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In correlation clustering, given similarity or dissimilarity information for all pairs of data items, the

goal is to find a clustering of the items into similarity classes, with the fewest inconsistencies with the

input. This problem is hard to approximate in general but we give arbitrarily good approximation

algorithms (PTASs) for two interesting special cases: when there are few clusters, and when the

input is generated from a natural noisy model. In the feedback arc set problem in tournaments,

given comparison information (a better than b) for all pairs of data items, the goal is to find a

ranking of the items with the fewest inconsistencies with the input. We give the first PTAS for this

problem. We then extend our techniques to a more general class of problems called fragile dense

problems.
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Chapter 1

Introduction

We are surrounded by NP-complete problems. Delivering packages efficiently requires solution to

variants of the NP-complete traveling salesman problem (TSP). Problems in the design and verifica-

tion of microprocessors are often reduced to the NP-complete problem of satisfiability of conjunctive

normal form propositional formulae, also known as SAT. For hundreds of additional NP-complete

problems see Garey and Johnson [1979].

It is well known that if there is an efficient (i.e. polynomial time) algorithm for any NP-complete

problem then there is an efficient algorithm for all. Unfortunately despite decades of effort no poly-

nomial time algorithm has been found. One way around this difficulty is approximation algorithms,

which do not generally find the optimum solution but provably find a solution that is not much

worse. An algorithm for a minimization problem is an α-approximation if its output has cost at

most α times the cost of the optimum solution. A polynomial-time approx scheme (PTAS) is a

family of 1 + ǫ-approximation algorithms for all ǫ > 0 with runtime polynomial in the input size m.

The runtime of a PTAS need not be polynomial in 1/ǫ; for example mO(1/ǫ2) and O(m) + 2O(1/ǫ2)

count as polynomial.

In this thesis my collaborators and I study approximation algorithms for two problems, namely

feedback arc set tournament and correlation clustering, plus generalizations.

1.1 Problems and results

Feedback arc set tournament

Suppose you ran a chess tournament, everybody played everybody (a.k.a. round robin) and you

wanted to use the results to rank everybody. Unless you were really lucky, the results would not be

acyclic, so you could not just sort the players by who beat whom. A natural objective is to find a

ranking that minimizes the number of upsets, where an upset is a pair of players where the player

ranked lower in the ranking beat the player ranked higher. Minimizing the number of upsets is called

feedback arc set problem on tournaments (FAST). The complementary problem of maximizing the

1



2

A

B
C

D   

1 2 3

A B C  A

B D D  B

C A A  C

D C B  D

0 3 4 Disagreements with 

the aggregate ranking

Rankings Aggregate

Ranking
A

B

C

D

Figure 1.1: Feedback arc set tournament (left) and Kemeny rank aggregation (right) problems.

number of pairs that are not upsets is called the maximum acyclic subgraph problem on tournaments.

These problems are NP-hard [Ailon et al., 2008, Alon, 2006, Charbit et al., 2007] (see also [Conitzer,

2006]). Claire Mathieu and I give the first PTAS (Theorem 7.2) for FAST.

In statistics and psychology, one motivation is ranking by paired comparisons [Slater, 1961]: here,

you wish to sort some set by some objective but you do not have access to the objective, only a way

to compare a pair and see which is greater; for example, determining people’s preferences for types of

food. This problem attracted computational attention as early as 1961 [Slater, 1961] (for comparison

Hoare published quicksort the same year). Feedback arc set in tournament graphs and closely related

problems have also been used in machine learning [Cohen et al., 1999, Ailon and Mohri, 2008].

A second application of (weighted) feedback arc set tournament is rank aggregation. Frequently,

one has access to several rankings of objects of some sort, such as search engine outputs [Dwork et al.,

2001], and desires to aggregate the input rankings into a single output ranking that is similar

to all of the input rankings: it should have minimum average distance from the input rankings,

for some notion of distance. This ancient problem was already studied in the context of voting

by [Borda, 1781] and [Condorcet, 1785] in the 18th century, and has aroused renewed interest re-

cently [Dwork et al., 2001, Conitzer et al., 2006]. A natural notion of distance is the number of pairs

of vertices that are in different orders: this defines the Kemeny rank aggregation problem [Kemeny,

1959, Kemeny and Snell, 1962] illustrated in Figure 1.1. This choice yields a maximum likelihood

estimator for a certain näıve Bayes model [Young, 1995]. This problem is NP-hard [Bartholdi et al.,

1989], even with only 4 voters [Dwork et al., 2001]. There is a randomized 4/3 approximation al-

gorithm [Ailon et al., 2008]. Claire Mathieu and I improve on these results by giving a polynomial

time approximation scheme (PTAS) (Corollary 7.3) via reduction to (a weighted version of) FAST.

The constants in our PTASs for FAST and Kemeny rank aggregation make them impractical but

the role of local search in our analysis helps shed light on the excellent performance of local search

for Kemeny rank aggregation observed in practice [Schalekamp and van Zuylen, 2009].

As an additional illustration of the power of our techniques we show (Theorem 9.1) that the

optimal feedback arc set of a tournament graph can be computed in time 2O(
√
OPT ), a moderate

improvement on the previously best known runtime of OPTO(
√
OPT ).
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Figure 1.2: An example correlation clustering problem and optimal clustering. The optimal clus-
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Correlation Clustering

Clustering is an important tool for analyzing large data sets. Correlation clustering [Ben-Dor et al.,

1999, Bansal et al., 2004] is a type of clustering that uses a very basic form of input data: indications

that certain pairs of vertices (pairs of data items) belong in the same cluster, and certain other pairs

belong in different clusters [Bansal et al., 2004]. Unfortunately the information is not necessarily

consistent, possibly claiming for example that “cat” is similar to “dog” and “dog” is similar to

“bog” but “cat” is not similar to “bog”. We assume that we have information about every pair of

objects. The goal is to find a clustering, that is, a partition of the vertices, that agrees with as many

pieces of information as possible (maximization) or disagrees with as few as possible (minimization).

Correlation clustering is illustrated in Figure 1.2. This has applications in data mining and natural

language processing [Cohen and Richman, 2002, Finkel and Manning, 2008]. Correlation clustering

has no PTAS unless P=NP [Charikar et al., 2005], so to get good approximation algorithms we

must restrict the problem somehow to separate real-world instances from those produced by the

reductions of Charikar et al. [2005].

One possible restriction is limiting the number of clusters to some small number d, which

yields the d-correlation clustering problem. With this assumption Giotis and Guruswami found

a PTAS [Giotis and Guruswami, 2006], but their runtime of nO(9d/ǫ2) leaves something to be de-

sired. Marek Karpinski and I found a PTAS (Theorem 4.1) with runtime n22O((log d)d6/ǫ2), which

improves on Giotis and Guruswami [2006] in two ways. Firstly it is simply exponential in d rather

than doubly exponential and secondly the power of n is a constant 2, independent of d and ǫ. Our

result extends to the (previously known) hierarchical generalization of correlation clustering, yielding

the first PTAS known for that problem.

An alternative way to work around the hardness results of Charikar et al. [2005] is to assume

that the input is generated by chance rather than an adversary. Claire Mathieu and I study the

following semirandom noisy model which is compromise between random and adversarial: start from

an arbitrary partition of the vertices into clusters. Then, for each pair of vertices, the similarity



4

Choose x1, x2, x3, x4 ∈ {0, 1, 2} satisfying as many of the following as possible:

2x1 + 4x2 = 3 (mod 7)

|x1 − x3| ∈ {1, 3}
x1 is the (x4)

th
prime

cos(x2x3) ≥ (1/2)

2x3 − 42x4 = 20 (mod 100)

Figure 1.3: An example MIN-2CSP. The optimal assignment x1 = 2, x2 = 1, x3 = 0, x4 = 1
satisfies all constraints except the last and hence has cost 1.

information is corrupted (noisy) independently with probability p. Finally, an adversary generates

the input by choosing similarity/dissimilarity information arbitrarily for each corrupted pair of

vertices. In this model we give a (1+O(n−1/6))-approximation (Theorem 5.1), which is even better

than a PTAS. The algorithm achieving this result involves solving and rounding a semi-definite

programming relaxation. This semi-definite program was previously used in Charikar et al. [2005]

with a different rounding method. We can also perfectly recover the planted clusters that are

relatively large (Theorems 5.2 and 5.3).

Our noisy input algorithm is relatively implementable, with the time-consuming part being the

solution of a semi-definite program. Micha Elsner and I tested a variety of algorithms on correlation

clustering instances from two natural language processing applications (Chapter 6). The semi-

definite programming relaxation produced much better lower bounds than the simple bounds used

in previous work. On the other hand the clusterings found by our rounding technique were no better

than clusterings found by much faster greedy and local search techniques. We conclude that the

semi-definite program is useful for lower-bounds but does not appear to be competitive for finding

clusterings.

Generalizations

The reader may be wondering what our results have in common and whether there are any other

problems amenable to our techniques. We answer these questions by describing generalizations, first

of the correlation clustering with a fixed number of clusters result and second the feedback arc set

tournament result.

We now introduce the (previously known) abstract problem MIN-kCSP which generalizes d-

correlation clustering. An arity k constraint satisfaction problem (k-CSP) consists of a constant

arity k (usually k = 2), a set of variables V which take values from a constant-sized domain D,

and a set of constraints on the variables. Each constraint depends on a set of k of the variables

and is satisfied by some of the possible configurations of those variables. We assume that every

set of k variables is constrained by a number of constraints bounded above by a constant, which

is usually 1. Satisfying all the constraints simultaneously is generally impossible so the goal of a
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MIN-kCSP is to minimize the number of unsatisfied constraints. Equivilantly one can maximize the

number of satisfied constraints, which is known as a MAX-kCSP. (The distinction between MIN-

CSPs and MAX-CSPs is important for approximation algorithms since the optimum values can be

quite different.)

We now give some examples of the expressive power of these abstract classes of problems. The

d-correlation clustering problem can be reformulated as a CSP. It has k = 2, one variable per vertex,

and D = {1, 2, . . . , d}. An edge labeled “=” between vertices u and v corresponds to a constraint

over the corresponding variables that is satisfied if the two variables are assigned the same value.

Edges labeled “6=” correspond to analogous constraints.

The unique games problem is another MIN-2CSP. Each constraint depends on k = 2 variables.

The constraint over variables (u, v) is labeled with a bijection πuv over the domainD. This constraint

is satisfied if and only if πuv maps the value of u’s variable to the value of v’s variable. There is

a famous unique games conjecture on the hardness of approximating unique games, which if true

would show many known approximation algorithms are the best possible.

The famous MAX CUT problem consists of finding a cut of an undirected graph with the maxi-

mum number of edges crossing the cut. This problem can be modeled as a 2CSP in a way analogous

to d-correlation clustering. The minimization variant is known as MIN UNCUT. Unfortunately

neither MAX CUT nor MIN UNCUT have PTASs unless P = NP [Arora et al.], so we cannot gen-

eralize our results to all kCSPs. So what makes correlation clustering with a fixed number of clusters

different? We identify two properties: density and fragility.

We discuss three types of density. We say that an instance is average-dense if there are Ω(nk)

constraints; i.e. within a constant factor of the maximum possible number of constraints. We say that

an instance is everywhere-dense if each variable participates in Ω(nk−1) constraints, which is again

within a constant factor of the maximum possible number. We say that an instance is fully dense

if there is a constraint for every set of k variables. Correlation clustering is fully dense. A random

assignment satisfies a constant fraction of the constraints (excluding degenerate constraints that are

never satisfied) so average-dense MAX-kCSPs have optimum value Θ(nk). So-called additive error

algorithms find an assignment with cost at most ǫnk plus the optimum cost, which implies a PTAS

for all MAX-kCSPs [Frieze and Kannan, 1999, Alon et al., 2002]. Claire Mathieu and I provide an

additive error algorithm that is much simpler than previous ones (Theorem 2.2).

Additive error algorithms are insufficient for MIN-kCSPs since optimum values of minimization

problems can be very small, even 0. Indeed there are many MIN-kCSPs without PTASs (unless

P=NP) even on everywhere-dense instances, for example MIN-3UNCUT. There are also fully dense

(albiet unatural) MIN-kCSPs with no PTAS. A PTAS therefore cannot rely on density alone but

must also rely on a specific property of correlation clustering constraints.

The key property of d-correlation clustering is that most of the vertices in a low cost clustering

cannot be moved to different clusters without increasing the cost by Ω(n). We now give a wide class

of problems that also satisfy this property. A constraint is fragile if modifying any variable in a

satisfied constraint makes the constraint unsatisfied. A CSP is fragile if all of its constraints are.
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Several interesting CSPs feature fragile constraints, including MIN-2UNCUT, unique games, and

nearest codeword problem. Marek Karpinski and I introduce the class of fragile MIN-CSPs and

show that they all satisfy this key property and hence have a PTAS (Theorem 3.1). Our runtime is

essentially the best possible up to constants. The d-correlation clustering problem is not fragile but

does satisfy this key property, which as noted before allows us to give a PTAS (Theorem 4.1).

Our PTAS for feedback arc set tournament (FAST) can also be generalized. A ranking CSP

[Ailon and Alon, 2007] is similar to an ordinary CSP except that the goal is to choose an ordering of

the objects rather than an assignment to variables. In general a ranking CSP consists of a constant

arity k (2 for FAST), a set of vertices V and a set of constraints on the vertices. Each constraint

depends on the ordering of a set k of vertices and is satisfied by some of the possible orderings of those

vertices. In FAST each directed edge (game) corresponds to a constraint which is satisfied whenever

the winner of the game is ordered before the loser. A second MIN-RANK-CSP is betweeness : rank

objects given information of the form v is between u and w, i.e. either u < v < w or w < v < u.

Marek Karpinski and I give (Theorem 8.1) a PTAS for fully dense betweenness. We also generalize

this result to any weakly fragile rank CSPs (defined later).

1.2 Techniques

Our algorithms and analyses are based on a variety of techniques including:

1. Exhaustive sampling (Chapters 2, 3 and 8): We make extensive use of this technique,

introduced in Arora et al. [1995], for effectively taking a random sample of optimal assignments

even though the optimal assignment is unknown.

2. Local search (Chapters 7 and 8): Local search techniques are extensively used to solve NP-

complete optimization problems in practice. Local search is difficult to analyze and therefore

is rarely used in approximation algorithms. For example a standard approximation algorithms

textbook [Vazirani, 2001] mentions local search only in chapter notes and exercises. We are

aware of only one other state of the art approximation algorithm that uses local search: the

one for the k-median problem by Arya et al. [2004]. Local search plays a key role in several of

our PTASs.

3. Martingales and Azuma-Hoeffding inequality (Chapter 2): We use martingales to,

roughly speaking, take a random sample of a moving target.

4. Semi-definite programming duality (Chapter 5): Semi-definite programming is an ex-

tension of linear programming that has attracted increasing interest in the approximation

algorithms community since the seminal work of Goemans and Williamson [1995]. We analyze

a semi-definite program by presenting matching primal and dual feasible solutions and using

complementary slackness conditions.
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5. Spectra of random matrices (Chapter 5): We extend the techniques in Füredi and Komlós

[1981] to analyze the eigenvalue spectra of a certain class of random symmetric matrices.

1.3 Organization

The remainder of this introductory Chapter 1 describes the organization of this thesis, describes

some results done during my graduate studies that are not part of this thesis, and lists the papers

where the results of this thesis were published.

The various chapters that make up this thesis can be read more or less independently of each

other. The limited dependencies that exist are described below.

In Chapter 2 we present known results on additive error for CSPs and our contributions

[Mathieu and Schudy, 2008] to this area. These results are used as a subroutine in many of our

results.

With this foundation in hand we present our results on fragile MIN-CSPs [Karpinski and Schudy,

2009a] in section 3. This chapter uses Theorem 2.2, which is presented in Section 2.1, but only in a

black-box fashion.

Chapter 4 introduces the correlation clustering and a hierarchical generalization. It then describes

our PTAS for correlation clustering with a fixed number of clusters. This chapter also uses Theorem

2.2. The intuition (but not the theorems) builds on Chapter 3.

Chapter 5 studies the correlation problem again, this time under a noisy input model. This

chapter is essentially self-contained, depending only on the introduction to the correlation clustering

problem from Section 4.1.

Chapter 6 describes our experimental results for correlation clustering. This chapter depends on

the introduction to correlation clustering from Section 4.1. It also uses the semi-definite program

described in Chapter 5.

Chapter 7 describes the feedback arc set tournament problem, Kemeny Rank Aggregation, and

our PTAS for these problems. It uses Theorem 2.2 but is otherwise self-contained.

Chapter 8 describes our fragile ranking framework and the PTAS for these problems. This

chapter uses the PTAS from Chapter 7 as a black box.

In Chapter 9 we give some algorithms for solving the ranking problems described in Chapters 7

and 8 exactly in exponential time.

Finally Chapter 10 concludes with some interesting open problems.

1.4 Other Results

The following results of mine are outside the scope of this thesis but are mentioned here for reference.

See the papers [Greenwald et al., 2008, Schudy, 2008, Mathieu et al., 2010, Schudy, 2010] for more

information.
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An online decision problem (ODP) consists of a series of rounds, during each of which an agent

chooses one of n pure actions and receives a reward corresponding to its choice. For example the

agent may be playing a matrix game such as rock-paper-scissors or chicken repeatedly. The agent’s

objective is to maximize its cumulative rewards. It can work towards this goal by abiding by an

online learning algorithm, which prescribes a possibly mixed action (i.e., a probability distribution

over the set of pure actions) to play each round, based on past actions and their corresponding

rewards. No-internal-regret (NIR) learners converge to the set of correlated equilibria in repeated

matrix games. However, standard NIR learning algorithms involve a fixed point calculation during

each round of learning, which is time-consuming when the number of pure actions available to the

player is large. Amy Greenwald, Zheng Li and I [Greenwald et al., 2008] give a natural NIR learner

that only requires a matrix-vector multiplication, improving the runtime.

I show [Schudy, 2008] how to use O(log2 n) reachability queries suffice to compute strongly con-

nected components and topological sort of directed graphs. This yields faster parallel algorithms for

these problems, reducing the number of processors needed to achieve a speedup of s from O(s3) to

O(s2). Parallel computation of strongly connected components has applications in scientific comput-

ing [McLendon et al., 2005, 2001, Plimpton et al., 2000]. Our algorithm is simple with reasonable

hidden constants and hence may be practical.

Ocan Sankur, Claire Mathieu and I have some preliminary results on online correlation clustering.

In this problem the objects to be clustered arrive one by one. The algorithm may add new objects

to existing clusters and possibly merge clusters, but is not allowed to split existing clusters. The

goal is to maintain a clustering that is competitive with the offline optimum clustering.

A Las Vegas algorithm is a randomized algorithms that returns only correct answers, but has

random runtime. The runtime distributions of Las Vegas algorithms are often heavy tailed, so it

is often helpful to restart them periodically with a new random seed. I [Schudy, 2010] introduce

a new measure of the hardness of an instance, namely the expected number of restarts r∗ needed

by the optimal strategy. I give a natural class of restart strategies, parameterized by the desired

competitive ratio as a function of r∗, that generalizes both the restart strategy of Luby et al. [1993]

and geometrically increasing timeouts. I show that this class of restart strategies is optimal up to

constant factors. One member of our family of restart strategies achieves a O((log r∗)1.1) competitive

ratio.

1.5 Papers

Papers are available from http://www.cs.brown.edu/~ws/ or by clicking on author names below.

Feedback arc set and generalizations:

• C. Kenyon-Mathieu and W. Schudy. How to rank with few errors: a PTAS for weighted feed-

back arc set on tournaments. In Procs. 39th ACM STOC, pages 95–103, 2007.

http://www.cs.brown.edu/~ws/
http://www.cs.brown.edu/~ws/papers/fast_conf.pdf
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• C. Mathieu and W. Schudy. How to rank with fewer errors – a PTAS for feedback arc set in

tournaments. In Submission, 2009.

• M. Karpinski and W. Schudy. Algorithms for Feedback Arc Set Tournament, Kemeny Rank

Aggregation and Betweenness Tournament. In ISAAC, pages 3–14, 2010.

• M. Karpinski and W. Schudy. Approximation Schemes for the Betweeness Problem in Tour-

naments and Related Ranking Problems. In APPROX, pages 277-288, 2011.

Correlation clustering and generalizations:

• M. Karpinski and W. Schudy. Linear time approximation schemes for the Gale-Berlekamp

game and related minimization problems. In STOC ’09: Proceedings of the 41st annual ACM

symposium on Theory of computing, pages 313–322, 2009.

• M. Elsner and W. Schudy Bounding and Comparing Methods for Correlation Clustering Be-

yond ILP. In Proceedings of the Workshop on Integer Linear Programming for Natural Lan-

guage Processing, pages 19–27. Association for Computational Linguistics, June 2009.

• C. Mathieu and W. Schudy. Correlation clustering with noisy input. In Procs. 21st SODA

(to appear), 2010.

Additive error:

• C. Mathieu and W. Schudy. Yet Another Algorithm for Dense Max Cut: Go Greedy. In Proc.

19th ACM-SIAM SODA, pages 176–182, 2008.

Results not in thesis:

• A. Greenwald, Z. Li, and W. Schudy. More efficient internal-regret-minimizing algorithms. In

21st Annual Conference on Learning Theory - COLT 2008, pages 239–250, 2008.

• W. Schudy. Finding strongly connected components in parallel using O(log2n) reachability

queries. In SPAA ’08: Proceedings of the twentieth annual symposium on Parallelism in

algorithms and architectures, pages 146–151, 2008.

• C. Mathieu, O. Sankur, and W. Schudy. Online correlation clustering. In Procs. 27th STACS,

pages 573–584, 2010.

• W. Schudy. Optimal restart strategies for tree search. In NESCAI ’10: New England Student

Colloquim on Artificial Intelligence, 2010.

http://www.cs.brown.edu/~ws/papers/fast_journal.pdf
http://www.cs.brown.edu/~ws/papers/gb.pdf
http://bllip.cs.brown.edu/papers/melsner-ilpnlp.pdf
http://www.cs.brown.edu/~ws/papers/cluster.pdf
http://www.cs.brown.edu/~ws/papers/maxcut.pdf
http://www.cs.brown.edu/~ws/papers/regret.pdf
http://www.cs.brown.edu/~ws/scc.pdf


Chapter 2

Additive error

2.1 Introduction

The results presented in this chapter are joint work with Claire Mathieu. Most of these results

previously appreared in Mathieu and Schudy [2008].

Over a decade ago two groups [Arora et al., 1995, Fernandez de la Vega, 1996] independently

discovered polynomial-time approximation algorithms for MAX-CUT that produce a cut with value

at least the optimum value minus ǫn2. Such an algorithm is said to have additive error of ǫn2. This

yields a PTAS for average-dense MAX-CUT instances. The fastest additive error algorithms [Alon et al.,

2002] have constant runtime 2O(1/ǫ2) for approximating the value of any MAX-kCSP (described in

Chapter 1) over a binary domain D. This can be generalized to an arbitrary domain D. To see

this, note that we can code D in binary and correspondingly enlarge the arity of the constraints

to k ⌈log |D|⌉. A random sample of Õ(1/ǫ4) variables suffices to achieve an additive approxima-

tion [Alon et al., 2002, Rudelson and Vershynin, 2007]. These results extend to MAX-BISECTION

[Fernandez de la Vega et al., 2006]. Ailon and Alon [2007] show that if the general version of a CSP

is NP-hard to solve exactly then it is NP-hard to approximation to within an additive nk−ǫ for all

ǫ > 0.

An additive error algorithm is a crucial subroutine in many of our PTASs. In this chapter we

describe our own novel additive error algorithms, which are substantially simpler than previous

algorithms. Our new techniques also allow for a slight technical improvement on previous work.

The sample complexity of a MAX-kCSP is the number of variables in a random sample such that

the optimum of the subproblem induced by the sample is within an additive error of the overall

optimum. Previously the sample complexity of MAX-kCSPs was known to be O(1/ǫ4) for k =

2 [Rudelson and Vershynin, 2007] and Õ(1/ǫ4) for k ≥ 3 [Alon et al., 2002]; we show that the former

bound holds for k ≥ 3 as well.

We describe our algorithms in the context of MaxCut. The greedy algorithm for MaxCut con-

siders vertices one by one in arbitrary order and places each of them on the left or right side of

10
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Take a sample S of t0 = 1/ǫ2 variables chosen uniformly at random without replacement.
for each of the dt0 possible assignments of variables S do
for each variable v of V \ S in random order, do
Assign v to the value that maximizes the number of resulting satisfied constraints.

end for
end for
Output the best assignment found.

Figure 2.1: Simplest-to-analyze greedy algorithm

Take a sample S of t1 = O(1/ǫ4) variables chosen uniformly at random.
Find a near-optimal assignment to the problem induced by the input on S, using Algorithm 2.1.
for each variable v of V \ S in random order do
Greedily assign a value to v, maximizing the number of resulting satisfied constraints.

end for

Figure 2.2: Fastest greedy algorithm

the cut, depending on the number of neighbors that are already placed on each side (breaking ties

arbitrarily). It is well known that the greedy algorithm is a 2-approximation, and that this bound

is tight if an adversary controls the input graph and the order in which the vertices are considered.

Here, we take advantage of the power of randomness by considering vertices in random order.

Our algorithms operate on a MAX-kCSP with n variables each with domain D = {1, 2, . . . , d} and
arity k constraints. We define two variants of the greedy algorithm. The first algorithm is closest

to the “exhaustive search” techniques of previous papers, hence easiest to analyze.

Theorem 2.1. For any ǫ > 0, Algorithm 2.1 has running time O(nk)2O(1/ǫ2) and the expected value

of the output is at least OPT−O(ǫnk).

Thus, for average dense instances, Algorithm 2.1 is a polynomial-time approximation scheme.

The second algorithm is basically the greedy algorithm with random order, except that we start

with a good “hint” of a near-optimal solution, in the form of a near optimal solution in a constant

size sample. Note that the running time separates into one term depending on ǫ but not on n (for

solving the problem in the sample) and the other term depending on n but not on ǫ (for running

the greedy algorithm on the rest of the graph.) Thus it is the fastest of our variants.

Theorem 2.2. For any ǫ > 0, Algorithm 2.2 has running time O(nk) + 2O(1/ǫ2) and the expected

value of the output is at least OPT−O(ǫnk).

Note that the use of Algorithm 2.1 in Algorithm 2.2 rather than an arbitrary approximation

algorithm is crucial for our proof to work with a sample of size O(1/ǫ4).

Interestingly one of the best greedy algorithms in our correlation clustering experiments reported

in Chapter 6 is greedy with random order, which is quite similar in spirit to the above results.

Unfortunately our results do not apply in this setting because the number of clusters was not

limited to a constant.

Here is our sample complexity theorem, which improves on previous work by a logarithmic factor.
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Theorem 2.3. For any ǫ > 0 and MAX-kCSP we have:

E

[∣∣∣∣
OPTS
|S|k −

OPT

nk

∣∣∣∣
]
= O(ǫ)

where OPT is the overall optimum and OPTS is the optimum on the problem induced by a random

sample S of 1/ǫ4 variables.

2.2 Analyzing Algorithm 2.1 for max cut

2.2.1 Definitions and notations

We begin by studying Algorithm 2.1 in the special case of the max cut problem.

The problem. Each vertex can take on 2 possible values i ∈ {1, 2}, corresponding to the two sides

of the cut. The goal is to find an cut of the vertices, among the 2n possible cuts, so as to maximize

the number of crossing edges. We describe a cut by an 2n-dimensional vector x, where xui ∈ {0, 1}
equals 1 if and only if the variable associated to vertex u has value equal to i. We can then write

the objective function z that needs to be minimized as:

z(x) =
∑

1≤u1,u2≤n,
1≤i1,i2≤2

au1,i1,u2,i2xu1i1xu2i2 , (2.1)

where A = (au1,i1,u2,i2) is an 2n-dimensional array (a matrix), symmetric under permutation of the

2 indices (uj , ij)’s, such that au1i1u2i2 = 1/2 whenever i1 = i2 and {u1, u2} ∈ E and 0 otherwise. It

will also be useful to write z(x) = A(x, x), using the bilinear function

A(x(1), x(2)) =
∑

1≤u1,u2≤n,
1≤i1,i2≤2

au1,i1,u2,i2x
(1)
u1i1

x
(2)
u2i2

. (2.2)

The algorithm. The analysis will focus on the run when the sample S is assigned in the same way

as OPT. For the sake of analysis pretend that the sample is chosen one vertex at a time rather than

batched. Let “time t” denote the instant after the first t vertices are considered by the algorithm.

At any time t ∈ {0, 1, . . . , n}, Algorithm 2.1 defines a partial cut xt:

xtui =





1 if vertex u has been given value i by time t

0 if vertex u has been given some value 6= i

by time t

0 if vertex u has not yet been given a value

by time t

Thus x0 is uniformly equal to 0, and xn describes the output of the algorithm. We find it convenient

to define xtv to be a 2-dimensional vector with components xtvi, and similarly for the other 2n-

dimensional vectors.
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Let rt denote the tth vertex considered by the algorithm. Let x∗ = (x∗ui) be the optimal cut. In

the case when t ≤ t0, we are in the initial phase and the vertex u = rt considered by the algorithm

at time t is placed according to the optimal cut, so that the 2-dimensional vector describing the

placement of vertex u is xtu = x∗u. In the case when t > t0, the algorithm decides in a greedy

fashion: let b(x) be the 2n-dimensional vector of partial derivatives of z(x); since z is bilinear and

A(xt − xt−1, xt − xt−1) = 0, bui(x) is the increase of z(x) when we increase xui by 1. Then, by

definition of greedy, xtrt = xt−1
rt + gtrt , where

gtvi =





x∗vi if t ≤ t0
1 if t > t0 and i = argminj bvj(x

t−1)

0 otherwise

Our analysis computes xtu and bu(x
t) inductively.

The fictitious cut. Instead of analyzing xt directly, the analysis will instead focus on the following

auxiliary variables. Let St = {r1, r2 · · · rt} be the vertices placed up to time t. We extrapolate the

partial cut xt into a vector x̂t that is a complete (fractional) cut by examining, for each v /∈ St, how
v would have been placed if it had been placed at time τ ≤ t, and taking the average over all past

times τ :

x̂tv =

{
xtv if v ∈ St
(1/t)

∑t
τ=1 g

τ
v if v 6∈ St.

2.2.2 Proof of Theorem 2.1 for max cut

In the first lemma, we bound the decrease in the value of the fictitious cut when going from time

t− 1 to time t, and the bound uses the derivative of the objective function. Let ŝt = x̂t − x̂t−1.

Lemma 2.4. For every t, we have z(x̂t)− z(x̂t−1) ≥ (x̂t − x̂t−1) · b(x̂t−1)− 4n2/t2.

Proof. Note that b(x)u1i1 = 2
∑
u2,i2

au1i1u2i2xu2i2 , so that A(x(1), x(2)) = (1/2)x(1) · b(x(2)). By

multilinearity and symmetry of A,

z(x̂t) = A(x̂t−1 + ŝt, x̂t−1 + ŝt)

= A(x̂t−1, x̂t−1) + ŝt · b(x̂t−1) +A(ŝt, ŝt).

A short calculation proves the following expression.

ŝtu =
(
gtu − x̂t−1

u

)




1 if u = rt (is being placed at time t)

(1/t) if u 6∈ St (has not yet been placed)

0 if u ∈ St−1 (has already been placed)

(2.3)

Since both gtu and x̂t−1
u have ℓ1 norm equal to 1, we obtain that the ℓ1-norm of ŝt is

∑

u

|ŝtu| ≤ 2 +
2

t
(n− t) = 2

n

t
. (2.4)



14

Then

|A(ŝt, ŝt)| ≤ |A|∞|ŝt|21 ≤ 4
n2

t2
.

Replacing A(x̂t−1, x̂t−1) by z(x̂t−1) concludes the proof.

In the second lemma, we bound the expectation of the decrease, and relate it to the difference

between the values of the fictitious cut and of the (scaled) true cut, when evaluated by the derivative

function b.

Lemma 2.5. For every t > t0, the expected value of z(x̂t)− z(x̂t−1) is greater than or equal to

−4n2/t2 − 2
n

t(n− t+ 1)
E
[
|b(x̂t−1)− b(n

t
xt−1)|1

]
.

Proof. First apply Lemma 2.4. Then, write:

ŝt · b(x̂t−1)

= ŝt · b(n
t
xt−1) + ŝt · (b(x̂t−1)− b(n

t
xt−1))

= (
n

t
)ŝt · b(xt−1) + ŝt · (b(x̂t−1)− b(n

t
xt−1))

≥ ŝt · (b(x̂t−1)− b(n
t
xt−1)),

where the second equality follows from the fact that the function b(y) is linear. To justify the

inequality, recall that the greedy choice gtu maximizes y · bu(xt−1) for y with |y|1 = 1 and yui ∈ [0, 1].

Going back to (2.3), we see that ŝt · b(xt−1) is greater than or equal to 0. This is where the greedy

definition of the algorithm comes into the analysis.

Given the history St−1, we can write:

E
[
ŝt · (b(x̂t−1)− b(n

t
xt−1))|St−1

]

=
∑

v

E
[
ŝtv · (bv(x̂t−1)− bv(

n

t
xt−1))|St−1

]

=
∑

v

E
[
ŝtv|St−1

]
· (bv(x̂t−1)− bv(

n

t
xt−1))

≥ −
∑

v

|E
[
ŝtv|St−1

]
|1 · |bv(x̂t−1)− bv(

n

t
xt−1)|1

≥ −2 n

t(n− t+ 1)
|b(x̂t−1)− b(n

t
xt−1)|1,

where the second equality follows from the fact that given St−1, b(x̂t−1) is fixed, the next inequality

follows from general principles. As for the last inequality, fix St−1 and a vertex u and consider

evaluating E
[
ŝtu|St−1

]
. If u ∈ St−1, then ŝtu = 0 and so the expectation is zero. Otherwise, by the

random order assumption and (2.4),

E
[
|ŝtu|1|St−1

]
= E

[ |ŝt|1
n− t+ 1

|St−1

]
≤ 2

n

t(n− t+ 1)

and the last inequality follows. This concludes the proof of Lemma 2.5.
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The next lemma bounds the difference between the b-values of the fictitious cut and of the

(scaled) true cut.

Lemma 2.6. For every t, we have E
[
|b(x̂t)− b(nt xt)|1

]
= O(σ), where σ = O

(
n2
√
t

√
n−t
n

)
.

The proof is based on a certain martingale property and deferred to the next section.

The next lemma relates the z-values of the fictitious cut at two different times.

Lemma 2.7. For every t ≥ t0 we have E [z(x̂t)]−E [z(x̂t0)] ≥ −O(ǫn2).

Proof. Use Lemma 2.5 for every τ from t0 to t, and sum; apply Lemma 2.6 to each term in the sum,

and use t0 ≥ 1/ǫ2: after a short calculation we get:

E
[
z(xt)− z(x̂t0)

]
= −n2O

(
1

t0
+

1√
t0

+
1√
t

)
= −O(ǫn2).

Proof. (of Theorem 2.1.) By definition of the fictitious cut, the output cut xn is equal to x̂n. Apply

Lemma 2.7 for t = n; and recall that by definition of x∗, x̂t0 is the optimal cut.

2.2.3 Proof of Lemma 2.6 using martingales.

In this section, we detail the proof of Lemma 2.6. Fix v. The following lemma is simple, yet central.

This martingale is the key to all the future applications of the Azuma-Hoeffding inequality.

Lemma 2.8. Ztv =
t

n−t (x̂
t
v − (n/t)xtv) is a martingale.

Proof. If v ∈ St−1 then x̂tv = xtv = x̂t−1
v = xt−1

v . Let x be their common value. Then

t

n− t (x̂
t
v − (n/t)xtv) =

t− 1

n− t+ 1
(x̂t−1
v − (n/(t− 1))xt−1

v )

are both equal to −x and the martingale statement holds in that case. If v /∈ St−1, then xt−1
v = 0;

by the random order, with probability 1/(n − t + 1) we have v = rt and xtv = x̂tv = gtv; with the

remaining probability (n− t)/(n− t+1), we have xtv = 0 and x̂tv = ((t− 1)/t)x̂t−1
v +(1/t)gtv, and so:

E

[
t

n− t (x̂
t
v − (n/t)xtv)|St−1

]
=

1

n− t+ 1
(−gtv) +

n− t
n− t+ 1

· t

n− t

[
t− 1

t
x̂t−1
v +

1

t
gtv

]

=
t− 1

n− t+ 1
x̂t−1
v ,

which concludes the proof since xt−1
v = 0 in that case.

Lemma 2.9. Btvi =
t

n−t (bvi(x̂
t) − bvi(nt xt)) is a martingale, with stepsize |Btvi − Bt−1

vi | bounded
above by 4n/(n− t).
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Proof. The martingale statement follows from Lemma 2.8 by linearity: bvi(x) =
∑
uj αujxuj . To

bound its step-size, we note that α = max |αuj | ≤ 2 (since |A|∞ ≤ 1), so that the step size is at

most: ∣∣∣∣∣∣

∑

uj

αujZ
t
uj −

∑

uj

αujZ
t−1
uj

∣∣∣∣∣∣
≤ α

∑

u

|Ztu − Zt−1
u |1.

When u ∈ St−1, we have |Ztu − Zt−1
u |1 = 0. When u = rt, we have

|Ztu − Zt−1
u |1 =

∣∣∣∣
−gtv

n− t+ 1
− (t− 1)x̂t−1

v

n− t+ 1

∣∣∣∣
1

≤ t

n− t+ 1
.

When u /∈ St, we have

|Ztu − Zt−1
u |1 =

∣∣∣∣
(t− 1)x̂t−1

u + gtu
n− t − t− 1

n− t+ 1
x̂t−1
u

∣∣∣∣
1

≤ t− 1

(n− t)(n− t+ 1)
+

1

n− t
=

n

(n− t)(n− t+ 1)
.

Summing, the stepsize is at most α((t+ n)/(n− t+ 1)) ≤ 4n/(n− t).

We recall the Azuma-Hoeffding inequality.

Theorem 2.10. [Azuma-Hoeffding] Let X0, X1, . . . , Xt be a martingale such that |Xk−Xk−1| ≤ ck
for all k. Then, for all λ > 0,

Pr(|Xt −X0| ≥ λ) ≤ 2e−λ
2/(2

∑t
k=1 c

2
k).

Proof. (of Lemma 2.6) From Lemma 2.9, |b(x̂t)− b(nt xt)|1 is also a martingale with stepsize at most

4n/(n− t). Apply the Azuma-Hoeffding inequality:

Pr
(∣∣∣b(x̂t)− b(n

t
xt)
∣∣∣
1
≥ λ

)
≤ e−λ2/σ2

(2.5)

where σ = O
(
n2
√
t

√
n−t
n

)
. Finally, integrate over λ, using the fact that for a non-negative random

variable X, E [X] =
∫∞
λ=0

Pr (X ≥ λ) dλ.

2.3 Analyzing Algorithm 2.1

2.3.1 Definitions and Notations

The input to the max-kCSP problem is a set of constraints, where each constraint is over a collection

of k variables xv, a subset of the n possible variables: 1 ≤ v ≤ n. Each variable can take on d

possible values i ∈ {1, 2, . . . , d}, and the constraint specifies which of the dk assignments satisfy the

constraint. The goal is to find an assignment of the variables, among the dn possible assignments,

so as to maximize the number of satisfied constraints. MAX CUT vertices and edges correspond to

MAX CSP variables and constraints respectively.
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We describe an assignment of the variables by an nd-dimensional vector x, where xui ∈ {0, 1}
equals 1 if and only if the variable associated to variable u has value equal to i. We can then write

the objective function z that needs to be maximized as:

z(x) =
∑

1≤u1,··· ,ur≤n,
1≤i1,...,ir≤d

au1,i1,u2,i2,...,ur,irxu1i1xu2i2 . . . xurir , (2.6)

where A = (au1,i1,u2,i2,...,ur,ir ) is an nd-dimensional array, symmetric under permutation of the k

indices (uj , ij)’s. For example for max cut au,i,v,j = 1
211 (i 6= j and ∃ edge between u and v). As

before we write z(x) = A(x, x, · · · , x) using the multilinear function

A(x(1), · · · , x(r)) =
∑

1≤u1,,··· ,ur≤n,
1≤i1,...,ir≤d

au1,i1,u2,i2,...,ur,irx
(1)
u1i1

x
(2)
u2i2

. . . x
(r)
urir

. (2.7)

We define xtui, rt, and g as in the max cut case. Let b(x) be the dn-dimensional vector of partial

derivatives of z(x); since z is multilinear and A(xt − xt−1, . . . , xt − xt−1) = 0, bui(x) is the increase

of z(x) when we increase xui by 1. Observe that

bui(x) = k ·A(eui, x, . . . , x) (2.8)

where eui is a unit vector.

2.3.2 Proof of Theorem 2.1

Lemma 2.11.

|A(x(1), · · · , x(r))| ≤ |A|∞|x(1)|1|x(2)|1 · · · |x(k)|1.

Proof. Simple and omitted.

Lemma 2.12. If |δx|1 ≤ |x|1, then

|A(x+ δx, · · · , x+ δx)−A(x, · · · , x)− kA(δx, x, · · · , x)| ≤ 2r|A|∞|δx|2|x|k−2
1 .

Proof. By symmetry and multilinearity we have

A(x+ δx, · · · , x+ δx) =
∑

i

(
k

i

)
A(δx, · · · , δx︸ ︷︷ ︸

i

, x, · · · , x).

Using Lemma 2.11 for every i ≥ 2, the assumption |δx|1 ≤ |x|1, and the fact that
∑
i≥2

(
k
i

)
≤ 2k,

yields the lemma.

Lemma 2.13 (Analog of Lemma 2.4). For every t, we have z(x̂t)−z(x̂t−1) ≥ (x̂t− x̂t−1) ·b(x̂t−1)−
2k+2nk/tk.
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Proof. Let ŝt = x̂t − x̂t−1. We use Lemma 2.12 to write:

z(x̂t)− z(x̂t−1) = A(x̂t−1 + ŝt, · · · , x̂t−1 + ŝt)−A(x̂t−1, · · · , x̂t−1)

= kA(ŝt, x̂t−1, · · · , x̂t−1) + 2k|A|∞|ŝt|21|x̂t−1|k−2
1 .

By linearity and (2.8), we have kA(ŝt, x̂t−1, · · · , x̂t−1) = ŝt · b(x̂t−1), which gives the first term in

the right hand side of Lemma 2.13. By definition of max-kCSP, we have |A|∞ ≤ 1. Since x̂t−1

is a complete fractional assignment of values to the variables, |x̂t−1|1 is equal to n, the number of

variables. Finally, it is not difficult to check that |ŝt|1 ≤ (1+n/t) ≤ 2n/t. Indeed a short calculation

proves the following expression.

ŝtu =
(
gtu − x̂t−1

u

)




1 if u = rt (is being placed at time t)

(1/t) if u 6∈ St (has not yet been placed)

0 if u ∈ St−1 (has already been placed)

(2.9)

Since both gtu and x̂t−1
u have ℓ1 norm equal to 1, we obtain that the ℓ1-norm of ŝt is

∑

u

|ŝtu| ≤ 2 +
2

t
(n− t) = 2

n

t
. (2.10)

Replacing A(x̂t−1, x̂t−1) by z(x̂t−1) concludes the proof.

In the second lemma, we bound the expectation of the decrease, and relate it to the difference

between the values of the fictitious cut and of the (scaled) true cut, when evaluated by the derivative

function b.

Lemma 2.14 (Analog of Lemma 2.5). For every t, the expected value of z(x̂t)− z(x̂t−1) is greater

than or equal to

−2k+2nk/tk − 2
n

t(n− t+ 1)
E
[
|b(x̂t−1)− b(n

t
xt−1)|1

]
.

Proof. First apply Lemma 2.13. Then, write:

ŝt · b(x̂t−1)

= ŝt · b(n
t
xt−1) + ŝt · (b(x̂t−1)− b(n

t
xt−1))

= (
n

t
)r−1ŝt · b(xt−1) + ŝt · (b(x̂t−1)− b(n

t
xt−1))

≥ ŝt · (b(x̂t−1)− b(n
t
xt−1)),

where the second equality follows from the fact that the function b(y) is (k − 1)-multilinear. To

justify the last inequality, recall that the greedy choice gtu maximizes y · bu(xt−1) for y with |y|1 = 1

and yui ∈ [0, 1]. Going back to (2.9), we see that ŝt · b(xt−1) is greater than or equal to 0. This is

where the greedy definition of the algorithm comes into the analysis.
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Given the history St−1, we can write:

E
[
ŝt · (b(x̂t−1)− b(n

t
xt−1))|St−1

]

=
∑

v

E
[
ŝtv · (bv(x̂t−1)− bv(

n

t
xt−1))|St−1

]

=
∑

v

E
[
ŝtv|St−1

]
· (bv(x̂t−1)− bv(

n

t
xt−1))

≥ −
∑

v

|E
[
ŝtv|St−1

]
|1 · |bv(x̂t−1)− bv(

n

t
xt−1)|1

≥ −2 n

t(n− t+ 1)
|b(x̂t−1)− b(n

t
xt−1)|1,

where the second equality follows from the fact that given St−1, b(x̂t−1) is fixed, the next inequality

follows from general principles. As for the last inequality, fix St−1 and a vertex u and consider

evaluating E
[
ŝtu|St−1

]
. If u ∈ St−1, then ŝtu = 0 and so the expectation is zero. Otherwise, by the

random order assumption and (2.10),

E
[
|ŝtu|1|St−1

]
= E

[ |ŝt|1
n− t+ 1

|St−1

]
≤ 2

n

t(n− t+ 1)

and the last inequality follows. This concludes the proof of Lemma 2.14.

The next lemma bounds the difference between the b-values of the fictitious cut and of the

(scaled) true cut.

Lemma 2.15 (Analog of Lemma 2.6). For every t, we have E
[
|b(x̂t)− b(nt xt)|1

]
= O(σ), where

σ = O
(
nk
√
t

√
n−t
n

)
.

The proof is based on a certain martingale property and deferred to the next section.

The next lemma relates the z-values of the fictitious assignment at two different times.

Lemma 2.16 (Analog of Lemma 2.7). For every t ≥ t0 we have E [z(x̂t)]−E [z(x̂t0)] ≥ −O(ǫnk).

Proof. Use Lemma 2.14 for every τ from t0 to t, and sum; apply Lemma 2.15 to each term in the

sum, and use t0 ≥ 1/ǫ2: after a short calculation we get:

E
[
z(xt)− z(x̂t0)

]
= −nkO

(
1

t0
+

1√
t0

+
1√
t

)
= −O(ǫnk).

Proof. (of Theorem 2.1.) By definition of the fictitious assignment, the output assignment xn is

equal to x̂n. Apply Lemma 2.16 for t = n; and recall that by definition of x∗, x̂t0 is the optimal

assignment.
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2.3.3 Proof of Lemma 2.15 using martingales.

Let C(σ) denote the set of random variables X such that for all p > 0 we have E
[
ep(X−σ)] ≤ ep2σ2

.

Intuitively C(σ) is the set of random variables that are at most σ except for Chernoff-like tail

probabilities. On the first reading one may read X ∈ C(σ) as E [X] = O(σ).

This definition satisfies a number of easily verified properties.

Lemma 2.17. Let σ and α be positive constants and X and Y be random variables. Then:

• If X ∈ C(σ) then Pr (X − σ ≥ α) ≤ e−α2/(4σ2).

• E [X] = O(σ).

• If X ∈ C(σ) then αX ∈ C(ασ).

• If X ∈ C(σ) and Y ≤ X then Y ∈ C(σ).

• The random variable with constant value σ is in C(σ).

Proof. The first is proved using the same as Chernoff-bounds:

Pr (X − σ ≥ α) = Pr
(
ep(X−σ) ≥ epα

)
≤ E

[
ep(X−σ)

]
/epα

≤ ep2σ2−pα = e−α
2/(4σ2)

choosing p = α/(2σ2) in the last equality.

The second follows easily from Jensen’s inequality:1

e1 = eσ
2/σ2 ≥ E

[
e(X−σ)/σ

]
≥ e(E[X]−σ)/sigma

hence E [X] /σ ≤ 2. The remainder are straightforward.

Furthermore this class of random variables adds nicely:

Lemma 2.18. For any real-valued random variables X, Y , if X ∈ C(σx) and Y ∈ C(σy), then

X + Y ∈ C(σx + σy).

The intuition for the proof is that the worst case is when X and Y are proportional, in which

case the Lemma is trivial.

Proof. Let p = (σx + σy)/σx and q = (σx + σy)/σy, which are Hölder conjugates, i.e. 1/p+1/q = 1.

For any α > 0 we have:

E
[
eα(X+Y−σX−σY )

]
= E

[
eα(X−σX) · eα(Y−σY )

]
≤ E

[
epα(X−σX)

]1/p
E
[
eqα(X−σX)

]1/q

≤ e(p2α2σ2
X)/p+(q2α2σ2

Y )/q = eα
2(σx+σy)σx+α

2(σx+σy)σy

= eα
2(σx+σy)

2

as desired.
1Alternatively, it follows from integrating the first.
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An important corollary of Lemmas 2.17 and 2.18 is that if X ∈ C(σ) then |X| ∈ C(O(σ)).

Theorem 2.19. A martingale with sum of squared step-size bounds σ2 is in C(σ/2).

Proof. From the standard proof of the Azuma-Hoeffding inequality we have E
[
epX

]
≤ ep2σ2/2 hence

E
[
ep(X−σ)] ≤ ep2σ2/2.

We will actually prove the following Lemma, which trivially implies Lemma 2.15

Lemma 2.20. For every t and q-dimensional array A with |A|∞ ≤ 1 we have

Pr
(
|A(n

t
xt,

n

t
xt · · · n

t
xt)−A(x̂t, · · · x̂t)| ≥ σ + λ

)
≤ e−λ2/σ2

where σ = O(nq
√

n−t
nt ).

Proof of Lemma 2.20. To show this we prove by induction on k that for a k-dimensional symmetric

array with |A|∞ ≤ 1,

|A(xt, xt · · ·xt)−A(x̄t, · · · x̄t)| ∈ C(O(tk
√
n− t
nt

))

where x̄t ≡ (t/n)x̂t.

The base case k = 0 is trivial as |A()−A()| = 0.

We now consider the inductive case. Let positive integer k be given. Without loss of generality

suppose that A is symmetric. For intuition note that

dA(x, x, · · ·x)/(n− t)k
dt

=
dA/dt

(n− t)k +
rA

(n− t)k+1

=
1

(n− t)k

[
kA(dx/dt, x · · ·x) + kA(x, x, · · ·x)/(n− t)

]

=
k

(n− t)kA(dx/dt+
x

n− t , x · · ·x).

Doing the same thing but allowing for lower-order terms, we use Lemma 2.12

A(xt, · · ·xt)
(n− t)k − A(xt−1, · · ·xt−1)

(n− (t− 1))k
=

k

(n− t)k
[
A(xt − xt−1 +

xt−1

n− t , x
t−1 · · ·xt−1) +O(tk−2)

]

Define:

Dt ≡ A(∆xt + xt/(n− t), xt, xt)−A(∆x̄t + x̄t/(n− t), x̄t, x̄t)
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where ∆xt = xt − xt−1 and ∆x̄t = x̄t − x̄t−1. We have:

A(xτ )−A(x̄τ )
(n− τ)k

=
A(x0)−A(x̄0)

(n− 0)k
+

τ∑

t=1

k

(n− t)k (D
t +O(tk−2))

= 0 +

τ∑

t=1

k

(n− t)k (D
t −E

[
Dt|St−1

]
)

+
τ∑

t=1

k

(n− t)kE
[
Dt|St−1

]
)

+

τ∑

t=1

k

(n− t)kO(tk−2) (2.11)

Therefore:
∣∣∣∣
A(xτ )−A(x̄τ )

(n− τ)k
∣∣∣∣

≤
∣∣∣∣∣

τ∑

t=1

k

(n− t)k (D
t −E

[
Dt|St−1

]
)

∣∣∣∣∣

+

τ∑

t=1

k

(n− t)k
∣∣E
[
Dt|St−1

]
)
∣∣

+

τ∑

t=1

k

(n− t)kO(tk−2) (2.12)

By Lemma 2.18, it is sufficient to analyze each of these terms separately. First consider the first

term of Equation 2.12. The partial sums form a martingale. Clearly the uncertain part of D,

|A(∆x, x, x)−A(∆x̄, x̄, x̄)| is bounded by tk−1, so the step size is O( tk−1

(n−t)k ). We have:

σ2 = O(1)

τ∑

t=1

(
tk−1

(n− t)k
)2

≤
{

O(1)
∑τ
t=1(

tk−1

(n)k
)2 if τ ≤ n/2

O(1)
∑τ
t=1(

nk−1

(n−t)k )
2 if τ > n/2

=

{
O(1) τ

2k−1

(n)2k
if τ ≤ n/2

O(1) n2k−2

(n−τ)2k−1 if τ > n/2

=

{
O(1)( τ

k−1/2

(n−τ)k )
2 if τ ≤ n/2

O(1)( τk−1

(n−τ)k−1/2 )
2 if τ > n/2

This is of the desired form except for the τ > n/2 case, but liberal use of τ = Θ(n) in that case

remedies it:

τk−1

(n− τ)k−1/2
=

τk−1/2

(n− τ)k

√
n− τ
τ

= Θ(1)
τk−1/2

(n− τ)k

√
n− τ
n

.
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The Hoeffding-Azuma Lemma 2.19 finishes the proof that the first term of Equation 2.12 is small.

We now analyze the second term of Equation 2.12. For any v, i let evi denote a unit-vector with

1 in the vi. Note that A(evi, x, . . . , x) = Bvi(x, . . . , x), where Bvi is a k − 1 dimensional array.

Dt =

A(∆x+ x/(n− t), x, . . . , x)
−A(∆x̄+ x̄/(n− t), x̄, . . . x̄)
+A(∆x̄+ x̄/(n− t), x, . . . x)
−A(∆x̄+ x̄/(n− t), x, . . . , x)

=
∑

vi

[
(∆x+ x/(n− t)−∆x̄− x̄/(n− t))viA(evi, x, . . . , x)

+ (∆x̄+ x̄/(n− t))vi(A(evi, x, . . . , x)−A(evi, x̄, . . . , x̄))
]

(2.13)

Recall that we are trying to bound
∣∣E
[
Dt|St−1

]
)
∣∣. From Lemma 2.8 we know

E
[
∆x+ x/(n− t)−∆x̄− x̄/(n− t)|St−1

]
= 0

disposing of the first term of Equation 2.13.

E
[
(∆x̄+ x̄/(n− t))vi(A(evi, x, . . . , x)−A(evi, x̄, . . . , x̄))|St−1

]

= E
[
(∆x̄+ x̄/(n− t))|St−1

]
vi
(A(evi, x, . . . , x)−A(evi, x̄, . . . , x̄))

From the inductive hypothesis we know that A(evi, x, . . . , x) − A(evi, x̄, . . . x̄) is probably small for

any fixed v, i. Note that

|E
[
∆x̄vi|St−1

]
| ≤

{
1/(n− t) if not yet placed

1/n if already placed

≤ 1/(n− t)

and |x̄vi|/(n− t) ≤ t/(n(n− t)) ≤ 1/(n− t). Therefore

∣∣∣∣∣E
[
(∆x̄+ x̄/(n− t))vi(A(evi, x, . . . , x)−A(evi, x̄, . . . , x̄))|St−1

]
∣∣∣∣∣

≤ O(1)

n− t |A(evi, x, . . . , x)−A(evi, x̄, . . . , x̄)|.

Now by the inductive hypothesis:

|A(evi, x, . . . , x)−A(evi, x̄, . . . , x̄)| ∈ C(O(tk−1

√
n− t
nt

))
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We want to show:

(n− τ)k
τ∑

t=1

k

(n− t)k
∣∣E
[
Dt|St−1

]
)
∣∣ ∈ C(tk−1/2

√
(n− t)/t)

now using Lemmas 2.17 and 2.18 and the inductive hypothesis it remains to show:

(n− τ)k
τ∑

t=1

k

(n− t)kO(tk−1

√
n− t
nt

) ≤ O(tr−1/2
√

(n− t)/t)

Splitting the sums into cases on t < n/2 and liberal use of r considered constant shows this sum is

O(1)tk−1/2
√

n−t
n /(n− t)k

Summation shows that the third term of Equation 2.12 is also small.

2.4 Analyzing Algorithm 2.2

Instead of Algorithm 2.2, we will analyze a variant, Algorithm 2.3.

Lemma 2.21. With probability at least 1− ǫ, Algorithm 2.3 and Algorithm 2.2 give the same output

(if coupled to use the same sequence r1, . . . , rn).

Proof. Consider a coupon collection problem with N = dt0 coupons, one per assignment of the first

t0 variables. Let κ = N ln(N/ǫ) = dt0 (t0 ln d+ ln(1/ǫ)) = 2O(t0) be the number of trials, one per

assignment in Y (excluding x∗) as defined in Algorithm 2.3. As long as Algorithm 2.3 collects all

the coupons, it iterates over the same cuts of T as Algorithm 2.2 and hence returns the same result.

Each coupon has probability (1 − 1/N)κ ≤ e−κ/N = ǫ
N of not being collected, so a union bound

shows that all are collected with probability at least 1− ǫ.

In the analysis of ection 2.3.2, the construction always started by a cut induced on the sample

by the optimal cut x∗. Now we need a new notation: let xt(y) denote the construction at time t,

starting from the cut induced on the sample by the cut y (instead of by the optimal cut x∗). Let

x̂t(y) denote the fictitious cut at time t, starting from cut y. Formally, replace x∗ in the definition of

gtvi with y. All of our previous Lemmas still hold in this more general setting.

Lemma 2.22.

E

[
max
y∈Y

∣∣∣b(n
t
xt(y))− b(x̂t(y))

∣∣∣
1

]
=

1

ǫ
O(σ)

where σ = O
(
nk−1
√
t

√
n−t
n

)
.

Proof. Using Lemma 2.20 we have for every y ∈ Y :

Pr
(∣∣∣b(x̂t(y))− b(

n

t
xt(y))

∣∣∣
1
≥ λ

)
≤ e−λ2/σ2

. (2.14)

The set Y has size 2O(t0) = eO(1/ǫ2), so by a union bound,

Pr

(
max
y∈Y

∣∣∣b(x̂t(y))− b(
n

t
xt(y))

∣∣∣
1
≥ λ

)
≤ eO(1/ǫ2)−λ2/σ2

Finally, integrate min(1, eO(1/ǫ2)−λ2/σ2

) over λ.
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• Let t1 = O(1/ǫ4) and t0 = O(1/ǫ2)

• Let Y be a set of 2O(t0) random assignments to the n variables, plus the optimal assignment
x∗.

• Choose a random permutation of the variables, the {rt}nt=1, used in all future computations.

• Choose seed assignment w = argmaxy∈Y z(x
t1
(y))

• Return assignment xn(w)

Figure 2.3: Variant algorithm for analysis

Lemma 2.23.

E

[
max
y∈Y
|z(n

t
xt(y))− z(x̂t(y))|

]
=

1

ǫ
O(σ)

where σ = O
(
nk
√
t

√
n−t
n

)
.

Proof. Identical to the proof of the previous Lemma, Lemma 2.22.

2.4.1 Proof of Theorem 2.2

By definition of the fictitious cut, the output cut xn(w) is equal to x̂n(w). As in the previous section,

looking at the process from time t1 to time n we write:

z(x̂n(w)) = z(x̂t1(w)) +
∑

t1≤t≤n
z(x̂t(w))− z(x̂t−1

(w) ).

Taking expectations, by Lemma 2.5 (which is still valid here) we have:

E
[
z(x̂t(w))− z(x̂t−1

(w) )
]
≤

2k+2nk/tk + 2
n

t(n− t+ 1)
E
[
|b(x̂t−1

(w) )− b(
n

t
xt−1
(w) )|1

]
.

Now, note that we have

|b(x̂t−1
(w) )− b(

n

t
xt−1
(w) )|1 ≤ max

y∈Y
|b(x̂t−1

(y) )− b(
n

t
xt−1
(y) )|1.

Thus we can use Lemma 2.22 to deal with this term. To analyze z(x̂t1(w)), we write:

z
(
x̂t1(w)

)
≤ z

(
n

t1
xt1(w)

)
+

∣∣∣∣z
(
x̂t1(w)

)
− z

(
n

t1
xt1(w)

)∣∣∣∣ .

The second term can be bounded above by maxy∈Y |z(x̂t1(y)) − z( nt1x
t1
(y))|, so that we can apply

Lemma 2.23 to bound it. As to the first term, since x∗ is one of the cuts in Y , by definition of the

algorithm we have

z

(
n

t1
xt1(w)

)
≤ z

(
n

t1
xt1(x∗)

)
.
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Now we can write

z

(
n

t1
xt1(x∗)

)
≤ z

(
x̂t1(x∗)

)
+

∣∣∣∣z
(
x̂t1(x∗)

)
− z

(
n

t1
xt1(x∗)

)∣∣∣∣ .

Again, the second term can be bounded above by maxy∈Y |z(x̂t1(y)) − z( nt1x
t1
(y))|, and we can apply

Lemma 2.23 to bound it. Now, by Lemma 2.7 for t = t1, we have

E
[
z(x̂t1(x∗))

]
−E

[
z(x̂t0(x∗))

]
= O(ǫn2).

Finally, as in the previous section, it holds that E
[
z(x̂t0(x∗))

]
= OPT. Together, these bounds prove

Theorem 2.2.

2.5 Proof of Theorem 2.3

With these techniques in hand, our proof of Theorem 2.3 (extends Alon et al. [2002]) is actually

quite simple. Recall Alon et al. [2002] that the hard direction is showing that the subproblem is

not easier than the overall problem: E [OPTSt1 ] /t21 ≥ OPT/n2 − O(ǫ). (The easy direction is a

consequence of Lemmas 2.7 and 2.23, though much easier proofs exist.) The key idea we use is that

while Algorithm 2.1, as a subroutine of Algorithm 2.2, is solving the problem on the first t1 vertices,

it is also implicitly generating solutions for the whole graph x̂t1(y).

By Theorem 2.1 the best cut found by Algorithm 2.1 for the outer sample St1 is a good approx-

imation to the optimal cut for the outer sample:

E
[
z(xt1(w))

]
/tk1 ≤ E [OPTSt1 ] /t

k
1 +O(ǫ)

By Lemma 2.22, the cost of the best cut of the outer sample found by Algorithm 2.1 is approximately

equal to the cost of the extrapolated solution x̂t1 :

E
[
z(x̂t1(w))

]
/nk ≤ E

[
z(xt1(w))

]
/tk1 +O(ǫ)

Recall that x̂ has every variable set to a convex combination of several values (|x̂u| = 1). One

can make greedy changes to convert x̂ into an integral solution, so by definition of OPT :

OPT/nk ≤ E
[
z(x̂t1(w))

]
/nk

Adding inequalities together yields:

OPT/nk ≤ E [OPTSt1 ] /t
k
1 +O(ǫ).

2.6 Open problems

It is well-known that running greedy once is a 2-approximation for MaxCut on general graphs, and

we just proved that running greedy many times is a (1 + ǫ)- approximation on dense graphs. Does

repeating greedy on general graphs yield an approximation factor better than 2?
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Previous algorithms for MaxCut have been extended to weighted instances when the weights

define a metric. We conjecture that such instances can also be solved by an extension of our greedy

algorithms.

What problems other than Max-r-CSP can be analyzed with our technique? It is easy to see

that maximum separator can be solved with our techniques (albeit with a less efficient t0 = 1/ǫ4),

but many other possibilities exist for which PTASs are not already known. For example, consider

the problem of finding a maximum cut with the condition that the fraction of the edges that are

within the left side of the cut is the inverse of a prime (1/2, 1/3, 1/5, etc.). This problem is

likely also solvable by our framework. Non-convex but smooth objectives should also be handled by

our framework, such as finding a three-way cut that maximizes the square of the number of edges

between piece 1 and 2 plus the number of edges between 2 and 3, should anyone care for such an

objective function.



Chapter 3

Fragile MIN-k-CSPs

3.1 Introduction

The results presented in this chapter are joint work with Marek Karpinski. They previously appreared

in Karpinski and Schudy [2009a].

MIN-kCSPs can be much harder to approximate than MAX-kCSPs since the error must be

charged against a potentially much smaller optimum value. For this reasons many MIN-kCSPs

provably have no PTAS even for everywhere-dense instances. In fact even determining whether the

optimum if zero or not can be NP-hard. One such problem is the everywhere-dense version of the

MIN-3UNSAT problem [Bazgan et al., 2003].

Arora, Karger and Karpinski [Arora et al., 1995] introduced the first PTASs for dense mini-

mum constraint satisfaction problems. They give PTASs with runtime nO(1/ǫ2) [Arora et al., 1995]

for min bisection and multiway cut (MIN-d-CUT). Bazgan, Fernandez de la Vega and Karpin-

ski [Bazgan et al., 2003] designed PTASs for MIN-SAT and the nearest codeword problem with

runtime nO(1/ǫ2). We give linear-time approximation schemes for all of the problems mentioned in

this paragraph except for the MIN-BISECTION problem.

Theorem 3.1. For every ǫ > 0 there is a randomized 1+ǫ-approximation algorithm for everywhere-

dense fragile MIN-kCSPs with runtime O(nk) + 2O(1/ǫ2).

3.2 Intuition

We use the Gale-Berlekamp Switching Game (GB Game) as a concrete context to describe our

techniques. The GB Game was introduced independently by at least three groups. The epony-

mous discoveries were by Elwyn Berlekamp [Carlson and Stolarski, 2004, Spencer, 1994] and David

Gale [Spencer, 1994], who independently introduced this problem in the context of coding theory

in the 1960s. Andrew Gleason independently discovered this problem in 1958 as a sandbox for the

28
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study of early local search methods [Gleason, 1960].1 The GB game is played using of a m by

m grid of lightbulbs. The adversary chooses an arbitrary subset of the lightbulbs to be initially

“on.” Next to every row (resp. column) of lightbulbs is a switch, which can be used to invert

the state of every lightbulb in that row (resp. column). The protagonist’s task is to minimize

the number of lit lightbulbs (by flipping switches). This problem was recently proven to be NP-

hard [Roth and Viswanathan, 2008]. Let Φ = {−1, 1} ⊂ R. For matrices M,N let d(M,N) denote

the number of entries where M and N differ. It is fairly easy to see that the GB Game is equivalent

to the following natural problems: [Roth and Viswanathan, 2008]

• Given matrix M ∈ Φm×m find column vectors x, y ∈ Φm minimizing d(M,xyT ).

• Given matrix M ∈ F
m×m
2 find x, y ∈ Fm2 minimizing

∑
ij 11 (Mij 6= xi ⊕ yj) where F2 is the

finite field over two elements with addition operator ⊕.

• Given matrix M ∈ Φm×m find column vectors x, y ∈ Φm maximizing xTMy.

Consider the following scenario. Suppose that our nemesis, who knows the optimal solution to

the Gale-Berlekamp problem shown in Figure 3.1, gives us a constant size random sample of it to

tease us. How can we use this information to construct a good solution? One reasonable strategy is

to set each variable greedily based on the random sample. Throughout this section we will focus on

the row variables; the column variables are analogous. For simplicity our example has the optimal

solution consisting of all of the switches in one position, which we denote by α. For row v, the greedy

strategy, resulting in assignment x(1), is to set switch v to α iff b̂(v, α) < b̂(v, β), where b̂(v, α) (resp.

b̂(v, β)) denotes the number of light bulbs in the intersection of row v and the sampled columns that

would be lit if we set the switch to position α (resp. β).

With a constant size sample we can expect to set most of the switches correctly but a constant

fraction of them will elude us. Can we do better? Yes, we simply do greedy again. The greedy prices

analogous to b̂ are shown in the columns labeled with b in the middle of Figure 3.1. For the example

at hand, this strategy works wonderfully, resulting in us reconstructing the optimal solution exactly,

as evidenced by the b(x(1), v, α) < b(x(1), v, β) for all v. In general this does not reconstruct the

optimal solution but provably gives something close.

Some of the rows, e.g. the last one, have b(x(1), v, α) much less than b(x(1), v, β) while other

rows, such as the first, have b(x(1), v, α) and b(x(1), v, β) closer together. We call variables with

|b(x(1), v, α) − b(x(1), v, β)| > Θ(n) clearcut. Intuitively, one would expect the clearcut rows to be

more likely correct than the nearly tied ones. In fact, we can show that we get all of the clearcut ones

correct, so the remaining problem is to choose values for the rows that are close to tied. However,

those rows have a lot of lightbulbs lit, suggesting that the optimal value is large, so it is reasonable

to run an additive approximation algorithm and use that to set the remaining variables.

Finally observe that we can simulate the random sample given by the nemesis by simply taking

a random sample of the variables and then doing exhaustive search of all possibly assignments of

those variables. We have just sketched our algorithm.

1I would like to thank Donald Knuth for bringing Andrew Gleason’s work to my attention.
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Sampled variables

1   2
1   2
1   2
0   3
2   1
0   3

2   4
1   5
1   5
1   5
2   4
1   5

α
α
α
α
α
α

α α α α α α α α α α α α
α
α
α
α
β
α

x*   (Optimum) x
(1)

b
(x

(1
),v,α

)
b

(x
(1

),v,β
)

b
(v,α

)

b
(v,β

)

Figure 3.1: An illustration of our algorithmic ideas on the Gale-Berlekamp Game.

Our techniques differ from previous work [Bazgan et al., 2003, Arora et al., 1995, Giotis and Guruswami,

2006] in two key ways:

1. Previous work used a sample size of O((log n)/ǫ2), which allowed the clearcut variables to be

set correctly after a single greedy step. We instead use a constant-sized sample and run a

second greedy step before identifying the clearcut variables.

2. Our algorithm is the first one that runs the additive error algorithm after identifying clearcut

variables. Previous work ran the additive error algorithm at the beginning.

The same ideas apply to all dense fragile CSPs.

3.3 Model

We now give a formulation of MIN-kCSP that is suitable for our purposes. For non-negative integers

n, k, let
(
n
k

)
= n!

k!(n−k)! , and for a given set V let
(
V
k

)
denote the set of subsets of V of size k (analogous

to 2S for all subsets of S). There is a set V of n variables, each of which can take any value in

constant-sized domain D. Let xv ∈ D denote the value of variable v in assignment x.

Consider some set of variables I ∈
(
V
k

)
. There may be many constraints over these variables;

number them arbitrarily. Define p(I, ℓ, x) to be 1 if the ℓth constraint over I is unsatisfied in

assignment x and zero otherwise. For I ∈
(
V
k

)
, we define pI(x) =

1
η

∑
ℓ p(I, ℓ, x), where η is a scaling

factor to ensure 0 ≤ pI(x) ≤ 1 (e.g. η = 2k for MIN-kSAT). For notational simplicity we write pI as
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a function of a complete assignment, but pI(x) only depends on xu for variables u ∈ I. For I 6∈
(
V
k

)

define pI(x) = 0.

Definition 3.2. On input V, p a minimum constraint satisfaction problem (MIN-kCSP) is a problem

of finding an assignment x minimizing Obj(x) =
∑
I∈(Vk)

pI(x).

Let Rvi(x) be an assignment over the variables V that agrees with x for all u ∈ V except for v

where it is i; i.e. Rvi(x)u =

{
i if u = v

xu otherwise
. We will frequently use the identity Rvxv

(x) = x.

Let b(x, v, i) =
∑
I∈(Vk):v∈I

pI(Rvi(x)) be the number of unsatisfied constraints v would be in if xv

were set to i (divided by η).

We say the ℓth constraint over I is fragile if p(I, ℓ, Rvi(x))+p(I, ℓ, (Rvj(x)) ≥ 1 for all assignments

x, variables v and distinct values i and j.

Definition 3.3. A Min-kCSP is δ-fragile-dense (or simply fragile-dense) for some δ > 0 if b(x, v, i)+

b(x, v, j) ≥ δ
(
n
k−1

)
for all assignments x, variables v and distinct values i and j.

Lemma 3.4. For any δ > 0 an instance where every variable v ∈ V participates in at least δη
(
n
k−1

)

fragile constraints is δ-fragile-dense.

Proof. By definitions:

b(x, v, i) + b(x, v, j)

=
∑

I∈(Vk):v∈I

(pI(Rvi(x)) + pI(Rvj(x)))

=
∑

I∈(Vk):v∈I

1

η

∑

ℓ

(p(I, ℓ, Rvi(x)) + p(I, ℓ, Rvj(x)))

≥
∑

I∈(Vk):v∈I

1

η
· (The number of fragile constraints over I)

≥ δη

η

(
n

k − 1

)
= δ

(
n

k − 1

)

We will make no further mention of individual constraints, η or fragility; our algorithms and

analysis use pI and the fragile-dense property exclusively.

3.4 Algorithm

Recall that b(x∗, v, i) can be written as a sum, over S ∈
(
V
k−1

)
, of pS∪{v}(Rvi(x

∗)), which is a function

of x∗u for u ∈ S. We estimate b(x∗, v, i) with a random sample of s = 18 log(480|D|k/δ)
δ2 of its terms. Let

S1, S2, . . . , Ss be independent random samples of k − 1 variables from V . Later (see Lemma 3.10)

we show that

b̂(v, i) =

(
n
k−1

)

s

s∑

j=1

pSj∪{v}(Rvi(x̂∗))
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1: Run a ǫ
1+ǫ · δ

2

72k

(
n
k

)
additive approximation algorithm.

2: if Obj(answer) ≥
(
n
k

)
δ2/(72k) then

3: Return answer.
4: else
5: Let s = 18 log(480|D|k/δ)

δ2

6: Draw S1, S2, . . . , Ss randomly from
(
V
k−1

)
with replacement.

7: for Each assignment x̂∗ of the variables in
⋃s
j=1 Sj do

8: For all v ∈ V and i ∈ D let

b̂(v, i) =
( n
k−1)
s

∑s
j=1 pSj∪{v}(Rvi(x̂∗))

9: For all v ∈ V let x
(1)
v = argmini b̂(v, i)

10: For all v ∈ V let x
(2)
v = argmini b(x

(1), v, i)

11: Let C = { v ∈ V : b(x(1), v, x
(2)
v ) < b(x(1), v, j)− δ

(
n
k−1

)
/6 for all j 6= x

(2)
v }.

12: Find x(3) of cost at most ǫ|V \C|δ
3n

(
n
k

)
+min [Obj(x)] using an additive approximation algo-

rithm, where the minimum ranges over x such that xv = x
(2)
v ∀v ∈ C. See Section 3.6 for

details.
13: end for
14: Return the best assignment x(3) found.
15: end if

Figure 3.2: Our 1+ ǫ approximation algorithm for δ-fragile-dense MIN-kCSP with variables taking
values from domain D.

is an unbiased estimator of b(x∗, v, i).

We now describe our linear-time Algorithm 3.2 for fragile-dense MIN-k-CSPs. We first (lines

1–3) dispose of the easy case OPT=Ω(
(
n
k

)
) by running an additive error algorithm and returning

the output if it is sufficiently costly. Second (lines 5–7) we take a random sample of variables. The

optimal assignment x∗ is of course unknown to us so we simply try every possible assignment of the

sampled variables (line 7). We then compute b̂ (line 8) and then make a preliminary assignment

x(1) by setting each variable greedily relative to b̂ (line 9). To reduce noise we do a second greedy

step, yielding assignment x(2) (line 10). While constructing x(2) we make a note when the best value

for a variable is far better than the second best; we fix such clear-cut variables to their values in

assignment x(2). We finally run an additive error algorithm (line 12) to set the remaining variables.

3.5 Analysis of Algorithm 3.2

Recall from Theorem 2.2 in section 2 that there is a randomized algorithm which returns an assign-

ment of cost Y such that |Y − OPT | ≤ ǫ′nk in runtime O(nk) + 2O(1/ǫ′2) for any MAX-kCSP and

any ǫ′ > 0. A trivial reduction shows that the same result applies to MIN-kCSPs as well.

Throughout the rest of the paper let x∗ denote an optimal assignment.

First consider Algorithm 3.2 when the “then” branch of the “if” is taken. Choose constants

appropriately so that the additive error algorithm fails with probability at most 1/10 and assume

it succeeds. Let xa denote the additive-error solution. We know Obj(xa) ≤ Obj(x∗) + ǫ
1+ǫP

and Obj(xa) ≥ P where P =
(
n
k

)
δ2/(72k). Therefore Obj(x∗) ≥ P (1 − ǫ

1+ǫ ) = P
1+ǫ and hence
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Obj(xa) ≤ Obj(x∗) + ǫ
1+ǫ (1 + ǫ)Obj(x∗) = (1 + ǫ)Obj(x∗). Therefore if the additive approximation

is returned it is a 1 + ǫ-approximation.

The remainder of this section considers the case when Algorithm 3.2 takes the “else” branch.

Define γ so that Obj(x∗) = γ
(
n
k

)
. We have Obj(x∗) ≤ Obj(xa) <

(
n
k

)
δ2/(72k) so γ ≤ δ2/(72k). We

analyze the x̂∗ where we guess x∗, that is when x̂∗v = x∗v for all v ∈ ⋃si=1 Si. Clearly the overall cost

is at most the cost of x(3) during the iteration when we guess correctly.

Lemma 3.5. b(x∗, v, x∗v) ≤ b(x∗, v, j) for all j ∈ D.

Proof. Immediate from definition of b and optimality of x∗.

Lemma 3.6. For any assignment x,

Obj(x) =
1

k

∑

v∈V
b(x, v, xv)

Proof. By definitions,

b(x, v, xv) =
∑

I∈(Vk):v∈I

pI(Rvxv
(x)) =

∑

I∈(Vk):v∈I

pI(x).

Write Obj(x) =
∑
I∈(Vk)

pI(x) =
∑
I∈(Vk)

pI(x)
[∑

v∈I
1
k

]
and reorder summations.

Definition 3.7. We say variable v in assignment x is corrupted if xv 6= x∗v.

Definition 3.8. Variable v is clear if (x∗, v, x∗v) < b(x∗, v, j)− δ
3

(
n
k−1

)
for all j 6= x∗v. A variable is

unclear if it is not clear.

Clearness is the analysis analog of the algorithmic notion of clear-cut vertices sketched in Sec-

tion 3.2. Comparing the definition of clearness to Lemma 3.5 further motivates the terminology

“clear.”

Lemma 3.9. The number of unclear variables t satisfies

t ≤ 3(n− k + 1)γ/δ ≤ δn

24k
.

Proof. Let v be unclear and choose j 6= x∗v minimizing b(x∗, v, j). By unclearness, b(x∗, v, x∗v) ≥
b(x∗, v, j)− (1/3)δ

(
n
k−1

)
. By fragile-dense, b(x∗, v, x∗v) + b(x∗, v, j) ≥ δ

(
n
k−1

)
. Adding these inequal-

ities we see

b(x∗, v, x∗v) ≥ 1− 1/3

2
δ

(
n

k − 1

)
=

1

3
δ

(
n

k − 1

)
(3.1)

By Lemma 3.6 and (3.1),

OPT = γ

(
n

k

)
= 1/k

∑

u

b(x∗, u, x∗u)

≥ 1/k
∑

u:unclear

δ

3

(
n

k − 1

)
=

δ

3k

(
n

k − 1

)
t.

Therefore t ≤ γ
(
n
k

)
3k

δ( n
k−1)

= 3γ
δ (n− k + 1).

For the second bound observe 3nγ/δ ≤ 3n
δ

δ2

72k = δn
24k .
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Lemma 3.10. The probability of a fixed clear variable v being corrupted in x(1) is bounded above by
δ

240k .

Proof. First we show that b̂(v, i) is in fact an unbiased estimator of b(x∗, v, i) for all i. By definitions

and in particular by the assumption that pI = 0 when |I| < k, we have for any 1 ≤ j ≤ s:

E
[
pSj∪{v}(Rvi(x

∗))
]

=
1(
n
k−1

)
∑

J∈( V
k−1)

pJ∪{v}(Rvi(x
∗))

=
1(
n
k−1

)
∑

I∈(Vk):v∈I

pI(Rvi(x
∗))

=
1(
n
k−1

)bvi(x∗)

Therefore

E
[
b̂(v, i)

]
= s

(
n
k−1

)

s
E
[
pS1∪{v}(Rvi(x

∗))
]
= b(x∗, v, i).

Recall that 0 ≤ pI(x) ≤ 1 by definition of p, so by Azuma-Hoeffding,

Pr

(∣∣∣∣
∑s
j=1 pSj∪{v}(Rvi(x

∗))− s

( n
k−1)

b(x∗, v, i)

∣∣∣∣ ≥ λs
)

≤ 2e−2λ2s

for any λ > 0 hence

Pr

(
|b̂(v, i)− b(x∗, v, i)| ≥ λ

(
n

k − 1

))
≤ 2e−2λ2s

Choose λ = δ/6 and recall s = 18 log(480|D|k/δ)
δ2 , yielding.

Pr

(
|b̂(v, i)− b(x∗, v, i)| ≥ δ

6

(
n

k − 1

))
≤ δ

240|D|k

By clearness we have b(x∗, v, j) > b(x∗, v, x∗v)+δ
(
n
k−1

)
/3 for all j 6= x∗v. Therefore, the probability

that b̂(v, x∗v) is not the smallest b̂(v, j) is bounded by |D| times the probability that a particular

b̂(v, j) differs from its mean by at least δ
(
n
k−1

)
/6. Therefore Pr

(
x
(1)
v 6= x∗v

)
≤ |D| δ

240|D|k = δ
240k .

Let E1 denote the event that the assignment x(1) has at most δn/12k corrupted variables.

Lemma 3.11. Event E1 occurs with probability at least 1− 1/10.

Proof. We consider the corrupted clear and unclear variables separately. By Lemma 3.9, the number

of unclear variables, and hence the number of corrupted unclear variables, is bounded by δn
24k .

The expected number of clear corrupted variables can be bounded by δn
240k using Lemma 3.10, so

by Markov bound the number of clear corrupted variables is less than δn
24k with probability at least

1 - 1/10.

Therefore the total number of corrupted variables is bounded by δn
24k+

δn
24k = δn

12k with probability

at least 9/10.
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We henceforth assume E1 occurs. The remainder of the analysis is deterministic.

Lemma 3.12. For assignments y and y′ that differ in the assignment of at most t variables, for all

variables v and values i, |b(y, v, i)− b(y′, v, i)| ≤ t
(
n
k−2

)
.

Proof. Clearly pI(Rvi(y)) is a function only of the variables in I excluding v, so if I − {v} consists
of variables u where yu = y′u, then pI(Rvi(y)) − pI(Rvi(y′)) = 0. Therefore b(y, v, i) − b(y′, v, i)
equals the sum, over I ∈

(
V
k

)
containing v and at least one variable u other than v where yu 6= y′u, of

[pI(Rvi(y))− pI(Rvi(y′))]. For any I, |pI(Rvi(y))− pI(Rvi(y′))| ≤ 1, so by the triangle inequality a

bound on the number of such sets suffices to bound |b(y, v, i)− b(y′, v, i)|. The number of such sets

can trivially be bounded above by t
(
n
k−2

)
.

Lemma 3.13. Let C = { v ∈ V : b(x(1), v, x
(2)
v ) < b(x(1), v, j)− δ

(
n
k−1

)
/6 for all j 6= x

(2)
v } as

defined in Algorithm 3.2. If E1 then:

1. x
(2)
v = x∗v for all v ∈ C.

2. |V \ C| ≤ 3nγ
δ .

Proof. Assume E1 occurred. Using the definitions of corrupted and event E1 together with Lemma 3.12

we have for any v, i (for sufficiently large n so that n−k+1
k−1 ≥ n

k ):

|b(x(1), v, i)− b(x∗, v, i)| ≤ δn

12k

(
n

k − 2

)

≤ δ

12

(
n

k − 1

)
. (3.2)

To prove the first statement of the Lemma, let v be a clear-cut variable, i.e. v ∈ C. Apply (3.2),

yielding:

b(x∗, v, x(2)v )

≤ b(x(1), v, x(2)v ) +
δ

12

(
n

k − 1

)

< b(x(1), v, j)− δ

6

(
n

k − 1

)
+

δ

12

(
n

k − 1

)

≤ b(x∗, v, j) +

(
−δ
6
+ 2

δ

12

)(
n

k − 1

)
= b(x∗, v, j).

So by Lemma 3.5, x∗v = x
(2)
v .
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To prove the second statement, let u be clear and use (3.2) again:

b(x(1), u, x∗u) ≤ b(x∗, u, x∗u) +
δ

12

(
n

k − 1

)

< b(x∗, u, j)− δ

3

(
n

k − 1

)
+

δ

12

(
n

k − 1

)

≤ b(x(1), u, j) +

(
−δ
3
+ 2

δ

12

)(
n

k − 1

)

= b(x(1), u, j)− δ

6

(
n

k − 1

)

so u ∈ C by definition of C. Therefore the second statement follows from bound on the number of

unclear variables from Lemma 3.9.

3.6 Computation of x(3)

Now we give the details of the computation of x(3). Let T = V \C. We call C the clear-cut vertices

and T the tricky vertices. If |T | ≥ n/2 the desired approximation factor can be achieved using a

direct application of any additive error algorithm so suppose |T | < n/2.2 It is natural to substitute

the values of the clear-cut variables into the constraints, but doing these leaves constraints with arity

less than k. To remedy this we create placeholder variables as follows. We divide C into |T | sets
C1, C2, . . . , C|T | all of size at most 2|C|/|T |. We create new placeholder variables P = {ν1, . . . , ν|T |}
to represent the variables in C1, C2, . . . , C|T | respectively.

We create a new CSP over variables T ∪P by replacing each clear-cut variable in C with its rep-

resentative in P . Constraints with insufficient arity are padded with arbitrary placeholder variables

from P . Constraints that formerly depended only on variables in C can safely be discarded.

Formally, for any H ⊆ C let µ(H) denote the variables representing H, i.e. µ(H) is an arbitrary

subset of P of size |H| satisfying H ⊆ ⋃νi∈µ(H) Ci.

For any assignment y of T ∪ P , M ⊆ T and L ⊆ P with |M |+ |L| = k, define

qM,L(y) = 11 (|L| ≤ k − 1)
∑

H∈( C
|L|):µ(H)=L

pM∪H(RTy(x
(2)))

The following Lemma follows easily from the definitions:

Lemma 3.14. For any y ∈ D2|T | we have

Obj(RTy(x
(2))) =

∑

K∈(Tk)

qK(y) +
∑

I∈(Ck)

pI(x
(2))

Lemma 3.15.

0 ≤ qK(y) ≤ O
(( |C|
|T |

)k−1
)

2Alternatively Lemma 3.13 implies |T | ≤ δn/(24k) ≤ n/2
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Proof. Let M = K ∩ T and L = K ∩ P . If |L| = k the Lemma is trivial so the interesting case is

|L| ≤ k − 1. Recall that ρ(H) = L implies |H| = |L| ≤ k − 1, so any H contributing to the sum is a

subset of
⋃
νi∈L Ci, which has size at most 2|L||C|/|T |. Therefore the number of such H is at most

(
2|L||C|/|T |

k−1

)
= O

((
|C|
|T |

)k−1
)
.

After using Lemma 3.15 to normalize the weights, Theorem 2.2 with an error parameter of ǫ′ =

Θ(ǫ) yields an additive error of O(ǫ|T |k(|C|/|T |)k−1) = O(ǫ(|T |/n)nk) for the problem of minimizing
∑
K∈(T∪P

k ) qK(y). By Lemma 3.14 this is also an additive error O(ǫ(|T |/n)nk) for Obj(RTy(x
(2)))

as stated in the algorithm. Using Lemma 3.13 we further bound the additive error O(ǫ(|T |/n)nk)
by O(ǫγnk). Lemma 3.13 implies that x∗ = RTy(x

(2)) for some y, so this yields an additive error

O(ǫγnk) = ǫOPT for our original problem of minimizing Obj(x) over all assignments x.

3.6.1 Runtime

In this subsection we heavily exploit our choice to hide δ, |D| and k within O(·). Note s = O(1),

hence the number of iterations of the loop is |D||
⋃s

j=1 Sj| ≤ |D|(k−1)s = O(1), which we may safely

ignore when analyzing runtime. The two calls to the additive error algorithm take, by Theorem 2.2,

O(nk)+ 2O(1/ǫ2) time. Observe that b(x, v, i) can be easily computed in time O(nk−1) directly from

its definition, hence b(x(1), v, i) can be computed for all all v, i in |D|nO(nk−1) = O(nk) time.

Computing the cost of a particular assignment can also be done in O(nk) time. It is easy to see

that the tasks not specifically mentioned take O(n) time, so the overall runtime is O(nk) + 2O(1/ǫ2)

as claimed.



Chapter 4

Correlation Clustering with a fixed

number of clusters

4.1 Introduction

The results presented in this chapter are joint work with Marek Karpinski. They previously appreared

in Karpinski and Schudy [2009a].

As noted in the introduction, the input to the correlation clustering problem consists of a

graph where each edge is labeled either “+” or “-”. The objective is to color the vertices with

d colors minimizing the number of bichromatic “+” edges plus the number of monochromatic “-

” edges. This problem was introduced by Ben-Dor et al. [1999] to cluster gene expression pat-

terns. Since then it has been applied to problems in data mining and natural language processing

[McCallum and Wellner, 2004, Finkel and Manning, 2008, Elsner and Charniak, 2008]. The correla-

tion clustering approach has several strengths. It does not require users to specify a parametric form

for the clusters, nor to pick the number of clusters. Unlike fully unsupervised clustering methods, it

can use training data to optimize the pairwise classifier, but unlike classification, it does not require

samples from the specific clusters found in the test data. For instance, it can use messages about

cars to learn a similarity function that can then be applied to messages about whales. We discuss

some applications of correlation clustering in more detail when we describe our experimental results

in Chapter 6.

As correlation clustering is hard to solve exactly, many previous papers focused on approxima-

tion algorithms [Bansal et al., 2004, Charikar et al., 2005, Demaine et al., 2006, Ailon et al., 2008,

Swamy, 2004]. For the purpose of approximation, note that the maximization and minimization goals

are not equivalent: minimizing is harder. How hard is it to minimize disagreements? A constant

approximation ratio (currently 2.5) is achievable in the restricted complete information setting that

assumes that information is available for every pair of vertices [Ailon et al., 2008, van Zuylen et al.,

38
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Figure 4.1: An illustration of correlation clustering and the rigidity property. Only “+” edges are
shown.

2007, Bansal et al., 2004]; this result is essentially best possible (except for lowering the value of

the constant) since the complete information problem is APX-hard [Charikar et al., 2005]. The

generalization where no information is available for some pairs of objects admits an O(log n) ap-

proximation [Demaine et al., 2006], where n is the number of items (vertices) being clustered. In

this thesis we focus on the complete information version.

How can one get around this APX-hardness result to provably get a clustering with value within

1 + ǫ of optimal? Additional assumptions are needed. In this section we assume that the number

of clusters is a fixed constant. (In Chapter 5 we study an alternate assumption, namely a noisy

input model.) Correlation clustering with 2 clusters is fragile and Theorem 3.1 gives a linear-time

approximation scheme. For d > 2 correlation clustering is not fragile but has properties allowing for

a PTAS anyway. We also solve a generalization of correlation clustering called hierarchical clustering

[Ailon and Charikar, 2005]. We prove the following theorem.

Theorem 4.1. For every ǫ > 0 there is a randomized 1 + ǫ-approximation algorithm for cor-

relation clustering and hierarchical clustering with fixed number of clusters d with running time

n22O((log d)d6/ǫ2).

The above results improves on the running time nO(9d/ǫ2) ·log n = nO(9d/ǫ2) of the previous PTAS

for correlation clustering by Giotis and Guruswami [Giotis and Guruswami, 2006] in two ways: first

the polynomial is linear in the size of the input and second the exponent is polynomial in d rather

than exponential. Our result for hierarchical clustering with a fixed number of clusters is the first

PTAS for this problem.

4.2 Intuition

As we noted previously in Section 1, correlation clustering constraints are not fragile for d > 2.

Indeed, the constraint corresponding to a pair of vertices that are connected by a “−” edge can be
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satisfied by any coloring of the endpoints as long as the endpoints are colored differently. Fortunately

there is a key observation in Giotis and Guruswami [2006] that allows for the construction of a PTAS.

Consider the cost-zero clustering shown on the left of Figure 4.1. Note that moving a vertex from

a small cluster to another small one increases the cost very little, but moving a vertex from a large

cluster to anywhere else increases the cost a lot. Fortunately most vertices are in big clusters so,

as in Giotis and Guruswami [2006], we can postpone processing the vertices in small clusters. We

use the above ideas, which are due to Giotis and Guruswami [2006], the fragile-dense ideas sketched

above, plus some additional ideas, to analyze our correlation clustering algorithm.

To handle hierarchical clustering (see Ailon and Charikar [2005]) we need a few more ideas.

Firstly we abstract the arguments of the previous paragraph to a CSP property rigidity. Secondly,

we note that the number of trees with d leaves is a constant and therefore we can safely try them

all. We remark that all fragile-dense problems are also rigid.

4.3 Correlation and Hierarchical clustering

We now define hierarchical clustering formally (following Ailon and Charikar [2005]). For integer

M ≥ 1, an M -level hierarchical clustering of n objects V is a rooted tree with the elements of V as

the leaves and every leaf at depth (distance to root) exactly M + 1. The special case M = 1 will

turn out to be correlation clustering described in the introduction. We call the subtree induced by

the internal nodes of a M -level hierarchical clustering the trunk. We call the leaves of the trunk

clusters. A hierarchical clustering is completely specified by its trunk and the parent cluster of each

leaf.

For a fixed hierarchical clustering and clusters i and j, let f(i, j) be the distance from the root

to the least common ancestor of i and j. For example when M = 1, f(i, j) = 11 (i 6= j).

Definition 4.2. The M -hierarchical clustering problem with d clusters has input a set of vertices

V and a similarity function F from pairs of vertices to [0, 1].1 The objective is to find a M -level

hierarchical clustering with at most d clusters minimizing

∑

u,v

1

M
|F (u, v)− f(parent(u), parent(v))|.

We now illustrate the connection between hierarchical clustering and the correlation clustering

we previously defined (informally). We now argue that the hierarchcical clustering problem with

M = 1 is equivalent to correlation clustering. A 1-hierarchical clustering has one node at the root,

some “cluster” nodes in the middle level and all of V in the bottom level. Identifying the nodes in the

middle level with clusters of V we see a one-to-one correspondence between 1-hierarchical clusterings

and ordinary clusterings (partitions). The hierarchical clustering objective function reduces to the

number of vertex pairs u, v that are clustered together but have F (u, v) = 1 plus the number of

vertex pairs u, v that are clustered apart but have F (u, v) = 0. If we identify F (u, v) = 1 with

1This is a slight generalization of Ailon and Charikar [2005], which restricts F to multiples of 1/M .
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the presence of a − edge and F (u, v) = 0 with a ”+” edge we see this is precisely the correlation

clustering objective.

4.4 Reduction to Rigid MIN-2CSP

In this section we define the concept of a rigid CSP and show a reduction from hierarchical clustering

to a constant number of such CSPs.

Lemma 4.3. The number of possible trunks is at most

d(M−1)d.

Proof. The trunk can be specified by giving the parent of all non-root nodes. There are at most d

nodes on each of the M − 1 non-root levels so the lemma follows.

We now show how to reduce hierarchical clustering with a constant number of clusters to the

solution of a constant number of min-2CSPs with cardinality of D equal to d. We use a variant of

the notation used in Chapter 3 that is specialized for MIN-2CSPs. For vertices u, v and values i, j,

let pu,v(i, j) be the cost of putting u in cluster i and v in cluster j. This is the same concept as pI for

the fragile case, but this notation is more convenient here. Define b(x, v, i) =
∑
u∈V :u6=v pu,v(xu, i),

which is identical to b of the fragile-dense analysis but expressed using different notation.

Definition 4.4. A MIN-2CSP is rigid if for some δ > 0, all v ∈ V and all j 6= x∗v

b(x∗, v, x∗v) + b(x∗, v, j) ≥ δ|{u ∈ V \ {v} : x∗u = x∗v }|

Observe that |{u ∈ V \ {v} : x∗u = x∗v }| ≤ |V | =
( |V |
2−1

)
hence any fragile-dense CSP is also

rigid.

Lemma 4.5. If the trunk is fixed, hierarchical clustering can be expressed as a 1/M -rigid MIN-2CSP

with |D| = d.

Proof. (C.f. Figure 4.1) Let D be the leaves of the trunk (clusters). It is easy to see that choosing

pu,v(i, j) =
1

M
|f(i, j)− F (u, v)|

yields the correct objective function. To show rigidity, fix vertex v, define i = x∗v and Ci =

{u ∈ V : x∗u = i }. Fix j 6= i and u ∈ Ci \ {v}. Clearly |f(i, i) − f(i, j)| ≥ 1, hence by trian-

gle inequality |F (u, v)−f(i, i)|+ |F (u, v)−f(i, j)| ≥ 1, hence pu,v(i, i)+pu,v(i, j) ≥ 1/M . Summing

over u ∈ Ci \ {v} we see

b(x∗, v, x∗v) + b(x∗, v, j) ≥ 1

M
|Ci \ {v}|

= δ |{u ∈ V \ {v} : x∗u = x∗v }|

for δ = 1/M .

Lemmas 4.5 and 4.3 suggest a technique for solving hierarchical clustering: guess the trunk by

exhaustive enumeration of the possibilities and then solve each rigid MIN-2CSP. We now give our

algorithm for solving rigid MIN-2CSPs.
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Return CC(V , blank assignment, 0)

CC(tricky variables T , assignment y of V \ T , recursion depth depth):

1: Find assignment of cost at most ǫ
1+ǫ ·

δ3|T |2
6·722|D|3 + minx:xv=yv∀v∈V \T [Obj(x)] using an additive

approximation algorithm.

2: if Obj(answer) ≥ δ3|T |2
6·722|D|3 or depth ≥ |D|+ 1 then

3: Return answer.
4: else
5: Let s = 4322|D|4 log(1440|D|3/δ)

2δ4

6: Draw v1, v2, . . . , vs randomly from T with replacement.
7: for Each assignment x̂∗ of the variables {v1, v2, . . . , vs} do
8: For all v ∈ T and i let

b̂(v, i) = |T |
s

∑s
j=1 pvj ,v(x̂

∗
vj , i) +

∑
u∈V \T pu,v(yu, i)

9: For all v ∈ V let

x
(1)
v =

{
yv if v ∈ V \ T
argmini b̂(v, i) otherwise

10: For all v ∈ T let x
(2)
v = argmini b(x

(1), v, i)

11: Let C = { v ∈ T : b(x(1), v, x
(2)
v ) < b(x(1), v, j)− δ|T |

12|D| for all j 6= x
(2)
v }.

12: Let T ′ = T \ C
13: Define assignment y′ by

y′v =





yv if v ∈ V \ T
x
(2)
v if v ∈ C

Undefined if v ∈ T \ C
.

14: If CC(T ′, y′, depth+ 1) is the best clustering so far, update best.
15: end for
16: Return the best clustering found.
17: end if

Figure 4.2: Approximation Algorithm for Rigid MIN-2CSPs.

4.4.1 Algorithm for Rigid MIN-2CSP

Algorithm 4.2 solves rigid MIN-2CSPs by identifying clear-cut variables, fixing them to optimal

values, and then recursing on the remaining “tricky” variables T . The recursion terminates when

the remaining subproblem is sufficiently expensive for an additive approximation to suffice.
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4.5 Analysis of Algorithm 4.2

4.5.1 Runtime

Theorem 4.6. For any T, y, an assignment of cost at most ǫ′|T |2 +minx:xv=yv∀v∈V \T [Obj(x)] can

be found in time

n22O((log |D|)/ǫ′2).

Proof. The problem is essentially a CSP on T variables but with an additional linear cost term for

each variable. It is fairly easy to see that Algorithm 2.1 has error proportional to the misestimation

of b and hence is unaffected by arbitrarily large linear cost terms. On the other hand, the more

efficient Algorithm 2.2 needs to estimate the objective value from a constant-sized sample as well

and hence does not seem to work for this type of problem.

In this subsection O(·) hides only absolute constants and Õ(·) hides one factor of log |D|. Al-

gorithm 4.2 has recursion depth at most |D| + 1 and branching factor |D|s, so the number of

recursive calls is at most (|D|s)|D|+1 = 2s(|D|+1) log |D| = 2Õ(|D|5/δ4). Each call spends O(|D|n2)
time on miscellaneous tasks such as computing the objective value plus time required to run the

additive error algorithm, which is n2 · 2Õ(|D|6/ǫ2δ6) by Theorem 4.6. Therefore the runtime of Al-

gorithm 4.2 is n22Õ(
|D|6

ǫ2δ6
), where the 2Õ(|D|5/δ4) from the size of the recursion tree got absorbed

into the 2Õ(
|D|6

ǫ2δ6
) from Theorem 4.6. For hierarchical clustering, δ = 1/M yields a runtime of

n22Õ(
|D|6M6

ǫ2
) · |D|(M−1)|D| = n22O(

(log |D|)|D|6M6

ǫ2
).

As noted in the introduction this improves on the runtime of n
O
(

9|D|

ǫ2

)

of Giotis and Guruswami

[2006] for correlation clustering in two ways: the degree of the polynomial is independent of ǫ and

|D|, and the dependence on |D| is singly rather than doubly exponential.

4.5.2 Approximation

We fix optimal assignment x∗. We analyze the path through the recursion tree where we always

guess x̂∗ correctly, i.e. x̂∗v = x∗v for all v ∈ {v1, v2, . . . , vs}. We call this the principal path.

We will need the following definitions.

Definition 4.7. Variable v is m-clear if b(x∗, v, x∗v) < b(x∗, v, j) − m for all j 6= x∗v. We say a

variable is clear if it is m-clear for m obvious from context. A variable is unclear if it is not clear.

Definition 4.8. A variable is obvious if it is in cluster C in OPT and it is δ|C|/3-clear.

Definition 4.9. A cluster C of OPT is finished w.r.t. T if T ∩ C contains no obvious variables.

Lemma 4.10. With probability at least 8/10, for any triple (T, y, depth) encountered on the principle

path,

1. yv = x∗v for all v ∈ V \ T and

2. The number of finished clusters w.r.t. T is at least depth.
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Before proving Lemma 4.10 let us see why it implies Algorithm 4.2 has the correct approximation

factor.

Proof. Study the final call on the principal path, which returns the additive approximation clustering.

The second part of Lemma 4.10 implies that depth ≤ |D|, hence we must have terminated because

Obj(answer) ≥ δ3|T |2
6·722|D|3 . By the first part of Lemma 4.10 the additive approximation gives error

at most
ǫ

1 + ǫ
· δ3|T |2
6 · 722|D|3 +OPT.

so the approximation factor follows from an easy calculation.

Now we prove Lemma 4.10 by induction. Our base case is the root, which vacuously satisfies

the inductive hypothesis since V \ T = {} and depth = 0. We show that if a node (T, y, depth) (in

the recursion tree) satisfies the invariant then its child (T ′, y′, depth+ 1) does as well. We hereafter

analyze a particular (T, y, depth) and assume the inductive hypothesis holds for them. There is only

something to prove if a child exists, so we hereafter assume the additive error answer is not returned

from this node and hence

OPT ≤ Obj(answer) < δ3|T |2
6 · 722|D|3 . (4.1)

We now prove a number of Lemmas in this context, from which the fact that T ′, y′, depth+1 satisfies

the inductive hypothesis will trivially follow.

Lemma 4.11. The number of δ2|T |/(216|D|2)-clear variables that are corrupted in x(1) is at most

δ|T |/(72|D|) with probability at least 1− 1/(10|D|).

Proof. Essentially the same proof as for fragile MIN-kCSP shows that b̂(v, i) is an unbiased estimator

of b(x∗, v, i). This time the Azuma-Hoeffding inequality yields

Pr
(
|b̂(v, i)− b(x∗, v, i)| ≥ λ|T |

)
≤ 2e−2λ2s

Choose λ = δ2

432|D|2 and recall s = 4322|D|4 log(1440|D|3/δ)
2δ4 , yielding.

Pr

(
|b̂(v, i)− b(x∗, v, i)| ≥ δ2|T |

432|D|2
)
≤ δ

720|D|3

By clearness we have b(x∗, v, j) > b(x∗, v, x∗v) +
δ2|T |

216|D|2 for all j 6= x∗v. Therefore, the probability

that b̂(v, xv) is not the smallest b̂(v, j) is bounded by |D| times the probability that a particular

b̂(v, j) differs from its mean by at least δ2|T |/(432|D|2). Therefore Pr
(
x
(1)
v 6= x∗v

)
≤ |D| δ

720|D|3 =
δ

720|D|2 . Therefore, by Markov bound, with probability 1 − 1/(10|D|) the number of corrupted

δ2|T |/(216|D|2)-clear variables is at most δ|T |/(72|D|).

There are two types of bad events: the additive error algorithm failing and our own random

samples failing. We choose constants so that each of these events has probability at most 1/(10|D|).
The principle path in the recursion tree has length at most |D|, so the overall probability of a bad

event is at most 2/10. We hereafter assume no bad events occur.
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Lemma 4.12. The number of δc/3-unclear variables in clusters of size at least c + 1 is at most
6OPT
δc .

Proof. Let confusing variable refer to a δc/3-unclear variable in a cluster of size at least c+ 1. Let

v be such a variable, in cluster C in OPT. By unclearness,

b(x∗, v, x∗v) ≥ b(x∗, v, j)− δc/3

for appropriate j 6= x∗v and by rigidity

b(x∗, v, x∗v) + b(x∗, v, j) ≥ δ |C \ {v}| ≥ δc.

Adding these inequalities we see b(x∗, v, x∗v) ≥ δc/3. Therefore

OPT =
1

2

∑

v

b(x∗, v, x∗v) ≥
1

2

∑

v confusing

δc/3

= |{ v ∈ T : v confusing }| δc/6

so |{ v ∈ T : v confusing }| ≤ 6OPT
δc .

Lemma 4.13. For all v, i, |b(x(1), v, i)− b(x∗, v, i)| ≤ δ|T |
24|D|

Proof. First we show bounds on three classes of corrupted variables:

1. Lemma 4.11 bounds the number of δ2|T |
216|D|2 -clear corrupted variables by δ|T |

72|D| .

2. The number of variables in clusters of size at most δ|T |
72|D|2 is bounded by δ|T |

72|D| .

3. The number of δ2|T |
216|D|2 -unclear corrupted variables in clusters of size2 at least δ|T |

72|D|2 + 1 is

bounded by, using Lemma 4.12 and (4.1), 6OPT
δ

72|D|2
δ|T | ≤

δ3|T |2
6·72·75|D|3 ·

6·72|D|2
δ2|T | = δ|T |

72|D| .

Therefore the total number of corrupted variables in x(1) is at most δ|T |
72|D| +

δ|T |
72|D| +

δ|T |
72|D| =

δ|T |
24|D| .

The easy observation that |b(x(1), v, i)− b(x∗, v, i)| is bounded by the number of corrupted variables

in x(1) proves the Lemma.

Lemma 4.14. There exists an obvious variable in T that is in a cluster of size at least |T |/2|D|.

Proof. We say a variable v is confusing’ if it is non-obvious and its cluster in OPT has size at least

|T |/2|D|. By Lemma 4.12 and (4.1)

|{ v ∈ T : v confusing’ }| ≤ 12|D|
δ|T | OPT

≤ 12|D|
δ|T |

δ3|T |2
6 · 722|D|3 < |T |/2.

Simple counting shows there are at most |T |/2 variables of T in clusters of size less than |T |/2|D|,
hence there must be an obvious variable in a big cluster.

2To simplify the exposition we assume that
δ|T |

72|D|2
is an integer. Sketch of general case: if

δ|T |

72|D|2
is large fiddle

with the constants and if
δ|T |

72|D|2
is small T is small so one can afford to guess all possible assignments of the variables

in T .
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Lemma 4.15. The number of finished clusters w.r.t. T ′ strictly exceeds the number of finished

clusters w.r.t. T .

Proof. Let v be the variable promised by Lemma 4.14 and Ci its cluster in OPT. For any obvious

variable u in Ci note that u is δ|Ci|/3 ≥ δ|T |/6|D|-clear, so Lemma 4.13 implies

b(x(1), u, i)

≤ b(x∗, u, i) +
δ|T |
24|D| < b(x∗, u, j) +

δ|T |
24|D| −

δ|T |
6|D|

≤ b(x(1), u, j) + 2
δ|T |
24|D| −

δ|T |
6|D| = b(x(1), u, j)− δ|T |

12|D|

hence u is in the set C of clear variables defined in Algorithm 4.2. Therefore, no obvious variables

in Ci are in T ′ so Ci is finished w.r.t. T ′. The existence of v implies Ci is not finished w.r.t. T , so Ci
is newly finished. To complete the proof note that T ′ ⊆ T so finished is a monotonic property.

Lemma 4.16. (T ′, y′) satisfy the invariant v ∈ V \ T ′ → y′v = x∗v.

Proof. Fix v ∈ V \T ′. If v ∈ T the conclusion follows from the inductive hypothesis. If v ∈ T \T ′ = C

we need to show y′v = x∗v.

Let i = y′v. For any j 6= i, use Lemma 4.13 to obtain

b(x∗, v, i) ≤ b(x(1), v, i) +
δ|T |
24|D|

< b(x(1), v, j) +
δ|T |
24|D| −

δ|T |
12|D|

≤ b(x∗, v, j) + 2
δ|T |
24|D| −

δ|T |
12|D| = b(x∗, v, j)

so by optimality of x∗ we have the Lemma.

Lemmas 4.15 and 4.16 complete the inductive proof of Lemma 4.10.



Chapter 5

Correlation Clustering with Noisy

Input

5.1 Introduction

The results presented in this chapter are joint work with Claire Mathieu. Most of these results

previously appreared in Mathieu and Schudy [2010].

This Chapter continues the study of the correlation clustering problem begun in Chapter 4.

As noted in Chapter 4 correlation clustering has no PTAS unless P=NP. In Chapter 4 we worked

around this hardness result by assuming that the number of clustes is fixed. In this section, moti-

vated by the data mining context, we take a different approach and assume that the input comes

from a noisy model defined as follows. To generate the input, start from an arbitrary partition B
of the vertices into clusters (base clustering). Then, each pair of vertices is perturbed independently

with probability p. In the fully-random model, the input is generated from B simply by switching

every perturbed pair. In the semi-random variant, an adversary controls the perturbed pairs and

decides whether or not to switch them. Such noisy models are hardly new: they have been studied

for many graph problems such as complete information feedback arc set [Braverman and Mossel,

2008], maximum bisection [Boppana, 1987], k-coloring, unique games[Kolla and Tulsiani, 2008],

maximum clique [Jerrum, 1992, Kucera, 1995, Alon et al., 1998, Feige and Krauthgamer, 2000],

and even for correlation clustering itself [Ben-Dor et al., 1999, Bansal et al., 2004, McSherry, 2001,

Shamir and Tsur, 2007]. Indeed, studying the noisy model theoretically led [Ben-Dor et al., 1999]

to a heuristic algorithm that they used to successfully cluster real gene expression data.

We note that, prior to our work, noisy correlation clustering had only been studied in the fully-

random model [Ben-Dor et al., 1999, Bansal et al., 2004, McSherry, 2001, Shamir and Tsur, 2007].

Typically, results assume that all clusters have size bounded below, by Ω(n) [Ben-Dor et al., 1999] or

by Ω(
√
n log n/(1/2− p)1+ǫ) [Shamir and Tsur, 2007]. From a slightly different angle, [Bansal et al.,

2004] makes no assumption on minimum input cluster size but finds all clusters of the base clustering

47
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that have size Ω(p
√
n log n/(1/2− p)2).1,2 Their algorithm can be used to yield a 1 + o(1) approx-

imation for p = ω((log n)/n). (More precisely, the additive error is O(pn3/2
√
log n/(1/2− p)2) for√

log n/n < p < 1/2 and O(n log n) for smaller p.)

In contrast to our work, none of those prior results on noisy correlation clustering certify opti-

mality of the output clustering. Certification is a highly desirable feature, as explained by Feige and

Krauthgamer [Feige and Krauthgamer, 2000]: “since average case algorithms do not have an a pri-

ori guarantee on their performance, it is important to certify that the algorithm is indeed successful

on the particular instance at hand.” Our analysis relies on the validity of the noisy model,3 that is

also important for us. All of our results address that issue and come with accompanying certificates.

Our results. We design a simple approximation algorithm. It uses a semi-definite programming

relaxation and, for rounding, a constant factor approximation algorithm [van Zuylen et al., 2007,

Ailon et al., 2008]. Note that this semidefinite program was already used by [Swamy, 2004], but our

rounding algorithm is completely different from theirs. We then proceed to prove that it has several

desirable features.

Our first result bounds the cost of the output (Theorem 5.1). In the worst-case model, that

cost is a constant-factor approximation. In the noisy model,4 let OPT (resp. OPTfull) denote

the optimum cost in the semi-random model (resp. fully-random model). In the fully random

model, our algorithm is a PTAS. In the semi-random variant, our algorithm yields cost at most

OPT +O(n−1/6)OPTfull with high probability (over the random perturbation). Our algorithm also

produces a lower-bound, proving that the random perturbation was “random enough” for this high

probability event to occur.

Our second result (Theorem 5.2) shows one circumstance in which the base clustering can be

reconstructed exactly. We show that if p ≤ 1/3 and all clusters have size Ω(
√
n) then the base

clustering is the unique optimum solution of the natural SDP relaxation of correlation clustering,

hence is the output of the algorithm.

Our third result (Theorem 5.3) analyzes the small noise regime, p = O(n−δ) for some δ. (Such a

regime makes sense in applications in which perturbations are rare, for example if they correspond

to mutations). Then, we have an algorithm which finds all clusters of size Ω(1/δ), even in the semi-

random model. It also produces a certificate (witness) proving that the clusters found are part of all

optimal clusterings. For example, consider a base clustering consisting of clusters of (large enough)

constant size, and let p = n−1/10. In the input graph, every vertex belongs to, on average, Θ(1)

edges inherited from the base clustering, and Θ(n9/10) edges created by the noisy process. Yet we

can reconstruct the base clustering exactly, hence, for every vertex, determine which Θ(1) edges are

correct among the sea of Θ(n9/10) noisy edges.

1A straightforward variation works in the semi-random model but only finds clusters of size
Ω(np2

√
logn/(1/2− p)2).

2McSherry [McSherry, 2001] also solved this problem, however their results depend on the number of clusters and
are worse than [Shamir and Tsur, 2007] if the number of clusters is large.

3The algorithm is well-defined in general, but its quality relies on the noisy model assumption.

4Assuming p ≤ 1/2− n−1/3
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Our analysis uses probabilistic and combinatorial arguments, spectral properties of random ma-

trices, and semidefinite programming duality.

Comparison between our results and previous results.

1. We give the first algorithm that achieves a 1 + o(1) approximation even when there are ar-

bitrarily few noisy edges (so that OPT is small) and clusters are arbitrarily small (so that

reconstructing them exactly is impossible.) (Theorem 5.1)

2. In the semi-random model, as it turns out, for constant p our additive error is O(n3/2); the

previous best was O(ǫn2) [Giotis and Guruswami, 2006].

3. In the fully random model, compared to previous work [Bansal et al., 2004, Shamir and Tsur,

2007] we find clusters a factor
√
log n smaller for constant p. (For example, when p = 1/3 we

reconstruct the base clustering when all clusters are size O(
√
n) rather than O(

√
n log n).) We

improve additive error by the same factor.

4. Not only does the output have cost that, with high probability, is within 1 + o(1) of optimal,

but our algorithm also produces a deterministic lower-bound witnessing that fact. In other

words our algorithm knows whether or not its input is “sufficiently random.”

5. Let δ > 0. If p = O(n−δ) we give the first algorithm that exactly reconstructs every cluster of

size Ω(1/δ).

Our work is worse than previous work in two ways: First, the algorithm for item 5 has impractical

runtime even for modest δ = 1/3. Second, when p is a constant, we, like Shamir and Tsur [2007], can

only find the base clusters exactly if all are size Ω(
√
n). Bansal Blum Chawla [Bansal et al., 2004]’s

result is incomparable, since they find the clusters of size Ω(
√
n log n), even if the base clustering is

a mixture of large and small clusters.

5.2 Algorithms

The input is an undirected graph G = (V,E), where {u, v} ∈ E iff we have information that u and

v are similar, and {u, v} /∈ E iff we have information that u and v are dissimilar.5 A clustering is

a partition of the vertices into clusters. To any clustering, we associate the induced graph, which

has an edge between every pair of intra-cluster vertices (including self-loops), and an associated

matrix, the adjacency matrix of the induced graph. We use the terminology vertex pair (VP) to

avoid ambiguity with edge, which refers to vertex pairs that have an edge between them in some

graph.

5Our model requires complete information so we use absence of an edge to represent dissimilarity, not an edge
labeled “-” as in previous work.
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Input: graph G = (V,E)
Output: clustering Output

Let Ê be E with edges that are not part of triangles removed.
Call algorithm SDPCluster on input (V, Ê), yielding clustering A.
Let U denote the vertices in singleton clusters of A.
Use maximum matching to compute an optimal clustering of U into clusters of size at most 2.

Figure 5.1: MainCluster algorithm

The correlation clustering problem consists of finding a clustering A of V minimizing d(E,A),
where d(·, ·) denotes the Hamming distance between two graphs (viewed as sets of edges), or equiv-

alently, half of the ℓ1 distance between the associated adjacency matrices: for symmetric matrices

M and N , d(M,N) = 1
2

∑
u,v |Muv −Nuv|.

Fix the error parameter p. Our noisy model assumes that the input graph G = (V,E) is generated

by perturbing some unknown base clustering B as follows: identify B with the associated graph.

Then, in the fully random model, for each pair of vertices, the information is flipped independently

with probability p (in other words, to go from B to the input graph we flip every edge and every

non-edge independently with probability p). In the semi-random model, for each pair of vertices,

the information is corrupted (noisy) independently with probability p; then, an adversary generates

the input graph by choosing similarity/dissimilarity information arbitrarily for each corrupted pair

of vertices (when the adversary always flips the information of every corrupted pair, the resulting

input is exactly the input generated in the fully random model).

We let B denote the unknown base clustering, G = (V,E) the input graph generated from B in

the semi-random model, and Gfull = (V,Efull) the corresponding graph generated from B in the

fully-random model. OPT denotes the cost of the optimal solution for input G, and, in the semi-

random model, OPTfull denotes the cost of the optimal solution for the associated fully-random

input.

Throughout the paper, when we write that an event occurs with high probability (w.h.p.), we

mean that it holds with probability at least 1−n−α for some α > 0 (over the randomness in Efull).

Let Ealg [·] denote expectation over the random choices made by algorithm MainCluster.

Our first theorem shows that the MainCluster algorithm has three desirable properties. It is

a constant-factor approximation in the adversarial model, a 1 + o(1) approximation in the planted

model, and produces a lower bound certifying its approximation factor.

Theorem 5.1 (Main Theorem). Algorithm MainCluster runs in polynomial time and is such

that:

1. For any input graph G, Ealg [Cost(OUT )] ≤ 3.5 OPT .

2. In the semi-random model, if p ≤ 1/2−n−1/3 then, with high probability over the noisy model,

Ealg [Cost(OUT )] ≤ OPT +O(n−1/6)OPTfull.
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Input: graph G = (V, F )
Output: a clustering A

Compute an optimal solution X∗ to the following semi-definite program:

min d(X,F ) s.t.





Xii = 1 ∀i
Xij ≥ 0 ∀i 6= j
Xij +Xjk −Xik ≤ 1 ∀i 6= j 6= k
X pos. semi-definite

Let U ← V .
while U is non-empty do

Pick a pivot vertex v uniformly at random from U
A← {v}
For each vertex u of U \ {v}, add u to A independently with probability X∗

uv.
Output the resulting cluster A, and let U ← U \A.

end while

Figure 5.2: SDPCluster algorithm

3. One can compute a lower bound L on OPT . In the fully random model, if p ≤ 1/2 − n−1/3

then, with high probability over the noisy model, Ealg [Cost(OUT )] ≤ L+ o(L).

A 2.5-approximation algorithm was already known so the first part of Theorem 5.1 is a con-

tribution to the understanding of the MainCluster algorithm, not to the understanding of the

correlation clustering problem.

The noisy model is motivated by the view that B is the ground truth, so it makes sense to ask if

we can, not just approximate the objective function, but actually recover B. We give two results of

this type. Our next theorem shows that SDPCluster recovers the base clustering exactly whenever

all base clusters are sufficiently large.

Theorem 5.2. In the semi-random model if p ≤ 1/3 and all clusters have size at least c1
√
n then

B is with high probability the unique optimum solution of the SDP used in SDPCluster.

Our next theorem shows that when the noise is small it is possible to reconstruct all base clusters

of super-constant size.

Theorem 5.3 (Large Cluster Theorem). Assume that p ≤ n−δ/60 for some δ > 0. Then in the

semi-random model Algorithm 5.3 outputs a set of clusters A such that:

1. W.h.p. the output clusters A are exactly the clusters of the base clustering that have size

≥ 3150/δ.

2. The algorithm certifies that for any optimal clustering, its clusters of size ≥ 3150/δ are exactly

the output clusters.

Almost all of our proofs apply identically in the fully random and semi-random models. For

simplicity of exposition we only emphasize the distinction between the models where important.
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Input: graph G = (V,E).
Let A ← ∅.
For every subset S of V of size s:

Let A be the set of vertices that have at least |S|/2 neighbors in S.
If all of the following conditions hold:

1. For all disjoint sets T,U ⊆ A, |T | = |U | = s, G has at least .9|T ||U | edges between T and U .

2. For all sets T ⊆ A, U ⊆ V \A, |T | = |U | = s, G has at most .1|T ||U | edges between T and U .

3. |A| ≥ 3|S| and A is equal to the set of vertices that have at least |A|/2 neighbors in A.

Then add A to the collection A.

If any of the following properties fails to hold then Output:“Failure”.

1. The sets in A are disjoint.

2. For every cluster A ∈ A:

(a) Every vertex in A has at least .9|A| neighbors in A.
(b) Every vertex not in A has at most .1|A| neighbors in A.

3. For every pair of disjoint vertex sets S, T with cardinalities |S| = |T | = 6s, such that no cluster
A ∈ A intersects both S and T (∀A,A ∩ S = ∅ or A ∩ T = ∅), there are at most (.35)|S||T |
edges between S and T .

Let A′ = {A ∈ A : |A| ≥ 45s}.
Output A′.

Figure 5.3: Large Cluster Algorithm (parameterized by integer s = ⌈70/δ⌉).

Remarks

1. A natural generalization of our planted noisy model has input generated by adding noise to

an arbitrary graph G rather than a union of cliques B. Unfortunately this “smoothed” model

is hard to approximate; if the noise is less than n−δ for some δ > 0 this model has no PTAS

unless P=NP. To see this, take an arbitrary correlation clustering instance with ℓ nodes and

non-zero optimum cost, make ℓ1/δ copies of each, yielding a graph with n = ℓ1+1/δ nodes.

Then add noise. The number of resulting noisy edges is O(n2−δ) = O(ℓ2/δ+1−1/δ) = o(ℓ2/δ) =

O(new optimum), so a PTAS for correlation clustering in this smoothed model would imply

a PTAS for adversarial correlation clustering and hence P=NP [Charikar et al., 2005]. This

smoothed model may however be interesting for relatively large p such as p = 1/polylog(n).

2. A random graph G(n, p) with p = n−δ has max clique of size Θ(1/δ) with high probabil-

ity [Bollobás, 2001]. Therefore the size of clusters reconstructed by Algorithm 5.3 is optimal

to within constant factors.

3. The planted clique problem is the special-case of our problem where all but one of the clusters

of B have size one and the noise only adds edges, not removes them. The semi-random nature
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of our planted model allows our model to include the planted clique problem as a special

case. The best known result [Feige and Krauthgamer, 2000] for planted clique and constant p

requires the clique to be of size Ω(
√
n), which matches Theorem 5.2. Theorem 5.2 does not

subsume previous results for planted clique [Feige and Krauthgamer, 2000] since it requires

that all clusters be that large. One interesting open question is how the correlation clustering

SDP behaves when some clusters are large and other small.

4. Our results on reconstructing clusters exactly and on approximating the objective function

do not imply each other. To see that even optimal results for the reconstruction problem are

insufficient for approximation, consider when p = n−3/2 and the base clusters have size 1 and

2. In this setting is clearly impossible to reconstruct the base clustering from the input data

and such a reconstruction would not be a good approximation to the objective even if it were

available. To see that approximation is insufficient for reconstruction note that omitting a

vertex from a base cluster costs at most the size of that cluster, which is much less than OPT

in most circumstances.

5.3 Proof of Theorem 5.1

5.3.1 Analysis of SDPCluster Algorithm

The following extension of an analysis from Ailon et al. [2008] forms the starting point of our worst-

case analysis of section 5.3.2 and is also used in section 5.3.5.

Theorem 5.4. Ailon et al. [2008] Let G = (V, F ) be an instance of correlation clustering, and let

A be the resulting output of algorithm SDPCluster. Then, for any clustering C′, we have:

Ealg [d(A, F )] ≤ 2.5 d(C′, F ).

Proof. (Proof Sketch) Algorithm SDPCluster is almost identical to algorithm LP-KwikCluster

from Ailon et al. [2008]. Our SDP (semi-definite program) includes all of the constraints in Ailon et al.

[2008] (Xij ≤ 1 is implied by Xii = 1, Xjj = 1, and positive semi-definiteness) as well as the positive

semi-definite constraint. Integral clusterings satisfy the positive semi-definite constraint, so our SDP

is a relaxation. The analysis from Ailon et al. [2008] applies unchanged to SDPCluster.

The following theorem is very similar to Theorem 5.4, but shows an approximation factor relative

to the fractional clustering X∗ rather than relative to the input edge set F . The analysis uses

techniques from Ailon et al. [2008].

Theorem 5.5. Let G = (V, F ) be an instance of correlation clustering, and let A be the resulting

output of algorithm SDPCluster. Then, for any clustering C′, we have:

Ealg [d(A, X∗)] ≤ 3 d(C′, X∗).
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We now proceed towards proving Theorem 5.5. We analyze the rounding procedure with no

reference to the SDP which produced X∗ except that we assume 0 ≤ X∗
uv ≤ 1. It may be helpful

to think of X∗ as the positive edge weights for a weighted correlation clustering instance. Let the

weight of an edge u, v denote X∗
uv. We say that clustering A pays |Auv −X∗

uv| for edge u, v, which
is precisely that edge’s contribution to d(A, X∗). Let C′ be an arbitrary clustering as specified in

the statement of the Lemma.

Focus on some edge (u, v). Initially it unclear whether u and v will end up in the same cluster or

different clusters, but eventually one of the vertices (or both) is placed in a cluster, after which the

edge is decided. Following Ailon et al. [2005] we say that a pair of vertices (u, v) is safely charged

if u or v was the pivot when the pair is decided. All other edges are dangerously charged. Observe

that once either u or v is selected as the pivot the edge u, v will definitely be safely charged that

iteration (assuming the edge was not decided a previous iteration). Conditioned on u or v selected

as a pivot while both are in U , Algorithm 5.2 pays w(1 − w) + (1 − w)w = 2w(1 − w) for safely

charged edge e with w = X∗
e in expectation. Clustering C′ pays at least min(w, 1−w) for edge e, so

SDPCluster pays a factor 2max(w, 1− w) ≤ 2 times more than C′ for safely charged edges.

We handle the dangerously charged edges in a manner similar to Lemma 7.5 in Ailon et al.

[2005]. Observe that if edge u, v is dangerously charged there must be some third vertex w such that

{u, v, w} ⊆ U when w was picked as a pivot. We can therefore charge dangerously charged edge u, v

to the triple of vertices consisting of u, v and the pivot w. Now consider the event ǫ{u,v,w} that one

of the vertices in {u, v, w} is picked as the pivot some iteration while all three remain in the set U

considered by one of the recursive calls. We associate each dangerously charged edge with a unique

event of this form.

Lemma 5.6. Conditioned on the event ǫ{u,v,w}, the expected amount SDPCluster pays for the

edges in {u, v, w} that it dangerously charges that iteration is at most 3 times the expected amount

C′ pays for those dangerously charged edges.

Before proving Lemma 5.6 we show how it implies Theorem 5.5. Summing over all triplets

Lemma 5.6 implies the expected amount SDPCluster pays for dangerously charged edges is at

most 3 times the expected amount C′ pays for those edges. We argued earlier that the expected

amount SDPCluster pays for safely charged edges is at most 2 times the expected amount OPT

pays for those edges. Observe that the total amount C′ pays for safely and dangerously charged

edges combined is deterministic and equal to the cost of C′. Combining the safely and dangerously

charged bounds we upper-bound the expected amount SDPCluster pays for all edges by three

times the amount OPT pays for those edges. This completes the proof of Theorem 5.5.

Proof of Lemma 5.6. Consider a triplet t consisting of edges b, d and f . Abusing notation let b, d,

and f also denote the respective edge weights (b = X∗
b and so on). Observe that conditioned on

event ǫt defined in the statement of the Lemma, each of the vertices b, d and f has probability 1/3

of being the pivot.
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Suppose the vertex opposite edge b is the pivot. With probability df all three vertices are placed

in the same cluster, which decides, and hence dangerously charges, edge b. Algorithm SDPCluster

pays 1− b for that dangerously charged edge. With probability d(1− f)+ (1−d)f exactly one of b’s

endpoints is placed in the same cluster as the pivot, which dangerously charges edge b. Algorithm

SDPCluster pays b in this case. With remaining probability (1−d)(1−f) neither vertex is placed

with the pivot, hence edge b is not dangerously charged at this time. Analogous arguments hold for

the other possible pivots so we conclude that Algorithm SDPCluster pays in expectation

WePay =
1

3

[
(df(1− b) + d(1− f)b+ (1− d)fb) (vertex opposite edge b is pivot)

+ (bf(1− d) + b(1− f)d+ (1− b)fd) (vertex opposite edge d is pivot)

+ (bd(1− f) + b(1− d)f + (1− b)df)
]

(vertex opposite edge f is pivot)

for the dangerously charged edges. Clustering C′ pays (b · (1 − C′b) + (1 − b) · C′b) for edge b, so by

similar arguments C′ pays

TheyPay =
1

3

[
(df + d(1− f) + (1− d)f) · (b · (1− C′b) + (1− b) · C′b) (pivot opposite b)

+ (bf + b(1− f) + (1− b)f) · (d · (1− C′d) + (1− d) · C′d) (pivot opposite d)

+ (bd+ b(1− d) + (1− b)d) · (f · (1− C′f ) + (1− f) · C′f )
]

(pivot opposite f)) (5.1)

in expectation for the dangerously charged edges.

To complete the proof we show that the maximum of the expression WePay−3TheyPay is non-

positive for all clusterings C′ and all edge weights 0 ≤ b, d, f ≤ 1. For any fixed C′ the expression

WePay−3·TheyPay is multilinear in b, d and f , so the maximum ofWePay−3·TheyPay occurs at
a corner of the 0 ≤ b, d, f ≤ 1 polytope, i.e. an unweighted instance. Corners with b+d+f ∈ {0, 1, 3}
yield WePay = 0, which trivially implies WePay− 3 · TheyPay ≤ 0. Up to symmetry there is only

one other corner, namely (b, d, f) = (0, 1, 1). In this corner the edge opposite the pivot is always

dangerously charged, so WePay = 1. The clustering C′ must pay 1 for at least one of the three

edges, so TheyPay ≥ 1/3. We conclude WePay − 3 · TheyPay ≤ 0.

Lemma 5.7. Let u be a vertex with no neighbors in the input (V, F ) to algorithm SDPCluster.

Then u is in a singleton cluster of the clustering A obtained by SDPCluster.

Proof. (Proof Sketch) Let u be a vertex with no neighbors in F . Assume that Xuv > 0 for some

v 6= u in some SDP feasible X. Consider the solution X ′ obtained from X by setting X ′
uw = 0 for all

w. It is easy to see that X ′ is also SDP feasible and has strictly better objective. So the optimum

X∗ must have X∗
uv = 0. Rounding therefore puts u in a singleton cluster.

5.3.2 Proof of Theorem 5.1 (1)

Lemma 5.8. For input G = (V,E), there exists an optimal clustering C such that for every input

edge {u, v} that is inside a cluster C of C of size 3 or more, there exists a vertex w ∈ C such that

{u, v, w} is a triangle in the input graph.
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Proof. Let C be an optimal clustering with the most clusters. Assume, for a contradiction, that

there is a cluster C ∈ C of size 3 or more, and an input edge {u, v} in C such that u and v have no

common neighbor in C. Consider the clustering C′ obtained from C by replacing C with two clusters,

{u, v} and C \ {u, v}. It is easy to check that C′ is at least as good as C, so C′ is also optimal but

has more clusters, contradicting the definition of C.

Lemma 5.9. Let C be an optimal clustering for input G = (V,E), let A be the output of SDP-

Cluster on Ĝ = (V, Ê), and Output denote the clustering output by MainCluster. Then:

d(Output, E) ≤ d(C, E) + d(A, Ê).

Proof. LetM be the matching in the last step of algorithm MainCluster. SinceM only merges

singletons of A by using edges of G, we have d(Output, E) = d(A, E) − |M|. By the triangular

inequality, d(A, E) ≤ d(A, Ê) + d(Ê, E).

Assume, without loss of generality, that C satisfies Lemma 5.8, and let M∗ be the collection

of clusters of C of size 2. By definition of Ĝ and by Lemma 5.8, the edges of G \ Ĝ are not in

clusters on C of size 3 or more. So they are either in M∗ or between different clusters of C. Thus

d(Ê, E) ≤ |M∗|+ d1(C, E), where d1(·) only takes into account edges that are in G \ Ĝ.
Let U denote the vertices that are in singleton connected components of Ĝ and hence by

Lemma 5.7 in A. Let M∗
1 be the clusters of M∗ contained in U , and M∗

2 = M∗ \ M∗
1. By

maximality ofM, we have |M∗
1| ≤ |M|.

Let {ui, vi}, 1 ≤ i ≤ |M∗
2| denote the edges ofM∗

2, with vi /∈ U . Since vi is in some non-singleton

connected component Ĝ, there is an edge {vi, wi} of Ĝ. By definition of Ĝ, there is a vertex zi such

that {vi, wi, zi} is a triangle of Ĝ. We mark the two edges {vi, wi} and {vi, zi}. When we have done

this for every i, it is easy to see that each edge of Ĝ has at most two marks, so |M∗
2| is less than or

equal to the total number of marked edges.

By construction, the marked edges go between different clusters of C, but they are edges of G

which are also in Ĝ, so the number of marked edges is at most d2(C, E), where d2(·) only counts

edges that are in Ĝ.

Putting all inequalities together and noticing that d1(C, E)+d2(C, E) = d(C, E) yields the lemma.

Proof. (Of Part 1 of Theorem 5.1) By Lemma 5.9 we have d(Output, E) ≤ OPT+d(A, Ê). Consider

the clustering C′ obtained from C by splitting clusters of size 2 whenever the corresponding edge is

not in Ê. By Theorem 5.4 applied to G = (V, Ê) we have d(A, Ê) ≤ 2.5d(C′, Ê). Lemma 5.8 implies

that d(C′, Ê) ≤ d(C, E) = OPT . Putting these inequalities together yields the theorem.

5.3.3 Lower Bound

In this section we prove the following simple lower bound:
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Theorem 5.10. There exists c2 such that if c2/n ≤ p ≤ 1/3 then w.h.p. OPTfull = Ω(n2p). If

p ≤ c2/n then w.h.p. either OPTfull = 0 or OPTfull = Ω̃(n3p2 + nn2p), where n2 is the number of

vertices in base clusters of size 2 or more.

Lemma 5.11 (Variant of Joachims and Hopcroft [2005]). d(OPT,B) ≤ 4n logn
− log 4p with high probability

Proof. Fix some clustering A. Let D = d(B,A). Clearly A is better than B if and only if at least

D/2 of the D pairs where they differ are noisy. This occurs with probability at most
(
D
D/2

)
pD/2 ≤

2DpD/2 = (4p)D/2.

Take a union bound over all O(nn) clusterings [Joachims and Hopcroft, 2005] A with D =

d(B,A) ≥ 4n logn
− log 4p , we bound the probability that d(OPT,B) ≥ 4n logn

− log 4p by nn · (4p)D/2 =

exp(n log n+ 2n logn
− log 4p log(4p)) = n−n.

Proof. (Of Theorem 5.10) First we prove that OPT = Ω(n2p) when c2/n ≤ p ≤ 1/5. In the upper

portion of this range where 1/
√
n ≤ p ≤ 1/5 we see d(OPT,B) = O(n log n) by Lemma 5.11.

The triangle inequality and a trivial Chernoff bound yield OPT = d(C, E) ≥ d(B, E) − d(C,B) =

Ω(n2p) − O(n log n) = Ω(n2p). In the lower portion where c2/n ≤ p ≤ 1/
√
n Lemma 5.11 implies

d(OPT,B) = O(n). As before we get OPT = d(C, E) ≥ d(B, E)−d(C,B) = Ω(n2p)−O(n) = Ω(n2p)

for sufficiently large c2 and hence p.

Second observe that if n3p2 + nn2p = Õ(1) then the Theorem is trivial. We henceforth assume

that np ≤ c2 and n3p2 + nn2p = ω(log n). We will frequently use the fact that

max(n2p, n2) ≥
n2p+ n2

2
=
n3p2 + nn2p

2np
= ω(log n). (5.2)

A classic lower-bound on OPT is the size of any collection of VP-disjoint bad triplets (triplet packing)

where a bad triplet is a set {u, v, w} such that Euv = Evw = 1 but Euw = 0. Consider the instance

B′ obtained from B, by flipping every vertex pair with probability p/2, analogously to how E is

formed by flipping vertex pairs with probability p. Note that Ê can be expressed as applying noise

of approximately p/2 to B′. We will use B′ to construct a triplet packing lower bound.

We first construct a large matching M of B′ size Ω(n2 + n2p) as follows.

If n2 ≥ min(n2p, n/2) note that a max matching of B has size at least n2/3, which is at least

(the smaller of n/6 and) ω(log n) using (5.2). With high probability only a O(p) fraction of these

edges are not in B′ so M has size Ω(n2) = Ω(n2 + n2p) w.h.p.

In the case that n2 < min(n2p, n/2) we find a matching among the at least n/2 vertices that are

singletons in B. We have n2p = ω(log n) by (5.2), so by a Chernoff bound the number of noisy edges is

Ω(n2p). Consider generating these noisy edges one by one, adding each to the matchingM if possible.

As long as |M | ≤ n/8 = Ω(n2p) (otherwise we are done) each new edge has probability at least (1/2)2

of being added to the matching. These events are not independent but with a little technical effort

one can create related events that are. Another Chernoff bound yields |M | = Ω(n2p) = Ω(n2 +n2p)

w.h.p.

Label the vertices V = {v1, v2 . . . vn} so that (v2i−1, v2i) is in the matchingM for all 1 ≤ i ≤ |M |.
Let α = min(|M |, n/4). Note that α = Ω(n2 + n2p). We construct a triplet packing as follows. For
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each iteration 1 ≤ i ≤ α check if there exists some n/2 < j ≤ n such that (v2i−1, v2i, vj) is a bad

triplet. If so, pick an arbitrary such j and add triplet (v2i−1, v2i, vj) to the triplet packing.

Consider the probability that iteration i produces a triplet for some 1 ≤ i ≤ α. By construction

v2i−1 and v2i are in the same cluster of B′. Each vertex vj with n/2 < j ≤ n, whether in the same

base cluster or different, has probability Θ(p) of forming a bad triplet. Therefore the probability

that iteration i produces a bad triplet is Θ(min(np, 1)) = Θ(np). The expected number of triplets

packed is therefore Θ(np)|α| = Θ(nn2p + n3p2) = ω(log n). The iterations are independent so a

Chernoff bound implies OPT = Ω(n3p2 + nn2p) with high probability as well.

5.3.4 Probabilistic Lemmas

The following Lemma is a trivial application of Chernoff bounds and will be used frequently.

Lemma 5.12. Let Z be a sum of independent indicator random variables. We have Z ≤ 2E [Z] +

9 lnn w.h.p. If E [Z] ≥ 20 log n then 1
2E [Z] ≤ Z ≤ 2E [Z] with high probability.

Lemma 5.13. W.h.p. Euv = Êuv for all u, v within any base cluster of size at least 6 lg n, where E

and Ê are as defined in Algorithm MainCluster.

In other words, edges within base clusters of size at least 6 lg n are unaffected by the first line of

MainCluster.

Proof. (Of Lemma 5.13) Fix edge u, v of E,6 with u and v both within a single base cluster of size k.

For any other vertex w in the same base cluster we have Euw = Evw = 1 with probability at most

2p− p2 ≤ 3/4. These events are independent so the edge u, v is part of no triangles with probability

at most (3/4)k−2. When k ≥ 6 lg n this probability is at most 2n−3, so with high probability every

edge within a cluster is part of a triangle, hence in Ê.

Lemma 5.14. The expected number of edges u, v (of E) within base clusters of size at least 3 that

are affected by the first line of MainCluster (i.e. Euv = 1 and Êuv = 0) is O(n3p), where n3 is

the number of vertices in base clusters of size 3 or more. A bound of Õ(n3p + 1) holds with high

probability.

Proof. Each cluster of size k ≥ 3 includes in expectation at most

(
k

2

)
(2p− p2)k−2 ≤ k2

2
(2p− p2)(3/4)k−3 = O(p)

edges that are not part of any triangles. Summing over O(n) clusters proves the expectation part

of the Lemma.

By Lemma 5.13 we can ignore clusters of size Ω(log n). For cluster Bi of size between 3 and

Θ(log n) let ǫi denote the event that there is some edge within Bi that is not part of some triangle

within Bi. These events are clearly independent and as noted above have probability O(p), so by a

6Recall “edge” implies Euv = 1
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Chernoff bound (Lemma 5.12) the number of ǫi that occur is O(np + log n) with high probability.

Each ǫi contributes O(log2 n) edges, completing the proof of the theorem.

Lemma 5.15. For sufficiently large constant c3 we have with high probability all vertices are part

of at most c3
10 (np+ log n)− 1 noisy pairs.

Proof. (Proof Sketch) Semi-randomness can only help, so consider the fully random model. Fix

vertex v. Each of the other vertices u ∈ V has probability p of being a noisy pair with v, so the total

number of noisy pairs is a sum of independent indicator random variables. Lemma 5.12 completes

the proof.

We say that a triplet of vertices {u, v, w} is an unnatural triangle if Euv = Evw = Euw = 1 but

{u, v, w} is not contained within a single base cluster.

Lemma 5.16. The number of unnatural triangles whose vertices are all in base clusters of size at

most k is O((np)3 + (np)2k) in expectation. A bound of O((np)3 + (np)2k + log6 n) holds with high

probability.

To prove Lemma 5.16 we use an elegant generalization of Chernoff bounds due to Kim and

Vu Kim and Vu [2000], Alon and Spencer [2008] to prove the high probability portion. We present

a special case of their theorem in notation suitable for our use.

Let P denote the set of all
(|V |

2

)
possible pairs of vertices u, v ∈ V . Let T denote a collection

of triplets (sets of size 3) of vertex pairs from P . Let {Ep}p∈P denote a collection of independent

indicator random variables. Let random variable Y denote the number of T ∈ T such that Ee = 1

for all e ∈ T . For any A ⊂ P we have random variable YA equal the number of T ∈ T such that

A ⊂ T and Ee = 1 for all e ∈ T \A.
Let Ei = maxA⊂P :|A|=iE [YA]. Observe that Y = Y{} and E0 = E [Y ].

Theorem 5.17 (Kim and Vu Kim and Vu [2000]). In the scenario above if E1, E2, E3 ≤ 1 we have

Pr
(
|Y −E [Y ] | > a

√
max(E [Y ] , 1)λ3

)
< d · exp(−λ+ 2 lnn)

for absolute constants a and d.

Corollary 5.18. In the scenario above if E1, E2, E3 ≤ 1 we have

Y = O(E [Y ] + log6 n)

with high probability.

Proof. (Of Lemma 5.16) We classify unnatural triangles based on whether their vertices come from

two or three distinct clusters. There are O(n3) possible triplets spanning three different clusters,

and each has probability p3 of being an unnatural triangle. Therefore the expected number of such

unnatural triangles is O(n3p3). There are O(n2k) possible triplets spanning two different clusters,

and each has probability at most p2 of being unnatural, yielding expectation O(n2p2k).
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Observe that the condition E3 ≤ 1 is trivially satisfied. In our applications every T ∈ T consists

of the edges of a triangle, so E2 ≤ 1 is trivially satisfied as well.

For simplicity we assume the fully random model; the reader can readily verify that our arguments

hold in the semi-random model as well. To apply Corollary 5.18 we let E be the edges in the fully

random model.

Let T (1) denote the collection of possible triangles with vertices in three distinct base clusters,

where the triangles are represented by three vertex pairs from P . In order to apply Corollary 5.18

we need to bound E1 and E2 by 1. Recall E1 is a maximization over sets A ⊂ P of size 1 and

fix A = {e} for some e ∈ P . If e is within a single cluster then YA = 0. If e spans two clusters

there are at most n possible T ∋ e, each of which has probability p2, so E1 ≤ np2. Therefore

by Corollary 5.18 proves the Lemma with respect to the unnatural triangles with vertices in three

distinct base clusters.

Let T (2) denote the collection of possible triangles with vertices in two distinct base clusters,

where the triangles are represented by three vertex pairs from P . Fix A = {e} for some e ∈ P . If

e is within a single cluster we bound E [YA] by np
2 as before. If e spans two distinct clusters, then

the third vertex to form a triangle must be one of at most 2k vertices. Each possible triangle has

probability p, so E1 ≤ 2kp = o(1). Corollary 5.17 proves the Lemma w.r.t. the unnatural triangles

with vertices in two distinct base clusters. This concludes the proof of Lemma 5.16.

5.3.5 Proof of Theorem 5.1 (2) when p ≤ n
−2/3.

In this part, we analyze the algorithm in the semi-random model, assuming that p ≤ n−2/3. The

case p ≥ n−2/3 is deferred to Section 5.3.6.

Lemma 5.19. There exists c3 such that with high probability the semi-definite program finds all

base clusters B of size at least c3(np+ log n) exactly. That is, X∗
uv = 1 if u, v ∈ B, and X∗

uv = 0 if

u ∈ B and v /∈ B.

Proof. We choose constant c3 equal to the constant of the same name from Lemma 5.15. We say

that vertex pair u, v is B-incident if at least one of u and v is in B. Let X∗ be an arbitrary optimal

solution of the semi-definite program. Consider the solution X ′ obtained from X∗ by modifying X∗
uv

for B-incident vertex pairs as follows:

X ′
uv =





X∗
uv if uv not B-incident

0 if |{u, v} ∩B| = 1

1 if |{u, v} ∩B| = 2

We will prove the Lemma by arguing that X ′ = X∗. Following terminology from Ailon et al.

[2008], say that a triplet {u, v, w} of vertices is a bad triplet if Êuv = Êvw = 1 and Êuw = 0. We

enrich the semidefinite program by adding the constraint that Xuv = X∗
uv for every vertex pair

uv that is not B-incident. This creates a new semi-definite program (P’) that has the same value

as the original (so X∗ is also optimal for (P’)). Then, we relax the constraints by removing the
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constraint that X be positive semidefinite, and by only writing the ijk constraint for {i, j, k} bad

triplet such that all three vertex pairs are B-incident. Moreover, we change variables by defining

yuv =

{
Xuv if Êuv = 0

1−Xuv if Êuv = 1
for B-incident vertex pairs. Finally, we translate the objective

function by the quantity
∑
uv not B-incident(1−X∗

uv)Êuv+X
∗
uv(1− Êuv). We obtain the following

linear program (P):

(P)

min
∑
uv B-incident yuv s.t.

yuv + yvw + yuw ≥ 1 for uvw bad triplet, |uvw ∩B| ≥ 2

yuv ≥ 0 for uv B-incident

We say that vertex pair u, v is removed if Êuv 6= Buv. A feasible solution to (P) is obtained by

setting y′uv equal to 1 if Êuv 6= Buv and to 0 otherwise. It is clearly feasible, and its value is the

number of B-incident removed pairs. We will argue that y′ is the unique optimal solution of (P).

What does that imply? Observe that y′ is precisely the solution obtained from X ′ by our change

of variables. Since it is straightforward to see that X ′ is feasible in (P’), and (P) is essentially a

relaxation of (P’), this implies that X ′ is the unique optimal solution of (P’). Since X∗ is optimal

for (P’), we conclude that X = X∗, hence the Lemma.

It only remains to prove that y′ is the unique optimal solution of (P). Consider the linear

programming dual (D) of (P).

(D)

max
∑
T πT s.t.

∑
T⊇{u,v} πT ≤ 1 for uv B-incident

πT ≥ 0 for T bad triplet, |T ∩B| ≥ 2

A feasible solution to (D) is constructed as follows. We say that vertex pair u, v is noisy if Euv 6= Buv.
We say that a bad triplet of vertices is broken if at least two of the vertices from B and exactly one

of the three vertex pairs are removed. We set

πT =





1/#
{
broken T ′ that share if T is broken

their removed edge with T
}

0 otherwise

Let us prove that, with high probability, π is feasible.

If vertex pair e = uv is removed then, by definition of π, we have
∑
T :e∈T πT = 1.

If vertex pair e = uv is not removed, then any broken triplet T = uvw must have either uw or

vw removed, hence noisy. Using Lemma 5.15, the packing constraint associated to e therefore has

∑

T :e∈T
πT ≤

∑

w:uw noisy

πuvw +
∑

w:vw noisy

πuvw

≤ 2
c3
10

(np+ log n)max
T

πT .
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To bound maxT πT , fix a broken T with removed edge e = uv. Observe for every vertex w ∈ B\{u, v},
triplet T ′ = uvw is broken, except when uw or vw is removed. By Lemma 5.13, every B-incident

removed pair is also noisy, so by Lemma 5.15 we can write

πT ≤
1

|B| − 2c3
10 (np+ log n)

≤ 10

8c3(np+ log n)

using the assumption of Lemma 5.19 that |B| ≥ c3(np + log n). This implies
∑
T :e∈T πT ≤ 1/4,

proving feasibility of π.

Now, observe that the value of π is exactly the number of B-incident removed pairs. This equals

the value of y′, so y′ and π are both optimal.

Moreover, consider a non-removed pair e = uv. Observe that for π, the packing constraint asso-

ciated to e has positive slackness (≥ 3/4). By complementary slackness conditions (and optimality

of π) this implies that every optimal primal solution y satisfies yuv = 0. Now, consider a removed

pair e = uv, and let w ∈ B − {u, v} be such that neither uw nor vw are removed (such a w exists

by Lemma 5.15, Lemma 5.13, and our assumption on |B|). Then (P) has a constraint associated to

uvw, which, for an optimal solution, reads yuv+ yvw+ yuw = yuv ≥ 1. By optimality again, we infer

yuv = 1. Therefore y′ is the unique optimal solution of (P), as desired.

Proof. (Of Theorem 5.1 (2) when p is small) By Lemma 5.9,

Cost(Output) ≤ OPT + d(A, Ê).

By Lemma 5.19, we know that the optimal solution X∗ of the semi-definite program matches B
precisely on all vertex pairs incident to at least one cluster of size at least c4(np + log n). By the

design of the rounding algorithm, this implies that A also matches B precisely on for those clusters;

moreover, X∗ is also optimal in the subgraph induced by the vertices in the remaining clusters. So

we can ignore the large clusters and assume that all clusters have size at most k = c3(np+ log n).

Consider the clustering B′ obtained from B by splitting clusters of size 2 in two. By Theorem 5.4,

Ealg

[
d(A, Ê)

]
≤ 2.5 d(B′, Ê).

We now proceed to compare d(B′, Ê) to OPT.

First, consider the case np ≤ c2, where c2 is the constant from Theorem 5.10. We will bound

the expected value, over the noisy process, of d(B′, Ê) and use Markov’s inequality. Clearly a vertex

pair u, v only contributes to d(B′, Ê) if one of the following three conditions holds.

• B′
uv = 0 and Euv = Êuv = 1. We bound the expected number of such pairs by three times the

expected number of unnatural triangles, i.e. O((np)3 + (np)2k) by Lemma 5.16.

• B′
uv = 1 and Euv = Êuv = 0. We bound the expected number of such pairs by O(n3kp)

trivially, where n3 is the number of vertices in base clusters of size at least 3 and k = c3(np+

log n) is the upper-bound on cluster size.



63

• B′
uv = 1, Euv = 1 and Êuv = 0. We bound the number of such pairs by O(n3p) using

Lemma 5.14.

Altogether,

Egraph

[
d(B′, Ê)

]

= O
(
[(np)3 + (np)2k] + [n3kp] + [n3p]

)

= Õ((np)2 + n3p) (5.3)

since k = O(log n) in this case. By Theorem 5.10 we have OPTfull = Ω(n2np + n3p2) w.h.p.7

and so E
[
d(B′, Ê)

]
= Õ(OPTfull/n), hence by Markov’s inequality, with high probability we have

d(B′, Ê) = O(n−1/6)OPTfull.

Second, consider the case np > c2. Then k = Õ(np). Lemmas 5.16, 5.12 and 5.14 allow us to

redo the proof of (5.3), replacing expectations by high probability statements, to show that

d(B′, Ê) = O
(
[(np)3 + (np)2k] + [n3kp] + [n3p] + log6 n

)
(5.4)

with high probability. Now, (5.4) simplifies to d(B′, Ê) = Õ((np)3) ≤ Õ(n2p)np2 ≤ Õ(n−1/3)OPTfull

w.h.p. using Theorem 5.10. Together, the two cases completes the proof.

5.3.6 Proof of Theorem 5.1 (2) when p ≥ n
−2/3

Define M •N ≡∑u,vMuvNuv, and for any {0, 1} matrix M , let

M̃uv =

{
−1 if Muv = 1

1 if Muv = 0.

This gives a way to rewrite the objective of our semi-definite program. The following Lemma is

trivial.

Lemma 5.20. For any symmetric matrices M and N with Muv ∈ {0, 1} and 0 ≤ Nuv ≤ 1, we have

d(M,N) = (1/2)(M̃ •N − M̃ •M)

The next Lemma is key. It is eventually used for X = X∗, the optimal solution to the SDP.

Lemma 5.21. With high probability over the noisy model, the following holds: for every positive

semi-definite matrix X with trace n,

|Ẽfull •X −E
[
Ẽfull

]
•X| ≤ 5

√
pn3/2.

Proof. Let M = Ẽfull −E
[
Ẽfull

]
. Since X is symmetric, we can write X =

∑n
i=1 λiviv

T
i where λi

are the eigenvalues of X and vi are corresponding unit-length eigenvectors. By elementary linear

7If OPTfull = 0 the present part 2 of Theorem 5.1 follows from part 1.
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algebra, (using the fact that Tr(AB) = Tr(BA) for two (m,n) and (n,m) matrices),

M •X = Tr(MTX) =
∑

i

Tr(MTλiviv
T
i )

=
∑

i

λiTr(v
T
i Mvi) =

∑

i

λiv
T
i Mvi.

Since X is positive semi-definite, the λis are non-negative and we get

|M •X| ≤
∑

i

λi|vTi Mvi| ≤
∑

i

λiρ(M)

= Tr(X)ρ(M) = nρ(M),

where ρ(M) is the spectral radius ofM . By Füredi and Komlós [1981] we have ρ(M) ≤ 5
√
np, hence

the Lemma.

Proof. (Of Part 2 of Theorem 5.1 when p ≥ n−2/3) Since the maximum matching of U can only

improve the cost, the cost of the output is at most d(A, E), where A denotes the output of SDP-

Cluster. By the triangle inequality and Theorem 5.5,

Ealg [d(A, E)] ≤ Ealg [d(A, X∗)] + d(X∗, E)

≤ 3d(B, X∗) + d(X∗, E).

Let C be an optimal clustering satisfying the conditions of Lemma 5.8. Since the semi-definite

program is a relaxation, d(X∗, Ê) ≤ d(C, Ê). Lemma 5.8 implies that

d(X∗, E) ≤ d(C, E) + n/2 = OPT +O(n). (5.5)

To see this, transform Ê into E by switching vertex pairs one at a time. Each time vertex pair uv

is switched, either u, v is a cluster of size 2 in C or the cost of C increases by 1. The cost of X∗, as

that of any fractional clustering, increases by at most 1, hence Equation (5.5).

By Lemma 5.20, d(B, X∗) = (1/2)(B̃•X∗−B̃•B). In the fully random model, it is straightforward

that E
[
Ẽfull

]
= (1− 2p)B̃, and so

(B̃ •X∗ − B̃ • B) = 1

1− 2p
(E
[
Ẽfull

]
•X∗ −E

[
Ẽfull

]
• B).

Applying Lemma 5.21 to both X = X∗ and X = B, we can write

d(B, X∗) ≤ 1

2(1− 2p)
(Ẽfull •X∗ − Ẽfull • B − 10

√
pn3/2).

Applying Lemma 5.20 again, once to Ẽfull •X∗ and once to Ẽfull • B, we get

Ẽfull •X∗ − Ẽfull • B = 2(d(Efull, X
∗)− d(Efull,B)).

We observe that

d(X∗, Efull)− d(B, Efull) ≤ d(X∗, E)− d(B, E). (5.6)
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To see that, transform Efull into E by switching vertex pairs one at a time. Each time the adversary

is “nice” (taking advantage of the semi-random model) and declines to add noise to vertex pair uv,

the value of B decreases by 1 whereas the value of X∗, as that of any fractional clustering, decreases

by at most 1, hence Equation (5.6).

We further claim that

d(X∗, E)− d(B, E) ≤ d(X∗, Ê)− d(B, Ê) + Õ(np+ 1). (5.7)

To see that, we transform E into Ê by switching vertex pairs one at a time. Each time the algorithm

removes an edge of E that are between different clusters of B, the value of B decreases by 1 whereas

the value of X∗, as that of any fractional clustering, decreases by at most 1. Each time the algorithm

removes an edge of E that is inside a cluster of B, the value of B changes by 1 and the value of X∗,

as that of any fractional clustering, changes by at most 1, so the difference changes by at most 2.

Hence the difference from d(X∗, E)− d(B, E) to d(X∗, Ê)− d(B, Ê) is at most twice the number of

edges inside clusters of B that are removed by the algorithm. By Lemma 5.14 there are Õ(np + 1)

such pairs, hence Equation (5.7).

By optimality of X∗, we have d(Ê,X∗)− d(Ê,B) ≤ 0. Clearly O(n) + Õ(np+ 1) = O(
√
pn3/2)

for p ≥ n−2/3. Altogether this yields

Cost(OUT ) ≤ OPT +O

(√
pn3/2

1− 2p

)
.

By Theorem 5.10, OPTfull = Ω(n2p) , and so

(Cost(OUT )−OPT )/OPTfull = O

(
1√

np(1/2− p)

)
.

It is easy to check that for n−2/3 ≤ p ≤ 1/2− n−1/3, this quantity is O(n−1/6).

5.3.7 Proof of Theorem 5.1 (3)

Part (3) of Theorem 5.1 is proved using the same techniques as used to prove part (2). When p is

large we choose lower bound L = d(X∗, E)−n/2, which is valid by Equation (5.5) and was implicitly

shown to be sufficiently tight in the last section.

When p is small the argument is a bit more involved. First note that the proof of Lemma 5.19

can be readily converted into a polynomial-time algorithm for certifying that a particular cluster is

in every optimal clustering. This algorithm succeeds with high probability on any base cluster B of

size at least c3(np+log n). We run this algorithm (solve an LP and check complementary slackness)

on every output cluster A ∈ Output. We discard those clusters that this algorithm successfully

certifies and compute initial lower bound L1 equal to what Output (and hence C) pays for the edges
incident to the discarded clusters. Lemma 5.9 implies thatL2 = d′(Output, E)− d′(A, Ê) is a lower

bound on the instanced induced by the remaining vertices, where d′(·, ·) is like d(·, ·) but is limited

to the subgraph induced by the remaining vertices. Our overall lower bound is L = L1 + L2.
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5.4 Proof of Theorem 5.2

This proof is inspired by the analysis in Feige and Krauthgamer [2000] for the planted clique problem.

Our key innovation is extending the results of Füredi and Komlós Füredi and Komlós [1981] to

random matrices with entries only partially independent (Lemma 5.27).

5.4.1 Overall Proof

First we give a brief outline of our proof. First we define a new SDP (5.8) which is (up to scaling)

a relaxation of the SDP in our SDPCluster algorithm. Then we write its dual (5.9). We define

a dual solution (Π,Υ) in (5.10). Finally we analyze eigenvalues (Lemmas 5.22-5.25) to prove that

our dual solution is feasible. Finally we use the fact that our dual feasible solution has the same

objective value as B in the primal, plus a few more arguments, to prove the theorem.

By Lemma 5.13 with high probability all edges within base clusters remain in Ê. Edges between

clusters that are not in Ê can be accounted for as semi-randomness, so we can ignore the distinction

between Ê and E. Semi-randomness can be dealt with easily (using Equation (5.6) in Section 5.3.6)

so we focus on the fully random case.

Throughout this section we assume that there are b clusters of size at least γ ≥ c1
√
n for some

constant c1 to be decided later. Let µ = 1− 2p ≥ 1/3.

Let Juv denote a matrix with u, v entry equal to 1 and all others 0. Following Alizadeh [1995],

we writeM � N ifM−N is positive semi-definite. Recall the definition Ẽuv =

{
−1 if Euv = 1

1 if Euv = 0
.

Observe that X∗ is feasible in the following SDP:

max
X
−Ẽ •X s.t. (5.8)





Juu •X = 1 ∀u ∈ V (Dual variable Πu)

−Juv •X ≤ 0 ∀u, v ∈ V (Dual variable −Υuv)

X � 0 (positive semi-definite)

Recall from Lemma 5.20 that d(E,X) = (1/2)(Ẽ •X − Ẽ •E) so up to rescaling SDP (5.8) relaxes

the SDP in SDPCluster (by eliminating the triangle inequalities).

For convenience we package the dual variables Πu and −Υuv (the minus sign will be convenient

later) into diagonal matrix Π and symmetric matrix −Υ. Here is the dual of SDP (5.8):

min
Π,Υ

∑

v

Πv s.t. (5.9)





Π− (−Υ) � −Ẽ
Π diagonal

−Υ ≥ 0 (All entries non-negative)

We rewrite the first constraint in the dual as M ≡ Ẽ +Π+Υ � 0.
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Recall that the vertex set V is partitioned into b base clusters B1, . . . , Bb. For this proof we

subdivide8 the clusters into subclusters S1, . . . , Sr so that γ/2 ≤ |Si| ≤ γ for all i. For vertex u

let B(u) and S(u) denote the cluster and subcluster u is in respectively. We now present our dual

solution (Π,Υ). We choose

Πuu = −
∑

v∈B(u)

Ẽuv. (5.10)

Let Υuv be zero when B(u) = B(v) and

∑

i∈S(u),j∈S(v)

Ẽij
|S(u)||S(v)| −

∑

i∈S(u)

Ẽiv
|S(u)| −

∑

j∈S(v)

Ẽuj
|S(v)|

otherwise. This dual solution satisfies two key (and easily verified) properties:

1. The vector with all components in one base cluster equal to 1 and all others zero is an eigen-

vector of M with eigenvalue 0.

2. The dual objective value
∑
v Πv equals −Ẽ • B, the primal value of B.

Let us first show that −Υuv > 0 with high probability for any u, v with B(u) 6= B(v). Observe

that each of the three sums in the definition of Υuv are an average of Ω(γ) independent −1/1 random

variables each with mean µ. Each of the three sums therefore equals its expectation, namely µ, plus

or minus O
(√

logn
γ

)
< µ/10 by the Azuma-Hoeffding inequality. We conclude that

Υuv < 0. (5.11)

As noted above M has b orthogonal eigenvectors with eigenvalue 0. We next show that the b+1

smallest eigenvalue of M is strictly positive, which will imply that M is positive semi-definite. To

do so we decompose M as

M = Ẽ +Π+Υ

= Π+
(
E
[
Ẽ +Υ

])

︸ ︷︷ ︸
≡M(1)

+
(
Ẽ −E

[
Ẽ
])

︸ ︷︷ ︸
≡M(2)

+
(
Υ−E [Υ]

)

︸ ︷︷ ︸
≡M(3)

and analyze the eigenvalues of Π, M (1), M (2) and M (3) separately. In particular we will prove the

following four Lemmas:

Lemma 5.22. All eigenvalues of Π are Ω(
√
γ) with high probability.

Lemma 5.23. The b+ 1 smallest eigenvalue of M (1) is µ.

Lemma 5.24. M (2) has all eigenvalues at least −Θ(
√
n) with high probability.

Lemma 5.25. M (3) has all eigenvalues at least −Θ(
√
n) with high probability.

8On first reading consider the special case of all clusters having size exactly γ and Bi = Si.
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Before proving these Lemmas we show how they imply Theorem 5.2. We use the following

corollary of the Courant-Fischer Theorem, due to Weyl:

Theorem 5.26 (Weyl Horn and Johnson [1985]). For any n× n symmetric matrices A and B and

integer 1 ≤ k ≤ n the kth smallest eigenvalue of A+ B is at least the kth smallest eigenvalue of A

plus the smallest eigenvalue of B.

We apply Theorem 5.26 three times with k = b + 1 together with Lemmas 5.22, 5.23, 5.24 and

5.25. This shows that the b+1 smallest eigenvalue ofM is at least Ω(
√
γ)−µ−Θ(

√
n)−Θ(

√
n) > 0

for sufficiently large γ = c1
√
n. We conclude M � 0 and hence our dual assignment is feasible.

As already remarked this dual assignment has the same objective value as B in the primal, so we

conclude that both are optimal.

We will now prove Theorem 5.2 by showing that B is not only a primal optimal but the unique

optimum.

Proof. (Of Theorem 5.2) Let X∗ be an arbitrary optimal solution of the SDPCluster SDP. First

consider some u, v in different clusters. We previously showed (5.11) that dual variable −Υuv is

strictly positive, hence by the complementary slackness condition X∗
uv · −Υuv = 0 we conclude

X∗
uv = 0.

For u, v in different clusters we use the complementary slackness condition MX∗ = 0 Alizadeh

[1995]. This implies that any eigenvector of X∗ with non-zero eigenvalue must be in the nullspace

of M . In the previous paragraph we showed that X∗ is block diagonal with one block per cluster

so w.l.o.g. assume eigenvectors of X∗ each have their support contained within a single cluster. Our

previous analysis of the eigenspectrum of M implies that the nullspace of M is spanned by vectors

x1, x2, . . . , xb where xi has components equal to 1 within base cluster Bi and 0 elsewhere. We can

therefore write X∗ as a linear combination of rank-one outer product matrices xix
T
i . The constraint

Xuu = 1 imply that the linear combination has coefficients all 1, i.e. X∗ = B.

5.4.2 Eigenvalue analysis

The following Lemma, proved shortly in Section 5.4.3, will be helpful for proving Lemmas 5.24

and 5.25. Füredi and Komlós Füredi and Komlós [1981] showed that a symmetric matrix with

independent random entries, each with variance σ2, has spectral radius (2+ o(1))σ
√
n. Our Lemma

generalizes their result to matrices whose entries are not completely independent, but independent

outside certain roughly equal sized blocks.

Lemma 5.27 (Generalization of Füredi and Komlós [1981]). Let set V , |V | = n ≥ 64, be partitioned

into r classes S1 . . . Sr, all of size between β/2 and β for some 1 ≤ β ≤ n. Let S(v) denote the class

that v ∈ V is in. Let N be a matrix-valued random variable indexed by V where:

• Nuv = Nvu for all u, v ∈ V (symmetric)

• E [N ] = 0
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• The blocks of matrix N induced by the class structure are mutually independent. The block

indexed by 1 ≤ i, j ≤ r is the set of all random variables Nuv with {S(u), S(v)} = {i, j}.

• E
[
N2
uv

]
≤ σ2 and |Nuv| ≤ K for all u, v ∈ V and some uniform K and σ with K ≥ σ > 0.

• β · K2

σ2 ≤ n/(800 lg4 n) = Õ(n)

Then with probability at least 1−n−8 all eigenvalues of N have absolute value at most 20σ
√
βn, i.e.

the spectral radius of N is O(σ
√
βn).

Lemma 5.27 with β = 1 is equivalent up to constants to Füredi and Komlós [1981]. We use

Lemma 5.27 twice, once with β = 1 and once with β equal to the cluster size lower-bound γ.

Proof. (Of Lemma 5.22) Matrix Π is diagonal so its eigenvalues are simply the entries on its diagonal.

Consider entry Πu for vertex u in cluster B(u). Clearly Πu consists of the sum of |B(u)| − 1

independent random variables each with mean µ. Therefore by the Azuma-Hoeffding inequality we

have Πu = µ(|B(u)| − 1)±O(
√
|B(u)− 1| log n) = Ω(γ) with high probability. A union bound over

vertices completes the proof.

Proof. Of Lemma 5.23) Note that E [Υij ] = −E
[
Ẽij

]
for all i and j in different clusters hence M (1)

is block diagonal with one block per cluster. Consider some block N corresponding to cluster Bi.

Clearly N = −µJ + µI, hence N has eigenvalue −µ|Bi| + µ with multiplicity 1 and eigenvalue µ

with multiplicity |Bi| − 1. Unioning these spectra over the clusters proves the Lemma.

Proof. (Of Lemma 5.24) Observe that the entries of M (2) are independent, have variance O(p) and

are bounded by 2. The result of Füredi and Komlós, i.e. Lemma 5.27 with s = n and β = 1, proves

the Lemma.

Proof. (Of Lemma 5.25) It is easy to verify that M (3) satisfies the conditions of Lemma 5.27 with

β = γ, σ = Θ( 1√
γ ) and K = Θ

(√
logn
γ

)
, the last by Azuma-Hoeffding inequality. Applying

Lemma 5.27 proves the Lemma.

5.4.3 Proof of Lemma 5.27

We extend the techniques of Füredi and Komlós Füredi and Komlós [1981]. Let λi denote the ith

eigenvalue of matrix N . Let k = 10 ⌈lg n⌉, an even integer. Clearly

Pr
(
max
i
|λi| ≥ 20σ

√
βn
)
≤ Pr

(
∑

i

λki ≥ (20σ
√
βn)k

)

≤ E

[
∑

i

λki

]
/(20σ

√
βn)k (Markov). (5.12)

The sum of λki is the trace of Nk, which can alternatively be written as
∑
q

∏
e∈q Ne, where the

sum is over walks q of length k whose ending point equals their starting point. Consider such a walk

q.
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If there are two classes Si and Sj such that q has exactly one edge f between Si and Sj , then

E

[
∏

e∈q
Ne

]
= E [Nf ]E


 ∏

e∈q,e 6=f
Ne


 = 0

by independence and since E [Nf ] = 0 by assumption.

If not, let p denote the number of classes visited by walk q. Let Si and Sj be two of them and

assume that q has ℓ ≥ 2 visits of edges between them. Then one can check (using the inequalities of

Hölder and Cauchy-Schwarz) that E
[∏

e∈q,e∈Si×Sj
Ne

]
≤ σ2Kℓ−2. By independence,9 we deduce

E

[
∏

e∈q
Ne

]
≤ σ2(p−1)Kk−2(p−1)

We group walks q of this type by the corresponding walk q′ over the classes, where walk q over

V refines walk q′ over the set of classes if the class of each point in q is equal to the corresponding

point in q′. Any such q′ must clearly use each superedge between classes at least twice or not at all.

For any fixed q′ there are at most βk walks q that refine q′. Therefore for any q′

E


 ∑

q refines q′

∏

e∈q
Ne


 ≤ βkσ2(p−1)Kk−2(p−1) (5.13)

We now use the following Lemma implicit in Füredi and Komlós [1981]:

Lemma 5.28 (Füredi and Komlós [1981]). The number of walks (cyclic or not) of k steps on the

complete graph with r vertices that visit exactly p distinct vertices and visit each non-loop edge at

least twice (in either direction) is at most

r · (r − 1) · . . . · (r − p+ 1) ·
(

k

k − 2p+ 2

)
p2(k−2p+2) 1

p

(
2p− 2

p− 1

)
.

Let T (p) denote the contribution of walks that visit p distinct classes to the expected trace of

Nk. Combining Lemmas 5.28 and (5.13) we see that for any p ≤ k/2 + 1.

T (p) ≤rp
(

k

k − 2p+ 2

)
p2(k−2p+2) 1

p

(
2p− 2

p− 1

)
· βkσ2p−2Kk−2p+2

≤ rp2kp2(k−2p+2) · 1 · 22p−2 · βkσ2p−2Kk−2p+2

=
(
2p2βK

)k
(

4σ2r

p4K2

)p−1

r (5.14)

≡ T̄ (p)

Recall that k = 10 ⌈lg n⌉ hence p ≤ k
2 +1 ≤ 5 ⌈lg n⌉+1 ≤ 6 lg n. Also recall the assumption that

β · K2

σ2 ≤ n/(400 lg4 n), hence σ2n
(lgn)4K2β ≥ 400. Finally note the trivial fact r ≥ n/β. Putting these

facts together we conclude
(
4σ2r

p4K2

)
≥
(

4σ2n

(6 lg n)4K2β

)
≥ 4 · 800

64
> 2. (5.15)

9And the assumption σ ≤ K.
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Combining (5.14) and (5.15) we conclude

E

[
∑

i

λki

]
=

r∑

p=1

T (p) ≤
k/2+1∑

p=1

T̄ (p)

≤ 2T̄ (k/2 + 1) = 2
(
4βσ
√
r
)k · 2r. (5.16)

We now finish the proof of Lemma 5.27:

Pr
(
max
i
|λi| ≥ 20σ

√
βn
)
≤ E

[
∑

i

λki

]
/(20σ

√
βn)k (by 5.12)

≤ (4βσ
√
r)
k
2r

(20σ
√
βn)k

(by 5.16)

≤
(
1

2

)k
· 2n (r ≤ 2n/β and r ≤ n)

≤ n−8 (k = 10 ⌈lg n⌉).

5.5 Proof of Theorem 5.3

5.5.1 Preliminaries

Algorithm 5.3 proceeds by first identifying a candidate set of clusters A and then certifying that

the large clusters therein, denoted A′, are in fact optimal. The following four Lemmas easily imply

Theorem 5.3.

Lemma 5.29. W.h.p. Algorithm 5.3 produces intermediate set of clusters A that includes all clusters

of the base clustering B that have size greater than or equal to 3 ⌈70/δ⌉.

Lemma 5.30. W.h.p. Algorithm 5.3 produces intermediate set of clusters A that includes no clusters

except those guaranteed by Lemma 5.29.

Lemma 5.31. Conditioned on the w.h.p. events of Lemmas 5.29 and 5.30 occurring Algorithm 5.3

outputs “failure” with probability at most 2n−5.

Lemma 5.32. Let A′ be a clustering output by Algorithm 5.3 and C be an optimal clustering. We

have A′ = {C ∈ C : |C| ≥ 15s′ }.

We prove each of these Lemmas in turn. Throughout this section we assume that p ≤ n−δ/60

for some δ > 0 and s = ⌈70/δ⌉.
For edge set E and disjoint vertex sets S and T , let E(S, T ) denote the number of edges with

one endpoint in S and the other in T . For vertex v let E(v, T ) denote E({v}, T \ {v}).
Recall that s ≥ ⌈70/δ⌉. If p ≤ n−5, then with probability 1 − n−3 the input graph is just the

base clustering with no noise, in which case cluster-finding is trivial. We can therefore safely assume

δ < 5, and hence s ≥ 40/δ + 5.

A mistake is an edge whose label is different in the base clustering and in the input clustering.
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Lemma 5.33. Let X be a set of edges of cardinality at least 70/δ. Then, with probability at least

1− n−7, there are at most |X|/10 mistakes in X.

Proof. Elementary counting:
( |X|
|X|/10

)
p|X|/10 ≤

(
e|X|p
|X|/10

)|X|/10
≤ n−δ|X|/10 ≤ n−7.

Lemma 5.34. With probability at least 1 − n−5, every subgraph induced by a vertex set Y of size

k ≥ 40/δ + 5 has at most |Y |2/40 mistakes.

Proof. Let k ≥ 40/δ+5 be given. There are
(
n
k

)
≤ nk subsets of size k. Each subset has

(
k
2

)
≤ k2/2

vertex pairs within a given subset, so the mean number of mistakes is at most k2p/2. Using Markov

and Chernoff bounds, write:

Pr (∃S of size k with at least k mistakes) ≤ nk
(
epk2/2

k2/40

)k2/40
≤ nk−δk2/40

We therefore want k−δk2/40 ≤ −5. By Taylor series around k = 40/δ, we see that k−δk2/40 ≤
−(k − 40/δ), hence k ≥ 40/δ + 5 suffices.

Lemma 5.35. Let U,W be disjoint vertex sets and s > 0 an integer. Assume that for every subset

S of U and T of W with cardinalities |S| = |T | = s, there are at most (resp. at least) (.35)|S||T |
edges between S and T . Then for every subset S′ of U and T ′ of W with cardinalities |S′|, |T ′| ≥ s,
there are also at most (resp. at least) (.35)|S′||T ′| edges between S′ and T ′.

Proof. Here is a way to compute the number of edges between S′ and T ′ divided by |S′||T ′|: Pick a

random subset S of S′ of size s and a random subset T of T ′ also of size s, compute the number of

edges between S and T divided by s2, and average over the random choices of S, T . The number of

edges between S and T is bounded by assumption, hence the lemma.

For every cluster B ∈ B of size at least 3s, fix an arbitrary seed set KB ⊂ B of size s.

Let Event 1, . . . Event 4 refer to:

1. For all v ∈ V and B ∈ B with |B| ≥ 3s, E(v,KB) ≥ |KB |/2 if and only if v ∈ B.

2. For all v ∈ V and B ∈ B with |B| ≥ 3s, E(v,B) ≥ .9|B| if v ∈ B and E(v,B) ≤ .1|B| if v 6∈ B.

3. All B ∈ B and disjoint sets T, S ⊆ B with |T | = |U | = s satisfy E(T,U) ≥ .9s2

4. For every pair of disjoint vertex sets S, T with cardinalities |S| = |T | = s, such that no cluster

B ∈ B intersects both S and T (∀B,B ∩ S = ∅ or A ∩ T = ∅), there are at most (.1)|S||T |
edges between S and T .

Lemma 5.36. Events 1,2,3,4 all occur with probability at least 1−O(n−5).

Proof. Events 1 and 2 occur with that probability by Lemma 5.33 and a union bound over the O(n2)

possible combinations of base cluster B and vertex v. Events 3 and 4 follow from Lemma 5.34 using

X = S ∩ T .
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We henceforth assume that events 1, . . . 4 occur. We refer to the three bullets in the first half of

Algorithm 5.3 as Condition 1 . . . 3. We refer to the three bullets in the second half of Algorithm 5.3

as Property 1 . . . 3.

5.5.2 Proof of Lemma 5.29

In this subsection we prove that every cluster B ∈ B of size at least 3s is added to A at some point.

We fix some cluster B ∈ B of size at least 3s. LetK be its seed. We show that when Algorithm 5.3

considers S = K, then it adds A = B to A. Event 1 and the definition of A implies A = B. Events

3, 4 and 2 guarantee that A satisfies conditions 1, 2 and the second part of condition 3 respectively.

The first part of condition 3 is satisfied by assumption on the size of B.

5.5.3 Proof of Lemma 5.30

In this subsection we show that every cluster A added to A satisfies |A| ≥ 3s and A ∈ B.

Lemma 5.37. For every cluster A that satisfies conditions 1–3 there exists B ∈ B such that |B\A| <
s and |A \B| < s.

Proof. Construct a bipartition S, T of A as follows. Consider the clusters Bi ∈ B in descending

order of |Bi ∩A|, adding Bi ∩A to whichever of S, T have fewer vertices. It is well known that this

greedy algorithm satisfies ||S|−|T || ≤ |B+∩A|, where B+ is the cluster with the largest intersection

with A. Without less of generality suppose that |T | ≥ |S|. If |S| ≥ s, then E(S, T ) ≤ .1|S||T | by
event 4 and Lemma 5.35, contradicting condition 1, which implies E(S, T ) ≥ .9|S||T |, again using

Lemma 5.35. Therefore |S| < s. Therefore |T | < s+ |B+ ∩A|, so 3s ≤ |S|+ |T | < 2s+ |B+ ∩A|, so
|B+ ∩A| > s. Therefore the greedy procedure placed all other vertices in S, so |A \B+| = |S| < s.

By Condition 3 and |A\B+| < s we see that |A∩B+| ≥ 2s. If |B+ \A| were s or more, we would

detect that because then E(A ∩ B+, B+ \ A) ≥ .9|A ∩ B+||B+ \ A| by event 3, which contradicts

condition 2.

Every A that passes is approximately equal to some B ∈ B by Lemma 5.37. We now show that

A = B.

First consider some vertex v ∈ B. We use Event 2 and properties 3 to write E(v,A) ≥ E(v,A ∩
B) ≥ |A ∩ B| − .1|B| ≥ (|A| − s) − .1(|A| + s) = .9|A| − 1.1s ≥ .9|A| − 1.1

3 |A| > |A|/2, so B ⊆ A

by condition 3. For v 6∈ B, we similarly write E(v,A) = E(v,A ∩ B) + E(v,A \ B) ≤ .1|B| + s ≤
.1(|A|+ s) + s = .1|A|+ 1.1s ≤ .1|A|+ 1.1

3 |A| < |A|/2. Therefore A = B.

5.5.4 Proof of Lemma 5.31

The proofs of the first property and of the second property are identical: for each v and A we apply

Lemma 5.33 to the set of edges between v and A, and use the union bound. (There are at most n2

such sets.)
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To prove the third property, observe that each cluster Bi ∈ B which intersects both S and T has

ci vertices in S and c′i vertices in T , with ci+c
′
i ≤ 3s. Therefore in the base clustering the number of

edges between S and T is
∑
i cic

′
i ≤

∑
i(ci+c

′
i)

2/4. By convexity and using
∑
i(ci+c

′
i) ≤ |S∪T | = 12s

and maxi(ci+c
′
i) ≤ 3s, this is bounded by 36s2/4 = |S||T |/4. By Lemma 5.34 applied to X = S∪T ,

the mistakes add another (12s)2/40 = |S||T |/10 edges, for a total of at most .35|S||T | edges.

5.5.5 Proof of Lemma 5.32

Let M(S, T ) = 2E(S, T ) − |S||T |, which is the profit from merging clusters S and T into a new

cluster.

Lemma 5.38. Let A be the input partial clustering that Algorithm 5.3 output and C be an optimal

clustering. For any C ∈ C satisfying |C| ≥ 18s there exists a unique A ∈ A such that:

1. |C \A| < 6s

2. |A| ≥ 3|C| or C ⊆ A

Proof. Suppose |C| ≥ 18s. Let A be the cluster in A maximizing |A ∩ C|.
Relabel the clusters Ai ∈ A so that |A1∩C| ≥ |Ai∩C| for all 1 ≤ i ≤ |A|. Let Sk =

⋃k
i=1Ai∩C

and let S = Sk where k is the smallest integer such that |Sk| ≥ 6s. (If no such k exists, let S be
⋃
iAi ∩C plus sufficient additional vertices from C \⋃iAi ∩C so that |S| = 6s.) Let T = C \ S. If
|T | were at least 6s then Lemma 5.35 and Property 3 would contradict optimality of C so |T | < 6s.

We know |S|+ |T | ≥ 18s so therefore |S| > 12s. The definition of k and the relabeling imply k = 1,

proving the first statement of the Lemma.

For v ∈ C \ A write E(v, C ∩ A) ≤ E(v,A) ≤ .1|A| using Property 2b. Note that M(C \
A,C ∩ A) ≥ 0 by optimality of C, so therefore 0 ≤ M(C \ A,C ∩ A) =

∑
v∈C\AM(v, C ∩ A) =

∑
v 2E(v, C ∩A)− |C ∩A| ≤ |C \A|(.2|A| − |C ∩A|). Suppose C 6⊆ A, hence |C \A| > 0. Therefore

0 ≤ .2|A| − |C ∩ A| hence using |C| ≥ 18s we see |A| ≥ 5|C ∩ A| ≥ 10
3 |C|, proving the second

statement of the Lemma.

We are now ready to prove Lemma 5.32. We first show that A′ ⊆ {C ∈ C : |C| ≥ 45s }.
Let A be the largest cluster in A \ C. For sake of contradiction suppose |A| > 45s. Consider the

clustering C′ = {A}∪{C \A : C ∈ C }. We will prove that C′ is strictly better than C, contradicting
the optimality of C.

Let Cu denote the cluster of C containing vertex u. Let C1, C2 . . . Cl denote the clusters of C
with non-empty intersection with A∗. For C′ and C, the objective function only differs for pairs

{u, v} such that u ∈ Cu ∩ A, v ∈ Cu \ A (in which case we charge the change to Cu), or such that

u ∈ Cu ∩A, v ∈ Cv ∩A with Cu 6= Cv (in which case we charge half of the change to Cu and half to

Cv). The change in objective function can thus be written as the sum, over 1 ≤ i ≤ l, of ∆profit(i),

where ∆profit(i) equals

−M(Ci ∩A,Ci \A) +
1

2
M(Ci ∩A,A \ Ci).
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Let D be the smaller of Ci ∩A and A \ Ci, hence |D| ≤ (1/2)|A|. Using Property 2a we see

E(D,A \D) =
∑

v∈D
E(v,A \D)

≥
∑

v

E(v,A)− |D| ≥ |D|(.9|A| − |D|).

Therefore

M(D,A \D) = 2E(D,A \D)− |D| · |A \D|
≥ |D|(1.8|A| − 2|D| − |A \D|)
= |D|(.8|A| − |D|) ≥ .3|D| · |A| > 0

allowing us to write

∆profit(i) ≥
−M(Ci ∩A,Ci \A) + min(|Ci ∩A|, |A \ Ci|) · (.4|A| − (1/2)min(|Ci ∩A|, |A \ Ci|)). (5.17)

We show that ∆profit(i) > 0 for all i by cases on |Ci ∩A|.
Case 1: |Ci| < .4|A|. We trivially see M(Ci ∩A,Ci \A) ≤ |Ci ∩A|(|Ci| − |Ci ∩A|). Using (5.17)

∆profit(i) ≥ −|Ci ∩A|(|Ci| − |Ci ∩A|) +

+
1

2
|Ci ∩A|(.8|A| − |Ci ∩A|)

= |Ci ∩A|
(
−(|Ci| − |Ci ∩A|) + .4|A| − 1

2
|Ci ∩A|

)

≥ |Ci ∩A| (.4|A| − |Ci|) > 0.

Case 2: |Ci| ≥ .4|A|. We assumed |A| ≥ 45s hence |Ci| ≥ .4 · 45s = 18s. Let A′ be the cluster

promised by Lemma 5.38. Clearly A′ 6∈ C hence |C| ≥ .4|A| ≥ .4|A′| > 1
3 |A′| so by Lemma 5.38 we

have Ci ⊆ A. Therefore M(Ci ∩A,Ci \A) = 0 hence using (5.17) ∆profit(i) > 0.

Thus in all cases the change in profit is positive: C′ is strictly better than C, contradicting the

optimality of C. This completes the proof that A′ ⊆ {C ∈ C : |C| ≥ 45s }.
To show A′ ⊆ {C ∈ C : |C| ≥ 45s }, suppose for contradiction that there is some C not in

A with |C| ≥ 45s. Lemma 5.38 implies there exists a cluster A′ ∈ A that intersects C such that

|A′| > |C| ≥ 45s. We know C is a partition so A′ 6∈ C, so this contradicts the fact that we already

proved A′ ⊆ {C ∈ C : |C| ≥ 45s }.
This completes the proof of Lemma 5.32.

5.5.6 Runtime

The runtime is dominated by that needed to check the third property. Algorithm 5.3 considers

O(n6s) different values the sets T and U , so this takes time O(n12s).



Chapter 6

Correlation clustering experiments

The results presented in this chapter are joint work with Micha Elsner. They previously appreared

in Elsner and Schudy [2009].

6.1 Introduction

The correlation clustering problem was introduced in Chapter 4. Practical work has adopted one of

three strategies for solving correlation clustering problmes. For a few specific tasks, one can restrict

the problem so that it is efficiently solvable [Malioutov and Barzilay, 2006]. In most cases, however,

this is impossible. Integer linear programming (ILP) can be used to solve the general problem

optimally, but only when the number of data points is small. Beyond a few hundred points, the only

available solutions are heuristic or approximate.

In this chapter, we evaluate a variety of solutions for correlation clustering on two realistic NLP

tasks, text topic clustering and chat disentanglement, where typical datasets are too large for ILP

to find a solution. We investigate the relationship between the clustering objective and external

evaluation metrics such as F-score and one-to-one overlap, showing that optimizing the objective

is usually a reasonable aim, but that other measurements like number of clusters found should

sometimes be used to reject pathological solutions. We prove that the best heuristics are quite close

to optimal, using the first implementation of the semi-definite programming (SDP) relaxation to

provide tighter bounds.

6.2 Algorithms

We begin with some notation and a formal definition of the problem. Our input is a complete,

undirected graph G with n nodes; each edge in the graph has a probability pij reflecting our belief

as to whether nodes i and j come from the same cluster. Our goal is to find a clustering, defined as

a new graph G′ with edges xij ∈ {0, 1}, where if xij = 1, nodes i and j are assigned to the same
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cluster. To make this consistent, the edges must define an equivalence relationship: xii = 1 and

xij = xjk = 1 implies xij = xik.

Our objective is to find a clustering as consistent as possible with our beliefs—edges with high

probability should not cross cluster boundaries, and edges with low probability should. We de-

fine w+
ij as the cost of cutting an edge whose probability is pij and w−

ij as the cost of keeping it.

Mathematically, this objective can be written Ailon and Mohri [2008], Finkel and Manning [2008]

as:

min
∑

ij:i<j

xijw
−
ij + (1− xij)w+

ij . (6.1)

There are two plausible definitions for the costs w+ and w−, both of which have gained some support

in the literature. We can take w+
ij = pij and w

−
ij = 1− pij (additive weights) as in Ailon and Mohri

[2008] and others, or w+
ij = log(pij), w

−
ij = log(1−pij) (logarithmic weights) as in Finkel and Manning

[2008]. The logarithmic scheme has a tenuous mathematical justification, since it selects a maximum-

likelihood clustering under the assumption that the pij are independent and identically distributed

given the status of the edge ij in the true clustering. If we obtain the pij using a classifier, however,

this assumption is obviously untrue—some nodes will be easy to link, while others will be hard—so

we evaluate the different weighting schemes empirically.

6.2.1 Greedy Methods

We use four greedy methods drawn from the literature; they are all fast and easy to implement. All

of them make decisions based on the net weight w±
ij = w+

ij − w−
ij .

These algorithms step through the nodes of the graph according to a permutation π. We try

100 random permutations for each algorithm and report the run which attains the best objective

value (typically this is slightly better than the average run; we discuss this more in the experimental

sections). To simplify the pseudocode we label the vertices 1, 2, . . . n in the order specified by π.

After this relabeling π(i) = i so π need not appear explicitly in the algorithms.

Three of the algorithms are given in Figure 6.1. All three algorithms start with the empty

clustering and add the vertices one by one. The Best algorithm adds each vertex i to the cluster

with the strongest w± connecting to i, or to a new singleton if none of the w± are positive. The

First algorithm adds each vertex i to the cluster containing the most recently considered vertex j

with w±
ij > 0. The Vote algorithm adds each vertex to the cluster that minimizes the correlation

clustering objective, i.e. to the cluster maximizing the total net weight or to a singleton if no total

is positive.

6.2.2 Local Search

We use the straightforward local search previously used by Gionis et al. [2007] and Goder and Filkov

[2008]. The allowed one element moves consist of removing one vertex from a cluster and either

moving it to another cluster or to a new singleton cluster. The best one element move (BOEM)

algorithm repeatedly makes the most profitable best one element move until a local optimum is
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k ← 0 {number of clusters created so far}
for i = 1 . . . n do

for c = 1 . . . k do
if Best then
Qualityc ← maxj∈C[c] w

±
ij

else if First then
Qualityc ← maxj∈C[c]:w±

ij>0 j

else if Vote then
Qualityc ←

∑
j∈C[c] w

±
ij

end if
end for
c∗ ← argmax1≤c≤kQualityc
if Qualityc∗ > 0 then
C[c∗]← C[c∗] ∪ {i}

else
C[k++]← {i} {form a new cluster}

end if
end for

Figure 6.1: Best/First/Vote algorithms

reached. Simulated Annealing (SA) makes a random single-element move, with probability related

to the difference in objective it causes and the current temperature. Our annealing schedule is

exponential and designed to attempt 2000n moves for n nodes. We initialize the local search either

with all nodes clustered together, or at the clustering produced by one of our greedy algorithms (in

our tables, the latter is written, eg. Pivot/BOEM, if the greedy algorithm is Pivot).

6.3 Bounding with SDP

Although comparing different algorithms to one another gives a good picture of relative performance,

it is natural to wonder how well they do in an absolute sense—how they compare to the optimal

solution. For very small instances, we can actually find the optimum using ILP, but since this does

not scale beyond a few hundred points (see Section 6.4.1), for realistic instances we must instead

bound the optimal value. Bounds are usually obtained by solving a relaxation of the original problem:

a simpler problem with the same objective but fewer constraints.

The bound used in previous work by Goder and Filkov [2008], Gionis et al. [2007], and

Bertolacci and Wirth [2007], which we call the trivial bound, is obtained by ignoring the transitivity

constraints entirely. To optimize, we link (xij = 1) all the pairs where w+
ij is larger than w−

ij ; since

this solution is quite far from being a clustering, the bound tends not to be very tight.

To get a better idea of how good a real clustering can be, we use a semi-definite programming

(SDP) relaxation to provide a better bound. Here we motivate and define this relaxation.

One can picture a clustering geometrically by associating cluster c with the standard basis vector

ec = (0, 0, . . . , 0,︸ ︷︷ ︸
c−1

1, 0, . . . , 0︸ ︷︷ ︸
n−c

) ∈ Rn. If object i is in cluster c then it is natural to associate i with the
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vector ri = ec. This gives a nice geometric picture of a clustering, with objects i and j in the same

cluster if and only if ri = rj . Note that the dot product ri • rj is 1 if i and j are in the same cluster

and 0 otherwise. These ideas yield a simple reformulation of the correlation clustering problem:

minr
∑
i,j:i<j(ri • rj)w−

ij + (1− rj • rj)w+
ij

s.t. ∀i ∃c : ri = ec

To get an efficiently computable lower-bound we relax the constraints that the ris are standard

basis vectors, replacing them with two sets of constraints: ri • ri = 1 for all i and ri • rj ≥ 0 for all

i, j.

Since the ri only appear as dot products, we can rewrite in terms of xij = ri • rj . However,

we must now constrain the xij to be the dot products of some set of vectors in Rn. This is true if

and only if the symmetric matrix X = {xij}ij is positive semi-definite. We now have the standard

semi-definite programming (SDP) relaxation of correlation clustering (e.g. Charikar et al. [2005]):

minx
∑
i,j:i<j xijw

−
ij + (1− xij)w+

ij

s.t.





xii = 1 ∀i
xij ≥ 0 ∀i, j
X = {xij}ij PSD

.

This SDP has been studied theoretically by a number of authors; we mention just two here.

[Charikar et al., 2005] give an approximation algorithm based on rounding the SDP which is a

0.7664 approximation for the problem of maximizing agreements. In Chaper 5 we showed that if

the input is generated by corrupting the edges of a ground truth clustering B independently, then

the SDP relaxation value is within an additive O(n
√
n) of the optimum clustering. In that chapter

we also showed that using the Pivot algorithm to round the SDP yields a clustering with value at

most O(n
√
n) more than optimal.

6.4 Experiments

6.4.1 Scalability

Using synthetic data, we investigate the scalability of the linear programming solver and SDP bound.

To find optimal solutions, we pass the complete ILP1 to CPLEX. This is reasonable for 100 points

and solvable for 200; beyond this point it cannot be solved due to memory exhaustion. As noted

below, despite our inability to compute the LP bound on large instances, we can sometimes prove

that they must be worse than SDP bounds, so we do not investigate LP-solving techniques further.

The SDP has fewer constraints than the ILP (O(n2) vs O(n3)), but this is still more than many

SDP solvers can handle. For our experiments we used one of the few SDP solvers that can handle

such a large number of constraints: Christoph Helmberg’s ConicBundle library Helmberg [2009,

1Consisting of the objective plus constraints 0 ≤ xij ≤ 1 and triangle inequality Ailon and Mohri [2008].
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2000]. This solver can handle several thousand datapoints. It produces loose lower-bounds (off by

a few percent) quickly but converges to optimality quite slowly; we err on the side of inefficiency

by running for up to 60 hours. Of course, the SDP solver is only necessary to bound algorithm

performance; our solvers themselves scale much better.

6.4.2 Twenty Newsgroups

In this section, we test our approach on a typical benchmark clustering dataset, 20 Newsgroups,

which contains posts from a variety of Usenet newsgroups such as rec.motorcycles and alt.atheism.

Since our bounding technique does not scale to the full dataset, we restrict our attention to a sub-

sample of 100 messages2 from each newsgroup for a total of 2000—still a realistically large-scale

problem. Our goal is to cluster messages by their newsgroup of origin. We conduct experiments by

holding out four newsgroups as a training set, learning a pairwise classifier, and applying it to the

remaining 16 newsgroups to form our affinity matrix.3

Our pairwise classifier uses three types of features previously found useful in document clustering.

First, we bucket all words4 by their log document frequency (for an overview of TF-IDF see Joachims

[1997]). For a pair of messages, we create a feature for each bucket whose value is the proportion of

shared words in that bucket. Secondly, we run LSA Deerwester et al. [1990] on the TF-IDF matrix

for the dataset, and use the cosine distance between each message pair as a feature. Finally, we use

the same type of shared words features for terms in message subjects. We make a training instance

for each pair of documents in the training set and learn via logistic regression.

The classifier has an average F-score of 29% and an accuracy of 88%—not particularly good. We

should emphasize that the clustering task for 20 newsgroups is much harder than the more common

classification task—since our training set is entirely disjoint with the testing set, we can only learn

weights on feature categories, not term weights. Our aim is to create realistic-looking data on which

to test our clustering methods, not to motivate correlation clustering as a solution to this specific

problem. In fact, Zhong and Ghosh [2003] report better results using generative models.

We evaluate our clusterings using three different metrics (see Meila [2007] for an overview of

clustering metrics). The Rand measure counts the number of pairs of points for which the proposed

clustering agrees with ground truth. This is the metric which is mathematically closest to the

objective. However, since most points are in different clusters, any solution with small clusters tends

to get a high score. Therefore we also report the more sensitive F-score with respect to the minority

(“same cluster”) class. We also report the one-to-one score, which measures accuracy over single

points. For this metric, we calculate a maximum-weight matching between proposed clusters and

ground-truth clusters, then report the overlap between the two.

When presenting objective values, we locate them within the range between the trivial lower

bound discussed in Section 6.3 and the objective value of the singletons clustering (xij = 0, i 6= j).

2Available as mini newsgroups.tar.gz from the UCI machine learning repository.

3The experiments below are averaged over four disjoint training sets.

4We omit the message header, except the subject line, and also discard word types with fewer than 3 occurrences.
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Logarithmic Weights
Obj Rand F 1-1

SDP bound 51.1% - - -
Vote/BOEM 55.8% 93.80 33 41
SA 56.3% 93.56 31 36
Pivot/BOEM 56.6% 93.63 32 39
Best/BOEM 57.6% 93.57 31 38
First/BOEM 57.9% 93.65 30 36
Vote 59.0% 93.41 29 35
BOEM 60.1% 93.51 30 35
Pivot 100% 90.85 17 27
Best 138% 87.11 20 29
First 619% 40.97 11 8

Table 6.1: Score of the solution with best objective for each solver, averaged over newsgroups
training sets, sorted by objective.

On this scale, lower is better; 0% corresponds to the trivial bound and 100% corresponds to the

singletons clustering. It is possible to find values greater than 100%, since some particularly bad

clusterings have objectives worse than the singletons clustering. Plainly, however, real clusterings

will not have values as low as 0%, since the trivial bound is so unrealistic.

Our results are shown in Table 6.1. The best results are obtained using logarithmic weights with

Vote followed by BOEM; reasonable results are also found using additive weights, and annealing,

Vote or Pivot followed by BOEM. On its own, the best greedy scheme is Vote, but all of them

are substantially improved by BOEM. First-link is by far the worst. Our use of the SDP lower

bound rather than the trivial lower-bound of 0% reduces the gap between the best clustering and

the lower bound by over a factor of ten. It is easy to show that the LP relaxation can obtain a

bound of at most 50%5—the SDP beats the LP in both runtime and quality!

We analyze the correlation between objective values and metric values, averaging Kendall’s tau6

over the four datasets (Table 6.2). Over the entire dataset, correlations are generally good (large

and negative), showing that optimizing the objective is indeed a useful way to find good results.

We also examine correlations for the solutions with objective values within the top 10%. Here the

correlation is much poorer; selecting the solution with the best objective value will not necessarily

optimize the metric, although the correspondence is slightly better for the log-weights scheme. The

correlations do exist, however, and so the solution with the best objective value is typically slightly

better than the median.

In Figure 6.2, we show the distribution of one-to-one scores obtained (for one specific dataset) by

the best solvers. From this diagram, it is clear that log-weights and Vote/BOEM usually obtain

the best scores for this metric, since the median is higher than other solvers’ upper quartile scores.

All solvers have quite high variance, with a range of about 2% between quartiles and 4% overall.

5The solution xij = 1
2
11
(

w−
ij > w+

ij

)

for i < j is feasible in the LP.

6The standard Pearson correlation coefficient is less robust to outliers, which causes problems for this data.
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BOEM

best/B

Lbest/B

first/B

pivot/B

Lpivot/B

SA L-SA
vote/B

Lvote/B

0.32
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0.36

0.38

0.40
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Figure 6.2: Box-and-whisker diagram (outliers as +) for one-to-one scores obtained by the best
few solvers on a particular newsgroup dataset. L means using log weights. B means improved with
BOEM.

We omit the F-score plot, which is similar, for space reasons.

6.4.3 Chat Disentanglement

In the disentanglement task, we examine data from a shared discussion group where many conversa-

tions are occurring simultaneously. The task is to partition the utterances into a set of conversations.

This task differs from newsgroup clustering in that data points (utterances) have an inherent linear

order. Ordering is typical in discourse tasks including topic segmentation and coreference resolution.

We use the annotated dataset and pairwise classifier made available by Elsner and Charniak

[2008];7 this study represents a competitive baseline, although more recently Wang and Oard [2009]

7Downloaded from cs.brown.edu/∼melsner

Rand F 1-1
Log-wt -.60 -.73 -.71
Top 10 % -.14 -.22 -.24
Add-wt -.60 -.67 -.65
Top 10 % -.13 -.15 -.14

Table 6.2: Kendall’s tau correlation between objective and metric values, averaged over newsgroup
datasets, for all solutions and top 10% of solutions.
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have improved it. Since this classifier is ineffective at linking utterances more than 129 seconds

apart, we treat all decisions for such utterances as abstentions, p = .5. For utterance pairs on which

it does make a decision, the classifier has a reported accuracy of 75% with an F-score of 71%.

6.5 Conclusions

It is clear from these results that heuristic methods can provide good correlation clustering solutions

on datasets far too large for ILP to scale. The particular solver chosen8 has a substantial impact on

the quality of results obtained, in terms of external metrics as well as objective value.

For general problems, our recommendation is to use log weights and run Vote/BOEM. This

algorithm is fast, achieves good objective values, and yields good metric scores on our datasets.

Although objective values are usually only weakly correlated with metrics, our results suggest that

slightly better scores can be obtained by running the algorithm many times and returning the

solution with the best objective. This may be worth trying even when the datapoints are inherently

ordered, as in chat.

Whatever algorithm is used to provide an initial solution, we advise the use of local search as a

post-process. BOEM always improves both objective and metric values over its starting point.

The objective value is not always sufficient to select a good solution (as in the chat dataset). If

possible, experimenters should check statistics like the number of clusters found to make sure they

conform roughly to expectations. Algorithms that find far too many or too few clusters, regardless of

objective, are unlikely to be useful. This type of problem can be especially dangerous if the pairwise

classifier abstains for many pairs of points.

SDP provides much tighter bounds than the trivial bound used in previous work, although how

much tighter varies with dataset (about 12 times smaller for newsgroups, 3 times for chat). This

bound can be used to evaluate the absolute performance of our solvers; the Vote/BOEM solver

whose use we recommend is within about 5% of optimality. Some of this 5% represents the difference

between the bound and optimality; the rest is the difference between the optimum and the solution

found. If the bound were exactly optimal, we could expect a significant improvement on our best

results, but not a very large one—especially since correlation between objective and metric values

grows weaker for the best solutions. While it might be useful to investigate more sophisticated local

searches in an attempt to close the gap, we do not view this as a priority.

8Our C++ correlation clustering software and SDP bounding package are available for download from
cs.brown.edu/∼melsner.



Chapter 7

Feedback arc set

The results presented in this chapter are joint work with Claire Mathieu. They previously appreared in

conference form in Kenyon-Mathieu and Schudy [2007] and draft journal form in Mathieu and Schudy

[2009].

7.1 Introduction

For general directed graphs, the feedback arc set (FAS) problem consists of removing the fewest num-

ber of edges so as to make the graph acyclic, and has applications such as scheduling [Flood, 1990] and

graph layout [Sugiyama et al., 1981, Demetrescu and Finocchi, 2000] (see also [Lempel and Cederbaum,

1966, Baker and Hubert, 1977, Jünger, 1985]). This problem has been much studied, both in

the mathematical programming community [Grötschel et al., 1985a,b, Jünger, 1985, Korte, 1979,

Newman and Vempala, 2001, Newman, 2004], the approximation algorithms community [Leighton and Rao,

1999, Seymour, 1995, Even et al., 2000, 1998] and various applied communities [Demetrescu and Finocchi,

2000, 2001, Eades et al., 1993, Dwork et al., 2001]. The best known approximation ratio isO(log n log log n).

Unfortunately the problem is NP-hard to approximate better than 1.36 [Karp, 1972, Dinur and Safra,

2002]. The equivalent problem of maximizing the number of edges not removed, called max acyclic

subgraph, has also been extensively studied [Hassin and Rubinstein, 1994, Berger and Shor, 1997,

Charikar et al., 2007a, Newman, 2001].

A tournament is the special case of directed graphs where every pair of vertices is connected by

exactly one of the two possible directed edges. For tournaments, the FAS problem also has a long his-

tory, starting in the early 1960s in combinatorics [Seshu and Reed, 1961, Younger, 1963] and statis-

tics [Slater, 1961]. In combinatorics and discrete probability, much early work [Erdös and Moon,

1965, Reid, 1969, Reid and Parker, 1970, Jung, 1970, Spencer, 1971, 1980, Fernandez de la Vega,

1983] focused on worst-case tournaments. In statistics and psychology, one motivation is ranking by

paired comparisons [Slater, 1961]: here, you wish to sort some set by some objective but you do not

84
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have access to the objective, only a way to compare a pair and see which is greater; for example, de-

termining people’s preferences for types of food. Feedback arc set in tournament graphs and closely

related problems have also been used in machine learning [Cohen et al., 1999, Ailon and Mohri,

2008]. Unfortunately the FAS problem is NP-hard even in tournaments [Ailon et al., 2008, Alon,

2006, Charbit et al., 2007] (see also [Conitzer, 2006]).

Researchers have been designing algorithms for the FAS problem in tournament graphs since the

dawn of computer science. Slater and Alway describe simple heuristics for the FAS tournament prob-

lem in Slater [1961] (for comparison Hoare published quicksort the same year). Coleman and Wirth

[2008] compare various algorithms empirically, including an algorithm by Ailon et al. [2008] and

many others with no approximation guarantees. The best previously known approximation algo-

rithms achieve constant factor approximations: 2.5 in the randomized setting [Ailon et al., 2008]

and 3 in the deterministic setting [Van Zuylen et al. 2007; Van Zuylen and Williamson 2007; Ailon

et al. 2008] (see also Coppersmith et al. [2006]). Our main result is a polynomial time approxima-

tion scheme (PTAS) for this problem: thus the problem really is provably easier to approximate in

tournaments than on general graphs.

Here is a weighted generalization of feedback arc set in tournaments.

Problem 7.1 (Weighted FAS Tournament).

Input: complete directed graph with vertex set V , n ≡ |V | and non-negative edge weights wuv with

b ≤ wuv + wvu ≤ 1 for some fixed positive constant b.

Output: An ranking π minimizing C(π) =
∑

{u,v}⊂V :π(v)>π(u) wvu, where a ranking is a bijective

mapping from V to {1, 2, . . . |V |}.

(The unweighted problem is the special case where wuv = 1 if (u, v) is an edge and wuv = 0

otherwise.)

Theorem 7.2 (PTAS). There is a randomized algorithm for minimum Feedback Arc Set on weighted

tournaments. Given ǫ > 0, it outputs a ranking with expected cost at most (1+ǫ)OPT . The expected

running time is:

O
(
n3 log n(log(1/b) + 1/ǫ)

)
+ n2Õ(1/(ǫb)6).

The algorithm can be derandomized at the cost of increasing the running time to nÕ(1/(ǫb)12).

We remark that our PTAS is singly exponential in 1/ǫ, whereas the PTAS in the conference

version of this work [Kenyon-Mathieu and Schudy, 2007] was doubly exponential in 1/ǫ.

Ailon et al. [2008] study the special-case b = 1, which they call weighted FAS tournament with

probability constraints. Indeed, sampling a population naturally leads to defining wij as the proba-

bility that type i is preferred to type j. We note that all known approximation algorithms [Ailon

et al. 2008; Coppersmith et al. 2006; Van Zuylen et al. 2007; Van Zuylen and Williamson 2007]

extend to weighted tournaments for b = 1.

An important application of weighted FAS tournaments is rank aggregation. Frequently, one has

access to several rankings of objects of some sort, such as search engine outputs [Dwork et al., 2001],
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and desires to aggregate the input rankings into a single output ranking that is similar to all of the

input rankings: it should have minimum average distance from the input rankings, for some notion

of distance. This ancient problem was already studied in the context of voting by Borda [1781] and

Condorcet [1785] in the 18th century, and has aroused renewed interest recently [Dwork et al., 2001,

Conitzer et al., 2006]. A natural notion of distance is the number of pairs of vertices that are in dif-

ferent orders: this defines the Kemeny rank aggregation problem [Kemeny, 1959, Kemeny and Snell,

1962]. This choice yields a maximum likelihood estimator for a certain näıve Bayes model [Young,

1995]. This problem is NP-hard [Bartholdi et al., 1989], even with only 4 voters [Dwork et al., 2001].

Constant factor approximation algorithms are known: choosing a random (or best) input ranking as

the output gives a 2-approximation; finding the optimal aggregate ranking using the footrule distance

as the metric instead of the Kendall-Tau distance also gives a 2-approximation [Dwork et al., 2001,

Diaconis and Graham, 1977]. There is also a randomized 4/3 approximation algorithm [Ailon et al.,

2008]. We improve on these results by giving a polynomial time approximation scheme (PTAS).

Corollary 7.3. There is a randomized algorithm for Kemeny rank aggregation. Given ǫ > 0, it

outputs a ranking with expected cost at most (1+ǫ)OPT . The expected running time for n candidates

is:

O

(
n3 log n

ǫ

)
+ n2Õ(1/ǫ6) +O

(
n2 · (number of voters)

)
.

The algorithm can be derandomized at the cost of increasing the running time to nÕ(1/ǫ12).

An important open question is whether there is a PTAS for the generalization of Kemeny rank

aggregation to partial rankings such as search engine outputs. There is a 1.5-approximation algo-

rithm [Ailon, 2007].

It is surprising that the minimum Feedback Arc Set problem on tournaments has an approxima-

tion scheme. The related problems of correlation clustering on complete graphs1 [Charikar et al.,

2005] and of feedback vertex set on tournaments [Cai et al., 2001] do not have PTASs unless P=NP.

Certain special cases can be solved exactly in polynomial time. Braverman and Mossel [2008]

give an exact algorithm for feedback arc set when the input is generated by adding noise to a base

ranking. There are also good algorithms for low-cost instances of FAS tournament and Kemeny rank

aggregation (i.e. fixed-parameter tractability) [Alon et al., 2009, Dom et al., 2006, Betzler et al.,

2008]. In Chapter 9 we show an improvement in the runtime of FAST tournament (and Kemeny

Rank Aggregation) from 2Õ(
√
OPT ) to 2O(

√
OPT ).

Other related problems include d-dimensional arrangement [Charikar et al., 2007b].

We note that Amit Agarwal has informed us that he has obtained similar results.

1This problem is identical to FAS except it deals with symmetric transitive relations instead of antisymmetric ones.
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KwikSort(vertices S):

Choose a vertex v uniformly at random from S
Let L be the set of vertices u such that wuv ≥ wvu and R = S \ L.
Return the concatenation of KwikSort(L) and KwikSort(R).

Figure 7.1: KwikSort algorithm for minimum Feedback Arc Set in tournaments by Ailon et al.
[2008].

7.2 Main Results

7.2.1 Algorithmic tools

Our first algorithmic tool is local search. A single vertex move, given an ranking π, a vertex

x and a position i, consists of taking x out of π and putting it back in position i. We say a

ranking is locally optimal if no single vertex move can improve its cost. Single vertex moves were

used for FAS tournament as early as 1961 [Slater, 1961]. Single vertex moves and variants were

also used in [Hassin and Rubinstein, 1994, Younger, 1963, Dwork et al., 2001, Coleman and Wirth,

2008]. Coleman and Wirth [2008] show that single vertex moves alone do not yield a constant factor

approximation by giving a graph with global optimum Θ(n) and a local optimum of value Θ(n2).

Our second algorithmic tool is the KwikSort algorithm by Ailon Charikar and Newman

[2008]. Recall from Problem 7.1 that b is a lower bound on wuv + wvu for every pair {u, v}. We

show that their KwikSort algorithm, (which we reproduce for completeness in Figure 7.1) is a

5/b-approximation for any b > 0.

Theorem 7.4. [Ailon et al., 2008] Let w be non-negative weight function on the edges. Assume

that for every u, v, x ∈ V , if wuv ≥ wvu, wvx ≥ wxv and wxu ≥ wux, then wuv + wvx + wxu ≤
α ·min{wuv, wvx, wxu} for some α > 1. Then the KwikSort algorithm is an α-approximation in

expectation.

Corollary 7.5. Assume that for every pair of vertices, b ≤ wuv + wvu ≤ 1. Then the KwikSort

algorithm is a 5/b-approximation in expectation.

Proof. (Adapted from the proof in Ailon et al. [2008] for the case b = 1.) Fix some triple {u, v, x} ⊆
V with wuv ≥ wvu, wvx ≥ wxv and wxu ≥ wux. We assume without loss of generality that

wuv ≤ wvx, wxu. By weighted tournament assumption wuv+wvu ≥ b so wuv ≥ b/2, hence 2 ≤ 4
bwuv.

Therefore

wuv + wvx + wxu ≤ 2 + wuv ≤
(
4

b
+ 1

)
wuv =

(
4

b
+ 1

)
min{wuv, wvx, wxu}

≤ 5

b
min{wuv, wvx, wxu}.

Our third and last algorithmic tool is the sampling-based approximation algorithms due to Arora,
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FAST-Scheme:

Run the KwikSort algorithm on V to define an ranking π
Return Improve(π, ǫb/5).

Improve(ranking π, error tolerance η):

Set β ← ηC(π)
4n log3/2 n

and κ← η2b3

350·4002
Perform single vertex moves on π until none can improve the cost by more than β.
Return ImproveRec(V, π)

ImproveRec(vertices S, ranking π on S):

if |S| = 1 then
Return π

else
if C(π) ≥ κ|S|2 then
Return the ranking from AddApprox with δ = η

4κ
else
Choose an integer k uniformly at random from [|S|/3, 2|S|/3]
Let L be the set of vertices v such that π(v) ≤ k and R = S \ L
Return concatenation of ImproveRec(L, πL) and ImproveRec(R, πR) where
πL is the ranking of L induced by π, i.e. πL(v) = π(v), and
πR is the ranking of R induced by π, i.e. πR(v) = π(v)− k.

end if
end if

Figure 7.2: Approximation scheme for minimum Feedback Arc Set on tournaments

Frieze and Kaplan [2002] and to Frieze and Kannan [1999] described in Section 2. For completeness

we use a (much simpler) algorithm based on our work reported in Chapter 2.

Theorem 7.6. Let δ > 0 be fixed. There is a randomized algorithm AddApprox for minimum

Feedback Arc Set on weighted tournaments with expected additive error δn2 and runtime O
(
n2
)
+

2Õ(1/δ2).

7.2.2 Algorithm

Our main algorithm FAST-Scheme (short for Feedback Arc Set Tournament Approximation

Scheme) is presented in Figure 7.2.

Lemma 7.7. Let πin be the input and πout be the output of the Improve subroutine. Then:

E
[
C(πout)

]
≤ OPT + η · C(πin).

With this, it is easy to see that FAST-Scheme is an approximation scheme. Indeed, by Corol-

lary 7.5, it calls the Improve subroutine for a ranking of expected cost at most (5/b)OPT . By

definition of η and Lemma 7.7, the output ranking then has expected cost at most (1 + ǫ)OPT .

To obtain the running time claimed in Theorem 7.2, we actually need a slightly modified version of

FAST-Scheme that calls Improve repeatedly (see Section 7.5.)
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Definition 7.8. Ranking π of S respects partition L,R of S if π(u) < π(v) for every u ∈ L and

v ∈ R.

The keystone of our analysis is the following Lemma.

Lemma 7.9. Let β ≥ 0 and πloc be an ranking such that no single vertex move can improve the

cost by more than β. Let k be an integer chosen uniformly at random from [|S|/3, 2|S|/3], L be the

set of vertices such that πloc(v) ≤ k and R = S \ L. Let π∗ be an optimum ranking and π′ be an

optimum ranking that respects L,R. We have

E [C(π′)] ≤ C(π∗) +
400

|S|

(
C(πloc)

b

)3/2

+ β|S|

7.2.3 Why FAST-Scheme needs single vertex moves

As a warm-up to build intuition we demonstrate that FAST-Scheme needs single vertex moves.

Consider a variant of FAST-Scheme that calls ImproveRec directly on the output of KwikSort,

without doing any single vertex moves. We now show that this variant is not a PTAS.

Consider a chess tournament (instance) where all the results are consistent except that the worst

player beat the best. If KwikSort picks any player other than the worst or best as the first pivot

it finds a ranking with cost 1, which is optimal. On the other hand, if KwikSort picks the best

player as the first pivot it produces ranking πbad, which puts the worst player first and has cost

n− 1.

Now consider what happens when ImproveRec is called on πbad. As long as n is not too small

ImproveRec divides and conquers, irrevocably committing to ranking the worst player among the

k best for some n/3 ≤ k ≤ 2n/3. No matter what happens in the later recursions, the output clearly

has cost at least n/3.

The overall expected cost of the output of this variant of FAST-Scheme is therefore at least

n− 2

n
1 +

2

n

n

3
=

5

3
+ o(1)

hence this variant is not a PTAS.

7.2.4 Organization of this chapter

The core of this chapter is §7.3, which proves Lemma 7.9. In §7.4 we use Lemma 7.9 to prove

Lemma 7.7, completing our proof that FAST-Scheme is an approximation scheme. In §7.5 we

describe a variant of FAST-Scheme with better runtime and prove Theorem 7.2. In §7.6 we

derandomize. An appendix describes the AddApprox algorithm promised by Theorem 7.6.
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good
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∗
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loc

σ
loc

π
loc

π
good

1−δ 3−δ 4−δ2−δ 5−δ 6−δ 7−δ 8−δ 9−δ

1−δ 3−δ 4−δ2−δ 5−δ 6−δ 7−δ 8−δ 9−δ

1−2δ 3−2δ 4−2δ2−2δ 5−2δ 6−2δ 7−2δ 8−2δ 9−2δ

Figure 7.3: Definition of πgood: edges such that k is between σloc(u) and σ∗(u) are in bold.

7.3 Bounding the cost of partition-respecting rankings

7.3.1 A good partition-respecting ranking

In preparation for proving Lemma 7.9 we adopt its notation. We modify π∗ to construct a partition-

respecting ranking πgood as follows. To avoid having to introduce cumbersome tie-breaking rules,

we shift values a little: let δ = 1/100, σloc(v) = πloc(v)− δ and σ∗(v) = π∗(v)− 2δ. Let

σgood(v) =

{
σ∗(v) if σloc(v) and σ∗(v) are on the same side of k

σloc(v) otherwise
.

We then define πgood as the ranking naturally associated with σgood: πgood(v) is the rank of σgood(v)

among {σgood(u) : u ∈ S}. See Figure 7.3 for an illustration.

Lemma 7.10. πgood respects (L,R).

Proof. By definition of σgood, σgood(u) < k if and only if σloc(u) < k, which holds if and only if

πloc(u) ≤ k, or in other words, if and only if u ∈ L.

7.3.2 Proof of Lemma 7.9

We call an injective map σ from S to R an ordering. Given ordering σ, we define Ranking(σ) as

the ranking naturally associated to σ: Ranking(σ)(v) is the rank of σ(v) among {σ(u) : u ∈ S}.
For instance, Ranking(σloc) = πloc, Ranking(σ∗) = π∗, and Ranking(σgood) = πgood. The notion of
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single vertex move extends naturally to orderings and consists of changing the value of the ordering

at a single vertex. We also extend the notion of cost in the obvious way: C(σ) = C(Ranking(σ)).

For any vertex u, define σlocu to be the result of applying a certain single vertex move to σloc,

defined by σlocu (v) = σloc(v) for all v except for u and σlocu (u) = σ∗(u). For any x ∈ R we write u

crosses x if x is between σloc(u) and σ∗(u).

Lemma 7.11. Let T =
∑
u :u crosses k

(
C(σloc)− C(σlocu )

)
. Then T ≤ β|S|.

Proof. By definition of πloc (the ranking associated with σloc), no single vertex move can improve

the cost by more than β, so C(σloc)− C(σlocu ) ≤ β. Summing over u concludes the proof.

Lemma 7.12. Let F =
∑
v∈S |πloc(v) − π∗(v)| denote the Spearman’s footrule distance between

rankings πloc and π∗. Then

E
[
C(σgood)− C(σ∗)− T

]
≤ 32

√
2

|S| F
3/2

Before proving Lemma 7.12, let us see how it implies Lemma 7.9.

Proof. (of Lemma 7.9). By Lemma 7.10 and the definition of π′ we have C(π′) ≤ C(πgood), which

equals C(σgood) by the correspondence between rankings and orderings. By Lemma 7.12, in expec-

tation this is at most

E [C(σ∗) + T ] +
32
√
2

|S| F
3/2.

which we can in turn bound using Lemma 7.11 by

C(σ∗) + β|S|+ 32
√
2

|S| F
3/2

By Diaconis and Graham [1977]’s Theorem 2 relating the Spearman’s footrule and Kendall-Tau

metrics on rankings, we have:

F =
∑

v

|πloc(v)− π∗(v)|

≤ 2
∑

u,v

11
(
π∗(u) > π∗(v) and πloc(u) < πloc(v)

)
[D&G 1977, Thm 2]

≤ 2
∑

u,v

[
11 (π∗(u) > π∗(v))

wuv
b

+ 11
(
πloc(u) < πloc(v)

) wvu
b

]
since wuv + wvu ≥ b

= (2/b)(C(π∗) + C(πloc)). by definition of C

≤ (4/b)C(πloc),

where 11 (p) is the indicator function of event p. Therefore

E [C(π′)] ≤ C(σ∗) + β|S|+ 32
√
2

|S|

(
4C(πloc)

b

)3/2

.

By the correspondence between orderings and rankings again, C(σ∗) = C(π∗), and clearly 32 ·
√
2 ·

43/2 < 400, hence the Lemma.
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Figure 7.4: Illustration of cases in proof of Lemma 7.13

7.3.3 Proof of Lemma 7.12

For any x, z ∈ R, define (x, z) = { y ∈ R : x < y < z or z < y < x }. We say {u, v} is a crossing

pair if the intervals
(
σ∗(u), σloc(u)

)
and

(
σ∗(v), σloc(v)

)
intersect but neither is contained within

the other. We say that {u, v} is a cut crossing pair if it is a crossing pair and k ∈
(
σ∗(u), σloc(u)

)
∪(

σ∗(v), σloc(v)
)
.

Lemma 7.13.

C(σgood)− C(σ∗)− T ≤ 4|{{u, v} cut crossing pair}|

Proof. We use the following notation: given an ordering σ, let C(σ)uv denote the contribution of

edge {u, v} to the cost of σ, that is, wuv or wvu depending on the relative order of u and v. Let

tuv = 11 (u crosses k)
(
C(σloc)uv − C(σlocu )uv

)
. With these notations, it trivially follows that

C(σgood)− C(σ∗)− T =
∑

{u,v}

[
C(σgood)uv − C(σ∗)uv − (tuv + tvu)

]
.

If {u, v} is a cut-crossing pair, we use näıve bounds: C(σgood)uv, C(σ
∗)uv, tuv and tvu are all at

most 1 in absolute value, and so

C(σgood)uv − C(σ∗)uv − (tuv + tvu) ≤ 4.

If {u, v} is not a cut crossing pair, we do a case-by-case analysis to prove that

C(σgood)uv − C(σ∗)uv − (tuv + tvu) = 0.

The three cases are illustrated in Figure 7.4.

Case 1: If neither u nor v cross k, then C(σgood)uv = C(σ∗)uv by definition of σgood, and

tuv = tvu = 0 by definition of t.

Case 2: Suppose either v or u (or both) cross k and the intervals
(
σ∗(u), σloc(u)

)
and

(
σ∗(v), σloc(v)

)

are nested. Without loss of generality suppose
(
σ∗(v), σloc(v)

)
is contained within

(
σ∗(u), σloc(u)

)
.

It is impossible for v to cross k without u crossing k as well so we conclude u crosses k. Whether

the image of v is σloc(v) or σ∗(v) does not affect the orientation of edge uv, and so C(σgood)uv =

C(σloc)uv, C(σ
∗)uv = C(σlocu )uv and C(σlocv )uv = C(σloc)uv. Therefore by definitions C(σgood)uv −

C(σ∗)uv = tuv and tvu = 0.
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Case 3: Suppose either v or u (or both) cross k and the intervals
(
σ∗(u), σloc(u)

)
and

(
σ∗(v), σloc(v)

)

are disjoint. The edge uv is oriented the same way in all of the relevant orderings so C(σgood)uv =

C(σloc)uv = C(σ∗)uv = C(σlocu )uv = C(σlocv )uv. Therefore C(σ
good)uv − C(σ∗)uv = tuv = tvu = 0.

This proves the Lemma.

Lemma 7.14. For any u ∈ S, the probability that u crosses k is at most

4|πloc(u)− π∗(u)|
|S| .

Proof. Let K = { k : |S|/3 ≤ k ≤ 2|S|/3 } be the set k is chosen randomly from. The probability

that u crosses k equals |{ k ∈ K : u crosses k }|/|K|. The numerator |{ k ∈ K : u crosses k }| is at
most |πloc(u)− π∗(u)|. The denominator |K| is approximately |S|/3, and a careful analysis for |S|
small shows that for |S| > 1 it is always at least |S|/4, hence the result.

Lemma 7.15. For any vertex u ∈ S, |{ v ∈ S : {u, v} crossing pair }| ≤ 2
√
2F

Proof. Fix a vertex u. Observe that if {u, v} is a crossing pair, then v must cross
⌈
σloc(u)

⌉
or

⌊σ∗(u)⌋ (the floor and ceiling come from the shift by −δ for σloc and by −2δ for σ∗). Thus

|{ v ∈ S : {u, v} crossing pair }| ≤ ξ(
⌈
σloc(u)

⌉
) + ξ(⌊σ∗(u)⌋), (7.1)

where ξ(j) denotes the number of vertices that cross integer j.

Now we need to relate ξ(i) to the footrule distance F . We write:

F =
∑

u

|πloc(u)− π∗(u)| =
∑

u

∑

j∈Z

11
(
j ∈

(
σ∗(u), σloc(u)

))
=
∑

j∈Z

ξ(j).

Now, it is easy to see that we always have |ξ(j)− ξ(j + 1)| ≤ 2 (since the difference can only come

from two vertices: the vertex such that σloc(u) = j+1−δ, and the vertex such that σ∗(u) = j+1−δ.)
Thus for any i we have:

∑

j∈Z

ξ(j) ≥ ξ(i) + 2

⌊ξ(i)/2⌋∑

j=1

(ξ(i)− 2j) ≥ ξ(i)2

2
,

where the last inequality follows after a straightforward calculation. Thus for all i

ξ(i) ≤
√
2F (7.2)

Applying Equation (7.2) to i =
⌈
σloc(u)

⌉
and to i = ⌊σ∗(u)⌋, summing the results and plugging into

Equation (7.1) yields the Lemma.

Now we prove Lemma 7.12.

Proof. By Lemmas 7.13, 7.14 and 7.15

E
[
C(σgood)− C(σ∗)− T

]

≤ 4
∑

u

Pr (u crosses k) · |{ v ∈ S : {u, v} crossing pair }|

≤ 4
∑

u

4|πloc(u)− π∗(u)|
|S| 2

√
2F = 32

√
2
F 3/2

|S| .
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7.4 Summing errors over the recursion tree

Consider each set S on which we execute algorithm ImproveRec, and call such a set leaf or internal

depending on whether or not there are further recursive calls to ImproveRec. Let πlocS and πoutS

denote respectively the input and output orderings of ImproveRec when run on S. Let π′ denote

the optimal ranking of S that respects (L,R), π′
L denote the optimal ranking of L (which is also the

restriction of π′ to L) and π′
R denote the optimal ranking of R (which is also the restriction of π′ to

R). Let πoutL and πoutR denote the restrictions of πout to L and R respectively. The key observation

is:

E
[
C(πoutS )

]
−OPTS

= E
[
C(πoutS )− C(π′)

]
+E [C(π′)−OPTS ]

= E
[
C(πoutL )− C(π′

L)
]
+E

[
C(πoutR )− C(π′

R)
]
+E [C(π′)−OPTS ] (7.3)

because πout and π′ both respect L,R. To be more precise about the meanings of the expectations

in(7.3) let TS be a random variable expressing the random choices made by ImproveRec(S, πlocS )

and all of its descendants. We restate (7.3) formally as:

ETS

[
C(πoutS )

]
−OPTS

= Ek
[
ETL

[
C(πoutL )−OPTL

]]
+Ek

[
ETR

[
C(πoutR )−OPTR

]]
+

+Ek [C(π
′)−OPTS ] (7.4)

Now use Lemma 7.9 to write

Ek [C(π
′)−OPTS ] ≤

400

|S|

(
C(πloc)

b

)3/2

+ β|S|. (7.5)

Applying (7.4) and (7.5) repeatedly over the recursion tree we get

ETV

[
C(πoutV )

]
−OPT (7.6)

≤ ETV

[
∑

S leaf

ETS

[
C(πoutS )−OPTS

]
+

∑

S internal

β|S|+
∑

S internal

400

|S|

(
C(πlocS )

b

)3/2
]
.

To complete the proof we bound the argument of the expectation that is the right hand side of

(7.6) by ηC(πlocV ) uniformly over any set of random choices TV . Dealing with the first sum is

straightforward: any leaf must have E [C(πoutS )] ≤ OPTS + η
4κ|S|2 ≤ OPTS + η

4C(π
loc
S ). Summing,

∑

S leaf

E
[
C(πoutS )−OPTS

]
≤ η

4

∑

S leaf

C(πlocS ) ≤ η

4
C(πlocV ) ≤ η

4
C(πinV )

where πin is the ranking input to Improve.
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Dealing with the second sum in (7.6) is also straightforward: note that the tree of recursive calls

has at most log3/2 n levels of internal nodes and that on each level the sets S are disjoint so

∑

S internal

β|S| ≤
∑

levels

βn ≤ βn log3/2 n ≤
η

8
C(πinV ).

To deal with the third sum in (7.6), we start with two preliminary lemmas. Consider an internal

node S and its two children L and R.

Lemma 7.16. Let cS , cL, cR denote C(πlocS ), C(πlocL ) and C(πlocR ) respectively. Then:

(cS − cL)3/2
|S| − |L| −

b3/2

400

3

2

η

27
(cS − cL − cR) ≤

c
3/2
R

|R| ≤
(cS − cL)3/2
|S| − |L| .

Proof. Let α = b3/2

400
3
2
η
27 . The second inequality is obvious since |R| = |S|− |L| and cS ≥ cL+ cR. To

prove the first inequality, let φ(x) = x3/2/|R|−αx. Note that the derivative φ′(x) = (3/2)(x1/2/|R|)−
α is increasing. Since |R| ≥ |S|/3, we have φ′(cS) ≤ (1/2)(c

1/2
S /|S|) − α. Since S is internal, by

definition of the algorithm cS ≤ κ|S|2, which implies φ′(cS) ≤ 0 by definition of κ and α. So, φ is

decreasing in the range [0, cS ]. Since cR ≤ cS − cL ≤ cS , we deduce φ(cR) ≥ φ(cS − cL), hence the

lemma.

Lemma 7.17. For any x ∈ [0, 1] and y ∈ [1/3, 2/3], we have:

x3/2

y
+

(1− x)3/2
1− y ≥ 4/3.

Proof. We study the minima of f(x, y) = x3/2/y + (1− x)3/2/(1− y).
If x is at the boundary, say x = 0, then f(x, y) = 1/(1 − y) which has minimum 3/2 for the

specified range of y. The case x = 1 is symmetric. If x is not at a boundary then any local minimum

must satisfy ∂f
∂x = 0, hence

√
x
y =

√
1−x
1−y . If y is at the boundary, say y = 1/3, this gives x = 1/5,

hence f(x, y) = 3/
√
5. The case y = 2/3 is symmetric. Finally, if (x, y) is in the interior of the

domain then we must have ∂f
∂y = 0 as well, hence x = y = 1/2, and f(x, y) =

√
2. Finally the

minimum of those three values is 3/
√
5 > 4/3.

Applying first Lemma 7.16 and then Lemma 7.17 for x = cL/cS and y = |L|/|S| yields

c
3/2
L

|L| +
c
3/2
R

|R| ≥ c
3/2
L

|L| +
(cS − cL)3/2
|S| − |L| −

b3/2

400

3

2

η

27
(cS − cL − cR)

≥ (4/3)
c
3/2
S

|S| −
b3/2

400

3

2

η

27
(cS − cL − cR)

Thus,

c
3/2
S

|S| ≤ (3/4)
c
3/2
L

|L| + (3/4)
c
3/2
R

|R| +
3

4

b3/2

400

3

2

η

27
(cS − cL − cR). (7.7)
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The rest of the analysis is straightforward. Applying Equation (7.7) from the root down, we bound

the third sum of (7.6), call it A, as follows:

A =
∑

S internal

400

b3/2
C(πlocS )3/2

|S|

≤


∑

S leaf

400

b3/2
C(πlocS )3/2

|S|
∑

i≥1

(3/4)i


+

3

4

1

400

3

2

η

27
C(πlocV ). (7.8)

We bound the second term of (7.8) trivially by (η/8)C(πinV ).

Let S be a leaf and S′ its parent.2 Since C(πlocS ) ≤ C(πlocS′ ) and |S| ≥ |S′|/3, we have

C(πlocS )1/2

|S| ≤ 3
C(πlocS′ )1/2

|S′| ≤ 3
√
κ = 3

√
η2b3

350 · 4002 ≤
3ηb3/2

18 · 400

by definition of internal nodes. Substituting and using the fact that leaves are disjoint, we bound

the first term of (7.8) by

∑

S leaf

400

b3/2
3ηb3/2

18 · 400
3/4

1− 3/4
C(πlocS ) =

η

2
C(πlocV ) ≤ η

2
C(πinV ).

Therefore A ≤ (1/8 + 1/2)C(πinV ) = 5/8C(πinV ), completing the proof of the lemma.

7.5 Runtime

7.5.1 A faster algorithm

To speed up FAST-Scheme, we perform the following two modifications: First, instead of calling

Improve just once with error tolerance ǫb/5, we first call it log(1/b) times with error tolerance

1/2 before running it once with error tolerance ǫ/7. The improved approximation scheme, denoted

FASTer-Scheme, is presented in Figure 7.5. Second, to bound the total runtime of the single-vertex

moves, we need the cost to be monotone non-increasing. For that purpose, we modify algorithm

Improve, replacing the line

Return ImproveRec(V, π)

with

Return either π or ImproveRec(V, π), whichever has lower cost.

Lemma 7.7 clearly remains valid despite this modification.

We now prove that FASTer-Scheme is a 1 + ǫ-approximation.

2If the root is a leaf no such parent exists, but in that case A = 0.
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FASTer-Scheme:

Run KwikSort to define an ranking π
for i← 1 to ⌈log2 1/b⌉ do
π ← Improve(π, 1/2)

end for
Return Improve(π, ǫ/7).

Figure 7.5: Faster approximation scheme (error tolerance ǫ > 0)

Proof. (Of Theorem 7.2) Let m = ⌈log2 1/b⌉ and πi denote the ranking π after the ith iteration

of FASTer-Scheme, 0 ≤ i ≤ m. By the law of iterated expectations and Lemma 7.7, for any

1 ≤ i ≤ m we have

E
[
C(πi)

]
= E

[
E
[
C(πi)|πi−1

]]
≤ E

[
OPT +

1

2
C(πi−1)

]
= OPT +

1

2
E
[
C(πi−1)

]
.

Therefore by Corollary 7.5 and the definition of m,

E [C(πm)] ≤ 2OPT + 2−m
5

b
OPT ≤ 7OPT . (7.9)

Finally, by Lemma 7.7, the expected cost of the output is at most

OPT +
ǫ

7
E [C(πm)] = (1 + ǫ)OPT.

7.5.2 Analysis of running time

Here we analyze the runtime of FASTer-Scheme. Throughout this section let n = |V |, the number

of vertices in the overall input.

Lemma 7.18. All the single vertex move local optimizations in FASTer-Scheme have a combined

expected runtime of O(n3 log n(log(1/b) + 1
ǫ )).

Proof. The modification to Improve discussed in subsection 7.5.1 ensures that after a single vertex

move yields a ranking with cost C, FASTer-Scheme will never apply a single vertex move to

an ranking costing at least C. Let π0 denote the constant-factor ordering in FASTer-Scheme.

Each single vertex move multiplies the cost of the ranking by a factor of at most 1 − η
4n log3/2 n

.

Therefore after j moves, C(π) ≤ C(π0)(1− η
4n log3/2 n

)j ≤ C(π0)e
−j η

4n log3/2 n . Clearly C(π) ≥ OPT

hence E [j] is at most E
[
4n log3/2 n

η ln OPT
C(π0)

]
≤ 4n log3/2 n

η lnE
[
C(π0)
OPT

]
≤ 4n log3/2 n

η ln(5/b) moves are

needed in expectation. During all the calls to Improve except the last η = 1/2, hence at most
4n log3/2 n

1/2 ln 5
b = O (n log n log(1/b)) moves are required. During the final call to Improve η = ǫ/7

hence using a similar argument and (7.9) at most
4n log3/2 n

ǫ/7 lnE
[
C(πm)
OPT

]
= O

(
n log3/2 n

ǫ

)
moves

are required. There are an additional ⌈log(1/b)⌉ + 1 times that no improving move exists but this

fact must still be verified. Overall one must check for local optimality and make an improving

move if one exists O(n log n log(1/b)) + O(n logn
ǫ ) + O(log 1/b) = O(n log n(log(1/b) + 1

ǫ )) times.
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Each check for local optimality can be trivially done in O(n2) time, so the single vertex moves take

O(n3 log n(log(1/b) + 1
ǫ )) time overall.

Lemma 7.19. ImproveRec has runtime O(n2) + n2Õ(1/η6).

Proof. We refer to the call to ImproveRec made by Improve the root call. We first analyze the

runtime of the AddApprox calls. Recall from Theorem 7.6 that each AddApprox call has runtime

O(|S|2) + 2O(1/η6). Each vertex participates in exactly one AddApprox call, so the total runtime

of the AddApprox calls descended from the root call is O(n2) + n2Õ(1/η6).

Each call to ImproveRec, excluding descendent ImproveRec andAddApprox calls, can easily

be implemented to run in O(|S|2) time. Summing over the levels of the recursion tree gives total

runtime O
(
n2 + n 2n

3 + n 22n
32 + . . .

)
= O

(
n2
)
.

We now prove the runtime portion of Theorem 7.2.

Proof. The overall runtime of FASTer-Scheme is:

O(n log n) (KwikSort Ailon and Mohri [2008])

+O(n3 log n(log(1/b) + 1
ǫ )) (Single vertex moves, Lemma 7.18)

+O(log(1/b))
(
O(n2) + n2Õ(1/b6)

)
(ImproveRec η = 1/2, Lemma 7.19)

+
(
O(n2) + n2Õ(1/(ǫb)6)

)
(ImproveRec η = ǫ/7, Lemma 7.19)

= O
(
n3 log n(log( 1b ) +

1
ǫ )
)
+ n

(
2Õ(1/(ǫb)6)

)

7.6 Derandomization

TheKwikSort algorithm was derandomized in [Van Zuylen et al. 2007; Van Zuylen and Williamson

2007]. The following theorem is implicit in the proof of Theorem 2.1 in Van Zuylen and Williamson

[2007]:

Theorem 7.20. [Van Zuylen and Williamson 2007] Let w be non-negative weight function on the

edges. Assume that for every u, v, x ∈ V with wvu − wuv ≤ min{wxv − wvx, wxu − wux} we have

wvu +
1

2
(wvx + wxv) +

1

2
(wxu + wux) ≥

1

α
(wuv + wvx + wxu)

for some α > 1. Then there exists a deterministic polynomial-time α-approximation algorithm.

Theorem 7.21. There exists a deterministic 3/b-approximation algorithm for weighted feedback act

set tournament.

Proof. (Adapted from the proof by Van Zuylen and Williamson 2007 for the case b = 1.) We know

wvx + wxv, wxu + wux ≥ b and w ≤ 1 hence

wvu +
1

2
(wvx + wxv) +

1

2
(wxu + wux) ≥ 0 +

b

2
+
b

2
= b =

1

3/b
3 ≥ 1

3/b
(wuv + wvx + wxu)
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ImproveRec(vertices S, ranking π on S):

if ImproveRec(S, π) previously computed then
Return cached πout.

else if |S| = 1 then
Return π

else if C(π) ≥ κ|S|2 then
Return the ranking from the deterministic additive error algorithm
by Frieze and Kannan [1999] with δ = η

4 · κ
else

Initialize πout to an arbitrary ranking (e.g. π).
for k = ⌈|S|/3⌉ to ⌊2|S|/3⌋ do

Let L = { v ∈ S : π(v) ≤ k } and R = S \ L
Let πL be the ranking of L induced by π, i.e. πL(v) = π(v)
Let πR be the ranking of R induced by π, i.e. πR(v) = π(v)− k
Let πtemp be the concat. of ImproveRec(L, πL) and ImproveRec(R, πR).
if C(πtemp) < C(πout) then
πout ← πtemp

end if
end for
Return πout.

end if

Figure 7.6: Derandomized version of ImproveRec.

To derandomize FAST-Scheme we make three changes to our algorithms. Firstly, we replace

AddApprox with the deterministic additive error algorithm by Frieze and Kannan [1999]. Sec-

ondly, we replace KwikSort with the deterministic constant-factor approximation algorithm of

Theorem 7.21.

Thirdly we must eliminate the randomized choice of k in ImproveRec. We do this by trying

every possible k and keeping the best ranking found. We cache intermediate results to prevent expo-

nential blow-up in the runtime. The derandomized version of ImproveRec is given in Figure 7.6.

Let πloc denote the input order. It is easy to see that every (S, π) pair encountered is of the

form S = {u : i ≤ πloc(u) ≤ j } and π(u) = πloc(v) − i for some i ≤ j, so ImproveRec runs

O(n2) times (excluding lookups in cache). Each call to ImproveRec has runtime dominated by

the derandomized additive error algorithm, with runtime nÕ(1/((ǫb)3)4) = nÕ(1/(ǫb)12). The overall

runtime of Improve is therefore O
(
n2
)
· nÕ(1/(ǫb)12) = nÕ(1/(ǫb)12).

The runtime of the derandomized FAST-Scheme is dominated by the O(log 1/b) calls to Im-

prove so the overall runtime is (log 1/b)nÕ(1/(ǫb)12) = nÕ(1/(ǫb)12).

7.7 Appendix

In this appendix we prove Theorem 7.6. We want to find a O(δn2) additive approximation in time

O(n2) + 2Õ(1/δ2) for any constant δ > 0.

Let a bucketed ranking be a function π̃ from V to {1, 2, 3, . . .
⌈
1
δ

⌉
}. If π̃(v) = i we say that vertex
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v is in bucket i.

Problem 7.22 (Bucketed FAS).

Input: complete directed graph with vertex set V , n ≡ |V | and non-negative edge weights wuv with

wuv + wvu ≤ 1.

Output: A bucketed ranking minimizing C̃(π̃) =
∑

{u,v}⊂V :π̃(v)≥π̃(u) wvu.

Note the “≥” in the objective function C̃ of Problem 7.22 – if vertices u and v are in the same

bucket then C̃ pays for both wuv and wvu.

Now we prove Theorem 7.6.

Proof. Run Algorithm 2.2 and convert the output bucketed ranking ÕUT into a ranking OUT by

concatenating the buckets and ordering arbitrarily within each bucket. The pessimistic definition of

C̃ ensures C(OUT ) ≤ C̃(ÕUT ). On the other hand, the optimum ranking OPT can be converted

into a bucketed ranking ÕPT that costs at most O(δn2) more by placing δn vertices in each bucket.

Putting these remarks together with Theorem 2.2 we see

C(OUT ) ≤ C̃(ÕUT ) ≤ C̃(ÕPT ) +O(δn2) ≤ C(OPT ) +O(δn2) +O(δn2)

proving the approximation factor portion of Theorem 7.6.

Determining where to place each vertex can be done in time O(m/δ) totally näıvely, where m is

the number of vertices placed so far. Simple incremental data structures allow this to be reduced to

O(m+ 1
δ ), which yields the runtime O(n2) + 2Õ(1/δ2) of Theorem 7.6.



Chapter 8

Ranking MIN-CSPs:

approximation algorithms

8.1 Introduction

The results presented in this chapter are joint work with Marek Karpinski. They previously appreared

in Karpinski and Schudy [2009a].

We study the approximability of the Minimum Betweenness problem in tournaments (see

Ailon and Alon [2007]) that resisted so far efforts of designing polynomial time approximation algo-

rithms with a constant approximation ratio. For the status of the general Betweenness problem, see

e.g. Opatrny [1979], Chor and Sudan [1998], Ailon and Alon [2007], Charikar et al. [2009].

In this chapter we design the first polynomial time approximation scheme (PTAS) for that prob-

lem, and generalize it to much more general class of ranking CSP problems, called here fragile

problems. To our knowledge it is the first nontrivial approximation algorithm for the Betweenness

problem in tournaments.

In the Betweenness problem we are given a ground set of vertices and a set of betweenness

constraints involving 3 vertices and a designated vertex among them. The objective function of a

ranking of the elements is the number of betweenness constraints for which the designated vertex

is not between the other two vertices. The goal is to minimize the objective function. We refer

to the Betweenness problem in tournaments, that is in instances with a constraint for every triple

of vertices, as the BetweennessTour or fully dense Betweenness problem (see Ailon and Alon

[2007]). We consider also the k-ary extension k-FAST of the Feedback Arc Set in tournaments

(FAST) problem (see Chapter 7).

We extend the above classes by introducing a more general class of fragile ranking k-CSP prob-

lems. A constraint S of a ranking k-CSP problem is called fragile if changing the relative order of a

single vertex in S with respect to the rest of S makes it unsatisfied whenever S was satisfied by the

101
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original order. A ranking k-CSP problem is called fragile if all its constraints are fragile.

We now formulate our main results.

Theorem 8.1. There exists a PTAS for the BetweennessTour problem.

The above answers an open problem of Ailon and Alon [2007] on the approximation status of

the Betweenness problem in tournaments.

We now formulate our first generalization.

Theorem 8.2. There exist PTASs for all fragile ranking k-CSP problems in tournaments.

Theorem 8.2 entails, among other things, existence of a PTAS for the k-ary extension of FAST.

Corollary 8.3. There exists a PTAS for the k-FAST problem.

We generalize BetweennessTour to arities k ≥ 4 by specifying for each constraint S a pair

of vertices in S that must be placed at the ends of the ranking induced by the vertices in S. Such

constraints do not satisfy our definition of fragile, but do satisfy a weaker notion that we call weak

fragility. The definition of weakly fragile is identical to the definition for fragile except that only four

particular single vertex moves are considered, namely swapping the first two vertices, swapping the

last two, and moving the first or last vertex to the other end. We now formulate our most general

theorem.

Theorem 8.4. There exist PTASs for all weak-fragile ranking k-CSP problems in tournaments.

Corollary 8.5. There exists a PTAS for the k-BetweennessTour problem.

All our PTASs are randomized but one can easily derandomize them by exhaustively considering

every possible random choice.

We give the algorithms and the analysis of our PTAS in Sections 8.3-8.8.

Betweenness and generalizations

The betweenness problem has input consisting of information of the form object b must be between

objects a and c in the ordering. It is NP hard in general to determine if there is an ordering

consistent with all of the input [Chor and Sudan, 1998, Opatrny, 1979]. This implies that it is

NP-hard to approximate the problem of minimizing disagreements to any factor. The problem of

maximizing agreements has a constant factor approximation algorithm and no PTAS unless P=NP

[Chor and Sudan, 1998].

We study the problem of minimizing disagreements in the special case of instances with infor-

mation available for every set of three objects (fully dense). An easy reduction from FAST shows

this problem is still NP-hard. Ailon and Alon [Ailon and Alon, 2007] show that in fact fully dense

betweenness is NP-hard to approximate better than an additive O(n2−ǫ) for any ǫ > 0. We give a

PTAS for this problem, which to our knowledge is the first non-trivial approximation algorithm for

it.

As described in Section 8.3 we generalize our PTAS to a variety of fully dense ranking problems.
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8.2 Intuition and main ideas

Our first key idea is analogous to the approximation of a differentiable function by a tangent line.

Given a ranking π and any ranking CSP, the change in cost from switching to a similar ranking π′

can be well approximated by the change in cost of a particular weighted feedback arc set problem (see

proof of Lemma 8.22). Furthermore if the ranking CSP is fragile and fully dense the corresponding

feedback arc set instance is a (weighted) tournament (Lemma 8.16). So if we somehow had access

to a ranking similar to the optimum ranking π∗ we could create this FAST instance and run the

PTAS for FAST described in Chapter 7 to get a good ranking.

We do not have access to π∗ but we can use a variant of the fragile techniques from Chapter 3

to get close. We pick a random sample of vertices and guess their location in the optimal ranking

to within ǫn. We then create an ordering σ1 greedily from the random sample. We show that this

ordering is close to π∗, in that |π∗(v) − σ1(v)| = O(ǫn) for all but O(ǫn) of the vertices (Lemma

8.11).

We then do a second greedy step (relative to σ1), creating σ2. We then identify a set U of

unambiguous vertices for which we know |π∗(v) − σ2(v)| = O(ǫn) (Lemma 8.15). We temporarily

set aside the O(OPT/(ǫnk−1)) (Lemma 8.14) remaining vertices. These two greedy steps are similar

in spirit to previous work on ordinary (non-ranking) everywhere-dense fragile CSPs described in

Chapter 3 but substantially more involved.

We then use σ2 to create a FAST instance w that locally represents the CSP. Unfortunately the

error in σ2 causes the weights of w to have significant error (Lemma 8.18) even when OPT ≈ 0.

At first glance even an exact solution to this FAST problem would seem insufficient, for how can

solving a problem similar to the desired one lead to a precisely correct solution? We show that

FAST is tolerant of such errors (Lemma 8.22). The intuition for why this is possible is that minor

adjustments to edge weights of a zero-cost FAST instance change the optimum cost but leave the

optimum ranking unchanged.

Another difficulty is that the incorrect weights in FAST instance w may increase the optimum

cost of w far above OPT , leaving the PTAS for FAST free to return a poor ranking. To remedy

this we create a new FAST instance w̄ by canceling weight on opposing edges, i.e. reducing wuv and

wvu by the same amount. The resulting simplified instance w̄ clearly has the same optimum ranking

as w but a smaller optimum value. The PTAS for FAST requires that the ratio of the maximum

and the minimum of wuv + wvu must be bounded above by a constant so we limit the amount of

cancellation to ensure this (Lemma 8.16). It turns out that this cancellation trick is sufficient to

ensure that the PTAS for FAST does not introduce too much error (Lemma 8.19).

Finally we greedily insert the relatively few ambiguous vertices into the ranking output by the

PTAS for FAST.
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8.3 Approximation Algorithm

First we state some core notation. Throughout this paper let V refer to the set of objects (vertices)

being ranked and n denotes |V |. Our O(·) hides k but not ǫ or n. Our Õ(·) hides (log(1/ǫ))O(1).

A ranking is a bijective mapping from a ground set S ⊆ V to {1, 2, 3, . . . , |S|}. An ordering is

an injection from S into R. We use π and σ (plus superscripts) to denote orderings and rankings

respectively. Let π∗ denote an optimal ordering and OPT its cost. We let
(
n
k

)
(for example) denote

the standard binomial coefficient and
(
V
k

)
denote the set of subsets of set V of size k.

For any ordering σ let Ranking(σ) denote the ranking naturally associated with σ. To help

prevent ties we relabel the vertices so that V = {1, 2, 3, . . . , |V |}. We will often choose to place u

in one of O(1/ǫ) positions P(u) = {jǫn+ u/(n+ 1), 0 ≤ j ≤ 1/ǫ} (the u/(n+ 1) term breaks ties),

where ǫ > 0 is the desired approximation parameter. We say that an ordering is a bucketed ordering

if σ(u) ∈ P(u) for all u. Let Round(π) denote the bucketed ordering corresponding to π (rounding

down), i.e. Round(π)(u) equals π(u) rounded down to the nearest multiple of ǫn, plus u/(n+ 1).

Let v 7→ p denote the ordering over {v} which maps v to p. For set Q of vertices and ordering σ

with domain including Q let Q 7→ σ denote the ordering over Q which maps u ∈ Q to σ(u), i.e. the

restriction of σ to Q. For orderings σ1 and σ2 with disjoint domains let σ1 σ2 denote the natural

combined ordering over Domain(σ1) ∪Domain(σ2). For example of our notations, Q 7→ σ v 7→ p

denotes the ordering over Q ∪ {v} that maps v to p and u ∈ Q to σ(u).

A ranking k-CSP consists of a ground set V of vertices, an arity k ≥ 2, and a constraint system

c, where c is a function from rankings of k vertices to {0, 1}.1 We say that a subset S ⊂ V of size

k is satisfied in ordering σ of S if c(Ranking(σ)) = 0. For brevity we henceforth abuse notation

and omit the “Ranking” and write simply c(σ). The objective of a ranking CSP is to find an

ordering σ (w.l.o.g. a ranking) minimizing the number of unsatisfied constraints, which we denote

by Cc(σ) =
∑
S∈(Domain(σ)

k ) c(S 7→ σ). We will frequently omit the superscript c, in which case it

should be understood to be the constraint system of the overall problem we are trying to solve.

Abusing notation we sometimes refer to S ⊆ V as a constraint, when we really are referring to

c(S 7→ ·). A constraint S is fragile if whenever it is satisfied making any single vertex move that

changes the relative order of the vertices in S makes it unsatisfied. In other words constraint S is

fragile if c(S → π) + c(S → π′) ≥ 1 for all rankings π and π′ over S that differ by a single vertex

move, i.e. π′ = Ranking(v → p S \ {v} → π) for some v ∈ S and p ∈ (Z + 1/2). Fragility is

illustrated in Figure 8.1.

A constraint S is weakly fragile if c(S → π) + c(S → π′) ≥ 1 for all rankings π and π′ that differ

by a swap of the first two vertices, the last two, or cyclic shift of a single vertex. In other words

π′ = Ranking(v → p S \ {v} → π) for some v ∈ S and p ∈ R with (π(v), p) ∈ {(1, 2 + 1
2 ), (1, k +

1
2 ), (k, k − 3

2 ), (k,
1
2 )}. Observe that this is equivalent to ordinary fragility for k ≤ 3. Weak fragility

is illustrated in Figure 8.2

Our techniques handle ranking CSPs that are fully dense with weakly fragile constraints, i.e.

1Our results transparently generalize to the [0, 1] case as well, but the 0/1 case allows simpler terminology.
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. . .
All k·(k+1) pairs

A B C D

Figure 8.1: An illustration of fragility. For a constraint to be fragile all the illustrated single vertex
moves must make any satisfied constraint unsatisfied.

. . .A B CC D

Figure 8.2: An illustration of weak fragility. For a constraint to be weak fragile all the illustrated
single vertex moves must make any satisfied constraint unsatisfied.

every set S of k vertices corresponds to a weakly fragile constraint. Fully dense instances are also

known as tournaments.

Let bc(σ, v, p) =
∑
Q:··· c(Q 7→ σ v 7→ p), where the sum is over sets Q ⊆ Domain(σ) \ {v} of

size k − 1. Note that this definition is valid regardless of whether or not v is in Domain(σ). The

only requirement is that the range of σ excluding σ(v) must not contain p. This ensures that the

argument to c(·) is an ordering (injective). We will usually omit the superscript c (as with C).

We call a non-negative weight function w over the edges of the complete graph induced by

some vertex set U a FAS instance. We can express the FAST problem in our framework by the

correspondence c(u 7→ x v 7→ y) =

{
wvu if x < y

wuv otherwise
. Abusing notation slightly we also write

Cw(σ) for Cc(σ) with the above c. More concretely Cw(σ) =
∑
u,v:σ(u)>σ(v) wuv. Similarly we

write bw(σ, v, p) =
∑
u6=v

{
wuv if σ(u) > p

wvu if σ(u) < p
. Observe that FAST captures all possible fragile

constraints with k = 2. We generalize to k-FAST as follows: a k-FAST constraint over S is satisfied

by one particular ranking of S and no others.

We generalize BetweennessTour to k ≥ 4 as follows. Each constraint S designates two vertices

{u, v}, which must be the first and last positions, i.e. if π is the ranking of the vertices in S then

c(π) = 11 ({π(u), π(v)} 6= {1, k}).
Theorem 2.2 from Chapter 2 entails the following corollary.
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Input: Vertex set V , |V | = n, arity k, system c of fully dense arity k constraints, and approximation
parameter ǫ > 0.

1: Run AddApprox(ǫ5nk) and return the result if its cost is at least ǫ4nk

2: Pick sets T1, . . . , Tt uniformly at random with replacement from
(
V
k−1

)
, where t = 14 ln(40/ǫ)

(k2)ǫ
.

Guess (by exhaustion) bucketed ordering σ0, which is the restriction of Round(π∗) to the sampled
vertices

⋃
i Ti.

3: Compute bucketed ordering σ1 greedily with respect to the random samples and σ0:

σ1(u) = argminp∈P(u) b̂(u, p) where b̂(u, p) =
( n
k−1)
t

∑
i:u6∈Ti

c(Ti 7→ σ0 v 7→ p).

4: For each vertex v: If b(σ1, v, p) ≤ 13k43k−1ǫ
(
n−1
k−1

)
for some p ∈ P(v) then call v unambiguous

and set σ2(v) to the corresponding p (pick any if multiple p satisfy). Let U denote the set of
unambiguous vertices, which is the domain of bucketed ordering σ2.

5: Compute feedback arc set instance over unambiguous vertices U with weights w̄σ
2

uv (see text).
Solve it using FAST PTAS. Do single vertex moves until local optimality (with respect to FAST
objective function), yielding ranking π3 of U .

6: Create ordering σ4 over V defined by σ4(u) =

{
π3(u) if u ∈ U
argminp=v/(n+1)+j,0≤j≤n b(π

3, u, p) otherwise
.

In other words insert each vertex v ∈ V \ U into π3(v) greedily.
7: Return π4 = Ranking(σ4).

Figure 8.3: A 1 +O(ǫ)-approximation for weak fragile rank k-CSPs in tournaments.

Corollary 8.6. For any δ > 0 and constraint system c there is an algorithm AddApprox for the

problem of finding a ranking π with C(π) ≤ C(π∗) + δnk. Its runtime is nO(1)2Õ(1/δ2).

For any ordering σ with domain U let wσuv equal the number of the constraints {u, v} ⊆ S ⊆ U

with c(σ′) = 1 where (1) σ′ = S \ {v} 7→ σ v 7→ p, (2) p = σ(u) − δ if σ(v) > σ(u) and p = σ(v)

otherwise, and (3) δ > 0 is sufficiently small to put p adjacent to σ(u). In other words if v is after u in

σ it is placed immediately before v in σ′. Observe that 0 ≤ wuv ≤
(|U |−2
k−2

)
. We use the abbreviation

Cσ
′

(σ) = Cw
σ′

(σ). The following Lemma follows easily from the definitions.

Lemma 8.7. For any ordering σ we have (1) Cσ(σ) =
(
k
2

)
C(σ) and (2) bw

σ

(σ, v, σ(v)) = (k − 1) ·
b(σ, v, σ(v)) for all v.

Proof. Observe that all wuv that contribute to Cσ(σ) or bw
σ

(σ, v, σ(v)) satisfy σ(u) > σ(v) and

hence such wuv are equal to the number of constraints containing u and v that are unsatisfied in σ.

The
(
k
2

)
and k − 1 factors appear because constraints are counted multiple times.

We define w̄σuv = wσuv −min( 1
10·3k−1

(
n−2
k−2

)
, wσuv, w

σ
vu), where U is the domain of σ. Let C̄σ(σ′) =

Cw̄
σ

(σ′). Observe that w and w̄ are equivalent from an exact solution point of view, but w̄ has a

smaller objective value for approximation purposes. In other words Cσ(π′) − Cσ(π◦) = C̄σ(π′) −
C̄σ(π◦) for all rankings π′ and π◦.

For any orderings σ and σ′ with domain U , we say that {u, v} ⊆ U is a σ/σ′-inversion if

σ(u)−σ(v) and σ′(u)−σ′(v) have different signs. Let d(σ, σ′) denote the number of σ/σ′-inversions

(a.k.a. Kendall Tau distance). We say that v does a left to right (σ, p, σ′, p′)-crossing if σ(v) < p and

σ′(v) > p′. We say that v does a right to left (σ, p/σ′, p′)-crossing if σ(v) > p and σ′(v) < p′. We
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say that v does a (σ, p, σ′, p′)-crossing if v does a crossing of either sort. We say that u σ/σ′-crosses

p ∈ R if it does a (σ, p, σ′, p)-crossing.

With these notations in hand we now formalize the ideas described in Section 8.2 in our Algorithm

8.3. The non-deterministic “guess (by exhaustive sampling)” on line 2 of our algorithm should be

implemented in the traditional manner: place the remainder of the algorithm in a loop over possible

orderings of the sample, with the overall return value equal to the best of the π4 rankings found. Our

algorithm can be derandomized by choosing T1, . . . , Tt non-deterministically rather than randomly;

see Section 8.4 for details.

If OPT ≥ ǫ4nk then the first line of the algorithm is sufficient for a PTAS so for the remainder

of the analysis we assume that OPT ≤ ǫ4nk. For most of the analysis we actually need something

weaker, namely that OPT is at most some sufficiently small constant times ǫ2nk. We only need the

full OPT ≤ ǫ4nk in one place in Section 8.8.

8.4 Runtime analysis

By Theorem 8.6 the additive approximation step takes time nO(1)2Õ(1/ǫ10). There are at most

(1/ǫ)t·(k−1) = 2Õ(1/ǫ) bucketed orderings σ0 to try. The PTAS for FAST takes time nO(1)2Õ(1/ǫ6)

by Theorem 7.2. The overall runtime is

nO(1)2Õ(1/ǫ10) + 2Õ(1/ǫ) ·
(
nO(1) + nO(1)2Õ(1/ǫ6)

)
= nO(1)2Õ(1/ǫ10).

Derandomization increases the runtime of the two algorithms that we use as subroutines to

npoly(1/ǫ). There are at most nt·(k−1) = nÕ(1/ǫ) possible sets T1, . . . Tt that the derandomized algo-

rithm must consider. Therefore the overall runtime is

(npoly(1/ǫ) + npoly(1/ǫ) · 2Õ(1/ǫ) · npoly(1/ǫ) = npoly(1/ǫ).

8.5 Analysis of σ1

Let σ� = Round(π∗). Call vertex v costly if b(σ�, v, σ�(v)) ≥ 2
(
k
2

)
ǫ
(
n−1
k−1

)
and non-costly otherwise.

Lemma 8.8. The number of costly vertices is at most k·OPT
ǫ(k2)(

n−1
k−1)

.

Proof. First observe that for any costly v we have

2

(
k

2

)
ǫ

(
n− 1

k − 1

)
≤ b(σ�, v, σ�(v)) ≤ b(π∗, v, π∗(v)) + ǫ

(
k

2

)
·
(
n− 1

k − 1

)

since only at most a ǫ
(
k
2

)
fraction of the

(
n−1
k−1

)
possible constraints contain a π∗/σ�-inversion.

Therefore

b(π∗, v, π∗(v)) ≥ 2

(
k

2

)
ǫ

(
n− 1

k − 1

)
− ǫ
(
k

2

)
·
(
n− 1

k − 1

)
= ǫ

(
k

2

)
·
(
n− 1

k − 1

)

Secondly observe that kC(π∗) =
∑
v b(π

∗, v, π∗(v)) ≥ (number costly)ǫ
(
k
2

)(
n−1
k−1

)
, completing the

proof.
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Lemma 8.9. Let σ be an ordering of V , |V | = n, v ∈ V be a vertex and p, p′ ∈ R. Let B be the set

of vertices (excluding v) between p and p′ in σ. Then b(σ, v, p) + b(σ, v, p′) ≥ |B|
(n−1)3k−1

(
n−1
k−1

)
.

Proof. By definition

b(σ, v, p) + b(σ, v, p′) =
∑

Q:···
[c(Q 7→ σ v 7→ p) + c(Q 7→ σ v 7→ p′)] (8.1)

where the sum is over sets Q ⊆ U \{v} of k−1 vertices. Observe by weak fragility that the quantity

in brackets in (8.1) is at least 1 for every Q that either has all k− 1 vertices between p and p′ in σ2

or has one vertex between them and the remaining k − 2 either all before or all after.

We consider two cases. If |B| ≥ |V |/3 then the number of such Q is at least
( |B|
k−1

)
= |B|

k−1

(|B|−1
k−2

)
≥

|B|
2·(k−1)3k−2

(
n−2
k−2

)
for sufficiently large n. If |B| < |V |/3 then either at least |V |/3 vertices are before

or at least |V |/3 vertices are after hence the number of such Q is at least |B|
(|V |/3
k−2

)
≥ |B|

2·3k−2

(
n−2
k−2

)
≥

|B|
(k−1)·3k−1

(
n−2
k−2

)
for sufficiently large n.

For vertex v we say that a position p ∈ P(v) is v-out of place if there are at least 6
(
k
2

)
3k−1ǫn

vertices between p and σ�(v) in σ�. We say vertex v is out of place if σ1(v) is v-out of place.

Lemma 8.10. The number of non-costly out of place vertices is at most ǫn/2 with probability at

least 9/10.

Proof. Focus on some v ∈ V and p ∈ P(v). From the definition of out-of-place and Lemma 8.9 we

have

b(σ�, v, σ�) + b(σ�, v, p) ≥ 6
(
k
2

)
3k−1ǫn

(n− 1)3k−1

(
n− 1

k − 1

)
≥ 6ǫ

(
k

2

)(
n− 1

k − 1

)

for any v-out of place p. Next recall that for costly v we have

b(σ�, v, σ�(v)) ≤ 2

(
k

2

)
ǫ

(
n− 1

k − 1

)
(8.2)

hence

b(σ�, v, p) ≥ 4

(
k

2

)
ǫ

(
n− 1

k − 1

)
(8.3)

for any v-out of place p.

Recall that

b̂(v, p) =

(
n
k−1

)

t

∑

i:v 6∈Ti

c(Ti 7→ σ0 v 7→ p)

for any p. Each term of the sum is a 0/1 random variable with mean µ(p) = 1

( n
k−1)

∑
Q∈( V

k−1):v 6∈Q
c(Q 7→

σ� v 7→ p) = 1

( n
k−1)

b(σ�, v, p). Therefore E
[
b̂(v, p)

]
= b(σ�, v, p). We can bound µ(σ�(v)) ≤

2
(
k
2

)
ǫ
(
n−1
k−1

)
/
(
n
k−1

)
≡M using (8.2). For any v-out of place p we can bound µ(p) ≥ 2M by (8.3).

We can bound the probability that sum in b̂(v, σ�(v)) is at least (1 + 1/3)Mt using a Chernoff

bound as

exp(−(1/3)2Mt/3) ≤ exp

(
−1

9
· 1(

n
k−1

) · 2
(
k

2

)
ǫ

(
n− 1

k − 1

)
· 14 ln(40/ǫ)(

k
2

)
ǫ

· 1
3

)
≤ ǫ/40
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for sufficiently large n. Similarly for any v-out of place p we can bound the probability that b̂(v, p) is

at most (1− 1/3)Mt by exp(−(1/3)2Mt/2) ≤ (ǫ/40)3. Therefore by union bound the probability of

some v-out of place p having b̂(v, p) too small is at most ǫ2/403 ≤ ǫ/40. Clearly 4(1−1/3) ≥ 2(1+1/3)

so each vertex v is out of place with probability at least ǫ/20. A Markov bound completes the

proof.

Lemma 8.11. With probability at least 9/10 we have

1. The number of out of place vertices is at most ǫn.

2. The number of vertices v with |σ1(v)− σ�(v)| > 3k23k−1ǫn is at most ǫn

3. d(σ1, σ�) ≤ 6k23k−1ǫn2

Proof. By Lemma 8.8 and the fact OPT ≤ ǫ4nk we have at most k·OPT
(k2)ǫ(

n−1
k−1)

≤ ǫn/2 costly vertices

for n sufficiently large. Therefore Lemma 8.10 implies the first part of the Lemma.

Observe that any vertex with |σ1(v)− σ�(v)| > 3k2ǫn ≥ (6
(
k
2

)
+ 1)ǫn must necessarily be v-out

of place, completing the proof of the second part of the Lemma.

For the final part observe that if u and v are a σ1/σ�-inversion and not among the ǫn out of place

vertices then there can be at most 2 · 6
(
k
2

)
3k−1ǫn vertices between σ�(v) and σ�(u) in σ�. Each

u therefore only 24
(
k
2

)
3k−1ǫn possibilities for v. Therefore d(σ1, σ�) ≤ ǫn2 + 24

(
k
2

)
3k−1ǫn · n/2 ≤

6ǫk23k−1n2.

Our remaining analysis is deterministic, conditioned on the event of Lemma 8.11 holding.

8.6 Analysis of σ2

The following key Lemma shows the sensitivity of b(σ, v, p) to its first and third arguments.

Lemma 8.12. For any constraint system c with arity k ≥ 2, orderings σ and σ′ over vertex set

T ⊆ V , vertex v ∈ V and p, p′ ∈ R we have

1. |bc(σ, v, p)− bc(σ′, v, p′)| ≤
(
n− 2

k − 2

)
(number of crossings) +

(
n− 3

k − 3

)
d(σ, σ′)

2. |bc(σ, v, p)− bc(σ′, v, p′)| ≤
(
n− 2

k − 2

)(
|net flow|+ k

√
d(σ, σ′)

)

where
(
n−3
k−3

)
= 0 if k = 2, (net flow) is |{ v ∈ T : σ′(v) > p′ }| − |{ v ∈ T : σ(v) > p }|, and

(number of crossings) is the number of v ∈ T that do a (σ, p, σ′, p′)-crossing.

Proof. Fix σ, σ′, T , v, p and p′. Let L (resp. R) denote the vertices in T that do left to right

(resp. right to left) (σ, p, σ′, p′)-crossings. It is easy to see that a constraint {v} ∪ Q, Q ∈
(
T\{v}
k−1

)

contributes identically to b(σ, v, p) and b(σ′, v, p′) unless either:
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1. Q and (L ∪R) have non-empty intersection (or)

2. Q contains a σ/σ′-inversion {s, t}.

The first part of the Lemma follows easily.

Towards proving the second part we first bound |L|+ |R|. Observe that |L| = |R|+ (net flow).

Assume w.l.o.g. that (net flow) ≥ 0. Observe that every pair v ∈ L and w ∈ R are a σ/σ′-

inversion, hence d(σ, σ′) ≥ |L| · |R| = (|R| + (net flow))|R| ≥ |R|2. We conclude that |L| + |R| =
2|R|+ (net flow) ≤ 2

√
d(σ, σ′) + (net flow). Therefore the number of constraints of the first type

is at most
(
n−2
k−2

)
(2
√
d(σ, σ′) + (net flow)).

To simplify we bound
(
n− 3

k − 3

)
d(σ, σ′) =

(
n− 2

k − 2

)√
d(σ, σ′) · k − 2

n− 2
·
√
d(σ, σ′)

≤
(
n− 2

k − 2

)√
d(σ, σ′) · (k − 2)

√
n(n− 1)/2

n− 2
≤ (k − 2)

(
n− 2

k − 2

)√
d(σ, σ′)

for sufficiently large n.

Observe that the quantity net flow in Lemma 8.12 is zero whenever p = p′ and σ and σ′ are

both rankings. Therefore we have the following useful corollary.

Corollary 8.13. Let π and π′ be rankings over vertex set U and w a FAST instance over U . Then

|bw(π, v, p)− bw(π′, v, p)| ≤ 2(maxr,s wrs)
√
d(π, π′) for all v and p ∈ R \ Z.

Lemma 8.14. For U in Algorithm 8.3 we have |V \ U | ≤ k·OPT
ǫ(k2)(

n−1
k−1)

= O(nǫ · OPTnk ).

Proof. Observe that the number of vertices that σ�/σ1-cross a particular p is at most 2 · 6k23k−1ǫn

by Lemma 8.11 (first part). Therefore we apply Lemmas 8.11 and 8.12, yielding

|b(σ�, v, p)− b(σ1, v, p)| ≤
(
n− 2

k − 2

)
12k23k−1ǫn+

(
n− 3

k − 3

)
6k23k−1ǫn2 ≤ 12ǫk43k−1

(
n− 1

k − 1

)
(8.4)

for all v and p.

Fix a non-costly v. By definition of costly b(σ�, v, σ�(v)) ≤ 2
(
k
2

)
ǫ
(
n−1
k−1

)
≤ k43k−1ǫ

(
n−1
k−1

)
, hence

b(σ1, v, σ�(v)) ≤ 13k43k−1ǫ
(
n−1
k−1

)
, so v ∈ U .

Finally recall Lemma 8.8.

We define π⊛ to be the ranking induced by the restriction of π∗ to U , i.e. π⊛ = Ranking(U 7→ π∗).

Lemma 8.15. All vertices in the unambiguous set U satisfy |σ2(v)− π⊛(v)| = O(ǫn).

Proof. Since π∗ is a ranking the number of vertices |B| between π∗(v) and σ2(v) in π∗ is at least

|π∗(v)− σ2(v)| − 1. Therefore by Lemma 8.9 we have

|π∗(v)− σ2(v)| − 1

(n− 1)3k−1

(
n− 1

k − 1

)
≤ b(π∗, v, σ2(v)) + b(π∗, v, π∗(v)) (Lemma 8.9)

≤ 2b(π∗, v, σ2(v)) (Optimality of π∗).
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We proceed

b(π∗, v, σ2(v)) ≤ b(σ�, v, σ2(v)) +O(ǫnk−1) (Lemma 8.12, part one)

≤ b(σ1, v, σ2(v)) +O(ǫnk−1) +O(ǫnk−1) (8.4)

= O(ǫnk−1) (Definition of U)

hence we conclude |π∗(v)− σ2(v)| = O(ǫn).

Finally we conclude

|π⊛(v)− σ2(v)| ≤ |π⊛(v)− π∗(v)|+ |π∗(v)− σ2(v)| = |π⊛(v)− π∗(v)|+O(ǫn)

≤ k ·OPT
ǫ
(
k
2

)(
n−1
k−1

) +O(ǫn) (Lemma 8.14)

= O(ǫn).

8.7 Analysis of π3

Note that all orderings and costs in this section are over U , not V . We note by Lemma 8.14 that

|U | = n− o(n).

Lemma 8.16. 1
3k−1 (1−2/10)

(|U |−2
k−2

)
≤ w̄σ2

uv+w̄
σ2

vu ≤ 2
(|U |−2
k−2

)
, i.e. w̄σ

2

is a weighted FAST instance.

Proof. We prove the more interesting lower-bound and leave the straightforward proof of the upper

bound to the reader. Fix u, v ∈ U . We consider two cases.

If there are at least |U |/3 vertices between u and v in σ2 then we note that by weak fragility

every constraint S ⊇ {u, v} with all vertices in S between u and v in σ2 contributes at least 1 to

wuv + wvu. Therefore wuv + wvu ≥
(|U |/3
k−2

)
≥ 1

2·3k−2

(
n−2
k−2

)
for sufficiently large n and small ǫ.

If there are at most |U |/3 vertices between u and v in σ2 then consider constraints with all their

vertices either all before or all after u and v. We note that by weak fragility each such constraint

S ⊇ {u, v} contributes at least 1 to wuv+wvu. There are clearly either at least |U |/3 vertices before

or at least |U |/3 vertices after, hence at least
(|U |/3
k−2

)
≥ 1

2·3k−2

(
n−2
k−2

)
constraints for sufficiently large

n and small ǫ.

We conclude that wuv+wvu ≥ 1
2·3k−2

(
n−2
k−2

)
≥ 1

3k−1

(
n−2
k−2

)
. The Lemma follows from the definition

of w̄.

We define the shorthand OPTU = C(π⊛).

Lemma 8.17. Assume ranking π and ordering σ satisfy |π(u) − σ(u)| = O(ǫn) for all u. For any

u, v, let Nuv denote the number of S ⊃ {u, v} such that not all pairs {s, t} 6= {u, v} are in the same

order in σ and π. We have Nuv = O(ǫnk−2).

Proof. Such a pair {s, t} must satisfy |π(s) − π(t)| = 2 · O(ǫn), but few constraints contain such a

pair.
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Lemma 8.18. The following inequalities hold:

1. wσ
2

uv ≤ wπ
⊛

uv +O(ǫnk−2)

2. w̄σ
2

uv ≤ (1 +O(ǫ))wπ
⊛

uv

Proof. The only constraints S ⊃ {u, v} that contribute differently to the left- and right-hand sides

of the first part are those containing a {s, t} 6= {u, v} that are a σ2/π⊛-inversion. By Lemmas 8.15

and 8.17 we can bound the number of such constraints by O(ǫnk), completing the proof of the first

part.

If wπ
⊛

uv ≥ 1
2·3k−1

(|U |−2
k−2

)
the second part follows from the first part and the trivial fact w̄ ≤ w.

Otherwise by the first part we have wσ
2

uv < 0.6 1
3k−1

(|U |−2
k−2

)
. Therefore by Lemma 8.16 wσ

2

vu >

0.2 1
3k−1

(|U |−2
k−2

)
hence w̄σ

2

uv = wσ
2

uv − min(0.1 1
3k−1

(|U |−2
k−2

)
, wσ

2

uv) = min(wσ
2

uv − 0.1 1
3k−1

(|U |−2
k−2

)
, 0) ≤

min(wπ
⊛

uv , 0) ≤ wπ
⊛

uv using the first part of the Lemma in the penultimate inequality.

Lemma 8.19.

1. C̄σ
2

(π⊛) ≤ (1 +O(ǫ))
(
k
2

)
OPTU

2. C̄σ
2

(π3) ≤ (1 +O(ǫ))
(
k
2

)
OPTU

3. C̄σ
2

(π3)− C̄σ2

(π⊛) = O(ǫOPTU )

Proof. From the second part of Lemma 8.18 and Lemma 8.7 we conclude that

C̄σ
2

(π⊛) ≤ (1 +O(ǫ))Cπ
⊛

(π⊛) = (1 +O(ǫ))

(
k

2

)
OPTU .

proving the first part of this Lemma.

The PTAS for FAST guarantees

C̄σ
2

(π3) ≤ (1 +O(ǫ))C̄σ
2

(π⊛), (8.5)

which combined with the first part of this Lemma yields the second part.

Finally the first part of Lemma 8.18 followed by the first part of this Lemma imply

C̄σ
2

(π3)− C̄σ2

(π⊛) ≤ O(ǫ)Cσ
2

(π⊛) ≤ O(ǫOPTU ),

completing the proof of the third part of this Lemma.

Lemma 8.20. d(π3, π⊛) = O(OPTU/n
k−2)

Proof. π3 and π⊛ both have cost at most 2OPTU (Lemma 8.19, first and second parts) for the FAST

instance w̄σ
2

(Lemma 8.16).

Lemma 8.21. We have |π3(v)− π⊛(v)| = O(ǫn) for all v ∈ U .
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Proof. Fix v ∈ U . In this proof we write w (resp. w̄) as a short-hand for wσ
2

(resp. w̄σ
2

). Observe

that there are at least (|π3(v)−π⊛(v)|− 1) vertices between π3(v) and π⊛(v)+1/2 in π3. Any such

vertex u must contribute wuv to one of bw̄(π3, v, π⊛(v) + 1/2) and bw̄(π3, v, π3(v)) and contribute

wvu to the other. By Lemma 8.16 and local optimality of π3 we have

(|π3(v)− π⊛(v)| − 1)
(1− 2/10)

3k−1

(|U | − 2

k − 2

)
≤ bw̄(π3, v, π⊛(v) + 1/2) + bw̄(π3, v, π3(v))

≤ 2bw̄(π3, v, π⊛(v) + 1/2).

Now apply Corollary 8.13

bw̄(π3, v, π⊛(v) + 1/2) ≤ bw̄(π⊛, v, π⊛(v)) + 2
√
d(π⊛, π3)2

(|U | − 2

k − 2

)

and then recall
√
d(π⊛, π3) = O(ǫn) by Lemma 8.20 and the assumption that OPT is small.

Next

bw̄(π⊛, v, π⊛(v)) ≤ (1 +O(ǫ))bw
π⊛

(π⊛, v, π⊛(v)) (Second part of Lemma 8.18)

= (1 +O(ǫ))b(π⊛, v, π⊛(v)) (Lemma 8.7) (8.6)

Finally

b(π⊛, v, π⊛(v)) ≤ b(σ1, v, σ2(v)) +O(nk−2(ǫn+
√
ǫ2n2)) (Lemmas 8.12, 8.11 and 8.15)

= O(ǫnk−1) (v ∈ U).

which completes the proof of the Lemma.

Lemma 8.22. C(π3) ≤ (1 +O(ǫ))OPTU .

Proof. First we claim that

|(C(π3)− C(π⊛))− (Cσ
2

(π3)− Cσ2

(π⊛))| ≤ E1, (8.7)

where E1 is the number of constraints that contain one pair of vertices u, v in different order in π3

and π⊛ and another pair {s, t} 6= {u, v} with relative order in π3, π⊛ and σ2 not all equal. Indeed

constraints ordered identically in π3 and π⊛ contribute zero to both sides of (8.7), regardless of σ2.

Consider some constraint S containing a π3(v)/π⊛-inversion {u, v} ⊂ S. If the restrictions of the

three orderings to S are identical except possibly for swapping u, v then S contributes equally to

both sides of (8.7), proving the claim.

To bound E1 observe that the number of inversions u, v is d(π3, π⊛) ≡ D. For any u, v Lemmas

8.21, 8.15 and 8.17 allow us to show at most O(ǫnk−2) constraints contribute, so E1 = O(Dǫnk−2) =

O(ǫOPTU ) (Lemma 8.20).

Finally bound Cσ
2

(π3)−Cσ2

(π⊛) = C̄σ
2

(π3)−C̄σ2

(π⊛) = O(ǫOPTU ), where the equality follows

from the definition of w and the inequality is the third part of Lemma 8.19.
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8.8 Analysis of π4

We now prove Theorem 8.4, that is

C(π4) ≤ (1 +O(ǫ))OPT. (8.8)

We consider three contributions to these costs separately: constraints with 0, 1, or 2+ vertices in

V \ U .

The contribution of constraints with 0 vertices in V \U to the left- and right-hand sides of (8.8)

are clearly C(π3) and C(π⊛) respectively. We showed C(π3) ≤ C(π⊛)+O(ǫ)OPTU in Lemma 8.22.

Second we consider the contribution of constraints with exactly 1 vertex in V \ U . Consider

some v ∈ V \ U . We want to compare b(π3, v, σ4(v)) and b((U 7→ π∗), v, π∗(v)). Let p be the

half-integer so that Ranking(v 7→ p U 7→ π⊛) = Ranking(v 7→ π∗(v) U 7→ π∗). The algorithm’s

greedy choice minimizes b(π3, v, σ4(v)) so b(π3, v, σ4(v)) ≤ b(π3, v, p). Now using Lemmas 8.12

and 8.20 we have b(π3, v, p) ≤ b(π⊛, v, p) +O(
√
d(π3, π⊛)nk−2) = b(π⊛, v, p) +O(

√
OPT/nknk−1).

Note b(π⊛, v, p) = b((U 7→ π∗), v, π∗(v)). Let γ = OPT/nk. We conclude by Lemma 8.14 that the

contribution of constraints with exactly 1 vertex in V \U is O(|V \U |
√
OPT/nknk−1) = O(γ

3/2nk

ǫ ) =

O(ǫOPT ).

Finally by Lemma 8.14 there are at most |V \U |2nk−2 = O((γǫ )
2n2nk−2) = O(ǫ2OPT ) constraints

containing two or more vertices from V \ U .

This ends the analysis of our algorithm.



Chapter 9

Ranking MIN-CSPs: exact

algorithms

9.1 Introduction

The results presented in this chapter are joint work with Marek Karpinski. They previously appreared

in Karpinski and Schudy [2009a].

In this chapter we give exact algorithms for many of the ranking problems considered in Chapters

7 and 8.

Theorem 9.1. There exists a parameterized subexponential algorithm for FAST with runtime

2O(
√
K) + nO(1) for OPT ≤ K. A variant of the algorithm uses 2O(

√
K logK) + nO(1) time and

nO(1) space.

Both results in Theorem 9.1 improve the best up to now known parameterized runtime bound of

Alon, Lokshtanov and Saurabh Alon et al. [2009] for the feedback arc set tournament problem by a

Θ(logK) factor in the exponent. Feige [2009] indepently discovered Theorem 9.1, using a different

algorithm. We also give improved results for the closely related problem of Kemeny rank aggregation

(KRA); see e.g. Ailon [2007], Mathieu and Schudy [2009].

Theorem 9.2. Let m be the number of input rankings (voters), n the number of candidates, and

OPT ≤ m
(
n
2

)
the (unscaled) optimum value. There exists a parameterized subexponential algorithm

for Kemeny Rank Aggregation with runtime and space 2O(
√
K) + nO(1) for OPT/m ≤ K. A variant

uses 2O(
√
K log(K)) + nO(1) time and nO(1) space.

Note that our bound in Theorem 9.2 is based on an upper-bound K on the scaled optimum value

OPT/m, that is the average distance from input rankings to the output ranking. This is arguably

a more natural parameter than OPT itself. The best previously known runtime was nO(1) + 2O(K)
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Betzler et al. [2009].1

We also give the first fixed-parameter tractability result for our fragile ranking generalization for

arity 3.

Theorem 9.3. There exist parameterized subexponential algorithms for all fragile rank CSPs on

tournaments with arity three (e.g. 3-FAST and BetweennessTour) with runtime 2O(
√
K/n) ·nO(1)

for OPT ≤ K.

For betweenness the previously best known runtime was 2O(K1/3 logK) Saurabh [2009]. Our result

is better by a log factor in the exponent for the largest possible K = Θ(n3) and even better for

smaller K. Interestingly we can solve instances with K as large as Θ(n log2 n) in polynomial time!

9.2 Algorithms and analysis

Our exact algorithms are based on a few additional ideas. We describe our techniques for exact

FAST here and defer discussion of the other problems until later. Firstly any two low-cost rankings

for a FAST problem are nearby in Kendall-Tau distance. Secondly two rankings that are Kendall-

Tau distance D apart are equivalent to within additive O(
√
D) in how good each location for each

a vertex is (Corollary 8.13). Thirdly a consequence of fragility is that most vertices (in a low-cost

instance) have a vee-shaped cost versus position curve (Lemma 9.5), and optimal rankings are locally

optimal so we know that each vertex belongs at the bottom of its curve. The uncertainty in this curve

by
√
D causes an uncertainty in the optimal position also around

√
D (Lemma 9.4). Our algorithm

simply computes uncertainties r(v) in the positions of all of the vertices v and solves a dynamic

program for the optimal ranking that is near a particular constant-factor approximate ranking. We

remark that Braverman and Mossel Braverman and Mossel [2008] and Betzler et al. Betzler et al.

[2008, 2009] previously applied dynamic programming to FAST and KRA.

The kernelization algorithm of Dom et al. Dom et al. [2006] allows an arbitrary FAST instance

of cost OPT ≤ K to be reduced to an equivalent one with O(K2) vertices in time nO(1). There is a

kernelization algorithm for KRA in Betzler et al. [2009], but it produces an instance of size O(OPT ),

not the desired O(OPT/m). To get the desired kernel we generalize Betzler et al. [2009] slightly,

creating the kernel by repeatedly discarding Concorcet winners (ranking them first) and Condorcet

losers (ranking them last).

Lemma 9.4. In Algorithm 9.1 we have |π∗(v)− π4(v)| ≤ r(v) for all v ∈ V where π∗ is an optimal

ranking of V .

Proof. We have a tournament so d(π∗, π4) ≤ C(π∗) +C(π4) ≤ 2C(π4). By Corollary 8.13 therefore

|b(π∗, v, j + 1/2)− b(π4, v, j + 1/2)| ≤ 2
√
2C(π4) (9.1)

1Stated therein as runtime 2O(da) where da is the average pairwise Kendall-Tau distance between the input
rankings. We note that da = Θ(OPT/m) follows easily from the triangle inequality; see e.g. the classic proof that
picking a random input ranking is a 2-approximation in expectation.
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Input: Vertex set V0, constraint system c0.

1: Compute a kernel with vertex set V , |V | = O(K2), and constraint system c (used for rest of
algorithm) Dom et al. [2006], Betzler et al. [2009]. Hereafter interpret notations such as C(·)
and n relative to instance V, c, not V0, c0.

2: Sort the kernel V ,c by wins Coppersmith et al. [2006], yielding ranking π4 of V .
3: Set r(v) = 4

√
2C(π4) + 2b(π4, v, π4(v)) for all v ∈ V .

4: Use dynamic programming or divide-and-conquer (Details: Lemma 9.6) to find the optimal
ranking π5 with |π5(v)− π4(v)| ≤ r(v) for all v.

5: “Undo” the kernel step, extending ranking π5 of the kernel into a ranking of V0 as described in
Dom et al. [2006], Betzler et al. [2009].

Figure 9.1: Exact algorithm for FAST, where K = OPT , and KRA, where K = OPT/m. If

dynamic programming is used in the last line the runtime and space are both nO(1) + 2O(
√
K). If

divide-and-conquer is used the runtime is nO(1) + 2O(
√
K logK) and the space is nO(1).

Input: Vertex set V

1: Use Algorithm 8.3 to construct a 2-approximate ranking πgood.
2: for each π4 considered by our PTAS when constructing a 2-approximation do
3: if C(π4) ≤ 2C(πgood) then
4: Set r(v) = α1

√
C(π4)/n+ α2b(π

4, v, π4(v))/n for all v ∈ V , where α1 and α2 are absolute
constants.

5: Use dynamic programming (see Lemma 9.6) to find the optimal ranking π5 with |π5(v) −
π4(v)| ≤ r(v) for all v.

6: end if
7: end for
8: Return the best of the π5 rankings.

Figure 9.2: Exact algorithm for weak fragile ranking 3-CSPs in tournaments. The runtime is

nO(1)2O(
√
OPT/n).

for any j ∈ Z.

Fix v ∈ V . We conclude

|π∗(v)− π4(v)| ≤ b(π4, v, π4(v)) + b(π4, v, π∗(v)) (Fragility)

= b(π4, v, π∗(v) + 1/2) + b(π4, v, π4(v) + 1/2) (π4 is a ranking)

≤ b(π∗, v, π∗(v) + 1/2) + 2
√

2C(π4) + b(π4, v, π4(v) + 1/2) (By (9.1))

≤ b(π∗, v, π4(v) + 1/2) + 2
√

2C(π4) + b(π4, v, π4(v) + 1/2) (Optimality of π∗)

≤ 4
√
2C(π4) + 2b(π4, v, π4(v) + 1/2) (By (9.1))

= r(v) (Definition of r(v)).

Lemma 9.5. In Algorithm 9.1 we have maxj |{ v ∈ V : |π4(v)− j| ≤ r(v) }| = O(
√
OPT ).

Proof. Fix j. Let R = { v ∈ V : |π4(v)− j| ≤ r(v) }, the cardinality of which we are trying to

bound. We say v ∈ V is pricey if b(π4, v, π4(v)) >
√
2C(π4). Clearly (see also proof of Lemma 8.8)

2C(π4) =
∑
v b(π

4, v, π4(v)) ≥ (number pricey)
√

2C(π4) hence the number of pricey vertices is at
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most 2C(π4)/(
√

2C(π4) =
√

2C(π4). All non-pricey vertices in R have |π4(v)−j| ≤ 2 ·
√

2C(π4), so

at most 2
√
2C(π4)+1 non-pricey vertices are in R. We conclude |R| ≤ 3

√
2C(π4)+1 = O(

√
OPT )

since π4 is a 5-approximation Coppersmith et al. [2006].

Lemma 9.6. For k ∈ {2, 3} there is a dynamic program that finds the optimal ranking π5 with

|π5(v)−π4(v)| ≤ r(v) for all v, with space and runtime O(|V |k)2ψ where ψ = maxj |{ v ∈ V : |π4(v)− j| ≤ r(v) }|.
A divide and conquer variant has runtime O(|V |k)2O(ψ log |V |) and |V |O(1) space.

Proof. Say that a set S ⊆ V is valid if it contains all vertices v with π4(v) ≤ |S| − r(v) and no

vertex v with π4(v) > |S|+ r(v). Observe that for any s the valid sets of size s are uncertain about

at most ψ vertices, hence there are at most n2ψ valid sets.

We say that a ranking π of valid set S is valid if { v : π(v) ≤ j } is a valid set for all 0 ≤ j ≤ |S|.
It is easy to see that a ranking π is valid if and only if satisfies |π(v)− π4(v)| ≤ r(v) for all v.

For any ranking π over S let C ′(π) denote the portion of the cost shared by all orderings with

prefix π. That is, the cost of all constraints with at most 1 vertex outside S.2 One can easily see

the following optimal substructure property: prefixes of an optimal (w.r.t. C ′) valid ranking are

optimal (w.r.t. C ′) valid rankings themselves.

For any valid set S let κ(S) denote the C ′ cost of the optimal (w.r.t. C ′) valid ranking of S. The

dynamic program for k = 2 is

κ(S) = min
v∈S:S\{v} is valid


C ′(S \ {v}) +

∑

q∈V \S
c(v 7→ 1 q 7→ 2)


 .

and for k = 3

κ(S) = min
v∈S:S\{v} is valid


C ′(S \ {v}) +

∑

u∈S\{v}

∑

q∈V \S
c(u 7→ 1 v 7→ 2 q 7→ 3)


 .

The space-efficient variant evaluates κ using divide and conquer instead of dynamic programming,

similar to Dom et al. [2006]. Details deferred.

Proof of Theorems 9.1 and 9.2. Algorithm 9.1 is correct by Lemma 9.4. Lemmas 9.5 and 9.6 allow

us to bound the runtime and space requirements of the dynamic program.

Lemma 9.7. During the iteration of Algorithm 9.2 that guesses σ0 correctly we have |π∗(v) −
π4(v)| ≤ r(v) for all v ∈ V where π∗ is an optimal ranking of V .

Proof. Let ǫ be the error parameter that has our PTAS giving a 2-approximation. By Lemma 8.20

we have d(π⊛, π3) = O(OPT/n3−2). This together with Lemma 8.14 imply that

d(π∗, π4) = O(OPT/n3−2 + n ·OPT/(ǫn3−1)) = O(OPT/(ǫn))

By Lemma 8.12 therefore

|b(π∗, v, j + 1/2)− b(π4, v, j + 1/2)| = O(n
√
OPT/(ǫn)) (9.2)

2For k = 2 (FAST) it would be more natural to use C(π) instead, but this works better for k = 3.
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for any j ∈ Z.

Fix v ∈ V . We conclude

|π∗(v)− π4(v)| 1

(n− 1)32

(
n− 1

2

)

≤ b(π4, v, π4(v) + 1/2) + b(π4, v, π∗(v) + 1/2) (Lemma 8.9)

≤ b(π∗, v, π∗(v) + 1/2) +O(
√
nC(π4)/ǫ) + b(π4, v, π4(v) + 1/2) (By (9.2))

≤ b(π∗, v, π4(v) + 1/2) +O(
√
nC(π4)/ǫ) + b(π4, v, π4(v) + 1/2) (Optimality of π∗)

≤ O(
√
nC(π4)/ǫ) + 2b(π4, v, π4(v) + 1/2) (By (9.1))

= r(v)
1

(n− 1)32

(
n− 1

2

)
(Definition of r(v)).

Lemma 9.8. In Algorithm 9.2 we have maxj |{ v ∈ V : |π4(v)− j| ≤ r(v) }| = O(
√
C(π4)/n).

Proof. We proceed analogously to the proof of Lemma 9.5. Fix j. LetR = { v ∈ V : |π4(v)− j| ≤ r(v) },
whose cardinality we are trying to bound. We say v ∈ V is pricey if b(π4, v, π4(v))/n >

√
2C(π4)/n.

Clearly (see also proof of Lemma 8.8) 3C(π4) =
∑
v b(π

4, v, π4(v)) ≥ (number pricey)n
√

2C(π4)/n

hence the number of pricey vertices is at most 3C(π4)/(
√

2nC(π4)) =
√

2C(π4)/n. All non-pricey

vertices in R have |π4(v)− j| ≤ 2 ·
√
2C(π4)/n, so at most 2

√
2C(π4)/n+1 non-pricey vertices are

in R. We conclude |R| ≤ 3
√

2C(π4)/n+ 1 = O(
√
C(π4)/n).

Proof of Theorem 9.3. Lemmas 9.6 and 9.8, plus the test of the ”if”, allow us to bound the runtime

and space requirements of the dynamic program used by Algorithm 9.2 by nO(1)2O(
√
C(πgood)/n),

which is of the correct order since C(πgood) ≤ 2C(π∗). The for loop is over a constant number of

options and hence does not impact the runtime.

For correctness we focus on the iteration of Algorithm 9.2 that guesses σ0 correctly. The approx-

imation guarantee of our PTAS holds for this iteration so we have C(π4) ≤ 2C(π∗) ≤ 2C(πgood) and

hence the ”if” is passed. By Lemma 9.4 π∗ is among the orders the dynamic program considers.



Chapter 10

Conclusions

We introduced the concept of fragile constraints for constraint satisfaction problems and ranking

constraint satisfaction problems. We showed how combining our fragility concept with various forms

of density assumptions allow us to develop polynomial-time approximation schemes for a variety of

problems.

One open problem related to this thesis stands out both in potential for applicability and in

apparent difficulty: is there a polynomial-time approximation scheme for partial rank aggregation?

Partial rank aggregation is a generalization of Kemeny rank aggregation where rankings may give

several candidates the same rank, i.e. ties. Partial rank aggregation is especially interesting since

voters frequently do not rank the entire universe; for example search engines give only the top

results. A 1.5-approximation of partial rank aggregation exists [Ailon, 2007] which reduces to a

form of weighted feedback arc set where the weights satisfy the triangle inequality (i.e. directed

metric). The additive error algorithms that we use as subroutines (e.g. Theorem 2.2) also generalize

to triangle-inequality instances Fernandez de la Vega et al. [2005]. We suspect that there is a PTAS

for partial rank aggregation, but the extension of our PTAS for Kemeny rank aggregation to this

problem is not obvious.

Another interesting open question involves the noisy correlation clustering model and semi-

definite program described in Chapter 5. In that chapter we showed that if the base clusters are

all of size at least c · √n then the semi-definite program reconstructs the base clustering exactly.

The open question is what happens when some base clusters are smaller than the threshold while

others are larger. It is fairly easy to see that the optimal SDP solution X∗ in that case will not be

integral, even within the large clusters. However we conjecture that rounding each entry of X∗ to

the nearest integer would yield a graph whose large connected components are precisely the large

base clusters. Analyzing this is tricky because the effect of the noise on the objective function of

Θ(n
√
n) is much greater than the effect on the objective of putting a single cluster together, which

is Θ((
√
n)2) = Θ(n).
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