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Abstract of “Virtual Human Bodies with Clothing and Hair: From Images to Animation”

by Peng Guan, Ph.D, Brown University, May 2013

Realistic clothing and hair animation are necessary for many applications such as special effects,

gaming, and on-line fashion. Thanks to the advances in computer graphics, highly realistic clothing

and hair animation is common in recent animated movies by use of Physics Based Simulation (PBS).

Clothing and hair modeling/animation are also important to other fields such as computer vision.

However, PBS methods create clothing/hair that are specific to a particular body model and there

is no good way to invert the PBS process to fit the parameters of the generative model to images.

Furthermore, PBS for clothing requires a significant amount of manual work to find the right size

for every instance of a body and prepare the clothing for simulation. This makes PBS unsuitable

for applications that involve various body shapes, such as virtual fashion and crowd simulation. We

believe a new generative clothing model will address these problems.

In this thesis, we describe a complete process from estimating 3D human body form using image

evidence to animating the body with data-driven, low-dimensional 3D clothing and hair models.

First, we describe a solution to estimating 3D human body shape from a single photograph or

painting using multiple image cues including silhouettes, edges, and smooth shading. Second, we

explore a 2D clothing model in which the clothing is modeled as a closed contour of points that

are offsets from corresponding body contour points. We show the increased accuracy of 2D body

shape estimation and clothing type classification using such a model. Third, we focus on modeling

the appearance of the 3D body and propose a complete system for simulating realistic clothing on

3D bodies of any shape and pose without manual intervention. Fourth, we also present a 3D hair

model that performs hair animation in real-time, preserves the key dynamic properties of physical

simulation, and gives the animator continuous interactive control over hair styles (e.g. length and

softness) and external phenomena (e.g. wind).

The result is a 3D human body model that can be estimated from images and then animated

with realistic clothing, hair, and body movement.

xvi



CHAPTER 1

Introduction

1. Thesis Statement

Machine learning can be used to construct data-driven 3D human bodies, clothing, and hair

that 1) can be estimated from sensor data; 2) produce realistic animations; 3) are low-dimensional

enough to be computationally practical; 4) may be applied to broader computer vision tasks or

real-time applications.

2. Introduction

Virtual human bodies, clothing, and hair are widely used in a number of scenarios such as 3D

animated movies, gaming, and online fashion. In computer vision, a variety of human body models

with different levels of specificity have been utilized to improve the performance of human action

analysis, human motion capture, and body shape & pose estimation from images or videos. In the

entertainment industry, animators use computer graphics techniques to generate vivid 3D virtual

characters and put them in virtual contents such as animated movies and games. Virtual bodies

may also be used in medical applications where the body shape and weight of the patients can be

tracked over time. In augmented reality, virtual people are overlayed on the real visual contents to

provide new user experiences. Besides human body modeling, how to realistically represent clothing

and hair is also on the top of the research agenda. The recent animated movie “Brave" (by Disney

Animation Studio, 2012) demonstrates state of the art clothing and hair simulation for animated

movies. Games typically have a very tight time budget for clothing and hair simulation. However,

there is no doubt that the realism of clothing and hairs are among the key indicators of high quality

visual effects.

The research on human body shapes and clothing/hair modeling are closely related in a number

of applications even though they have been largely treated as independent research topics in the

vision and graphics communities. Human beings come in a variety of body shapes. Any virtual try

on applications are meaningful when they have the real body shapes as input, which can be directly

provided by users or estimated from various kinds of evidence. Body shape and pose estimation will

be much more accurate when clothing is modeled because clothing obscures body shape. Unfortu-

nately, the effect of clothing is ignored in most of recent work on body shape estimation. Online
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Figure 1.1. Physics based simulation for clothing. Figures are obtained from

a recent paper [50] (“Efficient Simulation of Inextensible Cloth" in SIGGRAPH

2007.) The cloth contains 8325 (top) and 10688 (bottom) vertices, with average

simulation time per frame of 5.2 and 7.8 seconds, respectively.

apparel shopping is another promising application, which involves clothing models that can adapt

to different body shapes. Real-time hair models are essential for gaming and accurate body height

estimation in forensics.

The standard techniques for clothing and hair modeling employ physics based simulation (PBS)

[29, 62, 80, 112, 15, 123], which has the advantage of producing realistic results with typically
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Figure 1.2. Physics based simulation for hair. Renderings are generated

using GeForce GTX 480 with hardware tessellation engine. Over 18,000 hairs are

interpolated from a few hundred hair strand guides. (Game Developer Conference

2010, youtube link: http://www.youtube.com/watch?v=YF8CUSiPDJ0.)

high computational cost. See Figure 1.1 and 1.2. Furthermore, the results are specific to a particular

body model. Each character requires a new simulation with typically manual initialization. Hair

animation faces similar challenges, except that body pose/motion instead of intrinsic body shape

plays a much more important role. These limitations make PBS suitable to animated movies that

have an abundant time budget and a limited number of characters, but not for applications such as

internet-scale virtual fashion or retail clothing try-on.

We explore clothing and hair models that have the following properties: 1) They should look

realistic. They may not have the same level of realism as PBS, but they need to maintain fine details,

such as the wrinkles and folding for clothing and plausible dynamics for both clothing and hair. 2)

They should be low-dimensional for computational efficiency, which usually implies a parametric

model such that the appearance is determined by a relatively small set of parameters. 3) They

have the potential to be used in a broader range of applications. For instance, the clothing model

should be generic so that it adapts to different body shapes. The hair model should allow real-time

simulation for gaming, and preferably gives users interactive hair style control for virtual hair try

on.

We start by providing solutions to 3D body shape estimation (with minimal clothing) from a

single image (Figure 1.3). We then focus on a simple 2D contour model of clothing that facilitates the

3



Figure 1.3. 3D body shape estimation from a single image or painting.

We estimate the 3D body shape and pose from a single, un-calibrated image. The

result is a posable 3D body model.

Figure 1.4. 2D body shape under clothing. We build a 2D eigen clothing

model to accurately estimate the body shape under clothing. The blue contour

represents estimated body shape. The red contour is the clothing outline.

2D body shape estimation under clothing (Figure 1.4). We further build a 3D data-driven clothing

model that produces realistic clothing efficiently and adapts to different body shapes (Figure 1.5).

This model is fully automatic at run time and it allows clothing animation on 3D bodies of different

shapes. Finally, a real-time data-driven hair model is also presented to animate with the 3D body

(Figure 1.6). Such models are useful to computer graphics as well as computer vision.

2.1. Human Body Shape and Pose Estimation. There are a large number of research

articles that aim to infer 2D or 3D human body shape and pose from regular or depth images

[42, 61, 63, 101, 78, 60, 95, 98, 126, 116, 5, 54, 51]. The estimation results are important for

human activity recognition, human intention reasoning, forensics, online apparel shopping, etc. The

human body is commonly modeled as a kinematic tree (similar to a puppet) rooted at the pelvis.

Body parts such as limbs and the torso are connected through joints. The goal of pose estimation
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Figure 1.5. Dressing people in different body shape. Our “DRPAE" model

not only produces realistic clothing, but also adapts to different body shapes.

is to infer a set of relative joint rotations that determine the positioning of body limbs and parts

in the images. Human Shape typically refers to intrinsic pose-independent shape such as height,

weight, chest size, waist size and so on. A small set of coefficients for a parametric 3D body model is

conveniently used to represent the human shape. We can obtain different human shapes by varying

the coefficients.

In this thesis, we provide a solution to 3D shape and pose estimation under the most challenging

situation where only a single image is available and the image is captured in a natural environment

with unknown camera calibration. We also demonstrate that a simplified 2D clothing model helps

to increase the accuracy of 2D body shape estimation significantly.

2.2. Clothing Animation. Clothing animation is important for all kinds of digital applica-

tions that involve dressed virtual characters. Because of the complex nature of cloth dynamics, many

applications (especially in games) rely on texture mapping on the body geometry or very coarse tri-

angulated cloth meshes. On the other hand, clothing simulation in animated movies typically has

very high quality because of the abundant computational resources. We focus on developing a data-

driven clothing model that is realistic enough to present fine details and wrinkles, but is also efficient,

low-dimensional, and can adapt to different body shapes [52]. Given the estimated 3D body model

5



Figure 1.6. Multi-linear dynamic hair model. Our multi-linear dynamic hair

model allows real-time animation of 900 guides of hair with interactive control over

the hair softness (red slider, the higher the softer) and length (blue slider, the higher

the longer); bottom row shows interactive control of wind strength and direction.

regardless of its intrinsic shape, we are able to properly fit the estimated body with our clothing

model. We envision such models to be appropriate for many other computer vision applications as

well.

2.3. Hair Animation. Hair animation is a difficult task, primarily due to the large volume

of hairs that need to be considered (a typical human head consists 100,000 hair strands). We avoid

dealing with every single hair strand by building a low-dimensional model that 1) preserves the

key dynamic properties of physical simulation at a fraction of the computational cost, 2) allows

user specifiable hair styles (length, softness) and external phenomena (wind) [53]. We envision this

model to be used in real-time applications such as gaming.

3. Challenges

Body Shape and Pose Estimation from a Single Images. An image of a human body

in a natural environment arises from the composite effect of numerous factors including lighting,

occlusion, human pose and shape, camera view, clothing, and so forth. Body shape and pose esti-

mation from images is very difficult mainly because there are so many uncertainties that will affect

what is perceived. We briefly review the challenges of body form estimation from a single image.

Image Capture. An image is a projection of 3D world to the 2D image plane, during which the

depth information is lost and not directly recoverable with only one image. For instance, it is hard

to tell whether a person has a flat or bulging belly if he/she is directly facing the camera view.

Occlusion. External occlusion or self-occlusion (i.e the limb is occluding the torso) can occur in

the image, which severely hurts pose estimation. Lighting. Lighting is generally considered to have

a negative impact because changes in illumination cause changes in how an object appears in the

image. However, we show that exactly this property of appearance variation with lighting provides

6



additional cues for shape estimation. Background Unknown. Without a known background,

it is difficult to extract an accurate foreground silhouette which is often used for pose and shape

estimation. Clothing. Clothing obscures body shape. There is an ambiguity between a thin person

dressed in loose clothing and a fat person dressed in tight clothing. We show that a 2D clothing

model helps to reduce such ambiguity and achieve much better body shape estimation results.

Clothing Animation. The traditional PBS methods for clothing animation have the following

challenges. Computation. They achieve realistic simulations at high computational cost, which is

why they are often used in the off-line scenarios such as movie making. Note that, there exist hybrid

methods that use PBS to simulate a low resolution mesh and use data-driven methods to learn the

mapping between simulated coarse meshes and highly wrinkled detailed meshes from training set

[111, 70]. These methods can achieve real-time performance, but their results are not comparable

to pure PBS methods. Manual Treatment. Choi et al. [29] summarize the fundamental problem

confronting garment designers to be the “nontrivial task of choosing clothing sizes and initializing

clothing simulation on 3D characters". Both of them are currently done manually. Adaptation

to New Body Shapes. Each distinct body shape requires a separate simulation, which involves

a significant amount of manual work, including manually choosing the appropriate cloth size for

each character and placing the cloth at proper initial positions. This makes it inappropriate for

internet-scale clothing simulation in applications such as online fashion.

Hair Animation. The major challenge of hair animation is to develop a compact, computa-

tionally efficient model, that is at the same time expressive enough to convey the dynamic behaviors

seen in high-resolution simulations. Current methods are either too slow for real-time applications

or too coarse to represent complex hair dynamics.

4. Contribution of the Thesis

In this thesis, we provide a complete pipeline from getting the 3D body shape and pose from

image evidence to animating the body with clothing and hair. This makes internet-scale customized

clothing animation possible. We also show the potential of modeling clothing in computer vision

tasks.

(1) We describe a solution to the challenging problem of estimating human body shape from a

single photograph or painting. Our approach computes shape and pose parameters of a parametric

3D human body model directly from multiple monocular image cues including silhouette, edges,

and smooth shading. One of the key contributions is the formulation of parametric human shape

from shading. We estimate the body pose, shape and reflectance as well as the scene lighting that

produces a synthesized body that robustly matches the image evidence. To deal with ambiguity in

7



a monocular image, we learn a low-dimensional linear model of human shape in which variations

due to height are concentrated along a single dimension, enabling height-constrained estimation of

body shape.

(2) We propose a fully generative 2D eigen clothing model that is based on an underlying

naked model with clothing deformation. This model significantly improves the inference of 2D body

shape under clothing. Clothing deformation from the body is one-directional (clothing only makes

the contour larger), therefore we model the skewed statistics of the eigen-clothing coefficients. This

work is also the first to address the shape-based recognition of clothing categories on dressed humans.

The preliminary work shows the potential of modeling clothing in computer vision applications.

(3) We propose a 3D clothing model that is able to automatically dress synthetic bodies of any

shape in any pose at run time. It provides a factored model of clothing shape so that pose-dependent

wrinkles are modeled separately from body shape. Interpenetration is efficiently handled by solving

a linear system of equations and this approach is significantly faster than physical simulation. The

method is ideal for applications where the body shape is not known in advance such as retail clothing

applications where users create different 3D bodies or estimate 3D body shapes. It is also useful for

animating many bodies of different shapes because it removes the labor involved in either creating

or finding the appropriately fitting garment.

(4) We introduce a multi-linear reduced-space dynamical model for modeling hair. It is ex-

plicitly parameterized by a number of real-valued factors (e.g., hair length, hair softness, wind

direction/strength, etc.) that make it easy to adjust the groom and motion of hair interactively at

test time. We formulate our model using tensor algebra and illustrate how dynamics can be incor-

porated within this framework. Furthermore, we explicitly address the issue of hair-body collisions

by a very efficient optimization procedure formulated directly in the reduced space and solved using

a form of iterative least squares. Our formulation goes substantially beyond current reduced-space

dynamical models (e.g., [37]); in fact, [37] can be interpreted of as a special case of our model.

5. Thesis Outline

Chapter 1. Introduction. Thesis statement, background, challenges, and contributions.

Chapter 2. State of the art. We briefly review the state of the art of human body models,

human shape and pose estimation, clothing animation, and hair animation.

Chapter 3. Estimating 3D Body Shape and Pose from a Single Image. We describe the

solution to estimation 3D human body shape and pose from a single image.

Chapter 4. 2D Eigen-Clothing Model. We propose a 2D eigen-clothing model that improves

the accuracy of 2D body shape estimation under clothing.
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Chapter 5. DRAPE : DRessing Any PErson. In this chapter, we “dress" the estimated 3D

human body with synthetic clothing. The “DRAPE" model generate realistic clothing meshes that

automatically adapt to different body shapes.

Chapter 6. Multi-linear Dynamic Hair Model. We model hair guides in the reduced space and

use a multi-linear model to interactively control the hair appearances such as hair length, softness,

and wind directions/strengh. The model runs in real-time.

Chapter 7. Conclusions and Future Work. We summarize the contributions of the thesis as

well as future research directions.
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CHAPTER 2

State of the Art: A Brief Review

In the first part of this chapter, we review two kinds of methods for capturing 3D human

pose and shape: 1) marker based active sensing and 2) marker-less capturing. Then we will focus

on marker-less capturing techniques and introduce a wide variety of 3D body models that make

marker-less methods possible. The second part of the chapter focuses on providing the state of the

art for animating the 3D body with realistic clothing and hairs.

1. Motion Capture and Human Shape

“Motion capture is the process of recording people’s movement. It has proved very useful in

entertainment, sports, medicine, computer vision, and robotics." [118]. In the movie industry,

human motion is captured and transferred to cartoon or monster characters. A successful motion

capture system can save animators an enormous amount of time, because they do not need to

manually specify the key frame motion of the body. Similar techniques include “facial expression

retargeting" [119] where the facial expressions on real people are captured and are transferred to

virtual characters. In sports, motion capture is used to extract the motions of professional athlete

for training purposes or for creating vivid motions in the sports games.

1.1. Marker Based Active Sensing. Most successful commercial motion capture systems

(MoCap) use markers of some form (e.g. Vicon, Motion Analysis, Meta Motion, Qualisys). See

Figure 2.1. These systems primarily focus on capturing human pose. By attaching active (electro-

magnetic, accelerometers) or passive (reflective markers) devices to the human body parts, human

motions can be captured with minimal error by recording the 3D location and movement of the

markers. Marker based active sensing has two important advantages: 1) Markers have their own

unique digital signatures so that the markers are instantly and uniquely recognized the moment a

camera sees them. Because the correspondences are obtained trivially, it requires minimal post-

processing and manual effort. 2) Active sensing MoCap can provide sub-millimeter precision at high

frame-rate which makes it suitable for military, medical, and sports applications. The downside of

marker based Mocap is that it typically happens in a controlled environment; the subject needs to be

fully cooperative to wear the cumbersome devices; and the system is expensive. That is why marker-

less motion capture is preferred under many circumstances because it requires less cooperation from
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(a) Marker-based Motion Capture

(b) Motion Capture in Avatar (2009) (c) Marker-less Motion Capture

Figure 2.1. Motion Capture Technologies. (a) The process of motion cap-

ture. Human motion can be extracted by placing markers on the body. The mo-

tion is then transferred to virtual characters. (http://lukebeech.wordpress.com/

motion-capture/) (b) Motion capture was used in the movie Avatar (2009). (http:

//lukebeech.wordpress.com/motion-capture/) (c) Marker-less motion capture

techniques by Organic Motion. (http://www.organicmotion.com/)

the subjects and the environment is less constrained. However, marker-less motion capture (e.g.

Organic Motion) is significantly more difficult because we need to deal with noisy information in

one or more images.

1.2. Shape Capture. Active 3D scanners (NextEngine, LaserDesign, etc) are commonly used

to capture the shape of objects including human bodies. They emit radiation (laser rays, structured

light pattern) and collect the depth information of the surfaces of interest. Then, a 3D point cloud,

corresponding to 2D points in the image, can be reconstructed, and therefore the shape can be

inferred. Just like normal cameras, the shape can only be captured if it is not obscured in the view.
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(a) Full Body Scanner (b) Body Scan with Texture

Figure 2.2. 3D Body Scans. (a) A snapshot of a full body scanner. (http:

//www.dmsf.ust.hk/fullbodyscanner/fullbodyscanner.htm) (b) Mesh recon-

structed from a partial view with texture map. (http://www.photomodeler.com)

This means that a full scan of an object typically requires multiple 3D scanners, with each covering

a partial view. 3D scanners first produce a 3D point cloud and these points are triangulated to

produce a 3D mesh. Even though 3D scanners are widely used in material production, industrial

engineering, and entertainment applications, they do have some weaknesses. 1) Scanning an object

in motion is very difficult because the frame rate is not high enough (typically 12 seconds per

scan). 2) The cost of these systems are typically high. 3) The scanners do not provide temporal

surface point correspondences for the meshes, which makes shape editing, texture-mapping, and

shape deformation difficult.

1.3. Vision-based Techniques. In computer vision, people use different ways to infer object

shape. It is called Shape from X, where X can be silhouettes, photometric stereo, depth, motion,

shading [124] etc. Shape from Silhouettes was original introduced by Laurentini [74]. Given multiple

calibrated cameras, the idea is to maximize the 3D volume of the object such that the projection of

the 3D volume to each camera view completely falls inside the foreground silhouette of that view.

The 3D volume can be obtained by voxel carving or intersection of generalized cones. To obtain

an accurate reconstruction, a lot of calibrated cameras are needed (typically more than 16). Shape

from Stereo algorithms use texture to establish pixel correspondences between multiple camera views.

Suppose the camera calibration and pixel correspondences are known, the 3D location of a point

can be computed through “triangulation". However, accurate detection of pixel correspondences is
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(a) Shape from Silhouettes

(b) Shape from Stereo

Figure 2.3. Shape from Silhouette and Stereo. (a) The results of vi-

sual hull body reconstruction for a sequence of frames. (http://www.cgal.

org/UserWorkshop/) (b) Shape reconstruction from stereo images. (http://

carlos-hernandez.org)

still an active research problem and post-processing is required to fill holes in the mesh. Shape from

Motion or Structure from Motion is similar to Shape from Stereo except that the camera is moving

and the camera calibration information has to be inferred from the corresponding pixels in different

frames. With the advent of Kinect technologies, Shape from Depth is becoming cheaper and more

flexible. The recent work Kinect Fusion [64] is a very good example of combining the depth maps

of a moving camera to reconstruct a complex 3D scene. Kinect Fusion is similar to Structure from

Motion techniques except that it replaces a regular camera with depth camera.

1.4. Model-based Approaches. Once we know the object of interest (e.g. human body),

another commonly used approach is to build a parametric prior model of it and use it to constrain

the reconstruction result. The problem is formulated as an optimization of an objective function over

the model parameters [10, 9, 7, 57, 54]. Such objective functions typically minimize the differences

between the image features extracted from the observations and the projection of the hypothesized

object. The projection of the hypothesized object is determined by a set of parameters such as

human pose, human shape, and camera projection matrices. Having a prior model with a limited

number of parameters makes the estimation easier. However, as the number of parameters increases,
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(a) (b) (c) (d) (e)

Figure 2.4. Summary of Body Models. (a) Kinematic tree body model. xr

and θr are the global position and orientation of the root. θi is the relative part

rotation. (Reprinted from [93]). (b) Cylinders body model. (Reprinted from [41]).

(c) Super-quadrics body model. (Reprinted from [96]). (d) Meta-ball body model.

(Reprinted from [84]). (e) Data-driven statistical body model. (Reprinted from

[84])

.

the optimization becomes more difficult and it can be trapped in the local optimum. Model-based

approaches require the use of a parametric model of the human body. We need to be able to change

the articulated pose as well as pose-independent shape or dimensions. The choice of human body

model is crucial.

2. Human Body Models

Human body models (Figure 2.4) need to include the kinematic aspect (skeleton, bones) and

shape aspect (soft tissue, flesh, muscle, and even clothing) of the human being. Kinematic trees are

commonly used to model articulated pose. The body is segmented into parts, which are linked by

joints. The parameter space for the kinematic tree include: 1) the position and orientation of the

root joint in the world coordinate, and 2) the relative orientation of each joint with respect to its

parent joint. In principle, each joint has 3 degrees of freedom (DOFs) for rotation. However, some

joints have fewer than 3 DOFs because of the movement constraints of the body joint (e.g. knees).

A kinematic tree model typically has 25-60 DOFs in total.

2D Models. Existing shape models are much more diverse, ranging from 2D to 3D models.

2D shape models are mainly based on quadrilateral/elliptical [3, 44, 68] patches or contours [47].

These 2D models are computationally efficient but they are view dependent and it is impossible
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(a) (b)

Figure 2.5. SCAPE Body Model. (a) The first four principle components in

the space of body shape deformation. (b) SCAPE deformations (three subjects,

each in four different poses). (Reprinted from [4]).

.

to recover the volumetric shape measurements. 3D models, on the other hand, are usually more

complex, however they are view independent and the detailed body shape can be recovered.

Geometric Primitives. Simple part based 3D models represent each part as a rigid shape

which is connected by the kinematic tree. These models are easy to manipulate and good for

articulated pose tracking. However, the rigid parts are commonly represented by simple geometric

primitives such as cylinders, truncated cones, and ellipsoids, which are too crude for detailed shape

and pose estimation.

Skinning Models. Skeleton-driven surface-based models are very popular in animated movies

and gaming. A graphics modeler first needs to create the bone structure and the skin of the 3D

character using software such as Maya or 3DMax. Then, in the rigging or skinning process, each

skin vertex is associated with one or more bones that affect the movement of this vertex. The

location changes of the vertices are determined by the weighted interpolation of the rigid bone

transformations. Such linear blending skinning techniques are widely used for character modeling in

computer graphics. The weakness of skinning models is that there might be artifacts or non-physical

deformations at the joints, because human bodies are highly non-linear structures and sometimes

the vertex deformation can not be simply modeled as a linear blending of bone transformations.

However, there is no doubt that skinning models are very popular body models and they provide

the good tradeoff in terms of realism and ease of use.

Data-driven Statistical Body Models. As 3D body scanners become more accessible, data-

driven body models have drawn a lot more attention than before. Data-driven models need a large
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database of 3D scans of people who are in different shapes and poses. The deformation of body

surface is learned from real 3D scans of people and subtle deformations such as muscle bulging or

stretching can be represented using this model. In the training stage, 3D scans of bodies are acquired,

post-processed, and aligned. The body deformations, either due to pose changes or intrinsic shapes,

are learned from these scans. In the deformation stage, a template body can be deformed to a “new

person" in some pose using the learned deformation model. The downside of this type of model is

that there is a lot of upfront effort (e.g. 3D scan data post-processing, mesh alignment) before the

model can be trained and used. Also, the generalization of the model is largely dependent on the

selection of training examples. Ideally, the training set should cover variations of different intrinsic

body shapes and body poses, but it requires experience to identify those “good" training examples.

As an example, the SCAPE model [4] (Figure 2.5) which is learned from real 3D scans of people,

is able to represent the novel body shapes not seen in the training set, the articulated body pose

deformations, and the non-rigid pose-dependent deformations.

3. 3D Body Shape Estimation from Images

Body shape is a pose-independent representation that characterizes the fixed skeletal structure

(length of the bones) and the distribution of soft tissue (muscle and fat). There are several methods

for representing body shape with varying levels of specificity: 1) non-parametric models such as

visual hulls, point clouds and voxel representations (not considered further here); 2) part-based

models using generic shape primitives such as cylinders or cones [41], superquadrics [69, 96] or

“metaballs” [84]; 3) humanoid models controlled by a set of pre-specified parameters such as limb

lengths that are used to vary shape [35, 58, 76]; 4) data driven models where human body shape

variation is learned from a training set of 3D body shapes [4, 10, 92, 94]. Detailed parametric

models allow body reshaping [4, 65, 125] to create new body shapes. This is an interesting research

direction and a full review is beyond the scope of this thesis.

Machine vision algorithms for estimating body shape typically rely on structured light, pho-

tometric stereo, or multiple calibrated camera views in carefully controlled settings where the use

of low specificity models such as visual hulls is possible. As the image evidence decreases, more

human-specific models are needed to recover shape. Several methods fit a humanoid model to mul-

tiple video frames, or multiple snapshots from a single camera [35, 96]. These methods estimate

limited aspects of body shape such as scaling parameters or joint locations yet fail to capture the

range of natural body shapes.

More realism is possible with data-driven methods that encode the statistics of human body

shape. Seo et al. [92] use a learned deformable body model for estimating body shape from multiple
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Figure 2.6. Body Shape Estimation from 4 Camera Views. 3D body shape

and pose is estimated from 4 image silhouettes (red). The pose and shape of the

body model is optimized such that the model projection in each camera (blue) best

matches (yellow) the image silhouette. (Reprinted from [8]).

.

photos in a controlled environment with the subject seen in a predefined pose. To estimate a

consistent body shape in arbitrary pose it is desirable to have a body model that factors changes in

shape due to pose and identity. Balan et al. [10, 9] (Figure 2.6) show that such a model allows for

the shape and pose to be estimated directly from multi-camera silhouettes.

A single monocular image presents challenges beyond the capabilities of all the methods above.

Sigal et al. [94] directly estimate body shape from a single image by training a mixture of experts

model to predict 3D body pose and shape directly from various 2D shape features computed from

an image silhouette. They estimate body shape in photos taken from the Internet, but require

manual foreground segmentation and do not accurately estimate pose. Chen et al. [26, 25] combine

prior knowledge of object class and Gaussian Process Latent Variable Models (GPLVM) to infer 3D

shapes from a single view. While silhouettes constrain the surface normals at the object boundary,

non-rigid deformation, articulation and self occlusion make the silhouette boundary insufficient to

recover accurate shape from a single view.

3.1. Body Pose and Shape Under Clothing. Very little work in computer vision has fo-

cused on modeling humans in clothing. What work there is focuses on modeling 3D human shape

under clothing without actually modeling the clothing itself. Balan and Black [7] (Figure 2.7) present
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Figure 2.7. The Naked Truth. Estimating 3D detailed body shape under cloth-

ing. (Reprinted from [7]).

a system based on the 3D SCAPE [4] body model that uses multiple camera views to infer the body

shape. They make the assumption that the estimated body shape belongs to a parametric family

of 3D shapes that are learned from training bodies. They fit the body to image silhouettes and

penalize estimated body shapes that extend beyond the silhouette more heavily than those that are

fully inside. This models the assumption that body shape should lie inside the visual hull defined by

the clothed body. In essence their method attempts to be robust to clothing by ignoring it. Hasler

et al. [57] take a similar approach to fitting a 3D body to laser range scans of dressed humans.

Almost all work on 2D person detection and pose estimation implicitly assumes the people are

clothed. Despite this, few authors have looked at using clothing in the process [99] or at actually

using a model of the clothing. Recent work by Bourdev and Malik [19] learns body part detectors

that include upper and lower clothing regions. They do not model the clothing shape or body shape

underneath and do not actually recognize different types of clothing.

4. Clothing Animation

When 3D body shapes are estimated, many applications require realistic clothing animation

on the bodies. For virtual fashion, the quality of clothing animation is particularly important. In

this section, we briefly review clothing animation techniques. The extensive literature on cloth

simulation focuses on modeling the physical properties of cloth and developing stable methods that

can deal with cloth collisions, friction, and wrinkle buckling [12, 21, 22, 28, 50]; see [29, 62, 80]

for surveys. These methods produce realistic simulations, but at high computation cost. Games and

retail clothing applications, however, require efficient solutions because of their interactive nature.

Efficient approaches include the Verlet integration scheme [66] and GPU acceleration [18]. Another

important research direction is to automate the clothing fitting procedure, which includes predicting

the correct size for 2D patterns or 3D draped forms for a given human body [52, 77].
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(a) Pattern Design (b) Clothing Simulation Results

Figure 2.8. Clothing Simulation Pipeline. (a) Design a series of different cloth

sizes, and manually initialize the cloth pieces for simulation. (b) Simulation results.

(Snapshots generated using OptiTex Inc clothing design and simulation software.)

.

Real Cloth Capture. Structured light, stereo, optical flow, special patterns and multi-camera

systems can be used to capture cloth undergoing natural motion [20, 38, 86, 90, 100, 117]. These

techniques do not immediately provide a way to re-purpose the garments to new sizes and poses

but could be used to provide training data to a method like ours. There has been recent interest

in using such real cloth motions to learn models of cloth deformation and, in particular, wrinkles

[32, 85]. Our clothing model requires aligned clothing meshes of different sizes; these are difficult

to obtain from scanned garments. Instead, we simulate training clothing using PBS, giving a known

alignment between all training instances (cf. [111]).

From 2D Patterns to 3D Fitting. Choi et al. [29] summarize the major challenges in

cloth simulation and the “non-intuitive task of clothing a 3D character with a garment constructed

from 2D patterns". There has been relatively little work to address this issue. Cordier et al. [33]

describe a web application that allows users to interactively adjust a 3D mannequin according to a

shopper’s body measurements and then resize and fit a garment to the body. Decaudin et al. [40]

describe a system in which the users draw 2D sketches of contours and lines on a virtual mannequin,

and then the system converts these to 3D surfaces. In [110], the system allows users to design

clothing directly in 3D space and later flattens the 3D pieces to 2D. Fuhrmann et al. [48] define

an automated method for positioning 2D pieces around the body to initialize a traditional physical

simulation. Umetani et al. [107] propose an interactive tool for bidirectional editing between a 2D

clothing pattern and a 3D draped form. Our approach is different in that all our effort is up front;
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(a) (b)

Figure 2.9. Hair Simulation. (a) Hair simulation results from [91]. (b) Hair

simulation in the recent animated movie Brave (2011) by Disney Animation Studio.

.

once a garment is designed, we automate the process of converting it to an infinitely resizable 3D

model. Fitting to a new body is then fully automated.

Modeling Wrinkles. Wrinkles are important for producing realistic visual effects, therefore

numerous wrinkle generation algorithms have been proposed. One class of methods deforms and

blends wrinkles drawn on top of a smooth garment in a set of static poses to synthesize wrinkles as

the garment deforms [34, 55]. Another approach separates the coarse clothing shape from the fine

wrinkle details [31, 32]. The coarse shape is obtained by running PBS on a low-resolution version of

the mesh. The fine details are synthesized using an example-based method to find appropriate fine

wrinkles in a pre-computed wrinkle database or by using linear prediction (regression) from a coarse

mesh. Our approach shares ideas with these methods but goes beyond previous work to address

how wrinkles vary with body shape.

Clothing in Reduced Space. Instead of dealing with the mesh at the triangle level, related

work models complex deformations in a lower-dimensional linear subspace [37, 67, 71]. This achieves

a huge speed up but with reduced realism. These subspace methods replace cloth simulation with

a learned dynamical system, where the input is a 3D body mesh and perhaps joint angles of the

underlying skeleton, and the output is a clothing mesh. Clothing pose and shape are integrated in

this model and no separate control is provided. We take a similar, learning-based, approach but

extend this idea to include wrinkles that also depend on body shape.
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5. Hair Animation

A large body of work exists on hair modeling, simulation, and rendering. We refer the reader

to a survey [112] and prior SIGGRAPH course notes [15, 123] for an overview. Here we focus on

the most relevant methods, mainly those pertaining to real-time-capable approaches.

Hair simulation approaches can loosely be organized into two classes of methods: those that

model hair as a continuous medium and those that model it as a set of disjoint, possibly interacting,

groups [112]. In both cases the rationale is that the number of strands is too large to model each

strand individually.

Continuous medium models model hair as a continuum and model complex interactions between

strands using fluid dynamics (smooth particle hydrodynamics) [11, 56]. Such methods, however,

are slow and do not capture clustering effects observed in longer hair.

Disjoint models typically model hair using a sparse set of hair guides, hair strips, or wisps.

Hair guides are representative strands that are simulated; the dense hair model is then created

by interpolating the position of remaining strands from a sparse set of hair guides [24]. This

approximation allows nearly real-time performance with a moderate number of guides (a GPU

implementation with 166 simulated strands can run at 15 FPS [103]). Hair strips model hair

using thin flat patches (NURBS surfaces) [72]. Using a strip to represent tens or hundreds of

individual strands leads to significant efficiencies, including in collision handling, resulting in real-

time performance; consequently this approach is often used in games. However, strips are unable

to represent complex hair styles or motions. Wisps model bundles of hair strands as volumetric

primitives [27, 115, 121]. These approaches are particularly good at modeling hair styles with

well-defined clusters; however, they are typically computationally expensive (e.g., requiring seconds

per frame to compute [27]). Another promising approach uses the hair mesh structure for modeling

the hair volume; topological constraints allow an automatic and unique way to trace the path of

individual hair strands through this volume [122]. With a coarse resolution mesh this approach is

able to simulate hair at 92 FPS. However, the coarse resolution of the mesh does not allow for fine

movement of individual strands.

Our method exploits the hair guide formulation, but further reduces computational complexity

by modeling hair guides in the reduced space. We also show that by treating all hair strands as guide

curves in our framework, we can forego the interpolation step as our model learns to incorporate

“interpolation" as part of the mapping from the low-dimensional reduced hair space to the full-

dimensional hair representation.
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CHAPTER 3

Estimating Human Shape and Pose from a Single Image

This chapter is built upon the original work [54]. In this chapter, we describe a solution to

the challenging problem of estimating human body shape from a single photograph or painting. Our

approach computes shape and pose parameters of a 3D human body model directly from monocular

image cues and advances the state of the art in several directions. First, given a user-supplied

estimate of the subject’s height and a few clicked points on the body we estimate an initial 3D

articulated body pose and shape. Second, using this initial guess we generate a tri-map of regions

inside, outside and on the boundary of the human, which is used to segment the image using graph

cuts. Third, we learn a low-dimensional linear model of human shape in which variations due to

height are concentrated along a single dimension, enabling height-constrained estimation of body

shape. Fourth, we formulate the problem of parametric human shape from shading. We estimate the

body pose, shape and reflectance as well as the scene lighting that produces a synthesized body that

robustly matches the image evidence. Quantitative experiments demonstrate how smooth shading

provides powerful constraints on human shape. We further demonstrate a novel application in which

we extract 3D human models from archival photographs and paintings.

1. Introduction

While the estimation of 3D human pose in uncalibrated monocular imagery has received a

great deal of attention, there has been almost no research on estimating human body shape. The

articulated and non-rigid nature of the human form makes shape estimation challenging yet its

recovery has many applications ranging from graphics to surveillance. Here we describe the first

complete solution to the problem of human shape estimation from monocular imagery. In contrast to

the standard multi-camera setting, we observe that a single image silhouette is generally insufficient

to constrain 3D body shape. To address this we propose the use of additional monocular cues

including smooth shading. Given an initial guess of the body pose, we optimize the pose, shape

and reflectance properties of a 3D body model such that it robustly matches image measurements.

The resulting body model can be measured, posed, animated, and texture-mapped for a variety of

applications. The method is summarized in Figure 4.1.
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Figure 3.1. Overview. Given a single image and minimal user input, we compute

an initial pose, light direction, shape and segmentation. Our method optimizes

3D body shape using a variety of image cues including silhouette overlap, edge

distance, and smooth shading. The recovered body model can be used in many

ways; animation using motion capture data is illustrated.

Most work on human pose or shape estimation assumes the existence of a known background

to enable the extraction of an accurate foreground silhouette. With a monocular image, however,

no known background can be assumed. Still, the outline of the body provides a strong constraint

on body shape. Given an initial pose, obtained by manual clicking on a few image locations corre-

sponding to the major joints of the body [75, 104], and the mean body shape, we create an initial

23



foreground region from which we derive a tri-map for GrabCut segmentation [88]. This produces

an accurate foreground region (cf. [46]).

Our parametric representation of the body is based on the SCAPE model [4] and our opti-

mization follows that of Balan et al. [9, 10] but extends it to monocular imagery. Body pose in

a monocular image is inherently ambiguous and its estimation from a single silhouette is poorly

constrained. If the body limb lengths are not known, then multiple poses can equally well explain

the same foreground silhouette [97]. To deal with this we constrain the height of the subject during

optimization. Previous SCAPE formulations, however, represent variation in human shapes using

linear shape deformation bases computed with principal component analysis. Since height is corre-

lated with other shape variations, height variation is spread across many bases. We address this by

rotating the learned SCAPE basis so that height variation is concentrated along a single shape basis

direction. The height can then be held fixed during optimization, significantly improving monocular

shape and pose estimation.

One of the key contributions of this work is the formulation of body shape from shading. Unlike

the generic shape from shading problem, our goal is to estimate the body shape parameters, the pose

of the body, its reflectance properties and the lighting that best explains the shading and shadows

observed in the image (similar in spirit to [16] but with a more complex model). We assume a single

point light source but our experiments suggest that the method is quite robust to violations of this

assumption. Since skin has a significant specular component, we approximate its reflectance with

a Blinn-Phong model [17] and an assumption of piecewise smoothness. Given a body shape, body

pose, light direction and skin reflectance we robustly match a synthesized image of the person with

the observed image. Note that exploiting shading cues requires accurate surface normals, which

are provided by our learned body shape model. Shading information provides strong constraints on

surface shape that improve the estimated body shape when combined with other cues.

Shape from shading has a long history in computer vision (see [124] for a review) yet typically

focuses on recovering the shape of unknown surfaces. Here we have a different problem in which we

know that the object is a human but the pose and shape are unknown. For a given set of body shape

and pose parameters we can compute the surface normals at each point on the body mesh. We then

formulate and optimize a robust shape from shading objective function in which the normals are a

function of the shape parameters. Similar to this is the work of Samaras and Metaxas [89], which

constrains a 3D shape using shading information. We go beyond their work to deal with a learned

shape deformation model and articulation.

The majority of work related to shading and the human body focuses on carefully calibrated

laboratory environments. Theobalt et al. [105] recover human body shape and detailed reflectance
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properties but do so in a multi-camera calibrated environment with careful lighting. While shading

has been explored for recovering human face shape (e.g. [16]) we know of no work using it to recover

human body shape. Balan et al. [9] recover the albedo of the body using multiple known poses and

a Lambertian reflectance model but do not use this to estimate shape. These methods are not

applicable to the monocular, uncalibrated case studied here.

In recent work, de La Gorce et al. [39] use an accurate hand shape model and shading informa-

tion for monocular tracking. Given a fixed hand shape, they estimate the albedo of the hand and

the illumination in each frame and use these to constrain pose during tracking. The hand shape is

controlled by 51 scaling parameters that are estimated in an initialization step where the hand is

known to be parallel to the image plane, the background is known and the albedo is assumed to be

constant. Our work goes beyond this to estimate a parametric shape model for the whole body in

arbitrary poses with piecewise smooth albedo and unknown background.

We quantitatively evaluate the method in a laboratory environment with ground truth 3D

shape. We also show a novel application where we compute 3D human shape from photographs and

paintings. Here our assumptions about the illumination are only approximate, yet the method is

able to recover plausible models of the human body. These models can be texture-mapped (with

either texture from the scene or some other source), animated in new poses or deformed to create

caricatures.

2. Body Model and Fitting

SCAPE is a deformable, triangulated mesh model of the human body that accounts for different

body shapes, different poses, and non-rigid deformations due to articulation [4]. For vision applica-

tions, it offers realism while remaining relatively low dimensional. We use a mesh with m = 12, 500

vertices [10].

Articulated pose is parametrized by a set of rigid body part rotations ~θ, while changes in body

shape between individuals are captured by shape deformations gradients ~d between a reference mesh

and a new mesh in the same pose. A low-dimensional statistical model of body shape deformations

is learned using principal component analysis (PCA). We learn two gender-specific models from laser

scans of over 1000 men and 1000 women, respectively. For a given mesh, the shape deformation

gradients are concatenated into a single column vector and approximated as ~d = U~β + ~µ where ~µ

is the mean body shape, U are the first n eigenvectors given by PCA and ~β is a vector of linear

coefficients that characterizes a given shape; n = 20 in our experiments. In Section 3 we extend this

formulation to model deformations that preserve height.

25



(a) Clicked Points (b) Taylor’s Method (c) Perspective

Figure 3.2. Initialization using clicked points on the input image. Pose

estimated with orthographic (b) and perspective (c) camera models, shown from an

alternate view. Mean body shape (male) is shown transformed into the pose of the

initialized models.

Given a monocular image, our goal is to estimate the shape parameters ~β and pose parameters ~θ

that best explain the image evidence. The model parameters are used to produce a 3D mesh, Y (~β, ~θ),

that is projected onto the image plane to obtain silhouettes, edges, or shaded appearance images

(Fig. 4.1). We denote the body parameters by ΘB = [~β, ~θ]. We use standard distance functions for

silhouettes, ESi(ΘB), [10, 96] and edges, EEg(ΘB), [41] and introduce a novel shading term. The

objective function, which also includes an inter-penetration penalty, EPn(ΘB), is minimized using a

gradient-free direct search simplex method. In the monocular case a reasonably good initial estimate

of the pose parameters is necessary, as well as a silhouette extracted without a background image.

We also combine segmentation and model fitting to seek the pose and shape that best segments the

image into foreground and background regions. Both these problems are addressed in the following

section.

2.1. Pose Initialization. 3D body pose is initialized in the camera coordinate system using

clicked 2D points corresponding to the major joints (Fig. 3.2) [75, 104]. We find that the ortho-

graphic method of Taylor [104] (Fig. 3.2b) produces poses that are inaccurate compared with the

perspective method of [75] (Fig. 3.2c). The perspective method requires an estimate of focal length

which we extract from EXIF metadata when available or which we obtain from user input. We fur-

ther find that even an approximate focal length produces better initial poses than the orthographic

assumption.

Unlike the orthographic case, perspective projection requires a way to position the root joint

in 3D. First, the limb most parallel to the image plane is automatically identified as the one that

minimizes the ratio between its image length and its actual length. If the limb is parallel to the
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(a) Segmentation (b) Tri-map (c) Segmentation Result

Figure 3.3. Segmentation. (a) Silhouette corresponding to initial pose and av-

erage shape projected into image. (b) Tri-map extracted from initial silhouette by

erosion and dilation. (c) GrabCut segmentation result (silhouette and its overlay in

the image).

image plane, the depth is uniquely determined using the ratio of similar triangles. If not we use a

foreshortening factor similar to the scale parameter in [104].

In contrast to [104], we do not explicitly require limb lengths as input. Rather, we predict

these from a database of over 2400 subjects based on user specified height and gender. We use this

database to build a height constrained shape space as described in Section 3, allowing us to deform

the mesh to match the mean person of the specified gender and height, and then extract limb lengths

from linear combinations of specific vertices.

To find such a mesh we use a rotation of scape bases that will be fully detailed in Section 3 such

that height can be considered independently from the remainder of shape. We extend the previous

methods to also initialize head pose by solving for the neck rotation that minimizes the distance

between several user-clicked 2D face feature points and the corresponding 3D vertex positions on

the mesh projected into the image.

2.2. Region-based Segmentation. We use GrabCut [88] to perform image segmentation,

leveraging the pose initialization to seed GrabCut in an automated way as illustrated by Figure 3.3.

Given the initial mesh (Fig. 3.2c), we render its silhouette into the image. This provides an initial

guess for foreground segmentation (Fig. 3.3a). Specifically, we construct a tri-map, defining each

pixel as foreground, background, or uncertain by eroding and dilating the initial region by 5% of

the image width (Fig. 3.3b). The resulting tri-map is used to initialize GrabCut [88] which is used
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(a) (b) Result without edges (c) Result with edges

Figure 3.4. Internal edges. (a) Laboratory image with self occlusion. (b) Pose

estimation with only the silhouette term cannot estimate the arm pose. Edges (red)

of optimized model projected into the edge cost image. Yellow shows the overlap

of the model and image silhouettes, blue/red represent unmatched image/model

silhouette regions. (c) The estimated pose (green) with the edge term matches the

true pose. Note how well the model edges align with the edge cost image.

to segment the foreground. This process is similar to that of Ferrari et al. [46] but with a 3D body

model used for initialization.

2.3. Preventing Limb Inter-penetration. With a monocular view many possible poses can-

not be ruled out based on image evidence and some of these involve interpenetration of body

parts. To prevent these impossible solutions we develop a fast method to detect and penalize

inter-penetrations during optimization. We approximate the shape of a limb by its convex hull and

determine if a point is inside by computing the dot products between the triangle normals and the

rays from the point to the center of the triangles. Because of the convexity assumption, the point

must lie outside the convex hull if any of the dot products are negative. We check each of the 12

extremity parts (thigh, calf, foot, etc.) against the remaining point cloud and compute fraction of

vertices that are contained within the hulls of the other parts. We compute a robust penalty function

of this quantity summed over all parts and this becomes a cost of interpenetration, EPn(~θ, ~β), that

is included in the objective function.

2.4. Internal Edges. It is well known that silhouettes do not provide pose constraints in

regions where one body part occludes another (e.g. Fig. 3.4b). Numerous authors have dealt with
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Figure 3.5. Height Constrained Optimization. Two different body shapes

and poses can explain the same image silhouette. Pose and shape estimated with-

out constraining height (magenta). When turned sideways we see it is wrong. Con-

straining the height during estimation produces a realistic pose (green).

this by combining edge information with silhouettes. We do so as well but, with the SCAPE body

model, these edges provide a better fit to the image evidence than do previous models.

We detect image edges using a standard edge detector and apply a thresholded distance trans-

form to define an edge cost map normalized to [0, 1]. Model edges are detected by examining each

triangle edge in the mesh, taking the dot product of the ray from the camera to the midpoint of the

edge with the triangle normals on either side of the edge. A change in the sign of the dot product

across the triangle edge indicates a possible model edge. If either triangle is visible from the camera

(by ray triangle intersection) then the edge is a visible model edge.

We use the “trapezoid rule" to evaluate the line integral of the set of all visible model edges over

the edge cost image. This defines an edge cost, EEg(ΘB), that is included in the objective function,

improving the accuracy of the fit (Fig. 3.4c).

3. Attribute Preserving Shape Spaces

The ambiguities present in inferring 3D pose and shape from a single image mean that we must

constrain the search space as much as possible. In a monocular setting we find it useful to be able

to constrain the search space based on prior knowledge. Figure 3.5 illustrates one such ambiguity

where the wrong body shape can be compensated for by a change in pose. Viewed monocularly, both

models explain the image silhouette equally well. Additional information such as the height of the

person can remove some of the ambiguity. Unfortunately, the SCAPE eigen-shape representation

does not provide any direct control parameters corresponding to intuitive attributes like gender,

height or weight that can be specified by a user. If these can be derived as functions of the linear
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Figure 3.6. Height preserving body shape space. First pair on each row

(men above, women below) shows variation (± 3 std) along the height-variation

axis. The other pairs show variation (± 3 std) along the first three height-invariant

axes. Note that shape varies along these axes but height varies by less than 3mm

for each pair.

coefficients, then they can be included as constraints during body shape estimation. In general,

enforcing soft-constraints on attributes is possible using a constrained minimization algorithm, but

it makes it more susceptible to getting stuck in local minima. Instead we take a more direct approach

and construct a rotation of the original eigen-shape space such that height variation is removed from

all but one of the bases. This allows us to optimize over body shapes without varying height.

In previous work, Blanz and Vetter [16] compute a direction in shape coefficient space such that

any movement along this axis manipulates a certain attribute the most while keeping all the other

attributes as constant as possible. This is not equivalent to saying that any movement orthogonal

to this axis preserves the attribute, which is what we want. In fact, their axis is not optimized for

and fails to preserve an attribute value along orthogonal directions.

Allen et al. [1] learn a linear mapping from a fixed set of attributes to shape parameters.

One could optimize body shape using these parameters instead of PCA coefficients. Preserving an

attribute can then be achieved by simply keeping it fixed, but this approach reduces the modes of

shape variation to the set of attributes considered.
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In contrast, our approach explicitly searches for attribute-preserving directions in the eigen-

space and re-orients the bases along these directions. While we focus on constraining height, our

method applies to any other geometric attribute that can be measured directly from the mesh

(volume, geodesic distances, etc.). Body height H(~β) can be measured by reconstructing a mesh

Y (~β, ~θH) in a predefined standing pose ~θH . Let G1 = In = [~e1, . . . , ~en] be the identity basis for the

shape coefficients (~d = UG1
~β + µ). We seek a new orthonormal basis G such that none of its

bases account for height except one, which becomes the height axis. G should also preserve the

representational power of the original bases: the sub-space spanned by the first j bases is the same

after the change of bases, absent the height axis. Our solution works in an incremental fashion and

maintains orthogonality at all times by rotating pairs of bases so that one of the bases preserves

height while the other moves towards the height axis. First, we start by selecting a candidate basis

~ek for the height axis as the one that maximizes the absolute correlations between height and shape

coefficients of the training examples. Second, we iterate over the remaining bases ~ej and rotate the

current (~ej , ~ek) plane to make ~ej height preserving. Third, the rotation matrix is used to update, at

iteration j, the orthonormal basis Gj =

Gj−1Rjk

(
arg min

ϕ

(
H(~0n)−H(Gj−1Rjk(ϕ)~ej)

)2
)
,

where Rjk(ϕ) is a n× n rotation in the (~ej , ~ek) plane:

Rjk(ϕ) =



j k

I 0

j cos(ϕ) − sin(ϕ)

I

k sin(ϕ) cos(ϕ)

0 I


.

The body shape in the new height-preserving shape space can be expressed as ~d = (UGn)~β′ + ~µ,

where ~β′ = (Gn)−1~β. By convention, we compute the variance along the new bases and order them

in decreasing order following the height axis. Figure 3.6 shows deviations from the mean shape in

the male and female height-preserving shape spaces.

For many subjects (e.g. celebrities), height may be known. When unknown (e.g. in paintings)

we use the mean height for each gender (women=1.65m, men=1.82m).

4. Body Shape from Shading

We approximate the body’s reflectance using a Blinn-Phong model with diffuse and specu-

lar components [17]. We assume a single light source and ambient illumination. Let X(ΘB) =
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(a) Input (b) Albedo (c) Lambertian (d) Blinn-Phong

Figure 3.7. Estimated reflectance. Blinn-Phong model captures specular high-

lights and is more accurate than the Lambertian model. Note robust spatial term

captures discontinuous albedo.

[~x1, ~x2, ..., ~xm] be the positions of the m vertices of a body mesh, and N(ΘB) = [~n1, ~n2, ..., ~nm] be

the associated unit length normals. Notice that bothX andN are functions of the pose and shape pa-

rameters, allowing us to formulate a parametric shape from shading problem. Let ~a = [a1, a2, ..., am]

be the albedo of each vertex and ~s = [s1, s2, ..., sm] be the specularity of each vertex. The shading

value of each surface point i is approximated by:

(1) r̂i = b+ ai(~̀i · ~ni)l + si(~hi · ~ni)αl

where ~̀i is the direction from vertex ~xi toward the light source, ~hi is the halfway vector between

~̀
i and the direction from vertex i toward the camera, b is ambient illumination, l is light intensity,

and α is the specular exponent.

For a distant directional light source (outdoor scene) l is constant for every vertex, while for

a point light source (indoor scene) we use a quadratic attenuation function for light intensity with

distance from the source (as in [9]).

Optimization. The body is placed at the origin of a spherical coordinate system and the

light position is parametrized as ΘL = [γ, φ, z] with respect to the body center, where γ and φ are

azimuth and elevation respectively and z is the distance between the light source and the body. The

parameters ~̀i, ~hi and l in Eq. 1 depend on ΘL. We denote the reflectance parameters ΘR = [~a,~s, b, α].

Suppose ri is the linearly interpolated intensity in the input image where vertex i is projected, our

32



goal is to minimize the energy function ESh(ΘB ,ΘR,ΘL) ∝

∑
i∈visible

{
ρη1(r̂i(ΘB ,ΘR,ΘL)− ri)(2)

+λ1

∑
j∈N (i)

ρη2(aj − ai)
dj,i

+ λ2

∑
j∈N (i)

ρη3(sj − si)
dj,i

}

where N (i) are the vertices connected to vertex i, dj,i is |~xj − ~xi|, and ρη(x) = x2

η2+x2 is a robust

error function [49] used to deal with outliers. The robust error function treats whatever samples

that satisfy |x| > η√
3

as outliers and pays constant penalty for them. Note that r̂v is actually a

function of ΘB ,ΘR which we omit for notational simplicity.

The first term in Eq. 2 penalizes the difference between measured intensities in the observed

image, ri, and the predicted brightness of corresponding model vertices, r̂i(·). The second term

ensures that neighboring vertices have similar albedo. The robust formulation provides a piecewise

smooth prior on albedo that allows spatial variations due to clothing, hair, variation in skin color,

etc. The third term provides a piecewise smooth prior over specularity. λ1 and λ2 weight the relative

faithfulness to the observed data and the spatial smoothness assumptions.

The user coarsely initializes ΘL and then the energy function is minimized in an alternating

fashion. First, ΘL is optimized given fixed ΘB and ΘR. (Note that in the first iteration, ΘB is the

initial guess of pose and shape; the albedo and specularity in ΘR are considered uniform.) Second,

we optimize ΘR with fixed ΘL and ΘB . Given the robust formulation in Eq. 2 no closed form solution

is possible so we minimize using gradient descent. Third, we fix ΘL, ΘR and optimize ΘB but here

the optimization is more difficult since changing ΘB affects the predicted brightness through changes

in the vertex normals. Consequently a gradient-free simplex method is employed to solve step 3.

We alternate between the three steps until a convergence criterion is met. We vary the λ values

during optimization, starting with larger values and gradually decreasing them, so that the shape is

forced to change in order to make the predicted brightness match the image observations. We find

that initial pose needs to be fairly accurate, but illumination direction is relatively insensitive to the

initialization. Figure 3.7 shows the estimated reflectance for one input image.

5. Results

For quantitative analysis, we captured the pose and shape of a subject using eight synchronized

and calibrated cameras with a single “point light source” and a green screen background. We fit the

SCAPE model to the eight silhouettes and treat the resulting shape as ground truth.

We then quantify the extent to which shading cues improve monocular shape estimation by com-

paring the shape estimated with two formulations. In the “Silhouettes and Edges” (SE) formulation,
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(a) Image (b) Init. (c) Silhouette and Edges (d) Silhouette, Edges and Shad-

ing

(e) Ground Truth

Figure 3.8. Comparison between SE (red) and SES (green). Comparisons

are performed on three different poses taken from different viewing angles. The

initialization (b) is shown in the camera view. Results and ground truth are shown

in both the camera view and in profile. For each result we also show an error map

in a canonical pose, indicating per vertex displacement from ground truth; blue

indicates low error, while purple indicates high error. Note the lower error for the

SES model.

we fit the pose and shape of the SCAPE model in the height preserving space by optimizing the

cost function E1 = ESi(ΘB) +EEg(ΘB) +EPn(ΘB). The “Silhouettes, Edges, and Shading” (SES)

formulation extends the first by incorporating shading cues; that is, E2 = E1 + ESh(ΘB ,ΘR,ΘL).

Figure 3.8 illustrates how smooth shading improves shape recovery. Silhouettes, even with

internal edges, are not sufficient to capture accurate body shape from monocular images. Incorrect

estimates happen in areas where surface normals are oriented towards the camera, such as the

abdomen in frontal images. In these regions shading provides a strong cue that constrains the body

shape.

Anthropometric measurements of chest size, waist size, and weight are provided in Table 3.1.

Waist and chest circumference are computed by transforming the body to a canonical pose, slicing

the mesh on a fixed plane and computing the convex hull of the contour. Weight is estimated
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Chest Size (cm) Waist Size (cm) Body Weight (kg)

SE SES GT SE SES GT SE SES GT

Pose 1 95.7 (+3.1) 92.7 (+0.1) 92.6 86.4 (+6.2) 79.6 (-0.6) 80.2 72.0 (+8.2) 65.4 (+1.6) 63.8

Pose 2 84.3 (-7.3) 87.1 (-4.5) 91.6 83.7 (+4.3) 78.5 (-0.9) 79.4 62.5 (-0.7) 62.4 (-0.8) 63.2

Pose 3 95.4 (+4.0) 91.9 (+0.5) 91.4 88.0 (+7.7) 76.9 (-3.4) 80.3 70.8 (+8.2) 63.5 (+0.9) 62.6

Table 3.1. Anthropometric Measurements. GT stands for ground truth size.

The value in the parenthesis is the deviation from GT size. (Note that the ground

truth sizes for each frame vary a little bit, since non-rigid deformations caused by

articulations of body will result in variations of shape details.)

Figure 3.9. Applications. Shape and pose recovered from a single image;

texture-mapped in new pose; caricature.

from the body volume by assuming it has the constant density of water. SES shows substantial

improvement over SE.

Figure 3.9 shows an image from the Internet with recovered pose and shape. Note that reflections

off the water clearly violate our simple lighting model. Despite that the shape is well recovered. We

animate the figure by preserving shape and generating meshes in novel poses from motion capture

data. The model can be texture mapped with the image texture or some new texture. Large pose

changes may require the texture synthesis of missing data. We can also vary the recovered shape

to produce a caricature (Fig. 3.9 right). We do so by finding the shape coefficient with the most

significant deviation from the mean and exaggerate it, moving the shape further from the mean in

that direction. Here it produces a more muscular physique.
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Figure 3.10. Body shape and pose from paintings. (up) Venus Anady-

omene, Théodore Chasseriau, 1838. (down) Adam and Eve (detail), Hans Baldung

Grien,1507. Images (left to right): painting, model overlay, recovered shape and

pose, shape in new pose.

Although paintings rarely conform to a physical lighting model, we find that shading cues are

often significant. Using the same robust formulation as for photographs we recover body pose and

shape from two paintings in Fig. 3.10.

6. Discussion

We have described a complete solution for reconstructing a model of the human body from

a single image with only minimal user intervention. The main insight is that even a single image

contains a range of cues that can constrain the interpretation of 3D body shape. While the bounding

contour of the body alone is not sufficient, smooth shading can provide a powerful additional cue.

Consequently we developed a new robust method for computing parametric body shape from shading.

We also developed a new linear model of body shape deformation in which height variation is

removed. The ability to extract body shape from a single image makes several new applications

possible. For example, a character from a painting or photograph can be “brought to life” and

animated in new poses.
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The method as described has several limitations. We assume a single point light source and a

simplified model of surface reflectance. None of our experiments actually conform to this model, and

yet it still provides a useful approximation. Future work should consider expanding this to more

general lighting conditions. We also plan to study more qualitative models of shading. Even in art

which is not physically realistic, there are still strong local cues that we should be able to exploit to

constrain body shape.

Our experiments have focused on naked or minimally clothed people. Previous work has shown

that body shape can be recovered even when people are wearing clothing if multiple poses and

camera views are available [7]. Extending this to the monocular case is challenging as shading cues

would need to be extended to model the complex shading variation caused by clothing.

Other future work will consider automating the initialization stage using a bottom-up 2D person

detector and integrating body segmentation with the 3D model fitting process. Since our body shape

representation is independent of pose we can also combine constraints from multiple snapshots of

the same person. Each image may contain only weak cues but together they could constrain body

shape.
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CHAPTER 4

2D Eigen Clothing Model for Body Shape Estimation

This chapter is built upon the original work [51]. Detection, tracking, segmentation and

pose estimation of people in monocular images are widely studied. Two-dimensional models of the

human body are extensively used, however, they are typically fairly crude, representing the body

either as a rough outline or in terms of articulated geometric primitives. We describe a new 2D

model of the human body contour that combines an underlying naked body with a low-dimensional

clothing model. The naked body is represented as a Contour Person that can take on a wide variety of

poses and body shapes. Clothing is represented as a deformation from the underlying body contour.

This deformation is learned from training examples using principal component analysis to produce

eigen clothing. We find that the statistics of clothing deformations are skewed and we model the a

priori probability of these deformations using a Beta distribution. The resulting generative model

captures realistic human forms in monocular images and is used to infer 2D body shape and pose

under clothing. We also use the coefficients of the eigen clothing to recognize different categories of

clothing on dressed people. The method is evaluated quantitatively on synthetic and real images

and achieves better accuracy than previous methods for estimating body shape under clothing.

1. Introduction

Two-dimensional models of the human body are widely used in computer vision tasks such

as pose estimation, segmentation, pedestrian detection and tracking. Such 2D models offer repre-

sentational and computational simplicity and are often preferred over 3D models for applications

involving monocular images and video. These models typically represent the shape of the human

body coarsely, for example as a collection of articulated rectangular patches [43, 59, 68, 79]. None

of these methods explicitly models how clothing influences human shape. Here we propose a new

fully generative 2D model that decomposes human body shape into two components: 1) the shape of

the naked body and 2) the shape of clothing relative to the underlying body. The naked body shape

is represented by a 2D articulated Contour Person (CP) [47] model that is learned from examples.

The CP model realistically represents the human form but does not model clothing. Given train-

ing examples of people in clothing with known 2D body shape, we compute how clothing deviates

from the naked body to learn a low-dimensional model of this deformation. We call the resulting
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Figure 4.1. Samples from the Dressed Contour Person model. Different body

shapes and poses (blue) are dressed in different types of eigen clothing (red).

generative model the Dressed Contour Person (DCP) and samples from this model are shown in

Fig. 4.1.

The DCP model can be used just like previous models for person detection, tracking, etc. yet it

has several benefits. The key idea is to separate the modeling of the underlying body from its clothed

appearance. By explicitly modeling clothing we infer the most likely naked body shape from images

of clothed people. We also solve for the pose of the underlying body, which is useful for applications

in human motion understanding. The learned model accurately captures the contours of clothed

people making it more appropriate for tracking and segmentation. Finally, the model supports new

applications such as the recognition of different types of clothing from images of dressed people.

Recently, Yamaguchi et al. parse clothing types in fashion photos [120].

There are several novel properties of the DCP model. First we define eigen clothing to model

deformation from an underlying 2D body contour. Given training samples of clothed body contours,

where the naked shape of the person is known, we align the naked contour with the clothing contour

to compute the deformation. The eigen-clothing model is learned using principal component analysis

(PCA) applied to these deformations. A given CP model is then “clothed” by defining a set of linear

coefficients that produce a deformation from the naked contour. This is illustrated in Fig. 4.1.

There is one problem, however, with this approach. As others have noted, clothing generally

makes the body larger [7, 57]. A standard eigen-model of clothing could generate “negative clothing”

by varying the linear coefficients outside the range of the training samples. While non-negative

matrix factorization could be used to learn the clothing model, we show that a simple prior on the

eigen coefficients addresses the issue. In particular, we show that the eigen coefficients describing

clothing deformations are not Gaussian and we model them using Beta distributions that capture

their asymmetric nature.

We also demonstrate the estimation of a person’s 2D body shape under clothing from a single

image. Previous work on estimating body shape under clothing has either used multiple images [7]

or laser range scan data [57]. These previous approaches also did not actually model clothing but

rather tried to ignore it. Both of the above methods try to fit a naked body that lies inside the
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measurements (images or range scans) while strongly penalizing shapes that are “larger” than the

observations. We show that there is a real advantage to a principled statistical model of clothing.

Specifically we show accuracy in estimating naked body shape that exceeds that of Balan and Black

[7], while only using one uncalibrated image as opposed to four calibrated views.

Finally we introduce a new problem of clothing category recognition. We show that the eigen

coefficients of clothing deformations are distinctive and can be used to recognize different categories

of clothing such as long pants, skirts, short pants, sleeveless tops, etc. Clothing category recognition

could be useful for person identification, image search and various retail clothing applications.

There are several major challenges: 1) Clothing obscures the true body shape which typically

makes shape estimation biased to bigger size. 2) Most 2D body models are cardboard-like "puppet"

models which limits the realism of 2D body representation. We address the first challenge by

explicitly learning an eigen clothing deformation model, which captures statistical distribution of

deformations that clothing can apply on top of body. For the second challenge, we employ a recently

proposed 2D articulated Contour Person(CP) [47] model to realistically represent underlying 2D

body.

Detailed estimation of body shape has numerous applications particularly in tracking, surveil-

lance and forensic video analysis. Although in 99% cases people wear clothes, most of the works

still focus on minimal clothed people due to the difficulty of dealing with clothing. Recently several

works on shape estimation under clothing have been proposed and almost all of them fall into 3D

domain [7][57]. They resolve the ambiguity from clothing by assuming a 3D body model and make

the body estimation conform to the parametric shape space.

Since clothing deformation only applies on the underlying body we also employ a realistic 2D

body model to represent body underneath. The recently proposed CP [47] model factors deforma-

tions due to shape, part rotation, and viewpoint change and also provide nice segmentation of parts.

Based on CP model and eigen clothing deformation model, we can define a two layers deformation

process, in which the first layer being the transformation from a body template to a plausible body

under clothing(achieved by CP), and the second layer being the transformation from a plausible

body to clothing(achieved by eigen clothing deformation). We finally solve an inference problem

after which we get both body deformation and clothing deformation parameters. The body defor-

mation parameters enable us to reconstruct the underlying naked body which is our main focus.

The clothing deformation coefficients can surprisingly serve as clothing type indicator which allows

us to do clothing type classification.

In summary, the key contributions of this chapter include: 1) the first model of 2D eigen clothing;

2) a full generative 2D model of dressed body shape that is based on an underlying naked model
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with clothing deformation; 3) the inference of 2D body shape under clothing that uses an explicit

model of clothing; 4) shape under clothing in a single image; 5) avoiding “negative clothing” by

modeling the skewed statistics of the eigen-clothing coefficients; 6) the first shape-based recognition

of clothing categories on dressed humans.

2. The Contour Person Model

We start with a Contour Person (CP) model [47], which is a low-dimensional, realistic, param-

eterized generative model of 2D human shape and pose. The CP model is learned from examples

created by 2D projections of multiple shapes and poses generated from a 3D body model such as

SCAPE [4]. The CP model is based on a template, T , corresponding to a reference contour that

can be deformed into a new pose and shape. This deformation is parameterized and factors the

changes of a person’s 2D shape due to pose, body shape, and the parameters of the viewing cam-

era. This factorization allows different causes of the shape change to be modeled separately. Let

BT (Θ) = (x1, y1, x2, y2, . . . xN , yN )T denote the parametric form of the CP, where N is the num-

ber of contour points and Θ is a vector of parameters that controls the deformation with respect to

T . The CP model represents a wide range of 2D body shapes and poses, but only does so for naked

bodies. Examples of such body contours, BT (Θ), are shown in blue in Fig. 4.1. See Freifeld et al.

[47] for mathematical details.

The CP model may contain internal or occluded portions of the body contour. However, here

our clothing training data consists only of silhouettes with no internal structure. Consequently, we

restrict the poses we consider and define BT (Θ) to be a CP model corresponding to a bounding

body contour without holes. In future work, we will generalize the DCP model to take advantage

of the ability of the CP to accommodate self occlusions.

3. Clothing Model

We directly model the deformation from a naked body contour to a clothed body by virtually

“dressing” the naked contour with clothing. The generative nature of this paradigm not only simu-

lates the process in the real world but also allows us to synthesize novel clothed bodies. We start

with a training set (described below) of clothing outlines and corresponding naked body outlines

underneath. The CP model is first fit to the naked body outline to obtain a CP representation. For

each point on the CP, we compute the corresponding point on the clothing outline (described below)

and learn a point displacement model using PCA just like Active Shape Model [30]. We further

learn a prior over the PCA coefficients using a Beta distribution to prevent infeasible displacements

(i.e. “negative clothing”).
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The DCP model can be thought of as having two “layers” that decouple the modeling of body

pose and shape from the modeling of clothing. The first layer generates a naked body deformation

from the template contour and the second layer models clothing deformation from this deformed

naked contour. The first layer is the CP model, which is compositional in nature and based on

deformations of line segments (see [47]). The second layer, described here, is simpler and is based

directly on displacements of contour points. This is possible since being the last layer of deformation,

the compositional structure is less important. The layered representation is desirable because it

allows constraints to be imposed independently on the body and the clothing. For example, in

tracking applications, one may assume the body shape is constant while the pose and clothing shape

changes.

3.1. Data sets. Our method requires training contours of people in clothing for which we know

the true underlying naked body shape. We describe two such training sets below.

Synthetic data set. Synthetic data provides ground truth body shapes that enable accurate

quantitative evaluation. We use 3D body meshes generated from the CAESAR database [87] (SAE

International) of laser range scans and dress these bodies in simulated clothing (Fig. 4.2). We used

60 male and 100 female bodies spanning a variety of heights and weights and use commercial software

(OptiTex International, Israel) to generate realistic virtual clothing. The clothing simulation uses a

physical model to drape the clothing on the body producing realistic effects corresponding to seams,

gravity, pose and different materials. The clothing simulation produces a secondary 3D mesh that

lies on top of the underlying body mesh by construction. Given a particular camera view, we project

the body mesh into the image to extract the body outline and do the same for the combined body

and clothing meshes. This provides a pair of training outlines.

For the synthetic dataset we restrict the clothing to a single type (Army Physical Training

Uniforms) but in different sizes, as appropriate for the body model. While narrow, this dataset

provides nearly perfect training data and ground truth for evaluation. The next dataset expands

the range of clothing and pose but with a smaller sample of bodies and real imagery.

Real data set. To model real people in real clothing we use the dataset described by Balan and

Black in [7] (Fig. 4.2) which contains images of 6 subjects (3 males, 3 females) captured by 4 cameras

in two conditions: 1) the “naked condition” in which the subjects wear tight fitting clothing; 2) the

“clothed condition” in which they wear different types of “street” clothing. The dataset contains four

synchronously captured images of each subject, in each condition, in a fixed set of 11 postures. For

each posture the subjects are dressed in 6-10 different sets of clothing (trials). Overall there are 47

trials with a total of 235 unique combinations of people, clothing and poses.
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Figure 4.2. Example training data. Left: Pairs of synthetic 3D bodies, un-

clothed and clothed. Projecting the silhouette contours of these pairs produces

training contours. Right: Training contours derived from multi-camera data (see

text); the estimated ground truth 3D body is shown as a translucent overlay.

For each image of a dressed person, we use standard background subtraction [7] to estimate the

clothed body silhouette and extract the outline. To obtain the underlying naked body contours, we

fit a 3D parametric body model using the 4 camera views in the naked condition [7]. We take this

estimated 3D body shape to be the true body shape. We then hold this body shape fixed while

estimating the 3D pose of the body in every clothing trial using the method of [7] which is robust

to clothing and uses 4 camera views.

The process produces a 3D body of the “true” shape, in the correct pose, for every trial. We

project the outline of this 3D body into a selected camera view to produce a training 2D body

contour. We then pair this with the segmented clothed body in that view. Note that the fitting

of the 3D body to the image data is not perfect and, in some cases, the body contour actually lies

outside the clothing contour. This does not cause significant problems and this dataset provides a

level of realism and variability not found in the synthetic dataset.

3.2. Correspondence. Given the naked and clothed outlines defined above, we need to know

the correspondence between them. Defining the correspondence between the naked outline and the

clothing outline is nontrivial and how it is done is important. Baumberg and Hogg, for example,

model the outline of pedestrians (in clothing) using PCA [13]. In their work, correspondence is
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Figure 4.3. Correspondence between body and clothing contours. In each

pair: the left image shows the sample points of the body contour in blue and the

densely sampled clothing contour in red. The right image shows the final sub-

sampled clothing contour with a few matching points highlighted as larger dots.

Nearby dots illustrate corresponding points (in some cases they are on top of each

other).

simply computed by parameterizing all training contours with a fixed number of evenly sampled

points. Incorrect correspondence (i.e. sliding of points along the contour) results in eigen shapes

that are not representative of the true deformations of the contours.

Instead, we start with the trained parametric CP representation BT (Θ) and optimize it to fit

the 2D naked body that minimizes the difference between the CP silhouette and the naked body

silhouette. This gives a CP representation of the naked body that consists of N = 1120 points.

We then densely sample M points on clothing outline, where M >> N and select the N clothing

contour points that best correspond to the CP points. During matching, the relative order of the

points is maintained to guarantee the coherence of the match. Let the CP contour be represented

by a list of points P = {p1, p2, ..., pN} and let the sampled clothing outline be represented by

Q = {q1, q2, ..., qM}. We pick a subset of N points G = {qk1 , qk2 , ..., qkN
} from Q that minimizes∑N

i=1 ‖pi− qki
‖2 over the indices ki such that the ordering, kr < ks, is preserved for 1 ≤ r < s ≤ N .

We use the dynamic programming method proposed in [82]. Example alignments are shown in

Fig. 4.3.

3.3. Point displacement model. We use a vector Ĝ = (x1, y1, . . . , xN , yN )T to represent

the point list G and now we have BT (Θ) for the naked body contour and Ĝ for clothing contour,

both of which have N corresponding points. Since BT (Θ) has known part segmentation and G is

obtained in such a way that no crossed matches are allowed, we can weakly assume that points on

G also have rough part association as shown in Fig.4.3. The clothing displacement for a particular

training example, i is then defined by δi = Ĝi −BT (Θi). We collect the training displacements into
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(a) mean (b) PC1 (c) PC2 (d) PC4

Figure 4.4. Eigen clothing. The blue contour is always the same naked shape.

The red contour shows the mean clothing contour (a) and ±3 std from the mean

for several principal components (b)-(d).

a matrix and perform PCA. We take the first 8 principal components accounting for around 90% of

the variance to define the eigen-clothing model. Figure 4.4 shows the mean and first few clothing

eigenvectors for the real data set. This illustrates how the principal components can account for

various garments such as long pants, skirts, baggy shirts, etc. Note that simply varying the principal

components can produce “negative clothing” that extends inside the blue body contour. We address

this in the following section.

Using this model we generate new body shapes in new types of clothing by first sampling CP

parameters Θ to create a naked body contour BT (Θ) and then using the following equation to

generate a clothed body

(3) C(Θ, η) = BT (Θ) + ∆mean +
Nη∑
i=1

ηi ·∆i

where Nη is the number of eigenvectors used, the ηi’s are coefficients, ∆mean is the mean clothing

displacement, and ∆i is the ith eigen-clothing vector.

3.4. Prior on point displacement. Although the PCA model captures clothing deformation,

it allows point displacements in both inward and outward directions, which violates our assumption

that clothing only makes the body appear bigger. This assumption is confirmed by examining

the statistics of the linear eigen coefficients in the training data. Figure 4.5 shows several such

distributions, which may be skewed or symmetric. In particular we find that coefficients for the

principal components that capture the most variance are typically positively or negatively skewed

while coefficients for the lower-variance components tend to be more normally distributed. The first

few eigenvectors capture the gross clothing displacements, which are always away from the body.

Of course clothing also exhibits many fine details and folds and these are captured by the lower
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(a) PC1 (b) PC2 (c) PC8

Figure 4.5. The statistics of clothing displacements. Example histograms

and Beta distribution fits to linear eigen-clothing coefficients. Note the skew that

results from the fact that clothing generally makes the body appear larger.

variance eigenvectors. These “detail” eigenvectors modify the main clothing contour both positively

and negatively (e.g. out and in) and hence tend to have more symmetric statistics.

Based on the observation of natural clothing statistics, we learn a prior on the PCA coefficients

to penalize infeasible clothing displacements. We make the assumption that the eigenvectors are

independent (not necessarily true since the data is not Gaussian) and independently model a prior

on each coefficient using a Beta distribution. The Beta distribution is defined on [0, 1] and is

characterized by two parameters α and β that can be varied to capture a range of distributions

including positively skewed, negatively skewed and symmetric shapes:

(4) Beta(x;α, β) =
Γ(α+ β)
Γ(α)Γ(β)

xα−1(1− x)β−1.

Given L training body/clothing pairs, and the associated clothing displacements, we project

each displacement onto the PCA space to obtain coefficient ηl
m for instance l, (l ∈ [1, L]), on

eigenvector m. We normalize η1
m, η

2
m, ..., η

L
m to [0, 1] to obtain η̃1

m, η̃
2
m, ..., η̃

L
m and fit these with the

Beta distribution. The probability of observing a normalized coefficient x̃m for the mth eigenvector is

given by Beta(x̃m, αm, βm), where αm and βm are the estimated parameters of the Beta distribution.

If we observe a coefficient during testing that is out of the scope of the training coefficients, we

threshold it to be between the minimal and maximal value in the training set and normalize it to

compute its prior probability. If thresholded, however, we still use the original value to reconstruct

the shape. Figure 4.5 shows how the Beta function can represent a variety of differently shaped

distributions of clothing displacement coefficients.

3.5. Inference. The inference problem is to estimate the latent variables Θ and η by only

observing a single image of a person in clothing. We define a likelihood function in terms of silhouette

overlap. We adopt a generative approach in which C(Θ, η), the clothed body (Eq. 3), defines an

estimated silhouette, Se(C(Θ, η)), and compare it with the observed image silhouette So. We follow
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[7] and define the asymmetric distance between silhouettes Sr and St as d(Sr, St) =
∑

i,j Sr
i,jHi,j(S

t)∑
Sr

i,j
,

where Sr
i,j is a pixel inside silhouette Sr and Hi,j(St) is a distance function which is zero if pixel

(i, j) is inside St and is the distance to the closest point on the boundary of St if it is outside.

We then define the data term as the following symmetric data error function

(5) Edata(Θ, η) = d(Se(C(Θ, η)), So) + d(So, Se(C(Θ, η))).

The first part of Eq. 5 penalizes the regions of the synthesized clothing instance Se(C(Θ, η)) that

fall outside the observed clothing silhouette So, and the second part makes Se(C(Θ, η)) explain So

as much as possible.

Edata alone is not sufficient to estimate Θ and η correctly, because there are ambiguities in

estimating smaller bodies with larger clothing and larger bodies with smaller clothing. As was

mentioned in Sec. 3.4, we use the Beta prior to penalize unlikely displacements. Recall that η̃m

represents the normalized coefficient for the mth basis. The prior term is defined as

(6) Eprior(η) = −
∑
m

log(Beta(η̃m, αm, βm)).

The final energy function we minimize is

(7) E(Θ, η) = Edata(Θ, η) + λEprior(η)

where λ indicates the importance of the prior. Problems with “negative clothing” and clothing

that is unusually large are avoided due to the prior. Optimization is performed using MATLAB’s

fminsearch function.

4. Results

We consider two novel applications of the proposed method. The first is the estimation of 2D

body shape under clothing given a single image of a clothed person. The second is the recognition of

different clothing categories by classifying the estimated clothing deformation parameters. We eval-

uate our model on three tasks: body shape estimation from synthetic data, body shape estimation

from real data, and clothing type classification from real data. We compare the results of the first

two tasks with approaches that do not explicitly model clothing deformation.

Body estimation under clothing from synthetic data. We use the synthetic dataset of 60

males and 100 females, in and out of synthetic clothing, as described above. We randomly select

30 males and 50 females as the training set and the remaining 80 bodies as the test set. A gender-

specific CP model is learned for males and females separately while a gender-neutral eigen model is

learned for clothing deformations. We estimate the underlying bodies for the test samples using the
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(a) male (b) compared to GT (c) female (d) compared to GT

Figure 4.6. Synthetic data results. For each pair of images, the DCP result is on the

left and NM result is on the right. The first pair shows an estimated body silhouette (red)

overlaid on the clothing silhouette (green); overlapped regions are yellow. The second pair

shows the estimated body (red) overlaid on the ground truth (GT) body (green). The

third and fourth pairs show the same but for a female. NM typically overestimates the

size of the body.

Dressed Contour Person (DCP) and measure the estimation error as

(8) err(SEST , SGT ) =

∑
i,j |SEST

i,j − SGT
i,j |

2
∑

i,j S
GT
i,j

where SEST is a silhouette corresponding to the estimated naked body contour and SGT is the

ground truth underlying naked body silhouette. The results of DCP are also compared with a naive

method (NM) in which we simply fit the CP model to the image observations of clothed people.

As in [7], the NM attempts account for clothing by penalizing contours more if the estimated body

silhouette falls outside of the clothing observation than if it does not fully explain the clothing

observation. The average estimation errors obtained with NM for males and females are 0.0456 and

0.0472 respectively while DCP achieves 0.0316 and 0.0308. Our DCP model improves accuracies over

NM by 30% (male) and 35% (female) relatively. While the synthetic dataset has only one clothing

type, the bodies span a wide range of shapes. The results show a principled advantage to modeling

clothing deformation compared with ignoring clothing. Figure 4.6 shows some representative results

from the test set.

Body estimation under clothing from real data. Figure 4.7 shows 8 different poses from the

real dataset (Sec. 3.1). For each pose there are 47 examples having unique combinations of subjects

and clothing types. Since the number of body/clothing pairs is limited in each pose, we use a leave-

one-out strategy where we estimate the body of instance i using the eigen-clothing model learned

from all remaining 46 instances excluding i. We use DCP to estimate the underlying body shape

for a total of 47 ∗ 8 = 376 instances (Fig. 4.7) and compare the results with two other methods: 1)

NM described in the previous experiment; and 2) “Naked People estimation in 3D”(NP3D) proposed
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Table 4.1. Comparison on real data: DCP, NM, and NP3D methods (see text).

Method, AEE Pose1 Pose2 Pose3 Pose4 Pose5 Pose6 Pose7 Pose8 Average

DCP 0.0372 0.0525 0.0508 0.0437 0.0433 0.0451 0.0503 0.0668 0.0487

NP3D 0.0411 0.0628 0.0562 0.0484 0.0494 0.046 0.0472 0.0723 0.0529

NM 0.0865 0.0912 0.0846 0.0835 0.0877 0.0921 0.0902 0.1184 0.0918

Significance (p-value)

DCP vs NP3D 0.38 0.13 0.34 0.46 0.36 0.89 0.66 0.54 0.07

DCP vs NM 6.4e-7 4.9e-4 2.1e-4 2.1e-4 6.7e-8 1.0e-5 1.0e-6 2.3e-4 9.9e-17

in [7]. Since DCP and NM are 2D methods using a 2D CP model, they only use one camera view.

NP3D, however, estimates a 3D body model from four camera views [7]. To compare with NP3D

we project the estimated body from NP3D into the image corresponding to the camera view used

by our method.

Table 4.1 shows the Average Estimation Error (AEE) computed by averaging err(·, ·) (Eq. 8)

over the 47 instances for each pose (or over all poses in the last column). Figure 4.8 shows details

of the fitting results. We find that DCP has lower error than both NM and NP3D. In the case of

NM these differences are statistically significant (paired t-test, p < 0.05) for all poses and in the

aggregate. While DCP has lower error than NP3D in all but one pose, and lower error overall, the

differences are not significant at the p < 0.05 level. Recall that NP3D is using significantly more

information. These results suggest that using a learned statistical model of clothing is preferable to

simply trying to ignore clothing [7].

Clothing category recognition. We now ask whether the clothing deformation coefficients contain

enough information about clothing shape to allow the classification of different types of clothing.

Note that this task involves recognizing clothing on the body as it is worn by real people. We separate

upper clothing and lower clothing and define 7 different categories (as color coded in Fig. 4.9).

We use a simple nearest neighbor (NN) classifier with Euclidean distances computed from the

coefficients along the first 8 principal components. Since we have a limited number of clothing

instances (47) for each pose, we use a leave-one-out strategy and assume that we know the categories

of all the instances except the one we are testing. Each instance is then assigned a category for both

upper clothing and lower clothing based on its nearest neighbor. Classification results are shown in

Fig. 4.9 along with chance performance for this task.
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Figure 4.7. Sample DCP results of estimated body shape overlaid on clothing.

The estimated body contour and synthesized clothing contour are depicted by blue and

red outlines respectively. Body shape is the transparent region encompassed by the body

contour. Results are shown for a variety of poses (left to right: 1-8) and viewing directions.

Figure 4.8. Comparisons of DCP, NM, and NP3D. For each group of images: the

first 3 images (left to right) show overlap of the estimated silhouette (red) and the ground

truth silhouette (green) for DCP, NP3D, and NM (yellow is overlap); the 4th image shows

the body estimated by NM overlaid on a clothing image. NM overestimates body shape

as expected.

5. Discussion

We have presented a new generative model of the 2D human body that combines an underlying

Contour Person representation of the naked body and layers on top of this a clothing deformation
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Figure 4.9. Color coded clothing type. We consider three types of upper clothing:

long sleeves (red), short sleeves (black) and sleeveless tops (blue) and four types of lower

clothing: short pants (green), long pants (magenta), short skirts (coffee), and long skirts

(cyan). Classification results for the 7 clothing types in all 8 poses are shown in the right

figure compared to “Chance”.

model. This goes beyond previous work to learn an eigen model of clothing deformation from exam-

ples and defines a prior over possible deformations to prevent “negative clothing”. While previous

work has examined 3D body models captured with multiple cameras or laser range scanners, we

argue that many computer vision applications use 2D body models and that these applications will

benefit from a more realistic generative model of clothed body shape. By modeling clothing defor-

mations we estimate 2D body shape more accurately and even out-perform previous multi-camera

systems on estimating shape under clothing. Finally we define a new problem of clothing category

recognition on the human body and show how the coefficients of the estimated eigen clothing can

be used for this purpose. This new dressed person model is low dimensional and expressive, mak-

ing it applicable to many problems including 2D human pose estimation, tracking, detection and

segmentation.

Our method does have some limitations. The method assumes there is a correspondence between

body contour points and clothing contour points. When there is significant limb self occlusion, the

clothing silhouette may not contain features that correspond to that limb. Dealing with significant

self occlusion is future work. Also, here we assume that the rough viewing direction (frontal or side)

and rough pose are known.

There are several directions for future work. First, we plan to model clothing deformation as a

function of human movement. This may require a model more like the original CP model in which

deformations are defined as scaled rotations of contour line segments [47]. This representation allows

the factoring of contour changes into different deformations that can be composed. Second, we will

explore what we call “eigen separates”; that is, separate eigen models for tops and bottoms as well as

for hair/hats and shoes. Having separate eigen spaces reduces the amount of training data required

to capture a wide range of variations. Finally we plan to extend these methods to model 3D clothing
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deformations from a 3D body model. Again data acquisition for 3D clothed and unclothed training

data is very difficult, and we plan to use realistic physics simulation of clothing.
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CHAPTER 5

DRAPE: Dressing Any Person

This chapter is built upon the original work [52]. We describe a complete system for

animating realistic clothing on synthetic bodies of any shape and pose without manual intervention.

The key component of the method is a model of clothing called DRAPE (DRessing Any PErson) that

is learned from a physics-based simulation of clothing on bodies of different shapes and poses. The

DRAPE model has the desirable property of “factoring” clothing deformations due to body shape

from those due to pose variation. This factorization provides an approximation to the physical

clothing deformation and greatly simplifies clothing synthesis. Given a parameterized model of the

human body with known shape and pose parameters, we describe an algorithm that dresses the

body with a garment that is customized to fit and possesses realistic wrinkles. DRAPE can be used

to dress static bodies or animated sequences with a learned model of the cloth dynamics. Since

the method is fully automated, it is appropriate for dressing large numbers of virtual characters of

varying shape. The method is significantly more efficient than physical simulation with the major

run-time cost being the solution of linear systems.

1. Introduction

Clothed virtual characters in varied sizes and shapes are necessary for film, gaming, and on-line

fashion applications. As with real people, virtual characters come in huge variety of sizes. Dressing

such characters is a significant bottleneck, requiring manual effort to design clothing, position it

on the body, and simulate its physical deformation. DRAPE handles the problem of automatically

dressing realistic human body shapes in clothing that fits, drapes realistically, and moves naturally.

Recent work models clothing shape and dynamics [37, 45, 111] but has not focused on the problem

of fitting clothes to different body shapes.

Physics Based Simulation (PBS) [12, 28, 21] is widely used to model the complex behavior of

cloth and can produce highly realistic clothing simulations. An extensive survey of cloth simulation

can be found in [29]. PBS, however, requires high resolution meshes to represent details (folds and

wrinkles), complicated non-linear functions to capture the physical properties of fabric, and time-

consuming collision handling to achieve realism [37, 29]. For acceptable visual effects, the clothing

mesh and the body mesh may contain tens of thousands of triangles, making PBS computationally
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expensive. Moreover, the results of physical clothing simulation are specific to a particular body

model. and do not readily generalize to new body shapes. Dressing bodies of different shapes re-

quires a separate simulation for every body shape. Additionally, a fundamental problem confronting

garment designers is the nontrivial task of choosing clothing sizes and initializing clothing simulation

on 3D characters [29]. Pattern makers may need to redesign the 2D patterns based on the anthro-

pometric measurements for characters of different shapes. An improperly chosen size can also lead

to failure of the simulation. This poor reusability is one of the factors that hinders richer clothing

animation [29].

Our method learns a deformable clothing model that automatically adapts to new bodies. Once

the DRAPE model is learned for a particular type of clothing, we can dress any body in that

clothing. Unlike the PBS methods, users do not need to choose proper sizes and initial positions

of cloth pieces before clothing fitting. The model will reshape the garment to fit the body and

“drape” it automatically. This is done by learning a linear regression the from underlying body

shape parameters to the clothing model parameters. assuming that the garments are reasonably

tight fitting. Pattern design is completely separated from the process of dressing bodies and can

be done by professional pattern makers before training the model. Therefore, users do not need to

know about pattern design, enabling much broader applications of clothing animation.

Here we use SCAPE [4] to represent human bodies of different shapes in different poses. We

learn separate SCAPE models for men and women using approximately 2000 aligned laser range

scans of different people in a single pose [87] and additional scans of one individual in roughly 70

poses. This result is an expressive 3D model with parameters controlling a wide range of body

shapes (~β) and poses (~θ). The model is sufficiently expressive to represent a wide range of body

shapes and poses. using independent parameters, allowing us to repose a single body and put bodies

of different shapes in the same pose. We assume that we have SCAPE parameters for all bodies used

for training and for dressing. We don’t lose much generality here, as we can optimize the SCAPE

parameters to represent most poses and body shapes accurately.

For this study, we designed and graded patterns for five common clothing types: T-shirts, shorts,

skirts, long sleeved shirts, and long pants [14]. These patterns are graded to allow us to generate

multiple sizes of each type which cover the most common garments that people tend to wear. The

T-shirt is used for illustration in Figure 5.1. The complete system (Figure 5.1) has three components:

1. Training data: The shape training set consists of SCAPE bodies with different shapes in

the same pose. The pose training set contains a single body shape moving through sequences of

poses. For each training body shape, we manually choose a size for each garment and dress the body

using PBS (Figure 5.1, row 2); this becomes our training data.
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Figure 5.1. Overview. We dress the bodies in the shape and pose training sets

using PBS to generate clothing examples for learning. DRAPE factors rigid pose,

pose-independent shape variation, and pose-dependent wrinkle deformation. The

SCAPE model is used to represent the underlying naked body. Given an input body,

an appropriate clothing configuration is generated according to the body pose and

shape. The clothing fitting process eliminates cloth-body interpenetration to create

realistic animations.
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2. Learned clothing deformation model: For each garment, we learn a factored clothing

model that represents: i) rigid rotation, ~θc, of cloth pieces, e.g. the rotation of a sleeve w. r. t.

the torso; ii) pose-independent clothing shape variations, ~φ, that are linearly predicted from the

underlying body shape, ~β, (learned from the shape training set); and iii) pose-dependent non-rigid

deformations, ~ψ, that are linearly predicted from a short history of body poses and clothing shapes

(learned from the pose training set).

3. Virtual fitting: First, we map body shape parameters, ~β, to clothing shape parameters,

~φ, to obtain a custom shaped garment for a given body. Clothing parts are associated with body

parts and the pose of the body is applied to the garment parts by rigid rotation. The learned model

of pose-dependent wrinkles is then applied. The custom garment is automatically aligned with the

body and interpenetration between the garment and the body is removed by efficiently solving a

system of linear equations.

Our model factors the change of clothing shape due to rigid limb rotation, pose-independent

body shape, and pose-dependent deformations. As with the original SCAPE model, this allows us

to combine deformations induced by different causes. The factored model can be learned from far

less data than a model that simultaneously models clothing shape based on pose and body shape. In

contrast, training a non-factored model (with pose, shape, and pose-dependent shape intermingled)

would require a huge training set with many body shapes performing many motions. The factored

model is an approximation that is sufficient for many applications and separates modeling body

shape from pose-dependent shape. The method is ideal for applications where the body shape is not

known in advance such as on-line virtual clothing try-on where every user has a unique 3D shape or

where many different people must be animated (e.g. crowd scenes).

In summary, DRAPE makes the following contributions: 1) Synthetic bodies of any shape are

automatically dressed in any pose. 2) A factored model of clothing shape models pose-dependent

wrinkles separately from body shape. 3) The method dresses bodies completely automatically at

run time. 4) Interpenetration is efficiently handled by solving a linear system of equations.

2. Simulating Clothing for Training

DRAPE models how clothing shape varies with underlying body shape and pose. Learning a

DRAPE model requires a shape training set of clothing meshes fit to different body shapes and a

pose training set with a single template body in multiple poses. Each type of clothing is represented

as a triangulated mesh with a learned model of how that mesh deforms. For a given type of clothing,

all training meshes must be in alignment regardless of pose or size. This makes the use of range

scans of real clothing difficult, since the number of vertices will vary and one would have to compute
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Figure 5.2. Pattern design. This screen-shot from a commercial pattern design

software system (OptiTex) shows graded patterns for the T-shirt and shorts, with

the grade points highlighted as purple dots. Some pieces, such as the sleeves, may

be reused for both left and right sides. The center panel controls the parameters of

the cloth simulation. On the left, the initial cloth placement is shown with the blue

lines indicating the points to be stitched during simulation.

the alignment of the training samples which is not necessarily well defined. Consequently we use

simulated clothing to generate the DRAPE training data. To prepare the training sets, we created

2D graded patterns for T-shirts, shorts, long-sleeved shirts, long pants, and skirts using a commercial

design and 3D simulation software (OptiTex International, Israel). Without loss of generality we will

use a T-shirt to illustrate the procedures for data generation. Figure 5.2 illustrates this standard

commercial design process while Figure 5.3 shows examples of the training garments.

First, a garment expert drafts 2D patterns for the T-shirt using a commercial design and 3D

simulation software (OptiTex International, Israel), which include the major pieces such as the

front, back, and sleeves (Figure 5.2). See Figure 5.2. These 2D patterns share the same “grading

rules”. A garment is defined in 2D by a number of “grading points” (purple points in Figure 5.2),

which model different sizes [14]. The grading points can be thought of as special boundary points

that characterize the sizes and curves of the 2D patterns. Different sizes of the same garment

are not simply scaled versions of each other. Simulation of the garment first requires manually

selecting the appropriate size pattern and positioning the clothing pieces in 3D. The commercial

software then stitches the garment and performs a physics-based simulation. PBS is done here with
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Figure 5.3. Examples of training data. (top) Clothing types used here (T-

shirt, shorts, long-sleeved shirt, long pants, and skirt). (middle) Example T-shirts

in the pose training set generated from a representative motion sequence. (bottom)

Training examples of T-shirts on representative male and female body shapes.

OptiTex, but any simulation method could be used. For each size, OptiTex generates meshes with

different numbers of vertices. Note, we select one 2D size as the template pattern and align all other

2D sizes to this with the help of the grading points (See AppendixA). The alignment procedure

is straightforward because the grading points are in correspondence. After 2D alignment, all 3D

meshes for each type of clothing are in full correspondence.

Defining a graded garment for a full range of sizes is a time consuming process requiring domain

expertise. Note, however, that such patterns already exist for nearly every manufactured garment

today. Our method does not provide automatic grading. Instead, we take care of the tedious process

of pattern design and learn a parametric clothing model to provide the users with realistic automatic

fitting with appropriate clothing size. That’s why we want the pattern design to be done once and

the users had better not deal with choosing the appropriate cloth sizes.
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The training set for pose-dependent clothing deformation uses a single male and a single female

avatar represented as SCAPE body models [4]; we use the average male and average female body

shapes in the North American CAESAR data set [87]. Using 23 different motion capture sequences

we animate the SCAPE avatars and use OptiTex to simulate the clothing in each frame (Figure

5.3 (middle)). These motion sequences capture a wide range of body poses and include walking,

running, jumping, kicking, turning, bending the legs, and so on. For each sequence we simulate

different clothing types: T-shirt, shorts, and skirt for the female and T-shirt, shorts, long sleeves,

and long pants for the male. The clothing pose training sets consist of more than 3500 different poses

with 4 male garments and 3 female garments, for a total of 3500×7 = 24, 500 clothing instances. The

model for each clothing type is learned separately. The learned DRAPE model is able to combine

upper and lower-body clothing models to produce combinations not seen in training.

Finally, for the shape training sets, we used the SCAPE body model to generate 60 males and

60 females that span a wide variety of body shapes. Each body is in the same canonical “template”

pose shown in Figure 5.3 (bottom). Similar to the pose training set, we simulated 4 male garments

and 3 female garments resulting in 60× 7 = 420 clothing instances in the shape training set.

3. DRAPE Model

DRAPE is trained using a set of aligned 3D clothing meshes, with T triangles and V vertices.

The set contains a template mesh X , a set of pose examples Y ∈ P, and a set of shape example

meshes Y ∈ S. X is obtained by dressing an average body in the template pose. Y ∈ P are obtained

by running clothing simulation on one animated body. Y ∈ S are obtained by running clothing

simulation on different bodies with the same pose as the template. We consider males and females

separately.

It is important to choose an appropriate representation for deformations between example

meshes. Simple choices based on vertex coordinates or vertex displacements from the template

mesh are problematic for separating deformations induced by different causes. Since factorization

is a crucial property of the model, we use shape deformation gradients [102, 4] to represent defor-

mations between meshes. This allows DRAPE to separate deformations induced by pose and shape

and then combine the deformations together. We follow the formulation of SCAPE and present

the notation here as it will be needed later. We refer the reader to the above referenced papers for

details.

Deformation gradients are linear transformations that align corresponding triangles between a

source mesh X and target mesh Y with the same topology. Suppose the vertices of a given triangle

t in X are (~xt,1, ~xt,2, ~xt,3) and the corresponding triangle in Y has the vertices (~yt,1, ~yt,2, ~yt,3). We
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Figure 5.4. DRAPE clothing deformation process. (1) The template mesh

is deformed to fit a new body shape. (2) The pose of the underlying body is used

to apply a rotation to clothing parts. (3) Pose-dependent non-rigid deformation

produces wrinkles learned from examples. (4) Vertices are moved locally to remove

interpenetration with the underlying body mesh.

solve for a 3 by 3 linear transformation At such that

(9) At[∆~xt,2,∆~xt,3,∆~xt,4] = [∆~yt,2,∆~yt,3,∆~yt,4],

where ∆~xt,k = ~xt,k−~xt,1 for k = 2, 3 and ∆~xt,4 = ∆~xt,2×∆~xt,3. Since At is applied to edge vectors,

it is translation invariant; it encodes the scale, orientation, and skew of triangle t. Following [102]

the virtual edge, ∆~xt,4, makes the problem well constrained so that we can solve for At.

The key idea of a factored model is that it expresses the deformations, At, as a series of linear

transformations, each corresponding to different aspects of the model. We factor At into pose-

dependent deformation, rigid part rotation, and body shape deformation:

(10) At = QtRp(t)Dt.

Dt represents variations in clothing shape on different people and is triangle specific. Rp(t) is the

rigid rotation applied to clothing part p containing triangle t. Qt is the triangle-specific non-rigid

pose-dependent deformation of the garment. This pose-dependent term captures wrinkles resulting

from bending and twisting. The order of the factoring matters. Dt is learned from a shape training

set where all the bodies are in a template pose, thus Dt is applied first, when clothing is still in the

template pose. We then rotate each of the parts and finally apply wrinkle deformations on top of

the previous deformations.

DRAPE models different clothing meshes by applying different transformations Dt, Rp(t), and

Qt to the template mesh. The deformations, however, are applied to triangles independently and

do not guarantee a consistent mesh. Reconstructing the final mesh involves solving for the vertex
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(a) Mean (b) PC1

(c) PC2 (d) PC3

Figure 5.5. Shape model. Deviations from the template shape: (a) template

deformed by the mean deformation to create a “mean template”; (b-d) mean tem-

plate deformed along the first three principal component directions ( ± 3 standard

deviations).

coordinates, ~yi ∈ Y, that best match the deformed triangles in a least squares sense

(11) argmin
~y1,...,~yV

T∑
t=1

∑
k=2,3

||QtRp(t)Dt∆~xt,k −∆~yt,k||2.

Figure 5.4 illustrates each of the DRAPE deformations applied in order. Below we describe them in

detail and, in particular, how we learn Qt and Dt.

3.1. Deformations Due to Body Shape. The shape deformations Dt are learned from X

and S. Recall that the examples in S have the same pose as X . We solve for the At’s for each pair of

X and Yj ∈ S using Equation (9). These deformations are induced by changes in clothing shape that

result only from the clothing being draped over different body shapes, so QtRp(t) in Equation (10) is

the identity and, for a given mesh Yj ∈ S, we can write Aj
t = Dj

t . The clothing shape deformations

Dj
t for all triangles t = 1 . . . T are concatenated into a single column vector ~dj ∈ R3·3·T×1. These

are collected into a matrix of deformations S = [..., ~dj , ...]. Principal component analysis (PCA) is

used to find a low dimensional subspace, such that ~dj can be approximated by Ud
~φj + ~µd, where Ud

is a matrix of the first few principal components of the shape deformation space, and ~µd represents

the mean deformation from the template X . Figure 5.5 illustrates the mean and first three principal

components for a female T-shirt.
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Figure 5.6. Color-coded body and clothing. The colors show the part cor-

respondences between bodies and clothing. During training, the rigid rotation for

each clothing part is the same as the rotation for the corresponding body part. This

allows us to transfer a new body pose to the clothing during clothing fitting.

A new clothing shape is represented by a new set of shape coefficients ~φ∗. These define the

shape deformation from the template, ~d∗ = Ud
~φ∗ + ~µd. This is converted into the appropriate 3× 3

deformation matrices, D∗
t , which are applied to the template as illustrated in Figure 5.4.

The key idea behind automatically dressing a new body is that we can predict the clothing

shape parameters, ~φ∗, from a SCAPE body with shape parameters, ~β (refer to Figure 5.1). Given

60 body and clothing training pairs in S, we learn a linear mapping, W , between these vectors using

L2-regularized least squares with the weight of the regularized term being 0.2. We then predict

clothing parameters for an input body shape ~β using the linear equation

(12) ~φ∗ = W ·

~β
1

 .
Since clothing shape deformations are a function of body shape, we write D̂t(~β) to represent the

deformation matrix for a triangle t predicted from the body shape given by ~β. In our work, ~β is 20

dimensional and ~φ∗ has only 5 dimensions because we expect the shape model to only contain low

frequency deformations.
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Figure 5.7. Learned pose-dependent deformation model. For each pair, the

left piece of clothing shows the physically-simulated example from the pose training

set, and the right piece shows the synthesized deformation patterns predicted by

our model.

3.2. Deformations Due to Rigid Part Rotation. The SCAPE body model is composed of

parts, which are color coded in Figure 5.6. Clothing is also naturally composed of parts during its

design or can be easily segmented into parts. Each clothing part is associated with a single body

part as shown by the color coding in Figure 5.6. The part correspondences for each garment are

defined manually as part of the pattern creation process.

The SCAPE pose is given by the parameters ~θ (refer to Figure 5.1); these are relative part

rotations along a kinematic tree rooted at the pelvis. These parameters represent rigid 3×3 rotation

matrices, Rp for each part p; these are applied to all the triangles in the respective body part. The

DRAPE model simply applies these rotations to the corresponding clothing part as defined in Figure

5.6. For a given garment, all the part rotation parameters relevant to that garment are collected

into a clothing pose vector ~θc. The part-based rotation for a clothing mesh triangle is denoted as

Rp(t)(~θc).

3.3. Deformations Due to Body Pose. We use the pose training set P to learn a non-

rigid pose-dependent clothing deformation model; this captures effects such as wrinkles. Since every

Yi ∈ P corresponds to the same SCAPE body shape, all clothing deformations result from pose

changes. This means Dt is the identity in Equation (10) and we write the deformations for each

mesh Yi and each triangle as Ai
t = Qi

tRp(t)(~θi
c), where Qi

t is the residual triangle deformation after

accounting for the part-based rigid rotation Rp(t)(~θi
c) given by the training body pose. Since all

the clothing meshes in P are in correspondence, it is trivial to solve for Ai
t and consequently the

non-rigid deformations, Qi
t.

As with the shape deformation model, the clothing pose deformations, Qi
t, for all the triangles

are concatenated into a single column vector, ~q i ∈ R3·3·T×1. We collect every example Yi in P to

form a matrix P = [..., ~q i, ...]. We use PCA to represent a dimensionality-reduced subspace of pose
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deformation and ~q i is approximated by Uq
~ψi + ~µq. Depending on the complexity of the clothing

type, ~ψi is chosen to have 30− 50 dimensions capturing 90% of the variance.

While PCA captures the space of possible deformations, to animate clothing we must relate these

deformations to body pose. Cloth exhibits complex dynamical phenomenon w.r.t. the movement of

underlying human body. To realistically capture how cloth moves and wrinkles, we learn a second

order dynamics model for pose-dependent wrinkle deformation using the method described in [37];

refer to that paper for a detailed explanation. The second-order model is important to capture

smooth wrinkle transitions with pose variation and fine wrinkle details.

As an example, consider the T-shirt, where ~θc contains three relative part rotations: torso w. r. t.

the pelvis, left upper arm w. r. t. the torso, and right upper arm w. r. t. the torso. Each of the part

rotations are represented by a 3× 1 Rodrigues vector. Therefore, ~θc is 9 dimensional in this case.

The key idea is to write the pose deformation coefficients , ~ψf , of the current frame, f , as a

function of the pose, history of pose-dependent deformations, and body state changes; i.e. ~ψf =

(13) M1
~θf
c +M2

~ψf−1 +M3
~ψf−2 +M4~z

f,f−2 +M5~z
f−1,f−2,

whereM1..M5 are the matrices of the dynamics coefficients to be learned, ~θf
c is a vector of the relevant

clothing part rotations at frame f , ~ψf−1 and ~ψf−2 are the previous two frames of pose deformation

coefficients. ~zj,k =

Γk−1 · (~τ j − ~τk)

~θj
c − ~θk

c

 encodes the relative body translation (normalized by the

global rotation at frame k) and rotation change of frame j with respect to frame k, where Γk is the

global (i. e., pelvis) rotation of the body at frame k, ~τ j and ~τk are the global translations of the

body. We normalize the position change between two frames so that the model generalizes better to

unseen body movement directions. Note that ~θj
c ,
~θk
c are relative part rotations, so that they do not

need to be normalized by Γk.

We learn a gender-specific dynamics model for each type of clothing. Given the training poses,

P, the dynamics coefficients M1..M5 are learned by solving the following least squares problem

constructed from the pose training set:

(14) argmin
M1,M2,M3,M4,M5

|P|∑
f=1

||~ψf −



MT
1

MT
2

MT
3

MT
4

MT
5



T 

~θf
c

~ψf−1

~ψf−2

~zf,f−2

~zf−1,f2


||2.

Once ~ψf for frame f is predicted from the learned dynamics model using Equation (13), the con-

catenated pose-dependent deformations will be ~q = Uq
~ψf + ~µq. Again, this is converted into the
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(a) initial, after 1st iter, after 3rd iter (b)

Figure 5.8. Removing interpenetration. (a) The left, middle, and right figures

show the initial clothing prediction, the result after the first iteration of optimiza-

tion, and the final result respectively. (b) Details of the interpenetration term. The

blue dots and red dots represent body and clothing vertices respectively (see text).

appropriate 3× 3 deformation matrices. Let Q̂t(~ψf ) represent the deformation matrix for a triangle

t. We show in Figure 5.7 and the supplementary video that our model produces visually plausible

clothing wrinkles.

3.4. Predicting New Clothing. Putting everything together, we create a new instance of a

garment by solving for the vertex coordinates of Y such that

argmin
~y1,...,~yV

T∑
t=1

∑
k=2,3

||Q̂t(~ψf )Rp(t)(~θf
c )D̂t(~β)∆~xt,k −∆~yt,k||2.

Computationally, the entire process described in this section involves several matrix multiplications

and the solution of a sparse linear least squares problem.

4. Refining the Fit

Given a body shape and pose, DRAPE predicts a plausible clothing mesh. However, when

the predicted clothing mesh is overlaid on the body (Figure 5.8(a)), there can be interpenetration

between the clothing and the body. Consequently, the prediction step is followed by an efficient

refinement step that warps the garment so that it lies entirely outside the body. This is achieved

by minimizing a measure of cloth-body interpenetration with respect to the vertices of the garment,

regularizing to make the cloth deform plausibly. Our iterative strategy alternates between computing

the cloth vertices that penetrate the body, P, and updating the clothing shape. The objective

function comprises the following terms:
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Cloth-body interpenetration. Given a penetrating vertex on the clothing in P, we compute

the nearest vertex on the body and its associated surface normal (Figure 5.8). We seek a clothing

mesh such that all such vertices are pushed outside the body mesh. To that end, we define a penalty

pC(Y) =
∑

(i,j)∈C∧i∈P

||ε+ ~nT
~bj

(~yi −~bj)||2

where C is the set of correspondences between each clothing vertex, ~yi, and its closest body vertex,

~bj . Additionally ~n~bj
is the normal for body vertex ~bj . The term ε = −0.3cm ensures that clothing

vertices lie sufficiently outside the body. This equation has many solutions. To make the cloth

deform plausibly, we regularize the solution with two additional terms and one optional term:

Smooth warping. We prefer solutions where the warping of the cloth vertices varies smoothly

over the surface of the garment; i.e. we seek to minimize

s(Y) =
∑
i∈V

||(~yi − ~̃yi)−
1
|Ni|

∑
j∈Ni

(~yj − ~̃yj)||2

where V is the set of vertices in the garment, ~y are vertices of the warped garment, ~̃y are vertices

of the garment before this iteration, and Ni is the set of vertices adjacent to vertex i. This term

prefers a deformation of a vertex that is similar to the average deformation of its neighbors.

Damping. We prefer solutions where the warped vertices keep their original locations as much

as possible; i.e. we seek to minimize

d(Y) =
∑
i∈V

||~yi − ~̃yi||2.

Tightness (optional). There are several clothing types such as shorts, skirts, and long pants that

have a waistband that needs to be in contact with the body. The “tightness" term models this and

here we use it only for lower-body clothing:

tC(Y) =
∑

(i,j)∈C∧i∈T

||~yi −~bj ||2

where T is a set of vertices corresponding to the clothing waist band as defined by the pattern

designer. This term specifies that every waist band vertex should be close to its nearest neighbor,

~bj , on the body. Note that this term could be used to model tight cuffs or any clothing region that

fits snugly to the body.

Our goal is to efficiently compute the mesh that minimizes

E(Y) = pC(Y) + λss(Y) + λdd(Y) + λttC(Y).

E(Y) is a sum of squares of linear functions of the vertices, so we can find its solution efficiently

using a linear least squares solver. However, because we only consider the “currently penetrating"

vertices, P, we need to solve the least squares problem iteratively so that we do not introduce new
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penetrating vertices that did not penetrate previously. At each iteration, we update P, construct

the sparse least squares problem, solve it, and update the clothing mesh. In our experiments we find

that 3 iterations are sufficient to remove most collisions. The entire collision handling step is:

Given a body and a clothing mesh, compute corresponding vertices, C, and only do this once.

iter = 0

repeat

iter = iter + 1

Determine the penetration vertex set P.

Construct a linear system and solve:

argmin
~y1,...,~yV

{pC(Y) + λss(Y) + λdd(Y) + λttC(Y)}

until iter = 3

The weights decrease with iterations: λs = 4, 2, 1 and λd = 0.8, 0.6, 0.4. For lower clothing with

tight waist bands λt = 0.2.

Details. The clothing deformation model is translation invariant, so the three dimensional

global translation of the garment must be determined. Note that the global rotation is already

defined by the global rotation of the pelvis. During garment creation, we define several anchor

points on the garment and the roughly corresponding points on the 3D body mesh. During fitting

we compute the translation by minimizing the difference between the clothing and body anchor

points.

To solve for the translation we use several anchor points that are roughly corresponding points

on the body and the clothing. For upper-clothing (T-shirts and long sleeves), we use 20 points on

the shoulders of the body (each shoulder gets 10 points). Since the clothing meshes are aligned, it

is easy to define 20 points on the shoulders of the clothing as well. For lower-clothing types (shorts,

skirt, and long pants), we again use 20 points around the waist of the body and the waist of clothing

as the anchor points, and translate the clothing to make them overlap.

To layer multiple pieces of clothing, we independently predict and position all pieces then refine

from the inside out. For example, we predict the positions of pants and a T-shirt, refine the pants

to be outside the body, and then refine the T-shirt to be outside the combined vertex set of the

pants and body (here, the nearest neighbors C are computed between the upper-clothing and the

combined vertex set). Combining the body and lower clothing is done efficiently by segmenting the

body at the waist vertices and taking the union of the remaining upper body vertices and the lower

clothing vertices.

Even though there is a standard method to compute the union of two meshes, the “union" step

itself is computationally expensive. Here we use an extremely efficient way to compute the union
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in our application. We can model the body mesh as a graph. If the inner layer is lower-clothing,

we can cut the edges that are associated with the body waist vertices to make the body graph un-

connected (a connected component above the waist and a connected component below the waist).

Then we can run bread first search starting from any vertex on the head. The union of the body and

lower-clothing will be the vertices that are reachable from the head vertex plus all the lower-clothing

vertices. Since we predefine the body waist vertices and the body graph is fixed, this step is done

once without additional cost at run time.

5. Experimental Results

We evaluate the performance of the DRAPE model on different clothing types, body shapes,

and motion sequences.

Qualitative Evaluation. To illustrate the behavior of the model, we synthesize clothing on

2 test sequences present in the pose training set and 10 novel test sequences not present in the

training set. For each test motion sequence, we synthesize multiple bodies with different random

shapes using the SCAPE body model. We then dress these bodies with different combinations of

upper and lower clothing types. Here, we use 20 body shape coefficients (~β ∈ R20×1), 5 clothing

shape coefficients (~φ ∈ R5×1), and 50 pose-dependent clothing deformation coefficients (~ψ ∈ R50×1).

The choices of dimensions for ~β and ~φ are discussed later. Figures 4.1 and 5.9 and the accompanying

video illustrate that the method synthesizes clothing with detailed wrinkles and generalizes well to

body shapes and poses not present in the training set.

We also visually compare the results of our method (with and without dynamics) to PBS. Figure

5.10 illustrates the results with two poses: 1) a male model rotating his torso, and 2) a female model

in the middle of a jump. Figure 5.10 shows that the OptiTex simulations (a) contain more high

frequency wrinkles than our method with dynamics (b). This is to be expected as our approach is an

approximation to the physically-simulated clothing used for training. However, the strength of our

method is being able to produce infinitely variable clothing sizes for different body shapes (Figure

5.11). Figure 5.10 (c) shows the results of our method without modeling dynamics; i. e., a zero

order model that only uses ~θf
c in Equation (13) to predict pose-dependent deformation. Comparing

Figure 5.10 (b) and (c), we see that modeling dynamics is important for maintaining fine wrinkles,

especially for fast motions.

Quantitative Evaluation. We take a male T-shirt as the representative clothing type for all

quantitative experiments. The results are similar for other clothing types.

First, we verify the assumption that the pose-dependent non-rigid wrinkle deformations can

be learned by linear regression. We expect the synthesized meshes produced by DRAPE to be
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Figure 5.9. More DRAPE results (test sequences not present in training

set). We randomly combine upper clothing type, lower clothing type, pose, and

body shape to generate synthetically clothed people. See accompanying video for

more results.

smoother than the ground truth PBS meshes because the linear model is an approximation of the

“real” wrinkle patterns. The effect of this smoothing is shown in Figure 5.10 (d) for a representative

176 frame test sequence (including running, jumping, and stopping) simulated using OptiTex (blue)
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(a) OptiTex (b) Wrinkle comparison

(c) DRAPE with dynamics (d) DRAPE without dynamics

Figure 5.10. Wrinkles. Comparison between OptiTex simulation on mean bodies

(a) and the DRAPE model with (c) and without (d) dynamics on novel bodies. (b)

Measures how “wrinkled” the garment is in terms of the mean of the mean curvature.

One test sequence with a motion not appearing in the training set is shown (176

frames). The DRAPE model (with dynamics) captures the wrinkles well while the

model without dynamics over smooths the clothing.

and animated by DRAPE with dynamics (red) or DRAPE without dynamics (green). We compute

the mean curvature at each vertex and then take the mean of this over all vertices in the garment;

this provides an objective measure of the overall amount of wrinkles in the cloth. The plot shows

that 1) we lose approximately 5 − 15% of the high frequency wrinkles due to the linear regression

approximation and 2) modeling dynamics greatly helps to maintain fine wrinkles.

Second, we explore the performance of clothing shape prediction, ~φ, as a function of the dimen-

sionality of the SCAPE body coefficients ~β (refer to Equation (12)). We use the average Euclidean
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Figure 5.11. Importance of fit. We compare bodies of different shapes clothed

using DRAPE (left) and OptiTex simulation (right). The OptiTex simulation uses

a fixed size T-shirt, emphasizing how the quality of the simulation depends heavily

on choosing the right sized garment. In contrast, DRAPE automatically predict the

appropriate, infinitely-sized, clothing for every body.

vertex distance to measure shape prediction error. We use leave-one-out cross validation to pre-

dict the ith clothing instance using the PCA model and the linear shape predictor learned from all

the remaining 59 instances excluding i. Figure 5.12 shows average shape prediction error over the

60 examples as a function of the dimensionality of the SCAPE body shape coefficients ~β. If too

many principal components are used, the model tends to over-fit the wrinkles and produce higher

errors. The best generalization performance is achieved with approximately 20 PCA dimensions;

this might increase with more shape training data. Thus, use use 20 body shape parameters, ~β, in

our experiments.

Speed and Memory. The run time performance for different garments and mesh resolutions

is shown in Table 6.2. Our method is implemented using Matlab (single threaded) without special
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(a) 10-Dim (b) 20-Dim (c) 30-Dim (d) 40-Dim

Figure 5.12. Shape prediction accuracy versus subspace dimension. The

shape prediction error (in cm) does not decrease monotonically with the number

of principal components. Over fitting occurs with more than 20 dimensions. These

errors are illustrated on one of the ground truth clothing meshes, with hot/cold

colors representing large/small errors.

optimization such as GPU acceleration. The OptiTex run time does not include manually choosing

the appropriate clothing size and placing the cloth pieces in appropriate initial positions.

For a single frame simulation, our method is much faster (40 − 160X) than the commercial

physical simulation. If we run cloth simulation on a motion sequence, the amortized run time per-

frame for OptiTex improves a lot, but is still around 15X slower than our method. This is because

OptiTex makes use of temporal coherence. Our method fits clothing to each pose individually,

therefore the per-frame run time for an animation is the same as for a single pose.

All timings were obtained with a 32 bit desktop machine with a 3.2 GHz AMD PhenomTMΠ

processor, 4.0 GB of memory, and an NVIDIA GeForce 8600 GT video card. Our method is not
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Run time (sec/frame)

Mesh Res DRAPE OptiTex

Garment #Vert #Tri Syn Fit Total Single Animation

T 18903 37446 0.1 0.8 0.9 46 12.1

Sh 10028 19686 0.06 0.4 0.46 20 5.3

Sk 8933 17582 0.06 0.4 0.46 35 7.2

LS 17136 34026 0.1 0.7 0.8 75 17.9

LP 15980 31746 0.09 0.6 0.69 62 15.7

T+Sh 28931 57132 0.16 1.2 1.4 122 28.0

LS+LP 33116 65772 0.19 1.3 1.6 308 37.6
Table 5.1. Run time performance. Comparison of the run time performance

of our method and the OptiTex package for various garments and resolutions. “T",

“Sh", “Sk", “LS", “LP" stand for T-shirt, Shorts, Skirt, Long Sleeves, Long Pants

respectively. “Syn" stands for clothing mesh synthesis while “Fit" represents the

time for solving body-cloth interpenetration and preparation time. OptiTex-Single

shows the run time for a single frame simulation and OptiTex-Animation shows the

amortized run time per frame in an animation.

memory intensive. Consider a clothing mesh with 25000 triangles and a body model with 25000

triangles. Using floats for the vertices and normals, we need 450KB in total for the body and clothing

to fit into memory. The shape PCA bases take 18MB (20 dimensions). The pose PCA bases take

27MB (30 dimensions). Representing the linear systems for computing the clothing deformation

and clothing refinement takes approximately 400KB and 750KB respectively. This easily fits in the

memory of a smart phone.

In addition to the run-time cost, there is an up-front cost of creating the training set for learning.

The garment design process is completely standard and graded patterns like those used here exist

for any mass produced garment already. Preparing the shape training set involves dressing each

of the 60 training bodies once using the PBS system. The pose training set requires dressing the

template body and simulating the motion sequences. Once the training data is created, learning

the shape and pose-dependent models is very fast (minutes). Our advantage can be summarized as

“simulate once, use often."

6. Discussion and Limitations

While DRAPE generates realistic clothing for different body shapes and poses, it has several

limitations. First, the learned shape and pose deformation models are independent and, when they
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are composed during synthesis, unnatural wrinkle patterns may be generated. Here we do not

claim a physically realistic model of wrinkles, but rather demonstrate that often the simple factored

model produces visually appealing results in practice. To minimize the occurrence of unnatural

combinations, while retaining realism, we use a fairly smooth shape model and a higher frequency

pose model (cf. [111]). The lower frequency shape model is naturally obtained by using fewer

principal components for the clothing shape coefficients ~φ. The assumption is that low frequency

wrinkles are related to body shape while high frequency wrinkles are largely determined by the body

motion. While DRAPE handles interpenetration between the body and the clothing and between

upper clothing and lower clothing, it does not model cloth self-penetration in the same clothing

item.

It should be noted that the learned model is only as good as the input it is trained from. As shown

here, the model is an approximation and DRAPE garments are smoother than the simulations. Here

we used a particular commercial package for simulation but higher quality clothing simulations, or

real cloth capture, would produce a more realistic DRAPE model. While there is some loss of fidelity

compared with the training data, the advantages of the method are that the fitting is automatic, the

model generalizes to different body shapes and it is computationally efficient. For many applications,

particularly involving dressing many unknown body shapes, the trade off of automation for fidelity

may be appropriate.
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CHAPTER 6

Multi-linear Dynamic Hair Model

This chapter is built upon the original work [53]. We present a data-driven method for

learning hair models that enables the creation and animation of many interactive virtual characters in

real-time (for gaming, character pre-visualization and design). Our model has a number of properties

that make it appealing for interactive applications: (i) it preserves the key dynamic properties of

physical simulation at a fraction of the computational cost, (ii) it gives the user continuous interactive

control over the hair styles (e.g., lengths) and dynamics (e.g., softness) without requiring re-styling

or re-simulation, (iii) it deals with hair-body collisions explicitly using optimization in the low-

dimensional reduced space, (iv) it allows modeling of external phenomena (e.g., wind). Our method

builds on the recent success of reduced models for clothing and fluid simulation, but extends them in

a number of significant ways. We model motion of hair in a conditional reduced sub-space, where the

hair basis vectors, which encode dynamics, are linear functions of user-specified hair parameters. We

formulate collision handling as an optimization in this reduced sub-space using fast iterative least

squares. We demonstrate our method by building dynamic, user-controlled models of hair styles.

1. Introduction

Hair animation is a difficult task, primarily due to the large volume of hairs that need to be

considered (a typical human head consists of 100,000 hair strands) and the complex hair motions

and interactions. Despite this, there has been enormous success in model acquisition [83], simulation

[91, 36] and rendering of hair (e.g., Rapunzel’s hair in Tangled [114]). Such high-quality simulations,

however, are expensive and require off-line processing. The approach of Daviet and colleagues

[36] simulates 25 seconds of video in 48 hours (using 2,000 rods) and that of Salle and colleagues

[91] simulates 1 frame in 4-38 minutes. Real-time applications, such as prototyping and games,

have more stringent computational budgets, and hence often rely on less realistic models which

are either entirely procedural [23], topologically constrained [122], or approximate simulation using

low-resolution (e.g., guide curves or strips [73]) or level of detail models [113].

Rather than attempt to create a fast physically accurate simulation, our goal is to learn a flexible

low-dimensional representation of dynamic hair motion that is compact and fast, but at the same

time expressive enough to convey the dynamic behaviors seen in high-resolution simulations. Our
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Figure 6.1. Real-time animation of 900 guide multi-linear hair model, with inter-

active control over the hair softness (red slider, the higher the softer) and length

(blue slider, the higher the longer); bottom row shows interactive control of wind

strength (arrow length) and direction (arrow orientation).

data-driven approach generates motion that models the dynamics of hair and provides a level of

accuracy comparable to the input data. Our method builds on the recent success of reduced models

for clothing [37] and fluid simulation [106], but extends them in a number of significant ways. It is

a general method that is also applicable in other domains, for example for modeling clothing. The

approach of de Aguiar and colleagues [37] is a special case of our model. Here we focus primarily

on hair animation.

76



We leverage hair simulations produced by a standard simulation package (Shave and a Haircut

[2]) to build a highly efficient multi-linear model of hair motion as a function of several user-controlled

parameters (hair length, softness and wind direction). To build this model, we make two basic as-

sumptions: (i) characters in interactive domains typically exist in finite configuration spaces, where,

for example, the user has control over the transitions between a finite set of motions (e.g., as in

motion graphs); or has limited dynamic control over the raw character motion (e.g., as with most

interactive controllers); and (ii) there exists a continuous manifold space of hair models parame-

terized by geometric, dynamic, and external factors acting on the hair. The second assumption

is motivated by hair grooming and simulation tools that typically provide continuous control over

similar parameters but off-line.

Our method takes, as input, multiple sets of hair motions produced by a simulator under various

perturbations in the parameters of interest, and learns a reduced multi-linear dynamical model

approximating the behavior of hair exhibited across all sets. As a consequence, one can think of the

conditional dynamic base vectors, modeling hair evolution, as being functions of real-valued factors

that can be specified by the user at test time. Thus using a discrete set of simulations, we are able

to build a continuous and intuitive space of dynamic hair models. Because our learning method

is statistical in nature, the raw results from the multi-linear model can only approximately resolve

body-hair contacts. This limitation can cause unwanted hair-body penetrations. To explicitly handle

this problem in our model, we propose an optimization step that resolves collisions by optimizing

the reduced space representation directly. This process is efficient because we only need to optimize

a small set of hair parameters, instead of raw hair strand vertex positions.

Unlike prior real-time hair-simulation methods that typically rely on low-resolution models (with

a handful of strips or wisps), our model is considerably more efficient and can deal with up to 4,000

guide hair strands at a small fraction of the computational cost. In contrast to most model reduction

approaches [106], we assume no specific form for the dynamics. In contrast to data-driven methods

[37], we do not learn a single linear dynamical model, but rather a family of models parameterized

by semantic user-specifiable parameters (including external factors like the wind); we also explicitly

and efficiently deal with hair-body collisions, which was a limitation of [37].

The ability to realistically animate hair for a large number of characters in real-time has many

potential applications. Virtual worlds increasingly rely on physical simulation, and our approach

offers the opportunity to incorporate realistic hair models currently lacking in most games and

interactive media applications.

Contributions: We introduce a data-driven multi-linear reduced-space dynamical model for mod-

eling hair. It is explicitly parameterized by a number of real-valued factors (e.g., hair length, hair
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softness, wind direction/strength, etc.) that make it easy to adjust the groom and motion of hair

interactively at test time. We formulate our model using tensor algebra and illustrate how dynamics

can be incorporated within this framework. Further, we explicitly address the issue of hair-body

collisions by a very efficient optimization procedure formulated directly in the reduced space and

solved using a form of iterative least squares. Our formulation goes substantially beyond current

reduced-space dynamical models (e.g., [37]).

2. Representation

We use a physically based hair simulation software (Shave and a Haircut [2]) to simulate a

large number of hair guides, each guide being the proxy for a bundle of hair strands. Our method

operates on hair guides as this is a typical representation for hair simulators. However, unlike other

methods (e.g., [103]) that use few (up to 200) hair guides to reduce simulation complexity, we utilize

up to 4,000 hair guides with our model1. The hair guides are simulated on the head of the virtual

character, animated and skinned using a set of 35 motion capture sequences. We adopt a standard

approach to interpolate between hair guides to obtain a full set of hair strands [81].

Hair: We use Ng guides per-frame and every guide gk(1 ≤ k ≤ Ng) is a curve represented by

Nm = 15 points in 3D (see Figure 6.2). We generate three different datasets with Ng being 198,

962, and 3980 respectively. Let gk,1,gk,2, ...,gk,Nm
∈ R3 be the points on guide k. We con-

catenate the x, y, z coordinates of points from the guide and obtain gk = [gk,1,gk,2, ...,gk,Nm
] =

[gk,1,x, gk,1,y, gk,1,z, ..., gk,Nm,x, gk,Nm,y, gk,Nm,z] ∈ R3Nm . We put together all the guides and use a

tall vector h = [g1,g2, ...,gNg
]T ∈ RNh to represent one frame of hairs, where Nh = 3NmNg.

Body: Similarly we represent the body using a set of vertices of the triangular mesh (see Figure 6.2).

For the purposes of our model we only need to consider the head and the shoulders (the bust) of the

mesh with which hair can potentially come in contact. Assuming that there are Nn vertices in the

bust and that each vertex is represented as bi = [bi,x, bi,y, bi,z] ∈ R3, at a single frame the body is

represented using b = [b1,b2, ...,bNn ]T ∈ RNb , where Nb = 3Nn.

2.1. Dimensionality Reduction in Canonical Space. Given the correlation among the

hair guides (and body vertices) and the constrained topology of hair points, the underlying number

of degrees of freedom (DOF) is much less than Nh (or Nb in the case of the body). Hence, we adopt

Principal Component Analysis (PCA) to reduce the dimensionality of the two representations. We

are able to capture most of the variation in the geometric hair appearance using a much lower

1In effect we show that by treating all hair strands as guide curves in our framework, we can forego the interpo-

lation step as our model learns to incorporate “interpolation" as part of the mapping from the reduced space to the

full-dimensional hair representation.
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h = {gk,1,gk,2, . . . ,gk,Nm}Ng

k=1

gk,Nm

b1

b2

b = {b2,b2, . . . ,bNn}

Wednesday, January 4, 12

Figure 6.2. Hair and body parametrization. We represent hair using control

points on a sparse set of guides and body using vertices making up the triangular

mesh of bust.

dimensional space (typically 50 to 100); as the configuration of the bust is much more constrained,

we use only 10 dimensions to represent it. The choice of the space in which the hair and bust are

represented is also an important practical issue. Representation in the original world space hinders

generalization [37]. Therefore, we model the motion in a canonical space of the bust.

We assume that the hair motion is only determined by the motion of the bust. We do not

consider hair-hand interaction in this work. To normalize hairs and bust at frame t, we transform

all the hair points and the bust vertices into a canonical space by: (1) subtracting the average

position of the bust vertices, pt = 1
Nn

ΣNn
i=1bi,t ∈ R3 and (2) rotating the bust (and hairs) around

the Y-axis, rt ∈ R1 such that the head is facing towards the positive Z-axis; the negative Y-axis is

the gravity direction. PCA is applied on the normalized data.

As a result, the hair at frame t, ht ∈ RNh can be written as:

(15) ht = Ry(rt)[Qhyt + µh] + pt,

where Ry(rt) is a 3 × 3 rotation matrix around the Y-axis that rotates the hairs from a canonical

space back to world space, Qh ∈ RNh×dh are the eigenvectors learned by the hair PCA, dh is the

dimension we choose to represent the hair, µh is the mean location of hairs in the canonical space,

and yt is a vector of hair PCA coefficients for frame t.
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Figure 6.3. Multi-linear hair model. The representation of the hair tensor D

(left) as a core tensor and mode matrices (right).

The bust vertices are represented in a similar way:

(16) bt = Ry(rt)[Qbxt + µb] + pt,

where Qb ∈ RNb×db are the eigenvectors learned by the bust PCA, db is the dimension we choose to

represent the bust, µb is the mean location of bust vertices learned from training data, and xt is a

vector of bust PCA coefficients for frame t.

3. Multi-linear Hair Framework

The appearance of hair is a composite effect of many factors, such as length, softness, head

pose and motion. We explicitly parameterize our hair model using these real-valued factors. By

changing the values of any of these factors, we are able to synthesize hair with different appearance,

configuration and motion. To simplify the formulation, we first introduce a generative multi-linear

model for hair appearance in a given frame and then illustrate how that model can be extended to

incorporate dynamics for synthesis.

Multi-linear algebra provides us with a mathematical framework to factorize hair appearance.

The simulated hair exemplars, parameterized by reduced representation, are built into a data tensor

D that is later decomposed in order to separate and represent each constituent factor. We use the

Matlab Tensor Toolbox [6] to perform tensor operations. Hair data is built into a N > 2 tensor or

N -way array D, and N -mode singular value decomposition (N -SVD) orthogonalizes N spaces and

decomposes the tensor into the mode−N product [108, 109]:

(17) D = Z ×1 U1 ×2 U2...×i Ui...×N UN .

The core tensor Z governs the interaction between the mode matrices U1,...,UN , and each mode

matrix Ui is obtained by mode− i flattening of D [6].

We introduce the formulation in terms of a simple model with two factors, but build and discuss

a variety of other models of this form in the results section. We prepare the training dataset such

80



that we have Nl = 2 different hair lengths (short and long) and Ns = 2 different hair softnesses

(soft and stiff). Note that all hair models in our dataset are in correspondence, i.e., contain the

same number of hair strands, the same number of points per strand and the same scalp attachment

points. Each hair length and softness combination corresponds to approximately Nf = 12000 frames

of different head poses from 35 training sequences (animated using motion capture data). The total

size of the training set is Nl ×Ns ×Nf frames. We now show how we can represent hair, y ∈ Rdh ,

using a multi-linear generative model.

For the simple case of the two factors of length and softness, our hair data tensor D is a

dh ×Nl ×Ns ×Nf array, which is decomposed to:

(18) D = Z ×1 Uhair ×2 Ulength ×3 Usoftness ×4 Uconfig.

Z ∈ Rdh×Nl×Ns×N∗
f , with N∗

f = min(Nf , dh · Nl · Ns) = dh · Nl · Ns, is the core tensor and Uhair

is the hair mode matrix which will be projected out (see Figure 6.3). The Nl × Nl mode matrix

Ulength spans the space of hair length parameters, each row of which corresponds to a different hair

length in our dataset. Similarly, the Ns×Ns mode matrix Usoftness spans the space of hair softness

parameters, each row of which corresponds to a different hair softness in our dataset. Uconfig

spans the space of hair configurations that encode variations in hair appearance as the body moves.

This model characterizes how hair length, softness and configuration interact and multiplicatively

modulate the appearance of hair.

We can synthesize novel hair length and softness by interpolating between the rows in Ulength

(Usoftness). This interpolation corresponds to convex combination of bases, using barycentric co-

ordinates, and can be extended to a dataset with Nl > 2 and/or Ns > 2. Let vlength ∈ RNl

(vsoftness ∈ RNs) be a vector of coefficients that interpolates between the rows of Ulength (Usoftness).

Note that for our simple dataset, where Nl = 2, vlength = UT
length · [α, (1− α)]T , where α ∈ (0, 1).

We can generate hair coefficients, y, by specifying all the constituent factors (length, softness,

and configuration):

(19) y = Z ×1 Uhair ×2 vlength ×3 vsoftness ×4 vconfig.

Eq. 19 allows us to generate hair with different appearance using only a few matrix multipli-

cations. In fact, to synthesize hairs with fixed style (length and softness), we can pre-compute

M∈ Rdh×(Nl·Ns·N∗
f )

(20) M = Z ×1 Uhair ×2 vlength ×3 vsoftness,

which corresponds to a linear space that spans the hair PCA coefficients. Only one matrix multi-

plication is needed to obtain y = M · vconfig, where vconfig is the set of coefficients that encode
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hair configuration. However, for a given frame we do not have explicit knowledge of vconfig a priori,

instead in the next section we show how we can solve for vconfig by conditioning the model on the

bust pose and previous hair configurations; conditioning on previous hair configurations allows us

to model dynamics.

4. Dynamics

The simple formulation above is unable to model dynamics and there is no intuitive way to

condition the model to obtain vconfig for a given frame. To address the first limitation, we build a

generative model over a short (3-frame) temporal window of hair and bust configurations. This allows

us to model the relationship between the (presumably unknown) hair configuration at the current

frame and the (presumably known) body as well as (presumably known) hair configurations at the

past frames. To address the second limitation, we show how this model can then be conditioned to

predict/simulate the configuration of the hair at the current frame. More specifically, we assume a

second order dynamical model on the hair (consistent with a second order ODE governing the true

dynamics and empirical observations in [37]). We also assume a control signal xt, in the form of a

bust at time t, that governs the motion of the hair and (later) collision detection.

Dynamic Multi-linear Hair Model: We learn a multi-linear model as in Section 3, but with

augmented vectors wt = [xt;yt−2;yt−1; zt,t−2; zt−1,t−2;yt] ∈ Rda , where da = db + 3dh + 10, and

zt,j ∈ R5 encodes the relative global bust translation and rotation at frame t with respect to frame

j:

(21) zt,j =


Ry(−rj)(pt − pj)

sin(rt − rj)

cos(rt − rj)

 .
Note that we need to add zt,t−2 and zt−1,t−2 because the body and hair are normalized into a

canonical space, so the incremental global motion is lost and needs to be added back (in the form of

these auxiliary variables). The resulting hair tensor is D ∈ Rda×Nl×Ns×N∗
f , where N∗

f = da ·Nl ·Ns.

We also experimented with a complete generative model over the 3-frame temporal window (by

adding xt−1 and xt−2 to the augmented vector wt) as well as with longer temporal windows but

longer windows did not result in better performance, often led to over-fitting, and resulted in higher

dimensional (more expensive) model inference.

Simulation as Inference: For every time instant, we need to estimate yt to animate the hair. To

do so, we treat yt as missing data and infer it using the generative multi-linear model above operating

on the augmented representation wt; we do so by conditioning on the part of the vector wo
t that is

observed at a given time instance. In the general case (t ≥ 3), wo
t = [xt;yt−2;yt−1; zt,t−2; zt−1,t−2] ∈
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Rda−dh . For every time instance, we condition our model on the observed part, wo
t , and infer/predict

the missing part, yt ∈ Rdh (i.e., hair coefficients for the current frame). For a given hair style (fixed

hair length and softness), our pre-computed matrix M = [Mo;My] computed using Equation 20,

can be decomposed into two parts, consisting of bases for reconstruction of observed variables, Mo,

and yt itself.

From Section 3, we know that wt = [wo
t ;yt] = M·vconfig,t. Hence, we can solve for the linearly

optimal vconfig,t for the current frame t by doing a linear sub-space solve, vconfig,t = (Mo)† ·wo
t ,

where † is the pseudo inverse. We can then reconstruct yt from vconfig,t, resulting in a very efficient

and compact iterative simulation equation,

(22) yt = My · (Mo)† ·wo
t .

Note, that if we want to change the hair style anywhere (or continuously) within a sequence, we just

need to re-compute My · (Mo)†. For a general case we then have,

(23) yt = My · (Mo)† · [xt;yt−2;yt−1; zt,t−2; zt−1,t−2].

For a given set of factors, the model can be interpreted as a second order conditional linear

dynamical system, similar to the one proposed in [37], i.e.,

(24) yt = Axt + B1yt−2 + B2yt−1 + C1zt,t−2 + C2zt−1,t−2,

where

(25) My · (Mo)† = [A B1 B2 C1 C2].

Therefore, the model proposed by de Aguiar and colleagues is a special case of our more general

formulation.

For the cases where t = 1, 2, the process is very similar except that wo
t = [xt], and the missing

part becomes [yt−2;yt−1; zt,t−2; zt−1,t−2;yt].

4.1. Stability of dynamics. Similarly to [37], we can measure the stability of the learned

model by looking at the largest eigenvalue, λmax, of linear dynamics matrix of the dynamical system,

namely:

(26)

 B1 B2

Idh×dh
0dh×dh

 .
The key difference between our approach and [37] is that B1 and B2 are both functions of the

factors, vlength and vsoftness, in the multi-linear model. Hence, to prove stability we need to ensure
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Figure 6.4. Stability of dynamics. We finely sample α and β using 0.1 interval,

and interpolate the λ’s in between. α = 1 being the long hairs and β = 1 being the

softest hairs. The largest λ is 0.9792 while the smallest is 0.9558.

that the largest eigenvalue λmax is ≤ 1 for any value of factors in our model, i.e., we need to show

that:

(27) λmax = arg max
α∈[0,1],β∈[0,1]

λmax(α, β) ≤ 1.

where α and β are parameters interpolating between the bases of Ulength and Usoftness respectively.

Taking arg max is difficult in practice, therefore we resort to an approximation obtained by evaluating

arg max using a set of discrete samples (by uniformly and finely sampling α and β in the range of 0

to 1) and assuming eigenvalues are locally smooth as a function of α and β. We report the λmax for

several hair configurations in Table 6.1. We observe that all trained models are stable with λmax

consistently < 1. The plot of λmax as a function of α and β is in Figure 6.4. We can see that λmax

is consistently < 1, leading to an overall stable model.

5. Collision Handling

The reconstructed hairs ht, which are a function of predicted hair coefficients yt, may penetrate

the bust. We propose a simple and efficient method to resolve collisions. This method is based on

minimizing hair-bust penetration while keeping the predicted hair coefficients unchanged as much

as possible. Collision handling is done in the normalized coordinates in the reduced PCA space (for

efficiency).

Our measurement of collision is based on a simple approximation of the signed distance to the

body mesh. For a hair point hi(y), we find its nearest neighbor vertex on the bust bj . (We drop the
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temporal subscript for clarity.) Then the dot product of bj ’s surface normal vector and the offset

vector hi(y)− bj locally approximates the signed distance to the body mesh for hi(y).

(28) pC(y) =
∑

(i,j)∈C

ρ
(
nT

bj
· (hi(y)− bj)

)
,

where C is a set of correspondences between hair guide point hi and its closest bust vertex bj ,

ρ(x) =


0 x ≥ 0

x2/(σ2 + x2) x < 0

is a robust error function which only penalizes negative signed distance

(i.e., penetrating guide points), nbj
is the normal for bust vertex bj .

Method A: A straightforward way to remove collisions is to minimize the energy function

(29) EC(y) = π1pC(y) + π2dC(y) + π3sC(y)

with respect to the hair PCA coefficients y. The first term, defined in Eq. (28), minimizes penetra-

tion. The second term,

(30) dC(y) = ||y − y0||2,

ensures that the resulting hair coefficients are close to the prediction from the model (to preserve

dynamics); where y0 are the predicted hair PCA coefficients from the multi-linear dynamical model.

The third term,

(31) sC(y) =
∑

k∈[1,Ng]

||gk,1(y)− g̃k,1||2

ensures that the hair roots are at correct positions on the scalp; where g̃k,1 is the true hair root

position on the scalp for the k-th guide and gk,1(y) is the model position. π1, π2 and π3 are the

relative weights for each of the terms.

Assuming, y∗t = arg minEC(yt) are the optimized hair coefficients for frame t, the final hair

guides in the world space are obtained by: h∗t = Ry(rt)[Qhy∗t + µh] + pt. For efficiency, the nearest

neighbor correspondences C are pre-computed, at each frame, based on the model prediction before

we use gradient decent optimization on Eq. (29).

Method B: Method A is fast but still involves a relatively expensive gradient optimization. We

propose an approximation scheme which is around 50X faster than Method A while producing very

similar results. The key idea is to reformulate the optimization in Method A in terms of a series of

linear least squares (LLS) problems that can be solved extremely efficiently in closed form. dC(y) and

sC(y) in Eq. (29) already have a convenient quadratic form and require no special treatment. The

first term in Eq. (29), pC(y), however, is an asymmetric error function and requires approximation.
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Figure 6.5. Sub-sampling factor. Illustrated are sub-sampling factors of 1

(top), 10 (middle), and 15 (bottom) on the 3,980 hair guide dataset. There is

almost no visual difference among the hairs corresponding to different sub-sampling

factors.

We approximate pC(y) by taking into account only the set of hair points that currently penetrate

P:

(32) pC(y) ≈
∑

(i,j)∈C
⋂

i∈P

||nT
bj
· (hi(y)− bj)||2

With this approximation, every term in Eq. (29) takes quadratic form and all the variables are

linear functions of unknowns y, resulting in a standard LLS problem. Because the approximation in

Eq. (32) is instantaneous and only deals with the current penetrating guide vertices, new penetrations

may be introduced in the solution. To address this, we iteratively solve the optimization in Eq. (29),

and for each iteration, re-compute Eq. (32), including the current set of penetrating points. However,

we only compute hair-body correspondences C once at the beginning of the optimization and use it

throughout the iterations (three to five iterations are sufficient in practice).

Sub-sampling: Method B allows real-time hair collision handling when the number of hair

guides Ng is moderate, but is still expensive for large number of strands. In this scenario, the

computational bottleneck of Method B becomes computing the nearest neighbor correspondences

C. To address this, we sub-sample the hair guide strands and only perform collision handling on

selected guides. The intuition is that because we are modeling hair in the PCA sub-space, the hair
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guides are correlated and guides within some neighborhood will generally move together. Assuming

this is the case, resolving collisions for some hair guides will implicitly help resolve collisions for

nearby hair guides. To achieve this goal we re-write Eq. (32) once again, resulting in the final form

for pC(y):

(33) pC(y) ≈ τ
∑

(i,j)∈C
⋂

i∈P
⋂

i∈Sτ

||nT
bj
· (hi(y)− bj)||2,

where τ is the sub-sample factor (e.g., τ = 2 will choose every other hair guide for collision handling),

and Sτ is the selected subset of hair strands corresponding to τ .

6. Experiments

We generate three datasets with different numbers of hair guides Ng: a sparse hair dataset with

Ng = 198, a main hair dataset with Ng = 962, and a dense hair dataset with Ng = 3980. For

the sparse hair dataset, we synthesize four sets of hair simulations (long soft, long stiff, short soft,

and short stiff) to learn a two factor model. The main hair dataset is separated into two parts.

The first part has the same four styles as the sparse dataset. The second part consists of long soft

hairstyle (i) without wind and with wind directions of (ii) +z, (iii) +x, and (iv) -x. We use these

four simulation datasets to learn a multilinear model with external wind strength and directions as

constituent factors. The dense hair dataset has only one style (long soft) because it is expensive to

generate training data due to the memory constraints and computing resources. We use the dense

hair dataset to demonstrate the sub-sampling strategy for collision handling. Each dataset consists

of 35 different training body motions from which we learn our multi-linear dynamic hair model and

7 test motions on which we perform our experiments; our test and training sets are disjoint. We

choose a dimensionality of dh = 100 for hair coefficients, which represents around 98% energy of the

PCA subspace. We set π1 = 0.08, π3 = 1.5 in Equation 29 for all the experiments.

Model Highlights: A key property of our model is that users are able to interactively change the

style of the hair, including softness and length, or apply external forces such as wind (Figure 6.1).

We show side-by-side comparison of different hair lengths in Figure 6.6 (a)-(d), where (a)-(c) show

the interpolated hair lengths with hair length factor being 0 (shortest), 0.5 (interpolated median),

and 1 (longest), while (d) shows an extrapolation example where the length factor is 1.35. We can

generate additional hair styles, not part of our training sets, by mixing the long and short hair styles

we model. Figure 6.6 (e)(f) show two examples. This functionality opens a possibility for interactive

hairstyle design. The comparison to the raw simulation can be found in the accompanying video

and shows that our data-driven method can adequately approximate dynamic behaviors of hair

(sometimes with fewer body-hair collisions as compared to the original).
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Figure 6.6. Creating different grooms. (a) short, (b) interpolated medium,

(c) long, (d) extrapolated long, (e) and (f) new hair grooms created by segmenting

hair guides into segments and mixing long and short lengths (in (a) and (c)) for

each segment.

Collision Handling: We show the performance of collision handling algorithms on the sparse hair

dataset (Ng = 198), but also find similar trends in all other datasets. We define the following

measurements for quantitative evaluation: (1) Penetration rate: the ratio of penetrating hair points

to the total hair points. Penetration is defined by Equation 28. (2) The mean of maximal pene-

tration amount over all frames in a sequence. The maximal penetration amount for each frame is

defined as max |nT
bj
· (hi−bj)|, where hi is a penetrating hair point (see Equation 28). “penetration

rate" is the most straightforward measurement while the “maximal penetration amount" provides

an upper-bound of how deep a hair point penetrates. These two quantities are informative but not

necessarily perceptual; we can arbitrarily decrease π2 in Equation 29 to achieve better collision han-

dling. Therefore, we use the third measurement: (3) deviation from the hair coefficients prediction:

||λ̃T (y∗ − y0)||/||y0||, where y0 is the model prediction, y∗ are the hair coefficients after collision

handling, and λ̃ = [λ1, λ2, ..., λdh
]T /

∑dh

i=1 λi are the normalized eigenvalues of the hair PCA sub-

space. We weight the hair coefficients deviation y∗−y0 according to the importance of the principal

directions.
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Figure 6.7. Collision handling measurements versus hair coefficients

prior. We show the comparison results for method A, two intermediate steps

of method B, final results of method B, and before collision handling.

In Figure 6.7, we show the above-mentioned three measures versus different hair coefficients

prior weight π2. The plot is based on a representative test sequence with long soft hairs which

includes complex motions. Note that the ground truth hair simulations from Shave and a Haircut

in themselves have a non-negligent penetration rate of 1.9% and the mean of maximal penetration

amount of 3.8 mm. Our collision handling algorithms (both Method A and B) significantly reduce

the penetration. The final penetration rates and amount of Method B are very similar to A which

indicates that the iterative least squares does approximate the asymmetric error function in A well.

As we can see from Figure 6.7 (right), the deviation from the original hair coefficients prediction varies

between 1.3% and 5.5%, which visually corresponds to very natural dynamics. See the accompanying

video for the visual results. Based on these three curves, our selection of π2 is 0.13 for all the

experiments.

Sub-sampling for collision handling: When we model the dense hair dataset (3980 hair guides

and 59700 hair points), the cost of Method B is dominated by determining nearest neighbor cor-

respondences C and penetration set P. Therefore, we show in Figure 6.8 that we can efficiently

sub-sample the hair guides to perform collision handling while still achieving almost the same re-

sults. When the sub-sample factor τ increases (see Equation 33), the curve of the penetration rate

is almost flat, which indicates that we can sub-sample the hairs significantly without sacrificing

the collision handling performance, because the dense hair guides are highly correlated. Figure 6.5
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Sparse L-soft L-stiff S-soft S-stiff λmax

Training 3.39 2.09 1.73 1.23 0.9792

Testing 3.61 1.93 1.91 1.14

Main L-soft L-stiff S-soft S-stiff

Training 2.85 1.66 1.20 0.84 0.9646

Testing 2.93 1.57 1.22 0.78

Main L-soft L-wind+z L-wind+x L-wind-x

Training 2.97 4.23 4.50 4.32 0.9663

Testing 3.12 4.27 4.47 4.21

Dense L-soft

Training 2.76 0.9621

Testing 2.71
Table 6.1. Average vertex error and stability. Average vertex error for all the

datasets (using Euclidean distance measured in cm) and the stability measurement

λmax computed over 35 training and 7 testing sequences. “L" and “S" represent

long and short hair styles respectively.

visually shows the collision handling results using a sub-sample factor of 1 and 15. There is almost

no visual difference between two cases. There is, however, a large computational gain; we achieve

a 12X speed up by using a sub-sample factor of 15. We plot the time cost of the collision handling

procedure (from the predicted hair coefficients y0 to final hair coefficients y∗) versus the sub-sample

factor τ . As τ increases, the time cost drops significantly. The sub-sampling strategy makes it

possible for our method to potentially deal with even more hair strands in real time.

Quantitative Evaluation: We show the hair vertex location differences between the Shave and a

Haircut simulation and our end results in Table 6.1. Stiff hairs have much lower errors compared

to soft hairs, because the motion of the stiff hairs are more constrained. The long soft hairs with

wind have high errors, because wind leads to less predictable hair behavior. The fact that training

and testing sequences get similar errors (in some cases the errors of the testing sequences are lower)

indicates the generalization power of our method. The stability measurement λmax for each dataset

is also shown in the table. These values are all below 1, which shows that our models are stable.

Performance: The speed of our method and the Shave and a Haircut (Shave) simulation package

are shown in Table 6.2. Maya and Shave were run on an Intel Core 2 Extreme X9650, 3.67 GHz

processors with 4 GB of RAM. Our model was implemented on a GPU and run on a comparable

AMD Phenom(tm) 2 X4 965 processor, 3.4GHz with 8 GB of RAM. The amount of RAM is irrelevant

as the model is very compact and easily fits in memory. Note that most of our model (everything
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Runtime (FPS)

Hair Our Method Shave

#Strands #Vert Syn Col Recon Total

198 2970 1429 74.6 5000 70 7.7

962 14430 1429 52.9 2500 50 5.5

3980 59700 1429 49 909 45 1.8

Table 6.2. Runtime performance. Speed comparison (frames per second) be-

tween our method and Shave software package. We divide our method into “Syn"

(computing the initial hair coefficients from the multi-linear dynamic model), “Col"

(remove hair-body penetration), and “Recon" (reconstruction of the hair vertices

from hair coefficients). We choose the sub-sample factor τ = 1, 5, 15 for hair strands

= 198, 962, 3980 respectively.

except collision detection) is perfectly parallelizable; collision detection requires LLS implementation

which could also be made efficient on parallel architectures. Our method easily achieves real-time

(45-70 FPS) and it is 9 − 25X faster than Shave. We report the results based on long soft hairs,

which tend to have the most collisions. As the number of hair guides increases, our method becomes

comparatively much more efficient, due to the benefit of a low-dimensional model that can capture

correlations. These results show the potential of our method to deal with large number of hair

guides; in doing so it also alleviates the need for additional hair interpolation for rendering. Further

speedups are possible using level of detail models and/or culling for parts of the groom that are not

visible.

The memory requirement for the our model is quite low. A hair tensor model which has 2

factors with hair dimension of 100 takes approximately 15mb. Adding another factor will double

the size, however, too many factors are unlikely. The key advantage of modeling hair in the reduced

space is that dimensionality of the hair coefficients is a function of the underlying complexity of the

hair motion, and is highly sub-linear with respect to the number of hair strands and the number of

vertices per strand. This property also makes the model scalable with the complexity of the hair.

Collision handling for cloth: Our collision handling approach is not limited to hair; it can be

used, for example, to resolve body-cloth collisions for clothing. We test our approach on the results

of [37] (see supplemental video). In [37], the collisions were not resolved explicitly. In contrast, we

resolve all the interpenetrations without resorting to a custom rendering pipeline.

We apply our collision handling approach on the data provided to us by the authors of [37] (see

Figure 6.9 (bottom)) and effectively and efficiently resolve all the interpenetrations without resorting

to a custom rendering pipeline.

91



Figure 6.8. Dense hair sub-sampling. Left: penetration rates comparisons

between “before collision handling" (red) and various sub-sample factors on a rep-

resentative sequence (blue). The penetration rates are computed on the full hairs.

Right: Time cost of collision handling procedure versus various sub-sample factors.

Figure 6.9. Collision handling for cloth. Our collision detection method ap-

plied to the results of “Stable Spaces for Real-time Clothing". We thank the authors

for providing us with data from the original paper for this experiment.

7. Discussion and Limitation

We present a method for data-driven animation of hair. The multi-linear nature of our model

allows us to control the appearance and motion of hair in real-time. Our method efficiently deals

with collisions by formulating collision handling as an iterative least squares optimization in the

reduced space. While we illustrate our model on hair, the formulation is general and would work

for other physical simulations such as clothing and fur.
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One of the issues we encountered when building our models is that the results from off-the-shelf

hair simulation packages are not free of collision. In particular, they often contain visible penetra-

tions of the hair into the shoulders for longer hair or the scalp for highly dynamic motions. The

software package we use has a fixed number of control vertices per hair guide. This constraint works

well for short hair where the control vertices are tightly spaced, but results in collisions for longer

hairstyles where interactions with the neck, shoulders, and back are more complex. This limitation

prevented us from modeling very long hair as we needed training data where the penetrations did

not fundamentally change the motion. Also, presumably the model would produce hair motion with

fewer collisions if the training data was collision free.

Because our model lives in a low-dimensional subspace we are not able to resolve hair-to-hair

collisions explicitly, as the motion of individual hair strands is not independent. That said, our

model is able to resolve hair-to-hair collisions implicitly by learning how hair strands should interact

based on the input simulations. However, because there is no commercially available simulator that

is able to produce such effects, we cannot show any results with hair-to-hair collisions.

We construct two types of reduced models with a number of parameters: short vs. long, stiff

vs. soft, and with/without wind as an external force. Naturally there are many other parameters

that we might want to include in the hair model: curly vs. straight, dry vs. wet, greasy vs. clean

as well as other external forces such as tugs, barrettes, and headbands. In our experiments, the

existing model was robust to the modeled parameter space, with no combination of parameters

within the modeled ranges (or slightly outside) producing unnatural results. The tensor algebra is

general enough to extend to more factors. However, with more factors being used, the size of the

training examples grows exponentially. In theory, if we want to model x factors simultaneously, we

need 2x sets of training data to represent all the combinations of all factors. It would be challenging

to keep all the data in memory for training (requiring out of core SVD algorithm). In practice, the

animators can choose what factors they want to model to avoid the explosion problem.

In conclusion, the approach to creating a reduced space model presented here appears quite

powerful. We expect that implementing this approach for other physical simulations such as clothing

and fur would be easy and would result in approximate dynamic models that could be computed

and rendered many times faster than real time. This functionality would be useful in visualization

of character motion during the animation process as well as allowing rich secondary motion to be

added to real-time applications such as games.
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CHAPTER 7

Conclusion

We have presented a complete pipeline from estimating 3D human body shapes to animating the

bodies with clothing and hair. This chapter summarizes our contribution, limitations, and future

research extensions.

1. Contribution

Detailed 3D body shape estimation from images is a difficult problem. What is even more

difficult is to estimate detailed 3D body shape from a single image. Even though we have shown

that the reconstruction of a generic 3D object can be done using multiple silhouettes or photometric

stereo images, those methods do not apply when image evidence is scarce. The philosophy behind

our work is that as image cues become fewer, more human specific prior information needs to be

used. We use the SCAPE body model, but other realistic parametric models will also work. We

show that smooth shading helps to refine the body shape estimation and our key contribution is the

formulation of parametric body shape from shading. At the same time, we exhaustively explore the

usage of other image cues such as silhouettes and edges. We do not claim that a single image is

sufficient to estimate detailed body shape, instead we propose a solution to solve a problem which

has been considered almost impossible. In order to make the smooth shading formulation work, we

assume that the surface albedos and specularities are piece-wise constant. The assumption limits

our method to be used in the cases where the person is close to naked or is wearing uniform colored

clothing. With the advent of depth camera technologies, it is becoming increasingly popular to use a

depth sensor in addition to a regular camera sensor. In the near future, we will see more applications

with depth cameras.

The 2D eigen-clothing model is an attempt to deal with the clothing issue in body pose and

shape estimation. Most work ignores the effect of clothing, which is fine if the model itself is coarse

(e.g. simple rectangular body parts). However, there are many applications (e.g. surveillance) that

require us to obtain a relatively detailed body shape estimation. We take the simple idea of modeling

the clothing deformation as an additional layer of the body deformation and explore the statistical

properties of the clothing deformation. The clothing model greatly improves the 2D body shape

estimation from a single image.
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After we estimate the 3D body shapes, we would like to automatically dress these bodies with

perfect fitting clothing. This is very important for virtual fashion and online clothing retail. DRAPE

is a complete solution for dressing people in a variety of shapes, poses, and clothing types. DRAPE

is learned from standard 2D clothing designs simulated on 3D avatars with varying shape and pose.

Once learned, DRAPE adapts to different body shapes and poses without the redesign of clothing

patterns; this effectively creates infinitely-sized clothing. A key contribution is that the method is

automatic. In particular, animators do not need to place the cloth pieces in appropriate positions

to dress an avatar. Traditionally, clothing simulation is widely used in animated movies and gaming

so that realism and speed are the main focuses of prior literature. Automation has not drawn

attention from researchers until recently. We envision internet-based virtual try-on where hundreds

and millions of users should be dressed with appropriate clothing sizes. The process clearly needs

to be automatic. The DRAPE model simultaneously achieves automation, realism, and speed,

which is unique among clothing simulation methods. By factoring the clothing shape and pose-

dependent deformations, we can train the DRAPE model with a reasonably small training set and

later the clothing fitting can be done fully automatically. We have no intention to replace physics

based simulation (PBS), because PBS produces the most realistic results. PBS is appropriate for

animated movies without a doubt. We hope DRAPE model can open a whole new perspective and

stimulate more research along the line of automation.

Finally, hair simulation is crucial for animated movies and gaming. The most important factor

for hair simulation is speed. It is hard to develop a real-time hair simulator because the number of

hairs on the real person is huge. Even if we use hair guides to represent a bunch of hairs, it is still

computationally expensive. We believe that the movements of hairs are highly correlated, therefore

we can represent hairs in a much lower dimensional space without sacrificing the simulated dynamics

and realism of hairs. Our system could not be made real-time without modeling hairs in the reduced

space. We believe that this is an interesting direction and would like to see more followup works in

the near future.

2. Future Work

There has been a lot of work on estimating human pose from images but human shape estimation

is less explored. Detailed human shape estimation is limited by the realism of body model and

the resolution of image observations. We have shown that we can achieve reliable estimation of

human shapes by leveraging a data-driven detailed human body model. Because of the non-rigid

nature of human body, the appearance of the body is affected by both articulated pose and shape.

This inevitably leads to a high dimensional model and no known realistic body model can avoid
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this. Future work should focus on speeding up the optimization process of such high dimensional

models. For an optimization in the high dimensional space, the quality of initialization is important.

Therefore, a lot of work uses manual assistance to initialize the body model (including ours), which

limits the usage of body shape estimation. We should pay attention to getting a good initialized

pose automatically.

The downside of using data-driven models for clothing animation is that they are not as realistic

as PBS. In future work we will generate pose training data for different body shapes and learn a

multi-linear or non-linear model that couples pose and shape. This will likely require significantly

more training data and will trade computational efficiency for wrinkle detail. The pose training set

may include bodies with different shapes so that we can get diversified wrinkle patterns. We may use

multi-linear or non-linear methods to learn the pose deformation to preserve more high frequency

wrinkles. Future work should also explore a wider range of garment and fabric types. We will also

learn models of “tucked in” clothing and more complex garments with pleats, cuffs, collars, and

closures (buttons and zippers). Finally, clothing fit is not just about body shape but also involves

individual preference. By training the model with different fit preferences (e.g. loose and tight) we

should be able to add a “comfort” axis to the PCA shape basis that can be independently controlled.

One challenge of hair simulation is how to use it in gaming. There are many things going on in

gaming including AI, physical contact, rendering, etc. Future research should focus on employing

better techniques to parallelize the hair simulation. Low dimensional models of clothing and hair

are very promising because they significantly reduce the computation. We envision more work in

this direction in the next few years.
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APPENDIX A

Aligning Training Clothing Meshes

OptiTex takes the 2D patterns for each clothing part and triangulates them to produce flat

(or cylindrical) meshes of different sizes. These pieces deform as they are stitched and draped

during simulation. When we simulate people of different sizes the 3D meshes generated may have

different numbers of vertices and will not be in full alignment. We align each piece (e.g., sleeve,

front piece, back piece) individually so that when they are stitched, we get an aligned clothing mesh

(e.g. T-shirt).

Figure A.1(a) shows a template sleeve piece laid flat and (b) shows a smaller size target flat

piece. (Here, we have zoomed in on the target flat piece for better visualization. In reality, (b) has

the same triangle resolution as (a), but is smaller in actual size.) The red dots indicate the grading

points which are shared between the pieces (i.e. these are in correspondence). As we can see from

the figure, the piece in (b) has many fewer triangles than (a).

(a) mt (b) mr (c) m (d) Mr (e) M

Figure A.1. Cloth piece alignment. The goal is to warp the template flat piece

mt to a target aligned flat piece m, such that m keeps the outline of target flat

piece mr (shape preserving) and shares the triangulation of mt (perfect alignment).

Once we have aligned these flat pieces, we can propagate the alignment to draped

meshes. Mr is the target draped piece from cloth simulation and M is the final

aligned version of Mr which is what we want. The red dots highlight some of the

grading points.
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We describe a method that aligns each individual flat piece in the plane and propagates the

alignment to draped meshes. Let the template flat piece (e.g. the sleeve) be denoted by mt ∈ R3Nt

which has Nt vertices ∈ R3. A target flat piece is represented by mr ∈ R3Nr , where Nr 6= Nt. The

draped version of mr is Mr. First, we want to compute a target aligned flat piece m, such that m

preserves the shape outline of mr, but shares the same triangulation as mt. As a result, m is aligned

with mt because they share the same triangulation. m also represents the shape of mr because they

have the same shape outline.

Then, we propagate the alignment to draped mesh by using m as a bridge to compute M . Here,

M is an unknown draped version of m. Since m is aligned with the template flat piece, we know that

M will also be aligned. Therefore, if we stitch different pieces, Mi, we will get an aligned draped

clothing mesh.

Let the vertices of mt, mr, and m be ct, cr, and c, where |ct| = |c|. Since the same grading

rule is applied to mt and mr, we denote the set of grading points as u. These grading points are all

on the boundary, representing corners and curves. Each vertex cti ∈ R3 in mt (including boundary

vertices) can be represented by a linear combination of its neighbors cti =
∑

j∈N (ct
i)
αt

ij · ctj , where∑
j∈N (ct

i)
αt

ij = 1, 0 ≤ αt
ij ≤ 1. Remember that mt is known and actually sits in a 2D plane, so

the αt
ij ’s are easy to compute. We assume that these linear combination coefficients encode the

interior structure of mt. We want to make m and mt share the same interior structure (i.e. the

same neighborhood information and α values), and to make m and mr share the same grade points

and outlines. We construct a least squares problem and solve for c using the α coefficients computed

from mt:

(34) argmin
c

{ ∑
i/∈u

||ci −
∑

j∈N (ct
i)

αt
ijcj ||2 +

∑
i∈u

||ci − cri ||2
}

The first term ensures the identical internal structures of m and mt while the second term makes

the grading point positions the same as mr.

Once we solve m, the next question is how to compute M given mr,Mr, and m. We know that

m and mr almost have the same boundary and cover the same region if we consider them in 2D.

We overlay m and mr, and rewrite each vertex ci of m in terms of some vertices in mr. This can

be done by finding the triangle in mr where ci falls into, and write ci as a linear combination of

the vertices of this triangle. Then we propagate the same linear relationship to draped meshes, and

write each vertex ci of M in terms of the vertices of that triangle in Mr. This propagation is valid

because mr and Mr are essentially the same mesh before and after cloth simulation. This gives us

a way to warp Mr to an aligned mesh M . Recall that M is the draped version of a particular piece.
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When all these pieces are in alignment, the stitched mesh will be in alignment. See Figure A.1 (e)

for an example of the final mesh.
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