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This dissertation investigates learning dependency gramfar statistical natural language
parsing from corpora without parse tree annotations. Meastessful work in unsupervised
dependency grammar induction has assumed that the inpsist®nf sequences of parts-
of-speech, ignoring words and using extremely simple godiséic models. However, su-
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features. These more sophisticated models however reguibability distributions with
complex conditioning information, which must be smoothedvoid sparsity issues.
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thermore, adding lexical features yields the highest amyudependency induction on the
Penn Treebank WJS10 corpus to date. In sum, this dissertatiends unsupervised gram-
mar induction by incorporating lexical conditional infoation, by investigating smoothing

in an unsupervised framework.
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Chapter 1

Introduction

The last decade has seen great strides in statistical hiangaage parsing. Supervised and
semi-supervised methods provide highly accurate patsersequire training from corpora
hand-annotated with parse trees. Unfortunately, manaalhotating corpora with parse
trees is expensive, so for languages and domains with mimgeaurces it is valuable to
find methods to parse without requiring annotated sentefitestopic of this dissertation
is unsupervised methods of learning syntactic models. thgodar, our focus will be on
unsupervised dependency parsing. Informally, a dependearse tree is a directed graph
structure whose nodes are words in a sentence and whosepigesom some word to
a syntactic dependent of that word. We can see an examplgume=1.1. In this instance,
“dog” and “home” are dependents of the main verb “ran” andy*mhodifies “dog”. The
edge from the word “root” to “ran” indicates that “ran” is theot of the dependency tree.

Most supervised and unsupervised systems use parts-efsgech as nouns, verbs,

;N
The big dog barks

Figure 1.1: A Dependency Tree
1



and adjectives as a coarse proxy of the words in the sentemstarmining their syntactic
relations. This is useful both for generalization, as wslhden an individual word has
only been seen infrequently. However, the words themselieeguite useful in determining
whether one is a dependency of the other or not. For instgpaecake” is a far more likely
dependent for the verb “eat” than “juice” would be, even thioboth are nouns. Supervised
parsers have shown time and time again that word-to-woatioels are extremely valuable
(see for instance (Charniak, 2000; Collins, 1999; McDomalal., 2005)). The use of these
features is calletexicalization

Unfortunately, to date unsupervised dependency parsiagndiasuccessfully incorpo-
rated lexical information. Most of the recent work has fami®n variants of the Depen-
dency Model with Valence (DMV) of Klein and Manning (2004)hieh we describe below
in Section 2.1.2. DMV treats the parts-of-speech of a seet@s the observed variables
and learns the relations between pairs of parts-of-speech.

The main goals of this dissertation are twofold. The firsbisnivestigate smoothing
in unsupervised dependency grammar induction, which willdguired in order to model
more sophisticated conditioning events. We propose seivaraeworks for doing so, and
show how they can be estimated. We also present a model thegssiully uses of one
of the frameworks. The second goal is to incorporate lexeaiures, which have been so
successful in supervised parsing. We present several sitiggluse lexical features.

This dissertation presents and expands upon the models segiloed in our 2009
NAACL paper (Il et al., 2009).

In the remander of this chapter we will first introduce sytitadependencies and de-
pendency grammars. We then discuss the state of the litereggarding unsupervised

dependency induction. Finally we will end with an overviefilee rest of the thesis.



1.1 Syntactic Dependencies

In this thesis, the observed variables will generally be igpu® of n sentences of tex,
where eacls; is a sequence af; wordss;; .. . s;,,. Each words;; is associated with a
part-of-speech;;, which for most of the thesis will also be treated as observed

The hidden variables with be dependency parse treegt;} . A dependency tree

i=1,n
t; is a directed acyclic graph whose nodes are the words.iriThe graph has a single
incoming edge for each worg;, except one word, denoted as tfoet of the graph. An
edge from wordk;; to s;;; means thas,;, is adependenodf s;;, or alternativelys;; is the
headof s;;. Note that each word token may be the dependent of only oreg bata head
may have several arguments.

For instance, in Figure 1.1, “barks” is the root of the grafatng” is a dependent of

barks, and “The” and “big” are both dependents of “dog”. Imt{u‘dog” is the head of
“The” and “big,” and “barks” is the head of “dog.”

1.2 A Short History of Unsupervised Dependency Gram-
mar Induction

Carroll and Charniak (1992) investigate a dependency gramwhich generates all of the
argument parts-of-speech of a given head part-of-speexthg EM and a probabilistic
context free grammar. They report poor results, but notemaptly that local maxima in
the likelihood function are a major problem in this spaceheaf their randomly initialized
grammars ended up in a different maxima.

Paskin (2001) presents a dependency model trained fromsworgthich, given sen-
tence lengtl, first a dependency tredas generated uniformly of those wittedges. Then,

starting with the root, each edge is assigned an argumeretn gis head word (or ROOT)



and the direction of the edge. The probability of the parsedesices, ¢, given the sentence

lengthl is:

P(s,t|1) = P(t{l)P(s[t) = P(t|l)Proor(s.) [ P(silsi.d)
i—jet

This is trained using EM on 67 million words of untagged newswext and evaluated
on the Penn Treebank Wall Street Journal. He reports 39ckpeundirected accuracy on
unseen WSJ test data, which is below the baseline of atgelaich word to the word next
to it.

Yuret (1998) describes a similar model, which is traineddgh a heuristic bootstrap-
ping method in which each sentence is parsed using thetstst$ the previous sentences,

and then this single parse is used to update the word past&ist

1.2.1 Dependency Model with Valence

Klein and Manning (2004) introduced the Dependency Modéh Walence, which due to
its success has been the focus of most of the dependency gramshaiction work ever
since. Whereas in Paskin’s model the dependency tree @wtescare considered equally
likely, DMV conditions the number of arguments a particlaad has in a particular di-
rection on both the head, and whether or not this head hasajedeany arguments in this
direction previously. Additionally, DMV uses the partssgeech, rather than the words,
to determine these relations.

The DMV is a generative model of dependencies, in which thpgeddency trees are

generated according to the following generative process:

e Generate Root POS

e For each generated PQ§ directiond € {L, R} generate{’s argumentsd



N
The big dog barks

e Generate root "barks”

e Decide to generate 1 left argument to "barks”
e Decide to generate 0 right arguments to "barks”
e Generate "dog” as left argument of "barks”

e Decide to generate 2 left arguments to "dog”
e Decide to generate 0 right arguments to "dog”
e Generate "bad” as left argument to "dog”

e Generate "the” as left argument to "dog”

e Decide to generate 0 left arguments to "bad”
e Decide to generate 0 right arguments to "bad”
e Decide to generate 0 left arguments to "the”

e Decide to generate 0 right arguments to "the”

Figure 1.2: Dependency Model with Valence Generative Stéyample



— Decide whether to generate any arguments in direction

— Decide the number of argumeritg, greater than zero in directiohby repeat-
edly deciding whether to continue generating argumentsigdirection, given

H and the fact that there is at least one argument.

— Generatéy, parts-of-speech argumemts, ... A, givend, H.

Letty be the subtree rooted At, and letAd,y be a vector of dependenciesi@fin direction
d. Let Ayy; be theith element ofd,. Agno is considered the nearest argumenkitoThis

yields the probability of a dependency tree as

P(S,t) = PROOT(ST)P(tS7- S,n)

where

P(ty|H) =

T 1% [Paoy (CONINUGH, d, min(v, 1)) Pury(Asss H, d) Pt 4, | A
de{L,R}
Pstop (Stqu, d, min(khd, 1))

Klein and Manning formulate this as a PCFG, supposing tlogut ittachments are made
before left. This is then trained using the inside-outsiderthm (Baker, 1979), a variant
of the Expectation Maximization algorithm for PCFGs. Thislgs a model with 43.2 %
directed accuracy on the Penn Treebank Wall Street Jownaus, stripped of punctuation,
sentences with 10 words or fewer (henceforth WSJ10), trgiand testing on the whole
corpus.

Key to their performance is their initialization: they dtaith an E-step in which the

posterior probability that thgth word is an argument of th&h is proportional to‘;—]|



and each word is equally likely to be the root. By combining ¥DMith their Constituent-
Context Model for constituent bracketing induction, they émprove this performance to

47.5%.

1.2.2 Other Estimation techniques for DMV

Smith and Eisner (2005) and Smith (2006) investigate udieg Contrastive Estimation
technique to estimate DMV. Contrastive Estimation maxesithe conditional probability
of the observed sentencegiven some similar sequences that were not seen. Thesarsimil
sequences are defined by a Neighborhood function, whicheddfiom each sentencea set
N (s;), consisting of all such sequences that can be made from sompigransformation
of s;. Examples of such transformations include transposingragpavords, or deleting
a word. The intuition is that for every observed there are many sequences involving
words with the same semantic content, but which were notrgeetk These are treated as
“implicit negative examples”, and Contrastive Estimatpaces probability mass o at
the expense of them. The results of this approach vary wigted on regularization and
neighborhood, but many of the solutions found are quite hditer than when using EM.

Smith (2006) also investigates two techniques for maxingjzikelihood, while incor-
skewed deterministic annealing, ameliorates the localimax problem by raising to
some positive power < 1 the posterior distribution over trees in the E-step of EMiéla-
ing it, while interpolating in log space with the Klein and Nang initializer. The degree to
which the latter distribution is included is decreased witte, eventually a local maximum
in the likelihood.

The second technique is structural annealing, introducesimith and Eisner (2006)

and explored more deeply by Smith (2006), which penalizag ldependencies at first.



This penalty is gradually weakened during estimation. Thimspired by a notion that
short dependencies are easier to learn than long depeerdenthand-annotated depen-
dencies on a held-out set are available for parameter gaietiis performs far better than
EM; however performing parameter selection on a held-outsthout the use of gold
dependencies does not perform as well.

The Baby Steps technique of Spitkovsky et al. (2009; Spikg\et al. (2010a) exploits
a similar idea that short sentences are easier to learn framlong sentences. This tech-
nique starts by training DMV using EM on sentences of length,dhen incrementally
including sentences of length one longer in the trainingdaitializing with the previous
model.

Spitkovsky et al. (Spitkovsky et al., 2009; Spitkovsky et 2010a) note a tradeoff
between the addition of more training data by including Emgentences and the resulting
complexity of the sentences in question. They report tilaatitig on sentences up to length
15 using an initializer similar to that of Klein and Manning004) works better when
evaluated on test sets with varying sentence lengths. Tidifi@nally combine this idea
with the incremental aspect of Baby Steps to form what thdéiylemapfrog, (Spitkovsky
et al., 2010a) which initializes the model using a mixturehef outputs of this model and
Baby Steps on sentences of length 1 to 15. It then trains EMbtwezgence, and then
repeat this process on training sets with length cutoffS0ofi8d 45, each time initializing
with the result of the previous model.

Spitkovsky et al. (2010b) investigate using Viterbi EM et of traditional EM to
estimate DMV. Viterbi EM replaces the expected counts offstep with counts extracted
from the Viterbi parse of the current model. They find thas thorks better than traditional
EM when training on longer sentences.

Berg-Kirkpatrick et al. (2010) present a method for using ®ih locally normalized

log-linear models and extend this by showing how the gradiptimization in the M-step



can be changed to directly climb the gradient of the log nmaidikelihood. They use this
to experiment with adding broader part-of-speech knoweddglee model, such as adding

features that something is a noun or a verb.

1.2.3 Unsupervised Searn

Daume Il (2009) applies an unsupervised version of higrsetructured prediction ap-
proach to unsupervised dependency parsing. Searn is avi@méor applying classifiers
to structured prediction problems, given some loss functignsupervised Searn works by
considering loss functions which only depend on the obskdata. Daumé applies this to

a shift-reduce parser, which includes both lexical andxicéé features.

1.2.4 IBM-style alignment models

Brody (2010) explores using the IBM word alignment modesgdifor statistical machine
translation, and reformulating them for dependency graninaction. The approach con-
siders an alignment between two copies of the same senteheeg words are prevented
from aligning to themselves. An alignment is consideredatha@ogue to a dependency in
this model. The approach does not perform as well as the DiMWgh this is possibly due

to the fact that the model does not force the alignment to hawee-structure.

1.2.5 Variational Bayesian Techniques

Cohen et al. (2008) explores using two Bayesian priors ifucanion with the Dependency
Model with Valence: a sparse symmetric Dirichlet Prior aricbgistic Normal Prior. The
sparse Dirichlet places a bias towards distributions whaaoh nonterminal expands to only

a few of its possible right-hand-sides (Johnson et al., 2007
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The Logistic Normal Prior allows for prior distributions mhich the probabilities of
right-hand sides of a rule can covary. Under this prior, thebpbility vector for a par-
ticular nonterminal withK" possible righthand-sides is generated by first drawing feom
K-dimensional multivariate Gaussian, exponentiating &selit and normalizing to form a
legitimate probability distribution. The result is a dibtrtion where more of the covari-
ance between rules of a particular nonterminal is capturéie prior. Cohen et al. (2008)
use an Empirical Bayes approach to learn this model, whiasghe best previous perfor-
mance on this task, 59.1% directed accuracy on WSJ10. Addity, if knowledge of the
meanings of the part-of-speech tags is allowed, they gédtdurmprovement (59.4%) by
initializing the covariance matrices so that tags in theesgamily (all nouns in one family,
all verbs in another, etc) covary positively.

Concurrently to this work, Cohen and Smith (2009) exploresgtension of the Lo-
gistic Normal Prior called the Shared Logistic Normal Pribhe Shared Logistic Normal
Prior replaces thé& -dimensional Multivariate Gaussian random variable whih average
over several multivariate Gaussian random variablesg@akperts). Each expert may be
shared across different nonterminals, so that rule prdéibabican correlate. Cohen et al.
use this model to explore tying tags in the same family togrethouns, verbs and adjec-
tives. They find that this improves performance beyond thek Logistic Normal Prior
for English, and sometimes helps, and sometimes hurts foreSh. They also explore a
bilingual learning setting, where part-of-speech farsibee given a common expert across
an English and Chinese, giving further improvement.

Gillenwater et al. (2011) apply the Posterior Regular@a(iPR) framework of Graca
et al. (2008) to the problem of dependency grammar inductiRwsterior Regularization
allows the inclusion of soft constraints on the learned grist distribution which might
be difficult to encode in a prior. Gillenwater et al. (2011pkote encouraging sparsity

on the total number of types of parent/child relations (bstp&speech) in the grammar.
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This differs from the form of sparsity coming from the spaBgchlet Prior, which only
encourages each individual probability distribution ia thodel to be sparse (e.g. for DMV
encouraging each parent/direction type to have a few typelsildren).

Naseem et al. (2010) use universal linguistic rules as asoftaint using posterior reg-
ulation, on top of a Hierarchical Dirichlet Process-grammedinement version of DMV.
Their model also includes an extended notion of valenceditioning the dependent on
whether it is the first, second, or third-or-greater childt®parent. (see Subsection 1.2.6).
They find that including these rules can improve performame even the models pre-
sented in this paper; however, when the rule constraint®eckided, the performance
drops precipitously.

Cohen et al. (2010) apply the Adaptor Grammar frameworkr{doh et al., 2006) to
DMV. Adaptor grammars are a nonparametric Bayesian extetti PCFGs, which allow
for whole previously generated subtrees to be memoizedeuskd without repaying the
probabilistic cost of generating it anew. Cohen et al. aplply memoization noun con-
stituents with the DMV, utilizing a novel variational esttion technique. They find this
brings a modest but significant improvement over the bas@&iMV with Dirichlet priors.

Blunsom and Cohn (2010) present a Tree Substitution Grar(iRs4s) version of lex-
icalized DMV (see Section 4.5.1). A TSG represents pargstas made up of a combina-
tion of tree fragments that might be larger than those of E@FG parse. Their model
uses hierarchical Pitman-Yor processes to do the smoothikbgile the model doesn't
explicitly treat arguments differently by their valencesfimn (See Section 1.2.6), by mod-

eling larger tree fragments it is able to incorporate thidrimation.
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1.2.6 Extensions of Valence

Valence has long been known to be valuable for supervisesimup(Eisner, 1996; Eisner,
2000; Collins, 1997; Charniak, 2000). McClosky (2008) pres two variations of DMV
which extend its notion of valence. McClosky notes that ssrlanguages, few heads
have three or more arguments in a given directiRestricted Valence Gramm#&RVG)
presumes that each head has a maximal number of posiiomseach direction to fill

(McClosky considerd( € {1,2,3}) . Its generative process is:

e Generate Root POS

e For each generated PQ§ directiond € {L, R} generated’s argumentsD,(H):

— Decide how many arguments;, € {0, 1,...K} in directiond to generate.

— Generaté:, parts-of-speech arguments, ... A;,,, givend, H, v, wherev is

the valence slot.

The probability of a dependency tree under RVG is then:

P(s,t) = Proor(s,)P(ts,|s;)

where
de—l
P(tulH) = [ PlkudH,d) [] [Parg(Aami|H, d,i)P(ta,,,|A)]
de{L,R} =0

In contrastUnrestricted Valence GrammdglVG), which we use as the basis for our
models, does not place a hard limit on the number of argumbuatsnerely models argu-

mentsK or more positions away from the head according to the santebdigon. It can



13

be thought of as the same as DMV, except that argument is modeled conditioned on

H,d, min(7, K'), not merely onH, d as in DMV.
e Decide whether to generate any arguments in direetion

e Decide the number of argumernitg, greater than zero in directiahby repeatedly
deciding whether to continue generating arguments in ihegtion, givenH and the

fact that there is at least one argument.

o Generatéeky, parts-of-speech arguments, ... A;,,, givend, H,v, wherev is the

valence slot. Ifv > K the arguments are drawn from a common distribution.

Under UVG the probability of a dependency tree as
P(S, t) = PROOT(ST>P<tST‘ST)
where

P(tu|H) =

H Hfig_l [Pstop (cOntinueH, d, min(v, K)) Porg(Aani|H, d) P (ta,,,|Av)]
de{L,R}
Pstop (StonH, d, min(k;Hd, K))

In the remainder of the thesis, we will refer to this modeEagended Valence Grammar
(EVG), which is what we called it in our 2009 NAACL paper (Iti&., 2009).

McClosky reports the RVG with valence 2 gets the best peréme of these models
on English Wall Street Journal words length 10 or less (58ected, 69.7 undirected). Al-
though this is the case, our models are extensions on the EBviaevork with/' = 2, since
we are reluctant to eliminate potentially useful attachtmarpriori. Pilot Experiments with

RVG and EVG with backoff indicated they work roughly equadtgll.
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1.3 Overview of remainder of thesis

In Chapter 2 we will go over the basic learning framework wé use in the remainder
of the thesis. This will include representing dependencdamas split bilexical PCFGs,
define PCFGs with parameters tied in a particular way, as agethe unsupervised esti-
mation of these PCFGs using various techniques. It will aitklly go into the details of
the Dependency Model with Valence and Extended Valence @Garwhich will form the
basis of the models discussed in the remainder of the disseTt

Chapter 3 will cover a series of different smoothing techefor PCFGs which can
be estimated in an unsupervised fashion. These will invalvgmenting the PCFG in
particular ways, and making use of the tied-PCFG framewdtrkvill look at smoothed
versions of DMV and EVG, and see how smoothing can improveé#rmrmance of these
models.

Chapter 4 will explore lexicalized models. We will look ategrating lexical features to
the DMV and EVG models in various ways. We will utilize thedess regarding smooth-
ing learned in Chapter 3 to effectively learn these models.

Chapter 5 will look at several related questions that arngbe course of this work,

and conclude.



Chapter 2

Learning Framework

2.1 Background

This chapter will describe the general learning framewoeksiiall employ for the rest of
the thesis. We shall begin by describing the sort of syrdattucture we are interested in
learning. Next we shall discuss the split-head bilexicaltegt-free grammar framework
for describing dependency grammars, and describe the swoflpfevious work as prob-
abilistic context free grammars of this variety. We will mekscuss various unsupervised
estimation procedures for PCFGs. Finally we shall closedscdbing a variety of PCFG
that will be useful in the next Chapter, which will allow ust@ake additional independency
assumptions about the model.

In this thesis, the observed variables will generally be rpe® ofn sentences of text
s, where eacly; is a sequence of:; wordss;; . .. s;,,. Each words;; is associated with
a part-of-speech;;;, which will also be treated as observed. The (here finitepSeill
possible words is denoted &5, and the set of possible parts-of-speech is dentted

The hidden variables will be dependency parse ttees{ti}izl,n. A dependency tree

t; is a directed acyclic graph whose nodes are the words.iriThe graph has a single

15
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Yo
The big dog barks

Figure 2.1: Example dependency parse.

incoming edge for each worg;, except one word, denoted as tfoet of the graph. An
edge from words;; to s;;; means that;; is anargumentof s;;, or alternativelys;; is the
headof s;;,. Note that each word token may be the argument of only one, edad head
may have several arguments.

If ¢, can be drawn on a plane above the sentence with no crossieg,atigs called
projective Otherwise it is nonprojective While there are languages whose dependency
structures have crossing edges, and there are supervigaitahs for learning and pars-
ing nonprojective dependency structures, no such algostburrently are known in the

unsupervised setting. The algorithms we consider hereexaynine projective structure.

2.1.1 Split Bilexical CFGs

In order to efficiently estimate the dependency models mittiesis, we will need to devise
CFGs that factor their parsing decisions in the same wayhérsections that follow, we
frame various dependency models as a particular varietwhkras split bilexical CFGs
(Eisner and Satta, 1999). These will allow us to use the mastief Eisner-Satta (Eisner and
Satta, 1999) parsing algorithm to compute our dynamic progning steps i®(|s;|) time
(Eisner and Blatz, 2007; Johnson, 2007). (Efficiently palesaersions of split bilexical
CFGs for the models described in this dissertation can beetktusing the fold-unfold
grammar transform(Eisner and Blatz, 2007; Johnson, 2007))

In the split-head bilexical CFG framework each nonterminathe grammar is an-
notated with a terminal symbol. We will define grammars irs tramework in terms

of rule schemas and nonterminal schemas. For instance wa hmge a series of rules
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Xy — Yy Zy, for all pairsH, H' € T, whereX,Y, Z are nonterminals with the anno-
tations removed. This one schema would proViflg rules. For dependency grammars,
these annotations correspond to words and/or parts-afebpd he second important prop-
erty of split-head bilexical CFGs is that each observed s)}mp in a sentence is repre-
sented in a split form, consisting of a left payt;, and a right part;;z (McAllester, 1999).
These parts become the terminal symbols of the grammar.sphishead property relates
to a particular type of dependency grammar, in which thedaft right dependents of a
head are generated independently.

Note that split-head bilexical CFGs can be made probaigiiisthe same way as stan-
dard PCFGs.

A simple example of a split-head bilexical CFG (denoted 3@&gplit-Head Grammar

1) for dependency parsing is:

Simple Split-Head Grammar 1

Rule Description

S — Yy selectH as root

Yo — Ly Rpg | Move to split-head representatign

Ly — Hjp no more arguments to left af

Ly — Ys Ly argument # to left of head #

Ry — Hp no more arguments to right &f

Ry — Ry Y4 argument = to right of head #

HereH;,, Hy are the terminals of the grammar; there isfAhand anH i for eachH in
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the vocabulary/,,. The expansion of.; encodes the decision of whether there is another
left argument ofH, and if so, what it should be. Likewisey is a nonterminal encoding
the decision of whether to there is another right argument/ aind what that argument

should be. An example parse of “The big dog barks” is given 2

bigr, bigr

Figure 2.2: Simple split-head bilexical CFG parse of “Thg thog barks.”

Note that this model combines the decision about whethezrtieigte another argument
(a stopping decision) with the decision about what that rmwept should be. For instance,
in Figure 2.2, the ruldy.xs — Yiog Learks COMbines deciding that “barks” should have
another left argument, and selecting “dog” as that argum&eparating these will sim-
plify the derivation of our later models —specifically théroduction of valence. They can
been separated performing the following transformatiortb¢ grammar. First we add the
nonterminalsL}; and R}, for eachH € V,, which signifies a state in which we know we
will generate at least one argument to the left and rightaetigely, and must decide which
argument to generate. Second, we replace thelryle— Y, Ly with the pair of rules

Ly — L} andL}Y — YLy (and likewise replac&y — RyYa with Ry — Ri and
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Rl — RyY,4) . Now for instancel indicates a decision about whether to stop gener-
ating arguments to the left, or to generate at least one miguemeent. An example of the
difference between the old and new grammars are given inr&®@3. The transformations

yield this new grammar (Simple Split-Head Grammar 2):

Simple Split-Head Grammar 2

Rule Description

S — Yy selectH as root

Yy — Ly Ry Move to split-head representation
Ly — LY stop generating argumefieft,head #
Ly — Ly continue generating argumejést,head #H
Ly, — Yai Ly argument #|left,head #/

Ry — RY stop generating argumefright,head #H
Ry — Ry continue generating argumefnight,head #
R, — Ry Ya argument #|right,head #
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Ydog Ydog

Ldog Raog Ldog Raog
I I |
/\ dogr L]dog Rgog
I
Y L
The dog dogr
The;, Theg Yoig Ldog YThe Ldfg
—_ [ The, T Lk
) ) e e d
bigr, bign dogy, 'L 'R °9
Ybig Ldog
—

. . Lo
bigr, bigp dfy

dogy,

Figure 2.3: An example of moving from Simple Split-Head Graan 1 to Simple Split-
Head Grammar 2, which separates the decision of whethemergie another argument
(L) from what that argument should bel).

2.1.2 Dependency Model with Valence

Ydog Ydog
Ldog Rdog Ldog Raog
I | |
1 0 1 0
Ldog Riog Ldog Riog
dogp dogr
YThe Ldog YThe L&og
—_ \ —_
L} L}
They, Ther dog They, Ther dog
Ybig Ldog vig Laog
—_ \ —_ \
bigy, bi LY bigy, bi LY
L DP9Rr fa 9, DGR fg
dogy, dogr,

Figure 2.4: An example of moving from Simple Split-Head Graan 2 to DMV. DMV
distinguishes between the deciding if there will be a firguanent, and deciding when to
stop generating subsequent arguments. Notice the loweLgymonterminals in the left

tree becomeg, in the second.

The most successful recent work on dependency inductiofolsased on the Depen-

dency Model with Valence (DMV) of Klein and Manning (Klein é@rManning, 2004).
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Dependency Model with Valence (DMV)

Rule Description

S — Yy selectHd as root word

Yy — Ly Rpy Move to split-head representation

Ly — LY stop generating argumefieft,head #, no arguments

Ly — Ly continue generating argumefiest,head #/ no arguments

Ly — LY stop generating argumefieft,head #, one or more arguments
Ly — Ly continue generating argumefist,head #, one or more arguments
Ly, — Ya Ly argument #|left,head #H

LY — Hp

Ry — RY stop generating argumeiright,head #, no arguments

Ry — Ry continue generating argumejright,head # no arguments

Ry — RY stop generating argumefright,head #, one or more arguments
Ry — Ry continue generating argumejmtght,head #/, one or more arguments
RL, — Ry Ya argument =|right, head #

RY — Hg

Table 2.1: CFG Schema for Dependency Model with Valence.

The main difference between DMV and the Simple Split-Headn@nar 2 is that DMV
distinguishes the probability of the decision to generhtefirst argument in a particular
direction from the probability of deciding to generate sdpgent arguments. This is the
sense in which it models valence. We can incorporate thissplichead bilexical CFG
by splitting theL ; nonterminal intal; and L/, (likewise Ry becomes?y andR);). The
rule L}, — YLy becomed.l, — Y, L), (likewise Rl — Ry Y becomeskk, — R} Y4).
Ly now indicates a decision of whether to generate the firstraeg, andl’, a decision
of whether to generate subsequent arguments. This resalgrammar given in Table 2.1.

An example of the difference between grammar 2 and DMV is shimwfigure 2.4.
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Ydog Ydog

Ldog Rdog Ldog Raog

0 ’ 0
Raog Ldog Rdog

dogr Laog dogr

YThe Liog
1
Ther, Thep Liog YThe dog

T~ \

L1
Yhig L;Dg Ther Theg dog

A

. . Lo
bigr, bigr d‘og

0
Ybig Liog

— [

dogr, big;, bigg dogr,

Figure 2.5: An example of moving from DMV to EVG. The key diféace is that EVG
distinguishes between the distributions over the argumeaitest the headig) from argu-
ments farther awayThe.

(In fact all work implementing DMV has replaced the wordswiheir parts of speech.
However for expositional clarity the example shows words).this example the lower

two Lg,, NONterminals in the grammar 2 tree becomjgdg in DMV; however the top one

remains ag.,, distinguishing the first argument decision from subsetjaeas.

2.1.3 Extended Valence Grammar

Among the models we discuss in this dissertation are sonieederom a variant of DMV
presented by McClosky (McClosky, 2008), called therestricted Valence Grammanr
Extended Valence Gramm#&EVG). The main insight is that for a given head, different
valence positions in a given direction should have diffedistributions over arguments.
In particular, EVG modifies DMV by distinguishing the digtution over the argument
nearest the head from the distribution of subsequent amgismEor example, in the phrase
“the big hungry dog”, the distribution over “hungry” as thiesest left argument of “dog”
would be different than the distribution over “the” and otieig”.

Consider the following changes to the DMV grammar. First, witk introduce the
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nonterminald 3, and k% and rules’.3, — Y4 L}, andR% — R/, Y4 to denote the decision
of what argument to generate for positions not next to the haxt instead of expanding
Ly, — LY%|LY, we will expand it asL};, — L},|L%. L’; still represents the decision of
whether to keep generating arguments to the left, giveretiseat least one. Howeveit),
now indicates that there is exactly one left argument remgifthat nearest the head), and
so the ruleL}, — Y, L, must becomd}, — Y, LY (i.e. generate left argumert and no
more). See Figure 2.5 for an example. These transformayiefdsthe grammar in Table
2.2.

Itis important to note that in previous work, as with DMV, EWW@s only been estimated

using parts-of-speech ignoring the words.

2.2 Experimental Setup

Dependency parses are typically evaluated against anatedatata set (the “gold-standard”).
The standard metric girected accuracywhich is the percent of directed edges proposed
by the parser that match those present in the gold standard.

The experiments presented here use the Penn Treebank Vealt $ournal corpus(M.
Marcus et al., 1993). We follow the now standard practice IgirKkand Manning 2002
(Klein and Manning, 2002) of deleting punctuation, and gsimly sentences with 10
words or fewer. This corpus will henceforth be referred toA8J10. The dependencies
are extracted from the phrase structure trees using the byleramada and Matsumoto
2003(Yamada and Matsumoto, 2003). We train on sections Rs&lthe likelihood of sec-
tion 22 to evaluate convergence, use section 24 for devedaprand section 23 as our final
test set.

We will present results on both the training set, and on theldpment/final-test sec-

tions. Typically in unsupervised learning problems we wioaly have one data-set (akin



Extended Valence Grammar (EVG)

D

Rule Description

S — Yy selectH as root

Yy — Ly Ry Move to split-head representation

Ly — LY stop generating argumefieft,head #, no arguments

Ly — LYy continue generating argumejist,head # no arguments

Ly, — Ly stop generating argumetieft,head #7, one or more arguments
Ly, - L% continue generating argumejést,head &, one or more arguments
L4 - Ya LYy argument #|left,head #,argument is not nearest to head
Ly, — Ya LY argument =|left,head #, argument is nearest to head

LY — Hp

Ry — RY stop generating argumefright,head #, no arguments

Ry — RYy continue generating argumejmtght,head # no arguments

Ry — Ry stop generating argumefright,head #, one or more arguments
Ry — R% continue generating argumefright,head #, one or more argument
R} — Ry Ya argument #|right,head #, argument is not nearest to head
R, — RY Yu argument #|right,head #, argument is not nearest to head
RY — Hg

Table 2.2: CFG Schema for the Extended Valence Gramma.

24
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to the training set), and we would evaluate how well we regmmethe underlying structure
of that set. Here we will present results on both sets, to gigense for now only how
well the learned model represents the given data, but alsonedl the model generalizes
to novel sentences. This also allows us to compare to previauk such as (Cohen et al.,
2008).
To evaluate models learned using Expectation Maximizatexamine the Viterbi

parse under the learned parameter veétofo evaluate models learned using Variational
Bayes, we follow Cohen et al. 2008 (Cohen et al., 2008) ingigie mean of the variational

posterior Dirichlets as a point estimate.

2.3 Tied Probabilistic Context Free Grammars

In order to perform smoothing in PCFGs in Chapter 3, we willl fuseful a class of PCFGs
in which the probabilities of certain rules are required ®the same. This will allow
us to make independence assumptions for smoothing purpatbesit losing information,
by giving analogous rules the same probability. For instame might have a grammar
rule L2, — Y4 L'; and might want the probability of the rule to not depend onttbad
part-of-speech, but want the fact that the head /s to propagate to the righthand side
nonterminall’;, and so be available to condition on farther down the tree.

LettupleG = (N, T, S, R) be a Context Free Grammar (CFG) with nonterminal sym-
bols\V, terminal symbolg, start symbolS € N, and set of rewrite productiori® of the
form N — g,for N e N, 5 € (NUT)*. LetRy indicate the subset & whose left-hand
sides areV.

(G,0) defines a Probabilistic Context Free Grammar (PCFG), whésea vector of
length|R|, indexed by productiond’ — g € R. 6y_,5 specifies the probability thay

rewrites to3. Hence)_y ;.. On-s = 1. We will let 6y denote the subvector of
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corresponding to rules iR .

A tied PCFG specifies that certain nonterminals have comnmsinilsitions over the
indexes of their rules. For instance, if we have— 5|6, and N’ — }|55, we want to be
able to specify that, e. @5, = On/—5; ANdON_ 5, = O

We define a tied PCF&E = (G, 0, HER), whereZ is an equivalence relation dR that

satisfies the following properties:

1. |Vrrea € R, if rq = ro thend,, = 6,, | Tied rules have the same probability.
2. | Vri,m9 € Ry, 11 # 19 Distinct rules expanding the same
HR - .
L ZE T nonterminal are never tied.
3.| VNV; 7& Ng,Vrl € ’R,N17 Ty € RN2 If any rule inRNliS tied to arule inR,N2
if vy = ra then each rule ifR v, is tied to a rule iR ,
then for allvr| € Ry,. and vice versa.
Hg
Jry, € Ry,such that] = 1}

We caIIHER the tying relation. IfN; — 8, and N, — (3, are tied then the tying relation
defines a one-to-one mapping between ruleRj) andRy,. This can be seen from the
following: (3) says that each rule iRy, is tied to a rule inR y, and vice versa. (2) plus
the transitivity of an equivalence relation indicates #ath rule ifR v, is tied to a unique
rule inR y, (and vice versa). Hence the relation is one-to-one.

Clearly, the tying relation also defines an equivalencesatagr nonterminals, and we
say thatN; and N, are tied nonterminals if there is an € Ry, andr, € Ry, where
r1 £ ro. The tying relation allows us to formulate the distribusaover trees in terms

of rule equivalence classes and nonterminal equivalerasses. SupposR is the set
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of rule equivalence classes aid is the set of nonterminal equivalence classes. Since
all rules in an equivalence clagshave the same probability (condition 1), and since all
the nonterminals in an equivalence clagse N have the same distribution over rule
equivalence classes (condition 1 and 3), we can define thef selie equivalence classes
Ry associated with a nonterminal equivalence cldssand a vectof of probabilities,
indexed by rule equivalence classes R . 0 refers to the subvector éfassociated with
nonterminal equivalence cladg indexed byr € R 5. Since rules in the same equivalence
class have the same probability, we have that for eaglr, 6, = 0;.

Let f(t,r) denote the number of times ruleappears in tree, and letf(t,7) =

> . f(t, 7). We see that the complete data likelihood is

P(s,t|0) = HHeftr _ Hgg(tﬂ

FER TET FER

Let A5 be the subvector af indexed byr € R . 05 is a multinomial parameter vector

(e, > scr,, 0 = 1), and sq(t]0) is a product of multinomials, one for eadh e N

ptle) =T10“" = I T 0"

FER NEN FERy
That is, the likelihood is a product of multinomials, one &ach nonterminal equivalence
class, and there are no constraints placed on the paramétbeese multinomials besides
being positive and summing to one. This means that all thedata estimation methods
(e.g. Expectation Maximization, Variational Bayes, samg), in particular the efficient
dynamic programming algorithms for estimating sufficieattistics over PCFGs, extend

directly to tied PCFGs.
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2.4 Estimation

We have so far specified a framework by which one can modellsipyopbabilistic de-
pendency grammars. The next issue is to discuss briefly hownigat determine the
probabilities of each rule or rule equivalence class in tlaegnar. We will touch first upon
techniques that will be of use in the remainder of the dissiert; some other estimation
techniques in the literature will be discussed at the entle@tection.

Perhaps the most straightforward approach is to assigrapilidies to maximize the

likelihood of the observed sentences:

Ovre = argmaxgp(s|d)

= argmax, Z p(s,t]0)

t

The standard technique for performing maximum likelihostireation when the likeli-
hood is stated in terms of hidden variables such as the paes is the Expectation Max-
imization algorithm (EM). Expectation Maximization is aerative technique for finding a
local maximum of the observed data likelihood, which alsees between two steps. First
some initial setting for the paramters is chosendék. In thelth iteration, theE-Stepcal-
culates for each sentenggand possible treg p(t;|s;, 6¢~1). TheM-Stepassigng®) to
maximizeE,,, gu-y log p(s, t]6¢~1).

For PCFGs, the M-Step is straightforward to implement giherexpected courf(t, )

of each rule equivalence classnder the distributiop(t|s, 9/~ calculated in the E-Step:

6’7(]) X Ep(t|s,9(l*1))f(tv ’l“)

To process the E-Step, there is an efficient dynamic progiagadgorithm (Baker,
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1979) for PCFGs, which calculates exactly these expectedtso Together these are
known as the Inside-Outside algorithm.

Maximum likelihood estimation provides a point estimatefof However, often we
want to incorporate information abo#itoy modeling itsprior distribution, and model un-
certainty by estimating aosterior distribution. As a prior, for eaclv. € N we will
specify a Dirichlet distribution ovef, with hyperparametera,. The Dirichlet has the
density function:

F(ZreRN o)

— ar—1
P(Oy|on) = I1cr, Ic) T!;[N 0.,

Thus the prior oveé is a product of Dirichlets,which isonjugateto the PCFG likelihood
function (Johnson et al., 2007). That is, the postefdf|s, t, ) is also a product of
Dirichlets, also factoring into a Dirichlet for each nomtenal N, where the parameters

are augmented by the number of times rnule observed in treeé:

Pf|s,t,a) o P(s,t|0)P(0|)

x H ef(t,r)-i-ar—l

reR

We can see that, acts as a pseudocount of the number of timesobserved prior ta.

To make use of this prior, we use the Variational Bayes (VBhteque for PCFGs
with Dirichlet Priors presented by (Kurihara and Sato, 2004B estimates a distribution
overf. In contrast, Expectation Maximization estimates merepognt estimate of. In
VB, one estimate§)(t, 0), called the variational distribution or variational paste which
approximates the posterior distributiétit, 0|s, o) by minimizing the KL divergence oP

from Q. Minimizing the KL divergence, it turns out, is equivalentrhaximizing a lower
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boundF of the log marginal likelihoodog P(s|a).

s,t,@\a) B

The negative of the lower bound,F, is sometimes called tHeee energy
As is typical in variational approaches, Kurihara and S2694) make the “mean field”
assumption, in which the hidden variables and parametdiseinariational posterior are

independent. They assume a factorization:

Q(t,0) = Qt)Q(0) = H i(tils:) J] @)

i=1 Ne~N

The goal is to recoveR)(f), the estimate of the posterior distribution over paransehed
Q(t), the estimate of the posterior distribution over treesdifig a local maximum ofF
is done via an alternating maximization@f#) andQ(t). Kurihara and Sato (2004) show
that each))(fy) is a Dirichlet distribution with parameters. = o, + Eqq) f(t,r), and

that

= JTews [Legm ™
Zt’ HreR 7T7” (&)

SES
where forr € Ry

T = €Xp (@Mdr} _¢( Z dr’))

r"ERN

Estimation ofQ(t) andEq ) f(t, r) is performed using a variation of the inside-outside
algorithm, replacing each rule probability with ..

Another option for performing Bayesian inference is a sangmpproach using Markov
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Chain Monte Carlo (MCMC). Johnson et al. (2007) present tpre@aches: a Gibbs sam-
pler to draw samples fronf(t, d|s, o), and a Hastings sampler for drawing samples from
P(t|s, «). Our preliminary experiments found that these experietitedame severe local
maxima problems experienced by Expectation Maximizatiod ®ariational Bayes ap-
proaches we describe in the next section. However, sincaith®f a sampling approach
is to produce samples distributed according to a certatriloligion, the random restart and

select the maximum approach we advocate for those is notrsagded for sampling.

2.4.1 Initialization and Search

Both the Expectation Maximization and Variational Bayeprapach locally maximize their
respective objective functions. In practice for probaiti dependency grammars there ex-
ist many local maxima, and most of the correspond to quaiéiytdifferent dependency
grammars (Carroll and Charniak, 1992). We can observe thisgpty in Figure 2.6 which
shows a graph of dependency accuracy vs log likelihood of D100 randomly ini-
tialized, Expectation Maximization trained models. Eaoimprepresents a local maxima
in the log likelihood, and one can see that they are quiteasjpoet. Here and subsequently
we randomly initialize by assigning eaély as a sample from a symmetric Dirichlet with
parameter 1.

Faced with this fact about the likelihood space, severatagahes have arisen in the
literature. One approach is an initial parameter settingchviis likely to be close to a
good portion of the space. Klein and Manning (2004) propbsé& tharmonic” initializer,
which incorporate the linguistic intuition that shortepeéadencies are preferable to longer,
in the hope that portions of the parameter space that aremsare probably better. This

initializer is used in much of the subsequent literatureluding (Smith, 2006; Cohen et
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Directed Accuracy vs Log Likelihood
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Figure 2.6: Directed Accuracy vs Log Likelihood, 100 rund=xpectation Maximization
trained DMV.

al., 2008; Cohen and Smith, 2009; Daumeé III, 2009)

Smith (2006) proposes several techniques for dealing WwegHdcal maxima problem.
The Skewed Deterministic Annealing and Structural Anmeplechniques attempt to bias
the initial parameter settings to reflect this intuitionttlshort dependencies are better,
slowly removing the bias over the course of learning. Deteistic Annealing attempts
to flatten the likelihood surface in the hopes of finding maxim the likelihood surface
with higher likelihood.

It does so by essentially making the E-step distributiorr avieitially similar to uni-
form, and slowing removing this bias. This is equivalentetting each rule probability
Onop = ‘R—lm While the likelihoods it finds are indeed higher than stnéfigrward Expec-

tation Maximization, the accuracies are poor. Skewed Datestic Annealing improves

Thanks to Noah Smith for providing his implementation of kizemonic initializer
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upon this by starting with a bias towards a different initiet (such as the Klein and Man-
ning Harmonic Initializer).

In this thesis our view is that both the likelihood and thaatwonal lower bound should
provide a sufficient signal for reasonable dependency ilegrin particular we will instead
use the technique of random restart to explore many localnregselecting the one with
the best value of the objective function of interest. Themi@déa of this scheme is that we
would like to wind up in a “good” part of the space in terms of@@cy, most of the time.
Note in Figure 2.6 that there are far more points in the upigét than in the lower right
corner.

For some distribution over initial parametdrg(d), there will be a corresponding dis-
tribution over the converged states of paramef¢(8), resulting from running Expectation
Maximization starting from an initial state drawn frofg(#). (The analogue to this in the
Variational Bayes case is a distribution over initial vidaal hyperparameters). Our
goal is that the expected accuracy should be high.

Figures 2.7 and 2.8 show the results of 100 runs of estim&My using Variational
Bayes, where each run is given 20 random restarts. Eachitrestsrun for 40 iterations,
and the model with the highest lower bound value was run gativergence. We can see
that this compresses the resulting grammars into a higleracy portion of the space.

In the experiments in the rest of the dissertation, we walsgnt results where each run
has 600 random restarts, run for 40 iterations. The higloastrl bound restart is selected
from each group of 20 restarts (i.e. 30 in sum), and run uptivergence. The best of
these 30 is then selected according to lower bound value.ep@trresults averaged over
10 runs. To account for the variance introduced throughdhdaomized initialization, we
also report 95% confidence intervals calculated using bapsampling where feasible

(See Appendix C).
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Algorithm 1 Estimation for Variational Bayes with Randomized Initzaiion
for m from 1 to M do
for b from ;tboB do
Sampledy ~ DIR(ay)
Let Q(t)© « P(t]s,0")
Leta, <+ o, + EQ(t)(o)f(t, T)
for ¢ from 1 to 40do
Iterate Variational Bayes on model
end for
end for
Select modeb* = argmax, F(Qy(t), Qp(9))
while TEST.CONVERGENCE=FALSHo
Iterate Variational Bayes on modg}-
end while
Let model@,,, be converged),-
end for
return modelm* = argmax,, F(Q,.(t), Qn(0))

Directed Accuracy vs Variational Lower Bound
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Figure 2.7: Directed Accuracy vs Lower Bound, 100 runs ofidteosnal Bayes trained
DMV, each with 20 random restarts.
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Undirected Accuracy vs Variational Lower Bound
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Figure 2.8: Undirected Accuracy vs Lower Bound, 100 runs afidtional Bayes trained
DMV, each with 20 random restarts.

Directed Acc Undirected Acc.
Model | Initialization | Train Dev Train Dev
DMV Harmonic | 0.483 0.457 0.651 0.633
DMV | Random | 0.583(*005;) | 0.549(005°) | 0.689(F00%) | 0.668( ooar)

Table 2.3: Results of Randomized vs Harmonic initializafior Variational Bayes

Table 2.3 describes the results of running DMV with both theitKand Manning har-
monic initializer, as well as with the randomized initiation approach. We can see using

randomized initialization improves the average depenglancuracy by a great deal.

2.4.2 Analysis: Harmonic vs. Randomized Initialization

To see where our improvements are concentrated, we |looki alifference in correct
directed dependencies under both the harmonic initiaiper the randomized initializer,

broken down by various categories, in Table 2.4 (by child-p&speech and direction),
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Table 2.5 (by head part-of-speech and direction), and $ablé and 2.7 (by head/child
part-of-speech pair). Since the randomized initializeuhes are presented averaged over
10 runs in the experiments in this paper, the tables incatpdhe sum of correct directed
dependencies over these 10 runs. To allow comparison toattmedmic initializer, which
is only given 1 run we have scaled its results up by 10. In thalskes and those like it
later in the thesis, we have placed in boldface differencéls &magnitude greater than
1000, and italicized those greater than 100 and fewer thf,10 emphasize the major
net gains/losses between models.

In Table 2.4 we see that switching to randomized from harmamtialization, the
greatest net correct dependencies are with DT, noun (NN,, NWS), CD, and PRP$
children. However randomized initialization has net fewerrect dependencies with JJ,
IN, CC, and verb children. Breaking the results down by head-pf-speech in Table
2.5, we see major improvements in dependencies headed Ing ol most verb types,
as well as IN and CD. Dependencies headed by ROOT is the targtsgory in which
randomized initialization does worse. Looking at Tablésghd 2.7, we see that the single
biggest improvement is with (NN,DT) dependencies, as we(NNP,NNP). Additionally,
major improvements come from NN/NNP children under VBD, VVBY heads, as well as
NNS children under VBD, IN and VBP. We see that the net feweORMeaded correct
dependencies with randomized initialization mostly aeamVBZ, VBD, VBP, and MD;

randomized initialization actually gets more noun-roctedtences correct.

2.5 Conclusion

In this chapter we described the basic learning frameworwiNéuild on in the remainder
of the thesis. We saw how DMV and EVG can be described usinigt8pad PCFGs, and

covered several estimation techniques for PCFGs. We alsiled Tied-PCFGs, which
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Child Correct| Correct Difference || Difference| Difference
POS | Harmonic| Random| (Random-Harmonic Left Right
DT 2550| 24405 21855 22011 -156
NN 22510, 39688 17178 6648 10530
NNP 10800| 24856 14056 11089 2967
NNS 15660 21306 5646 3265 2381
JJ 20520| 15385 -5135 -5176 41
CD 6580 9712 3132 3463 -331
VBN 8970 5960 -3010 -60 -2950
IN 13270| 10821 -2449 -40 -2409
CC 3120 964 -2156 -1920 -236
PRP$ 10 2095 2085 2085 0
VBz 16040| 14758 -1282 -1 -1281
VBD 16430 15440 -990 6 -996
VBP 9010 8051 -959 4 -963
MD 4830 3941 -889 -7 -882
VB 7750 7104 -646 11 -657
NNPS 520 1139 619 343 276
VBG 4550 4207 -343 -6 -337
POS 1850 1611 -239 -235 -4
EX 710 843 133 140 -7
RP 740 630 -110 0 -110
JIR 1010 908 -102 -91 -11
RB 6570 6667 97 -48 145
WP 670 576 -94 31 -125
PRP 14860| 14946 86 20 66
JJS 350 265 -85 -78 -7
$ 720 635 -85 116 -201
LS 70 24 -46 -46 0
PDT 40 84 44 39 5
WDT 130 163 33 10 23
Fw 60 89 29 27 2
TO 2620 2598 -22 434 -456
WRB 480 465 -15 13 -28
SYM 150 145 -5 5 -10
RBS 110 109 -1 -1 0
RBR 520 519 -1 8 -9
UH 170 170 0 31 -31

Table 2.4: Change in correct dependencies by child paspe&ch across 10 runs for DMV-
Randomized and DMV-Harmonic. Left indicates child is a @dfpendent of its head in
system output.
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Head Correct| Correct Difference || Difference| Difference
POS | Harmonic| Random| (Random-Harmonic Left Right
NN 18440 33387 14947 14980 -33
NNP 2530 10056 7526 8176 -650
IN 15140 21358 6218 40 6178
VBZ 21040| 26550 5510 4507 1003
VBD 21850, 27195 5345 4561 784
NNS 16140 20158 4018 4094 -76
ROOT 48260| 45985 -2275 0 -2275
CD 530 2076 1546 1758 -212
VB 7610 9071 1461 424 1037
VBP 15650 17108 1458 1442 16
VBN 5370 4072 -1298 19 -1317
TO 1960 2855 895 -21 916
MD 8720 9592 872 1240 -368
NNPS 110 758 648 648 0
RB 1150 621 -529 88 -617
VBG 3070 3431 361 -42 403
POS 2550 2312 -238 -238 0
$ 1210 990 -220 37 -257
JJ 2230 2414 184 265 -81
WP 230 125 -105 -3 -102
WRB 360 305 -55 0 -55
JIR 320 375 55 55 0
DT 150 100 -50 -53 3
CC 170 120 -50 0 -50
Fw 30 65 35 34 1
UH 0 27 27 27 0
PRP 60 74 14 19 -5
RBR 0 12 12 12 0
JJS 0 12 12 12 0
WDT 0 3 3 3 0
RP 0 3 3 0 3
SYM 70 69 -1 6 -7
RBS 0 0 0 0 0
PRP$ 0 0 0 0 0
PDT 0 0 0 0 0
LS 0 0 0 0 0
EX 0 0 0 0 0

Table 2.5: Change in correct dependencies by head papegfet across 10 runs for DMV-
Randomized and DMV-Harmonic. Left indicates child is a @dfpendent of its head in
system output.
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can also be estimated using these techniques, and will pisefel to us for estimating the
smoothed models of Chapters 3 and 4.

We also discussed various issues involved with initialimatvhen estimating depen-
dency grammars using Expectation Maximization and Vannati Bayes. We found that
there was a great benefit in terms of accuracy to using a ramddmnitialization scheme
rather than the Klein and Manning (2004) harmonic initiefizZOne disadvantage of course
is that this randomized approach requires many times maonguating power than the spe-
cialized initializer approach. However, using randomimgtialization does hopefully in-
dicate that any improvements we find by changing the modébeiattributable to changes

in the model and not to the initializer.



Chapter 3

Smoothing PCFGs

3.1 Introduction

The models we have discussed so far in Chapter 2 make useyo$iveple features for
unsupervised dependency grammar induction. We would diketegrate more interesting
lexical features, which much previous work has shown. Thilsrequire using smoothing
in an unsupervised setting. In this chapter we will first explsmoothing in a supervised
setting, and then look at several ways in which it can be adgh the unsupervised set-
ting. We will see that smoothing can be useful even for thexinalized DMV and EVG
models. We will look at the linear interpolation technigaed talk about estimation us-
ing both Expectation Maximization and Variational Bayemdar Interpolation will be the
basis for the exploration of techniques using several tiasef Bayesian Prior, as well
as using estimation from held-out data. We will see that Beyeestimation using linear

interpolation will be the most effective of these technigue

42
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3.2 Estimation from Fully Observed Events

Suppose we are interested in smoothing the discrete pidpalstribution over of a event
E with J possibilities conditioned on some conditioning evefits- C; ... C,. This cor-
responds to selectingg givenC' = ¢ from a categorical distribution with parameter
In the supervised setting we have a series of observationg,0C,) ... (E,,C,). The

maximum likelihood estimate (MLE) then assigns a valué.to

Jee

P(E=e¢|C=c¢)=0,, =
( | ) = 6., S

wheref. . = >"" | dp,—.0c,— iS the number of times, c was observed. One thing to note
is that if ¢ has never been seen, or seen only rarely, then this estinilateewery poor.
This will particularly be the case when distributions cdiwai on words.

However, perhaps by making an independence assumptiort 8hone can get an
estimate that is better. For example, suppose we are estgrealanguage model. One
option is a bigram model, in which each word is generated itimméd on the probability
of the previous word. Hence, the probability of a sequenceastisiV;, ..., W, is

n

P(Wi,...W,) = POW) [] POV | W)

=2
If we estimate this model from a corpus in which some werih the vocabulary is unob-
served, the maximum likelihood estimate will $1V; = w|W;_; = w’) = 0. If however
w occurs in the test set, this will result in assigning the setta probability estimate of
zero. To avoid this, we would like to modify the estimate taqa probability mass on
unseen events at the expense of observed ones.

One option is to add some amoumntto the count each possible word péin, w'),
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known as additive or Lidstone smoothing . This results instimete:

fw,w’ +a

P WZ = m_ e / frnd
add w| Wiy =) >t fowr T @

Now if w is unobserved in the test set, it will have positive probgbik «. Now, an
additional problem crops up when have to estimate conditidistributions. If in our test
set we observe the sequence of wortie cassowary ate fruiwe would need to know an
estimate of the probability oP(w; = ate | w;_; = cassowary. Perhapsassowaryis a
sufficiently rare word that we never saw it in the training $letve use additive smoothing,

we would have, for example, that:

Paddw: = ate| w;_; = cassowary = Pyq{w; = gormandized w;_, = cassowary

However, under most corpoete would be seen far more frequently thgarmandized

The only reason the two are equal in this case is because weeser seenassowary
What we would really like is an estimate that alloWsw; | w;_;) to share some infor-

mation across conditioning events_,, while allowing the conditional distributions to still

differ. One way to do this is through linear interpolatiorl{dek, 1997).

Poi(wi | wisy) = MP(wi | wisy) + MP(w;)

where); + \; = 1 and P indicates the maximum likelihood estimate. One important
guestion is the setting of the parametais)\,. Setting them via maximum likelihood
would resultin\; = 1, Ay = 0, resulting inPp;(w; | w;_1) = P(wi | w;_1). Instead, they
are typically set via EM by maximizing the likelihood of someldout data.

These techniques are not mutually exclusive. For instameepuld linearly interpolate

a bigram and unigram that were each additively smoothed.
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For instance, the maximum likelihood estimate fofA = DT | d = left, H = NN)

would be:

f(t, Linny — Ya L)
f(t, Linn)

P(A=DT |d=left, H =NN) =0, v, 1, =

3.3 Unsupervised Smoothing for PCFGs

In our dependency grammar induction problem we will be ggérd in smoothing PCFG
rules. Each rule will correspond to some evéhin the model, conditioned on some con-
ditioning events' = (... Ck in the dependency model. As is usual in a PCFG these
conditioning events are encoded in the nonterminal lefidrede of the rule, and the right-
hand side represents some event in the model. For instanB&V, L, yn encodes two
variables: the head part-of-speeldh= NN, and the direction = left.

Suppose we are interested in smoothing to estimate a distmboverr € Ry for
some nonterminaV, which encodes some set of conditioning evewts . . . N(;). We will
suppose there is a set of nontermindls. N whereN € B, with B called abackoff set
such that there existsjac {1,..., k} such that for allV € B, N;, = Ny;). Thatis,Bis a
set of nonterminals with some conditioning event in commah W. We will smooth the
distribution over- € Ry by combining a distribution conditioned av with a distribution
conditioned only orB3 (called thebackoff distributio. For instance, for the nonterminal
Ly xn in DMV, which rewrites toYs Ly for some part-of-speech, the backoff set might
group together; ny for all part-of-speecti. The backoff distribution would then give a
common distribution over the left arguments, regardlesb®head parts-of-speech.

To use linear interpolation to estimate the distributiorsoime eventt conditioned
on some set of context informatiai = C; ... Ck by smoothing it with distributions

conditioned on a portion of the conditioning informatiéh c C, we would estimate
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P(E|C) as a weighted average of two distributions:
P(E| C)=MPI(E|C)+ \PP(E|C)

where the distributio, makes an independence assumption by dropping some of the con
ditioning information. In this section we will discuss foafating this variety of smoothing

for PCFGs using the Tied-PCFG frameword discussed in Chaptas well as several
techniques for estimating theinterpolation parameters.

In a PCFG for each nonterminal there is an associated distribution over rule&in.
NonterminalN encodes the information that the distribution o¥&y is conditioned upon.
For example, in DMV the nontermindl}, ,, encodes three separate pieces of conditioning
information: the directior = left and the head part-of-speeéh= NN. Likewise, a rule
r € Ry encodes an event, the probability of which is conditioned\onFor instance in
DMV Ljy — Y;; Lyy represents the generation.bf as a left dependent of NV, and so
the probability of rewritingLy,y, — Y5 Ly Willbe P(A= JJ|H = NN,d = L).

Suppose in DMV we are interested in smoothifgA | H, d) with a component that

excludes the head conditioning event. Using linear intetpm, this would be:

We will estimate PCFG rules with linearly interpolated pabbities by creating a tied
PCFG which is extended by adding rules that select betweemtin distribution”, and
the backoff distribution?,, and also rules that correspond to selecting an argumemt fro
those distributions. In this example, we will start by rejhg for eachA € V. the rule

Ly — Yallyy € Ry with the following four rules:
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Liny — Li,NN select distributionP; with probability \;
Liny — LiNN select distribution?, with probability A\,
Liyy — Ya Ly  generate dependertaccording toP,

LI vy = Ya Llyy  generate dependedtaccording toP;

Note that in order to have the conditioning structure wergesinamely thaP;(A|d)
is independent of the hedd — the ruleL? v — Y4 L)y, needs to be tied together with
other rules of the forni; ,; — Y, L', for all parts-of-speectf < V.

More formally, given a CFG7 = (N, T, S, R), let. A C N be the set of nonterminals
whose rules we want to smooth. We will define an extended GF& (N’, 7, S,R’) in
the following way. The set of terminal symbodisand the start symbd remain the same.
Let the set of nonterminals” = N U {A* | i € {1,2},3A € A}. Thatis, we have each
nonterminal inA/, and additionally nonterminald!, A? for each nonterminall whose
distribution over rules is to be smoothed. Let the set ofslecontain all the unsmoothed

rules of R4, as well as rulest — A* andA* — 3 whenA — 3 is a smoothed rule:

R =  {Ra|AcN\A}
U {A—-A|ie{1,2}, Ac A}

U {A"—=pBlie{l,2}, Ae A, A— B € Ry}

Having defined>’, we now set about tying thd? nonterminals. We will define a tied
PCFGH' = (G’, 0, GgR) where )\ is the vector of probabilities over interpolation
rules (e.g. A — A?) andd is the vector of probabilities for all other rules. Ldtbe a

partition of A where each partitiosd; is composed of nonterminals whose rules we want
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to smooth together. This will require that for each partitid; € A, VA, A’ € A; |Ra| =
|Ras|. We will define set\? = {{A% | A € A;} | A; € A} of sets of nonterminals to tie.
For each set of nonterminal$’ € A2, we define the tied-PCFG equivalence relatian

over the nonterminals inl?>. Rules that are analogous according to the model should be
made equivalent. LeR’ denote the set of rule equivalence classes defined by thisoml

We must finally define parametetsfor each rule equivalence class R’. These together
define a tied-PCFG{'.

For example, in EVG to smootR(A = DT | d = left, H = NN,v = 0) with
Py(A = DT | d = left,v = 0) we define the backoff set to &}, | H € V,}. In the
extended grammar we define the tying relation to form ruleivadgence classes by the
argument they generate, i.e. for each argumert V., we have a rule equivalence class
{Li = YaHp | HeV,}.

We can see that in gramm@f eachN € B eventually ends up rewriting to one o8f's
expansions? in G. There are two indirect paths, one throutyf and one throughv®z.
Thus if we define a PCF@5, ¢), we would assign the probability &f — 3 in G, ¢n_s,
as the probability of rewritingv asg in G’ via N* and N2, That is:

¢N—)ﬁ = )\N_>Nb19Nb1_>B —'— )\N—>Nb29Nb2—>ﬁ
The example in Figure 3.1 shows the probability tbgl_;] rewrites toY;, dog; in grammar

G.

3.4 Estimation from Held-out data

If we use linear interpolation smoothing we need to have sorathod of estimating the

mixing weights. In supervised models, the mixing weights igpically set to maximize
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1 1
L Liog Liog
Ldog Ll‘b-l Ll‘bg
Pg PN = Pqgr dog + Pgr dog
Ybig N

Yyig  dogr, Yyig  dogr,

Figure 3.1: Using linear interpolation to smodth,, — Y, dog;: The first component
represents the distribution fully conditioned on head, while the second component
represents the distribution ignoring the head conditigewent. This later is accomplished

by tying the ruleL}?? — Yy, dog,, to, for instanceL}; — Yy, caty, L2, — Yy fishy,

etc.

the likelihood of a held-out data set. The held-out set gareslea of how often in general
events will occur that were unseen or rare in the training.d&urthermore, the weights
are typically bucketed into equivalence classes by some measure of the frequency of the
conditioning information. In general we would expect marigequent conditioning events

to require more smoothing. For instance applying the metlesdribed by

Chen (1996) we would group conditioning informatighby the per-nonzero-event

frequency of rules for that conditioning information, itsy:

f(t,r)
Z | {reRz: f(t;r) >0}

TER

This is done by dividing the range of such values into paii and assigning eachto
it's corresponding partition. One challenge of using a Eimapproach in the case where
is a hidden variable is that(t, ) will not be observed, and hence the bucketinglofill
not be observed.

One solution is to only use whatever observed data is avaifaba given distribution.
For instance, if we are conditioning on parts-of-speeatr) thhose are fully observed, even
if the valence is not. Thus we bucket One extreme variant igfithto simply have a
single bucket. Another option is simply not use bucketing] have a parameter for each

conditioning event. The mixing parameters can then be setatximize the likelihood of
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Directed Acc Undirected Acc.

Bucketing Train Dev Train Dev
No interpolation| 0.546(00°7) | 0.512(00%) | 0.675(0.2) | 0.652( 105

—0.064 —0.062 —0.025 —0.027

—0.068 —0.058 —0.029 —0.026

8 Buckets 0_543(+0-032 0.506( T0-025 0_673(+0.013 0.649( +0-010

—0.064 —0.062 —0.026 —0.027

) (Zo0s2) ) (Zo02r)
1 Bucket 0.562(F0037) | 0.527(F00%%) | 0.679(Fo0se) | 0.656(oose)
) (Zo.062) ) (Zo.027)

( (

Individual | 0.584(*(>0) | 0.549( 7 o0) | 0.692(F(71) | 0.671(F %)

—0.038 —0.038 —0.014 —0.015

Table 3.1: Results smoothed DMV using held-out estimatoh.inear Interpolation using
EM. All results use randomized initialization

the held-out set using EM, as in the supervised case.
We estimate by alternating an iteration of EM to estintate the training set leaving

A fixed, and an iteration of EM to estimakeon the held-out set, leavirgfixed.

0* = argmax,logp(s|f, \*)

A = argmax, log p(s'|6*, \)

While this clearly does not globally maximize the likelirdsoof either the training
or development sets, if we commit to finishing on either side,are guaranteed a local
maximum in that likelihood.

The results are shown in table 3.1. We can see that having kebtar each POS
outperforms having 1 bucket for all parts of speech or dgdhe set of POS into 8 buckets,

based on frequency.
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3.5 Bayesian Estimation with Linear Interpolation Smooth-
ing

An alternative to the heldout estimation is to use Bayesi@org which incorporate our
prior beliefs about what the mixture parameters are doindgpeMsmoothing, we should
expect first of all that there should be an a prior bias towtrd®ackoff distribution, since
its estimate, requiring fewer examples, will presumablybke#&er. We can then perform
estimation using the Variational Bayes technique (Kuahamd Sato, 2004).

We place Dirichlet priors on both the interpolation mixingrameters\ and compo-

nent distribution parameters In this approach we will use Beta priors on the and

uninformative symmetric Dirichlet priors ah This gives an overall model which is:

VN € N\ An|Bi, B2 ~ Beta(fy, B2)
VN eNy, Onlay ~ Dir(ay)

L ~ PCFG(G", 0, \)

whereN, is the subset alV’ whose rules correspond to interpolation parameters, and
Ny = N'\\N,. Since the priors ofl are uninformativery = 1 VYN € Nj.

Since the Beta is the two-dimensional analogue to the Déiclwve can estimate this
using the Variational Bayes technique for tied-PCFGs witticBlet priors which we dis-
cussed above.

One thing to notice is we can think of linear interpolatiortie Bayesian framework
as placing a mixture of Dirichlets prior on the rule probdig$ of G.

As we will see the choice of hyperparametgisj; is important, as their setting re-

flects the prior information we wish to describe. Our inis&lategy was inspired by an
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early technique we tried called collapsed interpolatiohiclv we discuss in Appendix D.
This it turned out performed similarly to linear interpatat. Collapsed interpolation in-
corporates the prior knowledge that conditioning evends llave been seen fewer times
should be more strongly smoothed, and that the model will start to ignore the backoff
distribution after having seen a sufficiently large numidéraining examples. In collapsed
interpolation, for each nonterminal we wish to smooth, we add a new rue — N°
which represents choosing to back off. Thus the smoothelghitity of a ruleN —
becomesP(N — () = Pi(N — 8) + Pi(N — N°)Py(N° — ).

In those experiments we set the hyperparameter corresmpidi—+ N° to 2 times the
number of other rules i&v. We can interpret the linear interpolation setting as faetp
P (N — p) into two decisions: one of which decides not to use the bdacksfribution,
and the other of which decides which rule to use, given thésatetnot to use the backoff
distribution.

Suppose we take the Dirichlet distribution o¥erassociated withlV, and examine the
marginal probability ofV — N®. We would have that,_, y» ~ Beta2K, K).

We can accomplish a similar hyperparameter setting in tieali interpolation case by
setting the Dirichlet hyperparameters for ea¢h— N N — N2 decision to( K, 2K)
respectively, wher& = |R s, | is the number of rewrite rules fav in G. *

Results using this technique for DMV and EVG are given in &&hP.

One advantage to the Linear Interpolation approach, ofsegus we have a bit more
flexibility about setting the hyperparameters. Table 3@shthe results of leaving the 2:1
ratio constant between backing off and not, while varyisgttength. We can see for both
DMV and EVG, having reasonably strong preference is immbrta

One concern is whether for a strong prior, the model canyré&lsaid to be learning

We set the other Dirichlet hyperparameters to 1.
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Directed Acc Undirected Acc.

Model Smoothing Train Dev Train Dev
DMV None 0.583(Zysy) | 0549(Tit) | 0-689(%50n) | 0-668(%5415)
Lin. Interp. 0.625(f8:8}§) 0.593(f8:8}i) 0706(*8883) 0.683(fg:883)
EVG None 0.526(*0017) | 0.500(*24%) | 0.679(751%) | 0.657(hm)
Lin. Interp.-Fixedg()\) | 0.617(*013) | 0.590(*2121) | 0.716(00%4) | 0.696( 0 000)
Lin. Interp. 0.658( 0 0o%) | 0.629(F003%) | 0.734(F000%) | 0.712()0%)

Table 3.2: Results for DMV, EVG smoothed with Linear Intdgiimn trained using Varia-
tional Bayes.

the estimates. To explore this, we ran an experiment whemowmt learn the mixing pa-
rameters. Eacl(\y) is fixed to its prior, and we reestimajét) andg(6) using Variational
Bayes. The result is shown in Table 3.3. As can be seen, tharelear benefit to learning

theq(\)s, improving the development set directed accuracy frora®t6 0.629.

3.5.1 Priors Preferring Backoff distribution

Another option is to use a beta prior on the mixing parametdish encodes the intuition

that we should prefer the backoff distribution to the moig/foonditioned distribution.
The way we do this is to use a beta prior an A\, with hyperparameterg, 1, for

0 < B < 1. Avisualization of this prior is given in Figure 3.2. Noteatla smallep results

in a Beta more concentrated around the distribution that plitits mass on selecting to

backoff. By setting the second hyperparameter to 1, andgdtitiatl’ (5 + 1) = gT'(/5) and

I'(1) = 1, the density function reduces to:



54

Directed Acc

Undirected Acc.

Model | 5 | 5 Train Dev Train Dev

DMV | 5 | 10 | 0.585(% ) | 0-551(%ys) | 0-690(Z50n,) | 0-668(%50r,)
10| 20 | 0.574(%557) | 0.540(T(is7) | 0-684 () | 0661 (% 50)
20 | 40 | 0.634( " ;) | 0-603(Fg3) | 0-709(%o0) | 0-687(Fyng)
35| 70 | 0.625(%yy;5) | 0-593(%501a) | 0-706(Zi0a) | 0-683(Zyiy)
60 | 120 | 0.622(";55x) | 0592(%i7) | 0-703(Fyis) | 0-683(%)5:5)

EVG | 5 | 10 | 0.555(% ;) | 0-530(%s,) | 0-693(Fg) | 0-671(%yin)
10| 20 | 0.657(%;y5) | 0-624(% (i) | 0-731(Zyry) | 0-708(%5ro)
20| 40 | 0.632(%yys) | 0-608(15,) | 0.723(Tgayy) | 0-703(%y0r7)
35| 70 | 0.658( )y ) | 0-629(%5im) | 0734(Zgim) | O-712(%yiny)
60 | 120 0.657 (" ,1) | 0-623(i) | 0-732(%yiny) | 0-708(% o)

Table 3.3: DMV and EVG smoothed using Linear Interpolatiarying strength of inter-
polation hyperparameters, 5,



55

Directed Acc

Undirected Acc.

Model | 51 | B Train Dev Train Dev

DMV | 35 | 100 0.605(77) | 0-576( i) | 0-693(Zyrs) | 0-671(Z0ns)
35 | 70 | 0.625(4;5) | 0-593(%yii) | 0-706(F i) | 0-683(Fy5p0)
35 | 35 | 0.633(5qr) | 0-595( (i) | 0-708(Zns) | 0-684(%50)
70 | 35 | 0.642(%43) | 0-599(* (i) | 0-712(Fny) | 0-687(Z0s)
100| 35 | 0.623(%)y;;) | 0.581( %) 17) | 0.703(is) | 0-678( (i)

EVG | 35 | 100 0.686( ) | 0-652( (i) | 0-748(Lyung) | 0-722( % 05)
35 | 70 | 0.658( yqy) | 0-629(% (i) | 0-734(Zyung) | 0-722( % 0r)
35 | 35 | 0.658(yqns) | 0-623(%yir) | 0-728(%yg) | 0-705(% 0
70 | 35 | 0.611(%yzs) | 0.572(Ze) | 0.705(ins) | 0-679(%5550)
100| 35 | 0.607 (i) | 0-568(qis) | 0-703(%5i) | 0-677(Zar)

Table 3.4: DMV and EVG smoothed using Linear Interpolatiarying relative strengths

of 517 52
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10

———p=01

—B=5
p=1

P(AIR)
(6]

Figure 3.2: Plot op(\;|3) vs. A, for variouss hyperparameters.

P(MIB.1) = %A?*u—w

= AN

One important question is how to sétA smallerg implies a stronger bias towards the
backoff distribution.

Table 3.5 shows the result of varyingwith a prefer-backoff prior for the smoothed
DMV model. As we can see the resulting model varies widehhlite choice of3. For

£ = .1the resultis encouraging, with directed accuracy almobigisas with the previous
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DMV-Smoothed Directed Accuracy Undirected Accuracy

6] Train Dev. Train Dev.

1 0.612( %y ) | 0-582(%v) | 0-701(F5ns) | 0-679(Fyoe)
2 0.592( % yyy) | 0-565(Z1) | 0-694(%5m) | 0-674(Z0n)
3 0.582(*5is) | 0-553(L50ia) | 0-687(ZLynns) | 0-669(Z (i)
4 0.573 (s ) | 0-544(Zioar) | 0-686( %5 05s) | 0667 (Zgr)
5 0.530(Zi6r) | 0-498(L5050) | 0-660(Zsy) | 0-636 (%)
6 0.522( " 10g3) | 0-493(Lyoss) | 0-667(Zysr) | 0-645(%007)
7 0.572(% i) | 0541 (Z50i0) | 0-687(Zrg) | 0-664(%00i)
8 0.565(Zyusy) | 0-538(Zyss) | 0-684(55055) | 0-665( 1)
9 0.526( %) | 0-494(Zoqs) | 0-669(%555) | 0647 (Zy)

Table 3.5: Smoothed DMV with prefer-backoff prior 1 as

prior.

Another Prior preferring the Backoff Distribution:

We can make a similarly shaped prior favoring the backoffrittistion by replacing the
Beta(3, 1) of the model in the previous section withBata(1, 3) distribution, forg > 1
(shown in Figure 3.3). That is, the hyperparameter assatiaith the backoff distribution
here isg, and the hyperparameter associated with the fully conwbtilodistribution is 1,
the reverse of the case in the previous model. However, gined it has a similar effect
on shape of the prior. Note that while both versions of therpgpiace most of the mass
on smaller)\’s, prior 2 places more on smalk such as\ < 0.2; in contrast prior 1 places
most of the mass right near= 0, but does not strongly prefér = 0.1 to A = 0.2. The

results of estimating this model with Variational Bayes sttewn in Table 3.6, for various

8.
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P(AIB)

— B=10

—— B=30

B=20 |

Figure 3.3: Beta Prior favoring Backoff distribution, viens 2

0.3 0.4

0.5 0.6

0.7 0.8 0.9

Directed Accuracy

Undirected Accuracy

6] Train Dev. Train Dev.
DMV-Smoothed| 30 | 0.629(*0%) | 0.594(001) | 0.706(*002) | 0.682( 0 0>2)
DMV-Smoothed| 20 | 0.608(00°) | 0.573(F00%%) | 0.698(002%) | 0.674( 0 0)
DMV-Smoothed| 10 | 0.558( ")) | 0.524(000Y) | 0.678(*00%) | 0.654( 0 022)
EVG-Smoothed| 30 | 0.623(*007) | 0.595(* 0 0%2) | 0.720(*00%2) | 0.699( (o)
EVG-Smoothed 20 | 0.630(f)0s) | 0.597(F00s)) | 0.720(F0022) | 0.696(F007)
EVG-Smoothed 10 | 0.621(*)025) | 0.593(F00°0) | 0.718(F00>7) | 0.697 (00

Table 3.6: Smoothed DMV and EVG with prefer-backoff prior2)Xxs
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3.6 Analysis

In order to see where the DMV improves with linear interpiolat we examine the differ-
ence in correct dependencies over 10 runs for DMV with linaterpolation less DMV
without. These are presented for Sections 2-21 broken dowarious ways in Table 3.7
(by child part-of-speech and direction), Table 3.8 (by hpad-of-speech and direction),
and Tables 3.9 and 3.10 (by head/child part-of-speech. pair)

Looking at Table 3.7 we can see that the major improvememigedoom DTs that are
left dependents, RBs that are right dependents, and nowsndepts in both directions.
This comes at the expense of many fewer correct VB and VBN dghendents and JJ left
dependents. From Table 3.8 we can see improvements in traefgéndents of NN, NNP,
VBZ and VBD, as well as right dependents of IN; left dependefit]Js fair much worse.

Breaking this down further, from Table 3.9 of the 5301 net m®srect dependencies
with a DT as the child, these almost exclusively come from BitNl NNS, with a handful of
NNP. Of net new correct dependencies with RB as the childytbst prominent are VBZ,
VBD, VBP, and MD; these are offset by a large number of netiiremi RB dependencies
whose head is JJ. Also to be noted are 2274 net correct NNIRP dependencies. A large

net decrease in correct dependencies are-MIB.

DMV vs. EVG

We analyze the difference between DMV with linear intergiolaand EVG with linear
interpolation by again looking at the difference in corredges in the training set. These
are presented for Sections 2-21 in Table 3.11 (by child plaspeech and direction), Table
3.12 (by head part-of-speech and direction), and Tables&hdl 3.14 (by head/child part-
of-speech pair).

Most of the major improvements to adding valence in the aentrdistribution accrue



Child | Correct| Correct Difference || Difference| Difference
POS DMV | DMV _LI | (DMV _LI-DMV) Left Right
DT 24405 29706 5301 5388 -87
RB 6667 11472 4805 -1541 6346
NNP 24856 28693 3837 3077 760
VB 7104 4881 -2223 -16 -2207
JJ 15385 13205 -2180 -1231 -949
VBN 5960 4283 -1677 -64 -1613
NN 39688 41326 1638 867 771
NNS 21306 22409 1103 713 390
CD 9712 8984 -728 -619 -109
IN 10821 10094 =727 -141 -586
VBG 4207 3661 -546 -23 -523
RP 630 1011 381 0 381
CC 964 1299 335 318 17
VBZ 14758 15065 307 -51 358
POS 1611 1879 268 261 7
PRP$ 2095 2362 267 267 0
VBP 8051 8250 199 29 170
JIR 908 738 -170 -59 -111
TO 2598 2732 134 -1 135
PRP 14946 14858 -88 -210 122
NNPS 1139 1055 -84 -63 -21
WP 576 493 -83 -68 -15
JJS 265 225 -40 -51 11
$ 635 600 -35 146 -181
PDT 84 51 -33 -28 -5
WRB 465 434 -31 -18 -13
EX 843 821 -22 -24 2
MD 3941 3955 14 3 11
WDT 163 150 -13 10 -23
VBD 15440 15451 11 14 -3
RBS 109 98 -11 -17 6
UH 170 160 -10 -24 14
LS 24 18 -6 -6 0
RBR 519 521 2 18 -16
Fw 89 91 2 4 -2
SYM 145 146 1 -9 10

60

Table 3.7: Change in correct dependencies by child paspeéch across 10 runs for DMV
with and without Linear interpolation smoothing. Left indies child is a left dependent of
its head in system output.
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Head | Correct| Correct Difference || Difference| Difference
POS DMV | DMV _LI | (DMV _LI-DMV) Left Right
NN 33387 36428 3041 3309 -268
NNP 10056 12312 2256 2482 -226
VBZ 26550 27980 1430 1285 145
JJ 2414 986 -1428 -1425 -3
IN 21358 22557 1199 -63 1262
VBD 27195 28353 1158 1139 19
ROOT | 45985 46937 952 0 952
VBP 17108 17930 822 656 166
NNS 20158 20962 804 533 271
RB 621 1401 780 -6 786
VBN 4072 3408 -664 -420 -244
MD 9592 10011 419 309 110
TO 2855 2557 -298 5 -303
JIR 375 94 -281 -282 1
POS 2312 2557 245 245 0
CD 2076 1840 -236 -373 137
VBG 3431 3273 -158 -160 2
WP 125 76 -49 -12 -37
NNPS 758 715 -43 -43 0
WRB 305 269 -36 0 -36
$ 990 958 -32 12 -44
VB 9071 9044 -27 -302 275
CcC 120 145 25 0 25
SYM 69 88 19 -4 23
JJS 12 0 -12 -12 0
PRP 74 82 8 6 2
RP 3 10 7 0 7
FwW 65 58 -7 -6 -1
DT 100 107 7 -10 17
UH 27 22 -5 -9 4
WDT 3 7 4 2 2
RBR 12 10 -2 -5 3
RBS 0 0 0 0 0
PRP$ 0 0 0 0 0
PDT 0 0 0 0 0
LS 0 0 0 0 0
EX 0 0 0 0 0

Table 3.8: Change in correct dependencies by head pafeafet across 10 runs for DMV
with and without Linear Interpolation smoothing. Left indies child is a left dependent
of its head in system output.
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Table 3.9: Difference in correct dependencies by child ROIBMNs) vs head POS(rows)(Part 1) for DMV with Linear Ipter

lation less DMV across 10 runs. Bold: abs(differene&(00. Italics: abs(difference)L00.
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Child | Correct| Correct Difference || Difference| Difference
POS DMV EVG | (EVG-DMV) Left Right
NNP 28693 22584 -6109 -5139 -970
IN 10094| 15976 5882 1242 4640
DT 29706| 26320 -3386 -3542 156
CcC 1299 4200 2901 2756 145
NN 41326 44127 2801 687 2114
VBN 4283 6766 2483 28 2455
JJ 13205| 15139 1934 983 951
VBZ 15065| 16465 1400 309 1091
VBP 8250 9649 1399 427 972
MD 3955 5017 1062 96 966
NNS 22409| 23361 952 13 939
RB 11472 12419 947 1220 -273
VBD 15451| 16365 914 48 866
VB 4881 5683 802 76 726
NNPS 1055 534 -521 -326 -195
CD 8984 9435 451 134 317
VBG 3661 4022 361 58 303
POS 1879 1532 -347 -338 -9
PRP 14858| 15139 281 -118 399
JIR 738 889 151 -43 194
JJS 225 368 143 91 52
WP 493 620 127 47 80
TO 2732 2824 92 -419 511
RP 1011 1102 91 0 91
WRB 434 509 75 35 40
PRP$ 2362 2290 -72 -72 0
UH 160 225 65 58 7
$ 600 556 -44 56 -100
EX 821 855 34 24 10
LS 18 51 33 33 0
RBR 521 547 26 -146 172
RBS 98 79 -19 -37 18
WDT 150 139 -11 -1 -10
SYM 146 151 5 5 0
FwW 91 87 -4 -5 1
PDT 51 54 3 2 1

Table 3.11: Change in correct dependencies by child paspeéch across 10 runs for EVG
and DMV with linear interpolation smoothing. Left indicatehild is a left dependent of
its head in system output.
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Head | Correct| Correct Difference || Difference| Difference
POS DMV EVG | (EVG-DMV) Left Right
VBD 28353| 33569 5216 1989 3227
VBZ 27980| 33131 5151 2147 3004
ROOT | 46937| 50173 3236 0 3236
NNP 12312 9131 -3181 -3636 455
VBP 17930 20776 2846 1531 1315
VBN 3408 5107 1699 -10 1709
IN 22557 21329 -1228 -325 -903
MD 10011| 11075 1064 760 304
$ 958 404 -554 -11 -543
POS 2557 2028 -529 -529 0
NNPS 715 210 -505 -505 0
CD 1840 2321 481 386 95
TO 2557 2993 436 -19 455
NNS 20962 21288 326 -594 920
VB 9044 9336 292 -376 668
VBG 3273 3545 272 14 258
NN 36428 36212 -216 -2142 1926
WP 76 174 98 -5 103
JIR 94 37 -57 -69 12
JJS 0 53 53 10 43
JJ 986 938 -48 -226 178
RBR 10 54 44 -3 47
WRB 269 303 34 0 34
RB 1401 1369 -32 -94 62
PRP 82 62 -20 -21 1
UH 22 38 16 9 7
CC 145 131 -14 0 -14
RBS 0 11 11 2 9
SYM 88 92 4 0 4
DT 107 111 4 -35 39
Fw 58 60 2 -1 3
WDT 7 8 1 -5 6
RP 10 10 0 0 0
PRP$ 0 0 0 0 0
PDT 0 0 0 0 0
LS 0 0 0 0 0
EX 0 0 0 0 0

Table 3.12: Change in correct dependencies by head papesfeh across 10 runs for EVG
and DMV with linear interpolation smoothing. Left indicatehild is a left dependent of
its head in system output.
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to dependencies headed by verbs, as well as ROOT (Table. 3Br2pking the results
down by child part-of-speech, major improvements acrud\tcdC, NN, JJ, VBN, VBZ,
and VBP dependents(Table 3.11). In Table 3.13 we see thaffTR@@rovements mostly
come from identifying verbs as the root. Net newly correqetelencies headed by verbs
come from across all child categories other than NNP (seaaehotably NN, IN, and
CC.

The major thing that EVG does worse than DMV are for NNPs a<ttile , as well
as NN— DT dependencies, of which EVG with linear interpolationsn2b55 fewer than
DMV with linear interpolation. (Table 3.13). Of the 6109 rietver net correct dependen-
cies with NNP as the child, 3144 are NNP headed, with mostefémainder distributed
among VBZ, ROQOT, VBD, IN, POS, and NNPS heads. It is notatd¢ NNP dependents
and NN—-DT dependencies where a point of major improvement in gaiojmfDMV to
DMV with linear interpolation, so these results can be tHdugf as partially offsetting
each other when looking at the whole change from DMV to EVG.

We also plotted development set directed and undirectagd@acyg vs. variational lower
bound for DMV and EVG each with linear interpolation. These given in Figures 3.4a,
3.4b, 3.5a, and 3.5b, respectively. Each point repres@ntmizlom restarts of its respective
model, of which the one with the highest lower bound valuegased until convergence
on WSJ10. Compared to Figure 2.7 for each of these models iher clearer group of
points in the upper right of the graphs, which correspondsgb accuracy and a relatively
high value for the variational lower bound. One can also keé the upper-right group
of points for EVG with linear interpolation has higher acaty than those for DMV with
linear interpolation.

Additionally, we tried initializing each model from the gbétandard dependency trees,
and training the models until convergence. Mixing parameggiational posteriors are

initialized to their priors. The results are marked with amXigures 3.4a, 3.4b, 3.5a, and
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3.5b In both cases the run initialized from the gold standasdilts in a high accuracy by
both measures, and a low value of the variational upper hound

Also in both cases, the accuracy decreased from a highlindlae (DMV: 0.778,
EVG: 0.781) to a relatively lower converged value (DMV: BGEVG: 0.714), indicating
model errors. This is unsurprising, since we know our unstged models to be very

unsophisticated relative to those used in supervisedrgarsi

3.7 Conclusions

In this chapter we examined several different smoothingises for PCFGs, and evaluated
these schemes on the DMV and EVG. Overall we saw that thetiara Bayes approaches
tended to perform better than setting the hyperparametarsiaximum likelihood on a
held-out set. The linear interpolation approach in whictorpweight is placed on both
parameters outperform the linear interpolation techrsgouewhich the prior simply puts
weight on the backoff distribution. We saw that having a oeably strong prior was useful,
but also that estimating the mixture weights contributeseaigdeal to good performance,

SO0 we are not simply setting the mixture weights by havinganst prior.
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Directed Accuracy vs Variational Lower Bound
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Chapter 4

Lexicalization

4.1 Introduction

In the previous chapter we saw that smoothing can improvéetm@ing performance of
DMV and EVG. These models, as we have seen, treat the pasjgseeich as observed
when inducing the dependency structure and model parasnete have, however, an
additional source of observed information that these nwded not leveraging: the words
themselves. Lexical features are a key element of stateesért supervised dependency
and constituency parsers (e.g. (Charniak, 2000; Colli@#891Eisner, 1996; McDonald et
al., 2005)...), and since that lexical information is aahlé it seems reasonable to try to
make use of it.

The reason lexical features are potentially useful is b&edioe current units of gener-
alization DMV and EVG use, the parts-of-speech, are tooss&r capture many of the
phenomena we see in syntax. For instance, we might be itgdri@scapturing the fact that
transitive, intransitive and ditransitive verbs shouldéndifferent numbers of arguments.
Similarly, we might presume different nouns or verbs migatmhore or less likely to be
modified, or have particular modifiers or arguments.

72
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In this chapter we will explore a series of different ways mdarporating lexical fea-
tures into the basic EVG model. These will examine both tharedistribution classes in
EVG, namely the stopping and argument part-of-speechildisiions, as well as the new

distribution over argument word.

4.2 Lexicalized Grammar Framework

The basic approach in this chapter will be to extend the EVii#-lspad bilexical PCFG
described in Chapter 2 to incorporate any of the lexicaliiest we will make use of here.
We will then be able to make independence assumptions, tlenied-PCFG framework,
to investigate the effects of different model structures.

We can first replace every instance of a part-of-speéds an event with the part-
of-speech/word pairda. We will then want to factor the distribution that predictet

part-of-speech/word paita given some conditioning context informatiéhas:

P(Aa|C) = P(A|C)P(a|C)

In order to incorporate this, we have to extend EVG to allow tlonterminals to be
annotated with both the words and parts-of-speech of thd. h€his is done as follows.
First we remove the old rules, — L, R, for each part of speechA € V.. Then we
mark each nonterminal annotated with a part-of-speechsasainotated with its head,
with a single exceptiony’,. We will replaceY 4 with a nonterminal’, 4, one for each (ar-
gument part-of-speech, head part-of-speech, head waptBtirArgument part-of-speech
generating rules such ds;, — Y. LY, will be replaced withL};, — Yam, LY,. We
will add a new nonterminal,, for eachA € V,.,a € V,, and the rule 451, — Yaa

andY,, — La, Ra.. The ruleY,y, — Ya, corresponds to selecting the word, given its
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YNN YNN,VBZ,barks
I
/\ YNN,dog
LNN Ry N
I I
’ 0
LN RN N
2\ | LN N, dog RN N, dog
Ly n NNg \ \
L RQ
/\ NN,dog NN,dog
I I
2
Ypr LG\IN LN N, dog NN,dogr
T~ |
L1
DTy DTgr NN
/\ YDT,NN,d LN n.d
Yy LN \ e 1
1
_ NN Y DT, The LN N, dog
NN L — T /\
DT, Ther, DT,Theg e L(])\]N’dog
I I
Y JJbig NN,dogy,
JJ.bigy, JJ,bigy

Figure 4.1: A subtree from an unlexicalized EVG parse, aedctirresponding subtree in
lexicalized EVG, which adds word annotations.

part-of-speech, the part-of-speech of its head, and itd.hea

4.3 Experimental Setup

Since lexical features are much sparser than unlexicalifest we will train our lexical
models on larger datasets than those in Chapter 3.

In addition to WSJ10, we include 1,327,754 words of New Yairkds from Gigaword
(Graff, 2003), prepared as follows. We used sections 1998299410. We included only
documents marked as article type “story”, and included emligue sentences of greater
than length 1, which excludes many clear examples of nonisid¢ke input.

We trained Ratnaparkhi’s part-of-speech tagger on thePfiin Treebank Wall Street
Journal, sections 2-21. We then tag the New York Times datapved punctuation, and

kept only sentences of length no more than 10. This resuleniadditional 1,327,754
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Lexicalized Extended Valence Grammar (LEVG)

n

Rule Description

S —  Yag, selectA as root part-of-speechRZf indicates root)

Yagrn — Y. generate: as word of part-of-speech

Yun — Ly Ryn Move to split-head representation

Lyn —  Lomn stop generating argumefl&ft,head #, no arguments

Ly, — Ly, continue generating argumefist,head # no arguments

Ly, — Lian stop generating argumefieft,head #, one or more arguments
Ly, — Lomn continue generating argumefis$t,head #, one or more arguments
Logn — Yaun LYy, argument #|left,head #,argument is not nearest to head
Lign — Yaun Lomn argument #|left,head #, argument is nearest to head
Logn — Hbhyg

Rygn —  Romgn stop generating argumefright,head #, no arguments

Run — Ry, continue generating argumefmtght,head # no arguments
Ry, —  Rimp stop generating argumefright,head #, one or more arguments
Ry, —  Romn continue generating argumejmtght,head #/, one or more argument
Romn — Ry, Yaun argument #A|right,head #, argument is not nearest to head
Ry, — Rogn Yamn argument #|right,head #, argument is not nearest to head
Rogn — Hhg

Table 4.1: Schema for Lexicalized EVG
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words of data.

Each lexicalized model is initialized from the best resfilumning 600 smoothed EVG
models, trained on WSJ10. All results in this section wilod the average over 10 runs,
meaning in sum we run 6000 EVG models, select the top modelaf eohort of 600, and
initialize the lexicalized model from that. We use the vatiaf EVG smoothed using linear
interpolation with Beté2 K, K) priors (K = number of parts-of-speech) on the mixture
parameters, which bias the learners to put weight on botinster

To separate out effects of the random initialization of EMfBoas each of our lexical-
ized models, as well as make experiments on larger amouistafpractical, we use the
same initializing trained EVG parameters for each of the emdelow.

To prepare for unknown words, we replaced any word séesr fewer times in the

training sets with “unk”, where unless otherwise specifiee- 5.

4.4 Models

4.4.1 Argument Distribution: Model 1

One possibility is to consider how the distribution overuargnt parts-of-speech might
depend on the head word. We might imagine the head partezfespto be too coarse a
substitute for the head word, and that a more precise clagstioé helpful. For instance,
“says” is usually tagged as a VBZ. However, “says” often @sdn constructions such as
“John says the big dog barks.” so it is much more likely to haverb as its argument than
e.g. “gives” does. We will model this phenomenon by conditig the probability of an
argument part-of-speech on its head word.

Our first model explores extending EVG by conditioning thelability of the depen-

dent part-of-speecH on the head word in addition to the head POR, valence position



77

e

NN VvVBZ DT JJ NN VBZ
John says the big dog barks

Figure 4.2: Dependency tree for sentence with head “saysitdlthat the right argument
of “says” is a VBZ, which would be unlikely as the right argumef the VBZ “gives”.

v and directiond. We smooth this distribution with the smoothed EVG modekdésd in
Chapter 3. The backoff structure is outlined in Tables 4@ 48. We explored two con-
ditioning structures for thas associated with selecting between our new component, and
the old smoothed EVG dependent part-of-speech distributio one, Lexicalized Model
la, As are conditioned on the head word, head part-of-speeanaaland direction; that
is, the entire conditioning information available. In theesnd, Lexicalized Model 1b\s
are conditioned on the head part-of-speech, valence aadtidin, and ignoring the head
word in determining whether to smooth. The reason this mghddventageous is that in
cases where the head word has been relatively rarely seemywd have less information
about whether to smooth where we really want that infornmatio

In this experiment the “Stop” distribution, which determiwhether to generate an
additional dependent of heduin directiond with valence bitv is taken from the earlier
described smoothed EVG model. The distribution over theeddent word will be condi-
tioned only upon its part-of-speech, both of which are oleein this case.

To initialize, we leave the stop, dependent word, and uniéided dependent POS
components set to their smoothed EVG setting64|H hvd) is initialized to P(A|Hvd),

and the new lambdas are initialized to their prior settings.

Results

We trained using Variational Bayes, with nonsparse priatich seemed to be the most

consistantly effective technique from Chapter 3. The bessclts are given in Table 4.4.
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Component A conditioning
Stop P(s|Hvd) —
Dependent POS| P(A|Hhvd) hHvd
P(A|Hvd) Huvd
P(Alvd) —
Dependent Word P(a|A) —

Table 4.2: Lexicalized Model 1a backoff chains. The depahgart-of-speech distribution
is lexicalized. The\s associated with interpolating betweB(A|H hvd) and P(A|Hvd)
are conditioned on the everiig/vd.

Component A conditioning
Stop P(s|Hvd) —
Dependent POS| P(A|Hhvd) Huvd
P(A|Hvd) Hud
P(Alvd) —
Dependent Word P(a|A) —

Table 4.3: Lexicalized Model 1b backoff chains. The depangart-of-speech distribution
is lexicalized. It differs from Lexicalized model 1a in thhe \s associated with interpo-
lating betweenP(A|H hvd) and P(A|Hvd) are conditioned on the eventBud rather than
hHuvd.
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Model Directed Accuracy| Undirected Accuracy

Train Dev. Train Dev.
Smoothed EVG 0.658 0.629 0.734 0.712
Lexicalized 1a| 0.684| 0.650 | 0.751 0.722
Lexicalized 1b| 0.694| 0.666 | 0.757 0.737

Table 4.4: Results of Lexicalized models 1 and 1b

As we can see, conditioning on the head word give a major ivgrment over the basic
smoothed EVG model, using either variant. Variant 1b seenpetform as well or better

than 1a.

4.4.2 Stop Distribution

One important area where we expect to see a benefit to lezatialn is with with regards
to the transitivity of verbs. For instance, the verb “givdtem has both a direct object and
an indirect object, while “sleep” is very unlikely to have iadlirect object.

Our second model explores extending EVG by conditioningptfmdability of gener-
ating another dependent on the head word in addition to thd RS, valence position
and direction. The main hope is that we should be able to leeme specific valence in-
formation, particularly with regards to the transitivit{/\erbs. The backoff chain for this
model is given in Table 4.5. We also examined adding the #zied stop distribution to
Lexicalized Model 1b, which we denote as Model 3 (see Talig 4.

The results are shown in Table 4.7. We can see that addingalesonditioning to
the stop distributions does not help performance eithernvgt@ting from Smoothed EVG
(Lexicalized Model 2), or when starting from Lexicalized WM& 1b (Lexicalized Model

3).



Component A conditioning
Stop P(s|hHvd) Hvd
P(s|Hvd) —
Dependent POS| P(A|Hvd) Hud
P(Avd) —
Dependent Word P(a|A) —

Table 4.5: Lexicalized model 2 backoff chains. The stopritiistion is lexicalized, while
the dependent part-of-speech distribution is not. Eqaivaio smoothed EVG, with a lexi-
calized stop distribution.

Component A conditioning
Stop P(s|lhHvd) Huvd
P(s|Hvd) —
Dependent POS| P(A|hHvd) Huvd
P(A|Hvd) Hud
P(Alvd) —
Dependent Word P(a|A) —

Table 4.6: Lexicalized model 3 backoff chains. Both the stog dependent part-of-speech
distributions are lexicalized. Equivalent to Lexicalizetbdel 1b with the addition of a
lexicalized stop distribution.

Model Directed Accuracy Undirected Accuracy
Train Dev. Train Dev.
Smoothed EVG 0.658| 0.629 | 0.737 0.713
Lexicalized 1b| 0.694| 0.666 | 0.757 0.737
Lexicalized 2 | 0.663| 0.626 | 0.735 0.707
Lexicalized 3 | 0.687 0.656 0.753 0.729

Table 4.7: Results of Lexicalized models 2 and 3.
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4.4.3 Generating the Dependent word.

In the models above we have taken the probability of a wor@pedd only upon its part-of-
speech. This makes the event of predicting the word givepeitsof-speech be observed,
and so does not rely on any unobserved structure such thésviaald. In this section we
explore using additional conditioning information forgHdistribution.

Our fourth model explores conditioning the dependent warchot only its part-of-
speech, but the head part-of-speech as well. We extendedl miodby adding this condi-
tioning event, smoothing it using the probability of the dajiven its part-of-speech. The
backoff chains are summarized in Table 4.8.

Our fifth model modifies model 4 by conditioning the dependerrd on the head word
rather than head part-of-speech. This can be thought of &Bgiase of the intuition of
Paskin’s Lexical Attraction model (Paskin, 2001), where #ingument word is generated
conditioned on the head word. The idea is that pairs of woede la semantic affinity in
addition to their syntactic affinity, and this can be used

Where as Paskin’s model takes dependency trees to be etikelyywe have both the
valence modeling inherited from DMV and EVG to guide us, adl &g part-of-speech
information. The backoff chains are given in Table 4.9.

In our experiments with Model 5, we raise the unknown woraffub 100, to make
the model estimation feasible within reasonable memoruvirements. This results in a
vocabulary size of 755 words, with the remainder replacet thie word “unk”.

The results are given in Table 4.10. Unfortunately neithedeh improves upon the

basic Lexicalized model 1b.



Component A conditioning
Stop P(s|hHvd) Huvd
Dependent POS| P(A|hHvd) Huvd
P(A|Hvd) Hud
P(Alvd) —
Dependent Word P(a|AHd) Hd
P(alA) —

Table 4.8: Lexicalized model 4 backoff chains

Component A conditioning
Stop P(s|hHvd) Huvd
Dependent POS| P(A|hHvd) Huvd
P(A|Hvd) Huvd
P(Avd) —
Dependent Word P(a|Ahd) AHD
P(a|A) —

Table 4.9: Lexicalized model 5 backoff chains

Model Directed Accuracy Undirected Accuracy

Train Dev. Train Dev.

Smoothed EVG 0.658 0.629 0.737 0.713

Lexicalized 1b | 0.694 0.666 0.757 0.737

Lexicalized 4 | 0.696| 0.660 | 0.762 0.734

Lexicalized 5 | 0.693| 0.659 | 0.755 0.728

Table 4.10: Results of Lexicalized models 4 and 5

82
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Training set Number of | Directed Accuracy Undirected Accuracy
Words Train Dev. | Train Dev.
WSJ10 Yo s 0.658 0.629| 0.737 0.713
WSJ+NYT199407 50771 0.639 0.600| 0.719 0.694
WSJ+NYT199407-10 195805 0.616 0.581| 0.703 0.679

Table 4.11: Effect of training linear interpolated EVG widliferent amounts of training
data. We can see that adding increase amounts of NYT degaiadesacy on WSJ.

4.5 Discussion

One difference between the experiments in this chapterntrast with previous sections
is the addition of the additional NYT199407-10 data. We eixeu the effect of us-
ing additional data with EVG. We ran the system with both th8IANYT199407 and
WSJ+NYT199407-10 datasets, in addition to the regular WS&1. Recall that our search
scheme involves running 600 random models in the first stage selecting the highest
objective function model from each cohort of 20, and runreagh of those 30 models to
convergence. As in the lexicalized experiments the firstcbestage was run on WSJ10,
and the selected models were then to convergence on each tohithing sets in question.
As usual we report the average over 10 rounds. The resulfgesented in Table 4.11. As
we can see, adding the additional NYT data to training seendegrade performance by
quite a bit.

Since what we expected was that more data should help, casttdet hinder perfor-
mance, we were interested in why this was the case. We exdrnwitehypotheses: that
using part-of-speech tags from the Ratnaparkhi tagger uwfisisntly worse than the gold
tags to cause the drop in performance, and that the additi@ta was noisy or diverged
in domaine from the WSJ development set. To evaluate thehfpsbthesis, we split the

training set into two sections, trained the Ratnaparkhgéagn one half to tag the other,
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Training set | Number of| Directed Accuracy Undirected Accuracy

Sentenceg Train Dev. Train Dev.

WSJ10-gold tags 5777 0.658 0.629 0.737 0.713
WSJ10-tagged S777 0.679 0.643 0.746 0.721
NYT10-tagged 5622 - 0.548 - 0.669

Table 4.12: Effect of training linear interpolated EVG wheaining from automatically
tagged WSJ and NYT Gigaword corpora, controlling for corpize. Note that since we
do not have gold standard trees for Gigaword we cannot prgsesing results on the
training set.

and vice versa. We then train on this tagged WSJ10, and d@gatmathe dev. set. To
evaluate the second hypothesis, we trained on a small suicaf 39278 words of the
NYT Gigaword corpus (of comparable size to the WSJ10 corplibg idea here was to
control for corpus size by using a corpus of about the sanmee @ihile training on this
additional data. The results are presented in Table 4.12t & all it is clear that using
non-gold-standard parts-of-speech does not impede deaurael learning—in fact in this
case we get slightly better performance from the automatitagged corpus. Second of
all, we do in fact see a severe loss in performance when we draithe short Gigaword
corpus. This could be indicative that the Gigaword corpwspde our efforts to clean it up
is still sufficiently noisy to degrade the performance ofglistem. Or put another way, our
system is unfortunately very sensitive to noisy data, wisobf course a major weakness
in an unsupervised approach.

One question this leads us to whether the lexicalized systegtp when trained on
only the WSJ10 corpus. Recall that a major difficulty will beether we can get reasonable
statistics for lexical items on such a small corpus. In thsscwe raised the cutoff for words
to be marked “unk” if they have not been seen 100 times. Wd tieeth the Lexicalized

Model 1b and the Lexicalized model 3, which if you recall exie Lexicalized model 1b
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Model Directed Accuracy| Undirected Accuracy

Train Dev. Train Dev.

Smoothed EVG 0.658| 0.629 | 0.737 0.713
Lexicalized Model 1b-100 0.686| 0.651 | 0.748 0.722
Lexicalized Model 3-100| 0.666| 0.635 | 0.737 0.714

Table 4.13: Effect of training Lexicalized models 1b and 3/88J10, setting the unknown
word cutoff to 100 times.

by adding stop probability conditioning information. Thesults are given in Table 4.13.
The results are qualitatively similar to our earlier expernts, although in this situation
Model 3 does not perform quite as well. There is a benefit fah lh@xicalized models

from using more data.

45.1 Lexicalizing DMV

In all of the above experiments we considered the effect diraglexicalization to the
smoothed EVG model, which was the most effective model frdrapg@er 3. However, in
order to examine whether adding lexicalization is usefulnimdels other than smoothed
EVG, we here look at adding lexicalization to the basic Delsgicy Model with Valence.

Since conditioning the part-of-speech distribution onhikad word was so successful
for EVG, we will do the same for DMV. We smootR(A|Hhd) with P(A|Hd) using
linear interpolation, with &eta(|R x|, 2|Rx|) prior on the mixture distributions. The stop
distribution we leave the same as in DMV. Words are condéibon their parts-of-speech.
The backoff schema is given in Table 4.14.

We trained this model on WSJ10, setting words seen fewer il@é@ntimes to unk.
As with the other lexicalized models, we train the first stafieghe beam using regular

DMV, selecting the restart with the highest lower-boundd asing that to initialize the
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Component A conditioning
Stop P(s|Hvd) —
Dependent POS| P(A|hHd) Hud
P(A|Hd) —
Dependent Word P(a|A) —

Table 4.14: Lexicalized DMV backoff chains. The dependeart-pf-speech distribution
is lexicalized, and smoothed with the basic DMV dependerit@iaspeech distribution.

Model Directed Accuracy| Undirected Accuracy
Train Dev. Train Dev.
DMV 0.583 0.549 0.650 0.631
Lexicalized DMV | 0.611 0.582 0.705 0.687

Table 4.15: Effect of training Lexicalized DMV on WSJ10, tsgg the unknown word
cutoff to 100 times. We compare it to DMV, to show that addiogtjlexicalization to
DMV improves performance even without the gains from Chapte
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Lexicalized DMV.

The results are given in Table 4.15. As we can see addingdkzation to the argu-
ment distribution improves development set directed amyufrom 0.549 to 0.582, and
undirected accuracy from 0.631 to 0.687. Hence addingaéxation is useful, even in the

absence of additional valence information or other smogthi

4.6 Analysis: Lexicalized 1b-100 vs EVG

We analyze the difference between Lexicalized Model 1b-d4f® EVG on section 2-21,
by presenting the net differences in correct edges, showile 4.16 (by child part-of-
speech and direction), Table 4.17 (by head part-of-speedidizection), and Tables 4.18
and 4.19 (by head/child part-of-speech pair).

In Table 4.16 we see that the major improvements in the léxedhmodel come for
dependencies whose children are NNP, DT, NN,NNS, VBN, JJ,arid NNPS. The main
thing it does worse than unlexicalized EVG is for dependenevhose children are RB.
Breaking the difference down by head part-of-speech ineldhl7, the largest improve-
ments accrue to NNP, NN, IN, VBD, NNS, and JJ, though imprametsiseem very broadly
distributed. Looking at Tables 4.18 and 4.19 (NNP,NNP) &iN,DT) dependencies are
the two largest type of net improvement in moving to lexization.

Scatterplots of development set directed accuracy vsatiamial lower bound and undi-
rected accuracy vs. lower bound for Lexicalized Model 16-a4fe given in Figures 4.3 and
4.4 respectively. Each point represents 20 random restBEYG, of which the one with
the highest EVG lower bound value initializes a Lexicaledddiblb-100 model, which is
trained until convergence on WSJ10. We can see very stdrlythe right-hand side of

the graph corresponds with an area of high accuracy.
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Child | Correct| Correct Difference || Difference| Difference
POS EVG | Lexlb| (Lex1lb-EVG) Left Right
NNP 22584 27070 4486 3749 737
DT 26320| 28503 2183 2261 -78
NN 44127| 45347 1220 672 548
RB 12419| 11324 -1095 511 -1606
NNS 23361| 24376 1015 863 152
VBN 6766 7750 984 33 951
JJ 15139| 15958 819 471 348
VB 5683 6411 728 -20 748
CD 9435| 10001 566 709 -143
NNPS 534 1022 488 276 212
VBD 16365| 16721 356 122 234
CcC 4200 3852 -348 -358 10
POS 1532 1864 332 326 6
IN 15976| 15729 -247 -160 -87
VBP 9649 9500 -149 -108 -41
VBZ 16465| 16344 -121 -128 7
PRP 15139| 15039 -100 91 -191
VBG 4022 4106 84 -23 107
TO 2824 2906 82 3 79
MD 5017 4948 -69 -16 -53
WP 620 673 53 -4 57
JJS 368 316 -52 -44 -8
PRP$ 2290 2331 41 41 0
UH 225 185 -40 -30 -10
RBR 547 583 36 98 -62
PDT 54 86 32 26 6
JIR 889 859 -30 11 -41
$ 556 531 -25 -100 75
RBS 79 95 16 26 -10
WRB 509 495 -14 0 -14
LS 51 64 13 13 0
FwW 87 100 13 14 -1
WDT 139 148 9 -1 10
EX 855 863 8 6 2
RP 1102 1099 -3 0 -3
SYM 151 153 2 2 0

Table 4.16: Change in correct dependencies by child paspeéch across 10 runs. Left
indicates child is a left dependent of its head in systemuwutp
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Head | Correct| Correct Difference || Difference| Difference
POS EVG | Lexlb| (Lex1lb-EVG) Left Right
NNP 9131| 11227 2096 2429 -333
NN 36212| 37851 1639 2346 -707
IN 21329| 22584 1255 136 1119
VBD 33569| 34567 998 769 229
NNS 21288| 22068 780 741 39
JJ 938 1649 711 728 -17
VBN 5107 5738 631 162 469
ROOT | 50173| 50795 622 0 622
POS 2028| 2575 547 547 0
VBZ 33131| 33640 509 362 147
NNPS 210 690 480 480 0
VB 9336| 9762 426 129 297
$ 404 654 250 8 242
RB 1369 1171 -198 37 -235
VBG 3545| 3742 197 28 169
CD 2321| 2427 106 138 -32
TO 2993| 3097 104 11 93
MD 11075| 11177 102 114 -12
JIR 37 116 79 83 -4
WP 174 221 47 3 44
DT 111 79 -32 -8 -24
UH 38 13 -25 -19 -6
JJS 53 32 -21 -10 -11
FW 60 70 10 13 -3
RBR 54 45 -9 18 -27
PRP 62 53 -9 -10 1
RBS 11 3 -8 -1 -7
WRB 303 296 -7 0 -7
CcC 131 125 -6 0 -6
SYM 92 88 -4 2 -6
RP 10 14 4 0 4
wWDT 8 7 -1 0 -1
VBP 20776| 20776 0 96 -96
PRP$ 0 0 0 0 0
PDT 0 0 0 0 0
LS 0 0 0 0 0
EX 0 0 0 0 0

Table 4.17: Change in correct dependencies by head papesfeh across 10 runs. Left
indicates child is a left dependent of its head in systemudutp
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Table 4.18: Correct: Child POS(columns) vs Head POS(rdves)(1)
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Table 4.19: Correct: Child POS(columns) vs Head POS(rdves)(2)
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Directed Accuracy vs Variational Lower Bound
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Figure 4.3: Directed Accuracy vs Lower Bound, 300 runs ofitakzed Modell1b-100.

We also tried initializing Lexicalized Model 1b from the gottandard trees, and run-
ning variational Bayes until convergence. As in the presiobapter we initialized mixing
parameter variational posteriors to their priors. Thisesated with an X in Figures 4.3
and 4.4. As was the case for the analogous experiments for BMVEVG in Chapter
3, while the accuracy with supervised initialization is tfdi bit higher than those found
through the usual method, the lower bound associated wattptint is relatively low.

Again, the accuracy found by initializing the model from tfpeld-standard trees is
much higher, and decreases as we run. It starts with a devrsetedi accuracy of 0.780
and undirected accuracy of 0.812, and ends at 0.710 and e3@g8ctively. This indicates,

as one might expect, that our model is biased and that som# efmrs are model errors.
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Undirected Accuracy vs Variational Lower Bound
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Figure 4.4: Undirected Accuracy vs Lower Bound, 300 runsefitalized Model1b-100.
4.7 Conclusions

In this chapter we examined the utility of lexical features dependency grammar induc-
tion. We found that we were able to make great improvemerttsedinearly interpolated
EVG model by adding lexical conditioning when predicting #frgument part-of-speech.
Conditioning on the head part-of-speech also improved #scbDMV model, without
additional valence information.

Disappointingly however, we were unable to get an improvarbg incorporating lex-
icalization when predicting the valence of a particular dyas one would expect would
matter for verb transitivity. We were also unable to find amprovement by conditioning
the probability of an argument word on its head word, makisg of bilexical affinities.

We also examined the effect of data size on our models. We sslgla improve-
ment for using additional data for our lexicalized modelawhver, the additional dataset
we chose was far less clean than the Penn Treebank, and wersajeradecrease in per-

formance on smoothed EVG when run on the New York Times dakés dnfortunately
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indicates that our technique is sensitive to noise, whiamidesirable in an unsupervised

technique.



Chapter 5

Final Matters

While the experiments presented throughout most of thesipessent results on the train-
ing and development sections of the Penn Treebank WalltStoegnal, (2-21 and 24 re-
spectively), to place the work in this thesis in context wiitle rest of the field we will
present results here for several models on the test se2on,

DMV with a Logistic Normal Prior (Cohen et al., 2008) and wahShared Logistic
Normal Prior (Cohen and Smith, 2009), which we describeddatitn 1.2.5, as well as
DMV with a log-linear prior (Berg-Kirkpatrick et al., 201@ye the best previous work on
this task. The linear interpolated models presented argetigth theBeta(|Rx|, 2|Rn|)
prior. Smoothed EVG and Lexicalized model 1b outperformhlibe previous work, and
Lexicalized model 1b gives the highest reported accuracsection 23.

We were also interested in whether the improvements we féamrgkentences of length
no more than 10 remained for longer sentences. As such, wietigeenodels learned to
parse sentences with a length cutoff of no longer than 20 svdrable 5.2 shows the results
of DMV, smoothed DMV, smoothed EVG, and Lexicalized modeldtbthose sentences
of Section 24. As we can see the same trends we saw for theesBettremain for this

larger testing set. Lexicalization proves its effective)eand we still see a major benefit
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Model Variant Directed Accuracy
Test

DMV harmonic initializer 0.469

DMV random initializer 0.548(10002)

DMV Log-Normal prior * 0.594

DMV Shared Log-Normal prior 1 0.624

DMV Log-linear * 0.630

DMV Linear Interpolated | 0.604(*00%)

EVG Linear Interpolated | 0.652( *)012)
Lexicalized Model 1b 0.681(002)

Table 5.1: Results on WSJ 10 test set (section 23). * Priokwor

from smoothing.

Model Variant Directed Accuracy| Undirected Accuracy
Dev Dev
DMV random initializer |  0.458(*00%) 0.586( 0 010)
DMV | Linear Interpolated  0.492(*)0%%) 0.593( 000
EVG | Linear Interpolated  0.551(00%!) 0.638( 0 0o0)
Lexicalized Model 1b 0.592(0%) 0.665( 0 0:%)

Table 5.2: Results on WSJ 20 development set (section 24), i.

96
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5.0.1 Other Languages

We also applied our grammar induction algorithms to sewatradr language corpora from
the CoNLL-X shared task (Buchholz and Marsi, 2006). We es&d on Bulgarian, Ger-
man, Japanese, Swedish, and Turkish. As with the Englistrerpnts, we kept each sen-
tence with fewer than 10 words after punctuation was remoVee trained and evaluate
on the training section for each corpus. The results arendedirected accuracy in Table
5.3 and for undirected accuracy in Table 5.4. For all langsagher than Japanese, regular
DMV with randomized initialization works as well or bettdérain harmonic initialization.

For Bulgarian we see no improvement in directed accuraayggmom DMV to DMV-

LI, but adding lexicalization to DMV does seem to help. Adgliextra valence hurts in
both the lexicalized and unlexicalized versions of EVG.

For German and Swedish we see big improvement in moving toraized initializa-
tion, but no major difference between the models otherwise.

For Japanese the harmonic initialization actually worksdoéhan randomized. We see
an improvement adding the basic linear interpolation to DM no major improvement
after that.

For Turkish there is a big improvement in DMV moving to randped initialization.
However, adding linear interpolation to DMV results in ditéd directed accuracy scores.
Examining the output, it seems this results in making eakértohe dependent of the word

immediately to its left.

5.1 Another look at Randomized Initialization

It is undoubtably the case that using a random-restartitigiprocedure was beneficial to

our results. One thing to note when comparing models is td agree the improvement



ET g[8 78] =
S| E| 8| 8| 2
g8 | 8|84 |F
Harmonic Initializer
DMV 0.535| 0.372| 0.656| 0.412| 0.443
DMV-LI 0.370| 0.304| 0.724| 0.443| 0.382
EVG-LI 0.366| 0.362| 0.724| 0.453| 0.382
Lexicalized DMV 0.356| 0.305| 0.730| 0.440| 0.381
Lexicalized EVG 1b| 0.345| 0.361| 0.729| 0.445| 0.381
Randomized Initializer
DMV 0.530| 0.409| 0.291| 0.561| 0.672
DMV-LI 0.525| 0.411| 0.523| 0.564| 0.098
EVG-LI 0.513| 0.410| 0.571| 0.562| 0.068
Lex. DMV 0.559| 0.409| 0.690| 0.565| 0.597
Lex. EVG 0.542| 0.426| 0.715| 0.543| 0.606

Table 5.3: Training set directed accuracy across severgukges.
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ETs[878] <
S| E| 8| 8| %
2|8 |85 |6 |°
Harmonic Initializer
DMV-Dirichlet 0.661| 0.536| 0.777| 0.582| 0.609
DMV-Linear Interpolation| 0.621| 0.520| 0.809| 0.604| 0.634
EVG-Linear-Interpolation| 0.620| 0.528| 0.807| 0.611| 0.634
Lexicalized DMV 0.609| 0.520| 0.812| 0.603| 0.633
Lexicalized EVG 1b 0.604| 0.528| 0.811| 0.607| 0.633
Randomized Initializer
DMV 0.648| 0.594| 0.636| 0.660| 0.713
DMV-Linear Interpolation| 0.655| 0.593| 0.725| 0.661| 0.568
EVG-Linear Interpolation| 0.650| 0.594| 0.746| 0.663| 0.565
Lex. DMV 0.674| 0.596| 0.792| 0.661| 0.690
Lex. EVG 0.666| 0.607| 0.804| 0.653| 0.685

Table 5.4: Training set Undirected Accuracy across langsag
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Percent Runs with Directed Accuracy over Threshhold vs Accuracy Threshhold
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Figure 5.1: % of runs with Directed Accuracy exceeding theshhold given on the-
axis. Each run is the result of has a beam of 20 random-resibXariational Bayes, and
running the best of these to convergence. Each lexicalizetehrun however has a beam
of 20 smoothed EVG models, from which one is initialized amal to convergence.
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Percent Runs with Undirected Accuracy over Threshhold vs Accuracy Threshhold
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Figure 5.2: % of runs with Undirected Accuracy exceedingttireshhold given on the
x-axis, using the same setup as Figure 5.1.

comes from selecting the restart with the highest lower damthe log likelihood.

Figures 5.1 and 5.2 show the results for 4 models in a diffenery: DMV, DMV
smoothed using linear interpolation, EVG smoothed usingdr interpolation, and Lexi-
calized model 1b. For these graphs, we took each “run” congisf selecting the of 20
random-restarts and running it to convergence. For 300andslifferent accuracy thresh-
holds, we then look at what percentage of the 300 runs hascamaay at least that high.
Thus if one selected a run at random, one could ask what thiabildy is that its accuracy
is above some threshhold. Hence better models could bedavadithose that have a larger
percent of high accuracy runs. In Figures 5.1 and 5.2 we shs#dr Directed and Undi-
rected accuracy on the WSJ10 training set. We can see thaetealized model 1b and

smoothed EVG are well to the right of the DMV curves, excephatvery top, indicating
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an improvement in accuracy across a large number of runsothed DMV seems to im-
prove over DMV primarily in the percentage of runs with atde44-59 directed accuracy,

while DMV has more runs with lower accuracy.

5.2 Learning from Induced tags

One of the initial goals of this thesis was to learn depenggnammars from words, with-
out the benefit of annotated part-of-speech tags. The agipmwa proposed was to start
from the output of a Hidden Markov Model unsupervised pdusfmeech induction system,
and to split the given tags, learning them in conjunctiorhviite dependencies. While this
approach did not prove fruitful, we would like to describe #xperiments conducted here.

A Hidden Markov Model (HMM) describes a generative processain observed se-
quence. The sequence of observatiens= s;; ... s, in our case words, is generated
through the following process. First a sequence of hiddatest;; ... 7;,, iS generated,
and then for each;; a word is emitted, generated conditioned on the statdn our case
the hidden state;; will correspond to a part-of-speech for the wagl

In a hidden Markov Model each hidden stateis generated conditioned on the pre-
vious z statesr;(;_1) ... 7;j—). In our experiments will be 1, corresponding to the bitag

model.

Tij|Tij—1) = 015 - - Ti(j—z) = 0.~ Categorical(¢o,. .o, )

sijlTy =01 ~ Categorical(xo,)

In (11l et al., 2008) we explored using several different upesrvised part-of-speech taggers
as a first stage for grammar induction. We found that indupads-of-speech using an

HMM trained using Expectation Maximization was nearly afe&tfve as gold standard
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20 tags 40 tags

DMV Initialization | Directed Acc.| Undirected Acc.| Directed Acc.| Undirected Acc.

Harmonic 0.412 0.600 0.441 0.621
Randomized 0.288 0.565 0.278 0.554

Table 5.5: DMV on tags induced using bitag HMM, accuracy antthining set.

tags for learning DMV using the Klein and Manning (2004) hamic initializer.

Unfortunately, when one uses randomized initializatiarCiMV when run from HMM
induced parts-of-speech, this nice result breaks downthHese experiments we trained a
bitag HMM ! using Expectation Maximization on section 2-22, 24 of tharP&reebank
Wall Street Journal, using 20 and 40 tags. We used maximumingdecoding to extract
the most likely tag for each word, as we did in (Il et al., 2D08Ve ran 10 runs of each.
The tag output was used as input to DMV. For the harmonicailggr we ran it for each
run, and averaged. For the randomized initializer we ransanbef 20 random restarts for
each tagging, selected the one with the highest lower-banmdithan that to convergence.
These were also averaged over the 10 taggings.

Table 5.5 shows the results of running DMV on the output obéhtags. using the
harmonic initializer and using the randomized initialinatwe presented in Chapter 2.
As we can see, the harmonic initializer is nearly as effectis with gold tags, while the
randomized initializer does very poorly. Clearly the biategral to the harmonic initializer
is effective for placing the induced tag-DMV into a similarpof the space as it does for
gold tags.

We next investigated whether we could possibly combineaamgation with the har-

monic initializer in a way that could be effective for indactags. Our approach was to

We used an implementation by Mark Johnson, available on &issiteht t p: / / cog. br own. edu/
mi/.
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initialize as in the Harmonic initializer, and then to useaagple from the resulting varia-
tional posterior as our initializer.

In particular, we initialize the variational posterior i2inlets to

OA[T = OZT + E‘Zhar'(t)f<t7 T)/D

which for D = 1 is the usual the harmonic intializer. Then we can then takengpse’
from this posterior and calculafg, ¢ f (t, r) for each rule- in the grammar via the E-step
of the Inside-Outside algorithm. We then get= «a, + E,q o) f(t, 7). This is exactly what
we do for our randomized initialization normally, excépis in that case sampled from the
prior p(0'|«).

This process results in an initia{#) which is similar to the one centered on the Har-
monic initializer, but with some amount of noise. We can @ase the noise by making
this initial Dirichlet less peaked by increasing the faciar We ran DMV using this ini-
tialization scheme withD = 1,4,8, 16,32 on induced tag input with 20 tags. We use a
beam of 20 random restarts for each tagging. The resultshakensin Table 5.6. We can
see while the randomized initializer wifh = 1 gives a small improvement over the deter-
ministic harmonic initializer, the result is still not néaon the order of improvements we
saw with randomized initialization for gold standard tagarthermore, as we increage
as expected the result gets farther and farther from thedr@msolution; however we do

not see an improvement in performance from doing so.

5.2.1 Learning Hidden State Models

In an attempt to learn word classes together with dependgneie looked at a dependency
model in which we learn subclasses of the parts-of-speeah.eX@mined learning sub-

classes of the given part-of-speech tag input. For induagsl this involves starting with
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20 tags
DMV Initialization | D | Directed Acc.| Undirected Acc.

Harmonic 0.412 0.600
Rand-Harmonic | 1 0.460 0.619
Rand-Harmonic | 4 0.421 0.607
Rand-Harmonic | 8 0.395 0.601
Rand-Harmonic | 16 0.365 0.587
Rand-Harmonic | 32 0.314 0.584
Randomized 0.278 0.554

Table 5.6: DMV with randomized Harmonic Initializer

some small number of tags derived from the HMM, and thentsglithem into multiple
subtags.

This idea is inspired by work in learning to automaticallfime PCFGs, by learning
grammars whose nonterminals are annotated versions of gotia¢ grammar (see for
instance (Liang et al., 2007; Matsuzaki et al., 2005; Dreyedt Eisner, 2006; Petrov et
al., 2006; Headden lll et al., 2006)). Grammar refinementpsodlem that considers the
parse-trees to be visible, and the given nonterminals tgphese versions of the “true”
nonterminals. For instance, f were a nonterminal in one of the parse-trees, we would
have a series of latent nonterminalg, A5, As, . ... If the productionA — B C eexisted
in the original grammar, we would try to learn probabilittes A; — By C1, Ay — By Cs,
etc.

In our case, we have a grammar which is annotated by padpedeh. We will try
splitting the parts-of-speech in the same way, which wilum split the CFG rules in our
grammar. Another difference is of course that for us theasgrtrees are not visible.

One important ramification of this is our parsing time wiltiease a great deal. In the
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situation where the part-of-speech tag and word are botbreed, we parse using the very
small rule schemas presented in Chapter 2, filling in the wortitags as needed to access
the relevant statistics. Here, there may be several padpaech for a given word, and so
for a given span we need to consider several parts of speeith feft-most and right-most
children. If there ard” possible parts of speech for each word, this ads a facton@¥)

to our parsing time.

We investigated two models. The first is simply DMV, where éach part-of-speech
tagr € V, there is a set oD possible annotated part-of-speech tags, which we will teno
with a superscripf!,7%,...,7”}. If one letsV; denote the set of annotated part-of-
speech tags, the model is simply DMV with a part-of-speetfvse

In the second model we use the annotations to refine the arguiistributions, and
the distribution over words. The argument distributiondicts the probability of selecting
a particular annotated part-of-speed¢h= 7 conditioned on the direction and the head
annotated part-of-spedd = 7°. We smooth this using linear interpolation with a distribu-
tion over annotated part-of speech argumehtonditioned on the direction and the head
part-of-speeclti, without the annotation. The probability of a wards conditioned on its
annotated part-of-speech The stop distribution is conditioned on the valenceuvpithe
directiond and the unannotated part-of-speethThe backoff scheme is outlined in Table
5.7.

In our experiments we start with DMV run with the Harmonictializer for 40 itera-
tions of Variational Bayes. We then initialize the annotiateodel with the result of that
as follows. For the plain DMV with simply more parts-of-sphewe initialize each of the
stop and argument word distributions for a given annotatstiii/ as the corresponding
distribution for unannotated hedd. For the argument distributions, we set the variational
Dirichlet hyperparameter for a given annotated part-a&egh head, argument, direction

to be equal to the variational Dirichlet hyperparametertfi@ corresponding unannotated
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Component A conditioning
Stop P(s|Hvd) —
Dependent POS| P(A|Hd) Hd
P(A|Hd) —
Dependent Word P(a|A) —

Table 5.7: DMV with annotated parts-of-speech and smogtbexckoff chains. The an-
notated dependent part-of-speech distribution is camtitdl on the annotated head part-
of-speech, and is smoothed with a distribution conditiooedhe unannotated head. The
dependent word is conditioned on the annotated part-cdedpe

parts-of-speech in the unannotated DMV, plus a small amoiurgindom noise.

For the second annotated DMV we initialize in the same wagepithat we initalize
both argument annotated part-of-speech components usrgame approach.

We ran each model on the output of 10 runs of the HMM part-@esh tagger, for each
of 20 and 40 tags. The results are given in Table 5.8. As we eanalding the hidden
state information does not help performance, though it sm¢shange very much. The
resulting models are still very much constrained by the loariminitializer. We performed
a similar experiment on gold tags, with the harmonic initied, also shown in Table 5.8.
We see a similar dynamic, with adding hidden states to DMVhedping performance, but
not by a great degree.

In summary our experiments in learning parts-of-speeclmjunction with dependen-
cies were not very successful. We found that randomizedliziation was not effective
when the tags are given by the output of a bitag Hidden Markod®ll Reverting to us-
ing the harmonic initializer, we proposed two versions of kb learn subclasses of the
HMM output tags. These approaches did not improve upon smgly the output of the

Hidden Markov Model; in contrast the results are very simila
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States Gold 20 tags 40 tags
Model pertag| D. Acc. | U. Acc. | D. Acc. | U. Acc. | D. Acc. | U. Acc.
DMV 1 0.483 | 0.651 | 0.412 | 0.600 | 0.441 | 0.621
DMV HS 1 4 0.468 | 0.644 | 0.403 | 0.592 | 0.429 | 0.615
DMV HS 1 8 0.470 | 0.645 | 0.403 | 0.593 | 0.428 | 0.612
DMV HS 2 4 0.481 | 0.652 | 0.399 | 0.588 | 0.428 | 0.613
DMV HS 2 8 0.479 | 0.654 | 0.398 | 0.587 | 0.428 | 0.613

Table 5.8: DMV with hidden states on HMM-induced part-oesph tags, WSJ10 sections
2-21.

5.3 Conclusions

In this dissertation we have examined the problem of unsigest learning of syntac-
tic dependency structure. We discussed the ways in whicaragmcy structure has been
learned in the past, and how PCFGs may be employed to modehdepcy grammars. We
outlined a particular form of PCFG with tied parameters, anoted how standard PCFG
estimation procedures could be employed with them. We ussd/ariety of tied PCFG
to introduce smoothing into the PCFG, and explored a vanégmoothing schemes and
estimation procedures. We finally explored introducingdakfeatures into the depen-
dency grammars in various ways, and found that we could gegriependency induction
performance through these techniques.

In our exploration of smoothing the schemes we examinedtimgerpolation. We ex-
plored a variety of different priors for the mixture disuiiions within linear interpolation,
as well as exploring both maximum held-out likelihood andiaonal Bayes approaches
to estimation.

For linear interpolation, while estimating the mixture gaeters using EM on a held-

out data set was more effective than estimating them togeththe training set. However,



109

estimation using Variational Bayes, placing priors on thetune parameters was far more
effective than either of these approaches. We examined teadiclasses of priors, one
which biases the mixture distribution to prefer backing affd one which biases the mix-
ture distribution towards values that place mass on bothpoments. We found that the
latter class was generally more effective for dependeramniag, although both gave im-
provement over unsmoothed versions of DMV.

Linear interpolation with a prior that prefers mixtures@fay weight on both parame-
ters were the most effective smoothing schemes of thogk trie

In our investigation of lexicalization we were able to findpravements from adding
lexical conditioning information when predicting the angent part-of-speech. This held
true when adding lexicalization to both the plain Depengdviodel with Valence and to
the smoothed Extended Valence Grammar we developed in @hapfThis corresponds
to a situation in which different head words with the samé-pésspeech have different
distributions over argument types. We also examined useag lword lexicalization to
predict the valence of a head as well as the argument wordseTdliel not turn out to be

beneficial under our framework.
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Appendix A

111

Summary of Key Notation

Conditioning context variables:

a

A

Words ofith sentence
jth word ofith sentence
Part-of-speech tag associated with
Parse tree associated with sentence
Set of possible words

Set of possible parts-of-speech

Argument word
Argument part-of-speech
Head word
Head part-of-speech
Direction

Valence position



Appendix B

Split Bilexical PCFGs of Dependency
Models

As mentioned in Chapter 2, one can use the fold and unfoldsfams to convert the
grammar shown in Table B.1 to the grammar in Table B.2. Theiaito construct a
grammar where the nonterminal annotations (for instaiaa L) refer to the word/pos
on the end of that nonterminal’s yield. When this is the caseafl nonterminals the
annotation becomes redundant when the span is known, whaeimsnwve can parse with
the grammar schema, and fill in the probabilities based oatinetations, thereby giving
us anO(|s;|®) parsing algorithm for a sentence of length| (Eisner and Blatz, 2007;
Johnson, 2007). For instandey must have arif;, as the rightmost terminal in its yield, so
when parsing thé/ is redundant. Whenever we seelap we would look to the rightmost
position in its span to determine the probabilities.

In order to do so we must eliminate tlig nonterminal, which can contain the terminals
Hj, Hy interior to its yield. We do so first by unfoldingy into Ly Ry everywhere it
appears. This gives trinary rules suchigs — L R4 L)y andL}, — La Ra LY. We
then fold R4 L', into a new nonterminab/ L? ;, (likewise R4 LY into M L',;) and add
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Extended Valence Grammar (EVG)

]

Rule Description

S — Yy selectH as root

Yy — Ly Ry Move to split-head representation

Ly — LY stop generating argumefieft,head #, no arguments

Ly — LYy continue generating argumefiest,head # no arguments

Ly — L stop generating argumefti&st,head #7, one or more arguments
Ly — L% continue generating argumejist,head #, one or more arguments
L% — Yally argument #|left,head #1,argument is not nearest to head
Ly, — YaLY% argument =|left,head #7, argument is nearest to head

LY — Hp

Ry — RY stop generating argumeiright,head #, no arguments

Ry — RYy continue generating argumejright,head # no arguments

Ry — RY stop generating argumefright,head #, one or more arguments
Ry — R% continue generating argumefmtght,head #/, one or more argument
R} — RyYyu argument #|right,head #, argument is not nearest to head
R, — RY Y, argument #|right,head #, argument is not nearest to head
RY — Hg

Table B.1: Basic Schema for EVG

113
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Extended Valence Grammar (EVG)-2

D

[72)

Rule Description

S — Ly Ry selectH as root

Ly - LY stop generating argumefieft,head #, no arguments

Ly — Ly continue generating argumefiest,head # no arguments

LYy - LY stop generating argumeti&ft,head #, one or more arguments
LYy - L% continue generating argumefist,head #, one or more arguments
L% — LaML%y argument #|left,head #,argument is not nearest to head
L, — LaMLYy, argument =|left,head #/, argument is nearest to head

LY, - Hp

MIL%, — RaLj

MLY, — RsLY

Ry - RY stop generating argumefright,head #, no arguments

Ry — Ry continue generating argumejright,head # no arguments

R, - RY stop generating argumefright,head #, one or more arguments
R, - R% continue generating argumejmtght,head #7, one or more argument
R?, — MR%, Ry argument Z|right,head #, argument is not nearest to head
Ry — MR}, Ra argument #|right,head #7, argument is not nearest to head
MR%,A — Ry Ly

MR}{A — R% Ly

RY, — Hg

Table B.2: Schema for EVG after fold-unfold transform
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the rulesM L%, — R4 Ly andM LY, — R4 LY. We perform analogous operations for

the right argument distributions. The resulting schemausrgin Table B.2.



Appendix C

Calculating Confidence Bounds using

Bootstrap Sampling

The initialization scheme we adopt in Section 2.4.1 usedoarrestarting to search differ-
ent parts of the parameter space. This starts with a totad@® éestarts grouped into 300
jobs, 20 restarts per job. In each job each restart is runGotedations, and the one with
the lowest free energy is run until convergence. Thus edzisjassociated with one set of
parameters, and a free energy.

Each of those 300 jobs is broken in to 10 groups of 30; in eachywe select the job
whose free energy is the lowest. This gives us 10 sets of mess) we parse with these
and score the resulting dependency trees in terms of Ddesteuracy and Undirected
Accuracy. The results presented are an average of thessscor

In order to calculate confidence intervals for this statisie use bootstrap sampling
(Hastie et al., 2009, pp. 261-264). We make 10,000 sampkbsreplacement of size 300
from the 300 jobs. For each sample, we split the 300 jobs irsémaple into 10 groups
of 30; select the job in each group whose free energy is thedgvgiving us 10 sets of
parameters, for which we calculate Directed and Undireatediracy and average over the
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10. This gives us 10,000 values for directed and undireatedracy. Sorting the directed

accuracy, the 250th and 9750th values will give us the lowdrupper bounds.



Appendix D

Smoothing with Collapsed Interpolation

One simple smoothing approach to use in a tied PCFG framemioidh we explored in our
initial models is what we catlollapsed interpolationThe basic idea is, if we are interesting
in smoothingP(E|C'), to augment the space of possible events with an éméat indicates
that we should backoff. In this case an event is selected &dlistribution?,(E|C) that
makes an independence assumption about the conditiorforgniationC’ C C.

In our example of selecting a left argument given a h¥adwe would smooth the

probability that the argument islaT as:

P(A=DT |d=leftt H=NN) = Pi(A=DT|d=left, H = NN)+

Pi(A=0b|d=left, H = NN)Py(A=DT | d = left)

Suppose we are smoothing the distribution over rules R 4 for left-hand-side non-
terminal A, andB C N is the relevant backoff set. Again I&(R4) indicate the set of
right-hand sides of rules iR 4. For eachd € B we add a new nonterminal’ to N and
add an additional set of rule{sflb — [l B e R(RA)} to R. R is then augmented with a

rule A — A’. The newly added nonterminalf need their associated rules tied together

118



119

by defining their tying equivalence relations. As with line@gerpolation, tying these rules
gives them the same distribution, effectively forgettiogn® conditioning information.

A key thing to note is thatl’ expands to the same set of right-hand-sides asave
for the addition ofA — A°. This means thatl will eventually end up expanding to one
of those right-hand sides, even if the indirect route thtod§ is chosen. For example,

consider Figure 8. This figure presents two ways of rewritlrjgg — Yy LY, The

dog*

left-hand path simply rewrites it directly, while the righ&nd path first rewrites tﬁ}lgg,
which then rewrites td,, Lj,,. Observe that we can model the probabifity;,, —

Y})ingog|d0g, v,left) ,whereA —> § meansA eventually rewrites t@, as:

0
_>Y21i!] L&iog

p(Lcllog — YE?igL(c)log|dOgv v, l€ft) = eLcllog—>YbigL0 + eLl —Lib ele

dog dog dog dog

As an example of this applied to a particular case, conslieicase where we want
to smooth the distribution over the right-hand side.¢f in EVG. The backoff set in this
exampleisB = {L}, | H € V, }. That is, we would smooth with a distribution that ignores
the head when generating the first left argument. Welgdddor eachH < V,, andLY —
Y4LY for eachH, A € V,. Finally, we need to specify that for ea¢h H’, A € V; that
LY — YL, 97 LY, — Y4 LY, meaning that we tie together rules based on whether they

generate the same argument.
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Figure D.1: Using collapsed interpolation to smoaffy, — Y3;,Ly,,: note that fromZ;,,

there are two paths to the childrégp, Lgog: (1) directly and (2) indirectly througlﬁ}lgg.
The distribution over different arguments givéﬁ;g is tied

D.0.1 DMV and EVG with Collapsed Interpolation

Our first experiments examine smoothing the distributioer@an argumen#l given head
part-of-speeclt, directiond, in DMV. We do this by letting the backoff distribution igrer
the head-part-of-speedii. Our experiments use Variational Bayes for estimation. ¥é u
Dirichlet priors for rule probabilities. We set the Diriglilhyperparameter = 1 for all
rules in the grammar, except for those rules correspondirtgtiding to use the backoff
distribution. For these ruleg, = 2|V,| (i.e. twice the number of parts-of-speech). This
places a strong bias towards the backoff distribution céiffely giving each argument in
the backoff distribution a pseudocount of 2, while eachyfatbnditioned argument gets a
pseudocount of 1.

The analogue to this smoothing scheme EVG again has the fbdcktoibution ignore
the head part-of-speedt and use backoff conditioning eventd. This would include a
notion of how common the arguments are across heads. Fououing example smooth-
ing the distribution over rules fak}, 5, this would give a backoff s¢LL, | H € N}.

Results for both these models are given in table D.1. As wesearadding smoothing

even in the unlexicalized case gives a major improvemertidtn DMV and EVG.
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Directed Acc

Undirected Acc.

Model | Smoothing| Train Dev Train Dev

DMV | None | 0.583(%y;) | 0.549(%;s) | 0-689(%yr7) | 0-668( (i)
Col. Interp.| 0.623 0.581 0.703 0.676

0.017 0.013 0.008 0.006

EVG None 0.526( 1 0s0) | 0.500( 5 0s0) | 0.679(F0oas) | 0-657(Fogs)
Col. Interp | 0.659 0.632 0.734 0.713

Table D.1: Results from Smoothing DMV, EVG using Collapsetitpolation
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