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Large graphs are ubiquitous in many diverse fields ranging from sociology and economics to biol-

ogy and engineering. Applications in numerous areas such as transportation, geographical routing,

computer vision and VLSI design involve solving optimization problems on large planar graphs. The

sheer growth in the number and size of available data sets drives a need to design optimization

algorithms that are not merely efficient in the qualitative sense that their computational resource

consumption is polynomial in the size of the input, but in the stronger quantitative sense that the

amount of required resources (specifically, running time and space) is as close to linear as possible.

In this thesis we study the combinatorial structural properties of directed planar graphs, and exploit

these properties to devise efficient algorithms for shortest-path and maximum-flow problems in such

graphs. Among the results we present are:

• A linear-space algorithm for the shortest-path problem in directed planar graphs with real (pos-

itive and negative) arc lengths that runs in near-linear time. Our algorithm is more efficient

and conceptually simpler than previously known algorithms for this problem.

• Data structures for efficiently reporting exact distances in directed planar graphs (distance

oracles) with significantly improved space-to-query-time ratio over previously known exact

distance oracles.

• A near-linear time algorithm for computing a maximum flow in directed planar graphs with

multiple sources and sinks. This problem has been open for more than 20 years. No planarity

exploiting algorithm for the problem was previously known. Our algorithm is significantly

faster than previous algorithms for this problem.

These problems, and the tools and techniques used in solving them, are interrelated.
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Introduction
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This thesis is concerned with the study and use of combinatorial structural graph properties in

obtaining efficient algorithms for fundamental optimization problems in planar graphs.

Graphs, or networks, are among the most basic and powerful objects to model relations and

processes in sociology, economy, physics, chemistry, computer science, biology, engineering, and

anthropology, as well as many other fields. While networks were around long before the modern

computer entered the scene, the tremendous growth in the availability of data and in the size of

networks is driving an increasing need to devise computational methods to represent, store, and

process large graph data in a cost-effective and timely manner.

Computer scientists are using various approaches to meet those challenges. For example, on the

systems side we have witnessed the emergence of large-scale data-centers and multi-core processors.

On the theoretical algorithmic side, a lot of effort has been put into developing new techniques that

give rise to various kinds of approximation algorithms. These are algorithms that provide weaker,

relaxed output guarantees, but typically run faster and require less memory space than exact algo-

rithms. In theoretical computer science the resources, such as time and space, that are required to

solve a problem are measured according to their asymptotic dependency on the size of the input.

This makes particular sense for large networks, where the input size is such that the asymptotic

behavior is actually observed in practice. However, for such large networks, algorithms whose re-

source consumption is more than slightly linear in the size of the inputs are impractical. Resorting to

sub-optimal solutions is partially based on the assumption that computing an exact optimal solution

for big problem instances using traditional combinatorial methods requires too much resources to be

considered practical. In this thesis we show that, contrary to this implicit assumption, combinatorial

methods can be used to quickly compute optimal solutions. Specifically, we show the following:

There exist exact algorithms for fundamental important optimization

problems in planar graphs that require nearly-linear time and space.

The methods used in these algorithms are purely combinatorial.

Informally, planar graphs are graphs that can be drawn on the plane such that edges only in-

tersect at their endpoints. This is an important family of graphs that has been extensively studied

and has many practical applications in areas such as transportation networks [Eul41, HR55], geo-

graphical routing for communication networks [BMSU99], computer vision [GPS89, Epp97], VLSI

design [Lei80, RBK90], and finite-element problems [Zie77, LRT79]. Planar graphs exhibit a wealth

of beautiful structural properties that can be exploited to achieve efficient algorithms. We find the

study of these structural properties and the relations they reveal between different optimization

problems interesting and rewarding in its own right.

Contributions and Organization

We consider two fundamental optimization problems on planar graphs. In Part II of this thesis we

present our results on shortest-path problems. In Part III we present our results on maximum flow

problems. As we shall see, the two problems are closely related in planar graphs. Indeed, techniques
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and tools we devise for the shortest-path problems are used in our solutions for the maximum flow

problem.

In Chapter 2 we give an algorithm for the single source shortest-path problem in directed pla-

nar graphs with real (positive and negative) arc lengths. Like previous algorithms for this prob-

lem [LT79, HKRS97, FR06], Our algorithm uses divide-and-conquer based on small planar sepa-

rators. We achieve linear space and O(n log2 n/ log log n) time by exploiting a structural property

of shortest paths known as the Monge property. To date, our algorithm is the fastest known for

this problem, and is arguably simpler than the previous fastest algorithm [FR06], which required

O(n log3 n) time and O(n log n) space. Our algorithm has been generalized for graphs with bounded

genus [CEN09]. The results in this chapter are based on work with Philip Klein and Oren Weimann

[KMW10], and with Christian Wulff-Nilsen [MWN10].

In Chapter 3 we present an extension of a data structure of Fakcharoenphol and Rao [FR06] for

efficiently implementing Dijkstra’s algorithm in certain dense graphs. This extension will be later

used in Chapter 5. Fakcharoenphol and Rao’s data structure and its variants have emerged as a

useful tool in quite a few works in recent years [BSWN10, INSWN11, MS12, BKM+11, KMNS12,

ŁS11, Nus11, CR10]. To obtain this result we use a technique related to Monge matrices that was

developed for the shortest-path problem in Chapter 2, and a data structure for range minimum

query in Monge matrices. We are hopeful that this detailed treatment of Fakcharoenphol and Rao’s

data structure, as well as the clear statement of its known extension, will assists others in using this

algorithmic tool. The results in this chapter are based on work with Cora Borradaile, Philip Klein,

Yahav Nussbaum and Christian Wulff-Nilsen [BKM+11], and with Haim Kaplan, Yahav Nussbaum

and Micha Sharir [KMNS12].

In Chapter 4 we develop data structures for efficiently reporting exact distances in a planar graph.

The first contribution is a (strictly) linear size data structure that reports distances in sublinear time

(O(n1/2+ε) time for any constant ε > 0). No such data structure was known prior to this work.1

The main contribution presented in this chapter is the following. Given a desired space allocation

S ∈ [n lg lg n, n2], we show how to construct in Õ(S) time2 a data structure of size O(S) that answers

distance queries in Õ(n/
√
S) time per query. Such a tradeoff between space and query time was

previously only known for S ∈ [n4/3, n2] [Dji96, CX00, Cab12]. For σ ∈ (1, 4/3) and space S = nσ,

we essentially improve the query time from Õ(n2/S) [Dji96, ACC+96] to Õ(
√
n2/S). To obtain

these results we employ non-uniform recursive r–divisions using cycle separators, and extensively

use Fakcharoenphol and Rao’s efficient implementation of Dijkstra’s algorithm. The results in this

chapter are based on work with Christian Sommer [MS12].

Part III, which discusses flow problems, includes two main results. In Chapter 5 we present

a nearly-linear time algorithm for solving the maximum flow problem in a directed planar graph

with multiple sources and sinks. This problem was studied by Miller and Naor [MN95], who gave

efficient algorithms, that exploit planarity, for the special case where the sources and sinks all lie

1Yahav Nussbaum has independently obtained a similar result [Nus11]
2The Õ(·) notation hides polylogarithmic factors
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on a small number of faces. However, the problem of maximum flow with multiple sources and

sinks without any additional restrictions remained open for more than twenty years. The problem

can be reduced to the single-source single-sink case by introducing an artificial source and sink and

connecting them to all the sources and sinks, respectively—but this reduction does not preserve

planarity. Indeed, no planarity-exploiting algorithm was known for the problem, and the fastest

known algorithm for computing multiple-source multiple-sink max-flow in a planar graph has been

to use this reduction in conjunction with a general maximum-flow algorithm such as that of Sleator

and Tarjan [ST83], which leads to a running time of O(n2 log n). For integer capacities less than

U , one could instead use the algorithm of Goldberg and Rao [GR98], which leads to a running

time of O(n1.5 log n logU). Our algorithm, on the other hand, uses planar cycle separators, and an

adaptation of a method to compute max st-flow when s and t are adjacent [Has81] to work with our

extension of Fakcharoenphol and Rao’s efficient implementation of Dijkstra’s algorithm (Chapter 3).

The algorithm runs in O(n log3 n) time. The results in this chapter are based on work with Cora

Borradaile, Philip Klein, Yahav Nussbaum and Christian Wulff-Nilsen [BKM+11].

Finally, in Chapter 6, we present an algorithm that solves the maximum flow problem with

multiple sources and a single sink in a directed planar graph in O(diameter ·n log n), where diameter

is the diameter of the face-vertex incidence graph of G. While the running time is greater than that

of the multiple-source multiple-sink maximum flow algorithm of Chapter 5, the techniques used

are interesting and different. The algorithm may be thought of as an extension of Klein’s multiple-

source shortest-path algorithm [Kle05], and we are hopeful that the technique will find applications

in related problems.

Preliminary definitions as well as necessary concepts and tools that had appeared in the literature

prior to our work are covered in Chapter 1. In addition, the technical contributions on each of the

subsequent chapters are preceded by discussions of related work and context.



Chapter 1

Preliminaries

1.1 Graphs

This thesis is mostly concerned with directed graphs. We adopt the point of view that every graph

is directed, but sometimes the direction is not specified or may be ignored. Throughout, we use the

terms arc and edge for the directed and undirected case, respectively. In this text we shall use both

the natural intuitive geometric view of embedded graphs and the formal algebraic formulation. We

will comment about the relation between the two where appropriate.

1.1.1 Vertex- and Edge-Oriented Definitions of Graphs

There are two almost equivalent definitions of graphs. The common one is the vertex-oriented

approach, in which a graph is a pair G = 〈V,A〉, where V is the vertex (or node1) set, and A, the

arc set, is a subset of V × V . For nodes u, v ∈ V we use the notation uv to denote the element (u, v)

of V × V , and say that the arc uv is oriented from u to v. The node u is called the tail of uv, written

u = tail(uv). Similarly, v = head(uv) is the head of uv. We use tailG(uv) whenever the graph G in

question is not clear from the context. We use V (G) to denote the set of nodes of a graph G, and

use |V (G)|, or sometimes just |G| to denote the number of nodes of G.

We associate with each arc a ∈ A two darts a+1 and a−1 (we will also use just a+ and a−).

One may identify the dart a+ with the arc a and a− with the arc a after reversing its orientation.

We define rev(·) to be the bijection on darts rev(aσ) = a−σ. Darts are convenient since they allow

us to argue about the reverses of arcs without requiring that these reverse-arcs be present in the

graph. As we will see later, they are particularly convenient for describing planar graphs and their

embeddings. We strongly believe that, where appropriate, darts should become a standard concept

in graph theory, similar to edges and arcs.

In the edge-oriented approach, A is a set of elements (arcs) and V is a partition of the set of

darts A × {+1,−1}. A vertex v is a block of the partition V . The set of darts in that block are said
1We make no distinction between the terms vertex and node, and use them interchangeably.

5
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to be oriented towards v, which we call the head of each of these darts. A vertex v is called the tail

of a dart aσ if v is the head of a−σ. The edge-centric approach is very convenient for representing

embedded graphs and their duals. We will use the two approaches interchangeably as convenient.

1.1.2 Paths, Cycles, Trees and Cuts

An x-to-y walk is a sequence of darts d1 . . . dk such that tail(d1) = x, head(dk) = y and, for i =

2, . . . , k, head(di−1) = tail(di). A walk in which no dart appears more than once is called a path. An

empty sequence represents the trivial path consisting of a single vertex. We use start(P ) to denote

the first vertex, x, of P and end(P ) to denote the last vertex, y, of P . If additionally head(dk) =

tail(d1) then the walk is a cycle. A walk is simple if no vertex occurs twice as the head of a dart in

the walk.

If P = d1 . . . dk and Q = e1 . . . e` are walks such that end(P ) = start(Q), we use P ◦Q to denote

the walk d1 . . . dke1 . . . e`. If u and v are vertices in path P such that u = tail(di), v = head(dj)

and i ≤ j, we use P [u, v] to denote the subpath P ′ such that start(P ′) = u and end(P ′) = v. Since

walks may visit vertices or darts multiple times, when we use this notation, we intend u and v to

refer to specific occurrences of vertices within the path. If P is a cycle, and u occurs before v in P

then P [u, v] denotes a subpath of the cycle. We use P [u, v) to denote the walk obtained from the

walk P [u, v] by deleting the last dart; P (u, v] and P (u, v) are defined analogously. P [·, v] denotes

the subpath P ′ with start(P ′) = start(P ) and end(P ′) = v. P [u, ·] is similarly defined. The reverse

of P , rev(P ) is defined as the sequence rev(dk), rev(dk−1), . . . , rev(d1).

A graph G is connected if for every pair of nodes u, v ∈ V there exists a u-to-v path of darts in G.

G is said to be k-connected if there does not exist a set of k− 1 nodes whose removal disconnects the

graph.

A subset A′ ⊆ A induces a subgraph 〈V ′, A′〉 of G, where V ′ is the set of nodes that are endpoints

of arcs in A′ (in the edge-centric definition, V ′ is the restriction of the partition V to the dart set of

A′). For a set A′ of arcs, we denote by G−A′ the subgraph of G induced by A−A′.
A subset V ′ ⊆ V induces a subgraph 〈V ′, A′〉 of G, where A′ is the set of arcs that have both their

endpoints in V ′. For a set V ′ of nodes, we denote by G− V ′ the subgraph of G induced by V − V ′.
A spanning tree T of G is a connected subgraph of G that includes all nodes of G, and contains

no cycles of edges or arcs. Note that T does contain cycles of darts, but we regard T primarily as a

set of edges, disregarding orientation. We say that a dart d = aσ is a tree dart (also, a dart of T ,

in T , or belongs to T ) if a ∈ T . Otherwise, d is called a non-tree dart. For vertices u and v, T [u, v]

denotes the unique simple u-to-v path through T . Given a vertex designated as the root of T , T [u]

denotes the u-to-root path in T .

For a spanning tree T of G and a non-tree dart d, the fundamental cycle of T with respect to d is

the cycle composed of d and the unique head(d)-to-tail(d) path in T . For a rooted spanning tree T ,

a non-tree dart d is called a back edge of T if head(d) is and ancestor in T of tail(d).

A cut X is a partition of V into two disjoint subsets (X,V − X). The sets X and V − X are

sometimes referred to as the sides of the cut. The darts crossing the cut X are those with one
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endpoint in X and the other not in X. This set of darts is denoted Γ(X). Similarly, the set of darts

leaving the cut is Γ+(X) = {dart d : tail(d) ∈ X and head(d) /∈ X}, and the set of darts entering the

cut is Γ−(X) = {dart d : head(d) ∈ X and tail(d) /∈ X}. A cut X is called simple if both G−X and

G− (V −X) are connected.

1.2 Planar Graphs

1.2.1 Embeddings

There are several equivalent ways to define planar graphs. The most intuitive one is the geometric

definition. A graph is planar if it can be drawn (embedded) on the plane (or, equivalently, on the

surface of the sphere) such that each node v is mapped to a distinct point, each arc uv is mapped to

a continuous curve segment whose endpoints are the points corresponding to u and to v, and such

that curves may only intersect at their endpoints. A plane graph is a planar graph equipped with an

embedding.

Kuratowski [Kur30] was the first to give a combinatorial characterization of planar graphs as

the family of graphs that do not contain K3,3 nor K5 as a minor (see Section 1.2.5 for a formal

definition of minors). Here, K3,3 is the complete bipartite graph with three nodes on each side of

the bipartition, and K5 is the complete graph on 5 nodes. Whitney [Whi33] gave an alternative

definition in terms of combinatorial duals. MacLane [Mac37] gave another formulation in terms of

the existence of a particular basis of the cycle space.

Consider the set of points in the plane that are not assigned to any node or arc of G. The

connected components of this set are called the set F of faces of G. The unbounded component

is called the infinite face of G, often denoted f∞. Each face is bounded by a cycle of edges (not

necessarily simple). We associate a face with the clockwise cycle of darts that forms its boundary.

Planar graphs can also be defined in terms of a combinatorial embedding using a rotation sys-

tem [Hef91, Edm60, You63]. A rotation system is a permutation π over the darts of G. The nodes

of an embedded graph G = 〈π,A〉 are the orbits (cycles) of π. The correspondence to a geometric

embedding is that the darts in an orbit v of π correspond to the darts whose head is the node v in

the geometric embedding which are listed, by convention, in counterclockwise order, see Figure 1.1.

We can also define the faces in terms of the rotation system π. Consider the permutation π∗ =

rev ◦ π. The faces of G are defined to be the orbits of π∗. The choice of the infinite face in a

combinatorial embedding is arbitrary. Note that there is a slight difference between the geometric

and combinatorial definitions of the infinite face in graphs with multiple connected components.

In the combinatorial definition, there is an infinite face for each connected component, while from

the geometric definition, there is only one unbounded component. We will not encounter this issue

because we will mostly be concerned with connected graphs, but in general, considering just a single

infinite face may lead to problems. Another difference between the geometric and combinatorial

definition is that the geometric definition allows for isolated vertices, whereas the combinatorial
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d

c

a b

Figure 1.1: Illustration of the relation between the geometric and combinatorial embeddings of a
graph. The combinatorial embedding is π = (a+b+d−)(a−c+)(c−b−)(d+). Note the correspondence
between the orbits of π and the darts oriented towards the nodes in the geometric embedding, listed
in counterclockwise order. The permutation π∗ is π∗ = rev ◦ π = (a+b−c+)(a−c−b+d+d−). Note the
correspondence of the orbits of π∗ and the faces in the geometric embedding.
The darts of orbits that corresponds to bounded faces in the geometric embedding (in this example
there is only one such orbit, (a+b−c+)) form clockwise cycles in the geometric embedding.

definition does not.

Connected embedded graphs satisfy Euler’s formula:

|V | − |A|+ |F | = 2− 2g,

where g is called the genus of the graph. Planar graphs are embedded graphs with genus zero.

A planar graph is triangulated if every face consists of exactly 3 darts. Any planar graph can be

triangulated by introducing additional edges. This procedure can be easily implemented in linear

time.

An easy consequence of Euler’s formula is that planar graphs are sparse. More precisely, for a

planar graph in which every face has size at least three (i.e., excluding parallel edges and self-loops),

|A| ≤ 3|V | − 6. Therefore, |A| = O(|V |), so it suffices to specify the asymptotic dependency of, say,

the running time of an algorithm on an input planar graph G is just in terms of |V |. For convenience

we use O(|G|) for this purpose.

The face-vertex incidence graph (also called the radial graph) of an embedded graph G with node

set V and face set F is the graph R(G) whose node set is V ∪ F , such that there is an edge vf in

R(G) if and only if v ∈ V and f ∈ F and the node v is incident to the face f in G.

1.2.2 Vector Spaces and Circulations

Let G = 〈V,A〉 be a directed graph. The dart space of G is RA×{±1}, the set of vectors α that assign

a real number α[d] to each dart d.
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The arc space of G is the subspace of G’s dart space satisfying antisymmetry with respect to rev.

Namely, for every dart d, α[d] = −α[rev(d)]. We call the vectors of the dart and arc spaces dart

vectors and arc vectors, respectively. For a dart d we define η(d) to be the arc vector such that

η(d)[d′] =


1 if d′ = d,

−1 if d′ = rev(d),

0 otherwise.

We extend this definition to any set S of darts by η(S) =
∑
d∈S η(d). The vectors {η(a) : a ∈ A}

form a basis of the arc space.

The cycle space of G is the subspace of the arc space spanned by

C = {η(C) : C a cycle of darts in G}.

We refer to vectors of the cycle space as circulations. If G is planar then {η(f) : f a face of G, f 6=
f∞} is a basis of the cycle space. Therefore, any circulation ρ can be expressed as a linear combina-

tion

ρ =
∑
f 6=f∞

φρ[f ]η(f). (1.1)

The coefficients φρ are called the face potentials associated with ρ. More generally, a potential func-

tion is a function assigning real numbers to the faces of G. We adopt the convention that φ[f∞] = 0.

1.2.3 Clockwise, Left and Right

A circulation ρ is clockwise if φρ[f ] ≥ 0 for all faces f . A circulation ρ is counterclockwise if φρ[f ] ≤ 0

for all faces f . Note that a circulation may be neither clockwise nor counterclockwise. Let C be

a cycle of darts in G. We say that C is (counter) clockwise if the circulation η(C) is (counter)

clockwise. See Figure 1.1 for an illustration of the geometric intuition for this definition.

Let P and Q be two u-to-v paths of darts in G. We say that Q is left of P if the cycle Q ◦ rev(P ) is

clockwise. We say that Q is right of P if the P is left of Q.

We say a face f is external to a circulation ρ if φρ[f ] = 0, and is internal otherwise. We say that a

dart d is external if the faces to d’s left and right are external, and we say d is internal if the faces to

d’s left and right are internal. We say a dart is belongs to ρ if the dart is neither internal nor external

to ρ. A dart and its reverse have the same property (external, internal, or contained) with respect

to a circulation. We say a vertex v is external if every dart incident to v is external, and is internal if

every dart incident to v is internal.

For a cycle C, we say C strictly encloses a face (dart or vertex, resp.) if the face (dart or vertex,

resp.) is internal to the circulation η(C). A dart or vertex is enclosed if it is strictly enclosed by η(C)

or belongs to η(C). For a simple cycle C with a geometric embedding, this definition corresponds

to the notion of a face, dart, or vertex being embedded inside C, with respect to f∞. We define the

interior of C to be the subgraph induced by the nodes enclosed by C. We define the exterior of C
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to be the subgraph induced by the nodes not strictly enclosed by C. Note that, according to this

definitions, C is considered to be both in its interior and in its exterior.

Let G = 〈V,A〉 be a planar embedded graph. Let d1, d2, d3 be darts such that head(d1) =

tail(d2) = tail(d3). We say that d2 is right of d3 w.r.t. d1 if d3 occurs strictly between d2 and rev(d1) in

counterclockwise order. For a simple path P containing d3, we say dart d2 emanates right of P if (a)

the dart preceding d3 in P is d1, and d2 is right of d3 with respect to d1, or (b) d3 is the first dart of

P , and tail(d3) is on the boundary of f∞, and d2 is right of d3 with respect to an imaginary edge that

enters tail(d3) from within the infinite face. We say that d enters P from the right if rev(d) emanates

right of P . We extend these definitions to paths and say, e.g., that a path Q emanates right of path

P at v if there is a dart d of Q that emanates right of P and tail(d) = v.

For two paths P and Q, we say that P crosses Q from right to left with entry node u and exit node

v if P and Q have a common u-to-v subpath R (R may consist of a single vertex when u=v) such

that P enters Q at u from the right and P emanates left of Q at v. This definition can be naturally

extended to curves in the plane.

1.2.4 The Planar Dual

The dual of an embedded graph G = 〈π,A〉 is the embedded graph G∗ = 〈π∗, A〉. G is called the

primal graph. Since rev ◦ rev is the identity, (π∗)∗ = rev ◦ (rev ◦ π) = π, which shows that the dual

of the dual is the primal. If G is a planar connected graph, then so is G∗. By definition, the faces

of G are the nodes of G∗, and vice-versa. Note that according to our definition the set of darts of G

and of G∗ is identical. Whenever it is not clear from the context we will explicitly specify whether

we refer to a dart d in the primal graph G or in its dual G∗.

To define the geometric dual, embed a dual node f∗ inside each primal face f . If f and g are the

faces to the left and right of arc a in the primal, then the arc a∗ is oriented from f∗ to g∗. This roughly

corresponds to rotating each arc by 90 degrees clockwise. See Figure 1.2. Note, however, that when

using this geometric embedding of the dual on top of the primal embedding, the orientations in the

dual are inverted. For example, in Figure 1.2, the dual node f corresponds to the orbit (a+b−c+) of

π∗. In the figure, this corresponds to listing the darts whose head is f in clockwise order, whereas the

convention we use for the relation between the geometric and combinatorial embedding is listing

the darts in counterclockwise order. Note that the combinatorial definitions of clockwise, left and

right in the primal and in the dual are self consistent. Therefore, when overlaying the geometric

embedding of the dual on top of that of the primal in this way, we will use the inverted directions

and orientations; a dual cycle that appears to be clockwise in such a drawing will be said to be

counterclockwise, which is consistent with our combinatorial definitions.

One of the basic properties we will use in our maximum-flow algorithms is the duality of cuts

and cycles. See Figure 1.3.

Lemma 1.2.1 (Cycle-Cut duality [Whi33]). A set of darts forms a simple cut in G iff it forms a simple

cycle in the dual G∗
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Figure 1.2: Illustration of the relation between the geometric and combinatorial embeddings of a
primal planar graph (in blue) and its dual (in red).
The combinatorial embedding of the primal is π = (a+b+d−)(a−c+)(c−b−)(d+).
The combinatorial embedding of the dual is π∗ = rev ◦ π = (a+b−c+)(a−c−b+d+d−).
The orbit that corresponds to the dual node f is (a+b−c+). Note that the dual (red) darts in this orbit
are listed in what appears to be clockwise order rather than in our counterclockwise convention.
The geometric embedding used in this figure is convenient because it overlays the dual on top of the
primal, but the orientations of the dual graph are inverted.
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w

v
u

Figure 1.3: A primal graph (blue) and its dual (red). The cut Γ+({u, v, w}) in the primal corresponds
to a counterclockwise dual cycle (dashed red arcs). Note that the dashed red cycle appears to be
clockwise, but since the orientations of the dual are inverted, this is a counterclockwise dual cycle.

Another well-known relation between the primal and the dual is the duality of spanning trees.

The idea can be traced back to a 1847 proof of Euler’s theorem due to von Staudt [vS47, Som29].

See also [EIT+90].

Lemma 1.2.2. Let T be a spanning tree of G. The set of edges not in T {a : a /∈ T} forms a spanning

tree T ∗ of G∗, the dual of G.

In some of our algorithms we will refer to T and T ∗ in Lemma 1.2.2 as the primal and dual trees.

1.2.5 Deletion and Contraction

In our algorithms we will use deletions of edges and contractions of (non-self-loop) edges. Intu-

itively, the result of contracting an edge uv in G is the graph G′ in which the nodes u and v are

identified with a single node. Formally, deleting an edge e is defined as deleting both darts of e.

Deleting a dart d̂ from a permutation π of a dart set D is obtaining the permutation π′ of D − {d̂}
defined as follows.

π′[d] =

{
π[π[d]] if π[d] = d̂

π(d) otherwise

The graph G′ obtained by contracting a non-self loop e of G is the dual of the graph obtained by

deleting e from G∗.

We say that a graph G′ is a minor of G if G′ can be obtained from G by edge deletions and

contractions.
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1.2.6 Separators in Planar Graphs

Separators are the basis for most divide-and-conquer algorithms in planar graphs. In this method

the graph is divided into two or more subgraphs. The problem is first solved recursively in each

subgraph. Then the solutions are combined into a solution for the entire graph. The best known

separator theorem for planar graphs was given by Lipton and Tarjan [LT79]. They proved that for

any planar graph with n nodes, the vertex set can be partitioned into three sets A,B,C such that no

edge connects A and B, neither A nor B contains more than 2n/3 nodes, and C contains at most

2
√

2n nodes. The nodes of C are referred to in the literature as separator, border or boundary nodes.

The result can be stated in terms of weights, rather than number of nodes.

Cycle Separators

In this thesis we will use a stronger result due to Miller [Mil86].

Theorem 1.2.3 ([Mil86]). There exists a linear-time algorithm that, for any 2-connected triangulated

planar graph with weights on the nodes, edges and faces that sum to 1, and no face has weight > 2/3,

finds a simple cycle with at most 2
√

2n nodes such that the total weight strictly enclosed by C is at most

2/3 and the total weight not enclosed by C is at most 2/3.

The cycle C is called a simple cycle separator.

For an n-node planar embedded graph G that is not necessarily triangulated or two-connected,

we define a Jordan separator to be a non-self-intersecting curve C that intersects the embedding of

the graph only at nodes such that at most 2/3 of the weight is strictly enclosed by the curve and at

most 2/3 of the total weight is not enclosed. The nodes intersected by the curve are called boundary

nodes. To find a Jordan separator with at most 2
√

2
√
n boundary nodes, add zero-weight artificial

edges to triangulate the graph and make it two-connected. Next, apply Miller’s cycle separator

algorithm. The cycle separator produced visits at most 2
√

2
√
n nodes. Replace each edge of the

cycle with a curve between its endpoint that is embedded in one of the faces adjacent to that edge.

This can always be done in a way that preserves the balance, provided that no single edge weighs

more than 1/3 of the total weight.

Consider the subgraph G′ of G induced by the interior of a Jordan or cycle separator C. The

nodes of C all lie on a single face of G′. The same is true for the subgraph induced by the exterior

of C.

r–divisions

We next consider a generalization of separators. Define a region R of G to be the subgraph of G

induced by a subset VR of V . We sometimes use the term piece instead of region. The two terms

have the same meaning. In G, the vertices of VR adjacent to vertices in V − VR are called boundary

vertices (of R) and the set of boundary vertices of R is called the boundary of R. Vertices of VR that

are not boundary vertices of R are called interior vertices (of R).
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An r–division [Fre87] of G is a partition of G into O(n/r) edge-disjoint regions, each with O(r)

nodes andO(
√
r) boundary nodes. Fredrickson showed how to construct an r–division inO(n log r+

nr−1/2 log n) time by recursively applying the separator theorem of Lipton and Tarjan.

Define the holes of a region R to be the faces of R that are not faces of G. Note that every

boundary node of R is incident to some hole of R. In our algorithms we require a variant of r–

division with the additional property that every region has a constant number of holes. We call

such an r–division an r–division with a constant number of holes. Such a division can be obtained

within the same time bounds by modifying Fredrickson’s construction in two ways. First use Miller’s

cycle separator instead of Lipton and Tarjan’s. Second, when finding the a cycle separator, alternate

between separating according to the number of nodes and separating according to the number of

holes. This technique was first used by Klein and Subramanian [KS98, Sub95]. See [INSWN11,

WN10b] for a more detailed treatment.

1.3 Lengths and Shortest Paths

Graphs can be augmented with different kinds of attributes. One of the most common attributes

is lengths (sometimes called weights). A length assignment is a function length(·) from the set of

darts to the real numbers. Very often we talk of arc lengths, in which case the length of the dart

a+ is length(a) and the length of a− is infinite. In general, length assignments may be negative,

although in various circumstances only non-negative lengths are considered. When no confusion

arises we may refer to lengths of the corresponding arcs instead of the darts. We extend the notation

to sets of darts (and to paths in particular). For a set D of darts, the length (or weight) of D is

length(D) =
∑
d∈D length(d). For two nodes u, v, the distance from u to v is the length of a shortest

u-to-v path in the graph. The single-source shortest-path problem is to find, for a specified node s,

the distances from s to all nodes in the graph as well as the actual paths realizing these distances.

In directed graphs with no negative length cycles, these paths can be always be chosen so that they

form a tree rooted at s which is called a shortest-path tree.

1.3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is the common name for an algorithm for computing single source shortest

paths in a directed graph with non-negative arc lengths. It is named after E. J. Dijkstra [Dij59],

although several very similar algorithms were independently discovered and published in the second

half of the 1950’s by Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [LGJ+57] and by

Dantzig [Dan58]. See Schrijver [Sch05] for a historical survey.

The pseudocode we present is slightly different than the usual one, to make it suitable for the

efficient implementation discussed in Section 1.3.7 and in Chapter 3.

The procedure UPDATEHEAP(Q, s, d) decreases the key of element s in the heap Q to be d (or

inserts the element if it is not already in the heap). The procedure EXTRACTMIN(Q) returns the
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Algorithm 1.1 Dijkstra(G, s)

1: for all v ∈ V (G): d(v)←∞
2: d(s)← 0
3: initialize an empty heap Q
4: UPDATEHEAP(Q, s, d(s))
5: S ← ∅
6: while S 6= V (G)
7: v ← EXTRACTMIN(Q)
8: ACTIVATE(Q, G, v, d)
9: S ← S ∪ {v}

element with minimum key in the heap Q.

For an arc vu, relaxing vu is an attempt to decrease the distance label of u by considering a path

that gets to u through v using vu [For56]. The procedure ACTIVATE relaxes all the arcs whose tail is

v.

Algorithm 1.2 Activate(Q, G, v, d)

relaxes all the arcs in G whose tail is v in the heap Q using the labels d(·)

1: for each arc vu ∈ E(G)
2: d(u)← min{d(u), d(v) + `(vu)}
3: UPDATEHEAP(Q, u, d(u))

In Dijkstra’s algorithm each node v is extracted from the heap exactly once. At that time the arcs

emanating from v are relaxed. It follows that each arc is relaxed exactly once. Dijkstra’s algorithm

runs in O((n+m) log n) time if elementary data structures such as a binary heap are used [Joh77],

and in O(n log n + m) time when implemented with Fibonacci heaps [FT87]. It is easy to augment

the algorithm to produce a shortest-path tree within the same running time.

1.3.2 The Bellman-Ford Algorithm

The Bellman-Ford algorithm is the common name for an algorithm for computing single-source

shortest paths in directed graphs in the presence of negative lengths, but no negative-length cycles.

The algorithm can be used to detect negative-length cycles. It is named after R. Bellman, who

published the algorithm in 1958 [Bel58], and after L. R. Ford Jr., who set forward the framework

of edge relaxations [For56]. Very similar algorithms were independently obtained and published by

Shimbel [Shi55] and Moore [Moo57]. Again, see Schrijver [Sch05] for a detailed historical review.

The algorithm consists of phases. On each phase all the arcs of the graph are relaxed. It follows

that at the end of the phase k, the distance label d(v) stores the length of a shortest s-to-v path that

consists of at most k arcs. Therefore, after at most n iterations, the distance labels store the true

distances from s in the entire graph, and the running time is O(mn). As with Dijkstra’s algorithm,



16

Algorithm 1.3 Bellman-Ford(G, s)

1: for all v ∈ V (G): d(v)←∞
2: d(s)← 0
3: repeat |V (G)| times
4: for each arc uv
5: d(v)← min{d(v), d(u) + `(uv)}

it is easy to augment the algorithm to produce a shortest-path tree within the same running time.

In Chapter 2 we will present efficient implementations of the Bellman-Ford algorithm in a specific

scenario that comes up in planar graphs.

1.3.3 Price Functions and Reduced Lengths

Let G be a directed graph with arc lengths `(·). A price function2 is a function φ from the nodes of G

to the reals. For a dart (or arc) d, the reduced length with respect to φ is `φ(d) = `(d) + φ(tail(d)) −
φ(head(d)). A price function is called feasible3 if it induces nonnegative reduced lengths on all darts

of G.

Feasible price functions are useful in transforming a shortest-path problem involving positive

and negative lengths into one involving only nonnegative lengths, which can then be solved using

Dijkstra’s algorithm. The best known use of this technique is probably Johnson’s algorithm for all-

pairs shortest paths [Joh77]. The idea appeared much earlier, for example in Ford and Fulkerson’s

algorithm for minimum-cost flow [FF57].

For any nodes s and t, for any s-to-t path P , the reduced length `φ(P ) of P is

`φ(P ) =
∑
d∈P

`φ(d) + φ(tail(d))− φ(head(d))

= φ(start(P ))− φ(end(P )) +
∑
d∈P

`(d)

= `(P ) + φ(s)− φ(t). (1.2)

This shows that an s-to-t path is shortest with respect to `φ(·) iff it is shortest with respect to `(·).
Moreover, the s-to-t distance with respect to the original lengths `(·) can be recovered by adding

φ(t)− φ(s) to the s-to-t distance with respect to `φ(·). Finally, we note that the reduced length of a

cycle is equal to its length.

Suppose φ is a feasible price function. Running Dijkstra’s algorithm with the reduced lengths and

modifying the distances thereby computed to obtain distances with respect to the original lengths

will be called running Dijkstra’s algorithm with φ.

An example of a feasible price function comes from single-source distances. Suppose that, for

some node r of G, for every node v of G, φ(v) is the r-to-v distance in G with respect to `(·). Then

2different names have been used for this term in the literature. In particular, Miller and Naor [MN95] used the term
potential.

3Miller and Naor [MN95] use the term consistent.
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for every arc uv, φ(v) ≤ φ(u) + `(uv), so `φ(uv) ≥ 0. Here we assume, without loss of generality,

that all distances are finite (i.e., that all nodes are reachable from r) since we can always add arcs

with sufficiently large lengths to make all nodes reachable without essentially affecting the shortest

paths in the graph.

Let T be a rooted spanning tree of G. The reduced length of d with respect to T are reduced

lengths with respect to distances in T . Namely,

lengthT (d) = length(d) + length(T [tail(d)])− length(T [head(d)]) (1.3)

1.3.4 Multiple-Source Shortest Paths

Klein [Kle05] gave a multiple-source shortest-path algorithm with the following properties. The

input consists of a directed planar embedded graph G with non-negative arc-lengths, and a face f .

For each node u in turn on the boundary of f , the algorithm computes (an implicit representation

of) the shortest-path tree rooted at u. The basic algorithm takes a total of O(n log n) time and

O(n) space on an n-node input graph. In addition, given a set of pairs (u, v) of nodes of G where

u is on the boundary of f , the algorithm computes the u-to-v distances. The time per distance

computed is O(log n). In particular, given a set S of O(
√
n) nodes on the boundary of a single face,

the algorithm can compute all S-to-S distances in O(n log n) time. We refer to this algorithm as the

MSSP algorithm.

Using persistence techniques [DSST89], the MSSP algorithm can be turned into a O(n log n)-

space data structure, whose construction takes O(n log n) time, that can report the distance in G

between any node on the distinguished face f and any other node in G in O(log n) time.

In fact, the MSSP algorithm does not require that the arc-lengths be nonnegative if the input also

includes a table of distances to all nodes from some node on the face f . This observation follows

from a careful inspection of the algorithm [Kle05] itself. Alternatively, it also follows from the price-

function technique of Section 1.3.3; the table of distances can be used to obtain nonnegative reduced

lengths, and these lengths can be supplied as input to Klein’s algorithm.

We use Klein’s MSSP as a black box in our shortest-path algorithms in Chapter 2. We extend it to

report distances from all nodes of a cycle in Chapter 4 and generalize it to solve the maximum-flow

problem with multiple sources and a single sink in Chapter 6. We do not provide here a complete

description of the algorithm, but only include definitions that are used in Chapter 6.

We note that, when using MSSP as black box, one may also use the algorithm of Cabello and

Chambers [CC07], which is considered simpler, provides the same interface, and runs in the same

time bounds.

Leafmost and Right-Short

Let T be a spanning tree of a planar graph G. A dart d is unrelaxed if lengthT (d) < 0. Note

that, by definition, only darts not in T can be unrelaxed. Let T ∗ be the dual spanning tree (as in
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Lemma 1.2.2). A leafmost unrelaxed dart is an unrelaxed dart d such that no proper descendant of d

in T ∗ is unrelaxed.

Right-first search [RLWW95] is depth-first search on a planar graph, with the restriction that, for

each node v visited, the edges vw out of v are explored in right-to-left order with respect to the the

edge uv by which v was first visited (or, if v is the root and is on the boundary of the infinite face,

with respect to an imaginary edge that enters v from within the infinite face). Right-first search

induces a right-first search tree consisting of the set of edges explored by the search.

A tree T is right-short if for all nodes v ∈ T there is no simple root-to-v path P that is as short as

T [v] and strictly right of T [v]. Clearly, a right-first search tree is right-short.

1.3.5 Dense Distance Graphs

Recall that for a subgraph (piece) P of a planar graph G, the boundary nodes ∂P of P are the nodes

of P that are adjacent to nodes in G−P . The dense distance graph of P , which we sometime denote

by DDGP , is the complete graph on ∂P , such that the length of an arc corresponds to the distance

(in P ) between its endpoints. The dense distance graph for all pieces P in an r–division with a

constant number of holes can be computed in O(|V (G)| log |V (G)|) time and space using Klein’s

MSSP; for each piece P , run the MSSP algorithm in O(|P | log |P |) time and space a constant number

of times, specifying a different hole of P as the distinguished face at each run. These invocations

of MSSP compute the distances between the boundary nodes of P in O(|P | log |P | + |∂P |2 log |P |)
time. Since in an r–division |∂P | =

√
|P |, this is O(|P | log |P |) time and space per piece, for a total

of O(|V (G)| log |V (G)|) for all pieces.

1.3.6 The Monge Property

Monge [Mon81] observed in 1781 that if unit quantities have to be transported from locationsX and

Y in the plane to locations Z and W (not necessarily respectively) in such a way as to minimize the

total distance travelled, then the paths followed in transporting these quantities must not intersect.

In 1961 Hoffman [Hof61] elaborated on this idea and coined the term Monge property. A matrix has

the Monge property (also called a Monge matrix) if for every pair of rows with indices i < j and

every pair of columns with indices k < ` we have

Mik +Mj` ≤Mi` +Mjk (1.4)

When the inequality hods in the reverse direction the property is called the inverse Monge property

(also called contra-Monge, anti-Monge or convex Monge). See [BKR96] for a survey of Monge

matrices and their applications.

Monge matrices and the efficient algorithms described in the remainder of this section are used

in the algorithms in Chapter 2. In the context of a planar graph G, let v1, v2, . . . , vr be the nodes

incident to some face of G in, say, clockwise order. Consider a partition of these nodes into two

consecutive sets A = {v1, v2, . . . vq} and B = {vq+1, vq+2, . . . vr}. Monge’s observation implies that
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for any 1 ≤ i < j ≤ q and q < k ≤ ` ≤ r, a shortest vi-to-vk path and a shortest vj-to-v` path must

cross. Let M be a matrix such that Mik is the distance between vi and vk. It easily follows that M is

an inverse Monge matrix (see Lemma 2.1.4 in Chapter 2).

An immediate consequence of the inverse Monge property is that for any i < j, k < ` such that

Mik ≤ Mi`, we also have Mjk ≤ Mj`. A Matrix that satisfies this weaker property is called totally

monotone. Totally Monotone matrices were defined and studied in a seminal paper by Aggarwal,

Klawe, Moran, Shor and Wilber [AKM+86], where an algorithm is given to find all row-maxima of

an n-by-m totally monotone matrix in O(m+ n) time. This algorithm is referred to in the literature

by the nickname SMAWK. It is easy to see that by negating each element of a totally monotone

matrix and reversing the order of its columns, SMAWK can be used to find the row-minima within

the same time bound.

Since for an inverse Monge matrix M , both M and its transpose are totally monotone, SMAWK

can also be used to find the column minima and maxima of an inverse Monge matrix (the same is

true for Monge matrices).

The SMAWK algorithm was generalized to totally monotone partial matrices. A falling staircase

matrix is defined in [AK90] and [KK90] to be a lower triangular fragment of a totally monotone

matrix. More precisely, (M, {f(i)}0≤i≤n+1) is an n×m falling staircase matrix if

1. for i = 0, . . . , n+ 1, f(i) is an integer with 0 = f(0) < f(1) ≤ f(2) ≤ · · · ≤ f(n) < f(n+ 1) =

m+ 1.

2. Mij , is a real number if and only if 1 ≤ i ≤ n and 1 ≤ j ≤ f(i). Otherwise, Mij is blank.

3. (total monotonicity) for i < k and j < l ≤ f(i), and Mij ≤Mil, we have Mkj ≤Mkl.

Finding the row-maxima in a falling staircase matrix can easily be done using SMAWK in O(n+

m) time after replacing the blanks with sufficiently small numbers so that the resulting matrix is

totally monotone. However, this trick does not work for finding the row-minima. Aggarwal and

Klawe [AK90] gave an O(m log log n) time algorithm for finding row-minima in falling staircase

matrices of size n × m. Klawe and Kleitman gave in [KK90] a more complicated algorithm that

computes the row-minima of an n×m falling staircase matrix inO(mα(n)+n) time, where α(n) is the

inverse Ackerman function (cf. [Tar75]). If M satisfies the above conditions with total monotonicity

replaced by the inverse Monge property then M and the matrix obtained by transposing M and

reversing the order of rows and of columns are falling staircase. In this case both algorithms can be

used to find the column-minima as well as the row-minima of M .

1.3.7 Fakcharoenphol and Rao’s Efficient Dijkstra Implementation

In this section we describe a data structure due to Fakcharoenphol and Rao [FR06] that efficiently

implements Dijkstra’s algorithm in specific scenarios. Our description somewhat deviates from the

original one in [FR06].
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Figure 1.4: Schematic examples for sets with interleaving parent relationship (right) and non-
interleaving parent relationship (left). The sets A and B are shown. An edge between a node
ai and a node bj indicates that p(bj) = ai. Namely, that ai is the parent of bj . The parent relation-
ship on the left is non-interleaving since no edges cross when the nodes of B are shifted cyclically
one position down.

Non-interleaving parent relationship

Let A = a1, a2, . . . , an and B = b1, b2, . . . , bm be two sequences of nodes. Let H = 〈A∪B,A×B〉 be

a complete directed bipartite graph with arc lengths Mab (all arcs are directed from A to B). Given

real labels d(·) for the nodes of A, the label of each node b ∈ B is defined to be

d(b) = min
a∈A

d(a) +Mab. (1.5)

The parent p(b) of a node b ∈ B is the node a ∈ A with minimum index that achieves the minimum

in (1.5).

We consider arc lengths M that have the following property. For every choice of labels d(·) for

the nodes of A, there exists a cyclic shift of the order of nodes of B such that for every k < `,

p(bk) ≤ p(b`). We refer to this property as the non-interleaving of the parent relationship. See

Figure 1.4 for an example.

Before we continue with the description of the data structure, we give two examples where the

parent relationship is indeed non-interleaving. The first situation is when the length matrix M is

Monge. Suppose p(b`) = ai then, for i < j,

d(ai) +Mi` ≤ d(aj) +Mj`.

By the Monge property, for i < j, k < `, Mik +Mj` ≤Mi` +Mjk. Hence,

d(ai) +Mik + d(aj) +Mj` ≤ d(ai) +Mi` + d(aj) +Mjk.
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Combining the two inequalities we get

d(ai) +Mik + d(aj) +Mj` ≤ d(aj) +Mj` + d(aj) +Mjk,

or equivalently,

d(ai) +Mik ≤ d(aj) +Mjk.

This shows that p(bk) ≤ i = p(b`). As we had noted in section 1.3.6, Monge distance matrices arise

when the sets A and B correspond to a partition of the nodes incident to a single face of a planar

graph into two consecutive sets. Another situation where the parent relation is non-interleaving

is when the sets A and B correspond to nodes around two distinct faces of an underlying planar

graph G. In this case the distance matrix M is not Monge. However, it is not difficult to see that

the parent relationship is non-interleaving.4 Informally, the reason is that, if the parent relationship

is interleaving, then there are corresponding shortest paths in the underlying planar graph G that

must cross. This leads to a contradiction. Both situations are encountered when separating a graph

into pieces using cycle separators (individually, or in an r–division).

Monge Heaps

We now proceed with describing the data structure. A range-minimum-query data structure [GBT84,

BV93, BFC00] for a row i of M is a data structure that, given a range [j1, j2] of columns, returns

minj1≤j≤j2 Mij .

Recall that in Dijkstra’s algorithm, the estimates for the label of each node are initialized to

infinity. The label of each node is fixed when the node is extracted as the minimum element in the

heap. At that time, all incident arcs are relaxed, thus updating the estimates for the labels of other

nodes. It is important to note that the labels set by Dijkstra’s algorithm are monotonically increasing.

After a node is extracted from the heap with label d, all subsequent labels that will be set by the

algorithm will be at least d.

Fakcharoenphol and Rao [FR06, Section 4.1] described a data structure that, given a complete bi-

partite graph with edge-length matrix M with the non-interleaving parent relationship and a range-

minimum data structure with running time O(TRMQ) for each row of M , supports the following

operations, which are useful in implementing Dijkstra’s algorithm:

1. FR-ACTIVATE(a, d)5 - Sets the label of node a ∈ A to be d, and implicitly relaxes all arcs incident

to a. This operation may be called at most once per node, and runs in O(log |A| + TRMQ)

amortized time.

2. FR-FINDMIN - Returns the node v in B with minimum label. Labels of nodes in A that were

not yet activated are assumed to be infinite. This operation also returns the label d of v and

takes O(1) time.

4In Lemma 2.2.1 we shall see a way to represent such a matrix M by two Monge matrices in a way that preserves distances.
5In [FR06] this procedure is called ACTIVATELEFT.
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3. FR-EXTRACTMIN - Returns the node v in B with minimum label and removes it from the set B.

This operation also returns the label d of v and takes O(log |B|+ TRMQ) time. The integrity of

the data structure is only guaranteed if all subsequent FR-ACTIVATE operations have labels at

least d.

Fakcharoenphol and Rao call this data structure an online bipartite Monge searching data struc-

ture. We will refer to it as a Monge heap. It is noted in [FR06] that a range-minimum data structure

that answers queries in TRMQ = O(log |A|) can be constructed for each row of the input matrix in

linear time (at the time the matrix itself is constructed). In fact, range-minimum data structures with

constant-time query and linear-time construction are also known. See [BFC00] and the references

therein.

Observe that Dijkstra’s algorithm implements these procedures in a straightforward manner us-

ing a heap. The difference is that Dijkstra’s algorithm assume neither bipartite graphs nor the

non-interleaving property of the parent relationship. On the other hand, Dijkstra’s ACTIVATE (Al-

gorithm 1.2) explicitly relaxes all the arcs incident to a, which takes O(|A|) time, not O(log |A|)
time.

FR-Dijkstra

Monge heaps can be used to implement Dijkstra’s algorithm in the following setting. Let {Pi}i=1,2,...

be a set of (not necessarily disjoint) subgraphs of a planar embedded graph. Let Xi be a set of nodes

on a constant h number of faces of Pi. Let Ki be the complete graph on Xi such that the length of

an arc uv in Ki corresponds to the u-to-v distance in Pi. In typical applications, the Pi’s are pieces

in an r–division with a constant number of holes, the nodes Xi are the boundary nodes of Pi, and

the graphs Ki are the dense distance graphs of the pieces Pi.

Each complete graph Ki can be decomposed into complete bipartite subgraphs in which the

parent relationship is non-interleaving, such that each node of Xi appears in O(log |Xi|) of these

subgraphs. The decomposition is as follows. Refer to Figure 1.5. There are O(h2) pairs of faces to

which nodes of Xi belong. For each such pair f1, f2, let A and B be the set of nodes of Xi on f1 and

f2, respectively. If f1 6= f2 then the complete bipartite graph on A and B is in the decomposition

since it satisfies the non-interleaving property. Otherwise, A = B and we further decompose it

to satisfy the non-interleaving property. List the nodes of A according to their clockwise order on

f1. Split A into two consecutive halves A′ and B′ and add the complete bipartite graph on A′

and B′ to the decomposition. Next, recurse on A′ and on B′. Since A′ and B′ are disjoint, and

their size is reduced by a factor of two at each level of the recursion, each node of Xi appears in

O(h2 log |A|) = O(log |Xi|) bipartite subgraphs.

Let G = {Gj} denote the set of all bipartite graphs in the decompositions of all the Ki’s. Note

that
⋃
iKi =

⋃
j Gj , but that |G| is O(

∑
i |Xi|) since each graph Ki is decomposed into O(|Xi|)

bipartite subgraphs. Fakcharoenphol and Rao’s algorithm takes as input the set G of bipartite graphs

as well as a range-minimum data structure for each row of the distance matrix for each Gj . Given a



23

v

Figure 1.5: Decomposition of a complete graph over a set of nodes on a single face into bipartite
complete graphs such that each node appears in a logarithmic number of bipartite graphs. The
bipartitions in all the bipartite graphs in which the node v appears are indicated.

node s in
⋃
Ki, it computes a shortest-path tree in

⋃
Ki rooted at s. We will refer to Fakcharoenphol

and Rao’s algorithm as FR-DIJKSTRA. The running time is O (
∑
i |Xi| log |Xi| log (

∑
|Xi|)), which is

O
(∑

i |Xi| log2 (
∑
|Xi|)

)
.

It may seem curious that, although we are interested in computing a shortest-path tree in
⋃
Ki,

our description of FR-DIJKSTRA exposes the decomposition of the graphs {Ki} into bipartite graphs

{Gj} that obey the non-interleaving property of the parent relationship. Had we not exposed this de-

composition, the implementation of FR-DIJKSTRA would have had to compute the range-minimum

data structures for each Gj internally. This task seems to require time that is linear in the num-

ber of entries in the distance matrix of each Gj , which may be Θ(|Xi|2). This computation would

then dominate the running time of FR-DIJKSTRA. Instead, we choose to expose the decomposition,

and assume that the range-minimum data structures are computed at the time the graphs {Ki} and

{Gj} are computed. In Section 3 we will show how to avoid this obstacle, so that the required range-

minimum data structures are constructed within the O
(∑

i |Xi| log2 (
∑
|Xi|)

)
time bound. This will

be useful for further generalizing FR-DIJKSTRA to work with dynamically changing reduced lengths,

rather than with a fixed set of lengths.

Recall that Dijkstra’s algorithm maintains a heap with distance labels for all nodes. At each step,

the node u with minimum label is extracted from the heap since its distance label is guaranteed to

be correct, and the arcs leaving u are relaxed. The key idea in FR-DIJKSTRA is that the edges of

each bipartite subgraph can be implicitly relaxed efficiently using a dedicated Monge heap Mi for

each bipartite subgraph Gi. The minimum elements from each Monge heapMi are maintained in a

regular global heap Q from which the node with global minimum label is extracted in each iteration

of the main loop. Note that since a node v may appear in multiple Gi’s, v may be extracted as the

minimum element of the global heap Q multiple times, once for each Monge heap it appears in.

However, the label d(v) of v is finalized at the first time v is the minimum element of Q. The algo-

rithm activates v using FR-ACTIVATE only at that time. At all subsequent occurrences the algorithm
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just extracts v from the corresponding Monge heap, and updates the representative of that Monge

heap in Q.

Algorithm 1.4 FR-DIJKSTRA(G, s)
Input: a set G = {Gj}, where each Gj is a complete bipartite graph on V (Gj) = Aj ∪ Bj with a
non-interleaving parent relationship. Gj is represented by its arc length matrix Mj , accompanied
by a range-minimum data structure for each row of Mj .
a node s in

⋃
Gj .

Output: the distances d(·) from s in
⋃
Gj .

1: initialize a Monge heapMj for each Gj ∈ G
2: for all v ∈

⋃
V (Gj): d(v)←∞

3: d(s)← 0
4: for all Gj ∈ G s.t. s ∈ Aj: FR-ACTIVATE(Mj , s, d(s))
5: initialize an empty regular heap Q
6: for all Gj ∈ G: UPDATEHEAP(Q,Mj , FR-FINDMIN(Mj))
7: S ← {s}
8: while S 6=

⋃
V (Gj)

9: Mĵ , v, dv ← EXTRACTMIN(Q)
10: FR-EXTRACTMIN(Mĵ)
11: UPDATEHEAP(Q,Mĵ , FR-FINDMIN(Mĵ))
12: if v /∈ S then
13: d(v)← dv
14: S ← S ∪ {v}
15: for each Gj s.t. v ∈ Aj
16: FR-ACTIVATE(Mj , v, d(v))
17: UPDATEHEAP(Q,Mĵ , FR-FINDMIN(Mj))
18: return d

The stated running time follows from the fact that FR-EXTRACTMIN and FR-ACTIVATE are called

at most once for each node v in each bipartite subgraph v belongs to. Since a node of Xi be-

longs to O(log |Xi|) bipartite subgraphs, the number of iterations is O(
∑
i |Xi| log |Xi|). The run-

ning time of each iteration is dominated by that of EXTRACTMIN, which is O (log (|
∑
|Xi|)). (FR-

EXTRACTMIN and FR-ACTIVATE take only O(log |Xi|) amortized time). Hence, the total running time

is O (
∑
i |Xi| log |Xi| log (|

∑
|Xi|)).

A simple extension of FR-DIJKSTRA

We note that given a (not necessarily planar) graph H = 〈VH , EH〉, where VH is possibly not disjoint

from
⋃
Xi, FR-DIJKSTRA can be easily extended to compute a shortest-path tree in H ∪

⋃
j Gj in

O (
∑
i |Xi| log |Xi| log (|

∑
|Xi|) + |EH | log (|VH |)) time. This is done by relaxing the edges of H

using a separate regular heap QH (rather than in a Monge heap). The edges of H are relaxed

explicitly by calling ACTIVATE (rather than FR-ACTIVATE). The edges of each bipartite graph Gj are

handled in a Monge heapMj , as before. The minimum element from each Monge heapMj as well

as the minimum element from the regular heap QH are maintained in a regular global heap Q. This
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use was first suggested in [BSWN10]. Since the details were not published, we provide the extended

pseudocode for completeness (see Algorithm 1.5).

Algorithm 1.5 FR-DIJKSTRA(G, H, s)
Input: a set G = {Gj}, where each Gj is a complete bipartite graph on V (Gj) = Aj ∪ Bj with a
non-interleaving parent relationship. Gj is represented by its arc length matrix Mj , accompanied
by a range-minimum data-structure for each row of Mj .
a graph H = 〈VH , EH〉 represented by its arc lengths.
a node s in

⋃
Gj

Output: the distances d(·) from s in H ∪
⋃
Gj .

1: initialize a Monge heapMj for each Gj ∈ G
2: for all v ∈

⋃
V (Gj): d(v)←∞

3: d(s)← 0
4: for all Gj ∈ G s.t. s ∈ Aj: FR-ACTIVATE(Mj , s, d(s))
5: initialize an empty regular heap QH
6: if s ∈ VH then ACTIVATE(QH , H, s, d)
7: initialize an empty regular heap Q
8: UPDATEHEAP(Q,QH , FINDMIN(QH))
9: for all Gj ∈ G: UPDATEHEAP(Q,Mj , FR-FINDMIN(Mj))

10: S ← {s}
11: while S 6=

⋃
V (Gj)

12: Mĵ , v, dv ← EXTRACTMIN(Q)
13: ifMĵ = QH then
14: EXTRACTMIN(QH)
15: UPDATEHEAP(Q,QH , FINDMIN(QH))
16: else
17: FR-EXTRACTMIN(Mĵ)
18: UPDATEHEAP(Q,Mĵ , FR-FINDMIN(Mĵ))
19: if v /∈ S then
20: d(v)← dv
21: S ← S ∪ {v}
22: if v ∈ VH then ACTIVATE(QH , H, v, d)
23: UPDATEHEAP(Q,QH , FINDMIN(QH))
24: for each Gj s.t. v ∈ Aj
25: FR-ACTIVATE(Mj , v, d(v))
26: UPDATEHEAP(Q,Mĵ , FR-FINDMIN(Mj))
27: return d

We already mentioned above that in the basic applications of FR-DIJKSTRA the subgraphs Pi are

regions in an r–division with a constant number of holes. In Chapter 4 we use FR-DIJKSTRA with a

more complicated set of subgraphs. In Chapter 3 we extend FR-DIJKSTRA to use reduced lengths, an

extension that has uses in computing maximum flow (see Chapter 5) and in constructing dynamic

distance oracles that can handle negative lengths [KMNS12].
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1.3.8 External Dense Distance Graphs

For a graph G and a subgraph (piece) P of G, let G−P be the graph obtained from G by deleting the

nodes in VP − ∂P . The external dense distance graph of P , denoted by DDGG−P , is the complete

graph on ∂P such that the length of an arc corresponds to the distance between its endpoints in

G − P . External dense distance graphs were used recently in [BSWN10]. Computing the external

dense distance graphs for all pieces in an r–division cannot be done efficiently using Klein’s MSSP.

The reason is that |V (G− P )| can be Θ(|V (G)|) for all pieces. Instead, the computation can be

done in a top-down approach as follows (cf. [BSWN10]). Recall that an r–division is obtained as

the set of pieces of the lowest level in a recursive division of the graph using Miller’s simple-cycle

separators. Consider the set Q of all pieces at all levels of the recursion (rather than just the set

of pieces at the lowest level). Note that there are O(log |V (G)|) recursive levels since the size of

the pieces decreases by a constant factor for every constant number of applications of Miller’s cycle

separator theorem. First, we compute DDGQ for every piece Q ∈ Q. As explained in Section 1.3.5,

this can be done in O(|V (G)| log |V (G)|) for all the pieces in a specific level of the recursion, for a

total of O(|V (G)| log2 |V (G)|) for all pieces in Q. Next, we consider a piece Q and denote the two

subpieces of Q by Q1 and Q2. DDGG−Q2
is obtained by computing distances in DDGQ1

∪DDGG−Q
(see Figure 1.6), using multiple applications of FR-DIJKSTRA, once for each node in ∂Q2. This

takes O(|Q| log2 |∂Q|) time per piece, for an overall O(|V (G)| log2 |V (G)|) time for all pieces in a

specific level. Since the number of levels is bounded by O(log |V (G)|), the entire computation takes

O(|V (G)| log3 |V (G)|) time.

Q2
Q1

G-Q

Figure 1.6: Pieces Q1 and Q2 in some level of the recursive application of Miller’s cycle separator
theorem. The piece Q is the union of Q1 and Q2. Distances in G − Q2, the exterior of Q2, are
obtained by considering shortest paths in the interior of Q1 and in G−Q, the exterior of Q.

1.4 Capacities and Maximum Flow

Another commonly used attribute is arc-capacity, which quantifies the amount of flow that can be

pushed through an arc in a flow network.
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Let S ⊂ V be a set of nodes called sources, and let T ⊆ V − S be a set of nodes called sinks.

A flow assignment f(·) is an arc vector (a real-valued function on darts satisfying antisymmetry

with respect to rev, see Section 1.2.2).

A capacity assignment c(·) is a dart vector (a real-valued function on darts). In many cases only

the capacities of arcs are specified. In this case, we extend the capacities to darts by c(a+) = c(a),

and c(a−) = 0.

A flow assignment f(·) respects the capacity of dart d if f(d) ≤ c(d). f(·) is called a pseudoflow if

it respects the capacities of all darts.

For a given flow assignment f(·), the net inflow (or just inflow) of node v is:6

inflowf (v) =
∑

dart d:head(d)=v

f(d).

The outflow of v is outflowf (v) = −inflowf (v).

A preflow is a pseudoflow f(·) such that for each node v ∈ V − S, inflowf (v) ≥ 0.

A flow assignment f(·) is said to obey conservation at node v if inflowf (v) = 0. A feasible flow

is a pseudoflow that obeys conservation at every node other than the sources and sinks. A feasible

circulation is a pseudoflow that obeys conservation at all nodes. The value of a feasible flow f(·) is

the sum of inflow at the sinks,
∑
t∈T inflowf (t) or, equivalently, the sum of outflow at the sources.

The maximum-flow problem is that of finding a feasible flow with maximum value.

The famous max-flow min-cut theorem [FF56, EFS56] states that the value of a maximum flow

from source s to sink t equals the capacity of the minimum cut separating s from t.

For two flow assignments f ,f ′, the addition f + f ′ is the flow that assigns f(d) + f ′(d) to

every dart d. A flow assignment f(·) is a quasi-feasible flow7 (respectively, quasi-pseudoflow or quasi-

preflow) if there exists a circulation ρ such that f + ρ is a feasible flow (respectively, pseudoflow,

preflow).

A residual path in G is a path whose darts all have strictly positive capacities. For two sets of

nodes A,B, A G→ B is used to denote the existence of some residual a-to-b path in G for some nodes

a ∈ A and b ∈ B. Conversely, A G9 B is used to denote that no such path exists. We will omit the

graph G when it is clear from the context.

The residual graph of G with respect to a flow assignment f(·) is the graph Gf with the same

arc-set, node-set, sources and sinks, and with capacity assignment cf (·) such that for every dart d,

cf (d) = c(d)− f(d).

It follows from the max-flow min-cut theorem that a feasible flow f in G is maximum if and only

if S
Gf9 T . We use an analog of this condition to define maximum preflows and pseudoflows. Let

V + denote the set of nodes {v ∈ V − (S ∪ T ) : inflowf (v) > 0}. Similarly, let V − denote the set of

nodes {v ∈ V − (S ∪ T ) : inflowf (v) < 0}. We say that a pseudoflow or preflow f is maximum if

S ∪ V + Gf9 T ∪ V −.
6An equivalent definition, in terms of arcs, is inflowf (v) =

∑
a∈E:head(a)=v f(a)−

∑
a∈E:tail(a)=v f(a).

7the terms preflow and pseudoflow are well-known in the literature (e.g., [GT88, Hoc08, GT90]), the term quasi-feasible
flow is new.
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Figure 1.7: Proof of the Sources Lemma. The path P is dashed blue. Its suffix P ′ is indicated. The
dart d is not residual before f is pushed. A flow carrying path of f that starts at x and goes through
rev(d) is shown in solid red.

We next give a few basic lemmas that characterize cases in which the nonexistence of residual

paths is preserved when flow is pushed in a graph.

Lemma 1.4.1. Let ρ be a circulation. Let u and v be nodes in a graph G. Then

u
G9 v ⇒ u

Gρ9 v.

Proof. Pushing a circulation does not change the amount of flow crossing any cut. This implies that

if there was no u-to-v residual path before ρ was pushed, then there is none after ρ is pushed.

Lemma 1.4.2. (Sources Lemma) Let f be a flow with source set X. Let A,B be two disjoint sets of

nodes. Then

A ∪X G9 B ⇒ A
Gf9 B.

Proof. The flow f may be decomposed into a cyclic component (a circulation) and an acyclic com-

ponent. By Lemma 1.4.1, it suffices to show the lemma for an acyclic flow f .

Suppose for the sake of contradiction that there exists a residual a-to-b simple path P after f is

pushed for some a ∈ A and b ∈ B. Let P ′ be the maximal suffix of P that was residual before the

push. Maximality implies that the dart d of P whose head is start(P ′) was non-residual before the

push, and f(rev(d)) > 0. The fact that f(rev(d)) > 0 implies that before f was pushed there was a

residual path Q from some node x ∈ X to head(d). Therefore, the concatenation of Q and P ′ was a

residual x-to-b residual path before the push, a contradiction. See Figure 1.7.

The proof of the following lemma is symmetric.

Lemma 1.4.3. (Sinks Lemma) Let f be a flow with sink set X. Let A,B be two disjoint sets of nodes.

Then

A
G9 B ∪X ⇒ A

Gf9 B.
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For node sets W,Y,Z, we will use the notation sources lemma(W,Y,Z) to indicate the use of the

Sources Lemma to establish that there are no W -to-Y residual paths after a flow with source set Z

is pushed. We will use sinks lemma(W,Y,Z) in a similar manner.

1.4.1 Circulations and Shortest Paths

In this section we discuss a relation between circulations in a directed planar graph G with arc

capacities c, and shortest paths in the dual graph G∗, where the length of a dart d in G∗ is taken to

be its capacity in G. Namely,

lengthG∗(d) = c[d]. (1.6)

To the best of our knowledge, this connection was first used by Hassin [Has81], and was later made

precise in [KNK93, MN95].

Recall that by our definition of circulations (Eq. (1.1)), every circulation ρ is associated with a

face potential φρ. We follow the convention that φρ[f∞] = 0. Let d′ be a dart of G. By our definition

of the faces of G and of the dual graph G∗, d′∗ is a dart of the face headG∗(d′). Hence, by Eq. (1.1),

ρ[d′] =
∑
f

φρ[f ]η(f)[d′]

= φρ[headG∗(d′)]− φρ[tailG∗(d′)]. (1.7)

Eq. (1.7) implies the following lemma:

Lemma 1.4.4. If there exists a negative length cycle in G∗ with respect to lengthG∗ then there is no

feasible circulation in G.

Proof. Let C be a negative length cycle in G∗. That is
∑
d∈C c[d] < 0. Assume there exists a feasible

circulation ρ in G. Then
∑
d∈C ρ[d] ≤

∑
d∈C c[d] < 0. On the other hand, observe that summing

Eq. (1.7) over all darts of a cycle telescopes to zero, a contradiction.

We will next see that the contrary is also true. Namely, if there is no negative length cycle in G∗

then there exists a feasible circulation in G. Observe that ρ is a feasible circulation if and only if

there exists a face potential φ satisfying (1.7) such that for every dart d,

φ[headG∗(d)]− φ[tailG∗(d)] ≤ c[d],

or equivalently,

φ[headG∗(d)] ≤ φ[tailG∗(d)] + lengthG∗(d). (1.8)

Equation (1.8) is the shortest-path inequality for G∗ with respect to lengthG∗ .

Lemma 1.4.5. There is a feasible circulation in G if and only if there exists no negative length cycle in

G∗ with respect to lengthG∗ . Furthermore, suppose there is no negative length cycle in G∗ with respect

to lengthG∗ , and let φ[f ] be the f ′-to-f distances in G∗ for some arbitrary face f ′. The circulation

ρ[d] = φ[headG∗(d)]− φ[tailG∗(d)] is a feasible circulation in G.
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Proof. Lemma 1.4.4 shows that if there is a negative length cycle in G∗ then there is no feasible

circulation in G. To show the other direction, observe that if there is no negative length cycle in G∗,

then shortest paths in G∗ are well defined. Hence, φ is well defined and satisfies the shortest-path

inequality (Eq. (1.8)). Therefore ρ is a feasible circulation in G.

The circulation ρ defined in Lemma 1.4.5 has a few additional properties:

Lemma 1.4.6. Suppose distances in G∗ with respect to lengthG∗ are well defined. Let φ[f ] be the f∞-

to-f distances in G∗. Among all face potential functions that satisfy the shortest-path inequality and

assign zero to f∞, φ is one with maximum values.

Proof. Let φ′ be a face potential function such that φ′[f ] > φ[f ] for some face f . Let P be a shortest

f∞-to-f path in G∗. Since φ′[f ] > φ[f ] = lengthG∗(P ), the reduced length of P with respect to φ′

is negative. Hence, there must exist some dart d of P whose reduced length with respect to φ′ is

negative. Namely,

lengthG∗(d) + φ′[tailG∗(d)]− φ′[headG∗(d)] < 0,

so φ′ violates the shortest-path inequality for the dart d.

Lemma 1.4.6 has two consequences:

Corollary 1.4.7. Suppose distances in G∗ with respect to lengthG∗ are well defined. Let φ[f ] be the f∞-

to-f distances in G∗. Among all feasible circulations, the circulation ρ[d] = φ[headG∗(d)]−φ[tailG∗(d)]

maximizes the flow on every dart whose tail in G∗ is f∞.

Proof. Let d be a dart whose tail in G∗ is f∞. The flow assigned to d by ρ is ρ[d] = φ[headG∗(d)] −
φ[tailG∗(d)] = φ[headG∗(d)]. By the preceding lemma, φ is maximum among all face potential

functions that satisfy the shortest-path inequality and assign zero to f∞. The claim follows since a

circulation is feasible only if it is induced by such a face potential function.

Corollary 1.4.8. Suppose distances in G∗ with respect to lengthG∗ are well defined. Let φ[f ] be the

f∞-to-f distances in G∗, and let ρ[d] = φ[headG∗(d)] − φ[tailG∗(d)]. There are no clockwise residual

cycles in Gρ.

Proof. Let ρ′ be a clockwise feasible circulation in Gρ. That is, ρ′ = φ′[headG∗(d)] − φ′[tailG∗(d)]

for some non-negative face potential function φ′. Therefore, φ + φ′ is a feasible circulation in G.

By Lemma 1.4.6, φ is the maximum such circulation, so φ′ (and thus also ρ′) must be a identically

zero.

1.4.2 Hassin’s Algorithm for Maximum st-Planar Flow

An st-planar graph is a planar graph in which nodes s and t are incident to the same face. Has-

sin [Has81], relying on work of Itai and Shiloach [IS79], gave an algorithm for computing a maxi-

mum flow from s to t in an st-planar graph. We describe our interpretation of this algorithm, which

is used by the algorithm in Chapter 5. The algorithm is a natural consequence of Corollary 1.4.7.
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Hassin’s algorithm starts by adding to G an artificial infinite capacity arc a from t to s. Let d

be the dart that corresponds to a and whose head is s. Let φ[·] denote the shortest-path distances

from tailG∗(d) in G∗, where the length of a dual dart is defined as the capacity of the primal dart.

Consider the flow

ρ[d′] = φ[headG∗(d′)]− φ[tailG∗(d′)] for all darts d′ (1.9)

Corollary 1.4.7 states that the flow assigned to d by ρ is maximum among all feasible circulations.

This implies that if after removing the artificial arc a from G, ρ is a maximum feasible flow from s

to t in G.

We will be interested in a max flow with limit x from s to t rather than a maximum flow, i.e., a

flow whose value is at most a given number x but is otherwise maximal. It is not difficult to see that

setting the capacity of the artificial arc a to x instead of infinity results in the desired limited max

flow [KNK93].

Note that, instead of using an artificial arc from t to s, one can use an existing arc whose end-

points are s and t as the arc a above. In order for this to work, the capacity of the dart d that

corresponds to a and whose head is t must be zero. The is achieved by first pushing flow on d to

saturate it. Since a is now an edge of G, ρ is a feasible circulation, rather than a maximum flow

(flow is being pushed back from t to s along a). To convert this circulation into a maximum flow,

the algorithm must remove flow on a. If we define f by

f [d′] =

{
−ρ[d′] if d′ corresponds to a

0 otherwise
, (1.10)

then ρ + f is a maximum st-flow. We will use the fact that this flow can be represented jointly by

the face potential vector φ and the flow values f [d′] for the two darts corresponding to a.

1.4.3 Converting a Maximum Pseudoflow into a Maximum Feasible Flow

Let f be a pseudoflow in a planar graph G with node set V , sources S and sinks T . Let V + denote

the set of nodes {v ∈ V − (S ∪ T ) : inflowf (v) > 0}. Similarly, let V − denote the set of nodes

{v ∈ V − (S ∪ T ) : inflowf (v) < 0}. Suppose f is a maximum pseudoflow. That is, assume

S ∪ V + Gf9 T ∪ V −. In this section we show how to convert f into a maximum feasible flow f ′. This

procedure was first described for planar graphs by Johnson and Venkatesan [JV82]. The original

description of the procedure took O(n log n) time, but using the flow cycles cancellation technique

of Kaplan and Nussbaum [KN09] the running time is O(n) (the technique of Kaplan and Nussbaum

applies Corollary 1.4.8 twice to eliminate both clockwise and counterclockwise residual cycles).

We begin by converting f to an acyclic pseudoflow in linear time [KN09]. That is, after the

conversion there is no cycle C such that f [d] > 0 for every dart d of C. Since f is acyclic, the darts

with a positive flow induce a topological ordering on the nodes of the graph G. Let v be the last

member of V + in the topological ordering, and let d be an arbitrary dart that carries flow into v.

We set f [d] = max{f [d] − inflowf (v), 0}, and set f [rev(d)] accordingly. The flow assignment f

maintains the invariant S ∪ V + Gf9 T ∪ V − by sinks lemma(S ∪ V +,T ∪ V −,{v}). As long as v is in
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V +, there must be a dart d which carries flow to v. By changing the flow on d we cannot add to V +

a new node that appears later than v in the topological ordering. We repeat this process until V + is

empty. Since we reduce the flow on each dart at most once, this takes linear time. Next we handle

V − while keeping the invariant S ∪V + Gf9 T ∪V − in a symmetric way, by repeatedly decreasing the

flow on darts that carry flow from the first vertex of V − in the topological ordering.

The total running time is O(n), and since eventually both V + and V − are empty sets, the invari-

ant S ∪ V + Gf9 T ∪ V − implies that the resulting pseudoflow is a feasible flow. This is the required

flow f ′.
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Shortest Paths
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Chapter 2

Shortest Paths in Directed Planar

Graphs with Negative Lengths

In this chapter we describe algorithms for computing shortest paths in a directed planar graph

with real (positive and negative) edge lengths and no negative length cycles. Our discussion will

be focused on computing shortest-path distances, but the results apply to computing the shortest

paths themselves as well as to identifying a negative length cycle if one exists. The shortest-path

problem is a classical problem in combinatorial optimization, which was extensively studied. For

general graphs, the Bellman-Ford algorithm (see Section 1.3.2) solves the problem in O(mn) time,

where m is the number of arcs and n is the number of nodes. For integer lengths whose abso-

lute values are bounded by N , the algorithm of Gabow and Tarjan [GT89] takes O(
√
nm log(nN)).

For integer lengths exceeding −N , the algorithm of Goldberg [Gol95] takes O(
√
nm logN) time.

For non-negative lengths, the problem is easier and can be solved using Dijkstra’s algorithm (see

Section 1.3.1) in O((n + m) log n) time if elementary data structures are used [Joh77], and in

O(n log n+m) time when implemented with Fibonacci heaps [FT87].

For planar graphs, there has been a series of results yielding progressively better bounds. The

first algorithm that exploited planarity was due to Lipton, Rose, and Tarjan [LRT79], who gave an

O(n3/2) algorithm. Henzinger et al. [HKRS97] gave an O(n4/3 log2/3D) algorithm where lengths

are assumed to be integers, and D is the sum of the absolute values of the lengths. Fakcharoenphol

and Rao [FR06] gave an algorithm requiring O(n log3 n) time and O(n log n) space. All of these

algorithms use planar separators to divide and conquer the problem. Fakcharoenphol and Rao used

cycle separators recursively, and observed that the dense distance graph for a set of k boundary

nodes adjacent to a single face of a piece can be decomposed into Monge matrices (see Section 1.3.7

for a description of this decomposition). They then used the Monge property to implement the

Bellman-Ford algorithm on a set of dense distance graphs with k boundary nodes in O(k2 log2 k).

This is done using a simple divide and conquer algorithm. They also implement Dijkstra’s algorithm

in O(k log2 k) (see, again, Section 1.3.7). At each recursive level of their shortest-path algorithm, the

34
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Bellman-Ford algorithm is executed once to obtain a feasible price function, and Dijkstra’s algorithm

is run O(
√
n) times to compute the distances between all pairs of boundary nodes.

The algorithm we describe in this chapter uses cycle separators as well, but in a simpler way

than that of Fakcharoenphol and Rao’s. A main technical contribution we introduce is the use of the

more efficient SMAWK algorithm (see Section 1.3.6) to implement the Bellman-Ford step. This is a

stronger use of the Monge property than the simple divide and conquer approach of Fakcharoenphol

and Rao to the Bellman-Ford step. Then, instead of using FR-Dijkstra to compute the all pairs

distances, we use the MSSP algorithm (Section 1.3.4). The resulting algorithm is more efficient and

arguably simpler than Fakcharoenphol and Rao’s algorithm.

In comparing our algorithms to that of Fakcharoenphol and Rao, it is worth lingering on the

issue of holes. In our first algorithm (Section 2.1) holes are not a problem; because of the simple

recursive way in which we apply the cycle separator, all boundary nodes at a given level of the

recursion are adjacent to a single face of a piece. In our faster algorithm (Section 2.2), as well as

in Fakcharoenphol and Rao’s, boundary nodes are adjacent to a constant number of holes. One of

the main technical contributions of Section 2.2 is in showing how to exploit the Monge property

in the Bellman-Ford step in the case where the boundary nodes are adjacent to two distinct faces

(Lemma 2.2.4). Boundary nodes on a constant number of holes are then handled by considering

each pair of holes separately. Since the number of holes is constant, so is the number of pairs.

Fakcharoenphol and Rao’s paper, which is a little terse on details in several occasions, does not

address this issue (they do address the issue of holes for the Dijkstra step, but not for the Bellman-

Ford step).

Our algorithm was extended by Chambers, Erickson, and Nayyeri [CEN09] to handle graphs

embedded on a genus g surface in O(g2n log2 n) time.1

Applications

We had already discussed in Section 1.4 the relation between shortest paths with negative lengths,

feasible circulations and maximum flow in planar graphs. See also [MN95]. In addition, sev-

eral techniques for computer vision, including image segmentation algorithms by Cox, Rao, and

Zhong [CRZ96] and by Jermyn and Ishikawa [JI01, IJ01], and a stereo matching technique due to

Veksler [Vek02], involve finding negative-length cycles in graphs that are essentially planar grids.

Our algorithms can be used to implement these techniques.

Organization

For ease of presentation we first describe a linear-space O(n log2 n)-time algorithm for the problem.

This is a divide-and-conquer algorithm which decomposes the graph using recursive applications of

Miller’s cycle separator. This algorithm appeared in [KMW10]. Next, we describe a generalization

1 important details are omitted in the conference version [CEN09]. A detailed description will appear in the journal
version [Eri11].
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of that algorithm that uses an r–division at each recursive level instead of a single cycle separator.

This more complicated algorithm, which appeared in [MWN10], runs in O(n log2 n/ log logn) time

and is the fastest algorithm for the problem to date.

2.1 A Linear Space O(n log2 n)-Time Algorithm

Algorithm 2.1 SHORTESTPATH(G, s)

Input: a directed embedded planar graph G with arc-lengths, and a node s of G
Output: a table d giving distances in G from s to all nodes of G

1: if G has at most 2 nodes, the problem is trivial; return the result
2: find a Jordan separator C of G with O(

√
n) boundary nodes

3: let R0,R1 be the external and internal regions of G with respect to C
4: let r be a boundary node

// recursive call
5: for i = 0, 1: di ← SHORTESTPATH(Ri, r)

// intra-region boundary distances
6: for i = 0, 1: use di as input to the multiple-source shortest-path algorithm to compute a table δi

such that δi[u, v] is the u-to-v distance in Ri for every pair u, v of boundary nodes

// single-source inter-region boundary distances
7: use δ0 and δ1 to compute a table B such that B[v] is the r-to-v distance in G for every boundary

node v

// single-source inter-region distances
8: for i = 0, 1: use tables di and B, and Dijkstra’s algorithm to compute a table d′i such that d′i[v] is

the r-to-v distance in G for every node v of Ri

// rerooting single-source distances
9: define a price function φ for G such that φ[v] is the r-to-v distance in G:

φ[v] =

{
d′0[v] if v belongs to R0

d′1[v] otherwise
10: use Dijkstra’s algorithm with price function φ to compute a table d such that d[v] is the s-to-v

distance in G for every node v of G
11: return d

The high-level description of the algorithm appears in Algorithm 2.1. After finding a Jordan

separator and selecting a boundary node as a temporary source node, the algorithm consists of the

following five steps, which are described in detail in the sequel:

Recursive call: Distances from r are computed recursively in each region.

Intra-region boundary distances: For each region Ri, distances between all pairs of boundary

nodes in Ri are computed using Klein’s multiple source shortest-path algorithm (Section 1.3.4).
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Single-source inter-region boundary distances: A variant of Bellman-Ford is used to compute

SSSP distances in G from r to all boundary nodes. See Section 2.1.1.

Single-source inter-region distances: Distances from the previous stages are used as a feasible

price function and as an initialization for Dijkstra’s algorithm to obtain distances from r in G. See

Section 2.1.2.

Rerooting single-source distances The from-r distances in G are used as a feasible price function

for Dijkstra’s algorithm once more to finally compute distances from the given source.

2.1.1 Computing Single-Source Inter-Region Boundary Distances

In this section we describe how to efficiently compute the distances in G from r to all boundary

nodes (i.e., the nodes of C). This is done using δ0 and δ1, the all-pairs distances in R0 and in R1

between nodes of C, which were computed in the previous step.

Theorem 2.1.1. LetG be a directed plane graph with arbitrary arc-lengths. Let C be a Jordan separator

in G and let R0 and R1 be the external and internal regions of G with respect to C. Let δ0 and δ1 be

the all-pairs distances between nodes in C in R0 and in R1, respectively. Let r ∈ C be an arbitrary node

on the boundary. There exists an algorithm that, given δ0 and δ1, computes the from-r distances in G

to all nodes in C in O(|C|2α(|C|)) time and O(|C|) space.

The rest of this section describes the algorithm, thus proving Theorem 2.1.1. The following

structural lemma stands in the core of the computation. The same lemma has been implicitly used

by previous planarity-exploiting algorithms.

Lemma 2.1.2. Let P be a simple r-to-v shortest path in G, where v ∈ C. Then P can be decomposed

into at most |C| subpaths P = P1P2P3 . . . , where the endpoints of each subpath Pj are boundary nodes,

and Pj is a shortest path in some region Ri.

Proof. Consider a decomposition of P = P1P2P3 . . . into maximal subpaths such that the subpath Pj
consists of nodes of some regionRi. Since r and v are boundary nodes, and since the boundary nodes

are the only nodes common to different regions, each subpath Pj starts and ends on a boundary

node. If Pj were not a shortest path in Ri between its endpoints, replacing Pj in P with a shorter

path would yield a shorter r-to-v path, a contradiction.

It remains to show that there are at most |C| subpaths in the decomposition of P . Since P is

simple, each node, and in particular each boundary node appears in P at most once. Hence P can

be decomposed into no more than |C| − 1 subpaths.

Lemma 2.1.2 gives rise to a dynamic-programming solution for calculating the from-r distances

to nodes of C, which resembles the Bellman-Ford algorithm. The pseudocode is given in Algo-

rithm 2.2. Note that, at this level of abstraction, there is nothing novel about this dynamic program.

Our contribution is in an efficient implementation of Line 5.
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Algorithm 2.2 Implementation of the algorithm in Theorem 2.1.1 for single-source inter-region
boundary distances

1: e0[v]←∞ for all v ∈ C
2: e0[r]← 0
3: for each j = 1, 2, . . . , |C|
4: for each region Ri
5: ej [v]← minw∈C{ej−1[w] + δi[w, v]} for all v ∈ C
6: B[v]← e|C|[v] for all v ∈ C

Before we continue with the description of the algorithm, let us explicitly show the relation to

the Bellman-Ford algorithm. Let HRi
be the directed graph having the boundary vertices of Ri as

vertices and having an arc (u, v) of length dRi
(u, v) between each pair of vertices u and v. We call

HRi the dense distance graph for Ri. Note that HRi is not planar (it is a complete graph), but

the distances among the nodes of HRi
are induced by the planar graph Ri. In terms of the dense

distance graphs, the algorithm computes a shortest-path tree rooted at r in the graph ∪i∈{1,2}HRi

using an efficient implementation of the Bellman-Ford algorithm. It consists of |C| iterations. On

each iteration it considers all possible ways to extend the distances computed so far using one more

edge in each region. This is called relaxing all the edges of each HRi
. In terms of the original planar

graph this corresponds to choosing the shortest way to extend the distances computed so far using

one more shortest path between boundary nodes in each of the regions. This notion is made formal

in the following lemma:

Lemma 2.1.3. After the table ej is updated by the algorithm, ej [v] is the length of a shortest path in

G from r to v that can be decomposed into no more than j subpaths P = P1P2P3 . . . Pj , where each

subpath Pi is a shortest path in some region whose endpoints are boundary nodes.

Proof. By induction on j. For the base case, e0 is initialized to be infinity for all nodes other than

r, trivially satisfying the lemma. For j > 0, assume that the lemma holds for j − 1, and let P be

a shortest path in G that can be decomposed into P1P2 . . . Pj as above. Assume, without loss of

generality, that Pj is a path in R0 (the other case is symmetric). Let w and v be the start and end

nodes of Pj , respectively. Consider the prefix P ′, P ′ = P1P2 . . . Pj−1. P ′ is a shortest r-to-w path

in G that can be decomposed into no more than j − 1 subpaths as above. Hence, by the inductive

hypothesis, when ej is updated in Line 5, ej−1[w] already stores the length of P ′. Thus ej [v] is

updated in Line 5 to be at most ej−1[w] + δ0[w, v]. Since, by definition, δ0[w, v] is the length of the

shortest w-to-v path in R0, it follows that ej [v] is at most the length of P . For the opposite direction,

since for any boundary node u, ej−1[u] is the length of some path that can be decomposed into at

most j − 1 subpaths as above, ej [v] is updated in Line 5 to the length of some path that can be

decomposed into at most j subpaths as above. Hence, since P is the shortest such path, ej [v] is at

least the length of P .

From Lemma 2.1.2 and Lemma 2.1.3, it immediately follows that the table e|C| stores the from-r

shortest-path distances in G, so the assignment in Line 6 is justified, and the table B also stores
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Figure 2.1: Nodes k < k′ < ` < `′ in clockwise order on the boundary nodes. Paths from k to ` and
from k′ to `′ must cross at some node w. This is true both in the internal and the external subgraphs
of G

these distances.

We now show how to perform all the minimizations in the jth iteration of Line 5 in O(|C|α(|C|))
time. Consider a region Ri. Since all boundary nodes lie on the boundary of a single face of Ri,

there is a natural cyclic clockwise order v1, v2, . . . , v|C| on the nodes of C. Define a |C| × |C| matrix

A with elements Ak` = ej−1(vk) + δi(vk, v`). Note that computing all minima in Line 5 is equivalent

to finding the column-minima of A. We define the upper triangle of A to be the elements of A on or

above the main diagonal. More precisely, the upper triangle of A is the portion {Ak` : k ≤ `} of A.

Similarly, the lower triangle of A consists of all the elements on or below the main diagonal of A.

Lemma 2.1.4. For any four indices k, k′, `, `′ such that either Ak`, Ak`′ , Ak′` and Ak′`′ are all in A’s

upper triangle, or are all in A’s lower triangle (i.e., either 1 ≤ k ≤ k′ ≤ ` ≤ `′ ≤ |C| or 1 ≤ ` ≤ `′ ≤
k ≤ k′ ≤ |C|), the convex Monge property holds:

Ak` +Ak′`′ ≥ Ak`′ +Ak′`.

Proof. Consider the case 1 ≤ k ≤ k′ ≤ ` ≤ `′ ≤ |C|, as in Fig. 2.1. Since Ri is planar, any pair of

paths in Ri from k to ` and from k′ to `′ must cross at some node w of Ri. Let bk = ej−1(vk) and

let bk′ = ej−1(vk′). Let ∆(u, v) denote the u-to-v distance in Ri for any nodes u, v of Ri. Note that
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∆(u, v) = δi(u, v) for u, v ∈ C. We have

Ak,` +Ak′,`′ = (bk + ∆(vk, w) + ∆(w, v`))

+ (bk′ + ∆(vk′ , w) + ∆(w, v`′))

= (bk + ∆(vk, w) + ∆(w, v`′))

+ (bk′ + ∆(vk′ , w) + ∆(w, v`))

≥ (bk + ∆(vk, v`′)) + (bk′ + ∆(vk′ , v`))

= (bk + δi(vk, v`′)) + (bk′ + δi(vk′ , v`))

= Ak,`′ +Ak′,`.

The case (1 ≤ ` ≤ `′ ≤ k ≤ k′ ≤ |C|) is similar.

Lemma 2.1.5. A single iteration of Line 5 of the algorithm in Algorithm 2.2 can be computed in

O(|C|α(|C|)) time.

Proof. We need to show how to find the column-minima of the matrix A. We compute the column-

minima of A’s lower and upper triangles separately, and obtain A’s column-minima by comparing

the two values obtained for each column.

It follows directly from Lemma 2.1.4 that replacing the upper triangle of A with blanks yields

a falling staircase matrix. By [KK90], the column-minima of this falling staircase matrix can be

computed in O(|C|α(|C|)) time. Another consequence of Lemma 2.1.4 is that the column-minima of

the upper triangle of A may also be computed using the algorithm in [KK90]. To see this consider a

counterclockwise ordering of the nodes of C, v′1, v
′
2, . . . , v

′
|C|, such that v′k = v|C|+1−k. This reverses

the order of both the rows and the columns of A, thus turning its upper triangle into a lower triangle.

Again, replacing the upper triangle of this matrix with blanks yields a falling staircase matrix.

We thus conclude that A’s column-minima can be computed in O(2|C| · α(|C|) + |C|) = O(|C| ·
α(|C|)) time. Note that we never actually compute and store the entire matrix A as this would take

O(|C|2) time. We compute the entries necessary for the computation on the fly in O(1) time per

element.

Lemma 2.1.5 shows that the time it takes the algorithm described in Algorithm 2.2 to compute

the distances between r and all nodes of C is O(|C|2 · α(|C|). We have thus proved Theorem 2.1.1.

The choice of separator ensures |C| = O(
√
n), so this computation is performed in O(nα(n)) time.

2.1.2 Computing Single-Source Inter-Region Distances

In the previous section we showed how to compute a table B that stores the distances from r to all

the boundary nodes in G. We now describe how to compute the distances from r to all other nodes

of G. This is in each region Ri separately. We use di[·], the from-r distances in Ri, as a feasible
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price function in a Dijkstra’s computation in which we initialize the label of every boundary node

u according to B[u], its distance from R in G. More precisely, since Dijkstra’s algorithm is invoked

with the reduced lengths with respect to di, the label of u is initialized to the reduced r-to-u distance

in G, namely to B[u] + di[r] − di[u]. Since di[r] = 0, the initialization for boundary node u is just

B[u]− di[u].

The correctness of this procedure follows from the following lemma:

Lemma 2.1.6. Let P be an r-to-v shortest path in G, where v ∈ Ri. Then P can be expressed as

P = P1P2, where P1 is a (possibly empty) shortest path from r to a boundary node u ∈ C, and P2 is a

(possibly empty) shortest path from u to v that only visits nodes of Ri.

Proof. Let u be the last boundary node visited by P . Let P1 be the r-to-u prefix of P , and let P2 be

the u-to-v suffix of P . Since P1 and P2 are subpaths of a shortest path in G, they are each shortest

as well. By choice of u, P2 has no internal boundary nodes, so it is a path in Ri.

The time required for this step is dominated by the O(n log n) running time of Dijkstra’s algo-

rithm. We note that one may use the algorithm of Henzinger et al. [HKRS97] instead of Dijkstra to

obtain a linear running time for this stage. This however does not change the overall running time

of our algorithm.

2.1.3 Correctness and Analysis

We will show that at each step of the algorithm, the necessary information has been correctly com-

puted and stored. The recursive call in Step 4 computes and stores the from-r distances in Ri. The

conditions for applying Klein’s algorithm in Step 5 hold since all boundary nodes lie on the bound-

ary of a single face of Ri and since the from-r distances in Ri constitute a feasible price function

for Ri (see also the discussion at the end of Section 1.3.4). The correctness of the single-source

inter-region boundary distances stage in Step 6 and of the single-source inter-region distances stage

in Step 7 was proved in Sections 2.1.1 and 2.1.2. Thus, the r-to-v distances in G for all nodes v of

G are stored in d′0 for v ∈ R0 and in d′1 for v ∈ R1. Note that d′0 and d′1 agree on distances from r to

boundary nodes. Therefore, the price function φ defined in Step 8 is feasible for G, so the conditions

to run Dijkstra’s algorithm in Step 9 hold, and the from-s distances in G are correctly computed. We

have thus established the correctness of our algorithm.

To bound the running time of the algorithm we bound the time it takes to complete one recursive

call to SHORTESTPATH. Let |G| denote the number of nodes in the input graph G, and let |Ri|
denote the number of nodes in each of its subgraphs. Computing the intra-subgraph boundary-

to-boundary distances using Klein’s algorithm takes O(|Ri| log |Ri|) for each of the two subgraphs,

which is in O(|G| log |G|). Computing the single-source distances in G to the boundary nodes is done

in O(|G|α(|G|)), as we explain in Section 2.1.1. The extension to all nodes of G is again done in

O(|Ri| log |Ri|) for each subgraph. Distances from the given source are computed in an additional

O(|G| log |G|) time. Thus the total running time of one invocation is O(|G| log |G|). Therefore the
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running time of the entire algorithm is given by

T (|G|) = T (|R0|) + T (|R1|) +O(|G| log |G|)

= O(|G| log2 |G|).

Here we used the properties of the separator, namely that |Ri| ≤ 2|G|/3 for i = 0, 1, and that

|R0|+ |R1| = |G|+O(
√
|G|). The formal proof of this recurrence is given in the following lemma.

Lemma 2.1.7. Let T (n) satisfy the recurrence T (n) = T (n1)+T (n2)+O(n log n), where n ≤ n1+n2 ≤
n+ 4

√
n and ni ≤ 2n

3 . Then T (n) = O(n log2 n).

Proof. We show by induction that for any n ≥ N0, T (n) ≤ Cn log2 n for some constants N0, C. For

a choice of N0 to be specified below, let C0 be such that for any N0 ≤ n ≤ 3N0, T (n) ≤ C0n log2(n).

Let C1 be a constant such that T (n) ≤ T (n1)+T (n2)+C1(n log n). Let C = max
{
C0,

C1

log(3/2)

}
. Note

that this choice serves as the base of the induction since it satisfies the claim for any N0 ≤ n ≤ 3N0.

We assume that the claim holds for all n′ such that 3N0 ≤ n′ < n and show it holds for n. Since for

i = 1, 2, ni ≤ 2n/3 and n1 + n2 ≥ n, it follows that ni ≥ n/3 > N0. Therefore, we may apply the

inductive hypothesis to obtain:

T (n) ≤ C(n1 log2 n1 + n2 log2 n2) + C1n log n

≤ C(n1 + n2) log2(2n/3) + C1n log n

≤ C(n+ 4
√
n) (log(2/3) + log n)

2
+ C1n log n

≤ Cn log2 n+ 4C
√
n log2 n− 2C log(3/2)n log n

+C(n+ 4
√
n) log2(2/3) + C1n log n.

It therefore suffices to show that

4C
√
n log2 n− 2C log(3/2)n log n+ C(n+ 4

√
n) log2(2/3) + C1n log n ≤ 0,

or equivalently that(
1− C1

2C log(3/2)

)
n log n ≥ 2

log(3/2)

√
n log2 n+

log(3/2)

2
(n+ 4

√
n).

Let N0 be such that the right hand side is at most 1
2n log n for all n > N0. The above inequality holds

for every n > N0 since we chose C > C1

log(3/2) so the coefficient in the left hand side is at least 1
2 .

We have thus proved that the total running time of our algorithm is O(n log2 n). We turn to the

space bound. The space required for one invocation is O(|G|). Each of the two recursive calls can

use the same memory locations one after the other, so the space is given by

S(|G|) = max{S(|R0|), S(|R1|}+O(|G|)

= O(|G|) because max{|R0|, |R1|} ≤ 2|G|/3.

We have proved Theorem 2.1.1.
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2.2 Improving the running time to O(n log2 n/ log log n)

In this section we show how to extend the algorithm in Section 2.1 to decompose the graph, at each

level of the recursion, using an r–division rather than using a single cycle separator. The rationale

is we may be able to achieve smaller recursion depth when decomposing the graph into multiple

regions, which will result in reduced running time.

Note that the bottleneck in the running time analysis of the non-recursive part of the algorithm

in Section 2.1 is the intra-region boundary distances step, which uses Klein’s MSSP algorithm to

compute in O(|Ri| log |Ri|) time the all-pair distances among the boundary nodes in each of the

subgraphs Ri. This sums up to O(|G| log |G|) whether G is decomposed into just two regions, as in

Section 2.1, or into n/r regions if we were using an r–division. On the other hand, the single-source

inter-region boundary distances step takes time proportional (up to an α(n) term) to the square

of the number of boundary nodes. When using a single cycle separator, the number of boundary

nodes is O(
√
|G|). In an r–division, the graph is decomposed into p = O(|G|/r) regions, and the

total number of boundary nodes is O(p
√
r) = O(

√
|G|p). This suggests that we can afford using a

division into roughly log |G| regions without increasing the overall asymptotic running time. Using

such a division the depth of the recursion reduces to O(log n log log n). Since each recursive level

takes O(n log n) time, the total running time is reduced to O(n log2 n/ log log n).

The high-level description of the algorithm stays the same. We next describe the changes required

in each of the five steps. In most steps dealing with multiple regions instead of just two is straight

forward. The main difficulty is in dealing with the fact that in an r–division the boundary nodes of a

region lie on more than one face of that region. The Monge property that we used in the inter-region

boundary distance step in Section 2.1.1 does not hold when the boundary nodes are not incident to

the same face. We present a technique to deal with this difficulty.

Let p = log n/α(n). We compute a nα(n)
logn –division of G. For each region Ri in this division, we

pick an arbitrary boundary vertex ri.

Recursive call: Distances from ri are computed recursively in each region Ri.

Intra-region boundary distances: For each region Ri, distances between all pair of boundary

nodes in Ri are computed using a constant number of applications of Klein’s MSSP algorithm; for

each hole h of Ri, we run the MSSP algorithm with h designated as the infinite face of Ri. This yields

the distances from the boundary nodes on h to all other boundary nodes of Ri. Since the number of

holes is bounded by a constant, the total number of invocations of Klein’s MSSP algorithm on Ri is

constant, so the running time is O(|Ri| log |Ri|).

Single-source inter-region boundary distances: A variant of Bellman-Ford is used to compute

SSSP distances in G from r to all boundary nodes. This is where the algorithm differs most signifi-

cantly from the one in Section 2.1. See Section 2.2.1
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Single-source inter-region distances: Distances from the previous stages are used to as a feasible

price function and as an initialization for Dijkstra’s algorithm to obtain distances from r in G. This

step is identical to the one in Section 2.1.2. The only difference is that here there are O(log n/α(n)

regions instead of just two. The time required for this step is
∑
O(|Ri| log |Ri|) = O(n log n).

Rerooting single-source distances The from-r distances in G are used as a feasible price function

for Dijkstra’s algorithm once more to finally compute distances from the given source. This step is

identical to the one in Section 2.1.

2.2.1 Computing Single-source Inter-region Boundary Distances

Recall that this step implements the Bellman-Ford algorithm. In Section 2.1.1, we explained that

on each iteration it considers all possible ways to extend the distances computed so far using one

more shortest path between boundary nodes in each of the regions. There, this was achieved by

considering, for each region, the paths between all pairs of nodes on the separator C, which is shared

by both regions. Here, different regions have different bounding cycles. In fact, each region has a

constant number of bounding cycles instead of just one. The revised algorithm therefore considers

all possible shortest paths between boundary nodes of each region by considering all possible pairs

of bounding cycles for each region.

For a region R, let ∂R denote the boundary of R which consists of a constant number of cycles.

Let χ denote the set of all boundary nodes of all regions χ =
⋃
i ∂Ri.

Algorithm 2.3 Extension of Algorithm 2.2 for finding single-source inter-region boundary distances
using an r–division with a constant number of holes

1: e0[v]←∞ for all v ∈ χ
2: e0[r]← 0
3: for j = 1, 2, . . . , |χ|
4: for each region Ri
5: for each pair of cycles C1, C2 in ∂Ri
6: ej [v]← minw∈C1

{ej−1[w] + δi[w, v]} for all v ∈ C2

7: B[v]← e|χ|[v] for all v ∈ χ

The correctness of the algorithm follows from a trivial generalization of Lemma 2.1.2, where the

cycle separator C should be replaced by the set of separator nodes χ, and from Lemma 2.1.3 which

applies both to cycle separators and to r–divisions. All that remains is to show how to efficiently

implement Line 6 which, for a given pair of bounding cycles C1 and C2 of a region R, considers

augmenting the current distances with shortest paths in R starting at nodes of C1 and ending at

nodes of C2. We will refer to this operation as relaxing the edges of HR starting at C1 and ending at

C2, and will show how to implement it in O((|C1|+ |C2|)α(|C1|+ |C2|)) time, with O(|VR| log |VR|)
preprocessing time.
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If C1 = C2 we can relax all the edges as described in Section 2.1.1. We therefore assume that

C1 6= C2.

Our solution is based on the following lemma, whose correctness is proved in the remainder of

this section.

Lemma 2.2.1. Let H = {Hi} be set of directed graphs with real arc lengths. Let R be a planar

graph, and let C1, C2 be two distinct faces of R. Assume some graph H ′ ∈ H is a bipartite graph

H ′ = 〈C1 ∪ C2, C1 × C2〉 equipped with arc lengths M , such that for a ∈ C1, b ∈ C2, the length Mab

of the arc ab is the length of a shortest a − to − b path in R. There exist two Monge matrices M1,M2

such that all shortest paths in
⋃
Hi∈H Hi remain the same when H ′ is replaced with two copies of H ′,

one equipped with arc lengths M1 and the other with M2. Furthermore, M1 and M2 can be computed

in the time required for a single shortest-path computation in R plus additional O(|VR| log |VR|) time.

Before going into the details, let us give an intuitive and informal overview of our approach.

Consider C1 as the external face of R. Let P be a simple path from some vertex r1 ∈ C1 to some

vertex r2 ∈ C2. Let RP be the graph obtained by “cutting along P ” (see Figure 2.2). Note that

every shortest path in RP corresponds to a shortest path in R that does not cross P . We will show

that relaxing all edges in HR from C1 to C2 with respect to distances in RP can be done efficiently.

Unfortunately, relaxing edges w.r.t. RP does not suffice since shortest paths in R that do cross P

are not represented in RP . To overcome this obstacle we will identify two particular paths Pr and

P` such that for any u ∈ C1, v ∈ C2 there exists a shortest path in R that does not cross both Pr

and P`. Then, relaxing all edges between boundary vertices once in RPr
and once in RP`

suffices to

compute shortest-path distances in R. More specifically, let T be a shortest-path tree in R from r1 to

all vertices of C2. The rightmost and leftmost paths in T satisfy the above property (see Figure 2.3).

We proceed with the formal description. In the following, we define graphs, obtained from R,

required in our algorithm. It is assumed that these graphs are constructed in a preprocessing step.

Later, we bound construction time.

We transform R in such a way that C1 is the external face of R and C2 is a hole of R. We may

assume that there is a shortest path in R between every ordered pair of vertices, say, by adding a pair

of oppositely directed edges between each consecutive pair of vertices of Ci in some simple walk

of Ci, i = 1, 2 (if an edge already exists, a new edge is not added). The lengths of the new edges

are chosen sufficiently large so that shortest paths in R and their lengths do not change. Where

appropriate, we regard R as some fixed planar embedding of that region.

For a simple path P from a vertex r1 ∈ C1 to a vertex r2 ∈ C2, take a copy RP of R and remove

P and all edges incident to P in RP . let
←−
E resp.

−→
E be the set of edges that either emanate left resp.

right of P or enter P from the left resp. right. Refer to Section 1.2.3 for the definitions of emanates

and enters. Add two copies,
←−
P and

−→
P , of P to RP . Connect path

←−
P resp.

−→
P to the rest of RP by

attaching the edges of
←−
E resp.

−→
E to the path, see Figure 2.2. If (u, v) ∈ ER, where (v, u) ∈ EP , we

add (u, v) to both
←−
P and

−→
P in RP .

A simple, say counter-clockwise, walk u1, u2, . . . , u|C1|, u|C1|+1 of C1 in R where u1 = u|C1|+1 =
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P

r1

−→
P

←−
P

R RP

C1 P1

P2C2

u′1

v′|C2|+1v′1

u′|C1|+1

r2

Figure 2.2: Region RP is obtained from R essentially by cutting open at P the “ring” bounded by C1

and C2.

r1 corresponds to a simple path P1 = u′1, . . . , u
′
|C1|+1 in RP . In the following, we identify ui with u′i

for i = 2, . . . , |C1|. The vertex r1 in R corresponds to two vertices in RP , namely u′1 and u′|C1|+1. We

will identify both of these vertices with r1. Similarly, a simple, say clockwise, walk of C2 in R from

r2 to r2 corresponds to a simple path P2 = v′1, . . . , v
′
|C2|+1 in RP . We make a similar identification

between vertices of C2 and P2.

In the following, when we say that we relax all edges in RP starting in vertices of C1 and ending

in vertices of C2, we really refer to relaxing edges in HR with respect to the distances between the

corresponding vertices of P1 and P2 in RP . More precisely, suppose we are in iteration j. Then

relaxing all edges entering a vertex v ∈ C2 in RP means updating

ej [v]← min
u∈C1

{ej−1[v], ej−1[u] + dRP
(u′, v′)}.

It is implicit in this notation that if u = r1, we relax w.r.t. both u′1 and u′|C1|+1 and if v = r2, we relax

w.r.t. both v′1 and v′|C2|+1. The fact that in RP P1 and P2 both belong to the external face implies:

Lemma 2.2.2. Let paths P1 and P2 in RP be defined as above. Consider iteration j. Define a |P1|×|P2|
matrix A with elements Ak` = ej−1[uk] + dRP

(u′k, v
′
`). The Matrix A is Monge.

Proof. Since P1
←−
P P2
−→
P is the external face of RP , it follows by the argument in Lemma 2.1.4 that

for 1 ≤ k ≤ k′ ≤ |P1| and 1 ≤ l ≤ l′ ≤ |P2|, Akl +Ak′l′ ≥ Akl′ +Ak′l. Hence A is Monge.

An immediate consequence of Lemma 2.2.2 is:

Lemma 2.2.3. Relaxing all edges from VC1
to VC2

in RP can be done in O(|C1| + |C2|) time in any

iteration of Algorithm 2.3.

Proof. Observe that relaxing all edges from VC1 to VC2 in RP is equivalent to finding all column-

minima of the matrix A in Lemma 2.2.2. Since A is Monge, its column-minima can be found in

O(|C1|+ |C2|) time using SMAWK [AKM+87].

As we have mentioned, relaxing edges between boundary vertices in RP does not suffice since

shortest paths in R that cross P are not represented in RP . Let T be a shortest-path tree in R from

r1 to all vertices of C2. A rightmost (leftmost) path P in T is a path such that no other path Q in
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(b)(a)

r1 r1

u

T

Pr

P` win

wout

x

v

Tv

v`
vr

Pr
P`

Q

v`
vr

Figure 2.3: (a): The rightmost root-to-leaf simple path Pr and the leftmost root-to-leaf simple path
P` in T . (b): In the proof of Lemma 2.2.4, if Q first crosses Pr from right to left and then crosses P`
from right to left then there is a u-to-v shortest path in R that does not cross P`.

T emanates right (left) of P . Let Pr and P` be the rightmost and leftmost root-to-leaf simple paths

in T , respectively; see Figure 2.3(a). Let vr ∈ C2 and v` ∈ C2 denote the leaves of Pr and P`,

respectively.

Lemma 2.2.4. For any u ∈ C1 and any v ∈ C2, there is a simple u-to-v shortest path in R that does

not cross both Pr and P`.

Proof. Let Q be a simple u-to-v shortest path in R which is minimal with respect to the total number

of times it crosses Pr and P`. If Q does not cross Pr or P`, we are done, so assume it crosses both.

Also assume that Q crosses Pr first. The case where Q crosses P` first is symmetric. Let win and wout
be the entry and exit vertices of the first crossing, see Figure 2.3(b). There are two cases:

• Q first crosses Pr from left to right. In this case Q must cross P` at the same vertices. In fact,

it must be that all root-to-leaf paths in T coincide until wout and that Q crosses them all. In

particular, Q crosses the root-to-v path in T , which we denote by Tv. Since Tv does not cross

Pr, the path Q[u,wout]Tv[wout, v] is a shortest u-to-v path in R that does not cross Pr.

• Q first crosses Pr from right to left. Consider the path S = Q[u,wout]Pr[wout, vr]. We claim

that Q does not cross S. To see this, assume the contrary and let w′ denote the exit point

corresponding to the crossing. Since Q is simple, w′ /∈ Q[u,wout]. So w′ ∈ Pr[wout, vr], but

then Q[u,wout]Pr[wout, w
′]Q[w′, v] is a shortest path from u to v in R that crosses Pr and P`

fewer times than Q. But this contradicts the minimality of Q.

Since Q first crosses Pr from right to left and never crosses S, its first crossing with P` must

be right-to-left as well, see Figure 2.3(b). This implies that Q enters all root-to-leaf paths in T

before (not strictly before) it enters P`. In particular, Q enters Tv. Let x be the entry vertex.

Then Q[u, x]Tv[x, v] is a u-to-v shortest path in R that does not cross P`.
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Algorithm 2.4 Initialization required for Bellman-Ford step (Algorithm 2.3)
1: for each region Ri
2: for each ordered pair of cycles C1, C2 in ∂Ri
3: let r1 be an arbitrary node of C1

4: compute a shortest-path tree in Ri rooted at r1

5: let Pr and P` be the rightmost and leftmost paths in T
6: compute table drRi,C1,C2

of distances between nodes of C1 and C2 in RiPr
using MSSP

7: compute table d`Ri,C1,C2
of distances between nodes of C1 and C2 in RiP`

using MSSP

To complete the proof of Lemma 2.2.1 it only remains to show that RPr and RP`
and distances

between boundary vertices in these graphs can be precomputed in the time required for a single

shortest-path computation in Ri plus O(|VR| log |VR|). The procedure for computing this informa-

tion, for all regions Ri is given in Algorithm 2.4. It is described below for the region R.

A shortest-path tree T in R with source r1 can be found in O(|VR| log |VR|) time with Dijkstra

using the recursively computed distances in R as a feasible price function φ. Given T , we can find its

rightmost path in O(|VR|) time by starting at the root r1. When entering a vertex v using the edge

uv, leave that vertex on the edge that comes after vu in counterclockwise order. Computing RPr

given Pr also takes O(|VR|) time. We can next apply Klein’s algorithm [Kle05] to compute distances

between all pairs of boundary vertices in RPr in O(|VR| log |VR|) time (here, we use the non-negative

edge lengths in R defined by the reduced cost function induced by φ). We similarly compute P` and

pairwise distances between boundary vertices in RP`
.

This concludes the proof of Lemma 2.2.1.

The algorithm: We can now describe our efficient implementation of the Bellman-Ford step (Al-

gorithm 2.3). The pseudocode is given in Algorithm 2.5.

Assume that RPl
and RPr and distances between pairs of boundary vertices in these graphs have

been precomputed by Algorithm 2.4. In each iteration j, we relax edges from vertices of C1 to all

v ∈ C2 in RP`
and in RPr

(lines 9 and 10). Lemma 2.2.4 implies that this corresponds to relaxing

all edges in R from vertices of C1 to vertices of C2. As we have discussed in the beginning of this

section, this suffices to show the correctness of the algorithm.

Lemma 2.2.3 shows that lines lines 9 and 10 can each be implemented to run in O(|C1| + |C2|)
time. Thus, each iteration of lines 6–10 takes O((|C1|+ |C2|)α(|C1|+ |C2|)) time, as claimed.
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Algorithm 2.5 Efficient implementation of Bellman-Ford step (Algorithm 2.3)
1: e0[v]←∞ for all v ∈ χ
2: e0[r]← 0
3: for j = 1, 2, . . . , |χ|
4: for each region Ri
5: for each pair of cycles C1, C2 in ∂Ri
6: if C1 = C2 then
7: ej [v]← minw∈C1

{ej−1[w] + δi[w, v]} for all v ∈ C2 by Lemma 2.1.5
8: else
9: ej [v]← min{ej [v],minw∈VC1

{ej−1[w] + drRi,C1,C2
(w′, v′)}} ∀v ∈ C2 by Lemma 2.2.3

10: ej [v]← min{ej [v],minw∈VC1
{ej−1[w] + d`Ri,C1,C2

(w′, v′)}} ∀v ∈ C2 by Lemma 2.2.3
11: B[v]← e|χ|[v] for all v ∈ χ



Chapter 3

An Extension of FR-Dijkstra

In Section 1.3.7 we have introduced Fakcharoenphol and Rao’s Monge heaps and how they are used

to efficiently implement Dijkstra’s algorithm (a procedure we called FR-DIJKSTRA). In this chapter

we develop an extension of FR-DIJKSTRA that works with respect to reduced lengths induced by a

feasible price function. This variant was first announced in [BKM+11] in the context of computing a

maximum flow (see Chapter 5). The extension is achieved by using a data structure from [KMNS12].

Recall the efficient procedure to implement Dijkstra’s algorithm from Section 1.3.7. Let {Pi}i=1,2,...

be a set of (not necessarily disjoint) subgraphs of a planar graph G. Let Xi be a set of nodes on a

constant h number of faces of Pi. Let Ki be the complete graph on Xi such that the length of an arc

uv in Ki corresponds to the u-to-v distance in Pi. Let {Gj} denote the set of all bipartite graphs in

the decompositions of all the {Ki}’s. Recall the discussion in Section 1.3.7, where we described the

decomposition of the Ki’s into bipartite graphs {Gj} whose parent relationship is non-interleaving.

Each of the bipartite graphs Gj consists of nodes on the boundary of either a single face or a pair

of faces of the corresponding Pi. In the former case, the distance matrix that corresponds to Gj is

Monge. In the latter case, the distance matrix Mj that corresponds to Gj is not Monge. However,

using Lemma 2.2.1, we can replace the graph Gj and its distance matrix Mj with two copies of

Gj , denoted G1
j and G2

j , each with its own distance matrix M1
j ,M

2
j , such that both M1 and M2 are

Monge, and such that distances computed using M are identical to those computed using both M1

and M2. By doing so we guarantee that the distance matrices that correspond to all of the bipartite

graphs {Gj} provided as input to FR-DIJKSTRA are Monge matrices (rather than just respecting the

non-interleaving property).

In Section 1.3.7 we elaborated on our choice to expose this decomposition into bipartite sub-

graphs in the interface of FR-DIJKSTRA. The reason was that a range-minimum data structure needs

to be computed for each row of each distance matrix of each graph in {Gj}. The time required for

construct these range-minimum data structures is of the same order of the construction time of the

graphs {Gj}, which is asymptotically larger than the running time of FR-DIJKSTRA.

Kaplan and Sharir [KMNS12] developed a data structure that, given a m-by-n Monge matrix M ,

reports the minimum in any contiguous range of any row of M in O(log n) time. The construction
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time is O(n(logm+ log n) and the required space is O(n log n). In the context of FR-DIJKSTRA, each

graph Ki is a complete graph on a node-set Xi. For every 0 ≤ k ≤ log |Xi|, Ki is decomposed into

O(2k) bipartite graphs on |Xi|/2i nodes. Hence, constructing the Monge row-range-minimum data

structure of [KMNS12] for all of the bipartite subgraphs {Gj} takes O(
∑
|Xi| log2 |Xi|), which is of

the same order of the running time of FR-DIJKSTRA. This enables us to include the construction of

the range-minimum data structure in the specification of FR-DIJKSTRA. We replace the individual

row range-minimum data structures used by Fakcharoenphol and Rao with one Monge row-range-

minimum data structure of [KMNS12] per bipartite graph Gj . By doing so we can provide a simpler

and more natural interface for FR-DIJKSTRA, where the input consists of the complete graphs {Ki}
and their corresponding distance matrices rather than their decomposition into bipartite matrices.

This change has benefits beyond just simplifying the interface. Suppose we are given the graphs

Ki with their distance matrices Mi, and a feasible price function φ for the nodes
⋃
Xi of

⋃
Ki. We

wish to perform a Dijkstra computation in
⋃
Ki with respect to the reduced lengths induced by φ.

We would like the computation to take O
(∑
|Xi| log2(

∑
|Xi|)

)
time.

The reduced length of an arc ab is Mab + φ(a) − φ(b). Hence, transforming a matrix M to store

reduced lengths corresponds to adding φ(a) to each row a of M , and subtracting φ(b) from each

column b of M . Furthermore, it follows from the definition of the Monge property (Eq. (1.4)) that

if M is Monge, then it remains Monge after this change. However, actually performing the change

would take Θ(
∑
|Xi|2), which is more than our desired O

(∑
|Xi| log2(

∑
|Xi|)

)
time bound. In-

stead, whenever the reduced length of some element of M is required, it is computed in constant

time from M and φ. The use of reduced lengths has another consequence. Since we add a different

constant to each column of M , the results of range-minimum queries on the rows of a matrix M

are not preserved, so we need to recompute the range-minimum data structures. This is only pos-

sible since the construction time of the Monge row range-minimum data structure of [KMNS12] is

O(
∑
|Xi| log2 |Xi|).

We will therefore use the interface FR-DIJKSTRA(K, H, φ, s) for the extended variant of FR-

DIJKSTRA. Here, K = {Ki} is a set of complete graphs on the nodes Xi (as defined in Section 1.3.7).

Each Ki is specified by its arc-length matrix. The graph H = 〈VH , EH〉 is a (not necessarily planar)

graph, whose vertex set is not disjoint from the vertex set of the graphs in K. The graph H is spec-

ified by an array associating each arc of H to its length. The function φ is a feasible price function,

and s is the source node at which the shortest-path computation is rooted. We note that lengths of

arcs in K and H may be negative, but the reduced lengths with respect to φ are all non-negative.

This modified procedure internally computes, for every complete graphs Ki ∈ K, the decomposition

of Ki into complete bipartite graphs, and constructs the Monge row-minimum-query data structures

for every such bipartite graph. It then calls the extended variant of FR-DIJKSTRA (Algoritm 1.5).

The computation takes O
(∑
|Xi| log2(

∑
|Xi|) + |EH | log (|VH |)

)
time.



Chapter 4

Exact Distance Oracles for Planar

Graphs

Fast shortest-path query data structures, also known as distance oracles, may be of use whenever an

application needs to compute shortest-path distances between some, but not necessarily all, pairs of

nodes. This is an integral part of many applications [Som10], in particular in Geographic Informa-

tion Systems (GIS) and intelligent transportation systems [JHR96]. These systems may help individ-

uals in finding fast routes or they may also assist companies in improving fleet management, plant

and facility layout, and supply chain management. A particular challenge for traffic information

systems or public transportation systems is to process a vast number of queries on-line while keep-

ing the space requirements as small as possible [Zar08]. Low space consumption is obviously very

important when a query algorithm is run on a system with heavily restricted memory such as a hand-

held device [GW05] but it is also important for systems with memory hierarchies [HMZ03, AT05],

where caching effects can have a significant impact on the query time.

While many road networks are actually not exactly planar [EG08, AFGW10], they still share

many properties with planar graphs; in particular, many road networks appear to have small separa-

tors as well. For this reason, planar graphs are often used to model various transportation networks.

In Section 4.1, we describe a (strictly) linear size data structure that reports distances in sublinear

time (O(n1/2+ε) time for any constant ε > 0). The main contribution presented in this chapter is the

following. Given a desired space allocation S ∈ [n log log n, n2], we show how to construct in Õ(S)

time a data structure of size O(S) that answers distance queries in Õ(n/
√
S) time per query. This

data structure is described in Section 4.3. This description is preceded by Section 4.2 in which we

develop a technical too, which we call a cycle-MSSP (multiple-source shortest paths) data structure.

Cycle-MSSP is a space-efficient extension of the MSSP data structure (see Section 1.3.4). Given a

directed planar graph G on n nodes and a simple cycle C, the cycle-MSSP data structure can answer

the following queries in O(c log2 c log log c) time: for a query node u, output the distance in G from

u to all the nodes of C. The construction time is O(n log3 n), and the size of the data structure is
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O(n log log c). we are hopeful that cycle-MSSP would be a useful tool in other algorithms as well.1

The results in this chapter are based on joint work with Christian Sommer [MS12].

Related Work

Distance oracles for planar graphs have been studied extensively. In the following review of previous

results we focus on the space–query time tradeoff. See Figure 4.1 for a summary of known results

in comparison with ours. The tradeoffs previously had not been illustrated by a space vs. query time

plot as in Figure 4.1;

4/3 23/2

1/4

1/3

1/2

1

logS/ log n

logQ/ log n

[FR06]

[Dji96]

[ACC+96]
[Dji96]

[CX00, Cab12]

Sec 4.3

Figure 4.1: Tradeoff of the Space [S] vs. the Query time [Q] for different shortest-path query data
structures on a doubly logarithmic scale, ignoring constant and logarithmic factors. The upper line
represents the Q = n2/S tradeoff (completely covered by oracles of Djidjev [Dji96]; the oracles
of Arikati, Chen, Chew, Das, Smid, and Zaroliagis [ACC+96] cover the range S ∈ [n3/2, n2]; SSSP
(S = n) and APSP (S = n2) also lie on this line). The lower line represents the Q = n/

√
S

tradeoff; the result of Djidjev [Dji96] covers the range S ∈ [n4/3, n3/2]; Chen and Xu [CX00] and
Cabello [Cab12] extend this to S ∈ [n4/3, n2]. The data structure of Fakcharoenphol and Rao [FR06]
covers the point S = n and Q =

√
n. We extend their results to the full range.

For exact shortest-path queries, the currently best result in terms of the tradeoff between space

and query time is by Fakcharoenphol and Rao [FR06]. Their data structure of space Õ(n) can

be constructed in time Õ(n) and processes queries in time Õ(
√
n). The preprocessing time and

space can be improved by logarithmic factors [Kle05, KMW10] ([KMW10] is concerned with single-

source shortest path, and does not mention distance oracles explicitly. Its results, however, imply

improvements to the distance oracle in [FR06]).

Some distance oracles have better query times. Djidjev [Dji96], improving upon earlier work of

Feuerstein and Marchetti-Spaccamela [FMS91], proves that, for any S ∈ [n, n2], there is an exact

1There is at least one application for approximate distance oracles [Som11].
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distance oracle with preprocessing time O(S) (which increases to O(n
√
S) for S ∈ [n, n3/2]), space

O(S), and query time O(n2/S). For a smaller range, he also proves that, for any S ∈ [n4/3, n3/2],

there is an exact distance oracle with preprocessing time O(n
√
S), space O(S), and query time

Õ(n/
√
S). Chen and Xu [CX00], extending the range, prove that, for any S ∈ [n4/3, n2], there is an

exact distance oracle using space O(S) with preprocessing time O(n
√
S) and query time Õ(n/

√
S).

Cabello [Cab12], mainly improving the preprocessing time, proves that, for any S ∈ [n4/3, n2],

there is an exact distance oracle with preprocessing time and space O(S) and query time Õ(n/
√
S).

Compared to Djidjev’s construction, the query time is slower by a logarithmic factor but the range

for S is larger and the preprocessing time is faster. Nussbaum [Nus11] provides a data structure

that maintains both the tradeoff from [Dji96, CX00] and the fast preprocessing time from [Cab12].

Nussbaum also provides a different data structure with a “clean” tradeoff of space O(S) and query

timeO(n/
√
S), however spending time Õ(S3/2/

√
n) in the preprocessing phase. In our construction,

we sacrifice another root-logarithmic factor in the query time (compared to [Cab12]) but we prove

the bounds for essentially the whole range of S; our preprocessing time remains Õ(S).

If constant query time is desired, storing a complete distance matrix is essentially the best so-

lution we have. Wulff-Nilsen [WN10a] improved the space requirements to o(n2). If the space is

restricted to linear, using the linear-time single-source shortest-path algorithm of Henzinger, Klein,

Rao, and Subramanian [HKRS97] is the fastest known for exact shortest-path queries until the cur-

rent work (Theorem 4.1.1). Nussbaum [Nus11] has simultaneously obtained a result similar to

Theorem 4.1.1.

Efficient data structures for shortest-path queries have also been devised for restricted classes of

planar graphs [DPZ00, CX00] and for restricted types of queries [Epp99, KK06, Sch98, Kle05]. If

approximate distances and shortest paths are sufficient, a better tradeoff with Õ(n) space and Õ(1)

query time has been achieved [Tho04, Kle02, Kle05, KKS11].

4.1 A Linear-Space Distance Oracle

In this section we describe a linear-space data structure. The techniques employed here are reused

in the subsequent sections, particularly in the cycle MSSP data structure (Section 4.2).

Theorem 4.1.1. For any directed planar graph G with non-negative arc lengths and for any constant

ε > 0, there is a data structure that supports exact distance queries in G with the following properties:

the data structure can be created in time O(n log n), the space required is O(n), and the query time is

O(n1/2+ε).

For non-constant ε > 0, the preprocessing time is O(n log(n) log(1/ε)), the space required is

O(n log(1/ε)), and the query time is O(n1/2+ε + n1/2 log2(n) log(1/ε)).

Our distance oracle is an extension of the oracle in Fakcharoenphol and Rao [FR06]. The main

ingredients of our improved space vs. query time tradeoff are (i) using recursive r–divisions instead
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of cycle separators, and (ii) using an adaptive recursion,2 where the ratio between the boundary

sizes of piece at consecutive levels is
√
n.

We split the proof into descriptions and analysis of the preprocessing and query algorithms. Let

k = Θ(log(1/ε)).

Preprocessing. We compute the recursive r–division of the graph with k recursive levels and val-

ues of r = r0, r1, . . . , rk to be specified below. This takes O(kn log n) time. We then compute the

dense distance graph for each piece. This is done for a piece P , with r nodes and O(
√
r) bound-

ary nodes on a constant number of holes, by applying the MSSP algorithm [Kle05] as described

in Section 1.3.5. Thus, all of the boundary-to-boundary distances in P are computed in O(r log r)

time. Summing over all O(n/ri) pieces at level i, the preprocessing time per level is O(n log ri). The

overall time to compute the dense distance graphs for all pieces over all recursive levels is therefore

O(kn log n).

The space required to store DDGP is O((
√
r)2) = O(r); summing over all pieces at level i we

obtain space O( nri ri) = O(n) per level; the total space requirement is O(kn).

Query. Given a query for the distance between nodes u and v, we proceed as follows. For simplicity

of the presentation, we initially assume that neither u nor v are boundary nodes.

Let P0 be the level–0 piece that contains u. We compute distances from u in P0. This is done in

O(r0) time using the algorithm of Henzinger et al. [HKRS97]. Denote these distances by distP0(u,w)

for w ∈ P0. Let H0 denote the star graph with center u and leaves w ∈ ∂P0. The arcs of H0 are

directed from u to the leaves, and their lengths are the corresponding distances in P0.

Let Su be the set of pieces that contain u. Note that Su contains exactly one piece of each level.

LetRu be the union of subpieces of every piece in Su. That is,Ru =
⋃
P∈Su

{P ′ : P ′ is a subpiece of P}.
Let Hu be the union of the dense distance graphs of the pieces in Ru. We use FR-Dijkstra (see Sec-

tion 1.3.7) to compute distances from u in Hu∪H0. Observe that any shortest path from u to a node

of Hu can be decomposed into a shortest path in P0 from u to ∂P0 and shortest paths each of which

is between boundary nodes of some piece in Ru (this is similar to Lemma 2.1.2).

Since all u-to-∂P0 shortest paths in P0 are represented inH0, and since all shortest paths between

boundary nodes of pieces in Ru are represented in Hu, this observation implies that distances from

u to nodes of Hu in Hu ∪ H0 are equal to distances from u to nodes of Hu in G. We denote these

distances by distG(u,w) for nodes w ∈ Hu.

We repeat a similar procedure for v (reversing the direction of arcs) to compute distG(w, v), the

distances in G from every node w ∈ Hv to v.

Let Puv be the lowest-level piece that contains both u and v. Assume first that Puv is not a

level–0 piece. Let Pu (Pv) be the subpiece of Puv that contains u (v). Since Puv is both in Su and

in Sv, both Pu and Pv are in Ru as well as in Rv. This implies that we have already computed

2This appears to be the main difference to the distance oracle of Nussbaum [Nus11], which uses a non-adaptive recursion.
Using our adaptive recursion is crucial whenever S ∈ [n log logn, n logn).
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distG(u,w) and distG(w, v) for all w ∈ ∂Pu. Since we have assumed that Puv is not a level–0 piece,

the shortest u-to-v path must contain some node of ∂Pu. Therefore, the u-to-v distance can be found

by computing

min
w∈∂Pu

distG(u,w) + distG(w, v).

If Puv is a level–0 piece, then Puv = P0 , and the u-to-v distance can be found by computing

min

{
distP0(u, v), min

w∈∂Puv

{distG(u,w) + distG(w, v)}
}
.

The case when u or v are boundary nodes is a degenerate case that can be solved by the above al-

gorithm. Let Qu be the highest-level piece of which u is a boundary node. We have the preprocessed

distances in Qu from u to all other nodes of ∂Qu. Therefore, it suffices to replace Su above with the

set of pieces that contain Qu as a subgraph in order to assure that Hu is small enough and that the

distances computed by the fast implementation of Dijkstra’s algorithm are the distances from u to

nodes of Hu in G.

Query Time. Computing the distances distP0
(·, ·) takesO(r0) time. Let |V (Hu)| denote the number

of nodes ofHu. The FR-Dijkstra implementation runs inO(|V (Hu)| log2 n) time. It therefore remains

to bound |V (Hu)|. Let Pi be the level–i piece in Su. Pi has O( ri
ri−1

) subpieces, each with O(
√
ri−1)

boundary nodes. Therefore, the contribution of Pi to |V (Hu)| is O( ri√
ri−1

). The total running time is

therefore

O

(
r0 + log2 n

k∑
i=1

ri√
ri−1

)
.

Recall that rk = |V (G)| = n, and set r0 =
√
n. For i = 1 . . . k − 1 we recursively define ri so as to

satisfy
ri√
ri−1

=
√
n.

This implies

r1 = n
1
2 + 1

4 = n1− 1
4

r2 = n
1
2 + 3

8 = n1− 1
8

r3 = n
1
2 + 7

16 = n1− 1
16

. . .

rk−1 = n1− 1

2k .

The total running time is thus bounded by

O

(
√
n+ log2 n

(
(k − 1)

√
n+

n√
n1− 1

2k

))
≤

O
((
k
√
n+ n

1
2 + 1

2k+1

)
log2 n

)
. (4.1)

By setting k = Θ(log(1/ε)) we obtain the claimed running times.
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4.2 A Cycle MSSP Data Structure for Planar Graphs

In this section we provide a technical tool, which is summarized in the following theorem.

Theorem 4.2.1. Given a directed planar graph G on n nodes and a simple cycle C with c = O(
√
n)

nodes, there is an algorithm that preprocesses G in O(n log3 n) time to produce a data structure of size

O(n log log c) that can answer the following queries in O(c log2 c log log c) time: for a query node u,

output the distance from u to all the nodes of C.

Comparison with the MSSP data structure Our data structure can be seen as an alternative

to the MSSP data structure (see Section 1.3.4) with two main advantages (which we exploit in

Section 4.3):

• our data structure can handle queries to any not-too-long cycle as opposed to a single face (the

crucial difference and difficulty is that shortest paths may cross a cycle but not a face),

• the space requirements are only O(n log log c) (we internally rely on the data structure in

Theorem 4.1.1, so even O(n) is possible at the cost of increasing the query time) as opposed

to O(n log n),

and three main disadvantages:

• our data structure cannot efficiently answer queries from u to a single node on the cycle C;

such a query requires the same time as computing the distances from u to all the nodes on C

(in many existing applications, this disadvantage is not really problematic, since MSSP is used

for all nodes on the face anyway),

• our data structure requires amortized time O(log2 c log log c) per node on the cycle (as opposed

to O(log n)), which is slower for long cycles, and

• the preprocessing time of our data structure is O(n log3 n) as opposed to O(n log n).

Let G be an embedded planar graph.

Preprocessing. Let G0 be the exterior of C. That is, the graph obtained from G by deleting all

nodes strictly enclosed by C. Consider C as the infinite face of G0. Similarly, let G1 be the interior

of G. Namely, the graph obtained from G by deleting all nodes not enclosed by C. Consider C as the

infinite face of G1. Note that we have reduced the problem from query nodes on a cycle C to query

nodes on a face. The query algorithm is supposed to handle paths that cross C. The preprocessing

step consists of the following:

1. Computing DDGC and DDGG−C . This can be done in O((n+ c2) log n) time using the MSSP

algorithm [Kle05]. Storing DDGC and DDGG−C requires O(c2) = O(n) space.
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2. Computing an r–division of Gi (i ∈ {0, 1}) with r = c2. Each piece has O(c2) nodes and O(c)

boundary nodes incident to a constant number of holes. For every piece P in the r–division,

consider the nodes of C ∩ P as boundary nodes of P . Note that each piece still has O(c)

boundary nodes. This step takes O(n log n) time.

3. Computing, for each piece P , a recursive r–division of P as the one in the preprocessing step of

the oracle in Section 4.1 (Theorem 4.1.1) with ε = 1/ log c. That is, the number of levels in this

recursive r–division is k = Θ(log log c). The top-level (level–k) piece in this recursive division

is the entire piece P . In the description in Section 4.1, the top-level piece is the entire graph

and therefore it has no boundary nodes. Here, in contrast, we consider the boundary nodes

of P as boundary nodes of the top-level piece in the decomposition (and thus, as boundary

nodes of any lower-lever piece in which they appear). This does not asymptotically change

the total number of boundary nodes at any level of the recursive decomposition since P has

O(c) boundary nodes, and every level of the recursive decomposition consists of a total of Ω(c)

boundary nodes. The time to compute the recursive r–division for all pieces is bounded by

O(n log2 n).

4. Computing, for each piece P , the dense distance graph for each of the pieces in the recursive

decomposition of P . Let HP denote the union of the dense distance graphs for all the pieces

in the recursive decomposition of P . As discussed in Section 4.1, the space required to store

HP is O(|P | log ε) = O(|P | log log c). Using the methods presented in Section 4.1, computing

HP takes O(|P | log |P | log log c) = O(c2 log c log log c). Thus, the total space and time required

over all pieces P is O(n log log c) and O(n log c log log c), respectively.

5. Computing, for each piece P , the dense distance graph comprised of all pair distances among

∂P ∪C in Gi − P . Note that this can be thought of as DDGGi−P , the external dense distance

graph of P , augmented with distances to the nodes of C (in Gi − P ) as well. We will denote

this dense distance graph by DDGGi−P∪C . Since |∂P | = O(c), and |C| = c, the total number

of nodes in each of these graphs is O(c). These dense distance graphs can be computed top-

down, as described in Section 1.3.8. The only difference is that the nodes of C are added to

all external dense distance graphs for all intermediate cycle separators used to obtain the r–

division. Since the bound on the number of nodes for any intermediate cycle separator is Ω(c),

adding the nodes of C to all intermediate external dense distance graphs does not change the

time required for the computation. As shown in Section 1.3.8, the entire computation (for all

pieces combined) takes O(n log3 n) time.

The time required for the preprocessing step is therefore O(n log3 n) and the space required is

O(n log log c).

Query. When queried with a node u, the data structure outputs the distances from u to all the

nodes of C. We describe the case where u is not enclosed by C. In this case, we use the dense
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C

G1
G0 - P

uP0

Figure 4.2: A schematic diagram showing the various subgraphs whose dense distance graphs are
used in a query to the cycle MSSP data structure. The cycle C is double-lined. The interior of C is the
subgraph G1. The query node u is indicated by a small solid circle. The piece P in the r–division of
the exterior of C (G0) is shown as a grey region with solid boundary. The boundaries of the pieces
whose dense distance graphs are in Hu are shown as dotted lines (one level) and dashed-dotted
lines (another level). P0 is the smallest piece of P that contains u. Any shortest path from u to C
can be decomposed into a shortest path from u to ∂P0 followed by shortest paths between nodes on
the boundaries shown in the figure.

distance graphs computed in the preprocessing step for G0. The symmetric case is handled similarly,

by using the dense distance graphs computed for G1.

Let P be the piece in the r–division of G0 to which u belongs. Recall that P consists of O(c2)

nodes. Consider the recursive r–division of P computed in item 3 of the preprocessing stage. Let P0

be the level–0 piece of P that contains u. P0 consists of O(
√
c2) = O(c) nodes.3

We first compute [HKRS97], in O(c) time, the distances from u to all nodes of P0, and store

them in a table distP0
. We then compute, using FR-Dijkstra, the distances from u in the union of the

following dense distance graphs (see Figure 4.2):

1. H0, the star graph with center u and leaves ∂P0. The arcs of H0 are directed from u to the

leaves and their lengths are the corresponding lengths in distP0 .

2. Hu, the subset of dense distance graphs in HP that correspond to pieces in the recursive

decomposition of P that contain u and their subpieces. These dense distance graphs were

computed in item 4 of the preprocessing step.

3. DDGG0−P∪C

4. DDGC
3Here, as in Section 4.1, we assume that u is not a boundary node in the recursive r–division of P . The case where u is
such a boundary node is degenerate, see Section 4.1.



60

Note that the first two graphs are the analogs of H0 and Hu from Section 4.1.

Distances from u in the union of the above graphs are equal to the distances from u in G. This is

true since any u-to-C shortest path can be decomposed into

1. a shortest path in P0 from u to ∂P0.

2. shortest paths each of which is a shortest path in Q between boundary nodes of Q for some

piece Q in the recursive r–division of P that is represented in Hu.

3. shortest paths in G0 − P between nodes of ∂P ∪ C.

4. shortest paths in the interior of C between nodes of C.

To bound the running time of FR-Dijkstra we need to bound the number of nodes in all dense dis-

tance graphs used in the FR-Dijkstra computation. H0 has O(
√
c) nodes. The analysis in Section 4.1

shows that the graphs in the set Hu consist of O(
√
|P | log log |P |) nodes (substitute k = 1/ log |P | in

eq. (4.1)). DDGG0−P∪C has O(c +
√
|P |) = O(c) nodes, and DDGC has c nodes. Combined, the

running time of the invocation of FR-Dijkstra is bounded by O(c log2 c log log c). This dominates the

O(c) time required for the computation of distP0 , so the overall query time is O(c log2 c log log c), as

claimed.

4.3 Distance Oracles with Space S ∈ [n log log n, n2]

In this section we prove the following Theorem. Using our new cycle MSSP data structure, the proof

is rather straightforward.

Theorem 4.3.1. Let G be a directed planar graph on n vertices. For any value S in the range S ∈
[n log log n, n2], there is a data structure with preprocessing time O(S log3 n/ log log n) and space O(S)

that answers distance queries in O(nS−1/2 log2 n log3/2 log n) time per query.

Proof. Let r := (n2 log log n)/S. Note that r ∈ [log log n, n] for any S ∈ [n log log n, n2].

Preprocessing. We start by computing an r–division. Each piece has O(r) nodes and O(
√
r)

boundary nodes incident to a constant number of holes. For each piece P we compute the following:

1. A distance oracle as in Theorem 4.1.1 with ε = 1/ log r. This takes O(r log r log log r) time and

O(r log log r) space.

2. For each hole of P (bounded by a cycle in G) we compute our new cycle MSSP data structure.4

Since the number of holes per piece is constant, this requires requires O(n log3 n) time and

O(n log log n) space per piece.

Summing over all pieces, the preprocessing time is O(S log3 n/ log log n) and the space needed is

O(S).
4Note that for S = o(n logn) we cannot even afford to store the MSSP data structure [Kle05].
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Query. Given a pair of nodes (s, t), we compute a shortest s-to-t path as follows. Assume first that

s and t are in different pieces. Let P denote the piece that contains s and let ∂P denote its boundary.

We compute the distances in G from ∂P to t using the cycle MSSP data structures. These distances

can be obtained in time O(|∂P | log2 n log log n) = O(
√
r log2 n log log n). Analogously, we compute

the distances inG from s to ∂P . It remains to find the node p ∈ ∂P that minimizes dG(s, p)+dG(p, t),

which can be done in O(|∂P |) = O(
√
r) time using a simple sequential search.

If s and t lie in the same piece, the shortest s-to-t path might not visit ∂P . To account for this,

we query the distance oracle for P , which takes O(
√
r log2 r log log r) time. We return the minimum

distance found.

k–many distances As a consequence, we also obtain an improved algorithm for k–many distances,

whenever k = Ω(
√
n/ log log n). For some value of r to be specified below, we preprocess G in time

O((n2/r) log3 n), and then we answer each of the k queries in time O(
√
r log2 r log log r). The total

time is O((n2/r) log3 n+ k
√
r log2 r log log r). This is minimized by setting

r = n4/3k−2/3(log n/ log log n)2/3. Note that r = O(n) since k = Ω(
√
n log n/ log log n). The to-

tal running time is thus O((kn)2/3(log n)7/3(log log n)2/3). This is faster than the running time

in [Cab12], which is Õ((kn)2/3 + n4/3), whenever k = Ω(
√
n/ log log n).

Comparison and Discussion. The query time of our data structure is at mostO(
√
r log2 r log log r),

which, in terms of S, is O(nS−1/2 log2 n log3/2 log n). Let us contrast this with Cabello’s data struc-

ture [Cab12] that, for any S ∈ [n4/3 log1/3 n, n2] has preprocessing time and space O(S) and query

time O(nS−1/2 log3/2 n). In our construction, we sacrifice a factor of O(
√

log n(log log n)3) in the

query time but we gain a much larger regime for S.

For the range S ∈ [ω(n log n/ log log n), o(n4/3 log1/3 n)], only data structures of size O(S) with query

time O(n2/S) had been known [Dji96] (see also Figure 4.1).

To conclude this section, let us observe what happens when we gradually decrease the space

requirements S from n2 down to n, and, en passant, let us pose some open questions. For quadratic

space (or even slightly below [WN10a]), we can obtain constant query time. As soon as we require

the space to be O(n2−ε) for some ε > 0, the query time increases from constant or poly-logarithmic

to a polynomial. It is currently not known whether Õ(1) is possible or not — the known lower

bounds [SVY09, PR10] on the space of distance oracles work for non-planar graphs only. Further

restricting the space, as long as the space available is at least Ω(n log n), the data structure can

internally store MSSP data structures. The query time for this regime of S can actually be made

slightly faster than what we claim in Theorem 4.3.1 (by avoiding the O(log log n)–factor due to

the recursion needed in Theorem 4.1.1 and its manifestation in the cycle MSSP data structure).

The data structure of Nussbaum [Nus11] obtains a “clean” tradeoff with query time proportional

to O(n/
√
S) for S ≥ n4/3 (without logarithmic factors in the query time, currently at the cost of a

slower preprocessing algorithm). The obvious open question is whether it is possible to obtain a data

structure with space O(S) and query time O(n/
√
S) for the whole range of S ∈ [n, n2] and without
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substantial sacrifices with respect to the preprocessing time. Another open question is whether it

is possible to improve upon this tradeoff. Note that, for quadratic space, an improvement of an

(almost) logarithmic factor is possible [WN10a].

As soon as we require the space to be o(n log n), we cannot afford to store the MSSP data struc-

ture anymore and we are currently forced to rely on the cycle MSSP data structure (Theorem 4.2.1).

The query time increases to the time bound claimed in Theorem 4.3.1. When we further restrict the

space to o(n log log n), say S = Θ(n log(1/ε)) for some ε > 0, the query time increases to O(n1/2+ε).

A different recursion (maybe à la [HKRS97]) could potentially reduce this to Õ(
√
n).

Let us briefly consider the additional space of the data structure, assuming that storing the graph

is free. It is known that, for approximate distances, a query algorithm can run efficiently using a data

structure that occupies sublinear additional space [KKS11]. For exact distances and sublinear space,

nothing better than the linear-time SSSP algorithm [HKRS97] is known.
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Introduction

The two algorithms presented in Chapters 5 and 6 solve the maximum-flow problem in directed

planar graphs with multiple sources or sinks (we shall refer to instances with multiple sources and

sinks by the initials MSMS). In general (i.e., non-planar) graphs, the multiple sources and sinks

case can be reduced to the single-source single-sink case by introducing an artificial source and sink

and connecting them to all the sources and sinks, respectively—but this reduction does not preserve

planarity. Therefore, algorithms for computing maximum st-flow (i.e., when there is a single source

s and a single sink t) that work in general graphs can solve MSMS max-flow in planar graphs using

this reduction. Indeed, prior to our work, this was the fastest known algorithm for planar MSMS

max-flow.

For a survey of the early history of the maximum flow problem in general graphs, see Schri-

jver [Sch05]. For more recent history, see [GTT90, Gol98]. Using the max-flow algorithm of Sleator

and Tarjan [ST83] leads to a running time of O(n2 log n) for MSMS max-flow in planar graphs. For

integer capacities less than U , one could instead use the algorithm of Goldberg and Rao [GR98],

which leads to a running time of O(n1.5 log n logU). Using the recent algorithm of Christiano, Kel-

ner, Mądry, Spielman and Teng [CKM+11] leads to a running time of O(n4/3ε−11/3) for obtaining a

(1− ε) approximate solution.

In planar graphs, however, algorithms for maximum st-flow do not immediately imply algorithms

for MSMS max-flow. It is to be expected, though, that the techniques and algorithms developed for

maximum st-flow and min st-cuts in planar graphs are very relevant in solving planar MSMS max-

flow. We have already discussed some of these techniques in Section 1.4. See Borradaile’s Ph.D.

thesis [Bor08] for the history of planar maximum st-flow. Here we only mention the currently

best upper bounds. In undirected planar graphs, maximum st-flow and minimum st-cut can both

be solved in O(n log log n) [INSWN11]. In directed st-planar graphs, Hassin’s algorithm [Has81]

(see Section 1.4.2) can be implemented in linear time using the linear-time shortest-path algo-

rithm [HKRS97]. In directed planar graph, maximum st-flow (and thus also minimum st-cut) can

be solved in O(n log n) time [BK09, Eri10].

MSMS max-flow in planar graphs was studied by Miller and Naor [MN95]. When it is known

how much of the flow is produced/consumed at each source and each sink, finding a consistent

routing of flow that respects arc capacities can be reduced to negative-length shortest paths, which,

as we saw in Chapter 2, can be solved in planar graphs in O(n log2 n/ log log n) time. Otherwise,

Miller and Naor gave an O(n log3/2 n) algorithm for the case where all the sinks and the sources are

on the boundary of a single face, and generalized it to an O(k2n3/2 log2 n)-time algorithm for the

case where the sources and the sinks reside on the boundaries of k different faces.5

However, the problem of maximum flow with multiple sources and sinks in planar graphs without

any additional restrictions remained open. For more than twenty years no planarity exploiting

5The time bound of the first algorithm can be improved to O(n logn) using the linear-time shortest-path algorithm of
Henzinger et al. [HKRS97], and the time bound of the second algorithm can be improved to O(k2n log2 n) using the
O(n logn)-time maximum st-flow algorithm of Borradaile and Klein [BK09].
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Figure 4.3: The soviet rail network from [HR55]

algorithms were known. In Chapter 5 we describe an O(n log3 n)-time algorithm for planar MSMS

max-flow algorithm [BKM+11]. In Chapter 6 we describe a less efficient algorithm for the special

case of multiple sources and a single sink [KM11]. While the latter algorithm is dominated by the

former, it uses a novel interesting technique that may be useful in related problems.

It was pointed out to us by Yahav Nussbaum that a planar MSMS max-flow algorithm can be used

to improve the running time of solving the planar MSMS max-flow problem with vertex capacities,

where the number of vertices with finite capacity is moderate (o(n1/3)). This is done by plugging

our MSMS max-flow algorithm into the algorithm of Hochstein and Weihe [HW07] for maximum

st-flow in graphs with a bounded number of crossings.

Applications

Below, we discuss a few applications of MSMS max-flow in planar graphs. Ford and Fulkerson, who

worked at RAND, were motivated by a classified memo of Harris and Ross [HR55] on interdiction

of the Soviet railroad system. This report was downgraded to unclassified in 1999. It contains a

diagram of a network that models the Soviet railroad system indicating sources (“ORIGINS”) in the

Soviet Union and sinks (destinations) in Eastern European satellite countries (Poland, Czechoslo-

vakia, Austria, Eastern Germany).

Note that, Harris and Ross were interested in the minimum cut, not the maximum flow, as is the
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case with most other applications. However, by the duality between maximum- flow and minimum-

cut [FF56], given a maximum flow in G, one can find the minimum cut in linear time. Simply

identify the connected components of the sources in the residual network.

Application to computer vision problems Multiple-source multiple-sink min-cut arises in ad-

dressing a family of problems associated with the terms metric labeling [KT02], Markov Random

Fields [GG84], and Potts Model (see also [BVZ01, Hoc01]). In low-level vision problems such as

image restoration, segmentation, stereo, and motion, the goal is to assign labels from a set to pixels

so as to minimize a penalty function. The penalty function is a sum of two parts. One part, the data

component, has a term for each pixel; the cost depends on the discrepancy between the observed

data for the pixel and the label chosen for it. The other part, the smoothing component, penalizes

neighboring pixels that are assigned different labels.

For the binary case (when the set of available labels has size two), finding the optimal solution

is reducible to multiple-source multiple-sink min-cut. [GPS89].

For the case of more than two labels, there is a powerful and effective heuristic [BVZ01] using

very-large-neighborhood [AEOP02] local search; the inner loop consists of solving the two-label

case. The running time for solving the two-label case is therefore quite important. For this reason,

researchers in computer vision have proposed new algorithms for max flow and done experimental

studies comparing the run-times of different max-flow algorithms on the instances arising in this

context (e.g. [BK04]). For the (common) case where the underlying graph of pixels is the two-

dimensional grid graph, our result in Chapter 5 yields a theoretical speed-up for this important

computer-vision subroutine.6

Hochbaum [Hoc01] describes a special case of the penalty function in which the data component

is convex and the smoothing component is linear; in this case, she shows that an optimal solution

can be found in time O(T (m,n) + n logU) where U is the maximum label, and T (m,n) is the time

for finding a minimum cut. She mentions specifically image segmentation, for which the graph is

planar. For this case, by using our algorithm (Chapter 5), the optimal solution can be found in nearly

linear time.

Application to maximum bipartite matching It is well known that finding a maximum matching

in a bipartite planar graph can be reduced to computing multiple-source, multiple-sink maximum

flow. Our result is the first planarity-exploiting algorithm for this problem (and the first near-linear

one).

Application to finding edge disjoint paths The problem of finding edge disjoint paths may be

thought of as a generalization of bipartite matching. Given two sets S, T , the goal is to find a

maximum cardinality set of edge disjoint paths between nodes in S and nodes in T , such that each

6Note that the single-source, single-sink max-flow algorithm of [BK09] was implemented by computer-vision re-
searchers [STC09] and found to be useful in computer vision and to be faster than the competitors.
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node in S is paired with a distinct node in T . This problem can be reduced to MSMS max flow by

attaching a source to each node of S and a sink to each node of T , and setting the capacities of all

edges to one.

The problem arises in routing printed circuit boards and multiple chip modules [HS97], where

it is known as the breakout routing problem, in ball grid array packages [YD95], where it is called

the fanout routing problem, and in VLSI/WSI processor arrays in the presence of faulty proces-

sors [RBK90], where it is known as the reconfiguration problem. See also [CC00]. In a typical appli-

cation the underlying graph is a rectangular n-by-m grid, and the number of sources is N . The sinks

are usually located at the boundary of the grid. It can be shown [CC00] that without loss of gen-

erality n,m ≤ 2N . The fastest algorithm that uses MSMS max-flow to solve this problem [CCT99]

runs in O(N9/4), whereas our algorithm would solve the problem in O(N2 log3N) time. However,

for grid graphs, a O(N2)-time algorithm that does not use MSMS max-flow is known [CCT03]. Note

that the situation where the terminals are all on the boundary of the grid is essentially the multiple

sources single sink case (Chapter 6). It is also worth mentioning that our algorithms cannot handle

the node disjoint paths problem since the resulting flow problem requires handling node capacities.

Application to flow in polyhedral domains Mitchell [Mit90] has shown how to reduce the max-

imum flow problem in a uniformly capacitated polyhedral region in two dimensions, with arbitrary

sources and sinks to a maximum flow problem in a planar graph with multiple sources and sinks.

Let n denote the number of vertices of the polyhedral domain. The corresponding planar graph has

O(n4) edges. Using our result implies a running time of O(n4 log3 n) compared with the O(n8 log n)

time in [Mit90].



Chapter 5

Maximum Flow in Directed Planar

Graphs with Multiple Sources and

Sinks

Consider the following recursive approach for finding a max flow: split the input graph G in two

using an O(
√
n) simple cycle separator C ([Mil86], see Section 1.2.6) and recursively solve the max

flow problem in each of the two subgraphs. After the recursive calls, each subgraph contains no

residual source-to-sink path. We would like to additionally ensure that there is no residual source-

to-C/C-to-sink paths in order to ensure that G contains no source-to-sink residual path.

In order to achieve this, we sacrifice conservation; we allow nonzero inflow at nodes of the

separator C. To address this, we introduce a new subproblem: pushing flow between the nodes of

C so as to ensure that there is no residual path from a positive-inflow node of C to a negative-inflow

node of C. Our algorithm for solving this problem (Section 5.3) deals with one node of C at a time.

For each node, the algorithm moves flow between that node of C and the others to achieve the

following: (i) the node has zero inflow, or (ii) the node has positive inflow but there is no residual

path from that node to nodes of C with negative inflow, or (iii) the node has negative inflow but

there is no residual path to that node from nodes of C with positive inflow.

Our algorithm for achieving this uses an implicit representation of the flow. This enables it

to carry out each iteration in O(
√
n log2 n) time by computing shortest paths in the planar dual

using the extension of Fakcharoenphol and Rao’s implementation of Dijkstra’s algorithm described

in Chapter 3. Thus the total time for solving this subproblem is O(n log2 n), leading to an O(n log3 n)

running time for the main algorithm.

68
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5.1 The Algorithm

Now we describe the algorithm, MSMSMAXFLOW, in more detail. In order to treat nodes of the

cycle separator both as sources and as sinks in recursive calls, we introduce a new node set A of size

at most 6. To solve the original problem, one uses A := ∅.

MSMSMAXFLOW(G, c,S,T ,A)
Input: a directed planar graph G with non-negative capacities c, a set S of source nodes, a set T of
sink nodes, a set A of at most six nodes

Output: a pseudoflow f obeying conservation everywhere except S, T,A and such that S
Gf9 T ,

S
Gf9 A, A

Gf9 T .

The algorithm finds a size-O(
√
n) simple cycle separator C. Following, e.g., [KS98, FR06], The

separator is chosen to ensure each subgraph has at most two-thirds the nodes of G (if |A| < 6) or

at most two-thirds the nodes of A (if |A| = 6). If C contains a source u, introduce an artificial node

u′ and artificial arc u′u with high capacity, and designate u′ a source instead of u. Sinks on C are

handled similarly. From now on, we assume for simplicity of presentation that no nodes of C are

sources or sinks.

The algorithm contracts all edges of C except one. This merges all the nodes of C into a single

supernode v, and turns C into a self-loop. The algorithm then recursively solves the problem on the

subgraph embedded on each side of the self-loop, adding v to the set A.

After the recursive calls, the algorithm uncontracts the edges of C. At this stage there are no

residual paths between sources and sinks in the entire graph, but there might be positive or negative

inflow at nodes of C. The algorithm then calls the procedure FIXCONSERVATIONONPATH, which

pushes flow between the nodes of C so that there are no residual paths between nodes of C with

positive inflow and nodes of C with negative inflow (the path in the name of the procedure is the

cycle C minus one edge). This procedure is discussed in Section 5.3; the interface is:

FIXCONSERVATIONONPATH(G,P, c,f0)
Input: a directed planar graph G, a simple path P , a capacity function c, and a pseudoflow f0

Output: a pseudoflow f such that f − f0 satisfies conservation everywhere but P , and

{v ∈ P : inflow(v) > 0} Gf9 {v ∈ P : inflow(v) < 0}.
Running Time: O(n log n+ |P |2 log2 n)

Next, the algorithm iterates over the nodes ai of A. The algorithm calls a procedure CYCLE-

TOSINKMAXFLOW that pushes as much excess flow as possible from C to ai. Let C+
i be the set of

nodes of C that are reachable via residual paths from some node of C with positive inflow at the

beginning of iteration i. CYCLETOSINKMAXFLOW pushes flow among the nodes of C+
i and from the

nodes of C+
i to ai so that the inflow at every node of C+

i remains non-negative and there are no

residual paths to ai from positive-inflow nodes of C. The interface is:
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CYCLETOSINKMAXFLOW(G, c,f0, C, t)
Input: a directed planar graph G with capacities c, a pseudoflow f0, a simple cycle C, a sink t.

Assumes: ∀v ∈ C+, inflowf0(v) ≥ 0, where C+ = {v ∈ C : {x ∈ C : inflowf0(x) > 0}
Gf0→ v}.

Output: a pseudoflow f s.t. (i) f − f0 obeys conservation everywhere but C+ ∪ {t}, (ii) ∀v ∈
C+, inflowf (v) ≥ 0, (iii) {v ∈ C : inflowf (v) > 0} Gf9 t.
Running Time: O(n log n+ |C|2 log2 n).

A symmetric procedure, SOURCETOCYCLEMAXFLOW, is called to push flow from ai to C to reduce

the amount of negative inflow. Finally, the algorithm pushes flow back from any nodes of C with

positive inflow to S and pushes flow back from T into any nodes of C with negative inflow. This is

done using the procedure described in Section 1.4.3.

Algorithm 5.1 MSMSMAXFLOW(G, c,S,T ,A)
Input: a directed planar graph G with non-negative capacities c, a set S of source nodes, a set T of
sink nodes, a set A = {a1, . . . , ak} of size at most six.

Output: a pseudoflow f obeying conservation everywhere except S ∪ T ∪ A, such that S
Gf9 T ,

S
Gf9 A, A

Gf9 T .

1: add zero-capacity arcs to triangulate and two-connect G (required for simple cycle separators)
2: find a cycle separator C in G
3: ensure that C contains no sources or sinks
4: P ← C − {e}, where e is one edge of C
5: contract all the edges of P , turning e into a self loop incident to the only remaining node v of C
6: let G1 and G2 be the subgraphs of G enclosed and not enclosed by e, respectively
7: f ← MSMSMAXFLOW(G1, c|G1

, S ∩G1, T ∩G1, (A ∩G1) ∪ {v})
8: f ← f + MSMSMAXFLOW(G2, c|G2

, S ∩G2, T ∩G2, (A ∩G2) ∪ {v})
9: uncontract the edges of P

10: f ← FIXCONSERVATIONONPATH(G,P, c,f)
11: for i = 1, 2, . . . , k
12: f ← CYCLETOSINKMAXFLOW(G, c,f , C, ai)
13: f ← SOURCETOCYCLEMAXFLOW(G, c,f , ai, C)
14: push positive excess from C to S and negative excess to C from T
15: return f

5.1.1 Running Time Analysis

The number of nodes of the separator cycle C used to partition G into G1 and G2 is O(
√
|G|).

Therefore, each invocation of FIXCONSERVATIONONPATH, CYCLETOSINKMAXFLOW and SOURCETO-

CYCLEMAXFLOW in G takes O(|G| log |G|+ |C|2 log2 |C|) = O(|G| log2 |G|) time. A standard analysis

of the recurrence (see, e.g., [FR06]) shows that the algorithm runs in O(n log3 n) time.
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5.2 Correctness of MSMSMAXFLOW

To prove the correctness of MSMSMAXFLOW, we prove that each step of the algorithm eliminates

some residual paths without reintroducing residual paths that were already eliminated. The proofs

rely on the sources and sinks lemmas from Section 1.4.

Lemma 5.2.1. At any time in the running of the algorithm after the last execution of line 8 and before

the execution of line 14, S 9 T , S 9 A, S 9 C, A9 T , C 9 T .

Proof. The properties hold just after line 8 by the properties of the recursive calls and by the fact that

any residual path between G1 and G2 consists of a residual path to C and a residual path from C.

Note that, because of the contractions in line 5, at this time the cycle C consists of just the node v.

The nonexistence of residual paths w.r.t. v in the recursive calls implies the nonexistence of residual

paths w.r.t. any node of C after the contractions are undone in line 9.

We next prove that the properties are maintained until just before the execution of line 14. By

the above argument, there is a cut separating S from T ∪ A ∪ C that is saturated just after line 9.

The procedure in line 10 only pushes flow between vertices of C, and in lines 11– 13, flow is only

pushed between the nodes of A and C. Since these sets are all on the same side of the cut, the cut

stays saturated. It follows that S 9 {T,A,C} at any point after line 8 and before line 14. A similar

argument applied to a saturated cut separating A ∪ C from T shows A9 T and C 9 T .

Recall that C+
i is the set of nodes of C that are reachable via residual paths from some node of

C with positive excess at the beginning of iteration i of the loop in line 11, and that C−i is the set of

nodes of C that have residual paths to some node of C with negative excess at that time.The next

lemma follows from the definition of FIXCONSERVATIONONPATH.

Lemma 5.2.2. Just after line 10 is executed, C+
1 9 C−1 .

Lemma 5.2.3. For all i < j, C+
j ⊆ C

+
i and C−j ⊆ C

−
i

Proof. It suffices to show that, for all i, C+
i+1 ⊆ C+

i and C−i+1 ⊆ C−i . The flow pushed in iteration i

of line 12 can be decomposed into a flow whose sources and sinks are all in C+
i and a flow whose

sources are in C+
i and whose sink is ai. Therefore, the set X of nodes of C with positive inflow

immediately after iteration i of line 12 is a subset of C+
i . By definition of SOURCETOCYCLEMAXFLOW,

the set of nodes of C with positive inflow does not change after line 13 is executed. Therefore, C+
i+1

is the set of nodes reachable from X by a residual path after iteration i of line 13.

By definition of C+
i , immediately before iteration i of line 12 there are no C+

i -to-(C − C+
i )

residual paths. By sources lemma(C+
i , C − C+

i , C
+
i ), there are no C+

i -to-(C − C+
i residual paths

immediately after iteration i of line 12 as well. This shows that there are no X-to-(C −C+
i ) residual

paths at that time.

The flow pushed in line 13 can be decomposed into a flow whose sources and sinks are all in

C−i and a flow whose source is ai and whose sinks are all in C−i . By sinks lemma(C+
i , C −C

+
i , C

−
i ),
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there are no C+
i -to-(C −C+

i ) residual paths immediately after iteration i of line 13. This shows that

there are no X-to-(C − C+
i ) residual paths at that time. Hence C+

i+1 ⊆ C
+
i , as desired.

The proof of the analogous claim for C−i+1 is similar.

Lemma 5.2.4. Just after line 12 is executed in iteration i, C+
i 9 C−i , C+

i+1 9 {aj}j≤i, {aj}j<i 9 C−i .

Proof. The flow pushed in line 12 can be decomposed into a flow whose sources and sinks are all in

C+
i and a flow whose sources are in C+

i and whose sink is ai.

• C+
i 9 C−i by sources lemma(C+

i , C
−
i , C

+
i )

• C+
i+1 9 {aj}j<i by sources lemma(C+

i+1, aj , C
+
i )

• C+
i+1 9 {ai} by definition of CYCLETOSINKMAXFLOW

• {aj}j<i 9 C−i by sources lemma(aj , C−i , C
+
i )

The following lemma is proved similarly.

Lemma 5.2.5. Just after line 13 is executed in iteration i, C+
i 9 C−i , C+

i+1 9 {aj}j≤i, {aj}j≤i 9
C−i+1.

Let C+ (C−) denote the set of nodes in C with positive (negative) inflow just before line 14 is

executed.

Corollary 5.2.6. Just before line 14 is executed, C+ 9 C−, C+ 9 A,A9 C−.

Finally, the next lemma proves the algorithm is correct.

Lemma 5.2.7. The following are true upon termination:

1. f is a pseudoflow

2. f obeys conservation everywhere except at S, T,A

3. S
Gf9 T, S

Gf9 A,A
Gf9 T .

Proof. Since every addition to f along the algorithm respects capacities of all darts, f is a pseudoflow

at all times. By induction, the only nodes that do not obey conservations after the recursive calls

are those of S, T and A. Subsequent changes to f only violate conservation on the nodes of C,

but any such violation is eliminated in line 14. Therefore upon termination f obeys conservation

everywhere except S, T and A.

By Lemma 5.2.1 and Corollary 5.2.6, before line 14 is executed, C+ 9 A and C 9 T . Therefore

the flow pushed back from C+ in line 14 is pushed back to S. Similarly, the flow pushed back to

C− is pushed back from T . Let f+ (f−) be the flow pushed back from C+ to S (from T to C−) in

line 14. Consider first pushing back f+.
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• S 9 T by sources lemma(S, T, C+)

• S 9 A by sources lemma(S,A,C+)

• A9 T by sources lemma(A, T,C+)

• S 9 C− by sources lemma(S,C−, C+)

• A9 C− by sources lemma(A,C−, C+)

Next consider pushing f−

• S 9 T by sinks lemma(S, T, C−)

• S 9 A by sinks lemma(S,A,C−)

• A9 T by sinks lemma(A, T,C−)

5.3 Eliminating residual paths between nodes on a path

In this section we present an efficient implementation of the fixing procedure which, roughly speak-

ing, given a path with nodes having positive, negative, or zero inflow, pushes flow between the

nodes of the path so that eventually there are no residual paths from nodes with positive inflow to

nodes with negative inflow.

We begin by describing an abstract algorithm for the fixing procedure (Algorithm 5.2). It resem-

bles a technique used by Venkatesan and Johnson [JV82]. Let M be the sum of capacities of all of

the darts of G. The algorithm first increases the capacities of darts of the path P and their reverses

by M . Let p1, p2, . . . , pk+1 be the nodes of P . The algorithm processes the nodes of P one after the

other. Processing pi consists of decreasing the capacities of di = pipi+1 and rev(di) by M (i.e., back

to their original capacities), and trying to eliminate positive inflow w at pi by pushing at most w

units of flow from pi to pi+1. After the push, either the flow obeys conservation at pi or there are no

residual paths from pi to any of the other nodes of P (this is where we use the large capacities on

the darts between unprocessed nodes). Negative inflow at pi is similarly handled by pushing flow

from pi+1 to pi.

5.3.1 Correctness of Algorithm 5.2

Lemma 5.3.1. The following holds immediately after iteration i of the main loop (line 3).

1. For j ≤ i, j′ > j, if pj has positive inflow, there is no residual path from pj to pj′ . If pj has

negative inflow, there is no residual path from pj′ to pj .
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Algorithm 5.2 ABSTRACTFIXCONSERVATIONONPATH(G,P, c,f0)

Input: directed planar graph G, simple path P = d1d2 . . . dk, capacity function c, pseudoflow f0

Output: a pseudoflow f ′ s.t. (i) f ′ − f0 satisfies conservation at nodes not on P , and (ii) with
respect to f ′, there are no residual paths from nodes of P with positive inflow to nodes of P with
negative inflow.

1: f ′ ← f0

2: c[d]← c[d] +M for all darts d of P ∪ rev(P )
3: for i = 1, 2, . . . , k
4: let pi and pi+1 be the tail and head of di, respectively

// reduce the capacities of d and rev(d) by M and adjust the flow appropriately
5: for d ∈ {di, rev(di)}
6: c[d]← c[d]−M
7: f ′[d]← min{f ′[d], c[d]}
8: f ′[rev(d)]← −f ′[d]

9: excess← inflow at pi
10: if excess > 0 then d← di else d← rev(di) find in which direction flow should be pushed
11: add to f ′ a maximum feasible flow from tail(d) to head(d) with limit excess
12: return f ′

2. For j, j′ ≤ i, if pj has positive inflow and pj′ has negative inflow then there is no pj-to-pj′ residual

path.

Proof. By induction on the number of iterations i of the loop. For i = 0 the invariants are trivially

satisfied.

First note that the adjustments to capacities and flow in lines 6–8 do not create any new residual

paths since capacities are only reduced, and no residual capacity increases. Therefore, it suffices to

argue just about the flow pushed in line 11.

Assume the invariants hold up until the beginning of the ith iteration. We show that the invariants

hold at the end of the iteration. Suppose that pi has positive inflow at the end of the ith iteration

(the case of negative inflow is similar).

1. Since the flow pushed in line 11 is limited by |inflow(pi)|, the fact that pi has positive inflow at

the end implies that the flow pushed was a maximum flow from pi to pi+1. Since the capacities

of darts between pk+1 and pk for k > i are sufficiently large, the maximality of the flow implies

that there are no pi-to-pk residual paths for any k > i.

The invariant holds for nodes pj with positive inflow and j < i by sinks lemma({pj}, {pj′ : j′ >

j}, {pi+1}).

2. Invariant 2 holds for j, j′ < i by

sinks lemma({pj : j < i, inflow(pj) > 0}, {pj : j < i, inflow(pj) < 0}, {pi+1}).

The invariant holds for pi by invoking the sources lemma({pi}, {pj : j < i, inflow(pj) < 0}, {pi}).
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Corollary 5.3.2. Algorithm 5.2 is correct

Proof. The flow f ′ − f0 satisfies conservation everywhere except at nodes of P since the algorithm

only pushes flow between nodes of P . By Lemma 5.3.1, with respect to f ′, there are no residual

paths from nodes of P with positive inflow to nodes of P with negative inflow.

5.3.2 An Inefficient Implementation

Algorithm 5.3 Inefficient Implementation of line 11 of ABSTRACTFIXCONSERVATIONONPATH (Algo-
rithm 5.2)

// push flow on d to make its residual capacity zero as required for Hassin’s algorithm
1: residual capacity← c[d]− f [d]− φ[headG∗(d)] + φ[tailG∗(d)]
2: val← min{residual capacity, |inflow(pi)|} amount of flow to push on d

3: f [d]← f [d] + val ; f [rev(d)]← −f [d]

// push excess inflow from tail(d) to head(d) using Hassin’s algorithm

4: `[d′]← c[d′]− f [d′]− φ[headG∗(d′)] + φ[tailG∗(d′)] for all darts d′ ∈ G lengths are residual ca-
pacities

5: `[rev(d)]← |inflow(pi)| set the limit on the residual capacity of rev(d)

6: φi(·)← DIJKSTRA(G∗, `,headG∗(d))
face potential are distances in G∗ from
headG∗(d) w.r.t. residual capacities

7: val← φi[headG∗(d)]− φi[tailG∗(d)]
the amount of flow assigned to d by the circu-
lation corresponding to φi

8: f [d]← f [d]− val ; f [rev(d)]← −f [(d)] do not push the circulation on d and rev(d)
9: φ = φ+ φi accumulate the current circulation

In this section, we give an inefficient implementation of line 11 of the abstract algorithm. This

will facilitate the explanation of the efficient procedure in the next section.

The Inefficient Implementation

Recall that f0 is the flow at the beginning of the procedure. Observe that the change to the flow

in iteration i of the abstract algorithm (line 11) is a flow between the endpoints of the dart di.

As discussed in Section 1.4.2, this flow can be represented as the sum of (i) a circulation ρi and

(ii) a flow on di and rev(di). Summing over the first i iterations, the flow f ′ at that time can be

represented as the sum

f ′ = ρ+ f (5.1)

where ρ =
∑i
j=1 ρj is a circulation and f is a flow assignment that differs from f0 only on the darts

of {dj}ij=1 and their reverses.

Now we describe the inefficient implementation of line 11 of ABSTRACTFIXCONSERVATIONON-

PATH. The total flow f ′ is maintained by representing f and the circulation ρ as in Eq. (5.1). f is

represented explicitly, but, in preparation for the efficient implementation, the circulations ρj are

represented implicitly by the face-potentials φj . By linearity of Eq. (1.9), the sum φ =
∑i
j=1 φj is

the face potential vector that induces the circulation ρ.
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Figure 5.1: An example illustrating that the nodes of X∗ are on the boundary of a single face of
H∗. The diagram shows part of the graph G and some edges of its dual G∗. Edges of G are solid
blue. Edges of P are bold. Dual edges are double lined red. The dual edges of P are in double lined
dashed red. The nodes of X∗ are represented by stars.

Recall that d is the dart of C such that flow needs to be sent from tail(d) to head(d) (line 10 of

ABSTRACTFIXCONSERVATIONONPATH). In lines 1 – 3, the procedure pushes as much as possible on d

itself. Consequently, either d is saturated or conservation at pi is achieved.

Next, an implementation of Hassin’s algorithm pushes a maximum flow with limit |inflow(pi)|
from tail(d) to head(d). The procedure first sets the length of darts to their residual capacities (line 4)

and sets the length of rev(d) to be the flow limit |inflow(pi)| (line 5). Since the flow maintained is

feasible, all residual capacities are non-negative. The procedure then computes all the headG∗(d)-

to-f distances φi[f ] in G∗ using Dijkstra’s algorithm (line 6). Let ρi be the circulation corresponding

to the face-potential vector φi. The procedure sets val equal to ρi[d] in line 7, then subtracts val

from f [d] and adds it to f [rev(d)]. Finally, in the last line, the current circulation is added to the

accumulated circulation by adding the potential φi to φ.

5.3.3 An Efficient Implementation

In this section we give an efficient implementation of ABSTRACTFIXCONSERVATIONONPATH. A tool

that we use is the extension of FR-Dijkstra (see Chapter 3) that works with reduced lengths.

The efficient implementation keeps track of the inflow at each node of P in an array v[·]. As in

the inefficient implementation, the procedure will maintain the total flow as the sum of a circulation

ρ and a flow assignment f that differs from f0 only on the darts of P ∪ rev(P ). Initially f is set
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Algorithm 5.4 Efficient Implementation of line 11 of ABSTRACTFIXCONSERVATIONONPATH

// push flow on d to make its residual capacity zero as required for Hassin’s algorithm
1: residual capacity← c[d]− f [d]− φX [headG∗(d)] + φX [tailG∗(d)]
2: val← min{residual capacity, |v[pi]|} amount of flow pushed on d

3: f [d]← f [d] + val ; f [rev(d)]← −f [d]
4: v[tail(d)]← v[tail(d)]− val ; v[head(d)]← v[head(d)] + val update the inflow at pi and pi+1

// push excess inflow from tail(d) to head(d) using Hassin’s algorithm

5: `[d′]← c[d′]− f [d′] for all darts d′ ∈ P ∪ rev(P )
lengths of explicit darts are residual capaci-
ties (excluding circulation component)

6: `[rev(d)]← |v[pi]| − φX [tailG∗(rev(d))] + φX [headG∗(rev(d))]
limit residual capacity of rev(d)
(adjusted by circulation compo-
nent)

7: φXi (·)← FR-DIJKSTRA(D∗, `,φX ,headG∗(d))
distances in G∗ from headG∗(d) w.r.t.
the reduced lengths induced by φX

8: val← φXi [headG∗(d)]− φXi [tailG∗(d)]
the amount of flow assigned to d by the cir-
culation corresponding to φX

i

9: f [d]← f [d]− val ; f [rev(d)]← −f [(d)]
remove the flow assigned by the circulation
to d and rev(d)

10: φX = φX + φXi accumulate the current circulation
11: v[tailG(d)] = v[tailG(d)]− val ; v[headG(d)] = v[headG(d)] + val update the inflow at pi and pi+1

equal to f0. The circulation ρ will be represented by a face-potential vector φ. However, we will

show that it suffices to maintain just those entries of φ that correspond to faces incident to P .

Define each dart d’s length by `(d) = c[d] − f [d]. Let X∗ be the set of endpoints in the planar

dual G∗ of the darts of P (i.e. the primal faces incident to P ). Let H∗ be the graph obtained from

G∗ by removing the darts of P . Note that in H∗, all the nodes of X∗ that did not disappear (i.e., that

have degree greater than zero) are on the boundary of a single face, as illustrated in Figure 5.1.

The procedure uses a multiple-source shortest paths (MSSP) algorithm [Kle05, CC07] to compute

a table D∗[·, ·] of X∗-to-X∗ distances in H∗ with respect to the lengths `(·).
The implementation of lines 1– 10 of ABSTRACTFIXCONSERVATIONONPATH using the chosen rep-

resentation of f ′ is straightforward. We therefore focus on the implementation of line 11.

Consider iteration i of the algorithm. The main difference between the inefficient implementa-

tion and the efficient one is in implementing the Dijkstra step for computing shortest paths in the

dual. Instead of computing the entire shortest-path tree, the procedure computes just the distance

labels of nodes in X∗. This is done using the FR-DIJKSTRA procedure (see Chapter 3), whose ini-

tialization requires the X∗-to-X∗ distances in H∗ with respect to the residual capacities. We now

explain how these distances can be obtained.

The flow on a dart d in the primal is

f [d] + φ[headG∗(d)]− φ[tailG∗(d)]. (5.2)

Therefore the residual capacity of d is

(c[d]− f [d])− φ[headG∗(d)] + φ[tailG∗(d)] (5.3)
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which is its reduced length `φ[d] with respect to the length `(·) and price function φ.

Suppose that d belongs to H∗, i.e. d is not one of the darts of P ∪ rev(P ). The procedure

never changes f [d], so f [d] = f0[d]. Therefore `(d) = c[d] − f0[d]. These lengths are known at the

beginning of the procedure’s execution. The reduced length of an X∗-to-X∗ path Q = d′1, d
′
2, · · · , d′j

in H∗ is

j∑
i=1

(`(d′i)− φ[headG∗(d′i)] + φ[tailG∗(d′i)]) =(
j∑
i=1

`(d′i)

)
− φ[end(Q)] + φ[start(Q)].

(5.4)

Therefore, for any nodes x, y ∈ X∗, the x-to-y distance in H∗ w.r.t. the residual capacity is given

by D∗[x, y] − φ[y] + φ[x]. Since the procedure maintains the restriction of φ to nodes of X∗, this

distance can be obtained in constant time.

It follows from the above discussion that, after executing line 11 of ABSTRACTFIXCONSERVA-

TIONONPATH using the efficient implementation for the last time, the flow assignment f maintained

by the efficient implementation is the same as the one that would have been computed if the inef-

ficient implementation were used. Moreover, the potential function φX computed by the efficient

implementation is the restriction to X∗ of the potential function φ that would have been computed

by the inefficient implementation.

As discussed in Section 5.3.2, the flow f ′ to be returned is ρ + f where ρ is the circulation

induced by φ. It suffices, however, to return χ + f where χ is any feasible circulation in Gf : this

change does not alter the inflow at any node, and, since it does not change the residual capacity of

any cut, does not introduce new residual paths.

To compute χ, the algorithm computes shortest-path distances in the dual of Gf from a node

x ∈ X∗. This computation consists of two steps. In the first step, the algorithm again uses FR-

DIJKSTRA with price function φ to compute the distances just to nodes of X∗. In the second step, the

algorithm extends this distance labeling to include all nodes of G∗. Any shortest x-to-v path consists

of an x-to-x′ prefix (where x′ ∈ X∗) and a x′-to-v suffix that passes through no nodes of X∗. The

distance to v, therefore, is

min
x′∈X∗

min{d(x′) + `(Q) :

Q an x′-to-v path not passing through X∗} (5.5)

where d(x′) is the x-to-x′ distance. Note that every edge of G∗ whose endpoints are not both in X∗

has nonnegative length. Therefore the distances (5.5) can be computed by a variant of Dijkstra’s

algorithm in which each node x′ ∈ X∗ is initially inserted into the priority queue with label d(x′).

For completeness we include in Algorithm 5.5 the full pseudocode for the efficient implementa-

tion of FIXCONSERVATIONONPATH.
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Algorithm 5.5 FIXCONSERVATIONONPATH(G,P, c,f0)

Input: a directed planar graph G, simple path P = d1d2 . . . dk, capacity function c, and a pseud-
oflow f0

Output: a pseudoflow f s.t. (1) f − f0 satisfies conservation at nodes not on P and (2) w.r.t f , no
residual path exists from {v ∈ P : inflow(v) > 0} to {v ∈ P : inflow(v) < 0}.

1: let X∗ be the set of endpoints in the planar dual G∗ of the darts of P
2: initialize to zero an array φX [·] indexed by the nodes of X∗

3: let H∗ be the graph obtained from G∗ by removing the darts of P
4: compute, using the MSSP algorithm [Kle05, CC07], a table D∗[·, ·] of distances in H∗ between

nodes of X∗ w.r.t. the lengths c− f0

5: f ← f0

6: c[d]← c[d] +M for all darts of P ∪ rev(P )
7: initialize an array of length k by v[i]← inflow at pi with respect to f
8: for i = 1, 2, . . . , k
9: let pi and pi+1 be the tail and head of di, respectively

// reduce the capacities of d and rev(d) by M and adjust the flow appropriately
10: for d ∈ {di, rev(di)}
11: c[d]← c[d]−M
12: old flow← f [d] + φX [headG∗(d)]− φX [tailG∗(d)]

13: new flow← min{old flow, c[d]} adjusted flow must not exceed adjusted
capacity

14: f [d]← new flow− φX [headG∗(d)] + φX [tailG∗(d)]
the explicit flow does not include the cir-
culation component

15: f [rev(d)]← −f [d]
16: v[head(d)]← v[head(d)] + new flow− old flow update the inflow at pi and pi+1

17: v[tail(d)]← v[tail(d)]− new flow + old flow

18: if v[pi] > 0 then d← di else d← rev(di) find in which direction flow should be pushed

// push flow on d to make its residual capacity zero as required for Hassin’s algorithm
19: residual capacity← c[d]− f [d]− φX [headG∗(d)] + φX [tailG∗(d)]
20: val← min{residual capacity, |v[pi]|} amount of flow pushed on d

21: f [d] = f [d] + val ; f [rev(d)]← −f [d]
22: v[tail(d)] = v[tail(d)]− val ; v[head(d)] = v[head(d)] + val update the inflow at pi and pi+1

// push excess inflow from tail(d) to head(d) using Hassin’s algorithm

23: let `[d′]← c[d′]− f [d′] for all darts d′ ∈ P ∪ rev(P )
lengths of explicit darts are residual capaci-
ties (not including circulation component)

24: `[rev(d)]← |v[pi]| − φX [tailG∗(rev(d))] + φX [headG∗(rev(d))]
limit on the residual capacity of
rev(d) (adjusted by circulation
component)

25: φXi (·)← FR-DIJKSTRA(D∗, `,φX ,headG∗(d))
distances in G∗ from headG∗(d) w.r.t. the
reduced lengths induced by φX

26: val← φXi [head(rev(d))]− φXi [tail(rev(d))]
the amount of flow assigned to d by the
circulation corresponding to φX

i

27: f [d]← f [d] + val ; f [rev(d)]← −f [(d)] do not push the circulation on d and rev(d)
28: φX = φX + φXi accumulate the current circulation
29: v[tail(d)] = v[tail(d)]− val ; v[head(d)] = v[head(d)] + val update the inflow at pi and pi+1

// find a feasible circulation
30: let x be an arbitrary node in G∗

31: let `[d]← c[d]− f [d] for all darts d ∈ G
32: χ← SINGLESOURCESHORTESTPATHS(G∗, `, x) distances of the nodes of G∗ from x

33: f ′[d]← f [d] + χ[headG∗(d)]− χ[tailG∗(d)] for every dart d ∈ G add explicit flow and implicit
circulation

34: return f ′
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5.3.4 Alternative to Line 32 of Algorithm 5.5

In this section we show that it is not necessary to use a generic shortest path algorithm that works

with negative lengths to compute a feasible circulation χ in line 32 of Algorithm 5.5. Instead of

choosing x to be an arbitrary node in G∗, let x be an arbitrary node of X∗. Let χ(y) denote the x-

to-y distance in G∗ w.r.t. the lengths `. Instead of computing χ using a shortest-path algorithm that

accepts negative lengths, we will compute it more efficiently in two steps. Pseudocode is given below

as Algorithm 5.6. In the first step we use FR-DIJKSTRA to compute the distances to just the nodes of

X∗. In the second step we extend these distances to all other nodes using Dijkstra’s algorithm.

In the first step the algorithm computes distances in G∗ from x to all nodes of X∗ w.r.t. `φX ,

the reduced lengths of ` induced by the feasible price function φX . This is done by an additional

invocation of FR-DIJKSTRA (line 2). Let ψX denote these distance labels. By definition of reduced

lengths and a telescoping sum similar to the one in the derivation of Eq. (5.4),

ψX [y] = χ(y) + φX [x]− φX [y]. (5.6)

Since both φX and ψX are known, the algorithm can compute the unreduced distances χ[y] for all

y ∈ X∗ (line 4). Next, the algorithm runs Dijkstra’s algorithm on G∗, initializing the label of each

node y of X∗ to its correct value χ[y]. Since in the dual the darts of P ∪ rev(P ) are only incident to

nodes of X∗, Dijkstra’s algorithm initialized in this manner correctly outputs the distance labels for

all nodes of G∗ even if some of the darts of P ∪ rev(P ) may have negative lengths.

Algorithm 5.6 Alternative to line 32 of Algorithm 5.5
1: let x be an arbitrary node in X∗

2: ψX = FR-DIJKSTRA(D∗, `,φX , x) find distances of the nodes of X∗ from x w.r.t. price function φX

3: initialize to∞ an array χ indexed by the nodes of G∗

4: χ[y] = ψX [y]− φX [x] + φX [y] for every y ∈ X∗ distances of the nodes of X∗ from x

5: extend ` to all darts of G∗ by `[d]← c[d]− f0[d] for every dart d ∈ G
6: χ← DIJKSTRA(G∗, `, x,χ) distances of the nodes of G∗ from x

5.3.5 Running Time Analysis

Let n and k be the number of nodes in G and in P , respectively. The initialization time is dominated

by the O(n log n + k2 log n) time for MSSP. The execution of each iteration of the main loop is

dominated by the call to FR-DIJKSTRA, which takes O(k log2 k) time. The number of iterations

is k − 1, leading to a total of O(k2 log2 k) time for execution of the main loop. Computing the

circulation χ requires one more call to FR-DIJKSTRA and one Dijkstra computation in the entire

graph, which takes O(n log n) time. Thus the total running time of the efficient implementation of

FIXCONSERVATIONONPATH is O(n log n+ k2 log2 k).
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5.4 Pushing Excess Inflow from a Cycle

In this section we describe the procedure CYCLETOSINKMAXFLOW that pushes excess inflow from a

cycle to a node not on the cycle.

Algorithm 5.7 CYCLETOSINKMAXFLOW(G, c,f0, C, t)
Input: a directed planar graph G with capacities c, a pseudoflow f0, a simple cycle C, a sink t.

Assumes: ∀v ∈ C+, inflowf0(v) ≥ 0, where C+ = {v ∈ C : {x ∈ C : inflowf0(x) > 0}
Gf0→ v}.

Output: a pseudoflow f s.t. (i) f − f0 obeys conservation everywhere but C+ ∪ {t}, (ii)

∀v ∈ C+, inflowf (v) ≥ 0, (iii) {v ∈ C : inflowf (v) > 0} Gf9 t.

1: let C+ ← {v ∈ C : there exists a residual path to v from a node x ∈ C with inflowf0(x) > 0}
2: delete the nodes of C − C+

3: let v1, v2, . . . , v` be the nodes of C+, labeled according to their cyclic order on C
4: add artificial arcs vivi+1 for 1 ≤ i < `
5: let P be the v1-to-v` path of artificial arcs
6: contract all the edges of P , collapsing C+ into the single node v1

7: f ← ST-MAXFLOW(G, c− f0, v1, t)
8: undo the contraction of the edges of P
9: f ← FIXCONSERVATIONONPATH(G,P, c,f0 + f) −f0

10: modify f to push back flow to nodes of C+ whose inflow w.r.t f0 + f is negative
11: f ← f0 + f
12: return f

To compute C+ in Line 1, consider the residual graph of G w.r.t. f0. Add a node v and non-zero

capacity arcs vw for every node w whose inflow w.r.t. f0 is positive (these arcs may not preserve

planarity). In O(|G|) time, find the set X of nodes that are reachable from v via darts with non-zero

capacity. Then C+ = C ∩X.

Since C+ consists of all nodes of C reachable via residual paths from the nodes of C with positive

inflow, the flow computed by the procedure involves no darts incident to nodes in C − C+. Thus,

restricting the computation to the graph obtained from G by deleting the nodes in C − C+ (line 2)

does not restrict the computed flow. After deletion, adding artificial arcs between consecutive nodes

of C+ (line 4) will not violate planarity. Contracting the artificial arcs effectively turns C+ into a

single node v1. Next, the procedure computes a maximum flow f from C+ to t w.r.t. residual capac-

ities c − f0. This is done by invoking a single-source single-sink maximum flow algorithm [BK09]

with source v1 and sink t (line 7). Uncontracting the artificial arcs turns f into a maximum C+-to-t

flow in G w.r.t. the residual capacities c− f0. However, some of the nodes of C+ may have negative

inflow w.r.t. f0 + f . In line 9, the procedure calls FIXCONSERVATIONONPATH to reroute the flow f

among the nodes of C+ so that, w.r.t. f0 + f , there are no residual paths from nodes of C+ with

positive inflow to nodes of C+ with negative inflow. This implies that any node of C+ that still has

negative inflow has pushed too much flow. Line 10 modifies f to push back such excess flow so

that no node of C+ has negative inflow w.r.t. f0 + f . This is done using the technique discussed in

Section 1.4.3. Finally, the procedure returns f0 + f .
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5.4.1 Correctness of CYCLETOSINKMAXFLOW

Any flow that is pushed by the procedure originates at C+ and terminates at C+ ∪ {t}. Therefore,

f − f0 violates conservation only at C+ ∪ {t}. In line 10, flow of f is pushed back so that no node

of C+ has negative inflow w.r.t. f0 + f . It is possible to do so by only pushing back flow of f (rather

than flow of f0 + f) since by assumption no node of C+ has negative inflow w.r.t. f0.

By maximality of the flow pushed in line 7, just after line 7 is executed there are no C+-to-t

residual paths. This remains true when the edges of P are uncontracted in Line 8. In line 9 flow

is pushed among the nodes of C+, so by sources lemma(C+, t, C+), there are no C+-to-t residual

paths after line 9 either. Moreover, by definition of FIXCONSERVATIONONPATH, there are no C>0-to-

C<0 residual paths immediately after line 9 is executed, where C>0 (C<0) is the set of nodes of C+

with positive (negative) inflow at that time. Line 10 pushes flow into C<0, making all the nodes

of C<0 obey conservation. By sinks lemma(C>0, t, C<0) there are no C>0-to-t residual paths upon

termination. This completes the proof since C>0 is the set of nodes of C with positive inflow upon

termination.

5.4.2 Running Time Analysis

We next analyze the running time of this procedure on an n-node graph G and a k-node cycle C.

The st-maximum flow computation in line 7 takes O(n log n) time using the algorithm of Borradaile

and Klein [BK09]. The running time of the procedure is therefore dominated by the call to FIXCON-

SERVATIONONPATH in line 9 which takes O(n log n+ k2 log2 k) time.



Chapter 6

Maximum Flow in Direceted Planar

Graphs with Multiple Sources and a

Single Sink

In this chapter we present an alternative algorithm for the maximum flow problem with multiple

sources and a single sink in planar graphs that runs in O(diameter · n log n) time. The diameter of a

graph is defined as the maximum over all pairs of nodes of the minimum number of edges in a path

connecting the pair. Here, we refer to the diameter of the face-vertex incidence graph. Essentially,

we start with a non-feasible flow that dominates a maximum flow, and convert it into a feasible

maximum preflow by eliminating negative-length cycles in the dual graph. The main algorithmic

tool is a modification of an algorithm of Klein [Kle05] for finding multiple-source shortest paths in

planar graphs with nonnegative lengths; our modification identifies and eliminates negative-length

cycles. This approach is significantly different than all previously known maximum-flow algorithms.

While the relation between flow in the primal graph and shortest paths in the dual graph has been

used in many algorithms for planar flow, considering fundamentally non-feasible flows and handling

negative cycles is novel. We believe that this is an interesting algorithmic technique and are hopeful

it will be useful beyond the current context.

6.1 Relation to Prior Work

Most of the algorithms for computing maximum flow in general (i.e., non-planar) graphs build a

maximum flow by starting from the zero flow and iteratively pushing flow without violating arc ca-

pacities. Traditional augmenting path algorithms, as well as more modern blocking flow algorithms,

push flow from the source to the sink at each iteration, thus maintaining a feasible flow (i.e., a flow

83



84

assignment that respects capacities and obeys conservation at non-terminals) at all times. Push-

relabel algorithms relax the conservation requirement and maintain a feasible preflow rather than

a feasible flow. However, none of these algorithms maintains a flow assignment that violates arc

capacities.

There are algorithms for maximum flow in planar graphs that do use flow assignments that

violate capacities [Rei83, MN95]. However, these violations are not fundamental in the sense that

the flow does respect capacities up to a circulation (a flow with no sources or sinks). In other words,

the flow may over-saturate some arcs, but no cut is over-saturated. We call such flows quasi-feasible

flows.

The value of a flow that does over-saturate some cuts is higher than that of a maximum flow. This

situation can be identified by detecting a negative-length cycle in the dual of the residual graph. One

of the algorithms in [MN95] uses this property in a parametric search for the value of the maximum

flow. When a quasi-feasible flow with maximum value is found, it is converted into a feasible one.

This approach is not suitable for dealing with multiple sources because the size of the search space

grows exponentially with the number of sources.

Our approach is the first to use and handle fundamentally infeasible flows. Instead of interpret-

ing the existence of negative cycles as a witness that a given flow should not be used to obtain a

maximum feasible flow, we use the negative cycles to direct us in transforming a fundamentally non-

feasible flow into a maximum feasible flow. A negative-length cycle whose length is −c corresponds

to a cut that is over saturated by c units of flow. This implies that the flow should be decreased by

pushing c units of flow back from the sink across that cut.

6.2 The Algorithm

We describe an algorithm that, given a graphGwith n nodes, a sink t incident to the infinite face f∞,

and a set S of source nodes, computes a maximum flow from the sources to t in time O(diameter ·
n log n), where diameter is the diameter of the face-vertex incidence graph of G. Initially, each dart

d has a non-negative capacity, which we denote by length(d) since we will interpret it as a length in

the dual. During the execution of the algorithm, the length assignment length(·) is modified. Even

though the algorithm does not explicitly maintain a flow at all times, we will refer throughout the

description to the flow pushed by the algorithm. At any given point in the execution of the algorithm

we can interpret the lengths of darts in the dual as their residual capacities in the primal. By the

flow pushed by the algorithm we mean the flow that would induce these residual capacities.

The algorithm starts by pushing flow from every source s to t such that, for each source s, the

edges Γ+({s}) are saturated (Line 4). In general, this flow is not feasible since it might violate the

capacities of some darts. It then starts to reduce that flow in order to make it feasible. This is done

by using a spanning tree T of G and a spanning tree T ∗ of G∗ such that each edge is in exactly one of

these trees. The algorithm repeatedly identifies a negative cycle C in G∗, which corresponds in G to
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Algorithm 6.1 Multiple-source single-sink maximum flow (G,S, t, c0)

Input: planar directed graph G with capacities c0, source set S, sink t incident to f∞
Output: a maximum feasible flow f

1: length(d) := c0(d) for every dart d
2: initialize spanning tree T ∗ of G∗ rooted at f∞ using right-first-search
3: let T be the spanning tree of G consisting of edges not in T ∗, and root T at t
4: for each source s ∈ S
5: for each dart d on the s-to-t path in T
6: length(d) := length(d)− length(Γ+({s}))
7: length(rev(d)) := length(rev(d)) + length(Γ+({s}))
8: while there exist unrelaxed darts in G∗

9: let d̂ be an unrelaxed dart that is leafmost in T
10: if d̂ is not a back-edge in T ∗ then //perform a pivot
11: remove from T ∗ the parent edge of headG∗(d̂) and insert d̂ into T ∗

12: else // fix a negative cycle by pushing back flow
13: let C denote the fundamental cycle of d̂ with respect to T ∗ in G∗

14: for each dart d of the d̂-to-t path of darts in the primal spanning tree T

length(d) := length(d) + |length(C)|
length(rev(d)) := length(rev(d))− |length(C)|

15: for every dart d strictly enclosed by C
16: f(d) := c0(d)− lengthT∗(d)
17: in G, contract d //in G∗, delete d

18: f(d) := c0(d)− lengthT∗(d) for every dart d
19: convert the preflow f into a flow

an over-saturated cut. Line 14 decreases the lengths of darts on a primal path in T that starts at the

sink t and ends at some node v (a face in G∗) that is enclosed by C. We call such a path a pushback

path. This change corresponds to pushing flow back from the sink to v along the pushback path,

making the over-saturated cut exactly saturated. We call the negative-turned-zero-length cycle C a

processed cycle. Processed cycles enclose no negative cycles. This implies that there exists a preflow

that saturates the cut corresponding to a processed cycle (see Lemma 6.3.5). The algorithm records

that preflow (Line 16) and contracts the source-side of the cut into a single node referred to as a

super-source.

When no negative length cycles are left in the contracted graph, the flow pushed by the algorithm

is quasi-feasible. That is, the flow pushed by the algorithm is equivalent, up to a circulation, to a

feasible flow in the contracted graph. Combining this feasible flow in the contracted graph and the

preflows recorded at the times cycles were processed yields a maximum preflow for the original

uncontracted graph. In a final step, this maximum preflow is converted into a maximum feasible

flow.

We now describe in more detail how negative cycles are identified and processed by the algo-

rithm. The algorithm maintains a spanning tree T ∗ of G∗ rooted at the infinite face f∞ of G, and a

spanning tree T of G, rooted at the sink t. The tree T consists of the edges not in T ∗. The algorithm

tries to transform T ∗ into a shortest-path tree by pivoting into T ∗ unrelaxed darts according to some



86

d^

Figure 6.1: Identifying and processing a negative cycle. On the left, the tree T ∗ is shown in solid
red. Non-tree edges are dashed. The unrelaxed dart d̂ is double lined dashed red. In the primal
d̂ is shown as a double lined blue dart. The fundamental cycle of d̂ w.r.t. T ∗ (marked yellow) is
a counterclockwise dual cycle whose length is negative. The primal pushback path is indicated in
blue. It originates from the sink t and ends at the tail of the primal dart d̂. After the negative cycle
is processed, its interior is deleted (on the right).

particular order (line 9). However, if an unrelaxed dart d̂ happens to be a back-edge in T ∗, the cor-

responding fundamental cycle C is a negative-length cycle. To process C, flow is pushed from t to

tail(d̂) along the t-to-d̂ path in T (line 14). The amount of flow the algorithm pushes is |length(C)|,
so after C is processed its length is zero, and d̂ is no longer unrelaxed. The algorithm then records

a preflow for C, deletes the interior of C, and proceeds to find the next unrelaxed dart. See Fig. 6.1

for an illustration1. When all darts are relaxed, T ∗ is a shortest-path tree, which implies no more

negative-length cycles exist.

To control the number of pivots we initialize T ∗ to be right-short (see Section 1.3.4), and show

that right-shortness is preserved by the algorithm and that it implies that the number of pivots of

any dart is bounded by the diameter of the face-vertex incidence graph. We later discuss how data

structures enable the iterations to be performed efficiently.

6.3 Correctness and Analysis

We begin with a couple of basic lemmas. Consider the sink t as the infinite face of G∗. By our

conventions, any clockwise (counterclockwise) cycle C in G∗ corresponds to a primal cut (X,V −X)

such that t ∈ X (t /∈ X); see Fig. 1.3.

1Recall the discussion in Section 1.2.4 about inverted orientations of the dual in figures like Fig. 6.1. In the figure the
cycle appears to be clockwise, but this is a counterclockwise dual cycle.
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Lemma 6.3.1. Consider the sink t as the infinite face of G∗. The length of any clockwise (counter-

clockwise) dual cycle does not decrease (increase) when flow is pushed to t. The length of any clockwise

(counterclockwise) dual cycle does not increase (decrease) when flow is pushed from t.

Proof. The change in the length of a dual cycle is equal to the change in the residual capacity of the

corresponding primal cut. Since clockwise cycles correspond to cuts (X,V −X) s.t. t ∈ X, it follows

that the residual capacity of a cut corresponding to a clockwise dual cycle can only increase when

flow is pushed to t. The proofs of the other claims are similar.

The following is a restatement of a theorem of Miller and Naor [MN95].

Lemma 6.3.2. Let G be a planar graph. Let c0 be a capacity function on the darts of G. Let f be a flow

assignment. Define the length of a dart d to be its residual capacity c0(d)−f(d). If f is quasi-pseudoflow

then f ′(d) = c0(d)− lengthT∗(d) is a pseudoflow, where T ∗ is a shortest-path tree in G∗. Furthermore,

f ′ = f + ρ for some circulation ρ.

Proof. If f is a quasi-pseudoflow then there exists a feasible circulation ρ in Gf . In Section 1.4.1

we proved that ρ(d) = length(T ∗[headG∗(d)]) − length(T ∗[tailG∗(d)]) is such a feasible circulation,

where the length of darts are defined to be their capacity in Gf , namely c(d) = c0(d) − f(d). Thus,

c(d)− ρ(d) ≥ 0. Interpret c(d)− ρ(d) as residual capacity with respect to some flow f ′ in G. Namely,

c(d)− ρ(d) = c0(d)− f ′(d). Therefore, f ′(d) = c0(d)− c(d) + ρ(d) = f(d) + ρ(d). Furthermore,

f ′(d) = c0(d)− c(d) + ρ(d)

= c0(d)− c(d) + length(T ∗[headG∗(d)])− length(T ∗[tailG∗(d)])

= c0(d)− (c(d) + length(T ∗[tailG∗(d)])− length(T ∗[headG∗(d)]))

= c0(d)− lengthT∗(d)

where the last equality follows from the definition of the reduced lengths with respect to T ∗.

Correctness

To prove the correctness of the algorithm, we first show that a fundamental cycle w.r.t. a back-edge

is indeed a negative-length cycle.

Lemma 6.3.3. Let d̂ be an unrelaxed back-edge w.r.t. T ∗. The length of the fundamental cycle of d̂

w.r.t. T ∗ is negative.

Proof. Consider the price function induced by from-root distances in T ∗. Every tree dart whose tail

is closer to the root than its head has zero reduced length. The reduced length of an unrelaxed dart

is negative. Since d̂ is a back edge w.r.t. T ∗, its fundamental cycle C uses darts of T ∗ whose lengths

are zero. Therefore the reduced length of C equals the reduced length of just d̂, which is negative.

The lemma follows since the length and reduced length of any cycle are the same.
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Lemma 6.3.4. Let C be the negative-length cycle defined in line 13. After C is processed in line 14,

length(C) = 0 and d̂ is relaxed. Furthermore, the following invariants hold just before line 14 is

executed:

1. the flow pushed by the algorithm satisfies flow conservation at every node other than the sources

(including super-sources) and the sink.

2. the outflow at the sources is non-negative.

3. there are no clockwise negative-length cycles.

Proof. The proof is by induction on the number of iterations of the main while loop of the algorithm.

The initial flow pushed by the algorithm is from the sources to the sink. Therefore, conservation is

satisfied at every non-terminal, the outflow at the sources is non-negative, and there is a one-to-one

correspondence between over-saturated cuts in the primal and counterclockwise negative-length

cycles in the dual.

For the inductive step, since by the inductive assumption there are no clockwise cycles, Lemma 6.3.3

implies that the cycle C in line 13 must be counterclockwise. Therefore, the unrelaxed dart d̂ in line 9

points in T towards the root t. Thus, the length of d̂ is increased in line 14 by |length(C)|, and the

length of C becomes zero. This shows the main claim of the lemma. To complete the proof of the

invariants, note that the interior of C is deleted in G∗, so the flow pushed in line 14 is now a flow

from the sink to the newly created super-source. This shows that invariant (1) is preserved. Having

length(C) = 0 implies that the total flow pushed so far by the algorithm from the newly created

super-source is non-negative. This shows (2).

Since the outflow at all sources is non-negative after the pushback, the inflow at the sink must

still be non-negative and equals the sum of outflows at the sources. Therefore, for any negative-

length dual cycle, the corresponding primal over-saturated cut (X,V −X) must be such that t /∈ X.

Hence any negative-length cycle is counterclockwise. This shows (3).

We now prove properties of the flow computed by the algorithm. The following lemma charac-

terizes the flow recorded in line 16. Intuitively, this shows that it is a saturating feasible flow for the

cut corresponding to the processed cycle.

Lemma 6.3.5. Let C be a cycle currently being processed. Let (X,V − X) be the corresponding cut,

where t /∈ X. The flow assignment f computed in the loop in Line 16 satisfies:

1. f(d) ≤ c0(d) for all darts whose endpoints are both in X.

2. every node in X except sources and tails of darts of Γ+(X) satisfies conservation.

3. for every d′ ∈ Γ+(X) such that tail(d′) is not a source,

inflowf (tail(d′)) ≥
∑

d∈Γ+(X):tail(d)=tail(d′)

c0(d)
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Proof. let G∗c denote the region of G∗ enclosed by C. Let Gc denote the graph obtained from G by

contracting V −X into a single node. Note that G∗c is the dual of Gc. Let d̂ be the non-tree dart of

C. Since d̂ is leafmost unrelaxed, there are no unrelaxed darts in G∗c other than d̂. By Lemma 6.3.4,

after the loop in line 14 is executed d̂ is no longer unrelaxed as well. Therefore, the restriction

of T ∗ to G∗c is a shortest-path tree for G∗c, and G∗c contains no negative cycles. The conditions

of Lemma 6.3.2 are satisfied, so when f(d) is set to c0(d) − lengthT∗(d) in Line 16, it respects the

capacities c0(d) for all d ∈ Gc. This shows 1.

By Lemma 6.3.4, just before C is processed, the restriction of the flow pushed by the algorithm to

Gc satisfies conservation everywhere except at the sources and at the sink. In Line 14 flow is pushed

back to tail(d̂), so there is more flow entering tail(d̂) than leaving it (unless tail(d̂) happens to be a

source). Therefore, the restriction of the flow pushed by the algorithm to Gc satisfies conservation

everywhere except at the sources, the sink (which in Gc is the only node not in X) and tail(d̂). By

Lemma 6.3.2, the flow f(d) = c0(d)− lengthT∗(d) differs from the flow pushed by the algorithm by

a circulation, so f(·) satisfies conservation at all those nodes as well.

In particular, for every dart d′ ∈ Γ+(X) such that tail(d′) is not a source, 0 ≤
∑
d:head(d)=tail(d′) c0(d)−

lengthT∗(d) (this is an inequality only for d′ = d̂). However, note that the darts of Γ+(X) are

not strictly enclosed by C, and that lengthT∗(d) = 0 for every d ∈ C. Since Line 16 assigns

f(d) = c0(d)−lengthT∗(d) only to darts strictly enclosed by C (and implicitly assigns zero to all other

darts), we get that, for the darts of Γ+(X), 0 ≤
∑
d:head(d)=tail(d′) f(d)+

∑
d∈Γ+(X):head(d)=tail(d′) c0(d).

Or alternatively, for every d′ ∈ Γ+(X),
∑
d:head(d)=tail(d′) f(d) ≥

∑
d∈Γ+(X):tail(d)=tail(d′) c0(d). This

shows 2 and 3.

Lemma 6.3.6. The following invariant holds. In G∗ every source is enclosed by some zero-length cycle

that encloses no negative-length cycles.

Proof. Initially, the face of G∗ corresponding to each source is such a cycle. At the time a cycle C

is processed and a super-source s is created, C is a zero-length cycle enclosing s that encloses no

negative-length cycles. The length of C only changes if the pushback path ends at a dart of C in the

execution of Line 14 when processing a cycle C ′ at some later time. Since the interior of C is deleted

when C is processed, C ′ encloses C. At this time, the interior of C ′, is contracted into a single new

super-source which is enclosed by the zero-length cycle C ′ that encloses no negative cycles.

The following lemma is an easy consequence of lemma 6.3.6.

Lemma 6.3.7. The following invariant holds. There exists no feasible flow f ′ s.t. inflowf ′(t) is greater

than inflowf (t), where f is the flow pushed by the algorithm.

Proof. Let fs be the amount of flow source s delivers to the sink in the flow pushed by the algo-

rithm. Consider a flow f ′ and let f ′s be the amount of flow source s delivers to the sink in f ′. By

Lemma 6.3.6, at any time along the execution of the algorithm, every source is enclosed in a zero

length cycle. Consider such a zero-length cycle C. If
∑
s enclosed by C f

′(s) >
∑
s enclosed by C f(s) then

the dual of the residual graph w.r.t. f ′ contains a negative cycle, so f ′ is not feasible.
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Lemma 6.3.8. The flow f computed in Line 18 is a maximum feasible flow in the contracted graph G

w.r.t. the capacities c0.

Proof. The flow pushed by the algorithm satisfies conservation by Lemma 6.3.4. By Lemma 6.3.7,

there is no feasible flow of greater value. Since there are no unrelaxed darts, T ∗ is a shortest-path

tree in G∗ and G∗ contains no negative cycles. Therefore, the flow pushed by the algorithm is quasi-

feasible. This shows that the conditions of Lemma 6.3.2 are satisfied. It follows that f computed in

Line 18 satisfies conservation, respects the capacities c0 and has maximum value.

Lemma 6.3.9. The flow assignment f(d) is a maximum preflow in the (uncontracted) graph G w.r.t.

the capacities c0.

Proof. f is well defined since each dart is assigned a value exactly once; in Line 16 at the time it is

contracted, or in Line 18 if it was never contracted. By Lemma 6.3.8 and by part 1 of Lemma 6.3.5,

f(d) ≤ c0(d) for all darts d, which shows feasibility. By Lemma 6.3.8 and by part 2 of Lemma 6.3.5,

flow is conserved everywhere except at the sources, the sink, and nodes that are tails of darts

of processed cycles. However, for a node v that is the tail of some dart of a processed cycle,∑
d:head(d)=v f(d) ≥ 0. This is true by part 3 of Lemma 6.3.5, and since f(d) ≤ c0(d) for any

dart. f(·) is therefore a preflow. Finally, the value of f(·) is maximum by Lemma 6.3.8.

Lemma 6.3.9 completes the proof of correctness since line 19 converts the maximum feasible

preflow into a feasible flow of the same value.

Efficient implementation

The dual tree T ∗ is represented by a table parentD[·] that, for each nonroot node v, stores the dart

parentD[v] of T ∗ whose head in G∗ is v. The primal tree T is represented using a dynamic-tree data

structure such as self-adjusting top-trees [AHdT05]. Each node and each edge of T is represented

by a node in the top-tree. Each node of the top-tree that represents an edge e of T has two weights,

wL(e) and wR(e). The values of these weights are the reduced lengths of the two darts of e, the one

oriented towards leaves and the one oriented towards the root.2 The weights are represented so as

to support an operation that, given a node x of the top-tree and an amount ∆, adds ∆ to wR(e) and

subtracts ∆ from wL(e) for all edges e in the x-to-root path in T .

This representation allows each of the following operations be implemented in O(log n) time:

lines 9, 11, 13, 16, and 17, the loop of line 5, and the loop of line 14.3

Running-Time Analysis

Lines 16 and 17 are executed at most once per edge. To analyze the running time it therefore

suffices to bound the number of pivots in line 11 and the number of negative cycles encountered

2Note that the length of the the cycle C in line 13 is exactly the reduced length of d̂.
3The whole initialization in the loop of line 4 can instead be carried out in linear time by working up from the leaves
towards the root of T .
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by the algorithm. Note that every negative length cycle strictly encloses at least one edge. This is

because the length of any cycle that encloses just a single source is initially set to zero, and since

the length of the cycle that encloses just a single super-source is set to zero when the corresponding

negative cycle is processed and contracted.

Since the edges strictly enclosed by a processed cycle are deleted, the number of processed cycles

is bounded by the number of edges, which is O(n).

It remains to bound the number of pivots. We will prove that the tree T ∗ satisfies the right-

shortness property (see Section 1.3.4). This property implies that the number of times a given dart

pivots into T ∗ is bounded by the diameter of the graph (Lemma 6.3.15). Thus, the total running

time of the algorithm is O(diameter · n log n).

Since T ∗ is initialized using right first search, initially, for every node v there is no simple path

in G∗ that is strictly right of T ∗[v]. Therefore, initially, T ∗ is right-short. The algorithm changes T ∗

in two ways; either by making a pivot (line 11) or by processing a negative-length cycle (line 14).

The following lemma was proved in [Kle05]:

Lemma 6.3.10. [Kle05] leafmost dart relaxation (line 11) preserves right-shortness.

Lemma 6.3.11. Right-shortness is preserved when processing the counterclockwise negative-length cycle

C in line 14.

Proof. For a node v, let P denote the tree path T ∗[v]. Let Q be a simple path that is strictly right of

P . By right-shortness of T ∗, before line 14 is executed length(Q) > length(P ). We show that this is

also the case after line 14 is executed. By definition of right-of, P ◦ rev(Q) is a clockwise cycle. Note

that since C is counterclockwise, the changes in lengths of darts in line 14 correspond to pushing

back flow from the sink t. Therefore, by Lemma 6.3.1, the length of P ◦ rev(Q) can only decrease.

Since no dart of P changes its length (only lengths of darts of T are changed in line 14), this implies

that rev(Q) can only decreases in length. By antisymmetry, the length of Q can only increase, so

length(Q) > length(P ) after the execution as well.

We have thus established that

Corollary 6.3.12. T ∗ is right-short at all times.

In the remainder of this section we bound the number of times a dart d is ejected from T ∗.

Lemma 6.3.13. Let G be a planar graph. Let P,Q be two v-to-u simple edge disjoint paths of darts

for some nodes u, v. Let m be a bound on the number of darts in either P or Q. Let φ be the potential

function associated with P ◦ rev(Q), normalized to zero on the infinite face of G. For any face f ,

|φ[f ]| ≤ 4m.

Proof. Consider the faces of the subgraph G′ of G induced by P ◦ rev(Q). Since P and Q are simple,

each such face consists of at least one edge of P and one of Q. Each edge of P or Q is in at most two

faces, so the number of faces of G′ is bounded by 2m. Assume |φ[f ]| > 4m for some face f of G′.

Then there must exist a dart d such that |φ[headG′∗(d)]− φ[tailG′∗(d)]| > 2. However, since P and
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Q are simple, each dart appears in P ◦ rev(Q) at most twice, so |φ[headG′∗(d)]− φ[tailG′∗(d)]| ≤ 2,

a contradiction.

For an iteration i of the algorithm, let T ∗i be the tree T ∗ at the end of that iteration. Consider a

dart d of G∗ with head f . Let Pi denote T ∗i [f ]. Let Ci be the dual cycle Pi ◦ rev(Pi−1). Let φi be the

potential function associated with Ci (see Eq. (1.1)).

Lemma 6.3.14. For any i, φi is non-negative. Furthermore, if d is ejected from T ∗ in iteration i, then

φi is strictly positive for at least one of the two faces (primal nodes) to which d is adjacent.

Proof. Since Pi is at least as short as Pi−1 and by right-shortness of T ∗, Pi is left of Pi−1. Hence, Ci
is a clockwise dual cycle, so φi is non-negative.

Consider the iterations of the algorithm when d is ejected from T ∗. Let i be such an iteration.

That is, d ∈ T ∗i−1, but d /∈ T ∗i . Since d ∈ Pi−1, d /∈ Pi, one of the two faces (primal nodes) to which

d is adjacent is assigned a strictly positive potential by φi

Lemma 6.3.15. A dart d is ejected from T ∗ at most 16 · diameter times throughout the execution of the

algorithm, where diameter is the diameter of the face-vertex incidence graph R(G∗) of G∗.

Proof. Let γ be a f∞-to-f path in the face-vertex incidence graph R(G∗) of G∗ with at most diameter

edges. For the sake of the proof, we may consider adding edges to G∗ without violating planarity so

that γ is a path in the augmented G∗.

For any k, let φγ,k be the potential function that corresponds to Pk ◦ rev(γ). Observe that Pk ◦
rev(γ) can be written as a telescopic sum:

Pk ◦ rev(γ) = Pk ◦ rev(Pk−1) ◦ Pk−1 ◦ rev(Pk−2) ◦ · · · ◦ P1 ◦ rev(P0) ◦ P0 ◦ rev(γ). (6.1)

By linearity of the relation of circulations and face potentials (Eq. (1.7)), φγ,k can be written as:

φγ,k = φγ,0 +
k∑
i=1

φi (6.2)

Let j be the number of times d is ejected from T ∗. By Lemma 6.3.14 and Eq. (6.2), for at least

one face (primal node) v to which d is adjacent φγ,k[v] − φγ, 0[v] > b j2c. By Lemma 6.3.13,

|φγ,k[v]− φγ0[v]| < 8 · diameter. Hence j is at most 16 times the diameter of the face vertex in-

cidence graph of G∗.
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In this thesis we have shown how to exploit the combinatorial structure of planar graphs to

obtain nearly linear-time algorithms for shortest paths and flow problems. In Chapter 2, we saw

how to efficiently exploit the Monge property to solve the shortest-path problems in planar graphs

with negative lengths. The main contributions there were in showing decompositions into Monge

matrices, avoiding the Θ(log n) overhead incurred by earlier such decompositions, and in showing

how that the SMAWK algorithm and its generalizations to partial matrices can be used in this context.

We used the Monge property once more in Chapter 3, where we observed that a range-minimum

query data structure for Monge matrices can be used to extend Fakcharoenphol and Rao’s efficient

implementation of Dijkstra’s algorithm to work with reduced lengths. Such an extension was nec-

essary in our approach for solving the maximum flow problem with multiple sources and sinks in

planar graphs in chapter 5, which uses the connection between shortest paths in the dual graph and

circulations in the primal.

We saw an additional use of the relation between primal circulations and dual shortest paths

in Chapter 6, where we developed a new technique for computing maximum feasible flow. An

interesting feature of this technique is that throughout the computation, the flow maintained by the

algorithm is neither capacity-respecting, nor does it obey conservation. Instead, the algorithm seeks

and eliminates cuts whose overall capacity is violated. When no such cuts exist, it is easy to convert

the flow into a feasible one. We find this technique appealing and hope it will find uses in the future.

We conclude with open problems and future research directions that are directly related to the

problems studied here.

Open Questions

The current fastest algorithm for shortest paths with negative arc lengths in planar graphs is the

O(n log2 n/ log log n)-time algorithm described in Chapter 2. For non-negative lengths there ex-

ists a linear-time algorithm [HKRS97]. Closing this gap is an important open problem. While

achieving a linear-time algorithm may be unlikely (compare to the gap between negative and non-

negative lengths in the general case), it is reasonable to believe that O(n log n) is achievable. The

running-time bottleneck currently stems from the use of the MSSP algorithm ([Kle05, CC07], see

Section 1.3.4) for computing the all-pair distances between O(
√
n) boundary nodes in a piece with

n nodes, which takes O(n log n) time. Many of the algorithms that use MSSP use it for this exact

purpose (e.g., the distance oracles in Chapter 4). In a sense, the MSSP data structure provides more

than we actually need. We can query it for the distance between any boundary node and any node

in the graph in O(log n) time. For our purposes we only require distances between pairs of boundary

nodes, and we know in advance we require all such pairs. Is it possible to design a linear time

algorithm for this special case? Such an algorithm would imply an O(n log n) running time for the

algorithm in Section 2.1.

Another possible direction is to abandon the divide-and-conquer recursive approach and focus on

more direct approaches. One such direction is extending the sweep technique, which was successfully
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used in Klein’s MSSP, and for maximum s-t flow in planar graphs [BK09]. We note that a slight

variant on the MSSP algorithm can used to compute shortest paths with negative lengths in planar

graphs. Instead of initializing the algorithm with a shortest-path tree, initialize it with a right-first-

search tree. An analysis similar to that of the multiple-source single-sink maximum flow algorithm

in Chapter 6 shows that the running time is O(diameter · n log n). Can a similar approach lead to a

more efficient algorithm?

Fakcharoenphol and Rao’s implementation of Dijkstra’s algorithm for a set of dense distance

graphs on n nodes runs in time O(n log2 n). Improving this running time would imply better running

time for quite a few algorithms that use FR-Dijkstra, such as the multiple-source multiple-sinks

maximum flow algorithm of Chapter 5, the exact distance oracles of Chapter 4, and the minimum

st-cut oracle in [BSWN10]. One of the logarithmic factors in the running time of FR-Dijkstra arises

from the decomposition of the distance matrix for a dense distance graph on n nodes into Monge

matrices, such that each node is represented in O(log n) Monge matrices. As we have shown in

Section 2.1, this decomposition can be avoided in the context of the Bellman-Ford algorithm. Can

one avoid the logarithmic blowup in the case of FR-Dijkstra as well?

Currently, the best space-to-query-time tradeoff known for exact distance oracles is Õ(n/
√
s)

query-time for an oracle requiring O(S) space. Our work on exact distance oracles (Chapter 4)

filled in the gap, so that such oracles are now known for the entire range S ∈ [n log log n, n2]. A

modest goal in this context would be to get rid of the logarithmic factors in the space-to-query-time

tradeoff. The natural important open problem is whether exact distance oracles with better space-

to-query-time tradeoff exist. Note that a much better tradeoff is known for approximate distance

oracles [KKS11]. Another related problem is the design exact dynamic distance oracle - data struc-

tures that are capable of handling both distance queries and updates to the graph such as length

updates or insertions and deletions of edges. The best such data structures require linear space

support each distance query or update operation in Õ(n2/3) amortized time [Kle05, KMNS12].

As we have seen in Chapter 5, maximum flow with multiple sinks and sources in planar graphs

can now be solved in O(n log3 n) time. It would be interesting to get rid of at least some of the

logarithmic factors. As we mentioned above, one way to achieve that, would be to improve the

running time of FR-Dijkstra. Another interesting question is whether the same approach can be used

to solve the problem quickly in more general classes of graphs such as bounded-genus graphs. As

we have mentioned in the introduction to Part III, our MSMS max-flow algorithm can be used to

improve the running time required for solving the maximum flow problem with multiple sources

and sinks and vertex capacities, in the regime of a moderate number of nodes with finite capacity.

Can the running time be improved without any assumptions on the number of nodes with finite

capacity? Is near-linear time possible?

Finally, the technique used in the algorithm for maximum flow with multiple sources and a single

sink in Chapter 6 is currently a solution looking for a problem. Perhaps this technique can be used

in solving related problems such as minimum cost circulation, or other variants of maximum flow.
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