EM when training on longer sentences.

Berg-Kirkpatrick et al. (2010) present a method for using EMwith locally normalized

log-linear models and extend this by showing how the gradient optimization in the M-step
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can be changed to directly climb the gradient of the log marginal likelihood. They use this

to experiment with adding broader part-of-speech knowedgeto the model, such as adding

features that something is a noun or a verb.

1.2.3 Unsupervised Searn

Daumé III (2009) applies an unsupervised version of his Searn structured prediction ap-

proach to unsupervised dependency parsing. Searn is a framework for applying classifiers

to structured prediction problems, given some loss function. Unsupervised Searn works by

considering loss functions which only depend on the observed data. Daumé applies this to

a shift-reduce parser, which includes both lexical and unlexical features.

1.2.4 IBM-style alignment models

Brody (2010) explores using the IBM word alignment models, used for statistical machine

translation, and reformulating them for dependency grammar induction. The approach con-

siders an alignment between two copies of the same sentence,where words are prevented

from aligning to themselves. An alignment is considered theanalogue to a dependency in

this model. The approach does not perform as well as the DMV, though this is possibly due

to the fact that the model does not force the alignment to havea tree-structure.

1.2.5 Variational Bayesian Techniques

Cohen et al. (2008) explores using two Bayesian priors in conjunction with the Dependency

Model with Valence: a sparse symmetric Dirichlet Prior and aLogistic Normal Prior. The

sparse Dirichlet places a bias towards distributions whereeach nonterminal expands to only

a few of its possible right-hand-sides (Johnson et al., 2007).
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The Logistic Normal Prior allows for prior distributions inwhich the probabilities of

right-hand sides of a rule can covary. Under this prior, the probability vector for a par-

ticular nonterminal withK possible righthand-sides is generated by first drawing froma

K-dimensional multivariate Gaussian, exponentiating the result and normalizing to form a

legitimate probability distribution. The result is a distribution where more of the covari-

ance between rules of a particular nonterminal is captured in the prior. Cohen et al. (2008)

use an Empirical Bayes approach to learn this model, which gives the best previous perfor-

mance on this task, 59.1% directed accuracy on WSJ10. Additionally, if knowledge of the

meanings of the part-of-speech tags is allowed, they get further improvement (59.4%) by

initializing the covariance matrices so that tags in the same family (all nouns in one family,

all verbs in another, etc) covary positively.

Concurrently to this work, Cohen and Smith (2009) explore anextension of the Lo-

gistic Normal Prior called the Shared Logistic Normal Prior. The Shared Logistic Normal

Prior replaces theK-dimensional Multivariate Gaussian random variable with the average

over several multivariate Gaussian random variables (called experts). Each expert may be

shared across different nonterminals, so that rule probabilities can correlate. Cohen et al.

use this model to explore tying tags in the same family together: nouns, verbs and adjec-

tives. They find that this improves performance beyond the simple Logistic Normal Prior

for English, and sometimes helps, and sometimes hurts for Chinese. They also explore a

bilingual learning setting, where part-of-speech families are given a common expert across

an English and Chinese, giving further improvement.

Gillenwater et al. (2011) apply the Posterior Regularization (PR) framework of Graça

et al. (2008) to the problem of dependency grammar induction. Posterior Regularization

allows the inclusion of soft constraints on the learned posterior distribution which might

be difficult to encode in a prior. Gillenwater et al. (2011) explore encouraging sparsity

on the total number of types of parent/child relations (by part-of-speech) in the grammar.
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This differs from the form of sparsity coming from the sparseDirichlet Prior, which only

encourages each individual probability distribution in the model to be sparse (e.g. for DMV

encouraging each parent/direction type to have a few types of children).

Naseem et al. (2010) use universal linguistic rules as a softcontraint using posterior reg-

ulation, on top of a Hierarchical Dirichlet Process-grammar refinement version of DMV.

Their model also includes an extended notion of valence, conditioning the dependent on

whether it is the first, second, or third-or-greater child ofits parent. (see Subsection 1.2.6).

They find that including these rules can improve performanceover even the models pre-

sented in this paper; however, when the rule constraints areexcluded, the performance

drops precipitously.

Cohen et al. (2010) apply the Adaptor Grammar framework (Johnson et al., 2006) to

DMV. Adaptor grammars are a nonparametric Bayesian extention to PCFGs, which allow

for whole previously generated subtrees to be memoized and reused without repaying the

probabilistic cost of generating it anew. Cohen et al. applythis memoization noun con-

stituents with the DMV, utilizing a novel variational estimation technique. They find this

brings a modest but significant improvement over the baseline DMV with Dirichlet priors.

Blunsom and Cohn (2010) present a Tree Substitution Grammar(TSG) version of lex-

icalized DMV (see Section 4.5.1). A TSG represents parse trees as made up of a combina-

tion of tree fragments that might be larger than those of a simple CFG parse. Their model

uses hierarchical Pitman-Yor processes to do the smoothing. While the model doesn’t

explicitly treat arguments differently by their valence position (See Section 1.2.6), by mod-

eling larger tree fragments it is able to incorporate that information.
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1.2.6 Extensions of Valence

Valence has long been known to be valuable for supervised parsing (Eisner, 1996; Eisner,

2000; Collins, 1997; Charniak, 2000). McClosky (2008) presents two variations of DMV

which extend its notion of valence. McClosky notes that across languages, few heads

have three or more arguments in a given direction.Restricted Valence Grammar(RVG)

presumes that each head has a maximal number of positionsK in each direction to fill

(McClosky considersK ∈ {1, 2, 3}) . Its generative process is:

• Generate Root POS

• For each generated POSH, directiond ∈ {L,R} generateH ’s argumentsDd(H):

– Decide how many argumentskHd ∈ {0, 1, ...K} in directiond to generate.

– GeneratekHd parts-of-speech argumentsA1, ...AkHd
givend,H, v, wherev is

the valence slot.

The probability of a dependency tree under RVG is then:

P (s, t) = PROOT (sr)P (tsr |sr)

where

P (tH |H) =
∏

d∈{L,R}

P (kHd|H, d)
kdH−1
∏

i=0

[Parg(AdHi|H, d, i)P (tAdHi
|Ai)]

In contrastUnrestricted Valence Grammar(UVG), which we use as the basis for our

models, does not place a hard limit on the number of arguments; but merely models argu-

mentsK or more positions away from the head according to the same distribution. It can
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be thought of as the same as DMV, except that argumentAHdi is modeled conditioned on

H, d,min(i, K), not merely onH, d as in DMV.

• Decide whether to generate any arguments in directiond.

• Decide the number of argumentskHd greater than zero in directiond by repeatedly

deciding whether to continue generating arguments in this direction, givenH and the

fact that there is at least one argument.

• GeneratekHd parts-of-speech argumentsA1, ...AkHd
given d,H, v, wherev is the

valence slot. Ifv ≥ K the arguments are drawn from a common distribution.

Under UVG the probability of a dependency tree as

P (s, t) = PROOT (sr)P (tsr |sr)

where

P (tH|H) =

∏

d∈{L,R}

∏kHd−1
v=0 [Pstop (continue|H, d,min(v,K))Parg(AdHi|H, d)P (tAdHi

|Av)]

Pstop (stop|H, d,min(kHd, K))

In the remainder of the thesis, we will refer to this model asExtended Valence Grammar

(EVG), which is what we called it in our 2009 NAACL paper (III et al., 2009).

McClosky reports the RVG with valence 2 gets the best performance of these models

on English Wall Street Journal words length 10 or less (56.5 directed, 69.7 undirected). Al-

though this is the case, our models are extensions on the EVG framework withK = 2, since

we are reluctant to eliminate potentially useful attachments a priori. Pilot Experiments with

RVG and EVG with backoff indicated they work roughly equallywell.
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1.3 Overview of remainder of thesis

In Chapter 2 we will go over the basic learning framework we will use in the remainder

of the thesis. This will include representing dependency models as split bilexical PCFGs,

define PCFGs with parameters tied in a particular way, as wellas the unsupervised esti-

mation of these PCFGs using various techniques. It will additionally go into the details of

the Dependency Model with Valence and Extended Valence Grammar which will form the

basis of the models discussed in the remainder of the dissertation.

Chapter 3 will cover a series of different smoothing techniques for PCFGs which can

be estimated in an unsupervised fashion. These will involveaugmenting the PCFG in

particular ways, and making use of the tied-PCFG framework.It will look at smoothed

versions of DMV and EVG, and see how smoothing can improve theperformance of these

models.

Chapter 4 will explore lexicalized models. We will look at integrating lexical features to

the DMV and EVG models in various ways. We will utilize the lessons regarding smooth-

ing learned in Chapter 3 to effectively learn these models.

Chapter 5 will look at several related questions that arose in the course of this work,

and conclude.



Chapter 2

Learning Framework

2.1 Background

This chapter will describe the general learning framework we shall employ for the rest of

the thesis. We shall begin by describing the sort of syntactic structure we are interested in

learning. Next we shall discuss the split-head bilexical context-free grammar framework

for describing dependency grammars, and describe the models of previous work as prob-

abilistic context free grammars of this variety. We will next discuss various unsupervised

estimation procedures for PCFGs. Finally we shall close by describing a variety of PCFG

that will be useful in the next Chapter, which will allow us tomake additional independency

assumptions about the model.

In this thesis, the observed variables will generally be a corpus ofn sentences of text

s, where eachsi is a sequence ofmi wordssi1 . . . simi
. Each wordsij is associated with

a part-of-speechτij , which will also be treated as observed. The (here finite) setof all

possible words is denoted asVw, and the set of possible parts-of-speech is denotedVτ .

The hidden variables will be dependency parse treest = {ti}i=1,n. A dependency tree

ti is a directed acyclic graph whose nodes are the words insi. The graph has a single

15
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The big dog barks

Figure 2.1: Example dependency parse.

incoming edge for each wordsij, except one word, denoted as theroot of the graph. An

edge from wordsij to sij′ means thatsij′ is anargumentof sij , or alternatively,sij is the

headof sij′. Note that each word token may be the argument of only one head, but a head

may have several arguments.

If ti can be drawn on a plane above the sentence with no crossing edges, it is called

projective. Otherwise it is nonprojective. While there are languages whose dependency

structures have crossing edges, and there are supervised algorithms for learning and pars-

ing nonprojective dependency structures, no such algorithms currently are known in the

unsupervised setting. The algorithms we consider here onlyexamine projective structure.

2.1.1 Split Bilexical CFGs

In order to efficiently estimate the dependency models in this thesis, we will need to devise

CFGs that factor their parsing decisions in the same way. In the sections that follow, we

frame various dependency models as a particular variety known as split bilexical CFGs

(Eisner and Satta, 1999). These will allow us to use the much faster Eisner-Satta (Eisner and

Satta, 1999) parsing algorithm to compute our dynamic programming steps inO(|si|3) time

(Eisner and Blatz, 2007; Johnson, 2007). (Efficiently parsable versions of split bilexical

CFGs for the models described in this dissertation can be derived using the fold-unfold

grammar transform(Eisner and Blatz, 2007; Johnson, 2007)).

In the split-head bilexical CFG framework each nonterminalin the grammar is an-

notated with a terminal symbol. We will define grammars in this framework in terms

of rule schemas and nonterminal schemas. For instance we might have a series of rules
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XH → YH′ZH , for all pairsH,H ′ ∈ T , whereX, Y, Z are nonterminals with the anno-

tations removed. This one schema would provide|T |2 rules. For dependency grammars,

these annotations correspond to words and/or parts-of-speech. The second important prop-

erty of split-head bilexical CFGs is that each observed symbol τij in a sentence is repre-

sented in a split form, consisting of a left partτijL and a right partτijR (McAllester, 1999).

These parts become the terminal symbols of the grammar. Thissplit-head property relates

to a particular type of dependency grammar, in which the leftand right dependents of a

head are generated independently.

Note that split-head bilexical CFGs can be made probabilistic in the same way as stan-

dard PCFGs.

A simple example of a split-head bilexical CFG (denoted Simple Split-Head Grammar

1) for dependency parsing is:

Simple Split-Head Grammar 1

Rule Description

S → YH selectH as root

YH → LH RH Move to split-head representation

LH → HL no more arguments to left ofH

LH → YA LH argument =A to left of head =H

RH → HR no more arguments to right ofH

RH → RH YA argument =A to right of head =H

HereHL, HR are the terminals of the grammar; there is anHL and anHR for eachH in
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the vocabularyVw. The expansion ofLH encodes the decision of whether there is another

left argument ofH, and if so, what it should be. LikewiseRH is a nonterminal encoding

the decision of whether to there is another right argument ofH and what that argument

should be. An example parse of “The big dog barks” is given in 2.2.

S

Ybarks

Lbarks

Ydog

Ldog

YThe

LThe

TheL

RThe

TheR

Ldog

Ybig

Lbig

bigL

Rbig

bigR

Ldog

dogL

Rdog

dogR

Lbarks

barksL

Rbarks

barksR

Figure 2.2: Simple split-head bilexical CFG parse of “The big dog barks.”

Note that this model combines the decision about whether to generate another argument

(a stopping decision) with the decision about what that argument should be. For instance,

in Figure 2.2, the ruleLbarks → Ydog Lbarks combines deciding that “barks” should have

another left argument, and selecting “dog” as that argument. Separating these will sim-

plify the derivation of our later models –specifically the introduction of valence. They can

been separated performing the following transformations to the grammar. First we add the

nonterminalsL1
H andR1

H for eachH ∈ Vw, which signifies a state in which we know we

will generate at least one argument to the left and right respectively, and must decide which

argument to generate. Second, we replace the ruleLH → YALH with the pair of rules

LH → L1
H andL1

H → YALH (and likewise replaceRH → RHYA with RH → R1
H and
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R1
H → RHYA) . Now for instanceLH indicates a decision about whether to stop gener-

ating arguments to the left, or to generate at least one more argument. An example of the

difference between the old and new grammars are given in Figure 2.3. The transformations

yield this new grammar (Simple Split-Head Grammar 2):

Simple Split-Head Grammar 2

Rule Description

S → YH selectH as root

YH → LH RH Move to split-head representation

LH → L0

H
stop generating arguments|left,head =H

LH → L1

H
continue generating arguments|left,head =H

L1

H
→ YA LH argument =A|left,head =H

L0

H
→ HL

RH → R
0

H
stop generating arguments|right,head =H

RH → R1

H
continue generating arguments|right,head =H

R1

H
→ RH YA argument =A|right,head =H

R0

H
→ HR
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.

.

.

Ydog

Ldog

YThe

TheL TheR

Ldog

Ybig

bigL bigR

Ldog

dogL

Rdog

dogR

.

.

.

Ydog

Ldog

L1

dog

YThe

TheL TheR

Ldog

L1

dog

Ybig

bigL bigR

Ldog

L0

dog

dogL

Rdog

R0

dog

dogR

Figure 2.3: An example of moving from Simple Split-Head Grammar 1 to Simple Split-
Head Grammar 2, which separates the decision of whether to generate another argument
(LH ) from what that argument should be (L1

H ).

2.1.2 Dependency Model with Valence

.

.

.

Ydog

Ldog

L1

dog

YThe

TheL TheR

Ldog

L1

dog

Ybig

bigL bigR

Ldog

L0

dog

dogL

Rdog

R0

dog

dogR

.

.

.

Ydog

Ldog

L1

dog

YThe

TheL TheR

L′

dog

L1

dog

Ybig

bigL bigR

L′

dog

L0

dog

dogL

Rdog

R0

dog

dogR

Figure 2.4: An example of moving from Simple Split-Head Grammar 2 to DMV. DMV
distinguishes between the deciding if there will be a first argument, and deciding when to
stop generating subsequent arguments. Notice the lower twoLdog nonterminals in the left
tree becomesL′

dog in the second.

The most successful recent work on dependency induction hasfocused on the Depen-

dency Model with Valence (DMV) of Klein and Manning (Klein and Manning, 2004).
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Dependency Model with Valence (DMV)

Rule Description

S → YH selectH as root word

YH → LH RH Move to split-head representation

LH → L0

H
stop generating arguments|left,head =H , no arguments

LH → L1

H
continue generating arguments|left,head =H no arguments

L′

H
→ L0

H
stop generating arguments|left,head =H , one or more arguments

L′

H
→ L1

H
continue generating arguments|left,head =H , one or more arguments

L1

H
→ YA L′

H
argument =A|left,head =H

L
0

H
→ HL

RH → R0

H
stop generating arguments|right,head =H , no arguments

RH → R1

H
continue generating arguments|right,head =H no arguments

R′

H
→ R0

H
stop generating arguments|right,head =H , one or more arguments

R′

H
→ R1

H
continue generating arguments|right,head =H , one or more arguments

R1

H
→ R′

H
YA argument =A|right, head =H

R0

H
→ HR

Table 2.1: CFG Schema for Dependency Model with Valence.

The main difference between DMV and the Simple Split-Head Grammar 2 is that DMV

distinguishes the probability of the decision to generate the first argument in a particular

direction from the probability of deciding to generate subsequent arguments. This is the

sense in which it models valence. We can incorporate this in asplit-head bilexical CFG

by splitting theLH nonterminal intoLH andL′
H (likewiseRH becomesRH andR′

H). The

ruleL1
H → YALH becomesL1

H → YAL
′
H (likewiseR1

H → RHYA becomesR1
H → R′

HYA).

LH now indicates a decision of whether to generate the first argument, andL′
H a decision

of whether to generate subsequent arguments. This results in a grammar given in Table 2.1.

An example of the difference between grammar 2 and DMV is shown in figure 2.4.
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.

.

.

Ydog

Ldog

L1

dog

YThe

TheL TheR

L′

dog

L1

dog

Ybig

bigL bigR

L′

dog

L0

dog

dogL

Rdog

R0

dog

dogR

.

.

.

Ydog

Ldog

L′

dog

L2

dog

YThe

TheL TheR

L′

dog

L1

dog

Ybig

bigL bigR

L0

dog

dogL

Rdog

R0

dog

dogR

Figure 2.5: An example of moving from DMV to EVG. The key difference is that EVG
distinguishes between the distributions over the argumentnearest the head (big) from argu-
ments farther away (The).

(In fact all work implementing DMV has replaced the words with their parts of speech.

However for expositional clarity the example shows words).In this example the lower

two Ldog nonterminals in the grammar 2 tree become,L′
dog in DMV; however the top one

remains asLdog, distinguishing the first argument decision from subsequent ones.

2.1.3 Extended Valence Grammar

Among the models we discuss in this dissertation are some derived from a variant of DMV

presented by McClosky (McClosky, 2008), called theUnrestricted Valence Grammaror

Extended Valence Grammar(EVG). The main insight is that for a given head, different

valence positions in a given direction should have different distributions over arguments.

In particular, EVG modifies DMV by distinguishing the distribution over the argument

nearest the head from the distribution of subsequent arguments. For example, in the phrase

“the big hungry dog”, the distribution over “hungry” as the closest left argument of “dog”

would be different than the distribution over “the” and over“big”.

Consider the following changes to the DMV grammar. First, wewill introduce the



23

nonterminalsL2
H andR2

H and rulesL2
H → YAL

′
H andR2

H → R′
HYA to denote the decision

of what argument to generate for positions not next to the head. Next instead of expanding

L′
H → L0

H |L
1
H we will expand it asL′

H → L1
H |L

2
H . L′

H still represents the decision of

whether to keep generating arguments to the left, given there is at least one. However,L1
H

now indicates that there is exactly one left argument remaining (that nearest the head), and

so the ruleL1
H → YAL

′
H must becomeL1

H → YAL
0
H (i.e. generate left argumentA, and no

more). See Figure 2.5 for an example. These transformationsyield the grammar in Table

2.2.

It is important to note that in previous work, as with DMV, EVGhas only been estimated

using parts-of-speech ignoring the words.

2.2 Experimental Setup

Dependency parses are typically evaluated against an annotated data set (the “gold-standard”).

The standard metric isdirected accuracy, which is the percent of directed edges proposed

by the parser that match those present in the gold standard.

The experiments presented here use the Penn Treebank Wall Street Journal corpus(M.

Marcus et al., 1993). We follow the now standard practice by Klein and Manning 2002

(Klein and Manning, 2002) of deleting punctuation, and using only sentences with 10

words or fewer. This corpus will henceforth be referred to asWSJ10. The dependencies

are extracted from the phrase structure trees using the rules by Yamada and Matsumoto

2003(Yamada and Matsumoto, 2003). We train on sections 2-21, use the likelihood of sec-

tion 22 to evaluate convergence, use section 24 for development, and section 23 as our final

test set.

We will present results on both the training set, and on the development/final-test sec-

tions. Typically in unsupervised learning problems we would only have one data-set (akin
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Extended Valence Grammar (EVG)

Rule Description

S → YH selectH as root

YH → LH RH Move to split-head representation

LH → L
0

H
stop generating arguments|left,head =H , no arguments

LH → L′

H
continue generating arguments|left,head =H no arguments

L′

H
→ L1

H
stop generating arguments|left,head =H , one or more arguments

L′

H
→ L2

H
continue generating arguments|left,head =H , one or more arguments

L2

H
→ YA L′

H
argument =A|left,head =H ,argument is not nearest to head

L1

H
→ YA L0

H
argument =A|left,head =H , argument is nearest to head

L0

H
→ HL

RH → R0

H
stop generating arguments|right,head =H , no arguments

RH → R′

H
continue generating arguments|right,head =H no arguments

R
′

H
→ R

1

H
stop generating arguments|right,head =H , one or more arguments

R′

H
→ R2

H
continue generating arguments|right,head =H , one or more arguments

R2

H
→ R′

H
YA argument =A|right,head =H , argument is not nearest to head

R1

H
→ R0

H
YA argument =A|right,head =H , argument is not nearest to head

R0

H
→ HR

Table 2.2: CFG Schema for the Extended Valence Grammar.



25

to the training set), and we would evaluate how well we represent the underlying structure

of that set. Here we will present results on both sets, to givea sense for now only how

well the learned model represents the given data, but also how well the model generalizes

to novel sentences. This also allows us to compare to previous work such as (Cohen et al.,

2008).

To evaluate models learned using Expectation Maximization, we examine the Viterbi

parse under the learned parameter vectorθ. To evaluate models learned using Variational

Bayes, we follow Cohen et al. 2008 (Cohen et al., 2008) in using the mean of the variational

posterior Dirichlets as a point estimate.

2.3 Tied Probabilistic Context Free Grammars

In order to perform smoothing in PCFGs in Chapter 3, we will find useful a class of PCFGs

in which the probabilities of certain rules are required to be the same. This will allow

us to make independence assumptions for smoothing purposeswithout losing information,

by giving analogous rules the same probability. For instance, we might have a grammar

rule L2
H → YAL

′
H and might want the probability of the rule to not depend on thehead

part-of-speechH, but want the fact that the head isH to propagate to the righthand side

nonterminalL′
H , and so be available to condition on farther down the tree.

Let tupleG = (N , T , S,R) be a Context Free Grammar (CFG) with nonterminal sym-

bolsN , terminal symbolsT , start symbolS ∈ N , and set of rewrite productionsR of the

formN → β, forN ∈ N , β ∈ (N ∪T )∗. LetRN indicate the subset ofR whose left-hand

sides areN .

(G, θ) defines a Probabilistic Context Free Grammar (PCFG), whereθ is a vector of

length|R|, indexed by productionsN → β ∈ R. θN→β specifies the probability thatN

rewrites toβ. Hence
∑

N→β∈RN
θN→β = 1. We will let θN denote the subvector ofθ
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corresponding to rules inRN .

A tied PCFG specifies that certain nonterminals have common distributions over the

indexes of their rules. For instance, if we haveN → β1|β2 andN ′ → β ′
1|β

′
2, we want to be

able to specify that, e.g.θN→β1 = θN ′→β′
1

andθN→β2 = θN ′→β′
2
.

We define a tied PCFGH = (G, θ,
HR

≡ ), where
HR

≡ is an equivalence relation onR that

satisfies the following properties:

1. ∀r1r2 ∈ R, if r1
HR

≡ r2 thenθr1 = θr2 Tied rules have the same probability.

2. ∀r1, r2 ∈ RN , r1 6= r2 Distinct rules expanding the same

r1
HR

6≡ r2 nonterminal are never tied.

3. ∀N1 6= N2, ∀r1 ∈ RN1, r2 ∈ RN2 If any rule inRN1 is tied to a rule inRN2

if r1
HR

≡ r2 then each rule inRN1 is tied to a rule inRN2

then for all∀r′1 ∈ RN1: and vice versa.

∃r′2 ∈ RN2such thatr′1
HR

≡ r′2

We call
HR

≡ the tying relation. IfN1 → β1 andN2 → β2 are tied then the tying relation

defines a one-to-one mapping between rules inRN1 andRN2 . This can be seen from the

following: (3) says that each rule inRN1 is tied to a rule inRN2 and vice versa. (2) plus

the transitivity of an equivalence relation indicates thateach rule inRN1 is tied to a unique

rule inRN2 (and vice versa). Hence the relation is one-to-one.

Clearly, the tying relation also defines an equivalence class over nonterminals, and we

say thatN1 andN2 are tied nonterminals if there is anr1 ∈ RN1 andr2 ∈ RN2 where

r1
HR

≡ r2. The tying relation allows us to formulate the distributions over trees in terms

of rule equivalence classes and nonterminal equivalence classes. SupposēR is the set
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of rule equivalence classes and̄N is the set of nonterminal equivalence classes. Since

all rules in an equivalence class̄r have the same probability (condition 1), and since all

the nonterminals in an equivalence classN̄ ∈ N̄ have the same distribution over rule

equivalence classes (condition 1 and 3), we can define the setof rule equivalence classes

R̄N̄ associated with a nonterminal equivalence classN̄ , and a vector̄θ of probabilities,

indexed by rule equivalence classesr̄ ∈ R̄ . θ̄N̄ refers to the subvector of̄θ associated with

nonterminal equivalence class̄N , indexed bȳr ∈ R̄N̄ . Since rules in the same equivalence

class have the same probability, we have that for eachr ∈ r̄, θr = θ̄r̄.

Let f(t, r) denote the number of times ruler appears in treet, and letf(t, r̄) =

∑

r∈r̄ f(t, r). We see that the complete data likelihood is

P (s, t|θ) =
∏

r̄∈R̄

∏

r∈r̄

θf(t,r)r =
∏

r̄∈R̄

θ̄
f(t,r̄)
r̄

Let θ̄N̄ be the subvector of̄θ indexed bȳr ∈ R̄N̄ . θ̄N̄ is a multinomial parameter vector

(i.e.,
∑

r̄∈R̄N̄
θ̄r̄ = 1), and sop(t|θ̄) is a product of multinomials, one for each̄N ∈ N̄ :

p(t|θ̄) =
∏

r̄∈R̄

θ̄
f(t,r̄)
r̄ =

∏

N̄∈N̄

∏

r̄∈R̄N

θ̄
f(t,r̄)
r̄

That is, the likelihood is a product of multinomials, one foreach nonterminal equivalence

class, and there are no constraints placed on the parametersof these multinomials besides

being positive and summing to one. This means that all the standard estimation methods

(e.g. Expectation Maximization, Variational Bayes, sampling), in particular the efficient

dynamic programming algorithms for estimating sufficient statistics over PCFGs, extend

directly to tied PCFGs.
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2.4 Estimation

We have so far specified a framework by which one can model simple probabilistic de-

pendency grammars. The next issue is to discuss briefly how wemight determine the

probabilities of each rule or rule equivalence class in the grammar. We will touch first upon

techniques that will be of use in the remainder of the dissertation; some other estimation

techniques in the literature will be discussed at the end of the section.

Perhaps the most straightforward approach is to assign probabilities to maximize the

likelihood of the observed sentences:

θMLE = argmaxθp(s|θ)

= argmaxθ
∑

t

p(s,t|θ)

The standard technique for performing maximum likelihood estimation when the likeli-

hood is stated in terms of hidden variables such as the parse treest is the Expectation Max-

imization algorithm (EM). Expectation Maximization is an iterative technique for finding a

local maximum of the observed data likelihood, which alternates between two steps. First

some initial setting for the paramters is chosen forθ(0). In thelth iteration, theE-Stepcal-

culates for each sentencesi and possible treeti p(ti|si, θ(l−1)). TheM-Stepassignsθ(l) to

maximizeEp(t|s,θ(l−1)) log p(s, t|θ
(l−1)).

For PCFGs, the M-Step is straightforward to implement giventhe expected countf(t, r)

of each rule equivalence classr under the distributionp(t|s, θ(l−1)) calculated in the E-Step:

θ(l)r ∝ Ep(t|s,θ(l−1))f(t, r)

To process the E-Step, there is an efficient dynamic programming algorithm (Baker,
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1979) for PCFGs, which calculates exactly these expected counts. Together these are

known as the Inside-Outside algorithm.

Maximum likelihood estimation provides a point estimate ofθ. However, often we

want to incorporate information aboutθ by modeling itsprior distribution, and model un-

certainty by estimating aposterior distribution. As a prior, for eachN ∈ N we will

specify a Dirichlet distribution overθN with hyperparametersαN . The Dirichlet has the

density function:

P (θN |αN) =
Γ(
∑

r∈RN
αr)

∏

r∈RN
Γ(αr)

∏

r∈RN

θαr−1
r ,

Thus the prior overθ is a product of Dirichlets,which isconjugateto the PCFG likelihood

function (Johnson et al., 2007). That is, the posteriorP (θ|s, t, α) is also a product of

Dirichlets, also factoring into a Dirichlet for each nonterminalN , where the parametersαr

are augmented by the number of times ruler is observed in treet:

P (θ|s, t, α) ∝ P (s, t|θ)P (θ|α)

∝
∏

r∈R

θf(t,r)+αr−1
r

We can see thatαr acts as a pseudocount of the number of timesr is observed prior tot.

To make use of this prior, we use the Variational Bayes (VB) technique for PCFGs

with Dirichlet Priors presented by (Kurihara and Sato, 2004). VB estimates a distribution

overθ. In contrast, Expectation Maximization estimates merely apoint estimate ofθ. In

VB, one estimatesQ(t, θ), called the variational distribution or variational posterior, which

approximates the posterior distributionP (t, θ|s, α) by minimizing the KL divergence ofP

from Q. Minimizing the KL divergence, it turns out, is equivalent to maximizing a lower
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boundF of the log marginal likelihoodlogP (s|α).

logP (s|α) ≥
∑

t

∫

θ

Q(t, θ) log
P (s, t, θ|α)

Q(t, θ)
= F

The negative of the lower bound,−F , is sometimes called thefree energy.

As is typical in variational approaches, Kurihara and Sato (2004) make the “mean field”

assumption, in which the hidden variables and parameters inthe variational posterior are

independent. They assume a factorization:

Q(t, θ) = Q(t)Q(θ) =

n
∏

i=1

Qi(ti|si)
∏

N∈N

Q(θN )

The goal is to recoverQ(θ), the estimate of the posterior distribution over parameters and

Q(t), the estimate of the posterior distribution over trees. Finding a local maximum ofF

is done via an alternating maximization ofQ(θ) andQ(t). Kurihara and Sato (2004) show

that eachQ(θN ) is a Dirichlet distribution with parameterŝαr = αr + EQ(t)f(t, r), and

that

Q(t) =
∏

s∈s

Q(t|s) =

∏

r∈R πr
f(t,r)

∑

t′

∏

r∈R πr
f(t,r)

where forr ∈ RN :

πr = exp

(

ψ(α̂r)− ψ(
∑

r′∈RN

α̂r′)

)

Estimation ofQ(t) andEQ(t)f(t, r) is performed using a variation of the inside-outside

algorithm, replacing each rule probabilityθr with πr.

Another option for performing Bayesian inference is a sampling approach using Markov
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Chain Monte Carlo (MCMC). Johnson et al. (2007) present two approaches: a Gibbs sam-

pler to draw samples fromP (t, θ|s, α), and a Hastings sampler for drawing samples from

P (t|s, α). Our preliminary experiments found that these experiencedthe same severe local

maxima problems experienced by Expectation Maximization and Variational Bayes ap-

proaches we describe in the next section. However, since theaim of a sampling approach

is to produce samples distributed according to a certain distribution, the random restart and

select the maximum approach we advocate for those is not so principled for sampling.

2.4.1 Initialization and Search

Both the Expectation Maximization and Variational Bayes approach locally maximize their

respective objective functions. In practice for probabilistic dependency grammars there ex-

ist many local maxima, and most of the correspond to qualitatively different dependency

grammars (Carroll and Charniak, 1992). We can observe this property in Figure 2.6 which

shows a graph of dependency accuracy vs log likelihood of DMV, for 100 randomly ini-

tialized, Expectation Maximization trained models. Each point represents a local maxima

in the log likelihood, and one can see that they are quite spread out. Here and subsequently

we randomly initialize by assigning eachθN as a sample from a symmetric Dirichlet with

parameter 1.

Faced with this fact about the likelihood space, several approaches have arisen in the

literature. One approach is an initial parameter setting which is likely to be close to a

good portion of the space. Klein and Manning (2004) propose their “harmonic” initializer,

which incorporate the linguistic intuition that shorter dependencies are preferable to longer,

in the hope that portions of the parameter space that are nearthis are probably better. This

initializer is used in much of the subsequent literature, including (Smith, 2006; Cohen et
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Figure 2.6: Directed Accuracy vs Log Likelihood, 100 runs ofExpectation Maximization
trained DMV.

al., 2008; Cohen and Smith, 2009; Daumé III, 2009)1.

Smith (2006) proposes several techniques for dealing with the local maxima problem.

The Skewed Deterministic Annealing and Structural Annealing techniques attempt to bias

the initial parameter settings to reflect this intuition that short dependencies are better,

slowly removing the bias over the course of learning. Deterministic Annealing attempts

to flatten the likelihood surface in the hopes of finding maxima in the likelihood surface

with higher likelihood.

It does so by essentially making the E-step distribution over t initially similar to uni-

form, and slowing removing this bias. This is equivalent to setting each rule probability

θN→β = 1
|RN |

. While the likelihoods it finds are indeed higher than straightforward Expec-

tation Maximization, the accuracies are poor. Skewed Deterministic Annealing improves

1Thanks to Noah Smith for providing his implementation of theharmonic initializer
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upon this by starting with a bias towards a different initializer (such as the Klein and Man-

ning Harmonic Initializer).

In this thesis our view is that both the likelihood and the variational lower bound should

provide a sufficient signal for reasonable dependency learning. In particular we will instead

use the technique of random restart to explore many local maxima, selecting the one with

the best value of the objective function of interest. The main idea of this scheme is that we

would like to wind up in a “good” part of the space in terms of accuracy, most of the time.

Note in Figure 2.6 that there are far more points in the upper right than in the lower right

corner.

For some distribution over initial parametersF0(θ), there will be a corresponding dis-

tribution over the converged states of parametersFc(θ), resulting from running Expectation

Maximization starting from an initial state drawn fromF0(θ). (The analogue to this in the

Variational Bayes case is a distribution over initial variational hyperparameterŝα). Our

goal is that the expected accuracy should be high.

Figures 2.7 and 2.8 show the results of 100 runs of estimatingDMV using Variational

Bayes, where each run is given 20 random restarts. Each restart was run for 40 iterations,

and the model with the highest lower bound value was run untilconvergence. We can see

that this compresses the resulting grammars into a higher accuracy portion of the space.

In the experiments in the rest of the dissertation, we will present results where each run

has 600 random restarts, run for 40 iterations. The highest lower bound restart is selected

from each group of 20 restarts (i.e. 30 in sum), and run until convergence. The best of

these 30 is then selected according to lower bound value. We report results averaged over

10 runs. To account for the variance introduced through the randomized initialization, we

also report 95% confidence intervals calculated using bootstrap sampling where feasible

(See Appendix C).
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Algorithm 1 Estimation for Variational Bayes with Randomized Initialization
for m from 1 toM do

for b from 1 toB do
Sampleθ̃N

b
∼ DIR(αN)

LetQ(t)(0) ← P (t|s, θ̃b)
Let α̂r ← αr + EQ(t)(0)f(t, r)
for i from 1 to 40do

Iterate Variational Bayes on modelb.
end for

end for
Select modelb∗ = argmaxbF(Qb(t), Qb(θ))
while TEST CONVERGENCE=FALSEdo

Iterate Variational Bayes on modelQb∗

end while
Let modelQm be convergedQb∗

end for
return modelm∗ = argmaxmF(Qm(t), Qm(θ))
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Figure 2.7: Directed Accuracy vs Lower Bound, 100 runs of Variational Bayes trained
DMV, each with 20 random restarts.
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Figure 2.8: Undirected Accuracy vs Lower Bound, 100 runs of Variational Bayes trained
DMV, each with 20 random restarts.

Directed Acc Undirected Acc.

Model Initialization Train Dev Train Dev

DMV Harmonic 0.483 0.457 0.651 0.633

DMV Random 0.583
(

+0.064
−0.034

)

0.549
(

+0.065
−0.031

)

0.689
(

+0.025
−0.014

)

0.668
(

+0.027
−0.013

)

Table 2.3: Results of Randomized vs Harmonic initialization for Variational Bayes

Table 2.3 describes the results of running DMV with both the Klein and Manning har-

monic initializer, as well as with the randomized initialization approach. We can see using

randomized initialization improves the average dependency accuracy by a great deal.

2.4.2 Analysis: Harmonic vs. Randomized Initialization

To see where our improvements are concentrated, we looked atthe difference in correct

directed dependencies under both the harmonic initializerand the randomized initializer,

broken down by various categories, in Table 2.4 (by child part-of-speech and direction),
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Table 2.5 (by head part-of-speech and direction), and Tables 2.6 and 2.7 (by head/child

part-of-speech pair). Since the randomized initializer results are presented averaged over

10 runs in the experiments in this paper, the tables incorporate the sum of correct directed

dependencies over these 10 runs. To allow comparison to the harmonic initializer, which

is only given 1 run we have scaled its results up by 10. In thesetables and those like it

later in the thesis, we have placed in boldface differences with a magnitude greater than

1000, and italicized those greater than 100 and fewer than 1001, to emphasize the major

net gains/losses between models.

In Table 2.4 we see that switching to randomized from harmonic initialization, the

greatest net correct dependencies are with DT, noun (NN, NNP, NNS), CD, and PRP$

children. However randomized initialization has net fewercorrect dependencies with JJ,

IN, CC, and verb children. Breaking the results down by head part-of-speech in Table

2.5, we see major improvements in dependencies headed by nouns and most verb types,

as well as IN and CD. Dependencies headed by ROOT is the largest category in which

randomized initialization does worse. Looking at Tables 2.6 and 2.7, we see that the single

biggest improvement is with (NN,DT) dependencies, as well as (NNP,NNP). Additionally,

major improvements come from NN/NNP children under VBD, VBZ, IN heads, as well as

NNS children under VBD, IN and VBP. We see that the net fewer ROOT headed correct

dependencies with randomized initialization mostly accrue to VBZ, VBD, VBP, and MD;

randomized initialization actually gets more noun-rootedsentences correct.

2.5 Conclusion

In this chapter we described the basic learning framework wewill build on in the remainder

of the thesis. We saw how DMV and EVG can be described using Split-Head PCFGs, and

covered several estimation techniques for PCFGs. We also described Tied-PCFGs, which
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Child Correct Correct Difference Difference Difference

POS Harmonic Random (Random-Harmonic) Left Right

DT 2550 24405 21855 22011 -156

NN 22510 39688 17178 6648 10530
NNP 10800 24856 14056 11089 2967
NNS 15660 21306 5646 3265 2381
JJ 20520 15385 -5135 -5176 41

CD 6580 9712 3132 3463 -331

VBN 8970 5960 -3010 -60 -2950
IN 13270 10821 -2449 -40 -2409
CC 3120 964 -2156 -1920 -236

PRP$ 10 2095 2085 2085 0

VBZ 16040 14758 -1282 -1 -1281
VBD 16430 15440 -990 6 -996

VBP 9010 8051 -959 4 -963

MD 4830 3941 -889 -7 -882

VB 7750 7104 -646 11 -657

NNPS 520 1139 619 343 276

VBG 4550 4207 -343 -6 -337

POS 1850 1611 -239 -235 -4

EX 710 843 133 140 -7

RP 740 630 -110 0 -110

JJR 1010 908 -102 -91 -11

RB 6570 6667 97 -48 145

WP 670 576 -94 31 -125

PRP 14860 14946 86 20 66

JJS 350 265 -85 -78 -7

$ 720 635 -85 116 -201

LS 70 24 -46 -46 0

PDT 40 84 44 39 5

WDT 130 163 33 10 23

FW 60 89 29 27 2

TO 2620 2598 -22 434 -456

WRB 480 465 -15 13 -28

SYM 150 145 -5 5 -10

RBS 110 109 -1 -1 0

RBR 520 519 -1 8 -9

UH 170 170 0 31 -31

Table 2.4: Change in correct dependencies by child part-of-speech across 10 runs for DMV-
Randomized and DMV-Harmonic. Left indicates child is a leftdependent of its head in
system output.
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Head Correct Correct Difference Difference Difference

POS Harmonic Random (Random-Harmonic) Left Right

NN 18440 33387 14947 14980 -33

NNP 2530 10056 7526 8176 -650

IN 15140 21358 6218 40 6178
VBZ 21040 26550 5510 4507 1003
VBD 21850 27195 5345 4561 784

NNS 16140 20158 4018 4094 -76

ROOT 48260 45985 -2275 0 -2275
CD 530 2076 1546 1758 -212

VB 7610 9071 1461 424 1037
VBP 15650 17108 1458 1442 16

VBN 5370 4072 -1298 19 -1317
TO 1960 2855 895 -21 916

MD 8720 9592 872 1240 -368

NNPS 110 758 648 648 0

RB 1150 621 -529 88 -617

VBG 3070 3431 361 -42 403

POS 2550 2312 -238 -238 0

$ 1210 990 -220 37 -257

JJ 2230 2414 184 265 -81

WP 230 125 -105 -3 -102

WRB 360 305 -55 0 -55

JJR 320 375 55 55 0

DT 150 100 -50 -53 3

CC 170 120 -50 0 -50

FW 30 65 35 34 1

UH 0 27 27 27 0

PRP 60 74 14 19 -5

RBR 0 12 12 12 0

JJS 0 12 12 12 0

WDT 0 3 3 3 0

RP 0 3 3 0 3

SYM 70 69 -1 6 -7

RBS 0 0 0 0 0

PRP$ 0 0 0 0 0

PDT 0 0 0 0 0

LS 0 0 0 0 0

EX 0 0 0 0 0

Table 2.5: Change in correct dependencies by head part-of-speech across 10 runs for DMV-
Randomized and DMV-Harmonic. Left indicates child is a leftdependent of its head in
system output.
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B

V
B
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B

D

C
D

P
R

P

V
B

V
B

P

V
B

N

T
O

C
C

V
B

G

M
D

P
R

P
$

NN -6 -559 17155 43 -4331 0 2 -9 -1 1462 0 1 0 -17 -9 53 46 0 1423
ROOT 408 1478 0 6 1 -4 -23 -1238 -887 -65 0 -45 -921 -270 0 -25 -27 -838 0

VBD 3786 1560 0 1181 12 72 131 6 -94 -16 18 39 -32 -696 -199 -430 -101 -24 0

VBZ 4856 1921 -2 128 -15 2 141 -31 49 41 23 47 3 -1011 -17 -578 -131 -11 0

NNS 47 -90 3736 28 -943 3 -41 0 0 492 11 0 -1 -49 0 153 93 0 623

IN 4304 967 -86 1056 34 -4 -19 22 -1 -12 5 1 33 6 -1 0 -36 -6 0

VBP 389 87 -24 1951 14 33 171 -1 -1 0 38 -3 -19 -540 -5 -614 -129 -2 0

NNP -56 7909 657 0 -27 -219 1 0 0 -287 9 -6 6 -14 0 -422 0 0 11

VB 1105 121 -7 365 -10 -38 21 12 0 0 -10 29 -1 -379 409 -30 -19 7 0

MD 761 324 24 339 0 0 307 4 0 10 11 -690 2 0 0 -246 -5 0 0

VBN 502 -3 6 166 125 -2024 78 0 0 29 28 -7 0 4 -165 -37 -23 0 0

JJ 68 -10 5 59 -5 0 -82 0 0 33 -2 0 0 0 2 100 0 0 12

VBG 498 25 1 214 -6 -236 6 -3 0 15 -12 0 0 -38 -42 -39 -1 0 0

POS -57 -187 16 -12 0 0 0 0 0 -1 0 0 0 0 0 0 -10 0 2

TO 533 59 0 69 -7 -6 0 0 0 348 -10 -4 0 0 0 0 -1 0 0

CD -24 16 40 11 8 0 -177 0 0 1529 0 0 0 1 5 -19 0 0 0

RB -7 0 32 0 18 0 -370 0 0 -199 0 1 0 1 0 -2 2 0 0

$ 8 0 0 0 5 0 24 0 0 -258 0 0 0 0 0 1 0 0 0

NNPS 0 431 235 0 -10 0 0 0 0 0 0 0 0 0 0 -11 0 0 0

JJR 47 0 15 26 7 4 -43 0 0 -3 -2 0 0 0 0 -4 0 0 7

WP 0 0 0 0 0 0 -13 -26 -42 0 0 0 -22 0 0 4 0 -6 0

DT 0 0 0 0 0 0 0 -8 1 14 -21 0 -6 0 0 0 -1 0 0

WRB 0 0 0 0 -1 0 0 -10 -14 0 0 -6 -1 -8 0 0 0 -15 0

WDT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0

CC 1 1 0 0 0 -28 -14 0 0 0 0 -3 0 0 0 0 0 6 0

RBR 0 0 0 10 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

JJS 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

PRP 14 6 12 0 0 0 -5 0 0 0 0 0 0 0 0 -13 0 0 0

FW 1 0 32 0 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 4

SYM -3 0 0 6 0 -4 0 0 0 0 0 0 0 0 0 0 0 0 0

UH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RBS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RP 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.6: Difference in correct dependencies by child POS(columns) vs head POS(rows)(Part 1) for DMV-Randomized less
DMV-Harmonic across 10 runs. Bold: abs(difference)>1000. Italics: abs(difference)>100.
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NN -139 -87 -34 6 0 0 0 0 -55 0 12 2 -18 7 0 0 0

ROOT 0 0 4 195 0 0 0 0 0 -16 0 -10 0 0 0 2 0

VBD -6 -7 -10 170 -40 -8 3 30 0 -5 -2 0 0 0 0 7 0

VBZ -3 -5 -1 45 -15 -25 0 71 3 5 4 -8 0 0 0 22 2

NNS -69 -10 -10 7 0 0 0 0 -30 -2 6 1 0 63 0 0 0

IN -2 -1 -89 63 0 -23 2 -7 -4 11 0 4 0 1 0 0 0

VBP 0 14 -9 110 -4 -19 0 29 2 -10 0 0 0 0 0 0 0

NNP -18 0 0 -20 0 0 0 0 0 0 2 0 0 0 0 0 0

VB -3 0 4 6 -75 -17 0 0 0 -6 1 0 8 0 0 0 -32

MD 0 0 0 9 0 0 0 10 0 14 8 0 -10 0 0 0 0

VBN 0 -1 5 6 27 -4 -4 0 7 0 0 4 0 0 -1 0 -16

JJ 0 0 -9 5 0 0 18 0 -10 0 0 0 0 0 0 0 0

VBG 0 -1 -12 -4 1 -2 4 0 2 0 0 0 -9 0 0 0 0

POS 1 0 0 12 0 0 0 0 0 0 0 0 0 0 0 -2 0

TO -2 -6 -80 6 0 -4 0 0 0 0 0 0 0 0 0 0 0

CD 4 0 156 0 -4 0 0 0 0 0 0 0 0 0 0 0 0

RB 0 2 0 0 0 7 -24 0 0 0 0 0 6 4 0 0 0

$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NNPS 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

JJR -2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DT 0 0 0 0 0 1 0 0 0 0 2 0 0 -32 0 0 0

WRB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WDT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CC 0 -3 0 0 0 0 0 0 0 -6 0 0 -4 0 0 0 0

RBR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JJS 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

PRP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FW 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0

SYM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UH 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0

RBS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.7: Difference in correct dependencies by child POS(columns) vs head POS(rows)(Part 2) for DMV-Randomized less
DMV-Harmonic across 10 runs. Bold: abs(difference)>1000. Italics: abs(difference)>100.
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can also be estimated using these techniques, and will proveuseful to us for estimating the

smoothed models of Chapters 3 and 4.

We also discussed various issues involved with initialization when estimating depen-

dency grammars using Expectation Maximization and Variational Bayes. We found that

there was a great benefit in terms of accuracy to using a randomized initialization scheme

rather than the Klein and Manning (2004) harmonic initializer. One disadvantage of course

is that this randomized approach requires many times more computing power than the spe-

cialized initializer approach. However, using randomizedinitialization does hopefully in-

dicate that any improvements we find by changing the model will be attributable to changes

in the model and not to the initializer.



Chapter 3

Smoothing PCFGs

3.1 Introduction

The models we have discussed so far in Chapter 2 make use of very simple features for

unsupervised dependency grammar induction. We would like to integrate more interesting

lexical features, which much previous work has shown. This will require using smoothing

in an unsupervised setting. In this chapter we will first explore smoothing in a supervised

setting, and then look at several ways in which it can be applied to the unsupervised set-

ting. We will see that smoothing can be useful even for the unlexicalized DMV and EVG

models. We will look at the linear interpolation technique,and talk about estimation us-

ing both Expectation Maximization and Variational Bayes. Linear Interpolation will be the

basis for the exploration of techniques using several varieties of Bayesian Prior, as well

as using estimation from held-out data. We will see that Bayesian estimation using linear

interpolation will be the most effective of these techniques.

42
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3.2 Estimation from Fully Observed Events

Suppose we are interested in smoothing the discrete probability distribution over of a event

E with J possibilities conditioned on some conditioning eventsC = C1 . . . Ck. This cor-

responds to selectingE givenC = c from a categorical distribution with parameterθc.

In the supervised setting we have a series of observations of(E1,C1) . . . (En,Cn). The

maximum likelihood estimate (MLE) then assigns a value toθce:

P̂ (E = e | C = c) = θ̂c,e =
fc,e

∑

e′ fc,e′

wherefe,c =
∑n

i=1 δEi=eδCi=c is the number of timese, c was observed. One thing to note

is that if c has never been seen, or seen only rarely, then this estimate will be very poor.

This will particularly be the case when distributions condition on words.

However, perhaps by making an independence assumption about C, we can get an

estimate that is better. For example, suppose we are estimating a language model. One

option is a bigram model, in which each word is generated conditioned on the probability

of the previous word. Hence, the probability of a sequence ofwordsW1, . . . ,Wn is

P (W1, . . .Wn) = P (W1)

n
∏

i=2

P (Wi |Wi−1)

If we estimate this model from a corpus in which some wordw in the vocabulary is unob-

served, the maximum likelihood estimate will setP̂ (Wi = w|Wi−1 = w′) = 0. If however

w occurs in the test set, this will result in assigning the testset a probability estimate of

zero. To avoid this, we would like to modify the estimate to place probability mass on

unseen events at the expense of observed ones.

One option is to add some amountα to the count each possible word pair(w,w′),
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known as additive or Lidstone smoothing . This results in an estimate:

Padd(Wi = w | Wi−1 = w′) =
fw,w′ + α

∑

v,w′ fv,w′ + α

Now if w is unobserved in the test set, it will have positive probability ∝ α. Now, an

additional problem crops up when have to estimate conditional distributions. If in our test

set we observe the sequence of wordsThe cassowary ate fruitwe would need to know an

estimate of the probability ofP (wi = ate | wi−1 = cassowary). Perhapscassowaryis a

sufficiently rare word that we never saw it in the training set. If we use additive smoothing,

we would have, for example, that:

Padd(wi = ate| wi−1 = cassowary) = Padd(wi = gormandized| wi−1 = cassowary)

However, under most corporaate would be seen far more frequently thangormandized.

The only reason the two are equal in this case is because we have never seencassowary.

What we would really like is an estimate that allowsP (wi | wi−1) to share some infor-

mation across conditioning eventswi−1, while allowing the conditional distributions to still

differ. One way to do this is through linear interpolation (Jelinek, 1997).

PLI(wi | wi−1) = λ1P̂ (wi | wi−1) + λ2P̂ (wi)

whereλ1 + λ2 = 1 andP̂ indicates the maximum likelihood estimate. One important

question is the setting of the parametersλ1, λ2. Setting them via maximum likelihood

would result inλ1 = 1, λ2 = 0, resulting inPLI(wi | wi−1) = P̂ (wi | wi−1). Instead, they

are typically set via EM by maximizing the likelihood of someheldout data.

These techniques are not mutually exclusive. For instance,we could linearly interpolate

a bigram and unigram that were each additively smoothed.
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For instance, the maximum likelihood estimate forP (A = DT | d = left, H = NN)

would be:

P̂ (A = DT | d = left, H = NN) = θ̂L1,NN→YA L′
NN

=
f(t, L1,NN → YA L

′
NN)

f(t, L1,NN)

3.3 Unsupervised Smoothing for PCFGs

In our dependency grammar induction problem we will be interested in smoothing PCFG

rules. Each rule will correspond to some eventE in the model, conditioned on some con-

ditioning eventsC = C1 . . . CK in the dependency model. As is usual in a PCFG these

conditioning events are encoded in the nonterminal left-hand side of the rule, and the right-

hand side represents some event in the model. For instance, in DMV, L1,NN encodes two

variables: the head part-of-speechH = NN, and the directiond = left.

Suppose we are interested in smoothing to estimate a distribution overr ∈ RN for

some nonterminalN , which encodes some set of conditioning eventsN(1) . . . N(k). We will

suppose there is a set of nonterminalsB ⊆ N whereN ∈ B, with B called abackoff set,

such that there exists aj ∈ {1, . . . , k} such that for allN̂ ∈ B, N̂(j) = N(j). That is,B is a

set of nonterminals with some conditioning event in common with N . We will smooth the

distribution overr ∈ RN by combining a distribution conditioned onN with a distribution

conditioned only onB (called thebackoff distribution). For instance, for the nonterminal

L1,NN in DMV, which rewrites toYA L′
NN for some part-of-speechA, the backoff set might

group togetherL1,NN for all part-of-speechH. The backoff distribution would then give a

common distribution over the left arguments, regardless ofthe head parts-of-speech.

To use linear interpolation to estimate the distribution ofsome eventE conditioned

on some set of context informationC = C1 . . . CK by smoothing it with distributions

conditioned on a portion of the conditioning informationC ′ ⊂ C, we would estimate
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P (E|C) as a weighted average of two distributions:

P (E | C) = λ1P1(E|C) + λ2P2P (E|C
′)

where the distributionP2 makes an independence assumption by dropping some of the con-

ditioning information. In this section we will discuss formulating this variety of smoothing

for PCFGs using the Tied-PCFG frameword discussed in Chapter 2, as well as several

techniques for estimating theλ interpolation parameters.

In a PCFG for each nonterminalN there is an associated distribution over rules inRN .

NonterminalN encodes the information that the distribution overRN is conditioned upon.

For example, in DMV the nonterminalL1
NN encodes three separate pieces of conditioning

information: the directiond = left and the head part-of-speechH = NN . Likewise, a rule

r ∈ RN encodes an event, the probability of which is conditioned onN . For instance in

DMV L1
NN
→ YJJ L

′
NN represents the generation ofJJ as a left dependent ofNN , and so

the probability of rewritingL1
NN
→ YJJ L

′
NN will be P (A = JJ |H = NN, d = L).

Suppose in DMV we are interested in smoothingP (A | H, d) with a component that

excludes the head conditioning event. Using linear interpolation, this would be:

P (A | d,H) = λ1P1(A | d,H) + λ2P2(A | d)

We will estimate PCFG rules with linearly interpolated probabilities by creating a tied

PCFG which is extended by adding rules that select between the main distributionP1 and

the backoff distributionP2, and also rules that correspond to selecting an argument from

those distributions. In this example, we will start by replacing for eachA ∈ Vτ the rule

L1
NN → YAL

′
NN ∈ RL1

NN
with the following four rules:



47

L1,NN → L1
1,NN select distributionP1 with probabilityλ1

L1,NN → L2
1,NN select distributionP2 with probabilityλ2

L1
1,NN → YA L

′
NN generate dependentA according toP1

L2
1,NN → YA L

′
NN generate dependentA according toP2

Note that in order to have the conditioning structure we desire – namely thatP2(A|d)

is independent of the headH – the ruleL2
1,NN → YA L′

NN needs to be tied together with

other rules of the formL2
1,H → YA L

′
H , for all parts-of-speechH ∈ Vτ .

More formally, given a CFGG = (N , T , S,R), letA ⊆ N be the set of nonterminals

whose rules we want to smooth. We will define an extended CFGG′ = (N ′, T , S,R′) in

the following way. The set of terminal symbolsT and the start symbolS remain the same.

Let the set of nonterminalsN ′ = N ∪ {Ai | i ∈ {1, 2} , ∃A ∈ A}. That is, we have each

nonterminal inN , and additionally nonterminalsA1, A2 for each nonterminalA whose

distribution over rules is to be smoothed. Let the set of rulesR′ contain all the unsmoothed

rules ofRA, as well as rulesA→ Ai andAi → β whenA→ β is a smoothed rule:

R′ = {RA | A ∈ N\A}

∪
{

A→ Ai | i ∈ {1, 2} , A ∈ A
}

∪
{

Ai → β | i ∈ {1, 2} , A ∈ A, A→ β ∈ RA

}

Having definedG′, we now set about tying theA2 nonterminals. We will define a tied

PCFGH′ =
(

G′, (θ, λ) , G
′

R′

≡

)

, whereλ is the vector of probabilities over interpolation

rules (e.g.A → Ai) andθ is the vector of probabilities for all other rules. Let̄A be a

partition ofA where each partition̄Aj is composed of nonterminals whose rules we want
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to smooth together. This will require that for each partition Āj ∈ Ā, ∀A,A
′ ∈ Āj |RA| =

|RA′|. We will define setN 2 =
{{

A2 | A ∈ Āj

}

| Āj ∈ Ā
}

of sets of nonterminals to tie.

For each set of nonterminalsA2 ∈ N 2, we define the tied-PCFG equivalence relationG′

R′

≡

over the nonterminals inA2. Rules that are analogous according to the model should be

made equivalent. Let̄R′ denote the set of rule equivalence classes defined by this relation.

We must finally define parametersθr for each rule equivalence classr ∈ R̄′. These together

define a tied-PCFGH′.

For example, in EVG to smoothP (A = DT | d = left , H = NN , v = 0) with

P2(A = DT | d = left , v = 0) we define the backoff set to be{L1
H | H ∈ Vτ}. In the

extended grammar we define the tying relation to form rule equivalence classes by the

argument they generate, i.e. for each argumentA ∈ Vτ , we have a rule equivalence class
{

L1b2
H → YA HL | H ∈ Vτ

}

.

We can see that in grammarG′ eachN ∈ B eventually ends up rewriting to one ofN ’s

expansionsβ in G. There are two indirect paths, one throughN b1 and one throughN b2 .

Thus if we define a PCFG(G, φ), we would assign the probability ofN → β in G, φN→β,

as the probability of rewritingN asβ in G′ viaN b1 andN b2 . That is:

φN→β = λN→Nb1θNb1→β + λN→Nb2θNb2→β

The example in Figure 3.1 shows the probability thatL1
dog rewrites toYbig dogL in grammar

G.

3.4 Estimation from Held-out data

If we use linear interpolation smoothing we need to have somemethod of estimating the

mixing weights. In supervised models, the mixing weights are typically set to maximize
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Figure 3.1: Using linear interpolation to smoothL1
dog → Ybig dogL: The first component

represents the distribution fully conditioned on headdog, while the second component
represents the distribution ignoring the head conditioning event. This later is accomplished
by tying the ruleL1b2

dog → Ybig dogL to, for instance,L1b2
cat → Ybig catL, L1b2

fish → Ybig fishL
etc.

the likelihood of a held-out data set. The held-out set givesan idea of how often in general

events will occur that were unseen or rare in the training data. Furthermore, the weights

are typically bucketed intoc equivalence classes by some measure of the frequency of the

conditioning information. In general we would expect more infrequent conditioning events

to require more smoothing. For instance applying the methoddescribed by

Chen (1996) we would group conditioning information̄A by the per-nonzero-event

frequency of rules for that conditioning information, i.e.by:

∑

r∈R̄Ā

f(t, r)

|
{

r ∈ R̄Ā : f(t,r) > 0
}

|

This is done by dividing the range of such values into partitions, and assigning each̄A to

it’s corresponding partition. One challenge of using a similar approach in the case wheret

is a hidden variable is thatf(t, r) will not be observed, and hence the bucketing ofĀ will

not be observed.

One solution is to only use whatever observed data is available for a given distribution.

For instance, if we are conditioning on parts-of-speech, then those are fully observed, even

if the valence is not. Thus we bucket One extreme variant of this is to simply have a

single bucket. Another option is simply not use bucketing, and have a parameter for each

conditioning event. The mixing parameters can then be set tomaximize the likelihood of
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Directed Acc Undirected Acc.

Bucketing Train Dev Train Dev

No interpolation 0.546
(

+0.037
−0.064

)

0.512
(

+0.038
−0.062

)

0.675
(

+0.015
−0.025

)

0.652
(

+0.016
−0.027

)

1 Bucket 0.562
(

+0.039
−0.068

)

0.527
(

+0.038
−0.058

)

0.679
(

+0.013
−0.029

)

0.656
(

+0.014
−0.026

)

8 Buckets 0.543
(

+0.032
−0.064

)

0.506
(

+0.025
−0.062

)

0.673
(

+0.013
−0.026

)

0.649
(

+0.010
−0.027

)

Individual 0.584
(

+0.059
−0.038

)

0.549
(

+0.057
−0.038

)

0.692
(

+0.025
−0.014

)

0.671
(

+0.026
−0.015

)

Table 3.1: Results smoothed DMV using held-out estimation for Linear Interpolation using
EM. All results use randomized initialization

the held-out set using EM, as in the supervised case.

We estimate by alternating an iteration of EM to estimateθ on the training set leaving

λ fixed, and an iteration of EM to estimateλ on the held-out set, leavingθ fixed.

θ∗ = argmaxθ log p(s|θ, λ
∗)

λ∗ = argmaxλ log p(s
′|θ∗, λ)

While this clearly does not globally maximize the likelihoods of either the training

or development sets, if we commit to finishing on either side,we are guaranteed a local

maximum in that likelihood.

The results are shown in table 3.1. We can see that having a bucket for each POS

outperforms having 1 bucket for all parts of speech or dividing the set of POS into 8 buckets,

based on frequency.
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3.5 Bayesian Estimation with Linear Interpolation Smooth-

ing

An alternative to the heldout estimation is to use Bayesian priors which incorporate our

prior beliefs about what the mixture parameters are doing. When smoothing, we should

expect first of all that there should be an a prior bias towardsthe backoff distribution, since

its estimate, requiring fewer examples, will presumably bebetter. We can then perform

estimation using the Variational Bayes technique (Kurihara and Sato, 2004).

We place Dirichlet priors on both the interpolation mixing parametersλ and compo-

nent distribution parametersθ. In this approach we will use Beta priors on theλs and

uninformative symmetric Dirichlet priors onθ. This gives an overall model which is:

∀N ∈ Nλ λN |β1, β2 ∼ Beta(β1, β2)

∀N ∈ Nθ θN |αN ∼ Dir(αN )

t ∼ PCFG(G′, θ, λ)

whereNλ is the subset ofN ′ whose rules correspond to interpolation parameters, and

Nθ = N ′\Nλ. Since the priors onθ are uninformativeαN = 1 ∀N ∈ Nθ.

Since the Beta is the two-dimensional analogue to the Dirichlet, we can estimate this

using the Variational Bayes technique for tied-PCFGs with Dirichlet priors which we dis-

cussed above.

One thing to notice is we can think of linear interpolation inthe Bayesian framework

as placing a mixture of Dirichlets prior on the rule probabilities ofG.

As we will see the choice of hyperparametersβ1, β2 is important, as their setting re-

flects the prior information we wish to describe. Our initialstrategy was inspired by an
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early technique we tried called collapsed interpolation, which we discuss in Appendix D.

This it turned out performed similarly to linear interpolation. Collapsed interpolation in-

corporates the prior knowledge that conditioning events that have been seen fewer times

should be more strongly smoothed, and that the model will only start to ignore the backoff

distribution after having seen a sufficiently large number of training examples. In collapsed

interpolation, for each nonterminalN we wish to smooth, we add a new ruleN → N b

which represents choosing to back off. Thus the smoothed probability of a ruleN → β

becomes:P (N → β) = P1(N → β) + P1(N → N b)P2(N
b → β).

In those experiments we set the hyperparameter correspondingN → N b to 2 times the

number of other rules inN . We can interpret the linear interpolation setting as factoring

P1(N → β) into two decisions: one of which decides not to use the backoff distribution,

and the other of which decides which rule to use, given the decision not to use the backoff

distribution.

Suppose we take the Dirichlet distribution overθr associated withN , and examine the

marginal probability ofN → N b. We would have thatθN→Nb ∼ Beta(2K,K).

We can accomplish a similar hyperparameter setting in the linear interpolation case by

setting the Dirichlet hyperparameters for eachN → N b1 , N → N b2 decision to(K, 2K)

respectively, whereK = |RNb1 | is the number of rewrite rules forN in G. 1

Results using this technique for DMV and EVG are given in Table 3.2.

One advantage to the Linear Interpolation approach, of course, is we have a bit more

flexibility about setting the hyperparameters. Table 3.3 shows the results of leaving the 2:1

ratio constant between backing off and not, while varying its strength. We can see for both

DMV and EVG, having reasonably strong preference is important.

One concern is whether for a strong prior, the model can really be said to be learning

1We set the other Dirichlet hyperparameters to 1.
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Directed Acc Undirected Acc.

Model Smoothing Train Dev Train Dev

DMV None 0.583
(

+0.064
−0.034

)

0.549
(

+0.065
−0.031

)

0.689
(

+0.025
−0.014

)

0.668
(

+0.027
−0.013

)

Lin. Interp. 0.625
(

+0.018
−0.015

)

0.593
(

+0.018
−0.014

)

0.706
(

+0.009
−0.006

)

0.683
(

+0.009
−0.007

)

EVG None 0.526
(

+0.017
−0.080

)

0.500
(

+0.013
−0.080

)

0.679
(

+0.008
−0.028

)

0.657
(

+0.006
−0.032

)

Lin. Interp.-Fixedq(λ) 0.617
(

+0.137
−0.061

)

0.590
(

+0.124
−0.057

)

0.716
(

+0.064
−0.028

)

0.696
(

+0.055
−0.026

)

Lin. Interp. 0.658
(

+0.038
−0.021

)

0.629
(

+0.036
−0.018

)

0.734
(

+0.018
−0.009

)

0.712
(

+0.018
−0.007

)

Table 3.2: Results for DMV, EVG smoothed with Linear Interpolation trained using Varia-
tional Bayes.

the estimates. To explore this, we ran an experiment where wedo not learn the mixing pa-

rameters. Eachq(λN) is fixed to its prior, and we reestimateq(t) andq(θ) using Variational

Bayes. The result is shown in Table 3.3. As can be seen, there is a clear benefit to learning

theq(λ)s, improving the development set directed accuracy from 0.590 to 0.629.

3.5.1 Priors Preferring Backoff distribution

Another option is to use a beta prior on the mixing parameterswhich encodes the intuition

that we should prefer the backoff distribution to the more fully conditioned distribution.

The way we do this is to use a beta prior onλ1, λ2 with hyperparametersβ, 1, for

0 < β < 1. A visualization of this prior is given in Figure 3.2. Note that a smallerβ results

in a Beta more concentrated around the distribution that puts all its mass on selecting to

backoff. By setting the second hyperparameter to 1, and noting thatΓ(β+1) = βΓ(β) and

Γ(1) = 1, the density function reduces to:



54

Directed Acc Undirected Acc.

Model β1 β2 Train Dev Train Dev

DMV 5 10 0.585
(

+0.052
−0.036

)

0.551
(

+0.051
−0.032

)

0.690
(

+0.021
−0.014

)

0.668
(

+0.023
−0.012

)

10 20 0.574
(

+0.015
−0.057

)

0.540
(

+0.013
−0.057

)

0.684
(

+0.006
−0.023

)

0.661
(

+0.006
−0.023

)

20 40 0.634
(

+0.045
−0.006

)

0.603
(

+0.045
−0.003

)

0.709
(

+0.019
−0.004

)

0.687
(

+0.020
−0.003

)

35 70 0.625
(

+0.018
−0.015

)

0.593
(

+0.018
−0.014

)

0.706
(

+0.009
−0.006

)

0.683
(

+0.009
−0.007

)

60 120 0.622
(

+0.026
−0.008

)

0.592
(

+0.025
−0.007

)

0.703
(

+0.012
−0.004

)

0.683
(

+0.012
−0.003

)

EVG 5 10 0.555
(

+0.053
−0.053

)

0.530
(

+0.048
−0.052

)

0.693
(

+0.021
−0.020

)

0.671
(

+0.020
−0.021

)

10 20 0.657
(

+0.072
−0.023

)

0.624
(

+0.066
−0.022

)

0.731
(

+0.028
−0.011

)

0.708
(

+0.028
−0.010

)

20 40 0.632
(

+0.031
−0.051

)

0.608
(

+0.033
−0.042

)

0.723
(

+0.013
−0.021

)

0.703
(

+0.015
−0.017

)

35 70 0.658
(

+0.038
−0.021

)

0.629
(

+0.036
−0.018

)

0.734
(

+0.018
−0.009

)

0.712
(

+0.018
−0.007

)

60 120 0.657
(

+0.023
−0.024

)

0.623
(

+0.018
−0.020

)

0.732
(

+0.010
−0.012

)

0.708
(

+0.008
−0.009

)

Table 3.3: DMV and EVG smoothed using Linear Interpolation,varying strength of inter-
polation hyperparametersβ1, β2
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Directed Acc Undirected Acc.

Model β1 β2 Train Dev Train Dev

DMV 35 100 0.605
(

+0.006
−0.021

)

0.576
(

+0.006
−0.020

)

0.693
(

+0.002
−0.012

)

0.671
(

+0.002
−0.013

)

35 70 0.625
(

+0.018
−0.015

)

0.593
(

+0.018
−0.014

)

0.706
(

+0.009
−0.006

)

0.683
(

+0.009
−0.007

)

35 35 0.633
(

+0.049
−0.007

)

0.595
(

+0.046
−0.008

)

0.708
(

+0.020
−0.004

)

0.684
(

+0.020
−0.004

)

70 35 0.642
(

+0.048
−0.003

)

0.599
(

+0.045
−0.005

)

0.712
(

+0.019
−0.002

)

0.687
(

+0.019
−0.004

)

100 35 0.623
(

+0.062
−0.011

)

0.581
(

+0.056
−0.011

)

0.703
(

+0.024
−0.006

)

0.678
(

+0.022
−0.006

)

EVG 35 100 0.686
(

+0.030
−0.014

)

0.652
(

+0.024
−0.013

)

0.748
(

+0.015
−0.006

)

0.722
(

+0.011
−0.005

)

35 70 0.658
(

+0.038
−0.021

)

0.629
(

+0.036
−0.018

)

0.734
(

+0.018
−0.009

)

0.712
(

+0.018
−0.007

)

35 35 0.658
(

+0.059
−0.014

)

0.623
(

+0.053
−0.014

)

0.728
(

+0.022
−0.009

)

0.705
(

+0.022
−0.008

)

70 35 0.611
(

+0.057
−0.053

)

0.572
(

+0.050
−0.054

)

0.705
(

+0.024
−0.026

)

0.679
(

+0.022
−0.027

)

100 35 0.607
(

+0.057
−0.044

)

0.568
(

+0.053
−0.043

)

0.703
(

+0.024
−0.019

)

0.677
(

+0.024
−0.021

)

Table 3.4: DMV and EVG smoothed using Linear Interpolation,varying relative strengths
of β1, β2
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Figure 3.2: Plot ofp(λ1|β) vs.λ1 for variousβ hyperparameters.

P (λ1|β, 1) =
Γ(β + 1)

Γ(β)Γ(1)
λβ−1
1 (1− λ1)

0

= βλβ−1
1

One important question is how to setβ. A smallerβ implies a stronger bias towards the

backoff distribution.

Table 3.5 shows the result of varyingβ with a prefer-backoff prior for the smoothed

DMV model. As we can see the resulting model varies widely with the choice ofβ. For

β = .1 the result is encouraging, with directed accuracy almost ashigh as with the previous
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DMV-Smoothed Directed Accuracy Undirected Accuracy

β Train Dev. Train Dev.

.1 0.612
(

+0.061
−0.022

)

0.582
(

+0.060
−0.019

)

0.701
(

+0.024
−0.008

)

0.679
(

+0.025
−0.008

)

.2 0.592
(

+0.083
−0.014

)

0.565
(

+0.081
−0.016

)

0.694
(

+0.046
−0.002

)

0.674
(

+0.046
−0.004

)

.3 0.582
(

+0.091
−0.018

)

0.553
(

+0.085
−0.019

)

0.687
(

+0.044
−0.006

)

0.669
(

+0.044
−0.008

)

.4 0.573
(

+0.076
−0.023

)

0.544
(

+0.073
−0.021

)

0.686
(

+0.031
−0.008

)

0.667
(

+0.031
−0.007

)

.5 0.530
(

+0.033
−0.061

)

0.498
(

+0.031
−0.059

)

0.660
(

+0.010
−0.031

)

0.636
(

+0.009
−0.032

)

.6 0.522
(

+0.006
−0.093

)

0.493
(

+0.007
−0.088

)

0.667
(

+0.002
−0.037

)

0.645
(

+0.003
−0.037

)

.7 0.572
(

+0.049
−0.040

)

0.541
(

+0.048
−0.040

)

0.687
(

+0.020
−0.016

)

0.664
(

+0.020
−0.017

)

.8 0.565
(

+0.065
−0.059

)

0.538
(

+0.060
−0.058

)

0.684
(

+0.028
−0.022

)

0.665
(

+0.027
−0.024

)

.9 0.526
(

+0.031
−0.065

)

0.494
(

+0.028
−0.065

)

0.669
(

+0.013
−0.024

)

0.647
(

+0.013
−0.025

)

Table 3.5: Smoothed DMV with prefer-backoff prior 1 onλs

prior.

Another Prior preferring the Backoff Distribution:

We can make a similarly shaped prior favoring the backoff distribution by replacing the

Beta(β, 1) of the model in the previous section with aBeta(1, β) distribution, forβ > 1

(shown in Figure 3.3). That is, the hyperparameter associated with the backoff distribution

here isβ, and the hyperparameter associated with the fully conditioned distribution is 1,

the reverse of the case in the previous model. However, sinceβ > 1 it has a similar effect

on shape of the prior. Note that while both versions of the prior place most of the mass

on smallerλ’s, prior 2 places more on smallλs such asλ < 0.2; in contrast prior 1 places

most of the mass right nearλ = 0, but does not strongly preferλ = 0.1 to λ = 0.2. The

results of estimating this model with Variational Bayes areshown in Table 3.6, for various

β.
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Figure 3.3: Beta Prior favoring Backoff distribution, version 2

Directed Accuracy Undirected Accuracy

β Train Dev. Train Dev.

DMV-Smoothed 30 0.629
(

+0.046
−0.006

)

0.594
(

+0.044
−0.004

)

0.706
(

+0.022
−0.003

)

0.682
(

+0.022
−0.001

)

DMV-Smoothed 20 0.608
(

+0.059
−0.010

)

0.573
(

+0.054
−0.016

)

0.698
(

+0.023
−0.004

)

0.674
(

+0.021
−0.007

)

DMV-Smoothed 10 0.558
(

+0.071
−0.032

)

0.524
(

+0.065
−0.034

)

0.678
(

+0.028
−0.012

)

0.654
(

+0.025
−0.015

)

EVG-Smoothed 30 0.623
(

+0.058
−0.041

)

0.595
(

+0.052
−0.040

)

0.720
(

+0.025
−0.017

)

0.699
(

+0.023
−0.019

)

EVG-Smoothed 20 0.630
(

+0.049
−0.036

)

0.597
(

+0.044
−0.032

)

0.720
(

+0.023
−0.017

)

0.696
(

+0.021
−0.013

)

EVG-Smoothed 10 0.621
(

+0.056
−0.052

)

0.593
(

+0.054
−0.048

)

0.718
(

+0.024
−0.022

)

0.697
(

+0.024
−0.020

)

Table 3.6: Smoothed DMV and EVG with prefer-backoff prior 2 on λs
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3.6 Analysis

In order to see where the DMV improves with linear interpolation, we examine the differ-

ence in correct dependencies over 10 runs for DMV with linearinterpolation less DMV

without. These are presented for Sections 2-21 broken down in various ways in Table 3.7

(by child part-of-speech and direction), Table 3.8 (by headpart-of-speech and direction),

and Tables 3.9 and 3.10 (by head/child part-of-speech pair).

Looking at Table 3.7 we can see that the major improvements come from DTs that are

left dependents, RBs that are right dependents, and noun dependents in both directions.

This comes at the expense of many fewer correct VB and VBN right dependents and JJ left

dependents. From Table 3.8 we can see improvements in the left dependents of NN, NNP,

VBZ and VBD, as well as right dependents of IN; left dependents of JJs fair much worse.

Breaking this down further, from Table 3.9 of the 5301 net newcorrect dependencies

with a DT as the child, these almost exclusively come from NN,and NNS, with a handful of

NNP. Of net new correct dependencies with RB as the child, themost prominent are VBZ,

VBD, VBP, and MD; these are offset by a large number of net incorrect RB dependencies

whose head is JJ. Also to be noted are 2274 net correct NNP→NNP dependencies. A large

net decrease in correct dependencies are MD→VB.

DMV vs. EVG

We analyze the difference between DMV with linear interpolation and EVG with linear

interpolation by again looking at the difference in correctedges in the training set. These

are presented for Sections 2-21 in Table 3.11 (by child part-of-speech and direction), Table

3.12 (by head part-of-speech and direction), and Tables 3.13 and 3.14 (by head/child part-

of-speech pair).

Most of the major improvements to adding valence in the argument distribution accrue
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Child Correct Correct Difference Difference Difference

POS DMV DMV LI (DMV LI-DMV) Left Right

DT 24405 29706 5301 5388 -87

RB 6667 11472 4805 -1541 6346
NNP 24856 28693 3837 3077 760

VB 7104 4881 -2223 -16 -2207
JJ 15385 13205 -2180 -1231 -949

VBN 5960 4283 -1677 -64 -1613
NN 39688 41326 1638 867 771

NNS 21306 22409 1103 713 390

CD 9712 8984 -728 -619 -109

IN 10821 10094 -727 -141 -586

VBG 4207 3661 -546 -23 -523

RP 630 1011 381 0 381

CC 964 1299 335 318 17

VBZ 14758 15065 307 -51 358

POS 1611 1879 268 261 7

PRP$ 2095 2362 267 267 0

VBP 8051 8250 199 29 170

JJR 908 738 -170 -59 -111

TO 2598 2732 134 -1 135

PRP 14946 14858 -88 -210 122

NNPS 1139 1055 -84 -63 -21

WP 576 493 -83 -68 -15

JJS 265 225 -40 -51 11

$ 635 600 -35 146 -181

PDT 84 51 -33 -28 -5

WRB 465 434 -31 -18 -13

EX 843 821 -22 -24 2

MD 3941 3955 14 3 11

WDT 163 150 -13 10 -23

VBD 15440 15451 11 14 -3

RBS 109 98 -11 -17 6

UH 170 160 -10 -24 14

LS 24 18 -6 -6 0

RBR 519 521 2 18 -16

FW 89 91 2 4 -2

SYM 145 146 1 -9 10

Table 3.7: Change in correct dependencies by child part-of-speech across 10 runs for DMV
with and without Linear interpolation smoothing. Left indicates child is a left dependent of
its head in system output.
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Head Correct Correct Difference Difference Difference

POS DMV DMV LI (DMV LI-DMV) Left Right

NN 33387 36428 3041 3309 -268

NNP 10056 12312 2256 2482 -226

VBZ 26550 27980 1430 1285 145

JJ 2414 986 -1428 -1425 -3

IN 21358 22557 1199 -63 1262
VBD 27195 28353 1158 1139 19

ROOT 45985 46937 952 0 952

VBP 17108 17930 822 656 166

NNS 20158 20962 804 533 271

RB 621 1401 780 -6 786

VBN 4072 3408 -664 -420 -244

MD 9592 10011 419 309 110

TO 2855 2557 -298 5 -303

JJR 375 94 -281 -282 1

POS 2312 2557 245 245 0

CD 2076 1840 -236 -373 137

VBG 3431 3273 -158 -160 2

WP 125 76 -49 -12 -37

NNPS 758 715 -43 -43 0

WRB 305 269 -36 0 -36

$ 990 958 -32 12 -44

VB 9071 9044 -27 -302 275

CC 120 145 25 0 25

SYM 69 88 19 -4 23

JJS 12 0 -12 -12 0

PRP 74 82 8 6 2

RP 3 10 7 0 7

FW 65 58 -7 -6 -1

DT 100 107 7 -10 17

UH 27 22 -5 -9 4

WDT 3 7 4 2 2

RBR 12 10 -2 -5 3

RBS 0 0 0 0 0

PRP$ 0 0 0 0 0

PDT 0 0 0 0 0

LS 0 0 0 0 0

EX 0 0 0 0 0

Table 3.8: Change in correct dependencies by head part-of-speech across 10 runs for DMV
with and without Linear Interpolation smoothing. Left indicates child is a left dependent
of its head in system output.
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NN -156 -101 4306 -179 -950 0 -173 -1 -19 44 0 5 0 -37 -50 130 -50 0 199

ROOT -7 363 0 -11 -1 -63 83 312 28 175 0 -88 181 -54 7 -10 -3 22 0

VBD 398 386 3 280 -242 -325 1468 -59 30 8 -13 -308 56 -640 173 8 -85 1 0

VBZ 258 423 -61 79 -497 -140 2161 6 25 28 -5 -244 3 -465 25 49 -149 5 0

NNS -164 -91 980 -31 -48 241 54 0 0 -210 -3 0 0 -62 3 126 -21 0 56

IN 703 304 -48 299 4 -11 10 32 -1 42 1 -1 2 -5 0 2 -20 -10 0

VBP 35 40 -19 818 -317 -215 1427 7 -11 -4 24 -484 -4 -235 1 -43 -204 8 0

NNP 32 2274 169 0 -2 -57 -3 0 0 -147 0 3 1 4 0 4 0 0 4

VB 145 9 -14 44 -5 -89 -15 19 4 0 -49 -76 -5 -99 -3 2 -4 3 0

MD 102 80 -1 98 0 6 1108 11 0 2 56 -1040 -2 0 0 17 -10 0 0

VBN -41 -1 -14 -76 -80 -183 -153 0 0 -6 -46 -1 0 -79 -15 1 -1 -1 0

JJ 42 -1 5 -69 -30 0 -1396 0 0 -20 -25 0 0 0 0 43 3 0 15

VBG 3 -8 -1 -36 -24 -21 -62 3 0 -5 5 6 0 -15 -20 2 -11 0 0

POS 83 193 -45 12 0 0 3 0 0 1 0 0 0 0 0 0 0 0 -2

TO 18 17 0 -146 -3 5 4 0 0 -132 -10 0 0 0 0 0 0 0 0

CD -28 13 -9 26 -10 4 116 0 0 -506 0 0 0 -1 0 3 0 0 0

RB 140 0 48 19 52 88 384 0 0 54 0 7 0 9 12 -2 8 0 0

$ 28 0 0 0 -5 0 -11 0 0 -43 0 0 0 0 0 -1 0 0 0

NNPS 0 -62 25 0 -20 0 4 0 0 0 0 0 0 0 0 10 0 0 0

JJR 5 0 -14 -26 -7 -4 -206 0 0 -12 -7 0 0 0 0 -8 0 0 1

WP 0 0 0 0 0 7 -9 -3 -19 0 0 0 -19 0 0 -3 0 -3 0

DT 0 0 0 0 0 23 -14 -2 -1 3 -16 0 -4 0 0 0 1 0 0

WRB 26 0 0 0 1 0 4 -18 -25 0 0 -4 -10 0 0 0 0 -10 0

WDT 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0

CC -6 1 0 0 0 0 23 0 0 0 0 2 0 0 0 0 0 -1 0

RBR 7 0 0 -10 1 1 -2 0 0 0 0 0 0 0 1 0 0 0 0

JJS 0 0 -8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3

PRP 6 -6 3 0 0 2 0 0 0 0 0 0 0 0 0 3 0 0 0

FW -1 0 -4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 -3

SYM 3 0 0 12 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

UH 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RBS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RP 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.9: Difference in correct dependencies by child POS(columns) vs head POS(rows)(Part 1) for DMV with Linear Interpo-
lation less DMV across 10 runs. Bold: abs(difference)>1000. Italics: abs(difference)>100.
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NN 179 -39 -16 -4 -3 0 4 0 -25 0 -12 -2 -2 -7 0 0 0

ROOT 0 0 12 -24 0 0 0 0 0 16 0 10 6 0 0 -2 0

VBD 3 -48 -12 -2 72 -2 10 -7 0 -9 2 0 9 0 0 3 0

VBZ 4 -13 -7 -7 43 -75 2 -17 -3 -4 6 -1 0 0 0 -1 2

NNS 66 -29 0 -1 0 0 0 0 -21 1 -6 4 0 -40 0 0 0

IN 2 10 -101 5 0 -15 8 2 16 -26 0 -4 0 -1 0 0 0

VBP 0 -7 -9 14 22 -14 0 5 -2 -11 0 0 0 0 0 0 0

NNP 18 0 0 -54 0 12 0 0 0 0 -2 0 0 0 0 0 0

VB -4 -42 -4 -4 150 9 0 0 0 7 -1 0 -7 0 6 0 -4

MD 0 0 0 1 0 0 0 -5 0 -6 2 0 0 0 0 0 0

VBN 0 1 -1 -5 53 4 -4 0 -5 0 0 -4 0 0 -3 0 -4

JJ 0 0 -1 -1 0 0 21 0 0 0 0 0 0 0 -14 0 0

VBG 0 1 -12 1 41 -6 -1 0 0 0 0 0 2 0 0 0 0

POS -1 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 2 0

TO 1 -11 -40 -2 0 3 0 0 0 0 0 0 -2 0 0 0 0

CD -4 0 156 0 3 1 0 0 0 0 0 0 0 0 0 0 0

RB 4 8 0 0 0 -3 -38 0 0 0 0 0 -6 -4 0 0 0

$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NNPS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JJR 0 -3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DT 0 0 0 0 0 -1 0 0 0 0 -2 0 0 20 0 0 0

WRB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WDT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CC 0 2 0 0 0 4 0 0 0 1 0 0 -1 0 0 0 0

RBR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JJS 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0

PRP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FW 0 0 0 0 0 0 0 0 0 0 0 -2 0 0 0 0 0

SYM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UH 0 0 0 0 0 0 0 0 0 0 0 0 -9 0 0 0 0

RBS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.10: Difference in correct dependencies by child POS(columns) vs head POS(rows)(Part 2) for DMV with Linear Inter-
polation less DMV across 10 runs. Bold: abs(difference)>1000. Italics: abs(difference)>100.
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Child Correct Correct Difference Difference Difference

POS DMV EVG (EVG-DMV) Left Right

NNP 28693 22584 -6109 -5139 -970

IN 10094 15976 5882 1242 4640
DT 29706 26320 -3386 -3542 156

CC 1299 4200 2901 2756 145

NN 41326 44127 2801 687 2114
VBN 4283 6766 2483 28 2455
JJ 13205 15139 1934 983 951

VBZ 15065 16465 1400 309 1091
VBP 8250 9649 1399 427 972

MD 3955 5017 1062 96 966

NNS 22409 23361 952 13 939

RB 11472 12419 947 1220 -273

VBD 15451 16365 914 48 866

VB 4881 5683 802 76 726

NNPS 1055 534 -521 -326 -195

CD 8984 9435 451 134 317

VBG 3661 4022 361 58 303

POS 1879 1532 -347 -338 -9

PRP 14858 15139 281 -118 399

JJR 738 889 151 -43 194

JJS 225 368 143 91 52

WP 493 620 127 47 80

TO 2732 2824 92 -419 511

RP 1011 1102 91 0 91

WRB 434 509 75 35 40

PRP$ 2362 2290 -72 -72 0

UH 160 225 65 58 7

$ 600 556 -44 56 -100

EX 821 855 34 24 10

LS 18 51 33 33 0

RBR 521 547 26 -146 172

RBS 98 79 -19 -37 18

WDT 150 139 -11 -1 -10

SYM 146 151 5 5 0

FW 91 87 -4 -5 1

PDT 51 54 3 2 1

Table 3.11: Change in correct dependencies by child part-of-speech across 10 runs for EVG
and DMV with linear interpolation smoothing. Left indicates child is a left dependent of
its head in system output.
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Head Correct Correct Difference Difference Difference

POS DMV EVG (EVG-DMV) Left Right

VBD 28353 33569 5216 1989 3227
VBZ 27980 33131 5151 2147 3004
ROOT 46937 50173 3236 0 3236
NNP 12312 9131 -3181 -3636 455

VBP 17930 20776 2846 1531 1315
VBN 3408 5107 1699 -10 1709
IN 22557 21329 -1228 -325 -903

MD 10011 11075 1064 760 304

$ 958 404 -554 -11 -543

POS 2557 2028 -529 -529 0

NNPS 715 210 -505 -505 0

CD 1840 2321 481 386 95

TO 2557 2993 436 -19 455

NNS 20962 21288 326 -594 920

VB 9044 9336 292 -376 668

VBG 3273 3545 272 14 258

NN 36428 36212 -216 -2142 1926
WP 76 174 98 -5 103

JJR 94 37 -57 -69 12

JJS 0 53 53 10 43

JJ 986 938 -48 -226 178

RBR 10 54 44 -3 47

WRB 269 303 34 0 34

RB 1401 1369 -32 -94 62

PRP 82 62 -20 -21 1

UH 22 38 16 9 7

CC 145 131 -14 0 -14

RBS 0 11 11 2 9

SYM 88 92 4 0 4

DT 107 111 4 -35 39

FW 58 60 2 -1 3

WDT 7 8 1 -5 6

RP 10 10 0 0 0

PRP$ 0 0 0 0 0

PDT 0 0 0 0 0

LS 0 0 0 0 0

EX 0 0 0 0 0

Table 3.12: Change in correct dependencies by head part-of-speech across 10 runs for EVG
and DMV with linear interpolation smoothing. Left indicates child is a left dependent of
its head in system output.
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NN 139 -7 -2555 -31 915 1609 47 0 9 -125 -1 -4 0 85 64 -104 8 0 -43

ROOT 65 -554 0 100 9 3 29 1046 740 1 0 73 842 114 -3 3 17 853 0

VBD 871 -483 33 457 311 953 475 163 104 287 51 -49 147 582 196 775 107 74 0

VBZ 1538 -675 39 262 346 524 373 173 6 36 39 -6 259 804 33 993 136 48 0

NNS 64 -18 -577 74 94 727 -33 0 0 -4 2 0 1 97 43 -113 -27 0 -6

IN -545 -408 0 -273 43 28 -47 1 17 74 -10 0 29 8 1 -2 -16 34 0

VBP 243 -36 71 -30 142 517 356 24 9 12 62 -4 58 345 5 906 87 9 0

NNP -19 -3144 -310 2 -39 271 -11 0 0 97 -2 -1 -1 14 0 51 0 0 -9

VB 331 22 45 142 78 -507 8 8 6 0 153 -32 12 333 -427 45 17 -1 0

MD 105 -106 2 53 2 152 -332 -9 0 1 -82 832 2 0 0 403 12 2 0

VBN 6 -7 8 24 10 1384 -7 0 0 5 47 -1 0 53 130 35 6 11 0

JJ -45 1 36 1 28 108 75 0 0 -4 -1 0 0 0 3 -88 8 0 -10

VBG 103 2 2 68 8 -46 8 0 0 8 17 -6 1 35 27 26 7 0 0

POS -106 -365 4 -34 0 0 -3 0 0 -7 0 0 0 0 0 0 0 0 0

TO 125 -12 0 149 12 1 -4 0 0 206 18 4 0 0 0 0 1 0 0

CD 7 -7 12 -16 -2 38 48 0 0 356 0 0 0 1 -3 -10 0 0 0

RB -34 0 -35 -1 -2 -38 -16 0 0 69 0 -2 0 -1 13 -4 -1 0 0

$ 0 0 0 0 0 3 -11 0 0 -546 0 0 0 0 0 0 0 0 0

NNPS 0 -306 -168 0 -29 0 -4 0 0 0 0 0 0 0 0 4 0 0 0

JJR -42 0 0 0 0 8 4 0 0 -12 -1 0 0 0 0 -3 0 0 -8

WP 0 0 0 0 0 34 0 -11 10 0 0 0 44 0 0 -1 0 22 0

DT 0 0 0 0 0 42 -6 0 0 -3 -11 0 1 0 0 0 -1 0 0

WRB -7 0 0 0 0 0 -4 5 13 0 0 1 4 7 0 0 0 15 0

WDT 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 -5 0 0 0

CC 0 -2 0 0 0 -13 7 0 0 0 0 -3 0 0 0 0 0 -5 0

RBR -6 0 2 1 8 29 0 0 0 0 0 0 0 0 10 0 0 0 0

JJS 0 0 9 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 1

PRP 2 -4 -9 0 0 6 -5 0 0 0 0 0 0 0 0 -10 0 0 0

FW 0 0 3 0 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 3

SYM 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UH 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RBS 0 0 2 0 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0

RP -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.13: Difference in correct dependencies by child POS(columns) vs head POS(rows)(Part 1) for EVG less DMV (with
linear interpolation) across 10 runs. Bold: abs(difference)>1000. Italics: abs(difference)>100.



6
7

P
O

S

JJ
R

$ N
N

P
S

R
P

W
P

R
B

R

E
X

JJ
S

W
R

B

W
D

T

S
Y

M

U
H

P
D

T

R
B

S

F
W

LS

NN -234 11 1 -9 -6 0 -3 0 12 0 1 0 0 4 0 1 0

ROOT 0 0 -1 -129 0 19 0 0 0 0 0 0 9 0 0 0 0

VBD -1 95 -4 -134 55 5 106 1 12 17 0 0 10 0 3 -3 0

VBZ -8 57 -1 -32 34 59 32 25 11 36 -1 1 0 0 9 0 1

NNS -76 4 1 -5 0 0 0 0 64 -9 0 4 0 16 3 0 0

IN -4 -56 -34 -55 0 -5 -41 5 23 14 -10 0 0 1 0 0 0

VBP 0 10 -3 -78 16 21 27 0 18 8 0 0 20 0 1 0 30

NNP -18 0 0 -62 0 0 0 0 0 0 0 0 0 0 0 0 0

VB 1 25 1 1 -8 21 8 0 0 -1 0 0 6 0 5 0 0

MD 0 0 0 -3 0 0 0 3 0 8 -1 0 20 0 0 0 0

VBN 0 7 -1 0 0 -2 -7 0 1 0 0 0 0 0 -5 0 2

JJ 0 0 0 -3 0 0 -125 0 3 0 0 0 0 0 -35 0 0

VBG 0 0 -4 3 -1 9 1 0 6 0 0 0 -2 0 0 0 0

POS 0 0 0 -16 0 0 0 0 0 0 0 0 0 0 0 -2 0

TO -1 -3 -53 -4 0 1 0 0 0 0 0 0 -4 0 0 0 0

CD 2 0 54 0 1 0 0 0 0 0 0 0 0 0 0 0 0

RB -4 0 0 0 0 -4 28 0 0 0 0 0 0 0 0 0 0

$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NNPS 0 0 0 5 0 0 0 0 -7 0 0 0 0 0 0 0 0

JJR -4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DT 0 0 0 0 0 0 0 0 0 0 0 0 0 -18 0 0 0

WRB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WDT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CC 0 0 0 0 0 3 0 0 0 2 0 0 -3 0 0 0 0

RBR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JJS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PRP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SYM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UH 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0

RBS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.14: Difference in correct dependencies by child POS(columns) vs head POS(rows)(Part 2) for EVG less DMV (with
linear interpolation) across 10 runs. Bold: abs(difference)>1000. Italics: abs(difference)>100.



68

to dependencies headed by verbs, as well as ROOT (Table 3.12). Breaking the results

down by child part-of-speech, major improvements acrue to IN, CC, NN, JJ, VBN, VBZ,

and VBP dependents(Table 3.11). In Table 3.13 we see that ROOT improvements mostly

come from identifying verbs as the root. Net newly correct dependencies headed by verbs

come from across all child categories other than NNP (see below), notably NN, IN, and

CC.

The major thing that EVG does worse than DMV are for NNPs as thechild , as well

as NN→ DT dependencies, of which EVG with linear interpolation nets 2555 fewer than

DMV with linear interpolation. (Table 3.13). Of the 6109 netfewer net correct dependen-

cies with NNP as the child, 3144 are NNP headed, with most of the remainder distributed

among VBZ, ROOT, VBD, IN, POS, and NNPS heads. It is notable that NNP dependents

and NN→DT dependencies where a point of major improvement in going from DMV to

DMV with linear interpolation, so these results can be thought of as partially offsetting

each other when looking at the whole change from DMV to EVG.

We also plotted development set directed and undirected accuracy vs. variational lower

bound for DMV and EVG each with linear interpolation. These are given in Figures 3.4a,

3.4b, 3.5a, and 3.5b, respectively. Each point represents 20 random restarts of its respective

model, of which the one with the highest lower bound value is trained until convergence

on WSJ10. Compared to Figure 2.7 for each of these models there is a clearer group of

points in the upper right of the graphs, which corresponds tohigh accuracy and a relatively

high value for the variational lower bound. One can also see that the upper-right group

of points for EVG with linear interpolation has higher accuracy than those for DMV with

linear interpolation.

Additionally, we tried initializing each model from the gold standard dependency trees,

and training the models until convergence. Mixing parameter variational posteriors are

initialized to their priors. The results are marked with an Xin Figures 3.4a, 3.4b, 3.5a, and
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3.5b In both cases the run initialized from the gold standardresults in a high accuracy by

both measures, and a low value of the variational upper bound.

Also in both cases, the accuracy decreased from a high initial value (DMV: 0.778,

EVG: 0.781) to a relatively lower converged value (DMV: 0.678, EVG: 0.714), indicating

model errors. This is unsurprising, since we know our unsupervised models to be very

unsophisticated relative to those used in supervised parsing.

3.7 Conclusions

In this chapter we examined several different smoothing schemes for PCFGs, and evaluated

these schemes on the DMV and EVG. Overall we saw that the Variational Bayes approaches

tended to perform better than setting the hyperparameters via maximum likelihood on a

held-out set. The linear interpolation approach in which prior weight is placed on both

parameters outperform the linear interpolation techniques in which the prior simply puts

weight on the backoff distribution. We saw that having a reasonably strong prior was useful,

but also that estimating the mixture weights contributes a great deal to good performance,

so we are not simply setting the mixture weights by having a strong prior.
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Figure 3.4: Directed Accuracy vs Lower Bound, 300 runs of DMV/EVG with linear inter-
polation. Run initialized from gold standard dependenciesmarked with x.
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Figure 3.5: Undirected Accuracy vs Lower Bound, 300 runs of DMV/EVG with linear
interpolation. Run initialized from gold stanuard dependencies marked with x.



Chapter 4

Lexicalization

4.1 Introduction

In the previous chapter we saw that smoothing can improve thelearning performance of

DMV and EVG. These models, as we have seen, treat the parts-of-speech as observed

when inducing the dependency structure and model parameters. We have, however, an

additional source of observed information that these models are not leveraging: the words

themselves. Lexical features are a key element of state-of-the-art supervised dependency

and constituency parsers (e.g. (Charniak, 2000; Collins, 1999; Eisner, 1996; McDonald et

al., 2005). . . ), and since that lexical information is available it seems reasonable to try to

make use of it.

The reason lexical features are potentially useful is because the current units of gener-

alization DMV and EVG use, the parts-of-speech, are too coarse to capture many of the

phenomena we see in syntax. For instance, we might be interested in capturing the fact that

transitive, intransitive and ditransitive verbs should have different numbers of arguments.

Similarly, we might presume different nouns or verbs might be more or less likely to be

modified, or have particular modifiers or arguments.

72
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In this chapter we will explore a series of different ways of incorporating lexical fea-

tures into the basic EVG model. These will examine both the extant distribution classes in

EVG, namely the stopping and argument part-of-speech distributions, as well as the new

distribution over argument word.

4.2 Lexicalized Grammar Framework

The basic approach in this chapter will be to extend the EVG split-head bilexical PCFG

described in Chapter 2 to incorporate any of the lexical features we will make use of here.

We will then be able to make independence assumptions, usingthe tied-PCFG framework,

to investigate the effects of different model structures.

We can first replace every instance of a part-of-speechA as an event with the part-

of-speech/word pairAa. We will then want to factor the distribution that predicts the

part-of-speech/word pairAa given some conditioning context informationC as:

P (Aa|C) = P (A|C)P (a|C)

In order to incorporate this, we have to extend EVG to allow the nonterminals to be

annotated with both the words and parts-of-speech of the head. This is done as follows.

First we remove the old rulesYA → LA RA for each part of speechA ∈ Vτ . Then we

mark each nonterminal annotated with a part-of-speech as also annotated with its head,

with a single exception:YA. We will replaceYA with a nonterminalYAHh, one for each (ar-

gument part-of-speech, head part-of-speech, head word) triplet. Argument part-of-speech

generating rules such asL1
Hh → YA L0

Hh will be replaced withL1
Hh → YAHh L

0
Hh. We

will add a new nonterminalYAa for eachA ∈ Vτ , a ∈ Vw, and the rulesYAHh → YAa

andYAa → LAa RAa. The ruleYAHh → YAa corresponds to selecting the word, given its
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Figure 4.1: A subtree from an unlexicalized EVG parse, and the corresponding subtree in
lexicalized EVG, which adds word annotations.

part-of-speech, the part-of-speech of its head, and its head.

4.3 Experimental Setup

Since lexical features are much sparser than unlexical features, we will train our lexical

models on larger datasets than those in Chapter 3.

In addition to WSJ10, we include 1,327,754 words of New York Times from Gigaword

(Graff, 2003), prepared as follows. We used sections 199407to 199410. We included only

documents marked as article type “story”, and included onlyunique sentences of greater

than length 1, which excludes many clear examples of non-text in the input.

We trained Ratnaparkhi’s part-of-speech tagger on the fullPenn Treebank Wall Street

Journal, sections 2-21. We then tag the New York Times data, removed punctuation, and

kept only sentences of length no more than 10. This results inan additional 1,327,754
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Lexicalized Extended Valence Grammar (LEVG)

Rule Description

S → YARr selectA as root part-of-speech, (Rr indicates root)

YAHh → YAa generatea as word of part-of-speechA

YHh → LHh RHh Move to split-head representation

LHh → L0Hh stop generating arguments|left,head =H , no arguments

LHh → L
′

Hh
continue generating arguments|left,head =H no arguments

L′

Hh
→ L1Hh stop generating arguments|left,head =H , one or more arguments

L′

Hh
→ L2Hh continue generating arguments|left,head =H , one or more arguments

L2Hh → YAHh L′

Hh
argument =A|left,head =H ,argument is not nearest to head

L1Hh → YAHh L0Hh argument =A|left,head =H , argument is nearest to head

L0Hh → HhL

RHh → R0Hh stop generating arguments|right,head =H , no arguments

RHh → R′

Hh
continue generating arguments|right,head =H no arguments

R′

Hh
→ R1Hh stop generating arguments|right,head =H , one or more arguments

R
′

Hh
→ R2Hh continue generating arguments|right,head =H , one or more arguments

R2Hh → R
′

Hh
YAHh argument =A|right,head =H , argument is not nearest to head

R
1Hh

→ R
0Hh

YAHh argument =A|right,head =H , argument is not nearest to head

R0Hh → HhR

Table 4.1: Schema for Lexicalized EVG
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words of data.

Each lexicalized model is initialized from the best result of running 600 smoothed EVG

models, trained on WSJ10. All results in this section will report the average over 10 runs,

meaning in sum we run 6000 EVG models, select the top model of each cohort of 600, and

initialize the lexicalized model from that. We use the variant of EVG smoothed using linear

interpolation with Beta(2K,K) priors (K = number of parts-of-speech) on the mixture

parameters, which bias the learners to put weight on both terms.

To separate out effects of the random initialization of EVG across each of our lexical-

ized models, as well as make experiments on larger amounts ofdata practical, we use the

same initializing trained EVG parameters for each of the models below.

To prepare for unknown words, we replaced any word seenC or fewer times in the

training sets with “unk”, where unless otherwise specifiedC = 5.

4.4 Models

4.4.1 Argument Distribution: Model 1

One possibility is to consider how the distribution over argument parts-of-speech might

depend on the head word. We might imagine the head part-of-speech to be too coarse a

substitute for the head word, and that a more precise class might be helpful. For instance,

“says” is usually tagged as a VBZ. However, “says” often occurs in constructions such as

“John says the big dog barks.” so it is much more likely to havea verb as its argument than

e.g. “gives” does. We will model this phenomenon by conditioning the probability of an

argument part-of-speech on its head word.

Our first model explores extending EVG by conditioning the probability of the depen-

dent part-of-speechA on the head wordh in addition to the head POSH, valence position
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NN VBZ DT JJ NN VBZ

John says the big dog barks

Figure 4.2: Dependency tree for sentence with head “says.” Notice that the right argument
of “says” is a VBZ, which would be unlikely as the right argument of the VBZ “gives”.

v and directiond. We smooth this distribution with the smoothed EVG model described in

Chapter 3. The backoff structure is outlined in Tables 4.2 and 4.3. We explored two con-

ditioning structures for theλs associated with selecting between our new component, and

the old smoothed EVG dependent part-of-speech distribution. In one, Lexicalized Model

1a,λs are conditioned on the head word, head part-of-speech, valence and direction; that

is, the entire conditioning information available. In the second, Lexicalized Model 1b,λs

are conditioned on the head part-of-speech, valence and direction, and ignoring the head

word in determining whether to smooth. The reason this mightbe adventageous is that in

cases where the head word has been relatively rarely seen, wewould have less information

about whether to smooth where we really want that information.

In this experiment the “Stop” distribution, which determines whether to generate an

additional dependent of headh in directiond with valence bitv is taken from the earlier

described smoothed EVG model. The distribution over the dependent word will be condi-

tioned only upon its part-of-speech, both of which are observed in this case.

To initialize, we leave the stop, dependent word, and unlexicalized dependent POS

components set to their smoothed EVG settings.P (A|Hhvd) is initialized toP (A|Hvd),

and the new lambdas are initialized to their prior settings.

Results

We trained using Variational Bayes, with nonsparse priors,which seemed to be the most

consistantly effective technique from Chapter 3. The basicresults are given in Table 4.4.
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Component λ conditioning

Stop P (s|Hvd) —

Dependent POS P (A|Hhvd) hHvd

P (A|Hvd) Hvd

P (A|vd) —

Dependent Word P (a|A) —

Table 4.2: Lexicalized Model 1a backoff chains. The dependent part-of-speech distribution
is lexicalized. Theλs associated with interpolating betweenP (A|Hhvd) andP (A|Hvd)
are conditioned on the eventshHvd.

Component λ conditioning

Stop P (s|Hvd) —

Dependent POS P (A|Hhvd) Hvd

P (A|Hvd) Hvd

P (A|vd) —

Dependent Word P (a|A) —

Table 4.3: Lexicalized Model 1b backoff chains. The dependent part-of-speech distribution
is lexicalized. It differs from Lexicalized model 1a in thattheλs associated with interpo-
lating betweenP (A|Hhvd) andP (A|Hvd) are conditioned on the eventsHvd rather than
hHvd.
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Model Directed Accuracy Undirected Accuracy

Train Dev. Train Dev.

Smoothed EVG 0.658 0.629 0.734 0.712

Lexicalized 1a 0.684 0.650 0.751 0.722

Lexicalized 1b 0.694 0.666 0.757 0.737

Table 4.4: Results of Lexicalized models 1 and 1b

As we can see, conditioning on the head word give a major improvement over the basic

smoothed EVG model, using either variant. Variant 1b seems to perform as well or better

than 1a.

4.4.2 Stop Distribution

One important area where we expect to see a benefit to lexicalization is with with regards

to the transitivity of verbs. For instance, the verb “give” often has both a direct object and

an indirect object, while “sleep” is very unlikely to have anindirect object.

Our second model explores extending EVG by conditioning theprobability of gener-

ating another dependent on the head word in addition to the head POS, valence position

and direction. The main hope is that we should be able to learnmore specific valence in-

formation, particularly with regards to the transitivity of verbs. The backoff chain for this

model is given in Table 4.5. We also examined adding the lexicalized stop distribution to

Lexicalized Model 1b, which we denote as Model 3 (see Table 4.6).

The results are shown in Table 4.7. We can see that adding lexical conditioning to

the stop distributions does not help performance either when starting from Smoothed EVG

(Lexicalized Model 2), or when starting from Lexicalized Model 1b (Lexicalized Model

3).
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Component λ conditioning

Stop P (s|hHvd) Hvd

P (s|Hvd) —

Dependent POS P (A|Hvd) Hvd

P (A|vd) —

Dependent Word P (a|A) —

Table 4.5: Lexicalized model 2 backoff chains. The stop distribution is lexicalized, while
the dependent part-of-speech distribution is not. Equivalent to smoothed EVG, with a lexi-
calized stop distribution.

Component λ conditioning

Stop P (s|hHvd) Hvd

P (s|Hvd) —

Dependent POS P (A|hHvd) Hvd

P (A|Hvd) Hvd

P (A|vd) —

Dependent Word P (a|A) —

Table 4.6: Lexicalized model 3 backoff chains. Both the stopand dependent part-of-speech
distributions are lexicalized. Equivalent to LexicalizedModel 1b with the addition of a
lexicalized stop distribution.

Model Directed Accuracy Undirected Accuracy

Train Dev. Train Dev.

Smoothed EVG 0.658 0.629 0.737 0.713

Lexicalized 1b 0.694 0.666 0.757 0.737

Lexicalized 2 0.663 0.626 0.735 0.707

Lexicalized 3 0.687 0.656 0.753 0.729

Table 4.7: Results of Lexicalized models 2 and 3.
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4.4.3 Generating the Dependent word.

In the models above we have taken the probability of a word to depend only upon its part-of-

speech. This makes the event of predicting the word given itspart-of-speech be observed,

and so does not rely on any unobserved structure such the word’s head. In this section we

explore using additional conditioning information for this distribution.

Our fourth model explores conditioning the dependent word on not only its part-of-

speech, but the head part-of-speech as well. We extended model 1b by adding this condi-

tioning event, smoothing it using the probability of the word given its part-of-speech. The

backoff chains are summarized in Table 4.8.

Our fifth model modifies model 4 by conditioning the dependentword on the head word

rather than head part-of-speech. This can be thought of as making use of the intuition of

Paskin’s Lexical Attraction model (Paskin, 2001), where the argument word is generated

conditioned on the head word. The idea is that pairs of words have a semantic affinity in

addition to their syntactic affinity, and this can be used

Where as Paskin’s model takes dependency trees to be equallylikely, we have both the

valence modeling inherited from DMV and EVG to guide us, as well as part-of-speech

information. The backoff chains are given in Table 4.9.

In our experiments with Model 5, we raise the unknown word cutoff to 100, to make

the model estimation feasible within reasonable memory requirements. This results in a

vocabulary size of 755 words, with the remainder replaced with the word “unk”.

The results are given in Table 4.10. Unfortunately neither model improves upon the

basic Lexicalized model 1b.
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Component λ conditioning

Stop P (s|hHvd) Hvd

Dependent POS P (A|hHvd) Hvd

P (A|Hvd) Hvd

P (A|vd) —

Dependent Word P (a|AHd) Hd

P (a|A) —

Table 4.8: Lexicalized model 4 backoff chains

Component λ conditioning

Stop P (s|hHvd) Hvd

Dependent POS P (A|hHvd) Hvd

P (A|Hvd) Hvd

P (A|vd) —

Dependent Word P (a|Ahd) AHD

P (a|A) —

Table 4.9: Lexicalized model 5 backoff chains

Model Directed Accuracy Undirected Accuracy

Train Dev. Train Dev.

Smoothed EVG 0.658 0.629 0.737 0.713

Lexicalized 1b 0.694 0.666 0.757 0.737

Lexicalized 4 0.696 0.660 0.762 0.734

Lexicalized 5 0.693 0.659 0.755 0.728

Table 4.10: Results of Lexicalized models 4 and 5
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Training set Number of Directed Accuracy Undirected Accuracy

Words Train Dev. Train Dev.

WSJ10 5777 0.658 0.629 0.737 0.713

WSJ+NYT199407 50771 0.639 0.600 0.719 0.694

WSJ+NYT199407-10 195805 0.616 0.581 0.703 0.679

Table 4.11: Effect of training linear interpolated EVG withdifferent amounts of training
data. We can see that adding increase amounts of NYT degradesaccuracy on WSJ.

4.5 Discussion

One difference between the experiments in this chapter in contrast with previous sections

is the addition of the additional NYT199407-10 data. We examined the effect of us-

ing additional data with EVG. We ran the system with both the WSJ+NYT199407 and

WSJ+NYT199407-10 datasets, in addition to the regular WSJ10 set. Recall that our search

scheme involves running 600 random models in the first stage,and selecting the highest

objective function model from each cohort of 20, and runningeach of those 30 models to

convergence. As in the lexicalized experiments the first search stage was run on WSJ10,

and the selected models were then to convergence on each of the training sets in question.

As usual we report the average over 10 rounds. The results arepresented in Table 4.11. As

we can see, adding the additional NYT data to training seems to degrade performance by

quite a bit.

Since what we expected was that more data should help, or at least not hinder perfor-

mance, we were interested in why this was the case. We examined two hypotheses: that

using part-of-speech tags from the Ratnaparkhi tagger was sufficiently worse than the gold

tags to cause the drop in performance, and that the additional data was noisy or diverged

in domaine from the WSJ development set. To evaluate the firsthypothesis, we split the

training set into two sections, trained the Ratnaparkhi tagger on one half to tag the other,
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Training set Number of Directed Accuracy Undirected Accuracy

Sentences Train Dev. Train Dev.

WSJ10-gold tags 5777 0.658 0.629 0.737 0.713

WSJ10-tagged 5777 0.679 0.643 0.746 0.721

NYT10-tagged 5622 – 0.548 – 0.669

Table 4.12: Effect of training linear interpolated EVG whentraining from automatically
tagged WSJ and NYT Gigaword corpora, controlling for corpussize. Note that since we
do not have gold standard trees for Gigaword we cannot present parsing results on the
training set.

and vice versa. We then train on this tagged WSJ10, and evaluate on the dev. set. To

evaluate the second hypothesis, we trained on a small subcorpus of 39278 words of the

NYT Gigaword corpus (of comparable size to the WSJ10 corpus). The idea here was to

control for corpus size by using a corpus of about the same size, while training on this

additional data. The results are presented in Table 4.12. First of all it is clear that using

non-gold-standard parts-of-speech does not impede accurate model learning–in fact in this

case we get slightly better performance from the automatically tagged corpus. Second of

all, we do in fact see a severe loss in performance when we train on the short Gigaword

corpus. This could be indicative that the Gigaword corpus despite our efforts to clean it up

is still sufficiently noisy to degrade the performance of thesystem. Or put another way, our

system is unfortunately very sensitive to noisy data, whichis of course a major weakness

in an unsupervised approach.

One question this leads us to whether the lexicalized systems help when trained on

only the WSJ10 corpus. Recall that a major difficulty will be whether we can get reasonable

statistics for lexical items on such a small corpus. In this case we raised the cutoff for words

to be marked “unk” if they have not been seen 100 times. We tried both the Lexicalized

Model 1b and the Lexicalized model 3, which if you recall extends Lexicalized model 1b
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Model Directed Accuracy Undirected Accuracy

Train Dev. Train Dev.

Smoothed EVG 0.658 0.629 0.737 0.713

Lexicalized Model 1b-100 0.686 0.651 0.748 0.722

Lexicalized Model 3-100 0.666 0.635 0.737 0.714

Table 4.13: Effect of training Lexicalized models 1b and 3 onWSJ10, setting the unknown
word cutoff to 100 times.

by adding stop probability conditioning information. The results are given in Table 4.13.

The results are qualitatively similar to our earlier experiments, although in this situation

Model 3 does not perform quite as well. There is a benefit for both Lexicalized models

from using more data.

4.5.1 Lexicalizing DMV

In all of the above experiments we considered the effect of adding lexicalization to the

smoothed EVG model, which was the most effective model from Chapter 3. However, in

order to examine whether adding lexicalization is useful for models other than smoothed

EVG, we here look at adding lexicalization to the basic Dependency Model with Valence.

Since conditioning the part-of-speech distribution on thehead word was so successful

for EVG, we will do the same for DMV. We smoothP (A|Hhd) with P (A|Hd) using

linear interpolation, with aBeta(|RN |, 2|RN |) prior on the mixture distributions. The stop

distribution we leave the same as in DMV. Words are conditioned on their parts-of-speech.

The backoff schema is given in Table 4.14.

We trained this model on WSJ10, setting words seen fewer than100 times to unk.

As with the other lexicalized models, we train the first stageof the beam using regular

DMV, selecting the restart with the highest lower-bound, and using that to initialize the
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Component λ conditioning

Stop P (s|Hvd) —

Dependent POS P (A|hHd) Hvd

P (A|Hd) —

Dependent Word P (a|A) —

Table 4.14: Lexicalized DMV backoff chains. The dependent part-of-speech distribution
is lexicalized, and smoothed with the basic DMV dependent part-of-speech distribution.

Model Directed Accuracy Undirected Accuracy

Train Dev. Train Dev.

DMV 0.583 0.549 0.650 0.631

Lexicalized DMV 0.611 0.582 0.705 0.687

Table 4.15: Effect of training Lexicalized DMV on WSJ10, setting the unknown word
cutoff to 100 times. We compare it to DMV, to show that adding just lexicalization to
DMV improves performance even without the gains from Chapter 3.
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Lexicalized DMV.

The results are given in Table 4.15. As we can see adding lexicalization to the argu-

ment distribution improves development set directed accuracy from 0.549 to 0.582, and

undirected accuracy from 0.631 to 0.687. Hence adding lexicalization is useful, even in the

absence of additional valence information or other smoothing.

4.6 Analysis: Lexicalized 1b-100 vs EVG

We analyze the difference between Lexicalized Model 1b-100and EVG on section 2-21,

by presenting the net differences in correct edges, shown inTable 4.16 (by child part-of-

speech and direction), Table 4.17 (by head part-of-speech and direction), and Tables 4.18

and 4.19 (by head/child part-of-speech pair).

In Table 4.16 we see that the major improvements in the lexicalized model come for

dependencies whose children are NNP, DT, NN,NNS, VBN, JJ, VB, and NNPS. The main

thing it does worse than unlexicalized EVG is for dependencies whose children are RB.

Breaking the difference down by head part-of-speech in Table 4.17, the largest improve-

ments accrue to NNP, NN, IN, VBD, NNS, and JJ, though improvements seem very broadly

distributed. Looking at Tables 4.18 and 4.19 (NNP,NNP) and (NN,DT) dependencies are

the two largest type of net improvement in moving to lexicalization.

Scatterplots of development set directed accuracy vs. variational lower bound and undi-

rected accuracy vs. lower bound for Lexicalized Model 1b-100 are given in Figures 4.3 and

4.4 respectively. Each point represents 20 random restartsof EVG, of which the one with

the highest EVG lower bound value initializes a Lexicaled Model 1b-100 model, which is

trained until convergence on WSJ10. We can see very starkly that the right-hand side of

the graph corresponds with an area of high accuracy.
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Child Correct Correct Difference Difference Difference

POS EVG Lex1b (Lex1b-EVG) Left Right

NNP 22584 27070 4486 3749 737

DT 26320 28503 2183 2261 -78

NN 44127 45347 1220 672 548

RB 12419 11324 -1095 511 -1606
NNS 23361 24376 1015 863 152

VBN 6766 7750 984 33 951

JJ 15139 15958 819 471 348

VB 5683 6411 728 -20 748

CD 9435 10001 566 709 -143

NNPS 534 1022 488 276 212

VBD 16365 16721 356 122 234

CC 4200 3852 -348 -358 10

POS 1532 1864 332 326 6

IN 15976 15729 -247 -160 -87

VBP 9649 9500 -149 -108 -41

VBZ 16465 16344 -121 -128 7

PRP 15139 15039 -100 91 -191

VBG 4022 4106 84 -23 107

TO 2824 2906 82 3 79

MD 5017 4948 -69 -16 -53

WP 620 673 53 -4 57

JJS 368 316 -52 -44 -8

PRP$ 2290 2331 41 41 0

UH 225 185 -40 -30 -10

RBR 547 583 36 98 -62

PDT 54 86 32 26 6

JJR 889 859 -30 11 -41

$ 556 531 -25 -100 75

RBS 79 95 16 26 -10

WRB 509 495 -14 0 -14

LS 51 64 13 13 0

FW 87 100 13 14 -1

WDT 139 148 9 -1 10

EX 855 863 8 6 2

RP 1102 1099 -3 0 -3

SYM 151 153 2 2 0

Table 4.16: Change in correct dependencies by child part-of-speech across 10 runs. Left
indicates child is a left dependent of its head in system output.
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Head Correct Correct Difference Difference Difference

POS EVG Lex1b (Lex1b-EVG) Left Right

NNP 9131 11227 2096 2429 -333

NN 36212 37851 1639 2346 -707

IN 21329 22584 1255 136 1119
VBD 33569 34567 998 769 229

NNS 21288 22068 780 741 39

JJ 938 1649 711 728 -17

VBN 5107 5738 631 162 469

ROOT 50173 50795 622 0 622

POS 2028 2575 547 547 0

VBZ 33131 33640 509 362 147

NNPS 210 690 480 480 0

VB 9336 9762 426 129 297

$ 404 654 250 8 242

RB 1369 1171 -198 37 -235

VBG 3545 3742 197 28 169

CD 2321 2427 106 138 -32

TO 2993 3097 104 11 93

MD 11075 11177 102 114 -12

JJR 37 116 79 83 -4

WP 174 221 47 3 44

DT 111 79 -32 -8 -24

UH 38 13 -25 -19 -6

JJS 53 32 -21 -10 -11

FW 60 70 10 13 -3

RBR 54 45 -9 18 -27

PRP 62 53 -9 -10 1

RBS 11 3 -8 -1 -7

WRB 303 296 -7 0 -7

CC 131 125 -6 0 -6

SYM 92 88 -4 2 -6

RP 10 14 4 0 4

WDT 8 7 -1 0 -1

VBP 20776 20776 0 96 -96

PRP$ 0 0 0 0 0

PDT 0 0 0 0 0

LS 0 0 0 0 0

EX 0 0 0 0 0

Table 4.17: Change in correct dependencies by head part-of-speech across 10 runs. Left
indicates child is a left dependent of its head in system output.
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NN -98 -59 1612 174 157 -577 11 0 0 244 -4 1 0 -50 -16 7 -21 0 39

ROOT 30 386 0 -20 0 51 -11 -33 112 15 0 33 -65 81 -2 -6 1 -59 0

VBD 286 400 -2 288 9 -172 -375 -6 62 -14 -15 157 -12 285 58 -95 49 -5 0

VBZ 273 489 2 36 166 -112 -479 -131 28 -27 4 97 -92 321 5 -137 17 -17 0

NNS -44 14 295 98 161 -37 1 0 0 191 5 0 0 44 28 0 -24 0 -14

IN 544 268 -25 73 11 6 25 34 156 -46 -14 7 25 -2 0 1 39 11 0

VBP -43 4 -30 248 135 -90 -481 -7 -5 -3 -44 203 -9 162 -9 -94 30 -2 0

NNP 4 2192 151 0 23 -113 1 0 0 -181 -2 -1 1 5 0 -29 0 0 7

VB 34 22 -13 15 0 198 29 3 -6 0 -27 80 -6 111 -11 -2 -6 1 0

MD 61 73 2 25 8 -22 -156 -3 0 8 7 148 -2 0 0 -44 -7 -1 0

VBN -9 8 4 -2 -12 595 3 0 1 -7 -13 4 0 13 25 2 3 0 0

JJ -10 1 33 15 116 -21 403 0 0 9 4 0 4 0 10 26 1 0 10

VBG 25 3 -1 33 11 89 30 -10 0 2 1 0 5 11 -21 1 2 3 0

POS 109 363 -3 54 0 0 1 0 0 6 0 0 0 0 0 0 0 0 0

TO 40 22 0 -36 2 0 1 0 0 42 -3 0 0 0 0 0 0 0 0

CD 25 13 15 6 10 -13 -17 0 0 161 0 0 0 2 -2 8 0 0 0

RB -9 0 -3 -1 -11 19 -147 0 0 -63 0 -1 0 -2 21 11 -1 0 0

$ -8 0 0 0 3 3 13 0 0 239 0 0 0 0 0 0 0 0 0

NNPS 0 296 147 0 32 0 0 0 0 0 0 0 0 0 0 -5 0 0 0

JJR 7 0 3 3 4 -2 50 0 0 3 1 0 0 0 0 7 0 0 3

WP 0 0 0 0 0 -6 1 30 19 0 0 0 1 0 0 1 0 1 0

DT 0 0 0 0 0 -15 2 0 0 -13 0 0 3 0 0 0 1 0 0

WRB 1 0 0 0 0 0 -1 2 -11 0 0 1 -2 4 0 0 0 -1 0

WDT 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0

CC -2 0 0 0 0 2 -3 0 0 0 0 -1 0 0 0 0 0 0 0

RBR 8 0 -2 10 -7 -16 2 0 0 0 0 0 0 0 -4 0 0 0 0

JJS 0 0 -9 0 0 -11 0 0 0 0 0 0 0 0 0 0 0 0 -1

PRP -3 -5 -1 0 0 -2 2 0 0 0 0 0 0 0 0 0 0 0 0

FW 0 0 9 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 -3

SYM 0 0 0 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UH -2 -4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RBS 0 0 -1 0 -3 -4 0 0 0 0 0 0 0 0 0 0 0 0 0

RP 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.18: Correct: Child POS(columns) vs Head POS(rows)(Part 1)
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NN 234 -6 3 7 1 1 -5 0 -12 0 -1 0 0 -2 0 -1 0

ROOT 0 0 -6 139 0 -4 0 0 0 0 0 0 -20 0 0 0 0

VBD 4 -24 23 122 -8 0 -17 3 -2 -6 0 0 2 0 0 3 0

VBZ 7 -9 5 29 4 22 -6 7 -1 -1 0 5 0 0 -4 9 -1

NNS 67 -3 0 4 0 -8 0 0 -34 4 0 -3 0 38 -3 0 0

IN 4 19 8 52 0 32 15 -1 0 2 10 0 2 -1 0 0 0

VBP 0 -3 1 74 6 7 -11 -2 -9 -10 0 0 -8 0 0 0 -10

NNP 13 0 0 32 0 -7 0 0 0 0 0 0 0 0 0 0 0

VB 1 -1 4 1 -2 0 -3 0 0 -4 0 0 -2 0 -6 0 16

MD 0 0 0 2 0 0 0 1 0 2 0 0 0 0 0 0 0

VBN 0 -2 0 1 -3 2 0 0 2 0 0 0 0 0 8 0 8

JJ 0 0 0 3 0 0 84 0 2 0 0 0 0 0 21 0 0

VBG 0 0 4 -3 0 9 1 0 -3 0 0 0 5 0 0 0 0

POS 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 2 0

TO 2 2 33 1 0 0 0 0 0 0 0 0 -2 0 0 0 0

CD -1 0 -100 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

RB 0 -2 0 4 0 1 -22 0 0 0 0 0 1 7 0 0 0

$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NNPS 0 0 0 5 0 0 0 0 5 0 0 0 0 0 0 0 0

JJR 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DT 0 0 0 0 0 0 0 0 0 0 0 0 0 -10 0 0 0

WRB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WDT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CC 0 0 0 0 0 -2 0 0 0 -1 0 0 1 0 0 0 0

RBR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

JJS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PRP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SYM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

UH 0 0 0 0 0 0 0 0 0 0 0 0 -19 0 0 0 0

RBS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.19: Correct: Child POS(columns) vs Head POS(rows)(Part 2)
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Figure 4.3: Directed Accuracy vs Lower Bound, 300 runs of Lexicalized Model1b-100.

We also tried initializing Lexicalized Model 1b from the gold standard trees, and run-

ning variational Bayes until convergence. As in the previous chapter we initialized mixing

parameter variational posteriors to their priors. This is denoted with an X in Figures 4.3

and 4.4. As was the case for the analogous experiments for DMVand EVG in Chapter

3, while the accuracy with supervised initialization is a little bit higher than those found

through the usual method, the lower bound associated with that point is relatively low.

Again, the accuracy found by initializing the model from thegold-standard trees is

much higher, and decreases as we run. It starts with a dev set directed accuracy of 0.780

and undirected accuracy of 0.812, and ends at 0.710 and 0.749respectively. This indicates,

as one might expect, that our model is biased and that some of our errors are model errors.
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Figure 4.4: Undirected Accuracy vs Lower Bound, 300 runs of Lexicalized Model1b-100.

4.7 Conclusions

In this chapter we examined the utility of lexical features for dependency grammar induc-

tion. We found that we were able to make great improvements tothe linearly interpolated

EVG model by adding lexical conditioning when predicting the argument part-of-speech.

Conditioning on the head part-of-speech also improved the basic DMV model, without

additional valence information.

Disappointingly however, we were unable to get an improvement by incorporating lex-

icalization when predicting the valence of a particular word, as one would expect would

matter for verb transitivity. We were also unable to find any improvement by conditioning

the probability of an argument word on its head word, making use of bilexical affinities.

We also examined the effect of data size on our models. We saw aslight improve-

ment for using additional data for our lexicalized models; however, the additional dataset

we chose was far less clean than the Penn Treebank, and we saw amajor decrease in per-

formance on smoothed EVG when run on the New York Times data. This unfortunately
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indicates that our technique is sensitive to noise, which isundesirable in an unsupervised

technique.



Chapter 5

Final Matters

While the experiments presented throughout most of the thesis present results on the train-

ing and development sections of the Penn Treebank Wall Street Journal, (2-21 and 24 re-

spectively), to place the work in this thesis in context withthe rest of the field we will

present results here for several models on the test section,23.

DMV with a Logistic Normal Prior (Cohen et al., 2008) and witha Shared Logistic

Normal Prior (Cohen and Smith, 2009), which we described in Section 1.2.5, as well as

DMV with a log-linear prior (Berg-Kirkpatrick et al., 2010)are the best previous work on

this task. The linear interpolated models presented are those with theBeta(|RN|, 2|RN|)

prior. Smoothed EVG and Lexicalized model 1b outperform both the previous work, and

Lexicalized model 1b gives the highest reported accuracy onsection 23.

We were also interested in whether the improvements we foundfor sentences of length

no more than 10 remained for longer sentences. As such, we used the models learned to

parse sentences with a length cutoff of no longer than 20 words. Table 5.2 shows the results

of DMV, smoothed DMV, smoothed EVG, and Lexicalized model 1bon those sentences

of Section 24. As we can see the same trends we saw for the shorter set remain for this

larger testing set. Lexicalization proves its effectiveness, and we still see a major benefit

95
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Model Variant Directed Accuracy

Test

DMV harmonic initializer 0.469

DMV random initializer 0.548
(

+0.034
−0.067

)

DMV Log-Normal prior * 0.594

DMV Shared Log-Normal prior * 0.624

DMV Log-linear * 0.630

DMV Linear Interpolated 0.604
(

+0.024
−0.019

)

EVG Linear Interpolated 0.652
(

+0.044
−0.015

)

Lexicalized Model 1b 0.681
(

+0.033
−0.018

)

Table 5.1: Results on WSJ 10 test set (section 23). * Prior work.

from smoothing.

Model Variant Directed Accuracy Undirected Accuracy

Dev Dev

DMV random initializer 0.458
(

+0.032
−0.049

)

0.586
(

+0.010
−0.016

)

DMV Linear Interpolated 0.492
(

+0.008
−0.011

)

0.593
(

+0.004
−0.006

)

EVG Linear Interpolated 0.551
(

+0.021
−0.040

)

0.638
(

+0.008
−0.020

)

Lexicalized Model 1b 0.592
(

+0.025
−0.022

)

0.665
(

+0.018
−0.010

)

Table 5.2: Results on WSJ 20 development set (section 24), i.e.
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5.0.1 Other Languages

We also applied our grammar induction algorithms to severalother language corpora from

the CoNLL-X shared task (Buchholz and Marsi, 2006). We evaluated on Bulgarian, Ger-

man, Japanese, Swedish, and Turkish. As with the English experiments, we kept each sen-

tence with fewer than 10 words after punctuation was removed. We trained and evaluate

on the training section for each corpus. The results are given for directed accuracy in Table

5.3 and for undirected accuracy in Table 5.4. For all languages other than Japanese, regular

DMV with randomized initialization works as well or better than harmonic initialization.

For Bulgarian we see no improvement in directed accuracy going from DMV to DMV-

LI, but adding lexicalization to DMV does seem to help. Adding extra valence hurts in

both the lexicalized and unlexicalized versions of EVG.

For German and Swedish we see big improvement in moving to randomized initializa-

tion, but no major difference between the models otherwise.

For Japanese the harmonic initialization actually works better than randomized. We see

an improvement adding the basic linear interpolation to DMV, but no major improvement

after that.

For Turkish there is a big improvement in DMV moving to randomized initialization.

However, adding linear interpolation to DMV results in dreadful directed accuracy scores.

Examining the output, it seems this results in making each token the dependent of the word

immediately to its left.

5.1 Another look at Randomized Initialization

It is undoubtably the case that using a random-restart training procedure was beneficial to

our results. One thing to note when comparing models is to what degree the improvement
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Harmonic Initializer

DMV 0.535 0.372 0.656 0.412 0.443

DMV-LI 0.370 0.304 0.724 0.443 0.382

EVG-LI 0.366 0.362 0.724 0.453 0.382

Lexicalized DMV 0.356 0.305 0.730 0.440 0.381

Lexicalized EVG 1b 0.345 0.361 0.729 0.445 0.381

Randomized Initializer

DMV 0.530 0.409 0.291 0.561 0.672

DMV-LI 0.525 0.411 0.523 0.564 0.098

EVG-LI 0.513 0.410 0.571 0.562 0.068

Lex. DMV 0.559 0.409 0.690 0.565 0.597

Lex. EVG 0.542 0.426 0.715 0.543 0.606

Table 5.3: Training set directed accuracy across several languages.
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Harmonic Initializer

DMV-Dirichlet 0.661 0.536 0.777 0.582 0.609

DMV-Linear Interpolation 0.621 0.520 0.809 0.604 0.634

EVG-Linear-Interpolation 0.620 0.528 0.807 0.611 0.634

Lexicalized DMV 0.609 0.520 0.812 0.603 0.633

Lexicalized EVG 1b 0.604 0.528 0.811 0.607 0.633

Randomized Initializer

DMV 0.648 0.594 0.636 0.660 0.713

DMV-Linear Interpolation 0.655 0.593 0.725 0.661 0.568

EVG-Linear Interpolation 0.650 0.594 0.746 0.663 0.565

Lex. DMV 0.674 0.596 0.792 0.661 0.690

Lex. EVG 0.666 0.607 0.804 0.653 0.685

Table 5.4: Training set Undirected Accuracy across languages.
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Figure 5.1: % of runs with Directed Accuracy exceeding the threshhold given on thex-
axis. Each run is the result of has a beam of 20 random-restarts of Variational Bayes, and
running the best of these to convergence. Each lexicalized model run however has a beam
of 20 smoothed EVG models, from which one is initialized and run to convergence.



101

 0

 20

 40

 60

 80

 100

 20  30  40  50  60  70  80
 0

 20

 40

 60

 80

 100

%
 R

un
s 

w
ith

 a
t l

ea
st

 th
is

 A
cc

ur
ac

y

Undirected Accuracy

Percent Runs with Undirected Accuracy over Threshhold vs Accuracy Threshhold

DMV
DMV linear interpolation
EVG linear interpolation

Lexicalized 1b

Figure 5.2: % of runs with Undirected Accuracy exceeding thethreshhold given on the
x-axis, using the same setup as Figure 5.1.

comes from selecting the restart with the highest lower bound on the log likelihood.

Figures 5.1 and 5.2 show the results for 4 models in a different way: DMV, DMV

smoothed using linear interpolation, EVG smoothed using linear interpolation, and Lexi-

calized model 1b. For these graphs, we took each “run” consisting of selecting the of 20

random-restarts and running it to convergence. For 300 runsand different accuracy thresh-

holds, we then look at what percentage of the 300 runs has an accuracy at least that high.

Thus if one selected a run at random, one could ask what the probability is that its accuracy

is above some threshhold. Hence better models could be considered those that have a larger

percent of high accuracy runs. In Figures 5.1 and 5.2 we show this for Directed and Undi-

rected accuracy on the WSJ10 training set. We can see that theLexicalized model 1b and

smoothed EVG are well to the right of the DMV curves, except atthe very top, indicating
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an improvement in accuracy across a large number of runs. Smoothed DMV seems to im-

prove over DMV primarily in the percentage of runs with at least 44-59 directed accuracy,

while DMV has more runs with lower accuracy.

5.2 Learning from Induced tags

One of the initial goals of this thesis was to learn dependency grammars from words, with-

out the benefit of annotated part-of-speech tags. The approach we proposed was to start

from the output of a Hidden Markov Model unsupervised part-of-speech induction system,

and to split the given tags, learning them in conjunction with the dependencies. While this

approach did not prove fruitful, we would like to describe the experiments conducted here.

A Hidden Markov Model (HMM) describes a generative process for an observed se-

quence. The sequence of observationssi = si1 . . . simi
, in our case words, is generated

through the following process. First a sequence of hidden statesτi1 . . . τimi
is generated,

and then for eachτij a word is emitted, generated conditioned on the stateτij . In our case

the hidden stateτij will correspond to a part-of-speech for the wordsij.

In a hidden Markov Model each hidden stateτij is generated conditioned on the pre-

viousz statesτi(j−1) . . . τi(j−z). In our experimentsz will be 1, corresponding to the bitag

model.

τij |τi(j−1) = σ1, . . . , τi(j−z) = σz ∼ Categorical(φσ1...σz
)

sij |τij = σ1 ∼ Categorical(χσ1)

In (III et al., 2008) we explored using several different unsupervised part-of-speech taggers

as a first stage for grammar induction. We found that inducingparts-of-speech using an

HMM trained using Expectation Maximization was nearly as effective as gold standard
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20 tags 40 tags

DMV Initialization Directed Acc. Undirected Acc. Directed Acc. Undirected Acc.

Harmonic 0.412 0.600 0.441 0.621

Randomized 0.288 0.565 0.278 0.554

Table 5.5: DMV on tags induced using bitag HMM, accuracy on the training set.

tags for learning DMV using the Klein and Manning (2004) harmonic initializer.

Unfortunately, when one uses randomized initialization for DMV when run from HMM

induced parts-of-speech, this nice result breaks down. Forthese experiments we trained a

bitag HMM 1 using Expectation Maximization on section 2-22, 24 of the Penn Treebank

Wall Street Journal, using 20 and 40 tags. We used maximum marginal decoding to extract

the most likely tag for each word, as we did in (III et al., 2008) . We ran 10 runs of each.

The tag output was used as input to DMV. For the harmonic initializer we ran it for each

run, and averaged. For the randomized initializer we ran a beam of 20 random restarts for

each tagging, selected the one with the highest lower-bound, and than that to convergence.

These were also averaged over the 10 taggings.

Table 5.5 shows the results of running DMV on the output of these tags. using the

harmonic initializer and using the randomized initialization we presented in Chapter 2.

As we can see, the harmonic initializer is nearly as effective as with gold tags, while the

randomized initializer does very poorly. Clearly the bias integral to the harmonic initializer

is effective for placing the induced tag-DMV into a similar part of the space as it does for

gold tags.

We next investigated whether we could possibly combine randomization with the har-

monic initializer in a way that could be effective for induced tags. Our approach was to

1We used an implementation by Mark Johnson, available on his websitehttp://cog.brown.edu/
mj/.
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initialize as in the Harmonic initializer, and then to use a sample from the resulting varia-

tional posterior as our initializer.

In particular, we initialize the variational posterior Dirichlets to

α̂r = αr + Eqhar(t)f(t, r)/D

which forD = 1 is the usual the harmonic intializer. Then we can then take a sampleθ′

from this posterior and calculateEp(t|θ′)f(t, r) for each ruler in the grammar via the E-step

of the Inside-Outside algorithm. We then setα̂r = αr +Ep(t|θ′)f(t, r). This is exactly what

we do for our randomized initialization normally, exceptθ′ is in that case sampled from the

prior p(θ′|α).

This process results in an initialq(θ) which is similar to the one centered on the Har-

monic initializer, but with some amount of noise. We can increase the noise by making

this initial Dirichlet less peaked by increasing the factorD. We ran DMV using this ini-

tialization scheme withD = 1, 4, 8, 16, 32 on induced tag input with 20 tags. We use a

beam of 20 random restarts for each tagging. The results are shown in Table 5.6. We can

see while the randomized initializer withD = 1 gives a small improvement over the deter-

ministic harmonic initializer, the result is still not nearly on the order of improvements we

saw with randomized initialization for gold standard tags.Furthermore, as we increaseD

as expected the result gets farther and farther from the harmonic solution; however we do

not see an improvement in performance from doing so.

5.2.1 Learning Hidden State Models

In an attempt to learn word classes together with dependencies, we looked at a dependency

model in which we learn subclasses of the parts-of-speech. We examined learning sub-

classes of the given part-of-speech tag input. For induced tags this involves starting with



105

20 tags

DMV Initialization D Directed Acc. Undirected Acc.

Harmonic 0.412 0.600

Rand-Harmonic 1 0.460 0.619

Rand-Harmonic 4 0.421 0.607

Rand-Harmonic 8 0.395 0.601

Rand-Harmonic 16 0.365 0.587

Rand-Harmonic 32 0.314 0.584

Randomized 0.278 0.554

Table 5.6: DMV with randomized Harmonic Initializer

some small number of tags derived from the HMM, and then splitting them into multiple

subtags.

This idea is inspired by work in learning to automatically refine PCFGs, by learning

grammars whose nonterminals are annotated versions of someinitial grammar (see for

instance (Liang et al., 2007; Matsuzaki et al., 2005; Dreyerand Eisner, 2006; Petrov et

al., 2006; Headden III et al., 2006)). Grammar refinement is aproblem that considers the

parse-trees to be visible, and the given nonterminals to be sparse versions of the “true”

nonterminals. For instance, ifA were a nonterminal in one of the parse-trees, we would

have a series of latent nonterminalsA1, A2, A3, . . . . If the productionA → B C eexisted

in the original grammar, we would try to learn probabilitiesforA1 → B2 C1,A2 → B2 C2,

etc.

In our case, we have a grammar which is annotated by parts-of-speech. We will try

splitting the parts-of-speech in the same way, which will inturn split the CFG rules in our

grammar. Another difference is of course that for us the surface trees are not visible.

One important ramification of this is our parsing time will increase a great deal. In the
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situation where the part-of-speech tag and word are both observed, we parse using the very

small rule schemas presented in Chapter 2, filling in the wordand tags as needed to access

the relevant statistics. Here, there may be several parts-of-speech for a given word, and so

for a given span we need to consider several parts of speech for its left-most and right-most

children. If there areT possible parts of speech for each word, this ads a factor ofO(T 2)

to our parsing time.

We investigated two models. The first is simply DMV, where foreach part-of-speech

tagτ ∈ Vτ there is a set ofD possible annotated part-of-speech tags, which we will denote

with a superscript
{

τ 1, τ 2, . . . , τD
}

. If one letsVτ̄ denote the set of annotated part-of-

speech tags, the model is simply DMV with a part-of-speech set Vτ̄ .

In the second model we use the annotations to refine the argument distributions, and

the distribution over words. The argument distribution predicts the probability of selecting

a particular annotated part-of-speechĀ = τa conditioned on the direction and the head

annotated part-of-speed̄H = τ b. We smooth this using linear interpolation with a distribu-

tion over annotated part-of speech argumentsĀ conditioned on the direction and the head

part-of-speechH, without the annotation. The probability of a worda is conditioned on its

annotated part-of-speech̄A. The stop distribution is conditioned on the valence bitv, the

directiond and the unannotated part-of-speechA. The backoff scheme is outlined in Table

5.7.

In our experiments we start with DMV run with the Harmonic Initializer for 40 itera-

tions of Variational Bayes. We then initialize the annotated model with the result of that

as follows. For the plain DMV with simply more parts-of-speech, we initialize each of the

stop and argument word distributions for a given annotated headH̄ as the corresponding

distribution for unannotated headH. For the argument distributions, we set the variational

Dirichlet hyperparameter for a given annotated part-of-speech head, argument, direction

to be equal to the variational Dirichlet hyperparameter forthe corresponding unannotated
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Component λ conditioning

Stop P (s|Hvd) —

Dependent POS P (Ā|H̄d) H̄d

P (Ā|Hd) —

Dependent Word P (a|Ā) —

Table 5.7: DMV with annotated parts-of-speech and smoothing backoff chains. The an-
notated dependent part-of-speech distribution is conditioned on the annotated head part-
of-speech, and is smoothed with a distribution conditionedon the unannotated head. The
dependent word is conditioned on the annotated part-of-speech.

parts-of-speech in the unannotated DMV, plus a small amountof random noise.

For the second annotated DMV we initialize in the same way, except that we initalize

both argument annotated part-of-speech components using the same approach.

We ran each model on the output of 10 runs of the HMM part-of-speech tagger, for each

of 20 and 40 tags. The results are given in Table 5.8. As we can see, adding the hidden

state information does not help performance, though it doesnot change very much. The

resulting models are still very much constrained by the harmonic initializer. We performed

a similar experiment on gold tags, with the harmonic initializer, also shown in Table 5.8.

We see a similar dynamic, with adding hidden states to DMV nothelping performance, but

not by a great degree.

In summary our experiments in learning parts-of-speech in conjunction with dependen-

cies were not very successful. We found that randomized initialization was not effective

when the tags are given by the output of a bitag Hidden Markov Model. Reverting to us-

ing the harmonic initializer, we proposed two versions of DMV to learn subclasses of the

HMM output tags. These approaches did not improve upon usingsimply the output of the

Hidden Markov Model; in contrast the results are very similar.
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States Gold 20 tags 40 tags

Model per tag D. Acc. U. Acc. D. Acc. U. Acc. D. Acc. U. Acc.

DMV 1 0.483 0.651 0.412 0.600 0.441 0.621

DMV HS 1 4 0.468 0.644 0.403 0.592 0.429 0.615

DMV HS 1 8 0.470 0.645 0.403 0.593 0.428 0.612

DMV HS 2 4 0.481 0.652 0.399 0.588 0.428 0.613

DMV HS 2 8 0.479 0.654 0.398 0.587 0.428 0.613

Table 5.8: DMV with hidden states on HMM-induced part-of-speech tags, WSJ10 sections
2-21.

5.3 Conclusions

In this dissertation we have examined the problem of unsupervised learning of syntac-

tic dependency structure. We discussed the ways in which dependency structure has been

learned in the past, and how PCFGs may be employed to model dependency grammars. We

outlined a particular form of PCFG with tied parameters, andnoted how standard PCFG

estimation procedures could be employed with them. We used this variety of tied PCFG

to introduce smoothing into the PCFG, and explored a varietyof smoothing schemes and

estimation procedures. We finally explored introducing lexical features into the depen-

dency grammars in various ways, and found that we could get better dependency induction

performance through these techniques.

In our exploration of smoothing the schemes we examined linear interpolation. We ex-

plored a variety of different priors for the mixture distributions within linear interpolation,

as well as exploring both maximum held-out likelihood and Variational Bayes approaches

to estimation.

For linear interpolation, while estimating the mixture parameters using EM on a held-

out data set was more effective than estimating them together on the training set. However,
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estimation using Variational Bayes, placing priors on the mixture parameters was far more

effective than either of these approaches. We examined two broad classes of priors, one

which biases the mixture distribution to prefer backing off, and one which biases the mix-

ture distribution towards values that place mass on both components. We found that the

latter class was generally more effective for dependency learning, although both gave im-

provement over unsmoothed versions of DMV.

Linear interpolation with a prior that prefers mixtures placing weight on both parame-

ters were the most effective smoothing schemes of those tried.

In our investigation of lexicalization we were able to find improvements from adding

lexical conditioning information when predicting the argument part-of-speech. This held

true when adding lexicalization to both the plain Dependency Model with Valence and to

the smoothed Extended Valence Grammar we developed in Chapter 3. This corresponds

to a situation in which different head words with the same part-of-speech have different

distributions over argument types. We also examined using head word lexicalization to

predict the valence of a head as well as the argument word. These did not turn out to be

beneficial under our framework.
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Appendix A

Summary of Key Notation

si Words ofith sentence

sij jth word ofith sentence

τij Part-of-speech tag associated withsij

ti Parse tree associated withith sentence

Vw Set of possible words

Vτ Set of possible parts-of-speech

Conditioning context variables:

a Argument word

A Argument part-of-speech

h Head word

H Head part-of-speech

d Direction

v Valence position



Appendix B

Split Bilexical PCFGs of Dependency

Models

As mentioned in Chapter 2, one can use the fold and unfold transforms to convert the

grammar shown in Table B.1 to the grammar in Table B.2. The aimis to construct a

grammar where the nonterminal annotations (for instanceH in LH) refer to the word/pos

on the end of that nonterminal’s yield. When this is the case for all nonterminals the

annotation becomes redundant when the span is known, which means we can parse with

the grammar schema, and fill in the probabilities based on theannotations, thereby giving

us anO(|si|3) parsing algorithm for a sentence of length|si| (Eisner and Blatz, 2007;

Johnson, 2007). For instance,LH must have anHL as the rightmost terminal in its yield, so

when parsing theH is redundant. Whenever we see anLH we would look to the rightmost

position in its span to determine the probabilities.

In order to do so we must eliminate theYH nonterminal, which can contain the terminals

HL, HR interior to its yield. We do so first by unfoldingYH into LH RH everywhere it

appears. This gives trinary rules such asL2
H → LA RA L′

H andL1
H → LA RA L0

H . We

then foldRA L′
H into a new nonterminalML2

AH , (likewiseRA L0
H intoML1

AH ) and add

112
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Extended Valence Grammar (EVG)

Rule Description

S → YH selectH as root

YH → LH RH Move to split-head representation

LH → L0

H
stop generating arguments|left,head =H , no arguments

LH → L
′

H
continue generating arguments|left,head =H no arguments

L′

H
→ L1

H
stop generating arguments|left,head =H , one or more arguments

L′

H
→ L2

H
continue generating arguments|left,head =H , one or more arguments

L2

H
→ YA L′

H
argument =A|left,head =H ,argument is not nearest to head

L1

H
→ YA L0

H
argument =A|left,head =H , argument is nearest to head

L0

H
→ HL

RH → R0

H
stop generating arguments|right,head =H , no arguments

RH → R′

H
continue generating arguments|right,head =H no arguments

R′

H
→ R1

H
stop generating arguments|right,head =H , one or more arguments

R′

H
→ R2

H
continue generating arguments|right,head =H , one or more arguments

R
2

H
→ R

′

H
YA argument =A|right,head =H , argument is not nearest to head

R1

H
→ R0

H
YA argument =A|right,head =H , argument is not nearest to head

R0

H
→ HR

Table B.1: Basic Schema for EVG
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Extended Valence Grammar (EVG)-2

Rule Description

S → LH RH selectH as root

LH → L0

H
stop generating arguments|left,head =H , no arguments

LH → L′

H
continue generating arguments|left,head =H no arguments

L′

H
→ L1

H
stop generating arguments|left,head =H , one or more arguments

L′

H
→ L2

H
continue generating arguments|left,head =H , one or more arguments

L
2

H
→ LA ML

2

AH
argument =A|left,head =H ,argument is not nearest to head

L1

H
→ LA ML1

AH
argument =A|left,head =H , argument is nearest to head

L0

H
→ HL

ML2
AH → RA L

′
H

ML1
AH → RA L

0
H

RH → R0

H
stop generating arguments|right,head =H , no arguments

RH → R′

H
continue generating arguments|right,head =H no arguments

R′

H
→ R1

H
stop generating arguments|right,head =H , one or more arguments

R′

H
→ R2

H
continue generating arguments|right,head =H , one or more arguments

R
2

H
→ MR

2

HA
RA argument =A|right,head =H , argument is not nearest to head

R1

H
→ MR1

HA
RA argument =A|right,head =H , argument is not nearest to head

MR2
HA → R′

H LA

MR1
HA → R0

H LA

R0

H
→ HR

Table B.2: Schema for EVG after fold-unfold transform
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the rulesML2
AH → RA L

′
H andML1

AH → RA L
0
H . We perform analogous operations for

the right argument distributions. The resulting schema is given in Table B.2.



Appendix C

Calculating Confidence Bounds using

Bootstrap Sampling

The initialization scheme we adopt in Section 2.4.1 uses random restarting to search differ-

ent parts of the parameter space. This starts with a total of 6000 restarts grouped into 300

jobs, 20 restarts per job. In each job each restart is run for 40 iterations, and the one with

the lowest free energy is run until convergence. Thus each job is associated with one set of

parameters, and a free energy.

Each of those 300 jobs is broken in to 10 groups of 30; in each group, we select the job

whose free energy is the lowest. This gives us 10 sets of parameters; we parse with these

and score the resulting dependency trees in terms of Directed Accuracy and Undirected

Accuracy. The results presented are an average of these scores.

In order to calculate confidence intervals for this statistic we use bootstrap sampling

(Hastie et al., 2009, pp. 261-264). We make 10,000 samples with replacement of size 300

from the 300 jobs. For each sample, we split the 300 jobs in thesample into 10 groups

of 30; select the job in each group whose free energy is the lowest, giving us 10 sets of

parameters, for which we calculate Directed and Undirectedaccuracy and average over the

116
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10. This gives us 10,000 values for directed and undirected accuracy. Sorting the directed

accuracy, the 250th and 9750th values will give us the lower and upper bounds.



Appendix D

Smoothing with Collapsed Interpolation

One simple smoothing approach to use in a tied PCFG frameworkwhich we explored in our

initial models is what we callcollapsed interpolation. The basic idea is, if we are interesting

in smoothingP (E|C), to augment the space of possible events with an eventb that indicates

that we should backoff. In this case an event is selected froma distributionP2(E|C̄) that

makes an independence assumption about the conditioning informationC ′ ⊂ C.

In our example of selecting a left argument given a headNN we would smooth the

probability that the argument is aDT as:

P (A = DT | d = left, H = NN) = P1(A = DT | d = left, H = NN) +

P1(A = b | d = left, H = NN)P2(A = DT | d = left)

Suppose we are smoothing the distribution over rulesr ∈ RA for left-hand-side non-

terminalA, andB ⊆ N is the relevant backoff set. Again letR(RA) indicate the set of

right-hand sides of rules inRA. For eachÂ ∈ B we add a new nonterminal̂Ab toN and

add an additional set of rules
{

Âb → β | β ∈ R(RÂ)
}

toR. RÂ is then augmented with a

rule Â → Âb. The newly added nonterminalŝAb need their associated rules tied together

118
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by defining their tying equivalence relations. As with linear interpolation, tying these rules

gives them the same distribution, effectively forgetting some conditioning information.

A key thing to note is that̂Ab expands to the same set of right-hand-sides asÂ, save

for the addition ofÂ → Âb. This means that̂A will eventually end up expanding to one

of those right-hand sides, even if the indirect route through Âb is chosen. For example,

consider Figure 8. This figure presents two ways of rewritingL1
dog → YbigL

0
dog. The

left-hand path simply rewrites it directly, while the right-hand path first rewrites toL1b
dog,

which then rewrites toYbig L0
dog. Observe that we can model the probabilityp(L1

dog =⇒

YbigL
0
dog|dog, v, left) ,whereA =⇒ β meansA eventually rewrites toβ, as:

p(L1
dog =⇒ YbigL

0
dog|dog, v, left) = θL1

dog
→YbigL

0
dog

+ θL1
dog

→L1b
dog
θL1b

dog
→YbigL

0
dog

As an example of this applied to a particular case, consider the case where we want

to smooth the distribution over the right-hand side ofL1
H in EVG. The backoff set in this

example isB = {L1
H | H ∈ Vτ}. That is, we would smooth with a distribution that ignores

the head when generating the first left argument. We addL1b
H for eachH ∈ Vτ , andL1b

H →

YAL
0
H for eachH,A ∈ Vτ . Finally, we need to specify that for eachH,H ′, A ∈ Vτ that

L1b
H → YAL

0
H

GR

≡ L1b
H′ → YAL

0
H′ , meaning that we tie together rules based on whether they

generate the same argument.
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(1) .
.
.

L1

dog

Ybig

bigL bigR

L0

dog

dogL

(2) .
.
.

L1

dog

L1b
dog

Ybig

bigL bigR

L0

dog

dogL

Figure D.1: Using collapsed interpolation to smoothL1
dog → YbigL

0
dog: note that fromL1

dog

there are two paths to the childrenYbig L0
dog: (1) directly and (2) indirectly throughL1b

dog.
The distribution over different arguments givenL1b

dog is tied

D.0.1 DMV and EVG with Collapsed Interpolation

Our first experiments examine smoothing the distribution over an argumentA given head

part-of-speechH, directiond, in DMV. We do this by letting the backoff distribution ignore

the head-part-of-speechH. Our experiments use Variational Bayes for estimation. We use

Dirichlet priors for rule probabilities. We set the Dirichlet hyperparameterα = 1 for all

rules in the grammar, except for those rules corresponding to deciding to use the backoff

distribution. For these rules,α = 2|Vτ | (i.e. twice the number of parts-of-speech). This

places a strong bias towards the backoff distribution, effectively giving each argument in

the backoff distribution a pseudocount of 2, while each fully conditioned argument gets a

pseudocount of 1.

The analogue to this smoothing scheme EVG again has the backoff distribution ignore

the head part-of-speechH and use backoff conditioning eventv, d. This would include a

notion of how common the arguments are across heads. For our running example smooth-

ing the distribution over rules forL1
NN , this would give a backoff set{L1

H | H ∈ N}.

Results for both these models are given in table D.1. As we cansee adding smoothing

even in the unlexicalized case gives a major improvement forboth DMV and EVG.
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Directed Acc Undirected Acc.

Model Smoothing Train Dev Train Dev

DMV None 0.583
(

+0.064
−0.034

)

0.549
(

+0.065
−0.031

)

0.689
(

+0.025
−0.014

)

0.668
(

+0.027
−0.013

)

Col. Interp. 0.623 0.581 0.703 0.676

EVG None 0.526
(

+0.017
−0.080

)

0.500
(

+0.013
−0.080

)

0.679
(

+0.008
−0.028

)

0.657
(

+0.006
−0.032

)

Col. Interp 0.659 0.632 0.734 0.713

Table D.1: Results from Smoothing DMV, EVG using Collapsed Interpolation
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