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muri, Hideaki Kimura, Alptekin Küpçü, Jie Mao, Jadrian Miles, Greg Nicholas, Olya Ohrimenko,

Genevieve Patterson, Andrew Pavlo, Eric Rachlin, Anna Ritz, Deepak Santhanam, Warren Schudy,

Eric Sodomka, Libin Sun, Aggeliki Tsoli, Marek Vondrak, Dongbo Wang, Zhe Zhang, Zhenyuan

Zhao, and Wenjin Zhou. Both the acedemic and technical staff have been very helpful. Thanks also

to my friends, Daosheng Deng, Jie Dong, Jian Gong, Huan Lei, Dov Sax, Jean Keith, Xiang Li,

Yifeng Jiang, Ali Osman Ulusoy, Wanchun Wei, Hui Zhao, and Yong Zhao.

I am forever grateful to my parents and my sister for their long-time encouragement and love.

My gratitude to them is beyond words. Finally, thanks goes to my fiancée, Jie Ren, for her love and

support.

viii



Contents

Vitæ iv

Dedication vi

Acknowledgements vii

List of Tables xii

List of Figures xiv

Chapter 1. Introduction 1

1.1. Motivations 1

1.1.1. Video Super Resolution 1

1.1.2. Pedestrian Detection and Action Recognition 2

1.1.3. Content-aware Video Resizing 2

1.2. Challenges 3

1.2.1. Aperture Problem 3

1.2.2. Motion Boundaries 3

1.2.3. Occlusions 4

1.3. Approach 4

1.3.1. Image-dependent, Non-local Flow Prior Model 5

1.3.2. The Layered Approach 5

1.4. Contributions and Overview 6

1.5. List of Related Papers 7

Chapter 2. A Review of the State of the Art 8

2.1. Optical Flow Estimation 8

2.1.1. Models 8

2.1.2. Optimization Method 11

2.1.3. Implementation Details 14

2.1.4. Existing Issues 14

2.2. Optical Flow and Segmentation 14

2.2.1. Static Image Segmentation 14

2.2.2. Motion for Segmentation 15

2.2.3. Static Segmentation for Motion 15

2.2.4. Variational Approach to Joint Segmentation and Estimation 15

2.3. Layered Models 15

ix



2.3.1. Early Formulations 16

2.3.2. Motion Models 16

2.3.3. Depth Ordering 17

2.3.4. Segmentation Models 17

2.3.5. Temporal Consistency 18

2.3.6. Number of Layers 18

2.3.7. Inference for Layered Models 19

2.3.8. Existing Issues 19

2.4. Learning 19

2.5. Benchmark Datasets, Evaluation, and Software 20

2.5.1. Synthetic (“Yosemite”-like) Dataset 20

2.5.2. Middlebury Dataset 20

2.5.3. MIT Layered Segmentation Dataset 22

2.5.4. Performance Measures 22

2.5.5. Evaluation and Software 23

Chapter 3. Learning Low-level Models of Optical Flow 24

3.1. Introduction 24

3.2. Previous Work 25

3.3. Statistics of Optical Flow 26

3.3.1. Spatial Term 26

3.3.2. Data Term 27

3.4. Modeling Optical Flow 29

3.4.1. Spatial Term 29

3.4.2. Data Term 30

3.4.3. Learning 31

3.5. Optical Flow Estimation 32

3.6. Experiments and Results 33

3.6.1. Learned Models 33

3.6.2. Flow Estimation Results 34

3.7. Conclusions and Discussions 36

Chapter 4. A Quantitative Analysis of Recent Practices in Optical Flow Estimation and Their

Principles 37

4.1. Introduction 37

4.2. Previous Work 38

4.3. Classical Models 40

4.3.1. Baseline Methods 40

4.3.2. Baseline Results 41

4.4. Practices Explored 42

4.4.1. Best Practices 45

4.5. Models Underlying Median Filtering 46

4.6. Improved Model 49

x



4.6.1. Results on the MIT Dataset 52

4.7. Conclusions and Discussions 54

Chapter 5. A Generative Layered Model Based on Thresholded Support Functions 55

5.1. Introduction 55

5.2. Previous Work 57

5.3. A Layered Motion Model 58

5.3.1. Roughness in Layers 58

5.3.2. Layer Support and Spatial Contiguity 60

5.3.3. Depth Ordering and Occlusion Reasoning 61

5.4. Posterior Inference from Image Sequences 62

5.5. Experimental Results 62

5.5.1. Implementation Details 62

5.5.2. Results on the Middlebury Benchmark 63

5.5.3. Results on the “Hand” Sequence 72

5.6. Conclusions and Discussions 72

Chapter 6. Optical Flow Estimation and Layered Segmentation over Time 74

6.1. Introduction 74

6.2. Previous Work 76

6.3. Models and Inference 76

6.3.1. A Discrete Layered Model for Optical Flow 77

6.3.2. Inference for the Discrete Model 78

6.3.3. Layer Number Determination and Depth Order Reasoning 82

6.4. Experimental Results 83

6.4.1. Implementation Details and Parameter Settings 83

6.4.2. Motion Estimation 84

6.4.3. Layer Segmentation 86

6.5. Conclusions and Discussions 94

Chapter 7. Conclusions and Future Work 95

7.1. Contributions and Recommendations 95

7.2. Limitations and Future Work 96

7.2.1. Long-term Video Analysis with the Layered Model 96

7.2.2. Implementation 97

7.2.3. Dataset and Over-fitting Issues 98

Appendix A. Detailed Tables for Chapter 4 99

Appendix B. Gradient Formulae for Chapter 5 107

B.1. Gradients w. r. t. the Support Function 107

B.2. Gradients w. r. t. the Horizontal Flow Field 108

Bibliography 109

xi



List of Tables

3.1 Average angular error (AAE) results for learned models. 35

3.2 AAE results in motion boundary regions. 35

4.1 Evaluation of classical models. 41

4.2 Evaluation of pre-processing techniques. 42

4.3 Evaluation of variants of the baseline method. 43

4.4 Energy of solutions using different interpolation methods. 44

4.5 Energy of solutions using different implementation details. 46

4.6 EPE results for the alternating optimization. 49

4.7 Energy comparison for the new model. 49

4.8 EPE results for variants of Classic+NL. 53

4.9 EPE results on the Middlebury test for Classic++ and Classic+NL. 53

4.10 EPE results on the MIT dataset. 53

4.11 AAE results on MIT dataset. 54

5.1 EPE results for Layers++ and its variants. 63

5.2 EPE results on the Middlebury test set by Layers++. 64

5.3 Energy of solutions for Layers++ with different initializations. 65

5.4 Complete EPE results for Layers++ and its variants. 67

5.5 EPE results for different parameter settings. 72

6.1 The high-level algorithm for inferring the layered model. 83

6.2 The algorithm for infering the depth ordering between neighboring layers. 84

6.3 The algorithm for selecting the candidate neighboring layer pairs. 84

6.4 Middlebury training results. 85

6.5 Middlebury test results. 85

6.6 RandIndex results on MIT dataset. 85

A.1 Models: EPE results on Middlebury test set. 101

A.2 Models: AAE results on Middlebury test set. 102

A.3 Models and pre-processing: EPE results. 103

xii



A.4 Models and pre-processing: AAE results. 103

A.5 Pre-Processing. 104

A.6 Additional results for Horn & Schunck. 104

A.7 Model and methods. 105

A.8 Resutls of alternating optimization. 106

A.9 Results of the non-local term. 106

xiii



List of Figures

1.1 The motion estimation and layered segmentation problems. 2

1.2 Applications of optical flow: video super resolution. 2

1.3 Applications of optical flow: pedestrian detection. 3

1.4 Applications of optical flow: video resizing. 3

1.5 Brightness constancy and its limitations. 4

1.6 Challenges: motion boundaries. 4

1.7 Challenges: occlusions. 4

1.8 Static information helps motion estimation. 5

1.9 Illustration of the proposed layered model. 6

2.1 Oriented smoothness. 10

2.2 Taylor expansion is good with small motion. 12

2.3 Coarse-to-fine, incremental estimation. 12

2.4 Layered model illustrated. 16

2.5 “Yosemite” sequence. 21

2.6 Middlebury sequences. 21

2.7 MIT layer segmentation dataset. 22

3.1 Marginal statistics of optical flow derivatives. 28

3.2 Statistics of brightness constancy error. 28

3.3 Training data. 29

3.4 Fixed and learned filters for the data term. 33

3.5 Results of the SRF-LFC model for the “Army” sequence. 34

3.6 Army detailed results. 34

4.1 Factors that influence the accuracy of a method. 39

4.2 Plots of different penalty functions. 45

4.3 Effects of performing median filtering on the flow fields. 46

4.4 Neighbors for the pairwise model and the non-local model. 47

4.5 Army motion details. 49

4.6 Weighting schemes for the non-local term. 51

xiv



4.7 Classic+NL cannot handle occlusions. 52

5.1 Occlusions are ill-defined for optical flow. 56

5.2 Occlusion reasoning for the layered approach. 56

5.3 Graphical representation for the layered model. 59

5.4 Occlusion reasoning results on “Venus”. 64

5.5 Multiple frames help occlusion reasoning and flow estimation. 66

5.6 Visual results on Middlebury training dataset. 68

5.7 Visual results on Middlebury training dataset II. 69

5.8 Visual results on Middlebury test dataset. 70

5.9 Visual results on Middlebury test dataset II. 71

5.10 Visual results on “Hand” sequence. 72

6.1 Output on typical sequences by nLayers. 74

6.2 Poor initialization for Layers++. 75

6.3 Multiple frames help resolve depth ordering. 75

6.4 Discrete layered representation. 77

6.5 “Bird-apple” sequence. 78

6.6 Local minimum to avoid by the simultaneous segmentation and flow move. 79

6.7 Local minimum to solve by the visibility move. 80

6.8 Illustration for the visibility move. 81

6.9 Local minimum to solve by the occlusion-aware FusionFlow move. 82

6.10 Middlebury training results I. 87

6.11 Middlebury training results II. 88

6.12 Middlebury test results I. 89

6.13 Middlebury test results II. 90

6.14 MIT dataset results I. 91

6.15 MIT dataset results II. 92

6.16 MIT dataset results III. 93

6.17 Results on some “old” sequences. 94

A.1 Screen shot of Middlebury EPE table in July 2012. 100

A.2 Screen shot of Middlebury AAE table in July 2012. 100

xv



Abstract of “From Pixels to Layers: Joint Motion Estimation and Segmentation”

by Deqing Sun, Brown University, May 2013

Estimating image motion, or optical flow, in scenes with multiple moving objects and segmenting

the individual moving objects are two fundamental problems in computer vision and have applica-

tions in many fields, including medical imaging, image processing, graphics, and robotics. Motion

estimation and scene segmentation are particularly challenging because of lighting changes, motion

boundaries, occlusions, and indiscriminative appearances. Despite decades of extensive research ef-

fort, current methods still tend to produce large optical flow errors near motion boundaries and in

occlusion regions and falsely merge foreground objects with the background.

A key feature of optical flow methods is an energy term, or prior, that prefers spatially smooth

flow fields. In this dissertation, we show that image-dependent and non-local prior models can better

preserve motion boundaries than the widely used pairwise Markov Random Field (MRF) models.

We also demonstrate that joint motion estimation and segmentation can achieve more accurate

results than the separate treatment of each problem.

First, we formulate fully learnable low-level models of optical flow and learn the models from

training data. Our results show that image-dependent, steerable models outperform standard MRF

models, especially in recovering motion boundaries. Second, to understand what makes optical flow

accurate, we perform a quantitative analysis of recent practices in optical flow estimation. Median

filtering of the flow field is one of the key features of the most accurate methods and we formalize

this as a non-local smoothness term that integrates information over a large spatial neighborhood.

We further define a weighted non-local smoothness term that uses both image and motion cues

to preserve motion boundaries. Third, inspired by recent successes in static image segmentation

we develop a layered model to segment moving objects (layers) using image-dependent, continuous

support functions. The method orders each layer in depth and explicitly models the occlusions

between layers and the temporal consistency of layers. In an attempt to avoid being trapped in

poor local optima, we define a discrete formulation of our objective function and extend graph

cuts optimization methods to obtain good initial values for the continuous formulation. The mixed

continuous-discrete optimizer can automatically infer the number of layers and their depth ordering

for a given scene. Experimental results on benchmark datasets demonstrate the benefits of joint

motion estimation and segmentation: the layered approach achieves more accurate motion estimates

in motion boundary and occlusion regions and better segments the foreground from the background

when compared with solving each problem separately.
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CHAPTER 1

Introduction

We live in a dynamic world and constantly perceive visual motion between us and our surround-

ings. The perceived motion provides a rich source of information for us to understand the world and

make decisions. For example, humans use motion cues to extract the three-dimensional structure of

their environment, locate themselves, and control walking towards a target object [182]. There is

also evidence that motion plays a fundamental role in the early stage of visual learning [122].

Computer vision aims at extracting useful descriptions from input images for understanding the

visual world [107]. Significant progress has been achieved in static image analysis and understanding,

such as the development of real-time face detection system [173]. Nevertheless, understanding the

dynamic world is still challenging to current computer vision systems. One missing capability is to

perceive and understand motion from image sequences. This dissertation aims to improve automatic

estimation of pixel-level motion between related images of the same scene.

Motion estimation and segmentation. We now define the “motion estimation and seg-

mentation” problem of interest. Given a sequence of images taken by a camera over scenes with

multiple moving objects, we want to estimate the motion of each pixel between subsequent time

steps (frames), segment the scene into different moving objects, and infer the depth ordering of the

moving objects. The per-pixel motion field is usually called the optical flow field. Figure 1.1 shows

an input image pair, the ground truth optical flow field, and the human labeled segmentation.

1.1. Motivations

Motion provides the temporal correspondence between neighboring frames and is a fundamental

tool for video processing and analysis. We will use several examples in computer vision and graphics

to explain applications of motion.

1.1.1. Video Super Resolution. High definition TVs (HDTVs) have greatly enhanced our

visual experiences. However a significant amount of the video data have been captured in the

standard definition format. Playing standard definition TV programs on the HDTVs does not

necessarily result in pleasant visual experiences. Video super resolution aims at reconstructing a

high resolution video sequence with more details than an input low resolution sequence. Every frame

of the low resolution sequence provides a slightly different observation of the same scene. If we know

where every pixel goes from one frame to another, we can accumulate the information over time to

enhance the spatial details. To do so requires accurate and detailed alignment of the pixels (fine-level

motion estimates). Using fine-level motion estimates for video super resolution was first proposed in

the late 1990s [15], but the motion estimation techniques were not accurate enough. Only recently

have reliable motion estimation techniques made such an approach promising [103] for scenes with

slow and smooth motion fields, as shown in Figure 1.2.
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(a)First frame (b) Flow (vector plot) (c) Second frame

(d) Color key (e) Flow (color) (f) Segmentation

Figure 1.1. The Middlebury “RubberWhale” sequence and its ground truth optical flow field and human

segmentation. First row, left to right: (a) first image, (b) vector plot of the ground truth optical flow, and

(c) second image. Second row, left to right: (d) color key for the flow field, color key for the depth ordering

(blue is close and red is far), (e) color display of the ground truth optical flow (black means occlusion), and

(f) the human segmentation.

(a) Input low-res (b) Bicubic up-sampling ×4 (c) Output from [103] (d) Original frame

Figure 1.2. Optical flow-based video super resolution system is able to recover image details after ×4

up-sampling for sequences with smooth flow fields [103]© 2011 IEEE.

1.1.2. Pedestrian Detection and Action Recognition. Motion is one of the most impor-

tant low-level cues for visual grouping and provides useful information for many high-level tasks.

Walk et al. [176] show that motion features yield significant performance improvement on pedes-

trian detection (the detection rate increases from about 30% to more than 40%). Wang et al. [178]

find that the motion boundary cues [45] can suppress most camera motion in the background and

highlight the foreground objects for action recognition tasks.

1.1.3. Content-aware Video Resizing. More and more videos are captured everyday using

different devices, such as smart phones and high definition cameras. To play video sequences in

different display devices, we need to change (usually reduce) the size of the video. The most popular

interpolation methods treat every part of the images equally and are not effective at preserving the

important content of the image [10]. Instead we can resize the images according to their content.

2



Figure 1.3. Accurate motion estimation methods help pedestrian detection [176]© 2010 IEEE.

For example, removing background pixels is more desirable than removing foreground objects. One

key challenge is to make sure that the resized video is temporally coherent. Wang et al. [181] use

motion to define the temporal persistence of the video content and their motion-based method can

achieve high-quality video resizing results for videos with complex motions.

Figure 1.4. Accurate motion estimation methods enable temporally coherent video resizing [181]© 2010

ACM.

1.2. Challenges

1.2.1. Aperture Problem. The underlying assumption behind optical flow is brightness con-

stancy. A pixel is assumed to retain its brightness or certain image property despite its position

change over time. However the brightness constancy constraint is locally inadequate to recover

motion. Every pixel has only one measurement1, while we want to solve for the two unknown com-

ponents of the motion vector. For a given pixel in the first image, we can find many pixels with

similar color in the second image, as shown in Figure 1.5. Hence optical flow is an inherently ill-posed

problem.

1.2.2. Motion Boundaries. One common assumption to make the problem well-posed is the

smoothness of the optical flow. Neighboring pixels usually come from the same surface in the

3D world and should have similar motion. The smoothness assumption tends to fail across motion

boundaries, because the neighboring pixels are from different surfaces and may have different motion,

as shown in Figure 1.6. Imposing the smoothness at these regions inevitably blurs the motion

boundaries.

1Color seems to provide multiple observations but the three color components give nearly the same constraint.
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Figure 1.5. Brightness constancy is commonly assumed for optical flow estimation. It is possible to locally

track salient image features (left) but not homogeneous regions (right).

Figure 1.6. Motion boundaries: imposing smoothness across the motion boundaries will destroys the fine

motion structures.

1.2.3. Occlusions. Occlusions make the recovery of motion boundaries even harder. When

two moving objects meet, the front object occludes the one behind. The occluded pixels do not have

corresponding pixels in the next image and usually violate the brightness constancy assumption, as

shown in Figure 1.7.

Figure 1.7. Dark pixels in the ground truth are occluded and brightness constancy does not hold for these

occluded pixels. From left to right: first image, second image, and the ground truth flow field.

1.3. Approach

Let us summarize our discussions up to now. Optical flow estimation is an inherently ill-

posed problem. We cannot determine the image motion locally by the data (brightness) constancy

4



assumption and need smoothness prior models of the flow field. Motion boundaries and occlusion

regions violate the smoothness assumption and make the problem challenging.

Motion estimation is usually regarded as a typical low-level vision problem. The ill-posedness of

the problem requires prior models. Pairwise Markov Random Field (MRF) models enforce neighbor-

ing pixels to have similar values (motion) and have been popular in low-level vision tasks. We can

allow some motion discontinuities by using robust potential functions, but the robust MRF models

are still insufficient to recover sharp motion boundaries and occlusion regions [16]. We need more

advanced models.

1.3.1. Image-dependent, Non-local Flow Prior Model. The idea has been around for

some time that static image cues provide useful information for detecting and preserving motion

boundaries. Motion boundaries usually occur across the boundaries of different moving objects.

These objects tend to have different appearances. Consequently motion boundaries and appearance

(color) boundaries are likely to coincide. Figure 1.8 shows a cropped motion detail as well as the

corresponding image. The static image edges can well predict the location of the motion boundaries.

We can make the spatial model dependent on the input images to take advantage of such knowledge.

We study two image-dependent prior models for motion estimation. The first one exploits the

so called oriented smoothness introduced by Nagel and Enkelmann [117]. Locally the flow field is

more likely to be smooth in the direction parallel to the image edges and to have discontinuities

in the orthogonal direction. We use training data to analyze and model the statistical relationship

between image and flow boundaries by a Steerable Random Field (SRF). The second one uses the

observation that in a large spatial neighborhood, pixels with similar colors are more likely to come

from the same surface and so share similar motion. The commonly used pairwise MRF only allows

interaction between a pixel and its four nearest pixels. We show that direct interaction between

long-range spatial neighbors enables better integration of the spatial information to preserve motion

boundaries.

Figure 1.8. Static image information, such as color, provides strong cues to detect and preserve motion

boundaries. Left pair: first frame and its enlarged detail; right pair: ground truth flow field and its enlarged

detail (dark pixels correspond to occlusion regions). The motion boundaries coincide with the image edges.

In addition, a pixel tends to have similar motion with pixels coming from the same surface, though the two

may not be directly adjacent to each other.

1.3.2. The Layered Approach. Motion estimation is inherently related to segmentation. If

we can separate each moving objects (segmentation), we can integrate information only within a

particular object to preserve motion boundaries. Segmentation also allows occlusion reasoning over

time. On the other hand, different objects tend to have different motion; knowledge of motion

enables us to perform segmentation more confidently.
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Figure 1.9. Left: Graphical representation for the proposed layered model. Right: Illustration of variables

from the graphical model for the “Schefflera” sequence. Labeled sub-images correspond to nodes in the

graph. The left column shows the flow fields for three layers, color coded as in [16]. The g and s images

illustrate the reasoning about layer ownership (see text in Chapter 5). The composite flow field (u,v) and

layer labels (k) are also shown.

However, existing methods tend to solve either motion or segmentation separately, with the

assumption that a satisfactory solution to other problem is available.

We treat both the motion and the segmentation as unknowns and solve for them simultaneously

using a layered approach. The layered approach has been popularized by Wang and Adelson [180]

and has been regarded as an elegant approach to motion. However, previous layered methods have

not reported state-of-the-art motion estimation results on the widely used Middlebury optical flow

benchmark [16]. We develop a probabilistic layered model that fixes several key issues of previous

approaches. Our model explicitly models the depth ordering of layers, occlusions between layers,

and the temporal consistency of the layered structures, as shown in Figure 1.9.

1.4. Contributions and Overview

In this dissertation, we make two major contributions. First, we show that image-dependent,

non-local prior models can better integrate spatial information and preserve motion boundaries

than the widely used pairwise Markov Random Field (MRF) models. Second, we show that joint

motion estimation and segmentation by the layered approach produces more accurate results than

the separate treatment of each problem, in particular in motion boundary and occlusion regions.

In Chapter 2, we review the basic concepts behind optical flow estimation, in particular the

energy minimization approach introduced by Horn and Schunck [73] and the layered approach

popularized by Wang and Adelson [180].

In Chapter 3, we study the statistics of optical flow based on a training dataset with ground

truth flow fields. We learn standard models of optical flow and extend the standard model to deal

with lighting changes and oriented smoothness of the flow field.
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In Chapter 4, we perform a quantitative evaluation of recent practices in optical flow estimation

starting from the classical formulation by Horn and Schunck. We find that the key is to perform a

median filtering of the flow field during iterative flow estimation. We show that the median filtering

is equivalent to using a non-local term to integrate information in a large spatial neighborhood.

Based on this insight, we modify the non-local term to use static images cues to detect and preserve

motion boundaries.

In Chapter 5, we develop a probabilistic layered model based on thresholded continuous sup-

port functions. Using spatio-temporal coherent support functions explicitly models depth ordering,

occlusions, and temporal consistency of the scene structure. We also use semi-parametric motion

models to capture globally coherent but locally flexible flow fields.

In Chapter 6, we propose a discrete-continuous optimization scheme to avoid local minima of our

layered model. We formulate a discrete layered model using a sequence of depth ordered Ising MRFs

and introduce non-standard “cooperative” moves to optimize our model. The proposed layered

method achieves state-of-the-art performance on the Middlebury optical flow benchmark [16].

In Chapter 7, we summarize findings of this dissertation and describe limitations of our approach.

We also discuss directions that may be worth investigating in the future.

1.5. List of Related Papers

This dissertation is based on the materials in the following papers [158, 159, 160, 161]2.

• Deqing Sun, Erik B. Sudderth, and Michael J. Black. “Layered Segmentation and Optical

Flow Estimation over Time.” IEEE International Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1768–1775, 2012.

• Deqing Sun, Erik B. Sudderth, and Michael J. Black. “Layered Image Motion with Explicit

Occlusions, Temporal Consistency, and Depth Ordering.” Advances in Neural Information

Processing Systems (NIPS), pages 2226–2234, 2010.

• Deqing Sun, Stefan Roth, and Michael J. Black. “Secrets of Optical Flow Estimation

and Their Principles.” IEEE International Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2432–2439, 2010.

• Deqing Sun, Stefan Roth, J.P. Lewis, and Michael J. Black. “Learning Optical Flow.”

European Conference on Computer Vision (ECCV), Part III, pages 83–97, 2008.

2Joint work with Prof. Michael J. Black, Dr. J.P. Lewis, Prof. Erik B. Sudderth, and Prof. Stefan Roth.
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CHAPTER 2

A Review of the State of the Art

In this chapter, we first review dense optical flow estimation methods descended from the classi-

cal approach by Horn and Schunck, because nearly all the top-performing methods take this global

approach. We then discuss the relationship between motion and segmentation and review related

work. We then review the layered approach to jointly solve for the motion and the scene seg-

mentation. Finally, we address how to learn the model parameters and how training and testing

datasets can be used for both training and evaluation. Later chapters provide additional discussions

of methods related to the particular method of each chapter.

2.1. Optical Flow Estimation

In this section, we review previous approaches in terms of three key properties: the model

(objective function), the optimization method, and the implementation details.

2.1.1. Models. The fundamental assumption behind optical flow is the constancy of bright-

ness, or some image property, despite the position change of the pixels. Mathematically,

It(i, j) ≈ It+1(i+ ui,jt , j + vi,jt ), (1)

where It and It+1 are the current and the next input frames, i and j are the horizontal and vertical

pixel indices, and ui,jt and vi,jt is the horizontal and vertical motion for pixel (i, j) at frame t.

The brightness constancy assumption is often violated in natural scenes with non-Lambertian

reflectance, complex or changing lighting, cast shadows, or occlusion. For small motions it is sur-

prising however how often the assumption is valid (or at least useful). Nevertheless, the constancy

constraint is only a necessary condition and usually insufficient to recover the underlying motion.

For every pixel in the first frame, we can find many pixels in the next frame with similar brightness,

making the problem ill-posed. We need to pool information from spatial neighbors to overcome the

ill-posed problem, either locally or globally.

Local methods assume the motion of all the pixels within a local window follows a parametric

form [105, 164], such as translational motion in the simplest case. This approach works at well-

textured regions but becomes ill-posed in homogeneous regions. Defining the right window size is

a challenge to the local approach. A large-sized window allows the integration of information over

many pixels but may include pixels in other motion groups. The dilemma in choosing the right

window size is usually referred to as the generalized aperture problem [26].

Global methods assign an individual motion vector for every pixel and solve for the motion field

using the information from the whole image. This approach makes assumptions about the local

behavior of the motion fields. For example, neighboring pixels usually come from the same surface
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and therefore tend to have the same motion, i.e.,

ui,jt ≈ u
i+1,j
t , ui,jt ≈ u

i,j+1
t , (2)

vi,jt ≈ v
i+1,j
t , vi,jt ≈ v

i,j+1
t . (3)

The global approach defines an energy (objective) function to combine conflicting constraints on the

unknown flow fields. Horn and Schunck (HS) [73] propose to combine a brightness (data) constancy

term that assumes constancy of some image property with a spatial smoothness term that models

how the flow is expected to vary across the image.

E(ut,vt) =Edata(ut,vt) + λEspace(ut,vt)

=
∑
(i,j)

{(
It(i, j)− It+1(i+ ui,jt , j + vi,jt )

)2
+ λ

[
(ui,jt − u

i+1,j
t )2

+ (ui,jt − u
i,j+1
t )2 + (vi,jt − v

i+1,j
t )2 + (vi,jt − v

i,j+1
t )2

]}
. (4)

The minimum of the energy function is the solution.

One key component of the energy minimization approach is the definition of how to penal-

ize the violations of the model assumptions. Horn and Schunck use a quadratic penalty function

which makes the optimization relatively easy. Probabilistically the quadratic penalty corresponds

to Gaussian assumptions and is not robust to outliers, such as occlusions and motion boundaries.

Shulman and Herve [149] use a Huber minimax robust penalty for the spatial term to preserve

motion boundaries. Black and Anandan [25, 26] introduce a robust framework to deal with outliers

in both the data and the spatial terms.

E(ut,vt) =
∑
(i,j)

{
ρD
(
It(i, j)− It+1(i+ ui,jt , j + vi,jt )

)
+ λ
[
ρS(ui,jt − u

i+1,j
t )+

ρS(ui,jt − u
i,j+1
t ) + ρS(vi,jt − v

i+1,j
t ) + ρS(vi,jt − v

i,j+1
t )

]}
. (5)

The robust penalty functions give less confidence to the large-norm errors to reduce their influence

on the estimates. The robust approach has been widely adopted in later approaches [38, 185, 197].

Although allowing outliers to certain extent, the robust approach still fails and does not produce

satisfactory results when the outliers dominate in motion boundary and occlusion regions. The

dominance of the outliers requires more principled treatment for a satisfactory solution. We can use

the prior knowledge to explicitly model these phenomena.

The smoothness term by Horn and Schunck assumes that neighboring pixels tend to have similar

motion, and can be probabilistically interpreted as a pairwise Markov Random Field (MRF) model.

One observation is that the static image information provides strong cues for detecting motion

boundaries. Different surfaces tend to have different material properties, resulting in intensity/color

edges in the 2D image. Motion boundaries usually happen at surface boundaries. Hence we can use

the static image edges to predict the location of the motion boundaries. Nagel and Enkelmann [117]

first introduce “oriented smoothness” to preserve motion discontinuities using static image edges.

Specifically, the flow fields are enforced to be smooth in the direction parallel to image intensity

edges but allowed to be discontinuous in the direction orthogonal to image edges, as shown in

Figure 2.1. Probabilistically we can formulate the oriented smoothness as a Steerable Random

Field (SRF) [134, 159], which allows the flow field to have different behaviors in the directions
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orthogonal and parallel to image edges. Zimmer et al. [204] interpret the SRF model as a Joint

Image and Flow (JIF) regularizer in the variational setting and extend the SRF/JIF model by

calculating the local orientations using the motion tensor from the data constraint term. Several

recent methods [184, 189, 197] adopt an image-dependent smoothness prior model too.

Figure 2.1. The flow field tends to be smooth in the direction parallel to image edges (yellow) but may

have discontinuities in the direction orthogonal to image edges (red).

Another observation is that pairwise models are not expressive enough to model the rich structure

of natural images and scene motion [135]. Previous work on optical flow has considered the second-

order smoothness prior model [8, 171] and the high-order Fields-of-Expert (FoE) prior model [133].

The FoE models have been trained on flow fields generated using depth maps and may not be

optimal for general video sequences. There are not enough representative real-world sequences with

associated ground truth flow fields for training.

Optical flow assumes that every pixel goes somewhere. However some pixels may disappear,

either being occluded by other pixels or moving out of the image, and others may appear. The

occluded pixels violate the constancy assumption and produce large errors with standard optical

flow formulation. If we can detect these pixels, we can modify the flow formulation to handle

the occlusions. The detected occlusion results are also useful for scene understanding and play an

important role in our interactions with the world. Therefore, occlusion detection has been studied

in various contexts.

In optical flow estimation, previous work has used the symmetric constraint between the forward

and the backward flow fields [7] to detect occlusions. Without occlusions, a pixel at the current frame

should correspond to the same pixel at the next frame according to the both the forward and the

backward flow field. Another criterion borrowed from the stereo community is unique mapping [197].

Every pixel in the next frame should correspond to at most one pixel in the current frame. If multiple

pixels at the current frame correspond to the same pixel in the next frame, at least one of the pixels

is occluded. This unique mapping criterion however does not classify the occluding pixels from the

occluded pixels.

Kolmogorov and Zabih [86] formulate occlusion detection as a binary classification problem and

solve the NP hard problem using approximate graph cuts methods. Strecha et al. [156] use a mixture

formulation and detect large data constancy errors as occlusions. Ayvaci et al. [12] classify the data

constancy errors into occluded and unoccluded, apply a sparse prior on the region of occlusions, and

solve the convex problem using reweighted-L1 minimization.
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Stein and Hebert [153] use Adaboost [49] to learn a classifier using motion and appearance

cues. He and Yullie et al. [68] achieve similar performance using pseudo depth map obtained from

optical flow and local edge maps. Sundberg et al. [163] use motion differences predicted by each

side of static image boundaries and improve over both methods above. Humayun et al. [76] train

a two-frame occlusion detector using a variety of cues, such as appearance, motion, and textures.

However, none of the more advanced work has concretely shown the benefits of occlusion detection

for optical flow estimation.

2.1.2. Optimization Method. One challenge in optimizing the HS objective is the nonlinear

data term. The unknown motion vectors are input variables to a nonlinear image function. Assuming

that the motion is small, we can do a first-order Taylor expansion w. r. t. the motion to linearize the

data term

It+1(i+ ui,jt , j + vi,jt ) ≈ It+1(i, j) +
∂It+1

∂x
(i, j)ui,jt +

∂It+1

∂y
(i, j)vi,jt , (6)

where ∂
∂x and ∂

∂y are the derivative operators in the horizontal and vertical directions. The so called

linearization step assumes that the motion is be small to justify the first-order approximation, as

shown in Figure 2.2. The gradient of the data term for the quadratic energy function w. r. t. the

horizontal flow field at (i, j) is

∂Edata(ut,vt)

∂ui,jt
= 2
(
It+1(i, j)− It(i, j) +

∂It+1

∂x
(i, j)ui,jt +

∂It+1

∂y
(i, j)vi,jt

)∂It+1

∂x
(i, j). (7)

the gradient of the spatial term for the quadratic energy function w. r. t. the horizontal flow field at

(i, j) is

∂Espace(ut,vt)

∂ui,jt
= 2
[
4ui,jt − u

i−1,j
t − ui,j−1

t − ui+1,j
t − ui,j+1

t

]
. (8)

We can then perform gradient-based optimization.

To deal with large motions, a common approach is to adopt a coarse-to-fine, warping-based

optimization [6, 21, 38], as shown in Figure 2.3. We warp the second image toward the first using

the current flow estimate and then estimate a small increment between the first image and the warped

image. Because the flow increment is small, the linear approximation holds. This warping method

has been theoretically justified as a numerical scheme to optimize the original energy function [34].

An additional challenge to optimize the robust version of the HS objective is the robust penalty

function. We can approximate the original objective with a quadratic objective around the current

motion estimate ů, v̊ and solve for the small flow increment using the quadratic approximation.

E(ut,vt) =
∑
(i,j)

{
WD

(
It(i, j)− It+1(i+ ůi,jt , j + v̊i,jt )

)
·
(
It(i, j)− It+1(i+ ui,jt , j + vi,jt )

)2
+ λ
[
WSux(̊ui,jt − ů

i+1,j
t ) · (ui,jt − u

i+1,j
t )2 +WSuy (̊ui,jt − ů

i,j+1
t ) · (ui,jt − u

i,j+1
t )2

+ WSvx(̊vi,jt − v̊
i+1,j
t ) · (vi,jt − v

i+1,j
t )2 +WSvy (̊vi,jt − v̊

i,j+1
t ) · (vi,jt − v

i,j+1
t )2

]}
, (9)

where the weights WD(·), WSux(·), WSuy(·), WSvx(·), and WSvy(·) depend on the current motion

estimates and the selected robust function. For example, the weight for the Lorentzian penalty

function ρ(x) = log(1 + x2

2σ2 ) is W (x) = 2
2σ2+x2 . This can be considered as iterated reweighted least

squares [98], variational inference [82], or fixed-point iteration [34, 124] methods.
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(a) (b) (c) (d)

Figure 2.2. Local Taylor expansion approximation in the horizontal direction for each selected pixel; each

plot has been shifted so that the select pixel is at the origin position. The approximation is not accurate in

regions more than one pixel away form the selected pixels

Figure 2.3. Coarse-to-fine, incremental estimation is a standard technique to deal with large motion, which

becomes smaller as we downsample the images. q is the corresponding pixel at the next frame for pixel p.

Large motion and fast-moving objects. Coarse-to-fine, pyramid-based estimation tends to

produce errors when the size of the object is much smaller than the motion of the object. When we
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downsample the images to build the pyramid, the small-sized objects will be merged into the back-

ground. Their motion estimate at the coarse level is wrongly assigned to be that of the background.

Because the warping-based approach can only change the flow field locally, the solution gets stuck

at the wrong estimate from the coarse-level estimation.

Wills et al. [193, 192] propose a two-stage, feature-based process to deal with large motion.

At the first stage, feature matching provides the initial correspondence and the gross motion. The

graph cuts method is used to segment the scene into different moving objects (layers). At the

second stage, a regularized thin plate spline fit is used to account for non-planar motion. However,

the thin plate spline model prefers a smooth motion field without discontinuities. Berg et al. [20]

use Integer Quadratic Programming (IQP) to regularize descriptor matching, but the IQP method

is computationally expensive and only allows sparse correspondence.

Brox et al. [33, 37] perform descriptor matching to find correspondence for fast-moving objects

and add a feature matching term to the original objective function [34]. The Large Displacement

Optical Flow (LDOF) method has a slight decrease in the accuracy of the estimated motion as

measured by the Middlebury optical flow benchmark [37, 16]. Steinbrucker et al. [154] decouples

the original objective into the data and the spatial term. They use exhaustive search to solve the data

term to deal with the non-linear data term. The method is computationally expensive because of

the exhaustive search, in particular when fine-grid search is adopted for accurate motion estimation.

Another recent development is the FusionFlow work by Lempitsky et al. [92, 93]. They propose

to fuse a set of flow candidates to minimize the nonconvex energy function via discrete optimization.

At each move, they solve a binary fusion problem to select the motion of every pixel from two

candidate flow fields. The fused solution is guaranteed to have no higher energy than the two

candidate flow fields. The original FusionFlow work uses solutions of the HS objective and the Lucas-

Kanade methods to generate candidate flow fields. Xu et al. [197] use SIFT feature matching [104]

to generate flow candidates. They fuse the SIFT matching candidate flow fields with the initial flow

field from coarse-level estimation at every image pyramid level to get rid of local optima and recover

fine motion details.

Rhemann et al. [129] propose a filtering framework to estimate the correspondence. They

first compute the data matching cost for every possible motion vector for each pixel and then use

filtering guided by the image information to the data matching cost. Experimentally the cost filter

approach can estimate fast motion in some Middlebury sequences with large displacement. The

explicit objective function for the cost-filtering approach however has not been established.

Shekhovtsov et al. [146] reformulate the optical flow problem by treating the data matching term

as a pairwise interaction term between the horizontal and vertical motion and solve the resultant

pairwise MRF model using the Belief Propagation (BP) algorithm. The method is restricted to

(discrete) integer motion because of the discrete nature of the formulation. Liu et al. [102] use the

SIFT features [104] in the data term and compute the semantic correspondence between different

scenes. The “SIFT flow” correspondence enables high-level tasks, such as label transfer [101].

Because the SIFT feature does not have good localization ability, the SIFT flow does not perform

well in standard optical flow estimation problem.
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2.1.3. Implementation Details. Existing methods differ in how to define the objective func-

tions, how to approximate the objective functions to make the computation feasible, and how to

optimize them. Some implementation details have been reported to be important in flow estima-

tion, such as the downsampling ratio to construct the pyramid [124], the anti-aliasing filter for the

pyramid [38], and the pre-processing method to deal with lighting change [124, 185]. However the

conclusions are based on a particular method or a particular image sequence (mostly the “Yosemite”

sequence).

The brightness constancy assumption of HS tends to fail for lighting changes, occlusions, trans-

parency, noise etc. Gaussian filtering has been used to reduce the influence of noise [38, 97]. High-

order (filter response) constancy has been used to deal with lighting changes which usually belong to

the low-frequency components [6, 34]. We can learn the filters for the filter response constancy [159].

Zhou et al. [201] learn a discriminative similarity function for motion estimation, but only for sparse

feature tracking. Wedel et al. [185] propose to decompose the input images into structure and tex-

ture components and combine the two components in a certain proportion as the input to a flow

estimation method. Xu et al. [197] adaptively choose the color constancy assumption and the

gradient constancy assumption for the data term.

One interesting implementation detail is to perform a median filtering of the intermediate flow

field during the iterative warping step. This step has been used in several recent methods that

achieved good performance on the Middlebury benchmark when these methods first appeared [183,

184, 185, 189]. The median filtering step has been used as a heuristic step to remove outliers in

the estimated flow field

2.1.4. Existing Issues. Despite the progress, the classical approach and its descended versions

still have problems in recovering fine motion boundaries that violate the smoothness assumption,

and occlusion regions that violate the data constancy assumption.

2.2. Optical Flow and Segmentation

The pooling of information by the spatial term inherently relates optical flow to segmentation.

If we can segment the scene into different moving objects, we can integrate spatial information only

for each moving object and thereby preserve motion boundaries. If we know the true motion of every

pixel, separating different objects becomes easier. Both motion and segmentation are fundamental

problems in computer vision but are often treated separately. Next we will classify and review papers

according to their emphasis.

2.2.1. Static Image Segmentation. The segmentation of scenes into regions of coherent

structure is a fundamental problem in computer vision. It simplifies the representation of images

into something that is more meaningful and easier to analyze. The goal of image segmentation is to

cluster pixels into salient image regions, i.e., regions corresponding to individual surfaces, objects,

or natural parts of objects. Static image segmentation has received intensive research attention

and made significant progress in recent years. However, the segmentation results of state-of-the-art

methods [9, 43, 53, 108, 148] are still far from those obtained by humans. One challenge is that

the object appearance is not a strong cue for separation against the cluttered background.
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In the graphics community, several interactive segmentation systems have been developed [14,

95, 136]. Humans provide direct feedback at places that confuse the computers. These systems have

been widely used in the graphics and movie communities, clearly demonstrating the need for accurate

video segmentation. However, these methods focus on separating a single foreground object from

the background and are not easily applicable to generic video with multiple independently moving

foreground objects.

2.2.2. Motion for Segmentation. This approach first estimates motion without segmenta-

tion information and then uses the estimated motion to assist segmentation.

One straightforward way to extend the static image segmentation methods to video data is

to model the video as a 3D spatio-temporal volume and add one dimension to the 2D methods.

The analysis is performed locally and the segmentation results are usually not consistent over time.

Grundmann et al. [65] extend the graph-based method [53] to video data and use optical flow as an

additional feature. Lezama et al. [94] further add constraints from long-term point trajectories and

reason about the occlusion relationships. The optical flow is precomputed without any segmentation

or occlusion information. The errors in motion estimation propagate into the segmentation results.

Brox and Malik [36] cluster point trajectories into different motion groups. However, their output are

sparse points and not coherent segmentation regions. Ochs and Brox [120] define a variational model

to interpolate the sparse clustering results to dense segmentation. Their method may suffer from the

errors made by the trajectory analysis process and does not reason about occlusion relationships.

The limitation of the motion for segmentation approach is that errors in the motion estimation

process propagate into segmentation.

2.2.3. Static Segmentation for Motion. This approach [30, 91, 196, 205] first segments

the static images without motion information and then performs motion estimation with the precom-

puted segmentation. Errors in the static segmentation may propagate into the estimated motion.

Falsely merging two moving objects produces big errors in motion estimation. Consequently these

methods perform over-segmentation of the static images to avoid big motion errors. The small

segment size often cannot capture the global information within a moving object.

2.2.4. Variational Approach to Joint Segmentation and Estimation. We can treat both

the motion and the segmentation as unknowns and solve for both simultaneously. The motion com-

petition framework [35, 44] uses level sets to model the scene segmentation in a variational setting.

Mémin and Pérez [111, 112] use robust techniques to couple the motion and the segmentation by

sharing the hidden line processes between the motion and the segmentation. However the depth

ordering of the segments is missing and these methods cannot reason about occlusions.

2.3. Layered Models

One promising approach to deal with occlusions is the layered model, as shown in Figure 2.4. A

video sequence usually contains very few moving objects (layers). If we can segment each individual

layer and know the relative depth ordering, we can reason about occlusions between layers. We can

also describe the motion more compactly for each layer. Besides being a compact representation,

the layered model allows the integration of information over multiple frames. With the separation
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of the individual moving objects, the motion boundaries are separated from the smoothness and the

pixel appearances near the motion boundaries are more accurately modeled.

We first briefly review the early work on layered models and then discuss how later work improves

the early work in both the modeling and the inference.

Figure 2.4. The layered decomposition of a synthetic sequence. The bird layer is in front of the apple layer

and so occludes the apple layer.

2.3.1. Early Formulations. Darrell and Pentland [47, 46] provide the first full approach that

incorporates a Bayesian model, support maps for segmentation, and robust statistics. Compared

with the robust approach/line process formulation, they show that region-based support maps can

better integrate information from disconnected regions separated by foreground objects. They apply

the layered approach to solve a variety of segmentation problems, including range image, image

sequences, and tracked points. Wang and Adelson [179] clearly motivate layered models of image

sequences. They illustrate the benefits of separating smoothness from discontinuities by describing

motion discontinuities as discontinuities in the object surfaces rather than discontinuities in the

actual object motion. They further demonstrate the layered approach as a compact representation of

the video data by developing an efficient video encoder using their layered decomposition algorithm.

Jepson and Black [78] formalize the problem using probabilistic mixture models and derive the

corresponding Expectation Maximization (EM) algorithm. Their work assumes translational motion

for each layer and does not estimate the number of layers. Ayer and Sawhney [11] use the mixture

model formulation with affine motion models and determine the number of layers using the Minimum

Description Length (MDL) principle.

2.3.2. Motion Models. Early methods use simple parametric models of image motion within

layers [46, 78, 179]. The parametric models can compactly represent the motion and impose

global coherence on the estimated motion fields. However the parametric models are not highly

accurate and only apply to restrictive scenes. For example, the commonly used affine motion is a

good approximation to planar surfaces far away from the camera. Observing that rigid parametric

models are too restrictive for real scenes, Weiss [186] proposes using the more flexible nonparametric
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Gaussian processes to describe the motion within each layer. Although the Gaussian process model

can better handle curved surfaces, the model still cannot capture the fine local behaviors.

Some work considers combing the benefits of both the parametric and the nonparametric models.

Similar to the “plane + parallax” work [77, 90, 141] in 3D reconstruction, Hsu et al. [75] first fit

a parametric motion for each layer and then estimate the residual optical flow from the parametric

motion for each pixel. They describe the process in an algorithmic way but do not have an explicit

formulation. For stereo reconstruction, Baker et al. [18] propose to decompose the scene into a

collection of 3D layers. Each layer has a plane equation, and a per-pixel depth offset relative to the

plane of the layer. Torr et al. [169] use a similar motion model for layer extraction in general video

sequences.

For standard optical flow estimation, more advanced nonparametric motion models have been

developed, such as robust MRF [26], image-dependent prior models [117], higher-order MRF [133],

and non-local terms [158, 188]. These advanced models can preserve the fine motion details but

have not been adopted by previous layered methods.

2.3.3. Depth Ordering. One key advantage of the layered model is the ability to realistically

model occlusion boundaries and reason about occlusions. To do this properly, however, one must

know the relative depth ordering of the layers. In their pioneering work, Wang and Adelson [179]

incorporate the depth ordering of layers and layers in the front occlude layers behind. They de-

termine the depth ordering of the layers heuristically by comparing the predicted appearance with

the observed image intensity. Critically the motion estimation process does not have the occlusion

information and hence the estimated motion tends to have big errors in the occlusion regions. The

errors in the motion will further propagate into the segmentation and occlusion determination step.

Later models however tend to ignore the depth ordering in the formulations or do not infer the

depth ordering. Performing inference over the combinatorial range of possible occlusion relationships

is challenging and, consequently, only a few layered flow models explicitly encode relative depth

ordering [81, 202]. For example, the widely-used Ising/Potts segmentation models have no notion

of depth ordering: switching the ordering of any two layers causes no difference in the energy of the

solutions. Xiao and Shah [194] observe that over a short video clip, the occlusion region increases

with time, i.e., the occlusion region between layers A and B from frame t to t + 1 is a subset of

the occlusion region between A and B from frame t to t + k, k > 1. They formulate the occlusion

order constraint within an MRF model and solve the problem using graph cuts. Nevertheless, their

model does not order the layers in depth and mainly reasons about occlusions according to the data

matching error. Recent work revisits the layered approach to handle occlusions [63] but does not

explicitly model the depth ordering.

2.3.4. Segmentation Models. Layered models all have some way of making either a hard or

soft assignment of pixels to layers. There are numerous ways of assigning pixels to different layers.

One extreme case is to assign every pixel an individual layer, while the other is to assign every pixel

to be in the same layer. Any assignment will be consistent with the generative process of the layered

model and we need a good segmentation model to rule out poor segmentations. Designing a good

segmentation model is in fact one of the central problems for the layered approach.
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Early work [46, 78, 179] assigns every pixel to different layers individually and is not robust

to outliers. The noise and the motion estimation error can cause big errors at each isolated pixel.

Because neighboring pixels usually come from the same surface (layer), it is more desirable to

incorporate spatial coherence into the segmentation. Weiss and Adelson [187] introduce spatial

coherence to the layer assignment using a spatial MRF model and optimize their objective using

local search. They also advocate using static image cues to constrain the motion segmentation. Wills

et al. [191] use the powerful graph cuts algorithm to optimize the layer segmentation. However the

Ising/Potts MRF model assigns low probability to typical segmentations of natural scenes [114]. In

addition the Potts model has no notion of depth ordering, because switching the ordering of any two

segments has no influence on the energy of the solutions. Sudderth and Jordan [157] propose using

thresholded continuous support functions to model the static segmentation of images. The samples

from this model have the desired property of being piecewise smooth with continuous and smooth

segmentation boundaries. In addition, the segments are ordered in depth and depth ordering is

naturally incorporated. The model however is defined only for static images.

2.3.5. Temporal Consistency. While most current optical flow methods use two consecutive

frames, layered methods naturally extend to longer sequences [81, 198, 202]. It is one of the

advantages of the layered approach to integrate information from more than two frames.

Most previous methods use a center mask at the key frame and warp the center mask by

parametric motion to each individual frame. This approach may suffer from poor initialization at

the key frame and motion estimation becomes harder for frames far away from the center one.

Jepson et al. [79] define a parametric shape mask for every layer at every frame and enforce the

shape parameters at neighboring frames to be similar. The parametric shape model is restrictive

for general videos with arbitrarily-shaped objects. In addition, each shape is an isolated region and

cannot integrate information from other shapes that belong to the same physical objects but are

occluded by some foreground objects. Liu et al. [100] use postprocessing to ensure the temporal

consistency of segmentation for complex videos.

2.3.6. Number of Layers. One of the most difficult problems in grouping is to determine

the number of groups. There are numerous possible decompositions. Ideally we expect the number

of layers to roughly match the number of independently moving objects in the scene. Hence the

algorithm should have the mechanism to reason about the number of layers to use for a particular

video sequence.

Most early work assumes a fixed number of layers [78, 179]. Darrell and Pentland [47, 46]

estimate multiple models and select the number of layers according to the Minimum Description

Length (MDL) principle. Ayer and Sawhney [11] present a mixture model formulation and determine

the number of layers by the MDL principle too. Weiss and Adelson [187] estimate the number of

layers by controlling the noise parameter, which indicates the expected level of model failure. Torr

et al. [169] use a Bayesian decision framework to determine the number of approximately planar

layers. Jepson et al. [79] use stochastic search over solutions with different number of layers and

select the one most plausible with their layered model. Common to these methods is the trade off

between different requirements, such as the complexity of the motion field versus the complexity of

the shape for each layer.
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2.3.7. Inference for Layered Models. Inference for the flexible layered model is challenging

too. The layered models usually have multiple local optima and it is easy to get trapped. Frey

and Jojic [58] compare different algorithms, such as Iterated Conditional Mode (ICM), Expectation

Maximization (EM), Belief Propagation (BP), and Mean Field (MF) variational inference, for mini-

mizing the free energy of a simplified generative layered model. The model considers the generation

of a single image and makes strong independence assumptions to factorize the overall probabilistic

model. Even the simplified model has many local minima that can trap these inference schemes.

Iterative optimization of the motion and the segmentation in the EM manner [48] has been

popular for the layered models. The algorithm usually estimates the motion first and then performs

the segmentation, or alternates estimating the motion and the segmentation. Such an optimization

scheme is susceptible to local optima where both the motion and the segmentation need to be changed

simultaneously. Most early approaches use a local search scheme and tend to get trapped at poor

local minima [147]. Kumar et al. [89] and Wills et al. [191] use discrete optimizers for the layer

segmentation tasks to get rid of local minima in segmentation. Thayananthan et al. [166] combine

bottom up and down down cues and optimize their objective by the Expectation Propagation (EP)

algorithm [113]. Graph cuts have also been used for segmentation and tracking. For example Kumar

et al. [89] alternate the optimization of motion and segmentation and use affine motion models for

each layer. Wang et al. [177] also use graphical models but their method requires the manual

segmentation of objects in the first frame and uses parametric motion models.

2.3.8. Existing Issues. Although long regarded as an elegant approach to motion, the lay-

ered methods have not achieved competitive motion estimation results when compared with other

approaches. As of June 2010, none of the top-performing methods in the Middlebury benchmark

took a layered approach. Most previous work focuses on obtaining correct segmentation and uses

simple parametric motion models. The parametric models cannot handle the complex motion in the

real-world sequences. Furthermore, most models do not incorporate the depth ordering and thus

do not take advantage of the layered approach for occlusion reasoning. In addition, inferring the

layer segmentation, within layer flow field, the number of layers, and the depth ordering is a big

optimization problem. There are many poor local minima that can trap an inference algorithm. We

need to carefully define both the model and the inference scheme to overcome these limitations.

2.4. Learning

The statistics of natural images has been widely studied [137, 135, 203]. The statistics of

optical flow, however, has been less studied, in particular due to the lack of ground truth optical

flow fields for real scenes.

Simoncelli et al. [151] formulate an early probabilistic model of optical flow and model the

statistics of the deviation of the estimated flow from the true flow. Their approach however assumes

Gaussian noise. Black et al. [28] learn parametric models for different classes of flow (e.g. edges

and bars). Roth and Black [133] model the spatial structure of optical flow fields using a high-order

MRF, called Field of Experts (FoE), and learn the parameters from training data. They combine

their learned prior model with a standard data term [38] and find that the FoE model improves the

accuracy of optical flow estimates. While their work provides a learned prior model of optical flow,
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it only models the spatial statistics of the optical flow. Neither the data term nor the relationship

between flow boundaries and image edges is studied.

Freeman et al. [57] also learn an MRF model of image motion but their training is restricted

to simplified “blob world” scenes. Ross and Kaelbling [130, 131] apply a similar learning method,

but use segmentation from moving sequences to learn how to segment static objects. Scharstein

and Pal [142] learn a full model of stereo, formulated as a Conditional Random Field (CRF),

from training images with ground truth disparities. This model also combines spatial smoothness

and brightness constancy in a learned model, but uses simple models of brightness constancy and

spatially-modulated Potts models for spatial smoothness; these are likely inappropriate for optical

flow. Li and Huttenlocher [97] learn the unknown parameters by minimizing the training loss using

stochastic optimization. Their training data consist of three Middlebury training sequences with

associated ground truth flow fields. Jia et al. [80] learn sparse models of optical flow to patch-wisely

regularize the optical flow using the eight Middlebury training sequences.

Learning simple layered models is feasible but the learned models do not generalize to real-world

videos [81, 89]. Richer hierarchical layered models require more advanced learning methods and

more representative training data.

2.5. Benchmark Datasets, Evaluation, and Software

It is essential to have datasets that can quantitatively benchmark the performance of existing

algorithms to ensure continued progress. For example, the recent developments in image segmen-

tation [108], stereo matching [143], object detection and recognition [50], have been stimulated by

the availability of a large amount of real data with human labeled ground truth. In the following,

we review several representative datasets according to the date of their release.

2.5.1. Synthetic (“Yosemite”-like) Dataset. Optical flow is one of the early subfields in

computer vision to have a benchmark dataset. However, obtaining the ground truth flow field is

more difficult than other vision tasks, such as detection and recognition. Hence most evaluations in

the early days were performed with synthetic datasets, such as the popular “Yosemite” sequence.

Barron et al. [19] perform an evaluation of optical flow estimation methods in the early 1990’s.

Nearly all evaluated methods perform poorly on the synthetic “Yosemite” sequence, though it con-

tains relatively simple motion, very few large motion discontinuities, and almost no occlusion, as

shown in Figure 2.5. The best dense optical flow method [152] at that time had an Average Angular

Error (AAE) larger than 10 degrees. Otte and Nagel [123] obtain ground truth for real scenes, but

the scenes are extremely simple. McCane et al. [109] generate scenes with polyhedral objects and

simple synthetic sequences to evaluate several flow estimation methods.

The work of Barron et al. is so influential that nearly all following work is compared on the

“Yosemite” sequence. After more than ten years of intensive research efforts, the best dense two-

frame methods [38, 124, 133] have AAE below 2 degrees, making it necessary to collect a new

dataset with more challenging sequences.

2.5.2. Middlebury Dataset. Baker et al. [17, 16] develop the Middlebury dataset to better

benchmark the optical flow methods than the “Yosemite” sequence and stimulate new developments

in the field. There are three types of sequences for evaluating the accuracy of optical flow estimation
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Figure 2.5. First frame of the “Yosemite” sequence, the ground truth flow field (the sky region has

been excluded from the evaluation), and the estimated flow field by the combined local and global (CLG)

method [38]. The result by the CLG method is very close to the ground truth (AAE less than 2 degrees).

methods: real, synthetic, and modified stereo. The real sequences were captured in a controlled

lab environment; the scenes’ surfaces were painted with a fluorescent paint and captured under

both UV and normal lights. The ground truth was obtained by local matching on the UV texture

images and then downsampled to have subpixel accuracy. The images taken under normal lights

were downsampled to the same resolution. The real sequences tend to have strong lighting changes

and shadows. The synthetic sequences were generated using computer graphics techniques and have

large motion, big occlusion regions, and strong motion discontinuities. The modified stereo pairs

are adapted from the Middlebury stereo benchmark [143] to give a comparison between stereo and

optical flow methods. To reduce the influence of over-fitting, they further divided the dataset into

training and test parts. The training part has ground truth flow fields while the test part only

provides the input images.

Figure 2.6. First frame of the “Schefflera” sequence from the Middlebury benchmark, the ground truth

flow field (the dark regions correspond to occlusions and are excluded from evaluation), and the estimated

flow field by the Combined Local and Global (CLG) method [38]. Though achieving good result on the

“Yosemite” sequence (cf. Figure 2.5), The CLG method fails to recover the sharp motion boundaries and

the occlusion regions.

As shown in Figure 2.6, the CLG method produces large errors in near sharp motion boundaries

and in occlusion regions on the Middlebury sequences, though this highly-regarded method achieves

good results on the “Yosemite” dataset. This means that the new dataset is more challenging. The

difficulties with previous methods to deal with the Middlebury sequences have stimulated a rapid

growth in optical flow estimation since the publication of the Middlebury dataset in 2007. The

online benchmark website [1] has recorded the fast development.
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2.5.3. MIT Layered Segmentation Dataset. Liu et al. [99] collect a dataset of outdoor

sequences, manually segment the scene into layers, and estimate the motion field using the human

segmentation (MIT dataset). As shown in Figure 2.7, the images are more natural than the Mid-

dlebury dataset. The reliance on a particular motion estimation method [38], however, hinders its

applicability for evaluating flow algorithms.

In this thesis, we use the Middlebury training dataset to tune the parameters of the models for

motion estimation, while testing the methods on both the Middlebury test and MIT datasets. We

mainly use the MIT dataset to evaluate motion segmentation results. To alleviate the influence of

over-fitting, we use separate training and test datasets and adopt datasets of different natures. We

also generate some synthetic sequences to check the limitations of the proposed approaches in the

ideal case.

Figure 2.7. MIT dataset. Left/right for each pair: first frame/human labeled ground truth. on the far

right is a color key for the depth ordering (blue is close and red is far)

2.5.4. Performance Measures. Two commonly used performance measures for optical flow

are the Angular Error (AE) [56, 19] and the End-Point Error (EPE) [123, 16]. The AE between a

flow vector (u, v) and the ground-truth flow (uGT, vGT) is the angle in 3D space between (u, v, 1.0)

and (uGT, vGT, 1.0)

AE = cos−1

(
1.0 + u× uGT + v × vGT√

1 + u2 + v2
√

1 + u2
GT + v2

GT

)
. (10)

The EP is the Euclidean distance between these two vectors

EP =
√

(u− uGT)2 + (v − vGT)2. (11)

One common measure for the segmentation is the RandIndex (RI) [127]. Given one segmentation

k and the ground truth segmentation kGT of an image I. Define

• a, the number of pairs of pixels in I that are in the same segment in k and in the same

segment in kGT

• b, the number of pairs of pixels in I that are in different segments in k and in different

segments in kGT

• c, the number of pairs of pixels in I that are in the same segment in k and in different

segments in kGT

• d, the number of pairs of pixels in I that are in different segments in k and in the same

segment in kGT

22



Intuitively, a + b can be considered as the number of agreements between k and kGT and c + d as

the number of disagreements between k and kGT. The RI for the segmentation k is

RI =
a+ b

a+ b+ c+ d
. (12)

2.5.5. Evaluation and Software. Hirschmuller and Scharstein [70] perform a quantitative

evaluation of different features for stereo matching. Papenberg et al. [124] use the “Yosemite”

sequence to study the effects of different parameters on the accuracy of their flow estimation method,

such as the noise variance, the regularization weight, and the downsampling ratio.

The Middlebury website has a ranking for different methods based on the submitted results.

However, there are many factors influencing the ranking of a method, such as model, optimization,

and implementation details. The key that makes optical flow accurate is somehow confusing. Such

difficulty arises because the performance of an algorithm depends on the objective function, the

optimization method, and the implementation details. For example, the HS method has been widely

regarded as inaccurate. One somewhat surprising result we find is that, the HS objective, when

optimized with modern practices, produces competitive results. To precisely evaluate a factor, it is

important to isolate other factors and test only the role of the selected one.

Despite recent algorithmic advances there is a lack of publicly available, easy to use, and accurate

flow estimation software [165]. The GPU4Vision project [2] has made a substantial effort to change

this and provides executable files for several accurate methods [184, 185, 189]. The dependence

on the GPU and the lack of source code are limitations. At the time of the publication of our

conference paper [158], we released our Matlab codes. The public software has been used by both

researchers to develop new flow estimation methods [5, 80] and practitioners to apply optical flow

in their work [118].
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CHAPTER 3

Learning Low-level Models of Optical Flow

In this chapter, we analyze the assumptions of standard optical flow formulations using train-

ing data and show how to extend the standard models to deal with violations of the assumptions.

Assumptions of brightness constancy and spatial smoothness underlie most optical flow estimation

methods. In contrast to standard heuristic formulations, we learn a statistical model of both bright-

ness constancy error and the spatial properties of optical flow using image sequences with associated

ground truth flow fields. The result is a complete probabilistic model of optical flow. Specifically, the

ground truth enables us to model how the assumption of brightness constancy is violated in natu-

ralistic sequences, resulting in a probabilistic model of “brightness inconstancy”. We also generalize

previous high-order constancy assumptions, such as gradient constancy, by modeling the constancy

of responses to various linear filters in a high-order random field framework. These filters are free

variables that can be learned from training data. Additionally we study the spatial structure of the

optical flow and how motion boundaries are related to image intensity boundaries. Spatial smooth-

ness is modeled using a Steerable Random Field (SRF), where spatial derivatives of the optical flow

are steered by the image brightness structure. These models provide a statistical motivation for

previous methods and enable the learning of all parameters from training data. All proposed models

are quantitatively compared on the Middlebury flow dataset.

3.1. Introduction

We address the problem of learning models of optical flow from training data. Optical flow

estimation has a long history and we argue that most methods have explored some variation of the

same theme. Particularly, most techniques exploit two constraints: brightness constancy and spatial

smoothness. The brightness constancy constraint (data term) is derived from the observation that

surfaces usually persist over time and hence the intensity value of a small region remains the same

despite its position change [26]. The spatial smoothness constraint (spatial term) comes from the

observation that neighboring pixels generally belong to the same surface and so have nearly the

same image motion. Despite the long history, there have been very few attempts to learn what these

terms should be [133]. Recent advances [17] have made sufficiently realistic image sequences with

ground truth optical flow available to finally make this practical. Here we revisit several classic and

recent optical flow methods and show how training data and machine learning methods can be used

to train these models. We then go beyond previous formulations to define new versions of both the

data and spatial terms.

We make two primary contributions. First we exploit image intensity boundaries to improve

the accuracy of optical flow near motion boundaries. The idea is based on that of Nagel and

Enkelmann [117], who introduce oriented smoothness to prevent blurring of flow boundaries across
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image boundaries; this can be regarded as an anisotropic diffusion approach. Here we go a step

further and use training data to analyze and model the statistical relationship between image and

flow boundaries. Specifically we use a Steerable Random Field (SRF) [134] to model the conditional

statistical relationship between the flow and the image sequence. Typically, the spatial smoothness

of optical flow is expressed in terms of the image-axis-aligned partial derivatives of the flow field.

Instead, we use the local image edge orientation to define a steered coordinate system for the flow

derivatives and note that the flow derivatives along and across image boundaries are highly kurtotic.

We then model the flow field using a Markov Random Field (MRF) and formulate the steered

potentials using Gaussian Scale Mixtures (GSM) [175]. All parameters of the model are learned

from examples thus providing a rigorous statistical formulation of the idea of Nagel and Enkelmann.

Our second key contribution is to learn a statistical model of the data term. Numerous authors

have addressed problems with the common brightness constancy assumption. Brox et al. [34], for

example, extend brightness constancy to high-order constancy, such as gradient and Hessian con-

stancy in order to minimize the effects of illumination change. Additionally, Bruhn et al. [38] show

that integrating constraints within a local neighborhood improves the accuracy of dense optical flow.

We generalize these two ideas and model the data term as a general high-order random field that

allows the principled integration of local information. In particular, we extend the Field-of-Experts

formulation (FOE) [133] o the spatio-temporal domain to model temporal changes in image features.

The data term is formulated as the product of a number of experts, where each expert is a non-linear

function (GSM) of a linear filter response. One can view previous methods as taking these filters to

be fixed: Gaussians, first derivatives, second derivatives, etc. Rather than assuming known filters,

our framework allows us to learn them from training data.

In summary, by using naturalistic training sequences with ground truth flow we are able to learn

a complete model of optical flow that not only captures the spatial statistics of the flow field but also

the statistics of brightness inconstancy and how the flow boundaries relate to the image intensity

structure. The model combines and generalizes ideas from several previous methods and the resulting

objective function is at once familiar and novel. We present a quantitative evaluation of the different

methods using the Middlebury flow database [17] and find that the learned models outperform

previous models, particularly at motion boundaries. Our analysis uses a single, simple, optimization

method throughout to focus the comparison on the effects of different objective functions. The results

suggest the benefit of learning standard models and open the possibility to learn more sophisticated

ones.

3.2. Previous Work

Horn and Schunck [73] introduce both the brightness constancy and the spatial smoothness

constraints for optical flow estimation, however their quadratic formulation assumes Gaussian sta-

tistics and is not robust to outliers caused by reflection, occlusion, motion boundaries etc. Black

and Anandan [26] introduce a robust estimation framework to deal with such outliers, but do not

attempt to model the true statistics of brightness constancy errors and flow derivatives. Fermüller

et al. [54] analyze the effects of noise on the estimation of flow, but do not attempt to learn flow

statistics from examples. Rather than assuming a model of brightness constancy we acknowledge
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that brightness can change and, instead, attempt to explicitly model the statistics of brightness

inconstancy.

Many authors have extended the brightness constancy assumption, either by making it more

physically plausible [60, 67] or by linear or non-linear pre-filtering of the images [170]. The idea of

assuming constancy of first or second image derivatives to provide some invariance to lighting changes

dates back to the early 1980’s with the Laplacian pyramid [6] and has recently gained renewed

popularity [34]. Following a related idea, Bruhn et al. [38] replace the pixelwise brightness constancy

model with a spatially smoothed one. They find that a Gaussian-weighted spatial integration of

brightness constraints results in significant improvements in flow accuracy. If filtering the image is

a good idea, then we ask what filters should we choose? To address this question, we formulate the

problem as one of learning the filters from training examples.

Most optical flow estimation methods encounter problems at motion boundaries where the as-

sumption of spatial smoothness is violated. Observing that flow boundaries often coincide with

image boundaries, Nagel and Enkelmann [117] introduce oriented smoothness to prevent blurring

of optical flow across image boundaries. Alvarez et al. [7] modify the Nagel-Enkelmann approach

so that less smoothing is performed close to image boundaries. The amount of smoothing along

and across boundaries has been determined heuristically. Fleet et al. [55] learn a statistical model

relating image edge orientation and amplitude to flow boundaries in the context of a patch-based

motion discontinuity model. Black [29] proposes an MRF model that couples edges in the flow field

with edges in the brightness images. This model, however, is hand designed and tuned. We provide

a probabilistic framework within which to learn the parameters of a model like that of Nagel and

Enkelmann from examples.

Simoncelli et al. [151] formulate an early probabilistic model of optical flow and modeled the

statistics of the deviation of the estimated flow from the true flow. Black et al. [28] learn parametric

models for different classes of flow (e.g. edges and bars). More recently, Roth and Black [133] model

the spatial structure of optical flow fields using a high-order MRF, called a Field of Experts (FoE),

and learn the parameters from training data. They combine their learned prior model with a standard

data term [38] and find that the FoE model improves the accuracy of optical flow estimates. While

their work provides a learned prior model of optical flow, it only models the spatial statistics of the

optical flow and not the data term or the relationship between flow and image brightness.

Freeman et al. [57] also learn an MRF model of image motion but their training is restricted

to simplified “blob world” scenes; here we use realistic scenes with more complex image and flow

structure. Scharstein and Pal [142] learn a full model of stereo, formulated as a conditional random

field (CRF), from training images with ground truth disparity. This model also combines spatial

smoothness and brightness constancy in a learned model, but uses simple models of brightness con-

stancy and spatially-modulated Potts models for spatial smoothness; these are likely inappropriate

for optical flow.

3.3. Statistics of Optical Flow

3.3.1. Spatial Term. Roth and Black [133] study the statistics of horizontal and vertical op-

tical flow derivatives and found them to be heavy-tailed, which supports the intuition that optical

flow fields are typically smooth, but have occasional motion discontinuities. Figure 3.1 (a, b (solid))
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shows the marginal log-histograms of the horizontal and vertical derivatives of horizontal flow, com-

puted from a set of 45 ground truth optical flow fields. These include four from the Middlebury

“other” dataset, one from the “Yosemite” sequence, and ten of our own synthetic sequences. These

synthetic sequences were generated in the same way as, and are similar to, the other Middlebury

synthetic sequences (Urban and Grove); two examples are shown in Figure 3.3. To generate addi-

tional training data the sequences were also flipped horizontally and vertically. The histograms are

heavy-tailed with high peaks, as characterized by their high kurtosis (κ = E[(x−µ)4]/E[(x−µ)2]2).

We go beyond previous work by also studying the steered derivatives of optical flow where the

steering is obtained from the image brightness of the reference (first) frame. To obtain the steered

derivatives, we first calculate the local image orientation in the reference frame using the structure

tensor as described in [134]. Let (cos θ(I), sin θ(I))T and (− sin θ(I), cos θ(I))T be the eigenvectors

of the structure tensor in the reference frame I, which are respectively orthogonal to and aligned

with the local image orientation. Then the orthogonal and aligned derivative operators ∂IO and ∂IA

of the optical flow are given by

∂IO = cos θ(I) · ∂x + sin θ(I) · ∂y and ∂IA = − sin θ(I) · ∂x + cos θ(I) · ∂y, (13)

where ∂x and ∂y are the horizontal and vertical derivative operators. We approximate these using

the 2× 3 and 3× 2 filters from [134].

Figure 3.1 (c, d) shows the marginal log-histograms of the steered derivatives of the horizontal

flow (the vertical flow statistics are similar and are omitted here). The log-histogram of the derivative

orthogonal to the local structure orientation has much broader tails than the aligned one, which

confirms the intuition that large flow changes occur more frequently across the image edges.

These findings suggest that the steered marginal statistics provide a statistical motivation for the

Nagel-Enkelmann method, which performs stronger smoothing along image edges and less orthogonal

to image edges. Furthermore, the non-Gaussian nature of the histograms suggest that non-linear

smoothing should be applied orthogonal to and aligned with the image edges.

3.3.2. Data Term. To our knowledge, there has been no formal study of the statistics of the

brightness constancy error, mainly due to the lack of appropriate training data. Using ground truth

optical flow fields we compute the brightness difference between pairs of training images by warping

the second image in each pair toward the first using bi-linear interpolation. Figure 3.2 shows the

marginal log-histogram of the brightness constancy error for the training set; this has heavier tails

and a tighter peak than a Gaussian of the same mean and variance. The tight peak suggests that the

value of a pixel in the first image is usually nearly the same as the corresponding value in the second

image, while the heavy tails account for violations caused by reflection, occlusion, transparency, etc.

This shows that modeling the brightness constancy error with a Gaussian, as has often been done,

is inappropriate, and this also provides a statistical explanation for the robust data term used by

Black and Anandan [26]. The Lorentzian used there has a similar shape as the empirical histogram

in Figure 3.2.

We should also note that the shape of the error histogram will depend on the type of training

images. For example, if the images have significant camera noise, this will lead to brightness changes

even in the absence of any other effects. In such a case, the error histogram will have a more rounded
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(a) ∂xu, κ = 420.5 (b) ∂yu, κ = 527.3

(c) ∂IOu, κ = 340.1 (d) ∂IAu, κ = 636.4

Figure 3.1. Marginal filter response statistics (log scale) of standard derivatives (left) and derivatives

steered to local image structure (right) for the horizontal flow u. The histograms are shown in solid blue;

the learned experts in dashed red. κ denotes kurtosis.

Figure 3.2. Statistics of the brightness constancy error: The log-histogram (solid blue) is fit with a GSM

model (dashed red).

peak depending on how much noise is present in the images. Future work should investigate adapting

the data term to the statistical properties of individual sequences.
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(a) (b) (c) (d)

Figure 3.3. (a)-(d) two reference (first) images and their associated flow fields from our synthetic training

set.

3.4. Modeling Optical Flow

We formulate optical flow estimation as a problem of probabilistic inference and decompose the

posterior probability density of the flow field (u,v) given two successive input images I1 and I2 as

p(u,v|I1, I2; Ω) ∝ p(I2|u,v, I1; ΩD) · p(u,v|I1; ΩS), (14)

where ΩD and ΩS are parameters of the model. Here the first (data) term describes how the second

image I2 is generated from the first image I1 and the flow field, while the second (spatial) term

encodes our prior knowledge of the flow fields given the first (reference) image. Note that this

decomposition of the posterior is slightly different from the typical one, e.g.,in [151], in which the

spatial term takes the form p(u,v; ΩS). Standard approaches assume conditional independence

between the flow field and the image structure, which is typically not made explicit. The advantage

our formulation is that the conditional nature of the spatial term allows for more flexible methods

of flow regularization.

3.4.1. Spatial Term. For simplicity we assume that horizontal and vertical flow fields are

independent; Roth and Black [133] experimentally show that this is a reasonable assumption. The

spatial model thus becomes

p(u,v|I1; ΩS) = p(u|I1; ΩSu) · p(v|I1; ΩSv). (15)

To obtain our first model of spatial smoothness, we assume that the flow fields are independent of

the reference image. Then the spatial term reduces to a classical optical flow prior, which can, for

example, be modeled using a pairwise MRF:

pPW(u; ΩPWu) =
1

Z(ΩPWu)

∏
p

∏
q∈Γp

φ(up − uq; ΩPWu), (16)

where p = (i, j) is the pixel index and the set Γp contains the four nearest neighbors of p. Note

that the difference between the flow at neighboring pixels approximates the horizontal and vertical

image derivatives (see e.g.,[26]). Z(ΩPWu) here is the partition function that ensures normalization.

Note that although such an MRF model is based on products of very local potential functions,

it provides a global probabilistic model of the flow. Various parametric forms have been used to

model the potential function φ (or its negative log): Horn and Schunck [73] use Gaussians, the

Lorentzian robust error function is used by Black and Anandan [26], and Bruhn et al. [38] assume
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the Charbonnier error function. In this paper, we use the more expressive Gaussian Scale Mixture

(GSM) model [175], i.e.,

φ(x; Ω) =

L∑
l=1

ωl · N (x; 0, σ2/sl), (17)

in which Ω = {ωl|l = 1, . . . , L} are the weights of the GSM model, sl are the scales of the mixture

components, and σ2 is a global variance parameter. GSMs can model a wide range of distributions

ranging from Gaussians to heavy-tailed ones. Here, the scales and σ2 are chosen so that the empirical

marginals of the flow derivatives can be represented well with such a GSM model and are not trained

along with the mixture weights ωl.

The particular decomposition of the posterior used here (14) allows us to model the spatial

term for the flow conditioned on the measured image. For example, we can capture the oriented

smoothness of the flow fields and generalize the Steerable Random Field (SRF) model [134] to a

steerable model of optical flow, resulting in our second model of spatial smoothness:

pSRF(u|I1; ΩSRFu) ∝
∏
p

φ
(

(∂I1O u)p; ΩSRFu

)
· φ
(

(∂I1A u)p; ΩSRFu

)
. (18)

The steered derivatives (orthogonal and aligned) are defined as in (13); the superscript denotes that

steering is determined by the reference frame I1. The potential functions are again modeled using

GSMs.

3.4.2. Data Term. Models of the optical flow data term typically embody the brightness con-

stancy assumption, or more specifically model the deviations from brightness constancy. Assuming

independence of the brightness error at the pixel sites, we can define a standard data term as

pBC(I2|u,v, I1; ΩBC) ∝
∏
p

∏
q∈Np

φ(Ip1 − I
q
2 ); ΩBC), (19)

where the set Np = {i + up, j + vp} contains the corresponding pixel of the pixel p at the next

frame according to the flow field. As with the spatial term, various functional forms (Gaussian,

robust, etc.) have been assumed for the potential φ or its negative log. We again employ a GSM

representation for the potential, where the scales and global variance are determined empirically

before training the model (mixture weights).

Brox et al. [34] extend the brightness constancy assumption to include high-order constancy

assumptions, such as gradient constancy, which may improve accuracy in the presence of changing

scene illumination or shadows. We propose a further generalization of these constancy assumptions

and model the constancy of responses to several general linear filters:

pFC(I2|u,v, I1; ΩFC) ∝
∏
p

∏
q∈Np

∏
k

φk{(Jk1 ∗ I1)p − (Jk2 ∗ I2)q; ΩFC}, (20)

where the Jk1 and Jk2 are linear filters. Practically, this equation implies that the second image is

first filtered with Jk2, after which the filter responses are warped toward the first filtered image using

the flow (u,v)1. Note that this data term is a generalization of the Fields-of-Experts model (FoE),

1It is, in principle, also possible to formulate a similar model that warps the image first and then applies filters

to the warped image. We did not pursue this option, as it would require the application of the filters at each iteration

of the flow estimation procedure. Filtering before warping ensures that we only have to filter the image once before

flow estimation.
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which has been used to model prior distributions of images [132] and optical flow [133]. Here, we

generalize it to a spatio-temporal model that describes brightness (in)constancy.

If we choose J11 to be the identity filter and define J12 = J11, this implements brightness

constancy. Choosing the Jk1 to be derivative filters and setting Jk2 = Jk1 allows us to model

gradient constancy. Thus this model generalizes the approach by Brox et al. [34] 2. If we choose

Jk1 to be a Gaussian smoothing filter and define Jk2 = Jk1, we essentially perform pre-filtering as,

for example, suggested by Bruhn et al. [38]. Even if we assume fixed filters using a combination

of the above, our probabilistic formulation still allows learning the parameters of the GSM experts

from data as outlined below. Consequently, we do not need to tune the trade-off weights between

the brightness and gradient constancy terms by hand as in [34]. Beyond this, the appeal of using a

model related to the FoE is that we do not have to fix the filters ahead of time, but instead we can

learn these filters alongside the potential functions.

3.4.3. Learning. Our formulation enables us to train the data term and the spatial term

separately, which simplifies learning. Note though, that it is also possible to turn the model into a

conditional random field (CRF) and employ conditional likelihood maximization (cf. [155]); we leave

this for future work. To train the pairwise spatial term pPW(u; ΩPWu), we can estimate the weights

of the GSM model by either simply fitting the potentials to the empirical marginals using expec-

tation maximization, or by using a more rigorous learning procedure, such as maximum likelihood

(ML). To find the ML parameter estimate we aim to maximize the log-likelihood LPW(U ; ΩPWu)

of the horizontal flow components U = {u(1), . . . ,u(t)} of the training sequences w. r. t. the model

parameters ΩPWu (i.e., GSM mixture weights). Analogously, we maximize the log-likelihood of the

vertical components V = {v(1), . . . ,v(t)} w. r. t. ΩPWv. Because ML estimation in loopy graphs is

generally intractable, we approximate the learning objective and use the contrastive divergence (CD)

algorithm [69] to learn the parameters.

To train the steerable flow model pSRF(u|I1; ΩSRF) we aim to maximize the conditional log-

likelihoods LSRF(U|I1; ΩSRFu) and LSRF(V|I1; ΩSRFv) of the training flow fields given the first (ref-

erence) images I1 = {I(1)
1 , . . . , I

(t)
1 } from the training image pairs w. r. t. the model parameters ΩSRFu

and ΩSRFv.

To train the simple data term pD(I2|u,v, I1; ΩD) modeling brightness constancy, we can sim-

ply fit the marginals of the brightness violations using the expectation maximization (EM) algo-

rithm [23, 48]. This is possible, because the model assumes independence of the brightness error

at the pixel sites. For the proposed generalized data term pFC(I2|u,v, I1; ΩFC) that models filter

response constancy, a more complex training procedure is necessary, since the filter responses are

not independent. Ideally, we would maximize the conditional likelihood LFC(I2|U ,V, I1; ΩFC) of

the training set of the second images I2 = {I(1)
2 , . . . , I

(t)
2 } given the training flow fields and the first

images. Due to the intractability of ML estimation in these models, we use a conditional version of

contrastive divergence (see e.g.,[134, 155]) to learn both the mixture weights of the GSM potentials

as well as the filters.

2Formally, there is a minor difference: [34] penalizes changes in the gradient magnitude, while the proposed

model penalizes changes of the flow derivatives. These are, however, equivalent in the case of Gaussian potentials.
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3.5. Optical Flow Estimation

Given two input images, we estimate the optical flow between them by maximizing the posterior

from (14). Equivalently, we minimize its negative log

E(u,v) = ED(u,v) + λES(u,v), (21)

where ED is the negative log (i.e., energy) of the data term, ES is the negative log of the spatial

term (the normalization constant is omitted in either case), and λ is an optional trade-off weight (or

regularization parameter).

Optimizing such energies is generally difficult, because of their non-convexity and many local

optima. The non-convexity in our approach stems from the fact that the learned potentials are

non-convex and from the warping-based data term used here and in other competitive methods [34].

To limit the influence of spurious local optima, we construct a series of energy functions

EC(u,v, α) = αEQ(u,v) + (1− α)E(u,v), (22)

where EQ is a quadratic, convex, formulation of E that replaces the potential functions of E by

a quadratic form and uses a different λ. Note that EQ amounts to a Gaussian MRF formulation.

α ∈ [0, 1] is a control parameter that varies the convexity of the compound objective. As α changes

from 1 to 0, the combined energy function in (22) changes from the quadratic formulation to the

proposed non-convex one (cf. [31]). During the process, the solution at a previous convexification

stage serves as the starting point for the current stage. In practice, we find using three stages

produces reasonable results.

At each stage, we perform a simple local minimization of the energy. At a local minimum, it

holds that

∇uEC(u,v, α) = 0, (23)

and

∇vEC(u,v, α) = 0. (24)

Since the energy induced by the proposed MRF formulation is spatially discrete, it is relatively

straightforward to derive the gradient expressions, similar to the derivation in Chapter 2. Setting

these to zero and linearizing them, we rearrange the results into a system of linear equations,

which can be solved by a standard technique. The main difficulty in deriving the linearized gradient

expressions is the linearization of the warping step. For this we follow the approach of Brox et al. [34]

while using the derivative filters proposed in [38].

To estimate flow fields with large displacements, we adopt an incremental multi-resolution tech-

nique (e.g. [26, 38]). As is quite standard, the optical flow estimated at a coarser level is used to

warp the second image toward the first at the next finer level and the flow increment is calculated

between the first image and the warped second image. The final result combines all the flow incre-

ments. At the first stage where α = 1, we use a 4-level pyramid with a downsampling factor of 0.5.

At other stages, we only use a 2-level pyramid with a downsampling factor of 0.8 to make full use

of the solution at the previous convexification stage.
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(a) (b) (c) (d) (e)

Figure 3.4. Three fixed filters from the FFC model: (a) Gaussian, (b) horizontal derivative, and (c) vertical

derivative. (d,e) Two of the six learned filter pairs of the LFC model and the difference between each pair

(left: Jk1, middle: Jk2, right: Jk1 − Jk2).

3.6. Experiments and Results

3.6.1. Learned Models. The spatial terms of both the pairwise model (PW) and the steer-

able model (SRF) were trained using contrastive divergence on 20, 000 9× 9 flow patches that were

randomly cropped from the training flow fields (see above). To train the steerable model, we also

supplied the corresponding 20, 000 image patches (of size 15× 15 to allow computing the structure

tensor) from the reference images. The pairwise model used 5 GSM scales; and the steerable model

4 scales.

The simple brightness constancy data term (BC) was trained using expectation-maximization.

To train the data term that models the generalized filter response constancy (FC), the CD algorithm

was run on 20, 000 15×15 flow patches and corresponding 25×25 image patches, which were randomly

cropped from the training data. 6-scale GSM models were used for both data terms. We investigated

two different filter constancy models. The first (FFC) used 3 fixed 3 × 3 filters: a small variance

Gaussian (σ = 0.4), and horizontal and vertical derivative filters similar to [34]. The other (LFC)

used 6 3×3 filter pairs that were learned automatically. Note that the GSM potentials were learned

in either case. Figure 3.4 shows the fixed filters from the FFC model, as well as two of the learned

filters from the LFC model. Interestingly, the learned filters do not look like ordinary derivative

filters nor do they resemble the filters learned in an FoE model of natural images [132]. It is also

noteworthy that even though the Jk2 are not enforced to be equal to the Jk1 during learning, they

typically exhibit only subtle differences as Figure 3.4 shows.

Given the non-convex nature of the learning objective, contrastive divergence is prone to finding

local optima, which means that the learned filters are likely not optimal. Repeated initializations

produced different-looking filters, which however performed similarly to the ones shown here. The

fact that these “non-standard” filters perform better (see below) than standard ones suggests that

more research on better filters for formulating optical flow data terms is warranted.

For the models for which we employed contrastive divergence, we used a hybrid Monte Carlo

sampler with 30 leaps, l = 1 CD step, and a learning rate of 0.01 as proposed by [134]. The CD

algorithm was run for 2000 to 10000 iterations, depending on the complexity of the model, after

which the model parameters did not change significantly. Figure 3.1 shows the learned potential

functions alongside the empirical marginals. We should note that learned potentials and marginals

generally differ. This has, for example, been noted by Zhu et al. [203], and is particularly the case

for the SRFs, since the derivative responses are not independent within a flow field (cf. [134]).

To estimate the flow, we proceeded as described in Section 3.5 and performed 3 iterations of the

incremental estimation at each level of the pyramid. The regularization parameter λ was optimized
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(a) Estimated flow (b) Ground truth

Figure 3.5. Results of the SRF-LFC model for the “Army” sequence.

(a) HS [73] (b) BA [26] (c) PW-BC (d) SRF-BC

(e) PW-FFC (f) SRF-FFC (g) PW-LFC (h) SRF-LFC

Figure 3.6. Details of the flow results for the “Army” sequence. HS=Horn & Schunck; BA=Black & Anan-

dan; PW=pairwise; SRF=steered model; BC=brightness constancy; FFC=fixed filter response constancy;

LFC=learned filter response constancy.

for each method using a small set of training sequences. For this stage we added a small amount of

noise to the synthetic training sequences, which led to larger λ values and increased robustness to

novel test data.

3.6.2. Flow Estimation Results. We evaluated all 6 proposed models using the test portion

of the Middlebury optical flow benchmark [17]3. Figure 3.5 shows the results on one of the sequences

along with the ground truth flow. Table 3.1 gives the average angular error (AAE) of the models on

3Note that the Yosemite frames used for testing as part of the benchmark are not the same as those used for

learning.
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Table 3.1. Average angular error (AAE) on the Middlebury optical flow benchmark for various combina-

tions of the proposed models. The ranking information was at the writing of our conference paper [159]

(August 2008); the AAE rank for SRF-LFC is 51.0 at the writing of this dissertation (July 2012).

Rank Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

HS[73] 18.2 8.72 8.01 9.13 14.20 12.40 4.64 8.21 4.01 9.16

BA[26] 12.1 7.17 6.81 8.77 13.00 8.29 4.18 6.19 3.63 6.45

PW-BC 13.0 7.37 6.75 10.20 14.00 7.31 4.19 6.08 3.05 7.39

SRF-BC 12.4 7.43 6.60 10.70 14.00 7.11 4.15 5.75 3.85 7.27

PW-FFC 12.3 5.96 4.29 4.81 8.95 7.60 5.33 6.45 2.93 7.34

SRF-FFC 10.5 5.79 4.29 5.26 8.53 7.02 5.01 6.12 3.38 6.67

PW-LFC 11.0 5.47 4.29 3.97 6.57 6.78 4.92 6.81 2.90 7.53

SRF-LFC 9.5 5.34 4.23 4.16 6.78 6.41 4.66 6.33 3.09 7.08

Table 3.2. Average angular error (AAE) in motion boundary regions.

Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

PW-BC 15.81 14.00 19.90 23.80 25.60 5.33 19.60 4.35 13.90

SRF-BC 15.47 13.40 19.80 23.20 25.20 5.27 18.20 5.19 13.50

PW-FFC 15.37 12.10 16.70 19.70 26.30 6.73 21.60 4.45 15.40

SRF-FFC 14.74 11.50 16.60 18.90 25.40 6.32 20.60 4.83 13.80

PW-LFC 14.97 12.20 15.40 17.00 26.00 6.43 22.20 4.65 15.90

SRF-LFC 14.47 11.70 15.30 16.90 25.30 6.01 20.70 4.84 15.00

the test sequences, as well as the results of two standard methods [26, 73]. Note that the standard

objectives from [26, 73] were optimized using exactly the same optimization strategy as used for

the learned models. This ensures fair comparison and focuses the evaluation on the model rather

than the optimization method. The table also shows the average rank from the Middlebury flow

benchmark, as well as the average AAE across all 8 test sequences. Table 3.2 shows results of the

same experiments, but here the AAE is only measured near motion boundaries. From these results

we can see that the steerable flow model (SRF) substantially outperforms a standard pairwise spatial

term (PW), particularly also near motion discontinuities. This holds no matter what data term the

respective spatial term is combined with. This can also be seen visually in Figure 3.6, where the

SRF results exhibit the clearest motion boundaries.

Among the different data terms, the filter response constancy models (FFC & LFC) very clearly

outperform the classical brightness constancy model (BC), particularly on the sequences with real

images (“Army” through “Schefflera”), which are especially difficult for standard techniques, because

the classical brightness constancy assumption does not appear to be as appropriate as for the syn-

thetic sequences, for example because of stronger shadows. Moreover, the model with learned filters

(LFC) slightly outperforms the model with fixed, standard filters (FFC), particularly in regions with

strong brightness changes. This means that learning the filters seems to be fruitful, particularly for

challenging, realistic sequences. Further results, including comparisons to other recent techniques

are available at http: // vision. middlebury. edu/ flow/ .
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3.7. Conclusions and Discussions

Enabled by a database of image sequences with ground truth optical flow fields, we have stud-

ied the statistics of both optical flow and brightness constancy, and formulated a fully learned

probabilistic model for optical flow estimation. We extend our initial formulation by modeling the

steered derivatives of optical flow, and generalize the data term to model the constancy of linear

filter responses. This provides a statistical grounding for, and extension of, various previous models

of optical flow, and at the same time enables us to learn all model parameters automatically from

training data. Quantitative experiments show that both the steered model of flow as well as the

generalized data term substantially improved performance.

The estimated flow fields by the learning approach are still not satisfactory. Compared with

the ground truth, the estimated flow fields have over-blurred motion boundaries and large errors in

occlusion regions. There are several reasons. First, we have focused on the models (objective func-

tions) and adopted a simple optimization scheme. Better optimization methods and implementation

details are likely to further improve the performance. Second, the low-level formulation does not

model occlusions, where large errors tend to occur. Third, the training data may not be represen-

tative enough. The majority of the training sequences are synthetic, while the majority of the test

sequences are real. More representative training data will make the learned models more robust.

Lastly, there is a mismatch between the learning method and the inference scheme. As shown for

image denoising [144], the learned potentials by the contrastive divergence algorithm for natural

images produce inferior results to the hand-designed L1 norm using the MAP estimator. The MMSE

estimator with the learned potentials however produces the optimal performance.

We will further study and address first two issues in the rest of the thesis. For example, the

next chapter performs a more thorough analysis of the optical flow methods, according to models,

optimization methods, and implementation details.
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CHAPTER 4

A Quantitative Analysis of Recent Practices in Optical Flow

Estimation and Their Principles

The accuracy of optical flow estimation algorithms has been improving steadily as evidenced by

results on the Middlebury optical flow benchmark. The typical formulation, however, has changed

little since the work of Horn and Schunck. In this chapter, we attempt to uncover what has made

recent advances possible through a thorough analysis of how the objective function, the optimization

method, and modern implementation practices influence accuracy. We discover that “classical” flow

formulations perform surprisingly well when combined with modern optimization and implementa-

tion techniques. Moreover, we find that while median filtering of intermediate flow fields during

optimization is a key to recent performance gains, it leads to higher energy solutions. To under-

stand the principles behind this phenomenon, we derive a new objective that formalizes the median

filtering heuristic. This objective includes a non-local term that robustly integrates flow estimates

over large spatial neighborhoods. By modifying this new term to include information about flow

and image boundaries we develop a method that can better preserve motion details.

4.1. Introduction

The field of optical flow estimation is making steady progress as evidenced by the increasing

accuracy of current methods on the Middlebury optical flow benchmark [17]. After nearly 30 years

of research, these methods have obtained an impressive level of reliability and accuracy [184, 185,

189, 204]. But what has led to this progress? The majority of today’s methods strongly resemble

the original formulation of Horn and Schunck (HS) [73]. They combine a data term that assumes

constancy of some image property with a spatial term that models how the flow is expected to

vary across the image. An objective function combining these two terms is then optimized. Given

that this basic structure is unchanged since HS, what has enabled the performance gains of modern

approaches?

The chapter has three parts. In the first, we perform an extensive study of current optical flow

methods and models. The most accurate methods on the Middlebury flow dataset make different

choices about how to model the objective function, how to approximate this model to make it

computationally tractable, and how to optimize it. Since most published methods change all of

these properties at once, it can be difficult to know which choices are most important. To address

this, we define a baseline algorithm that is “classical”, in that it is a direct descendant of the original

HS formulation, and then systematically vary the model and method using different techniques from

the art. The results are surprising. We find that only a small number of key choices produce

statistically significant improvements and that they can be combined into a very simple method
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that achieves accuracies near the state of the art. More importantly, our analysis reveals what

makes current flow methods work so well.

Part two examines the principles behind this success. We find that one algorithmic choice

produces the most significant improvements: applying a median filter to intermediate flow values

during incremental estimation and warping [184, 185]. While this heuristic improves the accuracy

of the recovered flow fields, it actually increases the energy of the objective function. This suggests

that what is being optimized is actually a new and different objective. Using observations about

median filtering and L1 energy minimization from Li and Osher [96], we formulate a new non-local

term that is added to the original, classical objective. This new term goes beyond standard local

(pairwise) smoothness to robustly integrate information over large spatial neighborhoods. We show

that minimizing this new energy approximates the original optimization with the heuristic median

filtering step. Note, however, that the new objective falls outside our definition of classical methods.

Finally, once the median filtering heuristic is formulated as a non-local term in the objective, we

immediately recognize how to modify and improve it. In part three we show how information about

image structure and flow boundaries can be incorporated into a weighted version of the non-local

term to prevent over-smoothing across boundaries. By incorporating structure from the image, this

weighted version does not suffer from some of the errors produced by median filtering. At the time

of writing (March 2010) of our conference paper [158], the resulting approach was ranked 1st in both

angular and end-point errors in the Middlebury evaluation. At the writing of the dissertation (July

2012), Classic+NL ranks 13th in both AAE and EPE. Several recent and high-ranking methods

directly build on Classic+NL, such as the layered model we will present in the following chapters,

methods with more advanced motion prior models [42, 80], and efficient optimization schemes for

the non-local term [87].

4.2. Previous Work

It is important to separately analyze the contributions of the objective function that defines the

problem (the model) and the optimization algorithm and implementation used to minimize it (the

method). The HS formulation, for example, has long been thought to be highly inaccurate. Barron

et al. [19] reported an average angular error (AAE) of ∼ 30 degrees on the “Yosemite” sequence. This

confounds the objective function with the particular optimization method proposed by Horn and

Schunck1. When optimized with today’s methods, the HS objective achieves surprisingly competitive

results despite the expected over-smoothing and sensitivity to outliers.

As shown in Figure 4.1, the reported accuracy of a method is jointly determined by the objective

function of a paper, the optimization techniques, the implementation details, and the parameter

tuning/learning. We will review papers in the first three aspects below.

Models: The global formulation of optical flow introduced by Horn and Schunck [73] relies

on both brightness constancy and spatial smoothness assumptions, but suffers from the fact that

the quadratic formulation is not robust to outliers. Black and Anandan [26] addressed this by

replacing the quadratic error function with a robust formulation. Subsequently, many different

robust functions have been explored [34, 92, 159] and it remains unclear which is best. We refer to

1They noted that the correct way to optimize their objective is by solving a system of linear equations as is

common today. This was impractical on the computers of the day so they used a heuristic method.
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Figure 4.1. The accuracy of a reported method depends on several factors; we need to isolate the influence

of other factors when evaluating the effect of a particular factor.

all these spatially-discrete formulations derived from HS as “classical.” We systematically explore

variations in the formulation and optimization of these approaches. The surprise is that the classical

model, appropriately implemented, remains very competitive.

There are many formulations beyond the classical ones that we do not consider here. Significant

ones use oriented smoothness [117, 159, 184, 204], rigidity constraints [183, 184], or image

segmentation [30, 91, 205, 196]. While they deserve similar careful consideration, we expect many

of our conclusions to carry forward. Note that one can select among a set of models for a given

sequence [106], instead of finding a “best” model for all the sequences.

Methods: Many of the implementation details that are thought to be important date back to

the early days of optical flow. Current best practices include coarse-to-fine estimation to deal with

large motions [21, 38], texture decomposition [183, 185] or high-order filter constancy [6, 34, 62,

92, 204] to reduce the influence of lighting changes, bicubic interpolation-based warping [92, 185],

temporal averaging of image derivatives [72, 185], graduated non-convexity [31] to minimize non-

convex energies [26, 159], and median filtering after each incremental estimation step to remove

outliers [185].

This median filtering heuristic is of particular interest as it makes non-robust methods more

robust and improves the accuracy of all methods we tested. The effect on the objective function

and the underlying reason for its success have not previously been analyzed. Least median squares

estimation can be used to robustly reject outliers in flow estimation [13], but previous work has

focused on the data term.

Related to median filtering, and our new non-local term, is the use of bilateral filtering to prevent

smoothing across motion boundaries [195]. The approach separates a variational method into two

filtering update stages, and replaces the original anisotropic diffusion process with multi-cue driven

bilateral filtering. As with median filtering, the bilateral filtering step changes the original energy

function.
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Models that are formulated with an L1 robust penalty are often coupled with specialized total

variation (TV) optimization methods [200]. Here we focus on generic optimization methods that

can apply to any model and find they perform as well as reported results for specialized methods.

Despite recent algorithmic advances, there is a lack of publicly available, easy to use, and

accurate flow estimation software. The GPU4Vision project [2] has made a substantial effort to

change this and provides executable files for several accurate methods [183, 184, 185, 189]. The

dependence on the GPU and the lack of source code are limitations. We hope that our public

Matlab code [3] will not only help in understanding the practices of optical flow, but also let

others exploit optical flow as a useful tool in computer vision and related fields.

4.3. Classical Models

We write the “classical” optical flow objective function in its spatially discrete form as

E(u,v) =
∑
p

{
∑
q∈Np

ρD(Ip1 − I
q
2 ) + λ

∑
q∈Γp

[ρS(up − uq) + ρS(vp − vq)]}, (25)

where u and v are the horizontal and vertical components of the optical flow field to be estimated

from images I1 and I2, λ is a regularization parameter, Np = {(i+ up, j + vp)}, the set Γp contains

the four nearest spatial neighbors of p, and ρD and ρS are the data and spatial penalty functions.

We consider three different penalty functions: (1) the quadratic HS penalty ρ(x) = x2; (2) the

Charbonnier penalty ρ(x) =
√
x2 + ε2 [38], a differentiable variant of the L1 norm, the most robust

convex function; and (3) the Lorentzian ρ(x) = log(1 + x2

2σ2 ), which is a non-convex robust penalty

used in [26]. Note that this classical model is related to a standard pairwise Markov Random Field

(MRF) based on a 4-neighborhood.

In the remainder of this section we define a baseline method using several techniques from the

literature. This is not the “best” method, but includes modern techniques and will be used for

comparison. We only briefly describe the main choices, which are explored in more detail in the

following section and the cited references.

Quantitative results are presented throughout the remainder of the text. In all cases we report

the average end-point error (EPE) on the Middlebury training and test sets, depending on the

experiment. Given the extensive nature of the evaluation, only average results are presented in the

main body, while the details for each individual sequence are given in Appendix A.

4.3.1. Baseline Methods. To gain robustness against lighting changes, we follow [185] and

apply the Rudin-Osher-Fatemi (ROF) structure texture decomposition method [138] to pre-process

the input sequences and linearly combine the texture and structure components (in the proportion

20:1). The parameters are set according to [185].

Optimization is performed using a standard incremental multi-resolution technique (e.g., [26,

38]) to estimate flow fields with large displacements. The optical flow estimated at a coarse level

is used to warp the second image toward the first at the next finer level, and a flow increment is

calculated between the first image and the warped second image. The standard deviation of the

Gaussian anti-aliasing filter is set to be 1√
2d

, where d denotes the downsampling factor. Each level

is recursively downsampled from its nearest lower level. In building the pyramid, the downsampling

factor is not critical as pointed out in the next section and here we use the settings in [159], which
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Table 4.1. Models. Average rank and end-point error (EPE) on the Middlebury test set using different

penalty functions. Two state-of-the-art methods in December 2010 are included for comparison. The ranking

information was at the publication of our conference paper [158] (June 2010); the average EPE ranks for

Adaptive and Complementary OF are 26.8 and 29.3 at the writing of the dissertation (July 2012).

Avg. Rank Avg. EPE

Classic-C 14.9 0.408

HS 24.6 0.501

Classic-L 19.8 0.530

HS [159] 35.1 0.872

BA (Classic-L) [159] 30.9 0.746

Adaptive [184] 11.5 0.401

Complementary OF [204] 10.1 0.485

uses a factor of 0.8 in the final stages of the optimization. We adaptively determine the number of

pyramid levels so that the top level has a width or height of around 20 to 30 pixels. At each pyramid

level, we perform 10 warping steps to compute the flow increment.

At each warping step, we linearize the data term once, which involves computing terms of

the type (∂I2∂x )q, where ∂/∂x denotes the partial derivative in the horizontal direction, and q =

(i + up, j + vp). As suggested in [185], we compute the derivatives of the second image using the

5-point derivative filter 1
12 [−1 8 0 − 8 1], and warp the second image and its derivatives toward

the first using the current flow estimate by bicubic interpolation. We then compute the spatial

derivatives of the first image, average with the warped derivatives of the second image (cf. [72]),

and use this in place of ∂I2
∂x . For pixels moving out of the image boundaries, we set both their

corresponding temporal and spatial derivatives to zero. After each warping step, we apply a 5 × 5

median filter to the newly computed flow field to remove outliers [185].

For the Charbonnier (Classic-C) and Lorentzian (Classic-L) penalty function, we use a gradu-

ated non-convexity (GNC) scheme [31] as described in Chapter 3 that linearly combines a quadratic

objective with a robust objective in varying proportions, from fully quadratic to fully robust. The

standard deviations of the corresponding quadratic penalty function are set to be 1 for the Charbon-

nier penalty and the same as those of the penalty functions for the Lorentzian. Unlike Chapter 3, a

single regularization weight λ is used for both the quadratic and the robust objective functions.

4.3.2. Baseline Results. The regularization parameter λ is selected among a set of candidate

values to achieve the best average end-point error (EPE) on the Middlebury training set. For the

Charbonnier penalty function, the candidate set is [1, 3, 5, 8, 10] and 5 is optimal. The Charbonnier

penalty uses ε = 0.001 for both the data and the spatial term in Eq. (25). The Lorentzian uses σ = 1.5

for the data term, and σ = 0.03 for the spatial term. These parameters are fixed throughout the

experiments, except where mentioned.

Table 4.1 summarizes the EPE results of the basic model with three different penalty functions

on the Middlebury test set, along with the two top performers at the time of publication of our con-

ference paper (considering only published papers). The classic formulations with two non-quadratic

penalty functions (Classic-C) and (Classic-L) achieve competitive results despite their simplicity.

The baseline optimization of HS and BA (Classic-L) results in significantly better accuracy than

41



Table 4.2. Pre-Processing. Average end-point error (EPE) on the Middlebury training set for the

baseline method (Classic-C) using different pre-processing techniques. Significance is always with respect

to Classic-C.

Avg. EPE significance p-value

Classic-C 0.298 — —

HS 0.384 1 0.0078

Classic-L 0.319 1 0.0078

Classic-C-brightness 0.288 0 0.9453

HS-brightness 0.387 1 0.0078

Classic-L-brightness 0.325 0 0.2969

Gradient 0.305 0 0.4609

Gaussian + Dx + Dy constancy 0.290 0 0.6406

Sobel edge magnitude [172] 0.417 1 0.0156

Laplacian [92] 0.430 1 0.0078

Laplacian1:1 0.301 0 0.6641

Gaussian pre-filtering (σ = 0.5) 0.281 0 0.5469

Texture4:1 0.286 0 0.5312

previously reported for these models [159]. Note that the analysis also holds for the training set

(Table 4.2).

Because of the good performance of Classic-C despite its simplicity, we set it as the baseline

below. It is worth noting that the spatially discrete MRF formulation taken here is competitive

with variational methods such as [184]. Moreover, our baseline implementation of HS has a lower

average EPE than many more sophisticated methods.

4.4. Practices Explored

We evaluate a range of variations from the baseline approach that have appeared in the literature,

in order to illuminate which may be of importance. This analysis is performed on the Middlebury

training set by changing only one property at a time. Statistical significance is determined using

a Wilcoxon signed rank test [190] between each modified method and the baseline Classic-C; a p

value less than 0.05 indicates a significant difference.

Pre-Processing. For each method, we optimize the regularization parameter λ for the training

sequences and report the results in Table 4.2. The baseline uses a non-linear pre-filtering of the

images to reduce the influence of illumination changes [185]. Table 4.2 shows the effect of removing

this and using a standard brightness constancy model (*-brightness). Classic-C-brightness

actually achieves lower EPE on the training set than Classic-C but significantly lower accuracy on

the test set: Classic-C-brightness = 0.726, HS-brightness = 0.759, and Classic-L-brightness

= 0.603 – see Table 4.1 for comparison. This disparity suggests overfitting is more severe for the

brightness constancy assumption.

Simpler alternatives, such as filter response (or high-order) constancy [34, 159] can serve the

same function as ROF texture decomposition. A variety of pre-filters have been used in the literature,

including derivative filters, Laplacians [40, 92], and Gaussians. Edges have also been emphasized

using the Sobel edge magnitude [172].
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Table 4.3. Model and Methods. Average end-point error (EPE) on the Middlebury training set for the

baseline method (Classic-C) using different algorithm and modeling choices.

Avg. EPE significance p-value

Classic-C 0.298 — —

3 warping steps 0.304 0 0.9688

Down-0.5 0.298 0 1.0000

w/o GNC 0.354 0 0.1094

Bilinear 0.302 0 0.1016

w/o TAVG 0.306 0 0.1562

Central derivative filter 0.300 0 0.7266

7-point derivative filter [38] 0.302 0 0.3125

Deriv-warp 0.297 0 0.9531

Bicubic-II 0.290 1 0.0391

Deriv-warp-II 0.287 1 0.0156

Warp-deriv-II 0.288 1 0.0391

C-L (λ = 0.6) 0.303 0 0.1562

L-C (λ = 2) 0.306 0 0.1562

GC-0.45 (λ = 3) 0.292 1 0.0156

GC-0.25 (λ = 0.7) 0.298 0 1.0000

MF 3 × 3 0.305 0 0.1016

MF 7 × 7 0.305 0 0.5625

2× MF 0.300 0 1.0000

5× MF 0.305 0 0.6875

w/o MF 0.352 1 0.0078

Classic++ 0.285 1 0.0078

Gradient only imposes constancy of the gradient vector at each pixel as proposed in [34]

(i.e., it robustly penalizes Euclidean distance between image gradients). We use central difference

filters (Dx = [−0.5 0 0.5] and Dy = DxT ). Gaussian+Dx+Dy assumes separate brightness,

horizontal derivative, and vertical derivative constancy. A weighted combination of robust functions

applied to each term is used as in [159]. Neither of these methods differ significantly from the

baseline texture decomposition (Classic-C). Two methods are significantly worse: the Sobel edge

magnitude [172] and Laplacian pre-filtering (5 × 5) as used in [92]. Gaussian pre-filtering

(σ = 0.5) performed well on the synthetic sequences, but poorly on real ones. Finally, the texture-

structure blending ratio is 20:1 in [185] but 4:1 in [189]. We find that (Texture4:1) performs better

(but not significantly) on the synthetic sequences with a little degradation on the real ones.

For the Laplacian pre-filtering, we find combining the filtered image with the original image,

in the proportion 1:1, improves accuracy significantly (Laplacian1:1). Similar to the ROF tex-

ture decomposition, such approach boosts certain frequency while suppressing the low frequency

components that contain the lighting change.

Good practices: Some form of image filtering is useful but simple derivative constancy is nearly

as good as the more sophisticated texture decomposition method.

Coarse-to-fine estimation and GNC. We vary the number of warping steps per pyramid level

and find that 3 warping steps gives similar results as using 10 (Table 4.3). For the GNC scheme,
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[159] uses a downsampling factor of 0.8 for non-convex optimization. A downsampling factor of 0.5

(Down-0.5), however, has nearly identical performance

Removing the GNC step for the Charbonnier penalty function (w/o GNC) results in higher

EPE on most sequences and higher energy on all sequences (Table 4.5). This suggests that the GNC

method is helpful even for the convex Charbonnier penalty function due to the nonlinearity of the

data term.

Good practices: The downsampling factor does not matter when using a convex penalty; a stan-

dard factor of 0.5 is fine. Some form of GNC is useful even for a convex robust penalty like Char-

bonnier because of the nonlinear data term.

Interpolation method and derivatives. We find that bicubic interpolation is more accurate

than bilinear (Table 4.3, Bilinear), as already reported in previous work [185]. Removing temporal

averaging of the gradients (w/o TAVG), using Central difference filter, or using a 7-point

derivative filter [−1 9 − 45 0 45 − 9 1]/60 [38] all reduce accuracy compared to the baseline, but

not significantly.

Another way to obtain the image derivative is to compute the derivatives of the warped image

and then perform the temporal averaging with the spatial derivatives of the first image [38]. We

find it produces similar results (Deriv-warp). However, the derivatives computed in either way are

inconsistent with those implicitly interpolated by the bicubic interpolation. Bicubic interpolation

interpolates not only the image but also the derivatives [126]. Because the Matlab built-in function

interp2 is based on cubic convolution [84] and does not provide the derivatives used in interpolation,

we use the spline-based implementation in [126]. With the new implementation, the three different

ways to compute the derivatives give very similar EPE results, all better than the Matlab built-in

function. However, the one with consistent derivatives (Bicubic-II) gives the lowest energy solution,

as shown in Table 4.4.

Table 4.4. Eq. (25) energy (×106) for the optical flow fields computed on the Middlebury training set, eval-

uated using spline-based bicubic interpolation [126]. Note the derivatives consistent with the interpolation

method (Bicubic-II) produces the lowerest energy solution.

Venus
Dimetr- Hydr- Rubber-

Grove2 Grove3 Urban2 Urban3
odon angea Whale

Bicubic-II 0.552 0.734 0.835 0.481 1.656 2.167 1.061 1.275

Deriv-warp 0.559 0.745 0.840 0.484 1.682 2.201 1.073 1.333

Warp-deriv 0.563 0.745 0.845 0.486 1.694 2.238 1.117 1.347

Good practices: Use spline-based bicubic interpolation with a 5-point filter. Compute the de-

rivative during the interpolation to obtain the lowest energy solutions. Temporal averaging of the

derivatives is probably worthwhile for a small computational expense.

Penalty functions. We find that the convex Charbonnier penalty performs better than the more

robust, non-convex Lorentzian on both the training and test sets. We use Charbonnier for the data

term and Lorentzian for the spatial term (C-L) and vic versa (L-C). Both perform better than the

Lorentzian for both terms but worse than the Charbonnier for both terms.
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Figure 4.2. Different penalty functions for the spatial terms: Charbonnier (ε = 0.001), generalized Char-

bonnier (a = 0.45 and a = 0.25), and Lorentzian (σ = 0.03).

One reason might be that non-convex functions are more difficult to optimize, causing the

optimization scheme to find a poor local optimum. Another reason might be the MAP estimation

actually favors the “wrong” penalty functions [144].

We investigate a generalized Charbonnier penalty function ρ(x) = (x2 + ε2)a that is equal to

the Charbonnier penalty when a = 0.5, and non-convex when a < 0.5 (see Figure 4.2). We optimize

the regularization parameter λ again. We find a slightly non-convex penalty with a = 0.45 (GC-

0.45) performs consistently better than the Charbonnier penalty, whereas more non-convex penalties

(GC-0.25 with a = 0.25) show no improvement.

Good practices: The less-robust Charbonnier is preferable to the Lorentzian and a slightly non-

convex penalty function (GC-0.45) is better still.

Median filtering. The baseline 5 × 5 median filter (MF 5 × 5) is better than both MF 3 × 3

[185] and MF 7×7 but the difference is not significant (Table 4.3). When we perform 5×5 median

filtering twice (2× MF) or five times (5× MF) per warping step, the results are worse. Finally,

removing the median filtering step (w/o MF) makes the computed flow significantly less accurate

with larger outliers as shown in Table 4.3 and Figure 4.3.

Good practices: Median filtering the intermediate flow results once after every warping iteration

is the single most important secret; 5× 5 is a good filter size.

4.4.1. Best Practices. Combining the analysis above into a single approach means modifying

the baseline to use the slightly non-convex generalized Charbonnier and the spline-based bicubic

interpolation. This leads to a statistically significant improvement over the baseline (Table 4.3,

Classic++). This method is directly descended from HS and BA, yet updated with the current

best optimization practices known to us. This simple method ranks 32th out of 73 methods in both

EPE and AAE on the Middlebury test set at the writing of the dissertation (July 2012).
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(a) With median filtering (b) Without median filtering

Figure 4.3. Estimated flow fields on sequence “RubberWhale” using Classic-C with and without (w/o

MF) the median filtering step. Color coding as in [17]. (a) (w/ MF) energy 502, 387 and (b) (w/o MF)

energy 449, 290. The median filtering step helps reach a solution free from outliers but with a higher energy.

Table 4.5. Eq. (25) energy (×106) for the optical flow fields computed on the Middlebury training set,

evaluated using convolution-based bicubic interpolation [84]. Note that Classic-C uses graduated non-

convexity (GNC), which reduces the energy, and median filtering, which increases it.

Venus
Dimetr- Hydr- Rubber-

Grove2 Grove3 Urban2 Urban3
odon angea Whale

Classic-C 0.589 0.748 0.866 0.502 1.816 2.317 1.126 1.424

w/o GNC 0.593 0.750 0.870 0.506 1.845 2.518 1.142 1.465

w/o MF 0.517 0.701 0.668 0.449 1.418 1.830 1.066 1.395

4.5. Models Underlying Median Filtering

Our analysis reveals the practical importance of median filtering during optimization to denoise

the flow field. We ask whether there is a principle underlying this heuristic?

One interesting observation is that flow fields obtained with median filtering have substantially

higher energy than those without (Table 4.5 and Figure 4.3). If the median filter is helping to optimize

the objective, it should lead to lower energies. Higher energies and more accurate estimates suggest

that incorporating median filtering changes the objective function being optimized.

The insight that follows from this is that the median filtering heuristic is related to the mini-

mization of an objective function that differs from the classical one. In particular the optimization

of Eq. (25), with interleaved median filtering, approximately minimizes

E(u,v) =
∑
p

{
∑
q∈Np

ρD(Ip1 − I
q
2 ) + λ

∑
q∈Γp

[ρS(up − uq) + ρS(vp − vq)]} (26)

+
∑
p

∑
q∈ΓNL

p

λN (|up − uq|+ |vp − vq|),

where Np is the set of neighbors of pixel p in a possibly large area and λN is a scalar weight. The

term in braces is the same as the flow energy from Eq. (25), while the last term is new. This non-

local term [39, 61] imposes a particular smoothness assumption within a specified region of the flow
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Figure 4.4. Neighbors for the pairwise model (left) and the non-local model (right). The pairwise model

connects a pixel with its nearest neighbors, while the non-local term connects a pixel with many pixels in a

large spatial neighborhood.

field 2. Here we take this term to be a 5× 5 rectangular region to match the size of the median filter

in Classic-C. Figure 4.4 shows the neighborhood for the standard pairwise model and the non-local

term.

It is usually difficult to directly optimize the objective (26) with a large spatial term. A common

practice is to relax the objective with an auxiliary flow field as

EA(u,v, û, v̂) =
∑
p

{
∑
q∈Np

ρD(Ip1 − I
q
2 ) + λ

∑
q∈Γp

[ρS(up − uq) + ρS(vp − vq)]} (27)

+ λC(||u− û||2 + ||v − v̂||2) +
∑
p

∑
q∈ΓNL

p

λN (|ûp − ûq|+ |v̂p − v̂q|),

where û and v̂ denote an auxiliary flow field and λC is a scalar weight. A third (coupling) term

encourages û, v̂ and u,v to be the same (cf. [184, 200]).

The connection to median filtering (as a denoising method) derives from the fact that there

is a direct relationship between the median and L1 minimization. Consider a simplified version of

Eq. (27) with just the coupling and non-local terms,

E(û) = λC ||u− û||2 +
∑
p

∑
q∈ΓNL

p

λN |ûp − ûq| (28)

While minimizing this is similar to median filtering u, there are two differences. First, the non-local

term minimizes the L1 distance between the central value and all flow values in its neighborhood

except itself. Second, Eq.(28) incorporates information about the data term through the coupling

equation; median filtering the flow ignores the data term.

The formal connection between Eq.(28) and median filtering3 is provided by Li and Osher [96]

who show that minimizing Eq.(28) is related to a different median computation

ûp(k+1) = median(Neighbors(k) ∪Data) (29)

2Bruhn et al. [38] also integrated information over a local region in a global method but did so for the data

term.
3Hsiao et al. [74] established the connection in a slightly different way.

47



where Neighbors(k) = {ûq(k)} for q ∈ ΓNL
p and û(0) = u as well as

Data = {up, up ± λN

λC
, up ± 2λN

λC
· · · , up ± |Γ

NL
p |λN

2λC
},

where |ΓNL
p | denotes the (even) number of neighbors of (p). Note that the set of “data” values is

balanced with an equal number of elements on either side of the value up and that information about

the data term is included through up. Repeated application of Eq. (29) converges rapidly [96].

Observe that, as λN/λC increases, the weighted data values on either side of up move away

from the values of Neighbors and cancel each other out. As this happens, Eq. (29) approximates

the median at the first iteration

ûp(1) ≈ median(Neighbors(0) ∪ {up}). (30)

The relaxed energy function given by Eq. (27) thus combines the original objective with an

approximation to the median, the influence of which is controlled by λN/λC . Note in practice the

weight λC on the coupling term is usually small or is steadily increased from small values [185, 200].

We optimize the new objective (27) by alternately minimizing

EO(u,v) =
∑
p

{
∑
q∈Np

ρD(Ip1 − I
q
2 ) + λ

∑
q∈Γp

[ρS(up − uq) + ρS(vp − vq)]}+ λC(||u− û||2 + ||v − v̂||2)

(31)

and

EM (û, v̂) = λC(||u− û||2 + ||v − v̂||2) +
∑
p

∑
q∈ΓNL

p

λN |ûp − ûq| (32)

We find that optimization of the coupled set of equations is superior in terms of EPE performance.

The alternating optimization strategy first holds û, v̂ fixed and minimizes Eq. (31) w. r. t. u,v.

Then, with u,v fixed, we minimize Eq. (32) w. r. t. û, v̂. Note that Eqs. (28) and (32) can be

minimized by repeated application of Eq. (29); we use this approach with 5 iterations. We perform

10 steps of alternating optimizations at every pyramid level and change λC logarithmically from

10−4 to 102. During the first and second GNC stages, we set u,v to be û, v̂ after every warping step

(this step helps reach solutions with lower energy and EPE; cf. Classic-C-A-noRep in Tables 4.6

and 4.7). In the end, we take û, v̂ as the final flow field estimate. The other parameters are

λ = 5, λN = 1.

Alternatingly optimizing this new objective function (Classic-C-A) leads to similar results as

the baseline Classic-C (Table 4.6). We also compare the energy of these solutions using the new

objective and find the alternating optimization produces the lowest energy solutions, as shown in

Table 4.7. To do so, we set both the flow field u,v and the auxiliary flow field û, v̂ to be the same

in Eq.(27).

We find that approximately optimizing the new objective by changing λC logarithmically from

10−4 to 10−1 produces better EPE results but higher energy (Classic-C-A-II). We also try the

conjugate gradient descent method [4] to solve Eq. (28) but obtain results with slightly worse EPE

performance and higher energy.

In summary, we show that the heuristic median filtering step in Classic-C can now be viewed as

energy minimization of a new objective with a non-local term. The explicit formulation emphasizes
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Table 4.6. Average end-point error (EPE) on the Middlebury training set is shown for the new model with

alternating optimization (Classic-C-A).

Avg. EPE significance p-value

Classic-C 0.298 — —

Classic-C-A 0.305 0 0.8125

Classic-C-A-noRep 0.309 0 0.5781

Classic-C-A-II 0.296 0 0.7188

Classic-C-A-CGD 0.305 0 0.5625

(a) (b) (c)

Figure 4.5. Median filtering over-smoothes the rifle in the “Army” sequence, while the proposed weighted

non-local term preserves the detail. (a) Classic++, (b) Classic+NL, and (c) first frame.

the value of robustly integrating information over large neighborhoods and enables the improved

model described below.

Table 4.7. Eq. (27) energy (×106) for the computed flow fields on the Middlebury training set. The

alternating optimization strategy (Classic-C-A ) produces the lowest energy solutions.

Venus
Dimetr- Hydr- Rubber-

Grove2 Grove3 Urban2 Urban3
odon angea Whale

Classic-C 0.817 0.903 1.202 0.674 2.166 3.144 1.954 2.153

Classic-C w/o MF 0.886 0.945 1.299 0.725 2.315 3.513 2.234 2.712

Classic-C-A 0.784 0.889 1.139 0.666 2.064 2.976 1.922 2.049

Classic-C-A-noRep 0.790 0.894 1.165 0.670 2.092 3.143 2.005 2.317

Classic-C-A-II 0.830 0.915 1.235 0.686 2.223 3.247 1.990 2.182

Classic-C-A-CGD 0.833 0.909 1.224 0.674 2.213 3.357 2.020 2.236

4.6. Improved Model

By formalizing the median filtering heuristic as an explicit objective function, we can find ways

to improve it. While median filtering in a large neighborhood has advantages as we have seen, it also

has problems. A neighborhood centered on a corner or thin structure is dominated by the surround

and computing the median results in oversmoothing as illustrated in Figure 4.5(a).

Examining the non-local term suggests a solution. For a given pixel, if we know which other

pixels in the area belong to the same surface, we can weight them more highly. The modification to
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the objective function is achieved by introducing a weight into the non-local term [39, 61]:∑
p

∑
q∈ΓNL

p

wpq (|ûp − ûq|+ |v̂p − v̂q|), (33)

where wpq represents how likely pixel q is to belong to the same surface as p.

Of course, we do not know wpq , but can approximate it. We draw ideas from [140, 195, 199] to

define the weights according to their spatial distance, their color-value distance, and their occlusion

state as

wpq ∝ exp
{
− |p−q|

2

2σ2
1
− |I

p−Iq|2
2σ2

2nc

}o(q)
o(p)

, (34)

where Ip is the color vector in the Lab space, nc is the number of color channels and 1 for gray

image, σ1 = 7, σ2 = 7, and the occlusion variable o(p) is calculated using Eq. (22) in [140] as

o(p) = exp

{
−d

2(p)

2σ2
d

− (I(p)− I(q))2

2σ2
e

}
, (35)

where I(p) − I(q) is the data term constancy error and d(p) is the one-sided divergence function,

defined as

d(p) =

{
div(p), div(p) < 0

0, otherwise
(36)

in which the flwo divergence div(p) is

div(p) =
∂

∂x
u(p) +

∂

∂y
v(p), (37)

where ∂
∂x and ∂

∂y are respectively the horizontal and vertical flow derivatives. The occlusion variable

o(p) is near zero for occluded pixels and near one for non-occluded pixels. We set the parameters in

Eq. 35 as σd = 0.3 and σe = 20; this is the same as in [140].

Examples of such weights are shown for several 15 × 15 neighborhoods in Figure 4.6; bright

values indicate higher weights. Note the neighborhood labeled d, corresponding to the rifle. Since

pixels on the rifle are in the minority, an unweighted median would oversmooth. The weighted term

instead robustly estimates the motion using values on the rifle. A closely related piece of work is

[128], which uses the intervening contour to define affinities among neighboring pixels for the local

Lucas and Kanade [105] method. However it only uses this scheme to estimate motion for sparse

points and then interpolates the dense flow field.

We approximately solve for û as the following weighted median problem

min
ûp

∑
q∈ΓNL

p ∪{p}

wpq |ûp − uq|, (38)

using the formula (3.13) in [96] for all the pixels (Classic+NL-Full). Note if all the weights are

equal, the solution is just the median. In practice, we can adopt an adaptive version (Classic+NL)

to save computation without performance loss. Given a current estimate of the flow, we detect

motion boundaries using a Sobel edge detector and dilate these edges with a 5 × 5 mask to obtain

flow boundary regions. In these regions we use the weighting in Eq.(34) in a 15× 15 neighborhood.

In the non-boundary regions, we use equal weights in a 5×5 neighoborhood to compute the median.

To further reduce the computation, we can adopt a two-stage GNC process and perfrom 3

warping steps per pyramid level. This fast version (Classic+NL-Fast) has nearly the same overall

performance, with slightly degradation on the “Urban3” sequence that has large motion.
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(a) (b) (c) (d) (e)

Figure 4.6. Neighbor weights of the proposed weighted non-local term at different positions in the “Army”

sequence.

Tables 4.8 and 4.9 show that the weighted non-local term (Classic+NL) improves the accuracy

on both the training and the test sets. Note that the fine detail of the “rifle” is preserved in

Figure 4.5(b). When our conference paper [158] was published in June 2010, Classic+NL ranked

1st in both AAE and EPE in the Middlebury evaluation and had the lowest average AAE and EPE

among all listed algorithms. At the writing of the dissertation (July 2012), Classic+NL ranks 13th

in both AAE and EPE. The running time on the test “Urban” sequence is about 70 minutes for

Classic+NL-Full, about 16 miniutes for Classic+NL, and about 2.5 minutes for Classic+NL-

Fast in Matlab.

We test some variants of the weighted non-local term (Classic+NL). Table 4.8 shows the

relative importance of each term in determining the weight and influence of the parameter setting

on the final results. Using different color spaces results in some performances loss. Removing

the color information from the weighting scheme (w/o color) results in significant degradation in

performance. Without occlusion (w/o occ) or spatial distance (w/o spa) cues does not degrade the

method significantly. The gray version (Classic+NL-Gray) of the non-local term is statistically

worse than the color version.

Changing the σ2 for the color cue to 5 or 10 obtains similar results as the default 7. The default

λ is 3, while 1 and 9 produce some loss in performance. We also study the maximum size of the
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(a)First frame (b) Ground truth (c) Estimated flow field

Figure 4.7. Occlusions causes serious problem to Classic+NL, which does not explicitly model occlusions.

neighborhood for the non-local term. 11×11 gives close performance, while 19×19 is slightly better

at a higher computational cost.

Closely-related work: Werlberger et al. [188] independently propose a non-local term for optical

flow estimation and the spatial term is similar to our non-local term. They use the normalized cross

correlation as the data term to deal with lighting changes and optimize their objective function by

the primal-dual method. Their work is motivated by the success of the non-local regularization [39]

in image restoration and stereo, while our work is inspired by the success for the heuristic median

filtering step in flow estimation and the link between median filtering and non-local regularization

term.

Limitations: Classic+NL produces larger errors in occlusion regions on some sequences, such as

“Schefflera” shown in Figure 4.7. The classical flow formulation assumes that every pixel at the

current frame should have a corresponding pixel at the next frame. However this assumption breaks

down when occlusion happens. Pixels that are occluded by some foreground objects do not have

corresponding pixels, resulting in large errors to the classical formulation.

4.6.1. Results on the MIT Dataset. To test the robustness of these models on other data,

we applied HS, Classic-C, and Classic+NL to sequences from Liu et al. [99], and compared the

estimated flow fields to the human labeled ground truth. Note only five of the eight test sequences

in [99] are available on-line; these are tested here.

Tables 4.10 and 4.11 show the results on these sequences, which are very different in nature

from the Middlebury set and include an outdoor scene as well as a scene of a fish tank. The results

are compared with the CLG method [38] used in [99]. It is important to point out that the CLG

method was tuned to obtain the optimal results on the test sequences. Our method had no such

52



Avg. EPE significance p-value

Classic+NL 0.221 — —

Classic+NL-Full 0.222 0 0.8203

Classic+NL-Fast 0.221 0 0.3125

RGB 0.240 1 0.0156

HSV 0.231 1 0.0312

LUV 0.226 0 0.5625

Gray 0.253 1 0.0078

w/o color 0.283 1 0.0156

w/o occ 0.226 0 0.1250

w/o spa 0.223 0 0.5625

σ2 = 5 0.221 0 1.0000

σ2 = 10 0.224 0 0.2500

λ = 1 0.236 0 0.1406

λ = 9 0.244 0 0.1016

11 × 11 0.223 0 0.5938

19 × 19 0.220 0 0.8750

Table 4.8. Average end-point error (EPE) on the Middlebury training set is shown for the the improved

model and its variants.

Table 4.9. Average end-point error (EPE) on the Middlebury test set for the Classic++ model with two

different preprocessing techniques and its improved model. The ranking information was at the publication

of our conference paper [158] (June 2010); the EPE rank for Classic+NL is 16.2 at the writing of the

dissertation (July 2012).

Avg. Rank Avg. EPE

Classic++ 13.4 0.406

Classic++Gradient 15.1 0.430

Classic+NL 6.2 0.319

Classic+NL-Full 6.6 0.316

tuning and we used the same parameters as those used in all the other experiments. This suggests

that training on the Middlebury data results in a method that generalizes to other sequences. The

only place where this fails is on the “fish” sequence where there is transparent motion in a liquid

medium; the statistics in this sequence are very different from the Middlebury training data.

Table 4.10. Results on the MIT dataset [99]. Average end-point error (EPE). Results of the combined

local and global (CLG) method [38] are from [99], which was tuned for each sequence.

Average Table Hand Toy Fish CameraMotion

CLG [38, 99] 1.239 0.976 4.181 0.456 0.196 0.385

HS 2.129 1.740 6.108 0.620 1.309 0.869

Classic-C 1.345 1.064 3.428 0.482 1.061 0.690

Classic+NL 1.106 0.91 2.75 0.487 0.772 0.611
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Table 4.11. Results on the MIT dataset [99]. Average Angular error (AAE). Results of the combined

local and global (CLG) method [38] are from [99], which was tuned for each sequence.

Average Table Hand Toy Fish CameraMotion

CLG [38, 99] 16.281 8.996 58.904 2.573 5.689 5.243

HS 16.769 9.633 32.572 2.931 29.180 9.531

Classic-C 10.266 6.124 13.292 2.046 23.667 6.201

Classic+NL 8.156 5.289 8.469 2.543 18.187 6.291

4.7. Conclusions and Discussions

Implemented using modern practices, classical optical flow formulations produce competitive

results on the Middlebury training and test sets. To understand the “secrets” that help such ba-

sic formulations work well, we quantitatively studied various aspects of flow approaches from the

literature, including their implementation details. Among the good practices, we found that using

median filtering to denoise the flow after every warping step is key to improving accuracy, but that

it increases the energy of the final result. Exploiting connections between median filtering and L1-

based denoising, we showed that algorithms relying on a median filtering step are approximately

optimizing a different objective that regularizes flow over a large spatial neighborhood. This prin-

ciple enables us to design and optimize improved models that weight the neighbors adaptively in

an extended image region. The resulting Classic+NL method can better preserve fine motion

details and achieves consistent improvement than the median filtering heuristic. The Matlab code

is publicly available at our webpages [3].

The Classic+NL method still cannot deal with large occlusions. Small occlusions may be well

handled by adopting a robust data term, but large regions of occlusions still cause problems to the

robust formulation. In the next chapter we will investigate how to explicitly model and reason about

occlusions using a generative layered approach.
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CHAPTER 5

A Generative Layered Model Based on Thresholded Support

Functions

In this chapter, we present a probabilistic layered model for image motion. Layered models are a

powerful way of describing natural scenes containing smooth surfaces that may overlap and occlude

each other. For image motion estimation, such models have a long history but have not achieved the

wide use or accuracy of non-layered methods. We present a new probabilistic model of optical flow

in layers that addresses many of the shortcomings of previous approaches. In particular, we define

a probabilistic graphical model that explicitly captures: 1) occlusions and disocclusions; 2) depth

ordering of the layers; 3) temporal consistency of the layer segmentation. Additionally the optical

flow in each layer is modeled by a combination of a parametric model and a smooth deviation based

on an MRF with a robust spatial prior; the resulting model allows roughness in layers. Finally, a

key contribution is the formulation of the layers using an image-dependent support function prior

based on recent models for static scene segmentation. The method achieves consistent improvement

over the non-layered Classic+NL method on the Middlebury benchmark and produces meaningful

scene segmentations as well as detected occlusion regions.

5.1. Introduction

The classical optical flow formulation by Horn and Schunck assumes that every pixel has a

corresponding pixel at the next frame. Occlusions violate this assumption because the occluded

pixels do not appear at the next frame, as shown in Figure 5.1. Imposing constancy on the occluded

pixels causes problems for most methods descended from the classical formulation. We need a better

model to describe occlusions.

Typical scenes contains a few moving foreground objects together with a background motion.

Instead of assuming that every pixel is an individual unit, we can group them together by common

motion. Every moving object can be labeled as an individual layer that has its own motion. This is

usually called the layered approach.

Layered models of scenes offer significant benefits for optical flow estimation [46, 78, 179].

Splitting the scene into layers enables the motion in each layer to be defined more simply, and

the estimation of motion boundaries to be separated from the problem of smooth flow estimation.

Layered models also make reasoning about occlusion relationships easier. If we can segment the scene

into layers and know the relative depth ordering, we can reason about occlusions. The segmentation

or the visibility mask of each layer tells whether a pixel is occluded by another layer over time, as

shown in Figure 5.2.

In practice, however, none of the current top performing optical flow methods use a layered

approach [16]. The most accurate approaches are single-layered, and instead use some form of

55



(a) frame 1 (b) frame 2

(c) ground truth motion (d) inverse absolute brightness constancy error

Figure 5.1. Occlusions are ill-defined for the classical optical flow formulation: even ground truth motion

has large brightness constancy error in occlusion regions. Darker indicates larger brightness constancy errors

in (d).

(a) frame 1 (b) frame 2 (c) visibility at frame 1 (d) visibility at frame 2

Figure 5.2. Occlusion reasoning for the apple layer.

robust smoothness assumption to cope with flow discontinuities [26]. This chapter formulates a new

probabilistic, layered motion model that addresses the key problems of previous layered approaches.

At the time of writing, it achieves the lowest average error of all tested approaches on the Middlebury

optical flow benchmark [16]. In particular, the accuracy at occlusion boundaries is significantly

better than previous methods. By segmenting the observed scene, our model also identifies occluded

and disoccluded regions.

Layered models provide a segmentation of the scene and this segmentation, because it corre-

sponds to scene structure, should persist over time. However, this persistence is not a benefit if

one is only computing flow between two frames; this is one reason that multi-layer models have not

surpassed their single-layer competitors on two-frame benchmarks. Without loss of generality, here
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we use three-frame sequences to illustrate our method. In practice, these three frames can be con-

structed from an image pair by computing both the forward and backward flow. The key is that this

gives two segmentations of the scene, one at each time instant, both of which must be consistent with

the flow. We formulate this temporal layer consistency probabilistically. Note that the assumption

of temporal layer consistency is much more realistic than previous assumptions of temporal motion

consistency [25]; while the scene motion can change rapidly, scene structure persists.

One of the main motivations for layered models is that, conditioned on the segmentation into

layers, each layer can employ affine, planar, or other strong models of optical flow. By applying a

single smooth motion across the entire layer, these models combine information over long distances

and interpolate behind occlusions. Such rigid parametric assumptions, however, are too restrictive

for real scenes. Instead one can model the flow within each layer as smoothly varying [186]. While

the resulting model is more flexible than traditional parametric models, we find that it is still not as

accurate as robust single-layer models. Consequently, we formulate a hybrid model that combines a

base affine motion with a robust Markov random field (MRF) model of deformations from affine [30].

This roughness in layers model, which is similar in spirit to work on plane+parallax [77, 90, 141],

encourages smooth flow within layers but allows significant local deviations.

Because layers are temporally persistent, it is also possible to reason about their relative depth

ordering. In general, reliable recovery of depth order requires three or more frames. Our probabilistic

formulation explicitly orders layers by depth, and we show that the correct order typically produces

more probable (lower energy) solutions. This also allows explicit reasoning about occlusions, which

our model predicts at locations where the layer segmentations for consecutive frames disagree.

Many previous layered approaches are not truly “layered”: while they segment the image into

multiple regions with distinct motions, they do not model what is in front of what. For example,

widely used MRF models [187] encourage neighboring pixels to occupy the same region, but do not

capture relationships between regions. In contrast, building on recent state-of-the-art results in static

scene segmentation [157], our model determines layer support via an ordered sequence of occluding

binary masks. These binary masks are generated by thresholding a series of random, continuous

support functions. This approach uses image-dependent Gaussian random field priors and favors

partitions which accurately match the statistics of real scenes [157]. Moreover, the continuous layer

support functions play a key role in accurately modeling temporal layer consistency. The resulting

model produces accurate layer segmentations that improve flow accuracy at occlusion boundaries,

and recover meaningful scene structure.

As summarized in Figure 5.3, our method is based on a principled, probabilistic generative

model for image sequences. By combining recent advances in dense flow estimation and natural

image segmentation, we develop an algorithm that simultaneously estimates accurate flow fields,

detects occlusions and disocclusions, and recovers the layered structure of realistic scenes.

5.2. Previous Work

Layered approaches to motion estimation have long been seen as elegant and promising, since

spatial smoothness is separated from the modeling of discontinuities and occlusions. Darrell and

Pentland [47, 46] provide the first full approach that incorporates a Bayesian model, “support maps”

for segmentation, and robust statistics. Wang and Adelson [179] clearly motivate layered models
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of image sequences, while Jepson and Black [78] formalize the problem using probabilistic mixture

models. Chapter 2 reviews more recent methods [11, 22, 81, 83, 119, 89, 145, 169, 187, 198].

Early methods, which use simple parametric models of image motion within layers, are not highly

accurate. Observing that rigid parametric models are too restrictive for real scenes, Weiss [186]

uses a more flexible Gaussian process to describe the motion within each layer. Even using modern

implementation methods [158] this approach does not achieve state-of-the-art results. Allocating a

separate layer for every small surface discontinuity is impractical and fails to capture important global

scene structure. Our approach, which allows “roughness” within layers rather than “smoothness,”

provides a compromise that captures coarse scene structure as well as fine within-layer details.

One key advantage of layered models is their ability to realistically model occlusion boundaries.

To do this properly, however, one must know the relative depth order of the surfaces. In their

pioneering work, Wang and Adelson [179] incorporate the depth ordering of layers and layers in

the front occlude layers behind. Performing inference over the combinatorial range of possible

occlusion relationships is challenging and, consequently, only a few later models explicitly encode

relative depth [81, 202]. Recent work revisits the layered model to handle occlusions [63], but does

not explicitly model the layer ordering or achieve state-of-the-art performance on the Middlebury

benchmark. While most current optical flow methods are “two-frame,” layered methods naturally

extend to longer sequences [81, 198, 202].

Layered models all have some way of making either a hard or soft assignment of pixels to layers.

Weiss and Adelson [187] introduce spatial coherence to these layer assignments using a spatial MRF

model. However, the Ising/Potts MRF they employ assigns low probability to typical segmentations

of natural scenes [114]. Adapting recent work on static image segmentation by Sudderth and

Jordan [157], we instead generate spatially coherent, ordered layers by thresholding a series of

random continuous functions. As in the single-image case, this approach realistically models the

size and shape properties of real scenes. For motion estimation there are additional advantages: it

allows accurate reasoning about occlusion relationships and modeling of temporal layer consistency.

The motion competition framework [35, 44] uses level sets to model the scene segmentation in a

variational setting, but does not address occlusion reasoning.

5.3. A Layered Motion Model

Building on this long sequence of prior work, our generative model of layered image motion is

summarized in Figure 5.3. Below we describe how the generative model captures piecewise smooth

deviation of the layer motion from parametric models (Sec. 5.3.1), depth ordering and temporal

consistency of layers (Sec. 5.3.2), and regions of occlusion and disocclusion (Sec. 5.3.3).

5.3.1. Roughness in Layers. Our approach is inspired by the smoothness in layers model by

Weiss [186]. Given a sequence of images It, 1 ≤ t ≤ T , we model the evolution from the current

frame It, to the subsequent frame It+1, via K locally smooth, but potentially globally complex, flow

fields. Let utk and vtk denote the horizontal and vertical flow fields, respectively, for layer k at

time t. The corresponding flow vector for pixel p = (i, j) is then denoted by (uptk, v
p
tk).
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utk

gtk

It

st+1,k

It+1

gt+1,k

vtk

K K

K-1

K

stk

Figure 5.3. Top: Graphical representation for the proposed layered model. Bottom: Illustration of vari-

ables from the graphical model for the “Schefflera” sequence. Labeled sub-images correspond to nodes in

the graph. The left column shows the flow fields for three layers, color coded as in [16]. The g and s images

illustrate the reasoning about layer ownership (see text). The composite flow field (u,v) and layer labels

(k) are also shown.

Each layer’s flow field is drawn from a distribution chosen to encourage piecewise smooth motion.

For example, a pairwise Markov random field (MRF) would model the horizontal flow field as

Pr(utk) ∝ exp{−Emrf(utk)} = exp

{
− 1

2

∑
p

∑
q∈Γp

ρs(u
p
tk − u

q
tk)

}
, (39)
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where the set Γp contains the spatial neighbors of pixel p, often its four nearest neighbors. The

potential ρs(·) is some robust function [26] that encourages smoothness, but allows occasional sig-

nificant deviations. The vertical flow field vtk can then be modeled via an independent MRF prior

as in Eq. (39), as justified by the statistics of natural flow fields [133].

While such MRF priors are flexible, they capture very little dependence between pixels separated

by even moderate image distances. In contrast, real scenes exhibit coherent motion over large scales,

due to the motion of (partially) rigid objects in the world. To capture this, we associate an affine

(or planar) motion model, with parameters θtk, to each layer k at frame t. We then use an MRF to

allow piecewise smooth deformations from the globally parametric assumptions of affine motion:

Eaff(utk, θtk) =
1

2

∑
p

∑
q∈Γp

ρs

(
(uptk − ū

p
θtk

)− (uqtk − ū
q
θtk

)
)
. (40)

Here, ūpθtk denotes the horizontal motion predicted for pixel p by an affine model with parameters θtk.

ūpθtk = a1
tk + a2

tk · i+ a3
tk · j. (41)

Unlike classical models that assume layers are globally well fit by a single affine motion [30, 179], this

prior allows significant, locally smooth deviations from rigidity. Unlike the basic smoothness prior

of Eq. (39), this semiparametric construction allows effective global reasoning about non-contiguous

segments of partially occluded objects. More sophisticated flow deformation priors may also be used,

such as those based on robust non-local terms [158, 188].

5.3.2. Layer Support and Spatial Contiguity. We assume that a single, unique layer is

observable at each location and that the observed motion of that pixel is determined by its assigned

layer. We define the layers to be ordered with respect to the camera, so that the layer k occludes

the layers k′ > k. Analogous to level set representations[121], the binary visibility mask stk of the

layer k is determined by sequentially thresholding gtk

sptk =


δ(gptk > 0)

∏k−1
k′=1 δ(g

p
tk′ ≤ 0), 1 ≤ k < K∏K−1

k′=1 δ(g
p
tk′ ≤ 0), k = K.

(42)

Note that only a single layer is visible at each pixel p because
∑K
k=1 s

p
tk = 1. The layer K is

essentially a background layer that captures all pixels not assigned to the first K−1 layers. For this

reason, only K−1 support functions gtk are needed (see Figure 5.3). These visibility masks provide

a segmentation of the scene. A pixel p at frame t belongs to the kpt∗th layer whose visibility mask is

1 at p.

We capture the spatial coherence via a Gaussian conditional random field in which edge weights

are modulated by local differences in color:

Espace(gtk) =
1

2

∑
p

∑
q∈Γp

wpq (gptk − g
q
tk)2, (43)

where

wpq = max

{
exp
{
− 1

2σ2
c

||Ipt − Iqt ||2
}
, δc

}
, (44)
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in which Ipt denotes the CIE Lab color vector at pixel p. The threshold δc > 0 adds robustness

to large color changes in the internal object texture. The temporal coherence of surfaces is then

encouraged via a corresponding Gaussian MRF:

Etime(gtk,gt+1,k,utk,vtk) =
∑
p

∑
q∈Np

tk

(gptk − g
q
t+1,k)2, (45)

where the set N p
tk is the same as the discrete model and contains the corresponding pixel at frame

t + 1 according to the flow field of the kth layer at frame t. Critically, this energy function uses

the corresponding flow field to non-rigidly align the layers at subsequent frames. Compared with

the discrete model, the continuous support functions naturally allows the sub-pixel interpolation.

By allowing smooth deformation of the support functions gtk, we allow layer support to evolve over

time, as opposed to transforming a single rigid template [81].

Our model of the layer coherence is inspired by a recent method for image segmentation, based

on spatially dependent Pitman-Yor processes [157]. That work makes connections between layered

occlusion processes and stick breaking representations of nonparametric Bayesian models. By assign-

ing appropriate stochastic priors to layer thresholds, the Pitman-Yor model captures the power law

statistics of natural scene partitions and infers an appropriate number of segments for each image.

5.3.3. Depth Ordering and Occlusion Reasoning. The preceding generative process de-

fines a set of K ordered layers, with corresponding flow fields utk,vtk and visibility masks stk.

Recall that the layer visibility masks s are a deterministic function (threshold) of the underlying

layer support functions g (see Eq. (42)). To consistently reason about occlusions, we examine the

layer visibilities sptk and sqt+1,k, q =∈ N p
tk at locations corresponded by the underlying flow fields.

This leads to a far richer occlusion model than standard spatially independent outlier processes:

geometric consistency is enforced via the layered sequence of flow fields.

Let Ipt denote an observed image feature for pixel p; we work with a filtered version of the

intensity images to provide some invariance to illumination changes. If the visible layer for pixel p at

time t remains visible at time t+ 1, i.e., sptk = sqt+1,k = 1, the image observations are modeled using

a standard brightness (or, here, feature) constancy assumption. Otherwise, that pixel has become

occluded, and is instead generated from a uniform distribution. The image likelihood model can

then be written as

Pr(It | It+1,ut,vt,gt,gt+1) ∝ exp{−Edata(ut,vt,gt,gt+1)} (46)

= exp
{
−

K∑
k=1

∑
p

∑
q∈Np

tk

(
ρd(I

p
t − Iqt+1)sptks

q
t+1,k + λds

p
tk(1− sqt+1,k)

)}
,

where ρd(·) is a robust potential function and the constant λd arises from the difference of the log

normalization constants for the robust and uniform distributions. With algebraic simplifications,

the data error term can be written as

Edata(ut,vt,gt,gt+1) =

K∑
k=1

∑
p

∑
q∈Np

tk

(
ρd(I

p
t − Iqt+1)− λd

)
sptks

q
t+1,k, (47)

up to an additive, constant multiple of λd. The shifted potential function (ρd(·)− λd) represents

the change in energy when a pixel transitions from an occluded to a visible configuration. Note that
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occlusions have higher likelihood only for sufficiently large discrepancies in matched image features

and can only occur via a corresponding change in layer visibility.

5.4. Posterior Inference from Image Sequences

Considering the full generative model defined in Sec. 5.3, the maximum a posteriori (MAP)

estimation for a T frame image sequence is equivalent to the minimization of the following energy

function:

E(u,v,g, θ) =

T−1∑
t=1

{
Edata(ut,vt,gt,gt+1) +

K∑
k=1

λa(Eaff(utk, θtk) + Eaff(vtk, θtk))

+

K−1∑
k=1

λbEspace(gtk) + λcEtime(gtk,gt+1,k,utk,vtk)

}
+

K−1∑
k=1

λbEspace(gTk). (48)

Here λa, λb, and λc are weights controlling the relative importance of the affine, spatial, and temporal

terms respectively. Simultaneously inferring flow fields, layer support maps, and depth ordering is

a challenging process; our approach is summarized below.

5.4.0.1. Relaxation of the Layer Assignment Process. Due to the non-differentiability of the

threshold process that determines assignments of regions to layers, direct minimization of the overall

energy function Eq. (48) is challenging. For a related approach to image segmentation, a mean

field variational method has been proposed [157]. However, that segmentation model is based

on a much simpler, spatially factorized likelihood model for color and texture histogram features.

Generalization to the richer flow likelihoods considered here raises significant complications.

Instead, we relax the hard threshold assignment process using the logistic function σ(g) =

1/(1 + exp(−g)). Applied to the sequential thresholding process by Eq. (42), this induces the

following soft layer assignments:

s̃ptk =


σ(λeg

p
tk)
∏k−1
k′=1 σ(−λegptk′), 1 ≤ k < K,∏K−1

k′=1 σ(−λegptk′), k = K.
(49)

Note that σ(−g) = 1− σ(g), and
∑K
k=1 s̃

p
tk = 1 for any gtk and constant λe > 0.

Substituting these soft assignments s̃ptk for sptk in the data error term Eq.. (47), we obtain a dif-

ferentiable energy function that can be optimized via gradient-based methods. A related relaxation

underlies the classic backpropagation algorithm for neural network training. See Appendix B for the

gradient formulae of the energy function w. r. t. the flow fields and the support functions.

5.5. Experimental Results

5.5.1. Implementation Details. We pre-process the input images using the structure texture

decomposition method developed by [185] and described in Sec. 4.3.1. We compute the initial flow

field using the Classic+NL method presented in Chapter 4 and fit K affine motion fields to the

initial forward flow field. The fitting method is similar to K-means, where we cluster the flow vectors

and fit the affine parameters of each cluster. A pixel is visible at the layer that best explains its

motion and invisible at the other layers. To avoid local minima, we perform 25 independent runs

of the fitting method and select the result with the lowest fitting error. Warping the resultant

segmentation using the backward flow field produces the initial segmentation of the next frame.
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Table 5.1. Average end-point error (EPE) on the Middlebury optical flow benchmark training set. * means

3layers and ** means 3layers w/ WMF in the table.

Avg. Venus
Dimetr- Hydr- Rubber-

Grove2 Grove3 Urban2 Urban3
odon angea Whale

Weiss [186] 0.487 0.510 0.179 0.249 0.236 0.221 0.608 0.614 1.276

Classic++ 0.285 0.271 0.128 0.153 0.081 0.139 0.614 0.336 0.555

Classic+NL 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384

1layer 0.248 0.243 0.144 0.175 0.095 0.125 0.504 0.279 0.422

2layers 0.212 0.219 0.147 0.169 0.081 0.098 0.376 0.236 0.370

3layers 0.200 0.212 0.149 0.173 0.073 0.090 0.343 0.220 0.338

* w/ WMF 0.195 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345

* * 4 frames 0.190 0.211 0.151 0.157 0.067 0.084 0.330 0.207 0.311

* * all 0.194 0.211 0.146 0.162 0.067 0.089 0.331 0.212 0.336

* * C++Init 0.203 0.212 0.151 0.161 0.066 0.087 0.339 0.210 0.396

4layers 0.194 0.197 0.148 0.159 0.068 0.088 0.359 0.230 0.300

To convert the hard segmentation into the initial support functions, the kth (k < K) sup-

port function takes value 1.5 at pixels visible at the kth layer and −1.5 otherwise. Around occlu-

sion/disocclusion regions, the layer assignment tends to change from one frame to the next. We

detect pixels where the layer assignments, aligned by the initial flow field, disagree. For these pixels

we divide their initial support function values by 10 to represent our uncertainty about the initial

layer assignment in these occlusion/disocclusion regions. The initial motion of the visible pixels in

each layer is the same as the initial flow field from Classic+NL, while the motion of the invisible

pixels is interpolated by the fitted affine motion to the flow field.

We then use a two-level Gaussian pyramid (downsampling factor 0.8) and perform a fairly

standard incremental estimation of the flow fields for each layer. At each level, we perform 20

incremental warping steps and during each step alternately solve for the support functions and the

flow estimates. In the end, we threshold the support functions to compute a hard segmentation, and

obtain the final flow field by selecting the flow field from the appropriate layers.

Occluded regions are determined by inconsistencies between the hard segmentations at subse-

quent frames, as matched by the final flow field. We would ideally like to compare layer initializations

based on all permutations of the initial flow vector clusters, but this would be computationally in-

tensive for large K. Instead we compare two orders: a fast-to-slow order appropriate for rigid scenes,

and an opposite slow-to-fast order (for variety and robustness). We illustrate automatic selection of

the preferred order for the “Venus” sequence in Figure 5.4.

The parameters for all experiments are set to λa = 3, λb = 30, λc = 4, λd = 9, λe = 2,

σi = 12, and δc = 0.004. We use the generalized Charbonnier penalty function ρ(x) = (x2 + ε2)a

with ε = 0.001 and a = 0.45, introduced in Chapter 4, for ρd(·) in the data term, Edata, and ρs(·) in

the spatial flow term, Eaff. Optimization takes about 5 hours for the two-frame “Urban” sequence

using our Matlab implementation.

5.5.2. Results on the Middlebury Benchmark.

5.5.2.1. Training Set. As a baseline, we implement the smoothness in layers model [186] using

modern techniques, and obtain an average training end-point error (EPE) of 0.487. This is reasonable
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4. Results on the “Venus” sequence with 4 layers. The two background layers move faster than

the two foreground layers, and the solution with the correct depth ordering has lower energy and smaller

error. (a) First frame. (b-d) Fast-to-slow ordering: EPE 0.252 and energy −1.786 × 106. Left to right:

motion segmentation, estimated flow field, and absolute error of estimated flow field. (e) Second frame.

(f-h) Slow-to-fast ordering: EPE 0.195 and energy −1.808× 106. Darker indicates larger flow field errors in

(d) and (h).

Table 5.2. Average end-point error (EPE) on the Middlebury optical flow benchmark test set. The rank-

ing information was at the publication of our conference paper [160] (October 2010); the EPE ranks for

Classic+NL and Layers++ are 16.2 and 9.2 at the writing of the dissertation (July 2012).

Rank Avg. Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

EPE

Layers++ 4.3 0.270 0.08 0.19 0.20 0.13 0.48 0.47 0.15 0.46

Classic+NL 6.5 0.319 0.08 0.22 0.29 0.15 0.64 0.52 0.16 0.49

EPE in boundary regions

Layers++ 0.560 0.21 0.56 0.40 0.58 0.70 1.01 0.14 0.88

Classic+NL 0.689 0.23 0.74 0.65 0.73 0.93 1.12 0.13 0.98

but not competitive with state-of-the-art methods. The proposed model with 1 to 4 layers produces

average EPEs of 0.248, 0.212, 0.200, and 0.194, respectively (see Table 5.1). The one-layer model

is similar to Classic+NL, but has a less sophisticated (more local) model of the flow within that

layer. It thus performs worse than the Classic+NL initialization; the performance improvements

allowed by additional layers demonstrate the benefits of a layered model.

Accuracy is improved by applying a 15 × 15 weighted median filter (WMF) [158] to the flow

fields of each layer during the iterative warping step (EPE for 1 to 4 layers: 0.231, 0.204, 0.195, and

0.193). As shown in Chapter 4, weighted median filtering can be interpreted as a non-local spatial
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smoothness term in the energy function that integrates flow field information over a larger spatial

neighborhood.

The “correct” number of layers for a real scene is often not well defined (consider the “Grove3”

sequence, for example). We use a restricted number of layers, and model the remaining complexity

of the flow within each layer via the roughness-in-layers spatial term and the WMF. As the number

of layers increases, the complexity of the flow within each layer decreases, and consequently the need

for WMF also decreases; note that the difference in EPE for the 4-layer model with and without

WMF is insignificant. For the remaining experiments we use the version with WMF.

To test the sensitivity of the result to the initialization, we also initialized with Classic++

(C++Init in Table 5.1), a good, but not top, non-layered method [158]. The average EPE for 1

to 4 layers increases to 0.248, 0.206, 0.203, and 0.198, respectively. While the one-layer method gets

stuck in poor local minima on the “Grove3” and “Urban3” sequences, models with additional layers

are more robust to the initialization.

5.5.2.2. Test Set. For evaluation, we focus on a model with 3 layers (denoted Layers++ in the

Middlebury public table). On the Middlebury test set it has an average EPE of 0.270 and average

angular error (AAE) of 2.556; this was the lowest among all tested methods [16] at the writing

of our conference paper [160] (October 2010). Layers++ is ranked 3rd in both EPE and AAE

at the writing of the dissertation (July 2012). Table 5.2 summarizes the results for individual test

sequences. The layered model is particularly accurate at motion boundaries, probably due to the

use of layer-specific motion models, and the explicit modeling of occlusion in Edata (Eq. (47)).

We evaluate several variants of the proposed method. The results above are obtained with 20

warping steps per level, which is computationally expensive. Using 3 warping steps has slightly

better overall performance for 1-3 layers, but 20 warping steps produces more accurate results in

motion boundary regions.

To evaluate the method’s sensitivity to the initialization, we compare the energy of the final

solutions with initial flow fields from the Classic++ and the Classic+NL methods. As shown

in Table 5.3, solutions with the Classic++ initialization have similar energy as those with the

Classic+NL initialization. Table 5.4 shows that the average EPE obtained from both initializations

is also similar. This suggests that the method works as long as the initialization is sensible. We expect

that our current inference methods would not be able to recover from a really poor initialization.

Finally average EPE and average AAE for all the test sequences are shown in Table 5.2.

Changing the total nubmer of frames to 4 results in a small but consistent improvment over 2.

Figure 5.5 shows a case where using 4 frames resolves an ambiuity in layer assignment by only 2

frames.

Table 5.3. Energy (×106) of the solutions obtained by the proposed method with three layers. The energy

is shown for all the sequences in the training set using two different initializations.

Venus
Dimetr- Hydr- Rubber-

Grove2 Grove3 Urban2 Urban3
odon angea Whale

Classic+NL Init -1.814 -2.609 -2.370 -3.039 -2.679 -1.979 -3.198 -3.044

Classic++ Init -1.814 -2.613 -2.369 -3.039 -2.680 -1.974 -3.200 -2.998
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(a) frame 1 (b) frame 2 (c) frame 3 (d) frame 4

(e) cropped frame 1 (f) cropped frame 2 (g) cropped frame 3 (h) cropped frame 4

(i) flow (frames 2 to 3) (j) seg. (frame 2) (k) flow (frames 2 to 3) (l) seg. (frame 2)

(m) flow color key (n) depth ordering key

Figure 5.5. Occlusion reasoning using frames 2 and 3 (i-j) is hard (detail from Urban3); enforcing temporal

coherence of the support functions using 4 frames significantly reduces the errors in both the flow field and

the segmentation (k-l). The flow field is from frame 2 to frame 3 and the segmentation is for frame 2.

5.5.2.3. Visual Comparison. Figures 5.6 and 5.8 show results for the 3-layer model on the Mid-

dlebury training and test sequences. Notice that the layered model produces a motion segmentation

that captures the major structure of the scene, and the layer boundaries correspond well to static

image edges. It detects most occlusion regions and interpolates their motion reasonably well. Several

sequences show significant improvement due to the global reasoning provided by the layered model.

On the training “Grove3” sequence, the proposed method correctly identifies many holes between

the branches and leaves as background. It also associates the branch at the bottom right corner

with branches in the center. As the branch moves beyond the image boundary, the layered model

interpolates its motion using long-range correlation with the branches in the center. In contrast,

the single-layered approach incorrectly interpolates from local background regions. The “Schefflera”

result illustrates how the layered method can separate foreground objects from the background (e.g.,

the leaves in the top right corner), and thereby reduce errors made by single-layer approaches such

as Classic+NL.
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Table 5.4. Average end-point error (EPE) on the Middlebury training set.

Avg. Venus
Dimetr- Hydr- Rubber-

Grove2 Grove3 Urban2 Urban3
odon angea Whale

Weiss [186] 0.487 0.510 0.179 0.249 0.236 0.221 0.608 0.614 1.276

Classic++ 0.285 0.271 0.128 0.153 0.081 0.139 0.614 0.336 0.555

Classic+NL 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384

20 warping steps (WS)

1layer 0.248 0.243 0.144 0.175 0.095 0.125 0.504 0.279 0.422

2layers 0.212 0.219 0.147 0.169 0.081 0.098 0.376 0.236 0.370

3layers 0.200 0.212 0.149 0.173 0.073 0.090 0.343 0.220 0.338

4layers 0.194 0.197 0.148 0.159 0.068 0.088 0.359 0.230 0.300

5layers 0.196 0.195 0.151 0.169 0.063 0.086 0.345 0.211 0.351

20 WS w/ WMF : overall

1layer 0.231 0.235 0.144 0.155 0.075 0.106 0.462 0.245 0.426

2layers 0.204 0.217 0.149 0.156 0.070 0.090 0.357 0.219 0.373

3layers 0.195 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345

4layers 0.193 0.195 0.150 0.155 0.064 0.087 0.351 0.222 0.321

5layers 0.197 0.196 0.149 0.173 0.065 0.087 0.347 0.214 0.346

20 WS w/ WMF: boundary region

1layer 0.545 0.617 0.222 0.379 0.218 0.295 0.868 0.703 1.061

2layers 0.468 0.456 0.250 0.390 0.206 0.231 0.652 0.670 0.889

3layers 0.451 0.441 0.252 0.409 0.197 0.220 0.596 0.610 0.885

4layers 0.436 0.348 0.250 0.393 0.182 0.230 0.636 0.647 0.801

5layers 0.437 0.345 0.250 0.438 0.182 0.221 0.626 0.602 0.834

3 WS w/ WMF: overall

1layer 0.219 0.231 0.119 0.152 0.074 0.097 0.454 0.230 0.394

2layers 0.195 0.211 0.122 0.159 0.070 0.084 0.364 0.205 0.346

3layers 0.190 0.212 0.128 0.163 0.066 0.080 0.347 0.206 0.321

4layers 0.194 0.192 0.132 0.158 0.063 0.081 0.365 0.227 0.337

5layers 0.196 0.192 0.136 0.159 0.063 0.080 0.362 0.224 0.349

3 WS w/ WMF: boundary region

1layer 0.551 0.642 0.218 0.385 0.229 0.291 0.859 0.710 1.074

2layers 0.472 0.464 0.236 0.414 0.218 0.238 0.672 0.662 0.876

3layers 0.463 0.441 0.254 0.428 0.207 0.221 0.630 0.632 0.891

4layers 0.465 0.353 0.264 0.415 0.187 0.229 0.665 0.671 0.934

5layers 0.466 0.354 0.271 0.418 0.191 0.220 0.653 0.662 0.962

20 WS w/ WMF: Classic++ init

1layer 0.248 0.232 0.144 0.155 0.079 0.107 0.523 0.261 0.487

2layers 0.206 0.218 0.149 0.156 0.072 0.090 0.373 0.218 0.372

3layers 0.203 0.212 0.151 0.161 0.066 0.087 0.339 0.210 0.396

4layers 0.198 0.195 0.149 0.155 0.064 0.087 0.342 0.229 0.360

5layers 0.192 0.194 0.148 0.161 0.063 0.085 0.326 0.231 0.327
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Figure 5.6. Results on the Middlebury training set. Left to right: first image, initial flow field given by Classic+NL, final flow field, motion segmentation, and

detected occlusions (black). Top to bottom: “Venus”, “Dimetrodon”, “Hydrangea”, and “RubberWhale”. Best viewed in color and better enlarged for comparing

the flow fields. Color key for the depth ordering is the same as Figure 5.5 (blue is close and red is far).
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Figure 5.7. Results on the Middlebury training set. Left to right: first image, initial flow field given by Classic+NL, final flow field, motion segmentation, and

detected occlusions (black). Top to bottom: “Grove2”, “Grove3”, “Urban2”, and “Urban3”. Best viewed in color and better enlarged for comparing the flow

fields. Color key for the depth ordering is the same as Figure 5.5 (blue is close and red is far).
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Figure 5.8. Results on the Middlebury test set. Left to right: first image, initial flow field given by Classic+NL, final flow field, motion segmentation, and

detected occlusions (black). Best viewed in color and better enlarged for comparing the flow fields. Top to bottom: “Army”, “Mequon”, “Schefflera”, and

“Wooden”. Color key for the depth ordering is the same as Figure 5.5 (blue is close and red is far).
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Figure 5.9. Results on the Middlebury test set. Left to right: first image, initial flow field given by Classic+NL, final flow field, motion segmentation, and

detected occlusions (black). Best viewed in color and better enlarged for comparing the flow fields. Top to bottom: “Grove”, “Urban”, “Yosemite”, and “Teddy”.

Color key for the depth ordering is the same as Figure 5.5 (blue is close and red is far).
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Figure 5.10. Results on the “Hand” sequence. Top: using same parameters as those used for the Mid-

dlebury data set (EPE 2.754). Bottom: using parameters tuned for hand (EPE 1.909). Left to right: first

image, initial flow field given by Classic+NL, final flow field, motion segmentation, and detected occlusions

(black) by Layers++. Best viewed in color. Color key for the depth ordering is the same as Figure 5.5

(blue is close and red is far).

5.5.3. Results on the “Hand” Sequence. While the method performs well on the Middle-

bury evaluation, how well do the results generalize to other sequences? To find out, we apply the

proposed model with 3 layers to the challenging “Hand” sequence [99], as shown in Figure 5.10.

With the parameter settings tuned to the Middlebury training sequences, the proposed model does

not recover the regions between fingers (Figure 5.10, top row). With a different parameter setting

(λd = 5, and λb = 90), the proposed model can successfully recover the regions between fingers.

The EPE for this sequence drops from 2.754 to 1.909. Moreover, note that the model successfully

recovers from failures of the initialization in the regions between the fingers.

Table 5.5 compares this new parameter settings with the old settings on the Middlebury training

sequences. The new settings produces an average training EPE of 0.215 which is about 10% worse

than the optimal results.

This suggests that the proposed method may suffer from over fitting to the Middlebury evalua-

tion. Future work should consider learning the parameters using a more representative data set [159]

and automatically adapting the parameters to a particular sequence.

Table 5.5. Average end-point error (EPE) on the Middlebury training set by the proposed model with 3

layers and two different sets of parameters.

Avg. Venus
Dimetr- Hydr- Rubber-

Grove2 Grove3 Urban2 Urban3
odon angea Whale

λb = 10, λd = 9 0.195 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345

λb = 90, λd = 5 0.215 0.210 0.155 0.169 0.071 0.090 0.373 0.273 0.379

5.6. Conclusions and Discussions

We have described a new probabilistic formulation for layered image motion that explicitly

models occlusion and disocclusion, depth ordering of layers, and the temporal consistency of the

layer segmentation. The approach allows the flow field in each layer to have piecewise smooth

deformation from a parametric motion model. Layer segmentation is modeled using an image-

dependent support function prior that supports a model of temporal layer continuity over time.
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The image data error term takes into account layer occlusion relationships, resulting in increased

flow accuracy near motion boundaries. Our method achieves consistently better results than the

single-layered Classic+NL method on the Middlebury optical flow benchmark while producing

meaningful segmentation and occlusion detection results.

We have used a fairly simple inference method for the complicated energy function. In particular,

we assume that the number of layers is fixed and the depth ordering is only limited to fast to slow

or slow to fast.
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CHAPTER 6

Optical Flow Estimation and Layered Segmentation over

Time

In this chapter, we will study optimization methods for the proposed layered model. The local

inference scheme developed in the previous chapter cannot effectively estimate the number of layers

in a scene, or robustly determine the depth ordering of the layers. Furthermore, previous methods

have focused on optical flow estimation using two frames. We show that image sequences with more

than two frames are necessary to resolve ambiguities in depth ordering at occlusion boundaries;

temporal layer consistency makes the reasoning feasible. We propose a novel discrete approximation

of the continuous objective in terms of a sequence of depth-ordered MRFs and extend graph-cut

optimization methods with new “moves” that make joint layer segmentation and motion estimation

feasible. Our optimizer, which mixes discrete and continuous optimization, automatically determines

the number of layers and reasons about their depth ordering.

Figure 6.1. The proposed method achieves state-of-the-art optical flow estimation and layer segmentation

results.

6.1. Introduction

One key issue is that the layer-structure inference problem is difficult to optimize. Most methods

adopt an expectation maximization (EM) style algorithm that is susceptible to local optima. For

example, in Chapter 5 we have proposed a generative layered model that combines mixture models

with state-of-the-art static image segmentation models [157]. This Layers++ method estimates

image motion very accurately as measured by the Middlebury optical flow benchmark [16]. However,

our gradient-based inference algorithm is susceptible to local optima, resulting in errors in the

estimated scene structure and flow field, as illustrated in Figure 6.2.

Overcoming such limitations requires an optimization method that can make large changes to

the solution at a single step, a task more suitable for discrete optimization. Hence we propose a

discrete layered model based on a sequence of ordered Markov random fields (MRFs). This model,

unlike standard Ising/Potts MRFs, cannot be directly solved by “off-the-shelf” optimizers, such as

graph cuts. Therefore we develop a sequence of non-standard moves that can simultaneously change
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Figure 6.2. A failure case for the Layers++ method from Chapter 5. Left to right: first image in a pair,

initial flow estimate, color coded as in [16], segmentation by Layers++; segmentation with our proposed

nLayers method, which automatically determines the number of layers, their depth ordering, and is able to

make large changes to the initial flow field to reach a good solution; on the far right is a color key for the

ordering of depth layers (blue is close and red is far).

Figure 6.3. Relative depth ordering can be ambiguous in 2 frames. A third frame enables the motion of

the occlusion boundary to be computed. This motion is consistent with the occluding surface, removing the

ambiguity. Two cases are shown where image 1 and 2 are the same. In both, surface B moves to the left.

With image 3 the ambiguity is resolved because the motion of the occluding contour is known.

the states of several binary MRFs. We also embed continuous flow estimation into the discrete

framework to adapt the state space to estimate sub-pixel motion. The resultant discrete-continuous

scheme enables us to infer the number of layers and their depth ordering automatically for a sequence.

We evaluate our layer segmentation using the MIT human-assisted motion annotation dataset [99].

Our method produces semantically more meaningful segmentations that are also quantitatively more

consistent with human labeled ground truth than the continuous-only Layers++ method. With a

reliable layer segmentation and the relative depth ordering obtained with the discrete method, we

initialize the more precise Layers++ continuous model of optical flow. The discrete-continuous ap-

proach gives a concrete improvement over a purely continuous optimization that can easily become

trapped in local optima.

In summary, our contributions include a) formulating a discrete layered model based on a se-

quence of ordered Ising MRFs and devising a set of non-standard moves to optimize it; b) formulating

methods for automatically determining the number of layers and their depth ordering for a given

sequence; c) concretely improving layer segmentation on a set of real-world sequences than the local

method in Chapter 5; d) demonstrating the benefits of using more frames for optical flow estimation

and layered segmentation on the Middlebury optical flow benchmark and the MIT segmentation

benchmark.
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6.2. Previous Work

Occlusion. Reasoning about occlusion in image sequences dates to the mid 1970’s and early

1980’s. Early authors (e.g., [46, 71, 116, 168]) note that occlusion boundaries move with the

occluding surface. We illustrate this in Figure 6.3, similar to the examples in [167, 168]. This

simple fact is a key reason why two-frame optical flow estimation is fundamentally limited. In a

layered model, inferring the wrong depth order results in significant errors at motion boundaries.

The idea of using three or more frames has been embodied in recent methods for computing motion

boundaries and depth order [27, 52] but appears to be missing from recent dense flow estimation

methods.

Estimating flow over time. Again, estimation of flow over time has a long history [24, 115]

yet few methods have demonstrated improved accuracy through temporal consistency of flow.

Brox et al. [34] and Farneback [51] demonstrate the benefits of using multiple frames on the

“Yosemite” sequence, but the flow field for this sequence is smooth both spatially and tempo-

rally. Volz et al. [174] propose a multi-frame optical flow method that shows improvement using 5

frames over their 2-frame baseline. However their 5-frame method is still less accurate than the top

performing 2-frame methods [160, 197]. We argue that, while flow fields are not always temporally

consistent, the scene structure represented by a layered segmentation is.

Optimization. It is common to alternate optimization between segmentation and motion esti-

mation [145, 160, 186]. However, previous methods change the flow and segmentation separately,

while we argue that they must be coupled. An object may appear in the wrong layer but with the

correct motion. Consequently one must change the motion and layer segmentation simultaneously

to avoid local optima.

Discrete optimization techniques, such as belief propagation [88] and graph cuts [32, 85],

have been used in single-layer robust optical flow formulations [92, 146]. Particularly, Lempit-

sky et al. [92] fuse a large set of candidate flow fields to minimize a robust energy function. These

methods can reach good local optima but tend to produce large errors in occlusion regions. This can

partly be remedied by explicit occlusion detection and post processing [197]. In contrast, we ex-

ploit the layered model to explicitly model the occlusion process during continuous flow refinement.

Graph cuts have also been used for segmentation and tracking. For example Kumar et al. [89]

alternate the optimization of motion and segmentation and use affine motion models for each layer.

Additionally, Wang et al. [177] require the manual segmentation of objects in the first frame and

use parametric motion models.

The power of layered models is as much about segmentation as motion estimation, and we thus

compare to a contemporary graph-based [65] video segmentation method. Chapter 2 reviews the

video segmentation methods.

6.3. Models and Inference

We first define a discrete generative layered model based on an ordered sequence of binary, Ising

MRFs. We then introduce a family of “cooperative” discrete optimization moves, as well as methods

to determine the number of layers and their depth ordering.
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Figure 6.4. Left to right: binary masks for the first (front) and second layers, visibility mask for the second

layer, and the layer segmentation. Top: frame t; bottom: frame t + 1. The “bird” layer is in front and

occludes the second “apple” layer, resulting in the layer segmentation; Bottom row: The binary masks at

time t+1 are temporally consistent with those at time t according to the flow field for each layer, resulting in

temporally consistent layer segmentation. Note that the layer segmentation for a pixel is jointly determined

by the two binary masks.

6.3.1. A Discrete Layered Model for Optical Flow. Consider an image sequence pre-

sumed to have K depth-ordered motion layers. In Chapter 5, we propose to model the spatial

support of these layers by thresholding a sequence of smooth, continuous layer support functions.

However, the local inference scheme is susceptible to local optima, especially in determining the

scene structures.

In contrast to gradient-based methods, discrete optimization methods like graph cuts [32, 85]

can substantially change the model configuration in a single move. This inspires us to develop a

discrete formulation of the layered flow model using binary masks.

We capture the spatial coherence of the binary masks by a conditional Ising MRF with weights

determined by image color differences:

Espace(mtk) =
1

2

∑
p

∑
q∈Γp

wpqδ(m
p
tk 6= mq

tk). (50)

where m are binary functions and the weight wpq is the same as the continuous model in Chapter 5

and defined by Eq. 44.

The temporal consistency of the binary masks, as aligned by the inferred flow field, is encouraged

by an Ising MRF:

Etime(mtk,mt+1,k,utk,vtk) =
∑
p

∑
q∈Np

tk

δ(mp
tk 6= m

[q]
t+1,k), (51)

where the set N p
tk = {(i+ uptk, j + vptk)} contains the corresponding pixel at frame t+ 1 according to

the flow field of the kth layer at frame t and [q] means rounding the pixel position q to the nearest

integer pixel. For non-integer flow vectors, sub-pixel interpolation introduces high-order temporal

terms and may result in non-integer values around boundaries. We therefore round these flow vectors

to obtain an approximation with only pairwise terms.
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We also make a modification to the motion model for the discrete formulation, which produces

more robust results than the original motion model in Eq. (40). We model the motion of each layer

by a pairwise MRF with a unary term. The energy term is

Eaff(utk, θtk) =
1

2

∑
p

∑
q∈Γp

ρs (uptk − u
q
tk) + λaff

∑
p

ρaff(uptk − ū
p
θtk

), (52)

where the unary term encourages the flow field of each layer to be close to its affine flow (with weight

λaff). Compared with the continuous model (Eq. 40), the motion of the discrete model is enforced to

be similar to the affine motion field more. Note that this semiparametric model still allows deviation

from the affine motion and is more flexible than parametric models. In automatically determining

the number of layers, there is an important balance between the binary mask prior term (50) and the

flow prior term (52): the former penalizes support discontinuities, while the latter favors additional

layers so that each layer’s flow is closer to affine.

6.3.2. Inference for the Discrete Model. The standard moves of graph cuts are not directly

applicable to the discrete model, because of the high-order interaction terms in the data term (42).

We therefore define a set of “cooperative” moves that can a) change a group of pixels to be visible at

a particular layer while also selecting their flow fields; b) change a group of pixels to be visible at a

particular layer; c) select the flow fields of a particular layer from a candidate set. Each move solves a

binary problem via the Quadratic Pseudo-Boolean Optimization (QPBO) algorithm [66, 85], where

the auxiliary binary variable, b, encodes the states of several model variables.

We will use a toy example to explain the effect achieved by each move. Figure 6.5 shows the

desired layer segmentation and flow field for the input “Bird-apple” sequence. During optimization

we will see that there are several (fairly bad) local optima and we will need to make large changes to

the solution to get out of these optima. Note that the binary selection variable b controls different

variables for each move. The potential functions for each move are also defined differently though

the functions may share the same name.

(a) first image (b) second image (c) segmentation (d) flow field (f) key

Figure 6.5. Input “Bird-apple” frames, the ground truth segmentation, the ground truth flow field, and

the depth ordering key (blue is close and red is far).

6.3.2.1. Simultaneous Segmentation and Flow Move. Sometimes a region may be assigned to a

wrong layer with the correct motion, as shown in Figure 6.6. To avoid this local optimum, we need

to simultaneously change the segmentation and flow fields.

Consider a pixel p in frame t, for which layer k′ is currently visible. We define a binary decision

variable bpt such that the configuration is unchanged when bpt = 0, and an alternative layer k̂ becomes

visible when bpt = 1. Making this new layer k̂ visible may alter all the binary masks for the first k̂
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(a) segmentation (b) flow field

Figure 6.6. Local minimum of the objective requiring the simultaneous segmentation and flow move. A

large region of pixels in the center has been incorrectly assigned to the bird layer though their motion is

correct. Changing either the segmentation or the flow field alone will not get out of the local minimum.

We need to make these pixels visible in the apple layer and still retain their motion using the simultaneous

segmentation and flow move (see text).

layers: when bpt = 1, mp

tk̂
(1) = 1 and mp

tk(1) = 0, k < k̂. In this case, we also set the motion for

layer k̂ to that of the formerly visible layer (up
tk̂

(1) = up,old
tk′ ), and the motion for layer k′ to its affine

mean (uptk′(1) = ūpθtk′ ).

This segmentation and flow move involves several terms of the overall model, and the energy

function can be represented using the binary selection variable as

E(b) =

T−1∑
t=1

K∑
k=1

∑
p

∑
q∈Np

tk(bpt )

φtime(bpt , b
q
t+1) +

T∑
t=1

∑
p

∑
q∈Γp

φspace(bpt , b
q
t ) + φaffine(bpt )

 . (53)

The choice of the binary variable bpt influences the flow vector at pixel p, and thus determines

which of two candidate pixels p is linked to at the next frame. The temporal neighbors are

N p
tk(bpt ) =

{(
i+ uptk(bpt ), j + vptk(bpt )

)}
, 1 ≤ k ≤ K (54)

and the potential function is

φtime(b
p
t , b

q
t+1) =

(
ρd(I

p
t − Iqt+1)− λd

)
· sptk(bpt ) · s

[q]
t+1,k(b

[q]
t+1) + λcδ

(
mp
tk(bpt ) 6= m

[q]
t+1,k(b

[q]
t+1)

)
· δ(k < K),

(55)

which incorporates both the data and the temporal terms for the K − 1 binary masks. We evaluate

the warped image Iqt+1 at subpixel positions and the visibility mask s
[q]
t+1,k and the warped binary

mask m
[q]
t+1,k at integer positions.

For the spatial term the binary selection variable changes the states of several binary masks and

flow fields. The effects sum together as

φspace(bpt , b
q
t ) =

K−1∑
k=1

λbw
p
q · δ

(
mp
tk(bpt ) 6= mq

tk(bqt )
)

+

K∑
k=1

λaρmrf

(
uptk(bpt )− u

q
tk(bqt )

)
· δ(t < T ). (56)

The unary term can be obtained from Eq. (52) as

φaffine(bpt ) =

K∑
k=1

λaλaffρaff

(
uptk(bpt )− ū

p
θtk

)
· δ(t < T ). (57)
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(a) segmentation (b) flow field

Figure 6.7. Local minimum that can be solved with the visibility move. A large number of pixels in the

center of the image are assigned incorrectly to the bird layer, while the apple layer has the correct motion

field for these pixels. Changing these pixels to be visible at the apple layer will fix this particular solution

and get us out of the local minimum.

6.3.2.2. Visibility Move. Sometimes the segmentation is wrong, while an unassigned layer has

the right motion. Hence we can make big changes to the layer segmentation to correct the errors

in the motion field, as shown in Figure 6.7. Given the current flow estimate, we decide whether to

make a pixel p visible for some layer k̂ by modifying the previous layer support gold. Because the

visibility state of a pixel is jointly determined by several binary masks, the binary selection variable

controls the states of all the binary masks involved. When bpt = 0, all the binary masks retain their

previous value at p, i.e.,mp
tk(0) = mp,old

tk . When bpt = 1, we need to adjust the binary masks of the

first k̂ layers so that layer k̂ is visible at p, i.e., mp
tk(1) = 0 if k < k̂, and mp

tk(1) = 1 if k = k̂. When

k̂ is the last layer, all the binary masks of the first K − 1 layers are set to be 0 at p. The energy

function for the binary variable is

E(b) =

T−1∑
t=1

{
Edata(ut,vt,mt(bt),mt+1(bt+1)) + λcEtime(mtk(bt),mt+1,k(bt+1),utk,vtk)

}

+

T∑
t=1

K−1∑
k=1

λbEspace(mtk(bt))

=

T−1∑
t=1

K−1∑
k=1

∑
p

∑
q∈Np

tk

φtime(bpt , b
q
t+1) +

T∑
t=1

∑
p

∑
q∈Γp

φspace(bpt , b
q
t ), (58)

in which N p
tk = {(i + uptk, j + vptk)}, 1 ≤ k ≤ K and the time term incorporates both the data term

and the temporal consistency of the first K − 1 binary masks φtime(bpt , b
q
t+1) =

(
ρd(I

p
t − I

[q]
t+1)− λd

)
sptk(bpt )s

[q]
t+1,k(b

[q]
t+1) + λcδ

(
mp
tk(bpt ) 6= m

[q]
t+1,k(b

[q]
t+1))

)
, k < K,(

ρd(I
p
t − I

[q]
t+1)− λd

)
sptk(bpt )s

[q]
t+1,k(b

[q]
t+1), k = K,

(59)

where the visibility mask s depends on the binary mask which in turn depends on the binary variable

b, and the corresponding pixel q depends on the flow vector of the kth layer. The visibility move

may change several binary masks. The potential function for the spatial term is

φspace(bpt , b
q
t ) =

K−1∑
k=1

λbw
p
qδ
(
mp
tk(bpt ) 6= m

[q]
tk (b

[q]
t )
)
. (60)
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Figure 6.8. Illustration for the visibility move: we need to change the binary masks simultaneously to

make desired change to the layer segmentations.

6.3.2.3. Support Function Move. Given the current flow estimate, we decide whether to make

the binary mask of a pixel p at the selected layer k̂ equal to 1 or retain its previous value. The

energy function and the potential functions are the same as Eqs. (58)- (60) but the binary variable

selects the solutions in a different way. When bpt = 0, gp
tk̂

(0) = gp,old

tk̂
. When bpt = 1, gp

tk̂
(1) = 1.

6.3.2.4. Occlusion-aware FusionFlow Move. Here we deal with the case in which the segmenta-

tion is correct, but the motion field has a large region of errors, particularly in occlusion regions,

as shown in Figure 6.9. We must make large changes to the flow field to reduce the motion errors.

Given the current estimate of the binary masks for each layer, we want to select the motion of each

pixel from a set of canidate flow fields. Here we use the current flow estimate and the affine mean

flow field of the selected layer, uptk(0) = up,old
tk and uptk(1) = ūpθtk . Note that for occluded pixels, their

data likelihood term does not provide useful information to estimate the motion. Instead we can

predict the motion of the occluded pixels using the affine motion field fitted to the visible pixels of

the same object (layer). For a particular layer k of frame t (t < T ), the energy function is

E(btk) =Edata(ut(btk),vt(btk),mt,mt+1) +

K∑
k=1

λa(Eaff(utk(btk), θtk) + Eaff(vtk(btk), θtk))

+ λc

K−1∑
k=1

Etime(mtk,mt+1,k,utk(btk),vtk(btk))

=
∑
p

φunary(bptk) +
∑
p

∑
q∈Γp

φspace(bptk, b
q
tk), (61)

where the unary term incorporates the data term, the temporal consistency of the binary mask, and

the deviation from the affine motion field

φunary(bptk) =
∑

q∈Np
tk(bptk)

(
ρd(I

p
t − Iqt+1)− λd

)
sptks

[q]
t+1,k + λcδ(m

p
tk 6= m

[q]
t+1,k)δ(k < K)

+ λaλaffρaff(uptk(bpt )− ū
p
θtk

), (62)
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(a) segmentation (b) flow field

Figure 6.9. Local minimum that can be solved using the occlusion-aware fusion flow move. A large number

of pixels in the center of the image have the wrong motion vectors. Making large changes to the flow field

can reduce the errors. Note that we use the segmentation information to reason about occlusions.

in which the corresponding pixel at the next frame depends on the flow field selection at the current

frame. This energy function differs from the FusionFlow method [92] in that the segmentation

information directly modulates the data likelihood term in Eq. (62) and enables occlusion reasoning.

6.3.2.5. Continuous Flow Refinement. Given the current estimate of the binary masks for each

layer, we refine the flow field for each layer by minimizing

E(utk,vtk) =Edata(utk,vtk,mt,mt+1) + λa(Eaff(utk, θtk) + Eaff(vtk, θtk))

+ λcEtime(mtk,mt+1,k,utk,vtk)δ(k < K). (63)

Compared with standard optical flow formulation, this energy function contains the segmentation

information necessary to reason about occlusions and an additional temporal consistency term for

the binary masks. We can perform gradient-based optimization and the gradient of the energy

function w. r. t. the flow fields can be derived similar to Chapter 2. This refinement step adaptively

changes the flow field for the discrete optimization.

6.3.3. Layer Number Determination and Depth Order Reasoning. We initialize with

an upper bound on the number of layers. During optimization, when a layer has no visible pixels

associated with it, we remove it from the solution. The new solution can equally explain the image

data, pays no penalty for the removed layer, and so has lower energy. Inferring the depth ordering of

layers requires testing all the possible combinations and is computationally prohibitive. We instead

use heuristics to reduce the search space. We first order the layers from fast to slow by their average

motion. We then perform the moves above to estimate the binary masks and the flow fields in both

the fast-to-slow and the slow-to-fast ordering. The ordering with the lower energy is further refined

as follows. For each pair of neighboring layers, we propose to switch their ordering, and optimize

their visibility mask and binary masks. If the new solution has a lower energy than its previous one,

we accept this new depth ordering and proceed to other pairs. In practice, we find that this local

greedy search scheme is fairly robust.

Table 6.1 provides the high-level algorithm. Tables 6.2 and 6.3 gives the detailed algorithms

for inferring the depth ordering. For Table 6.2, where maxIters is set to be 10 in the current

implementation and the algorithm usually stops after 4 to 6 iterations.
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Table 6.1. The high-level algorithm for inferring the layered model.

Input: frames {It, 1 ≤ t ≤ T}, upper layer number, Kmax

• Estimate flow (ut∗,vt∗) between It and It+1 using Classic+NL

• Perform affine K-means on (ut∗,vt∗) to obtain Kmax groups

• Perform the following moves (Sequence A) for fast-to-slow and

slow-to-fast depth orderings, including

- Perform visibility move for each layer, remove redundant layers

- Perform joint segmentation and flow move, remove redundant lay-

ers

- Perform binary mask move, remove redundant layers

- Re-estimate affine flow field for each layer

- Perform flow Fusion move

- Perform continuous flow refinement

• Pick up the solution with lower energy between solutionfast-to-slow

and solutionslow-to-fast

• Perform Sequence B (Table 6.2) to decide depth ordering between

neighboring layers

• Perform Sequence A to refine segmentation and flow

Output: solution =
{
K, {(utk,vtk), 1 ≤ t ≤ T − 1, 1 ≤ k ≤ K},

{mtk, 1 ≤ t ≤ T, 1 ≤ k ≤ K − 1}
}

6.4. Experimental Results

We evaluate the proposed layered model on both motion estimation and layer segmentation

tasks. Throughout this section, the proposed method is called nLayers, since it can automatically

determine the number of layers. Layers++ refers to the continuous method developed in Chapter 5

which uses a fixed number of 3 layers. For layer segmentation, we also compare our method to

a recent, hierarchical graph-based video segmentation algorithm [65], referred to as HGVS in

the comparison below. Note that HGVS uses the output from a recent optical flow estimation

method [189].

6.4.1. Implementation Details and Parameter Settings. We start with the single-layered

output from Classic+NL [158] and cluster the flow field into 10 layers. We then run the discrete

method to obtain an initial estimate of the scene structure and the flow fields, and use them to

initialize the more precise continuous layered model. It takes nLayers about 10 hours to compute

three forward and three backward flow fields from the four-frame 640 × 480 “Urban” sequence in

MATLAB with the QPBO solver, complied as MEX. It takes Layers++ about 5 hours to compute

one forward and one backward flow fields from two frames. HGVS uses ten frames, or all the frames

if a sequence has fewer than ten frames. HGVS has three different outputs for the same video. We

show the segmentation results produced at 90 percent of highest hierarchy level, because it gave the

best visual and numeric results.

83



Table 6.2. The algorithm for infering the depth ordering between neighboring layers.

Input: solutioninput, maxIters

For iter = 1 : maxIters

• Select candidate pairs according to the occlusion area

• solutioncurr = solutioninput

• is local minimum = true

For each selected pair of selected neighboring layers

- Swap depth ordering

- Perform visibility move for the two selected layers

- Perform binary mask move for the two layers

- If energy(solutionnew) < energy(solutioncurr)

◦ solutioncurr = solutionnew

◦ is local minimum = false

End of If

End of For

• Remove redundant layers

• If is local minimum == true

- break

End of If

End of For

Output: solutioncurr

Table 6.3. The algorithm for selecting the candidate neighboring layer pairs.

Input: maxPairNumbers (max number of layer pairs to compare)

•Compute the number of (pairNumber) neighboring pairs using cur-

rent segmentation

If pairNumber ≤ maxPairNumbers
- Output all the neighboring pairs and exit

Else

- Compute occlusion regions between each neighboring pairs

- Order the pairs by the occlusion area in descending order

- Output the top maxPairNumbers neighboring layer pairs

End of If

Output: pairs of neighboring layers to compare

6.4.2. Motion Estimation. We use the Middlebury optical flow benchmark to evaluate the

motion estimation results.We manually set λaff = 0.3, λb = 80, and λc = 10 for the discrete model,

use the provided values for the other parameters from Chapter 5, and fix them for all the motion
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Table 6.4. Average end-point error (EPE) on the Middlebury training set. Using four frames and the new

optimization improves accuracy.

Avg. Venus
Dimetr- Hydr- Rubber-

Grove2 Grove3 Urban2 Urban3
odon angea Whale

Classic+NL (2 frames) 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384

Layers++ (2 frames) 0.195 0.211 0.150 0.161 0.067 0.086 0.331 0.210 0.345

Layers++ (4 frames) 0.190 0.211 0.151 0.157 0.067 0.084 0.330 0.207 0.311

nLayers (4 frames) 0.183 0.191 0.126 0.175 0.062 0.080 0.336 0.175 0.316

Table 6.5. Average end-point error (EPE) and angular error (AAE) on the Middlebury optical flow bench-

mark test set. The discrete-continuous optimization (nLayers) obtains similar EPE and better AAE than

the continuous-only inference method (Layers++). The ranking information is at the writing of the dis-

sertation (July 2012).

Rank Avg. Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

EPE
Layers++ 9.2 0.27 0.08 0.19 0.20 0.13 0.48 0.47 0.15 0.46

nLayers 9.8 0.28 0.07 0.22 0.25 0.15 0.53 0.44 0.13 0.47

AAE
Layers++ 10.9 2.56 3.11 2.43 2.43 2.13 2.35 3.81 2.74 1.45

nLayers 6.5 2.38 2.80 2.71 2.61 2.30 2.30 2.62 2.29 1.38

Table 6.6. RandIndex measures on the MIT human labeled dataset for the three methods (and variants).

Avg. p-value Car Car2 Car3 Dog Phone Table Toy Hand Person

HGVS [65] 0.550 0.008 0.602 0.401 0.689 0.260 0.493 0.766 0.809 0.499 0.430

Layers++ [160] 0.775 0.050 0.612 0.512 0.778 0.964 0.567 0.909 0.832 0.814 0.986

Layers++ (8 layers) 0.690 0.021 0.711 0.510 0.802 0.531 0.564 0.842 0.874 0.590 0.790

Layers++ (10 layers) 0.675 0.027 0.661 0.517 0.799 0.613 0.551 0.853 0.846 0.640 0.597

nLayers 0.823 — 0.836 0.589 0.766 0.974 0.578 0.979 0.858 0.881 0.944

nLayers (8 layers) 0.808 0.275 0.611 0.590 0.821 0.975 0.575 0.981 0.852 0.920 0.951

nLayers (12 layers) 0.800 0.204 0.603 0.574 0.810 0.974 0.575 0.944 0.876 0.889 0.952

nLayers (2 frames) 0.793 0.124 0.608 0.535 0.755 0.970 0.578 0.979 0.841 0.923 0.951

estimation experiments. We set all the robust functions to be the generalized Charbonnier penalty

function ρ(x) = (x2 + ε2)a with ε = 0.001 and a = 0.45 as in Chapter 4.

Results on the Middlebury training set are shown in Table 6.4. Changing from 2 to 4 frames

improves results for the Layers++ model supporting our hypothesis that longer sequences are

important. More improvement comes from using a discrete model to obtain a good segmentation of

the scene and then use the inferred structure for flow estimation (nLayers, 4 frames).

On the test set, nLayers obtains EPE similar to Layers++ but better AAE, as shown in

Table 6.5. At the time of writing (July 2012), nLayers is ranked 1textst in AAE and 5textth in EPE.

(see Appendix A for the screen shot). The results suggest that nLayers estimates motion directions

more accurately.

Figures 6.10-6.13 show the estimated segmentation and flow fields on both the training and the

test sequences. nLayers performs well on estimating the major scene structure. Nearly all the

major structures of “Urban” in Figure 6.13 are correctly recovered, resulting in the best boundary
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EPE and AAE performance (Figures A.1 and A.2). The higher overall error results from the bottom

left building. A major part of the building moves out of the image boundary and has no data term

to estimate the motion. nLayers uses the affine model to interpolate the motion of the out-of-

boundary pixels, but the building’s motion violates the affine assumption. Future work will study

sequence-adaptive model selection to reduce such errors.

6.4.3. Layer Segmentation. The Middlebury dataset does not have motion segmentation

ground truth and so we use the MIT human annotated dataset [99] to evaluate segmentation perfor-

mance. Segmentation accuracy is computed using the RandIndex measure [127] (larger is better).

Because the MIT dataset is different in nature from the Middlebury dataset and has more rigidly

moving, distant objects, we use a larger weight on the affine unary term as λaff = 1, and λc = 3 for

the discrete model while keeping the other parameters unchanged.

Table 6.6 summarizes the RandIndex measure on all the 9 sequences. On several sequences,

nLayers (default: 10 layers and 4 frames) outperforms Layers++ by a large margin. A bootstrap

significance test is used between the nLayers and other methods. Small p values suggest that the

improvement over HGVS and Layers++ by nLayers is significant. nLayers with the maximum

number of layers being 8 or 12 produces results similar to the baseline 10-layer model suggesting the

method is not highly sensitive to the maximum number of layers. nLayers with only 2 frames is more

accurate than the 2-frame Layers++ method, demonstrating the benefits of discrete optimization.

The improvement with 4 frames over 2 frames shows the benefits of using more frames to recover

scene structure. Also note that the performance of Layers++ drops with the number of layers

used because its local inference scheme has to deal with more local optima as the number of layers

increases.

Figures 6.14-6.16 shows the segmentation results. On “Table”, the layer segmentation by nLay-

ers roughly matches the structure of the scene and is close to the human labeled ground truth.

Although HGVS uses optical flow, it still merges some foreground objects and background espe-

cially when their appearance is similar. nLayers tends to fail when motion cues are weak, such as

the “Phone” sequence. Adding an appearance model [89, 179] is likely to better exploit the static

image cues and thereby resolve ambiguity.

We also apply nLayers with the same parameter setting to some “old” popular sequences used

in the literature, including “Cow” [89], “Hedvig” [150], and “Jojic & Frey” [81]. The segmentation

results capture the major scene structures. However, nLayers assigns the lower parts of legs for

the cow and the person to the background layer because their motion is small in the four frames

we process. Using more frames may resolve the ambiguity by propagating information from frames

where the legs have large motion.
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(a)First frame (b) Layer segmentation (c) Estimated flow field

Figure 6.10. Estimated flow fields and scene structure on the Middlebury training sequences. Left to

right: first frame, layer segmentation, and estimated flow field. Top to bottom: “Venus”, “Dimetrodon”,

“Hydrangea”, and “RubberWhale”. Color key for the depth ordering is the same as Figure 6.5 (blue is close

and red is far).
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(a)First frame (b) Layer segmentation (c) Estimated flow field

Figure 6.11. Estimated flow fields and scene structure on the Middlebury training sequences. Left to right:

first frame, layer segmentation, and estimated flow field. Top to bottom: “Grove2”, “Grove3”, “Urban2”,

and “Urban3”. Color key for the depth ordering is the same as Figure 6.5 (blue is close and red is far).
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(a)First frame (b) Layer segmentation (c) Estimated flow field

Figure 6.12. Estimated flow fields and scene structure on the Middlebury test sequences. Left to right:

first frame, layer segmentation, and estimated flow field. Top to bottom: “Army”, “Mequon”, “Schefflera”,

and “Wooden”. Color key for the depth ordering is the same as Figure 6.5 (blue is close and red is far).

89



(a)First frame (b) Layer segmentation (c) Estimated flow field

Figure 6.13. Estimated flow fields and scene structure on the Middlebury test sequences. Left to right:

first frame, layer segmentation, and estimated flow field. Top to bottom: “Grove”, “Urban”, “Yosemite”,

and “Teddy”. Color key for the depth ordering is the same as Figure 6.5 (blue is close and red is far).
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(a)First frame (b) HGVS [65] (c) Layers++ [160] (d) nLayers (e) Flow nLayers (f) Ground truth

(a)First frame (b) HGVS [65] (c) Layers++ [160] (d) nLayers (e) Flow nLayers (f) Ground truth

Figure 6.14. Results on the MIT dataset. Top to bottom: first frame, segmentation results by HGVS [65], Layers++ [160], nLayers, estimated flow field

by nLayers, and human labeled ground truth. Left to right: “Car”, “Car2”, and “Car2”. Color key for the depth ordering is the same as Figure 6.5 (blue is

close and red is far).
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(a)First frame (b) HGVS [65] (c) Layers++ [160] (d) nLayers (e) Flow nLayers (f) Ground truth

(a)First frame (b) HGVS [65] (c) Layers++ [160] (d) nLayers (e) Flow nLayers (f) Ground truth

Figure 6.15. Results on the MIT dataset. Top to bottom: first frame, segmentation results by HGVS [65], Layers++ [160], nLayers, estimated flow field

by nLayers, and human labeled ground truth. Left to right: “Dog”, “Phone”, and “Table”. Color key for the depth ordering is the same as Figure 6.5 (blue is

close and red is far).
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(a)First frame (b) HGVS [65] (c) Layers++ [160] (d) nLayers (e) Flow nLayers (f) Ground truth

(a)First frame (b) HGVS [65] (c) Layers++ [160] (d) nLayers (e) Flow nLayers (f) Ground truth

Figure 6.16. Results on the MIT dataset. Top to down: first frame, segmentation results by HGVS [65], Layers++ [160], nLayers, estimated flow field by

nLayers, and human labeled ground truth. Left to right: “Toy”, “Hand”, and “Person”. Color key for the depth ordering is the same as Figure 6.5 (blue is close

and red is far).
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(a)Second frame (b)Third frame (c) Layer segmentation (d) Estimated flow field

Figure 6.17. Estimated flow field from the second frame to the third frame and scene structure at the

second frame on some “old”, popular sequences. Top to bottom: “Cow”, “Hedvig”, and “Jojic & Frey”.

Color key for the depth ordering is the same as Figure 6.5 (blue is close and red is far).

6.5. Conclusions and Discussions

We have formulated a discrete layered model based on a sequence of ordered Ising MRFs and

developed non-standard moves to optimize the model. In particular, our moves can simultaneously

change the layer assignment together with the flow field, which helps avoid local optima common to

alternating optimization schemes. The discrete optimizer enables us to adapt the number of layers

to each sequence and decide their depth ordering automatically. Our method produces meaningful

segmentations on the Middlebury and the MIT datasets, and achieves better quantitative results

w. r. t. the human labeled ground truth than the local inference method developed in Chapter 5. Our

flow estimation results show the benefits of using more frames and discrete optimization to resolve

depth-ordering ambiguities. Our work advances the state of the art in layered motion modeling and

suggests that layered models can provide a rich and flexible representation of complex scenes.
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CHAPTER 7

Conclusions and Future Work

Preceding chapters have introduced several methods to go beyond the classical optical flow for-

mulation to recover motion boundaries, reason about occlusions, and segment scenes into coherently

moving objects. This chapter summarizes our main contributions, limitations, and directions for

future research.

7.1. Contributions and Recommendations

Image motion estimation is an inherently ill-posed problem. Similar to other low-level vision

tasks, such as denoising, we need good prior models to regularize the unknown flow fields. However,

motion estimation differs from denoising in that the data observation model is more complicated.

To design a good motion estimation method, we should choose both the prior model and the data

observation model carefully.

The pairwise MRF models have been a popular choice for low-level vision problems. We refor-

mulate the classical formulation of optical flow by Horn and Schunck and its descendants probabilis-

tically as pairwise MRF models in Chapter 3. This formulation enables us to learn the parameters

from training data, an important step missing in the original work by Horn and Schunck. The

heavy-tailed histograms of both the brightness constancy error and the derivatives of the flow fields

confirm our intuitions that brightness constancy does not always hold, and motion discontinuities

exist. The learned parameters achieve similar performance as the hand-tuned parameters but save

the task of tuning the unknown parameters. However, even with learned parameters, the classical

approach still has difficulties dealing with motion boundaries, occlusions, and lighting changes etc.

We extend the standard models in both the data and the spatial terms. To deal with lighting

changes, we learn high-order constancy models from training data and further generalize the idea

to learned filter constancy. To better preserve motion boundaries, we formalize the concept of

oriented smoothness probabilistically as a Steerable Random Field (SRF). These advanced models

consistently outperform the standard models, in particular, in the motion boundary and shadow

regions. Nevertheless, the motion boundary and occlusion regions still cause serious problems to

these advanced models.

To understand the recent developments in optical flow estimation, we perform a thorough analy-

sis of how the objective function, the optimization method, and the implementation details influence

the performance in Chapter 4. We find that the classical formulation by Horn and Schunck achieves

competitive results with modern implementations. The new implementation also produces signifi-

cantly better results than the initial implementation presented in Chapter 3. The key is to apply

median filtering to the flow field during the incremental estimation process. However, the median

filtering step increases the energy of the final results, suggesting that a different objective is being

95



minimized. Exploiting connections between median filtering and L1 energy minimization, we show

that algorithms relying on a median filtering step are approximately optimizing a different objec-

tive that regularizes flow over a large spatial neighborhood. The good performance by the classical

formulation, especially the Horn and Schunck method, results from the use of a large robust spatial

prior via the median filtering. This observation enables us to design and optimize improved models

that weigh the neighbors adaptively in an extended image region. Similar to the SRF models, the

weighted non-local term uses the static image information to detect and preserve motion details.

The non-local term still cannot handle occlusions well, because the model does not incorporate

occlusions. We revisit the layered approach and develop a probabilistic model based on thresholded

support functions in Chapter 5. Our model fixes several limitations of previous approaches and

explicitly models the occlusions between layers, the depth ordering of layers, and the temporal

consistency of layers. The support functions flexibly evolve over time according to globally coherent

and locally flexible motion fields.

Inferring the layered model is challenging because of poor local optima. As a baseline, we develop

a local, gradient-based scheme and obtain promising results on motion estimation, as tested on the

Middlebury dataset. However, the local inference scheme fails on some worst-case toy examples that

violate the assumptions on the number of layers and their depth ordering.

Inspired by the ability of discrete optimization to make big, non-local changes to the solution,

we have proposed a discrete-continuous optimization scheme for our layered model in Chapter 6.

We formulate a discrete layered model using a sequence of depth-ordered Ising MRFs and develop a

series of nonstandard moves to optimize the proposed model. In particular, we develop simultaneous

motion and segmentation moves that can solve local minima where typical EM-type algorithms tend

to fail. Experimental results show that the proposed discrete-continuous approach is more robust

to the initialization and produces better scene segmentation results than the local approach. The

layered approach achieves competitive results on both layer segmentation and motion estimation,

demonstrating the benefits of jointly solving for the motion and the segmentation.

7.2. Limitations and Future Work

7.2.1. Long-term Video Analysis with the Layered Model. Although we have obtained

some benefits by using more than two frames, our layered method still cannot analyze long video

sequences, because of several challenges in the modeling, the inference, and the implementation.

Our layered model does not incorporate long-term temporal dynamics. An object may appear in

the scene, become fully occluded by another, or exit the scene. Two objects may change their depth

ordering at different time instances. All these phenomena violate our current model assumptions.

Another missing part is the appearance of each layer, e.g., the color of every pixel for every

layer. We rely on the data constancy term between two neighboring frames as the observation

model. Appearance, on the other hand, is more likely to persist over many frames. Appearance

will help the segmentation where the motion cues are too weak. The learned appearances will be

useful for other video analysis tasks. The segmentation and the learned appearances from many

video sequences can be useful inputs for object recognition tasks. The resultant system uses motion

as a weak supervised signal. The key challenge in adding the appearance is the increased solution
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space and more local optima. Similarly to simultaneous segmentation and flow moves, we may need

to develop moves to change the segmentation, motion, and appearance simultaneously.

In addition, the depth ordering is ill-defined for mutually occluding layers, such as two shaking

hands. Breaking these objects into small layers is one possible solution, but may invoke enormous

computational costs or lose the global reasoning ability of the motion model. Local layering [110]

is one possible solution, but the inference is more difficult. 3D representations, such as depth map,

is more suitable for describing the mutual occlusion or the self occlusion relationship and is worth

pursuing in the long run.

Instead of using a single flexible motion model, such as the semiparametric ones, we may perform

on-line model selection for the given input sequences. We can create a set of motion models, ranging

from translational motion all the way to the most flexible robust MRFs. In the middle of the

spectrum, we may add depth-based motion representation for rigidly moving objects, and descriptor

matching for fast-moving objects [37]. We may extract some high-level video descriptors and use

them to choose the right motion models.

One practical challenge for processing long video sequences is the high computational cost for

the proposed layered model. One possibility is to use larger representation units, such as super

pixel/voxel to obtain a rough solution. We can then refine the solution using pixel units if required

by the particular applications. It is also worth investigating using signal process techniques [125] to

efficiently implement the algorithms.

Learning is a more principled way than hand tuning for setting the model parameters. We

have demonstrated the benefits of learned models over the standard models in Chapter 3. However,

limited training data may cause over-fitting problems, especially for the flexible layered models. We

may take a fully Bayesian approach by putting priors on the parameters. We can either marginalize

the parameters or re-sample them depending on conjugacy. This is harder to implement but likely

to bring higher rewards, in particular with no over-fitting issues.

Despite these challenges, long-term motion estimation is appealing because the output is useful

for a variety of applications, such as video super resolution [103] and video manipulation [64]. Our

results suggest that the layered approach is favorable for long-term motion analysis because the

scene structure is more likely to persist over time than the optical flow. Even with four frames,

we have already observed some benefits by imposing temporal consistency on the scene structures.

Extending the proposed layered model to long-term motion analysis can better integrate information

over time.

7.2.2. Implementation. We released our Matlab implementation for Classic+NL together

with the publication of our paper [158]. The public software has been used by both researchers

to develop new flow methods [5, 80] and practitioners to apply optical flow in their work [118].

However, three minutes per 640× 480 image pair is too slow for real-time video processing and may

exceed the total computational time for some high-level video analysis systems [139]. Making motion

estimation method faster and able to process high definition (HD) images is important for motion

to become a basic tool for both low and high level video processing and analysis. Implementing the

non-local term in C++ and on a GPU may provide a significant speedup. It is more challenging but

also profitable to make the inference faster for the layered model.
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7.2.3. Dataset and Over-fitting Issues. We have mainly used the Middlebury optical flow

and the MIT layer segmentation dataset. These two datasets are more challenging than the pre-

viously widely used “Yosemite” sequence and have more sequences of different natures. However,

both datasets are small in size and over-fitting is likely to exist, which may have biased our conclu-

sions. Although the proposed methods have not addressed all the challenges imposed in these two

datasets, it will be more profitable to test and design algorithms on more realistic, representative

datasets [41, 59].

There are several issues in real-world video sequences that we have not addressed in this disser-

tation. Real-world sequences may contain motion blur and structured noise and hence have different

statistics from those used in this thesis. In addition, real-world video sequences are all stored in

compressed format and suffer from compression artifacts to some degree. The compression artifacts

are false high frequency signals and may be mistaken as the true signals. We may need to solve for

both the motion and the original video together [162]. The sizes of the real-world HD sequences are

much larger than the sequences used in the thesis and further increases the computational burden.

We need to consider all these differences to design accurate motion estimation methods that can

serve as a reliable tool for applications in many fields.
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APPENDIX A

Detailed Tables for Chapter 4

• Figures A.1 and A.2 show the screen shot for the top-performing methods at the time of

writing the dissertation (July 2012).

• Tables A.1 and A.2 summarize the EPE and AAE results on the Middlebury optical flow

benchmark.

• Tables A.3 and A.4 summarize the EPE and AAE results on the Middlebury training set

for the classical formulations (Table 2 in Chapter 4). Note that Classic-C-brightness

actually achieves lower EPE and AAE on the training set than Classic-C but significantly

lower accuracy on the test set, suggesting overfitting to the training data.

• Table A.5 shows the EPE results on the Middlebury training set for the baseline model

(Classic-C) using different pre-processing techniques (Table 2 Chapter 4). Two additional

preprocessing techniques are provided that are not shown in the main text since neither is

significantly different from the baseline Classic-C. Dx+Dy assumes separate horizontal

derivative and vertical derivative constancy. A weighted combination of robust functions

applied to each term is used. By default, the blended result from texture decomposition

is normalized to [−1, 1] in [185] and [0, 255] in our experiment. Unnormalized texture

tests the effect of not doing this normalization.

• Table A.6 shows some additional results that are not shown in the main paper. They focus

on variations of the HS optimization and, while interesting, are not central to the main

claims of the paper. One interesting result is that repeatedly applying median filtering

(20 times) at every warping step improves the HS formulation and the improvement is

statistically significant (HS 20×MF). We also find that, for HS, the downsampling factor

in the pyramid is not significant: a downsampling factor of 0.95 (HS-Down-0.95) produces

similar results to one of 0.5 (HS).

• Table A.7 shows the EPE results on the Middlebury training set for the baseline model

(Classic-C) using different algorithmic and modeling choices (Table 3 Chapter 4).

• Tables A.8 and A.9 shows EPE results for the new objective function with alternating

optimization (-A) and its improved model (-NL); this corresponds to Table 5 Chapter 4.
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Figure A.1. Screen shot of Middlebury EPE table at the writing of the dissertation (July 2012). There

are 73 methods in total and only the higher-ranking ones are shown.

Figure A.2. Screen shot of Middlebury AAE table at the writing of the dissertation (July 2012). There

are 73 methods in total and only the higher-ranking ones are shown.
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Table A.1. Models. Average end-point error (EPE) on the Middlebury optical flow benchmark (test set). The ranking information was at the publication of

our conference paper [158] (June 2010); the average EPE ranks for Adaptive, Complementary OF, Classic++, and Classic+NL are 26.8, 29.3, 31.0, and

16.2 at the writing of the dissertation (July 2012).

Rank Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

HS 24.6 0.501 0.12 0.25 0.45 0.24 0.95 0.83 0.24 0.93

Classic-C 14.9 0.408 0.10 0.23 0.45 0.20 0.88 0.47 0.16 0.77

Classic-L 19.8 0.530 0.10 0.24 0.47 0.21 0.92 1.23 0.20 0.87

HS-brightness N/A 0.759 0.21 0.89 1.13 0.42 0.93 0.70 0.18 1.61

Classic-C-brightness N/A 0.726 0.39 0.95 1.12 0.42 0.87 0.48 0.13 1.45

Classic-L-brightness N/A 0.603 0.17 0.64 0.84 0.32 0.90 0.48 0.13 1.34

HS [159] 35.1 0.872 0.22 0.61 1.01 0.78 1.26 1.43 0.16 1.51

BA (Classic-L) [159] 30.9 0.746 0.18 0.58 0.95 0.49 1.08 1.43 0.15 1.11

Adaptive [184] 11.5 0.401 0.09 0.23 0.54 0.18 0.88 0.50 0.14 0.65

Complementary OF [204] 10.1 0.485 0.10 0.20 0.35 0.19 0.87 1.46 0.11 0.60

Classic++ 13.4 0.406 0.09 0.23 0.43 0.20 0.87 0.47 0.17 0.79

Classic++Gradient 15.1 0.430 0.08 0.17 0.49 0.21 0.94 0.55 0.17 0.83

Classic+NL 6.6 0.319 0.08 0.22 0.29 0.15 0.64 0.52 0.16 0.49

Classic+NL-Full 6.8 0.316 0.08 0.24 0.28 0.15 0.63 0.49 0.16 0.50
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Table A.2. Models. Average angular error (AAE) on the Middlebury optical flow benchmark (test set). The ranking information was at the publication of our

conference paper [158] (June 2010); the average AAE ranks for Adaptive, Complementary OF, Classic++, and Classic+NL are 26.2, 27.2, 34.5, and 16.7

at the writing of the dissertation (July 2012).

Rank Average Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

HS 27.1 4.914 4.45 3.76 5.73 4.69 3.63 6.59 4.91 5.55

Classic-C 16.1 3.971 3.76 3.28 5.77 3.78 3.28 4.54 2.97 4.39

Classic-L 19.8 4.353 3.79 3.43 5.88 3.92 3.34 5.23 3.72 5.51

HS-brightness N/A 8.465 7.66 12.30 15.30 8.08 3.56 5.95 3.87 11.00

Classic-C-brightness N/A 7.938 8.79 13.40 14.80 7.23 3.29 4.10 2.57 9.32

Classic-L-brightness N/A 6.544 6.30 8.72 11.70 5.99 3.31 4.52 2.70 9.11

HS [159] 36.4 8.720 8.01 9.13 14.20 12.40 4.64 8.21 4.01 9.16

BA (Classic-L) [159] 31.8 7.165 6.81 8.77 13.00 8.29 4.18 6.19 3.63 6.45

Adaptive [184] 12.1 3.680 3.29 3.10 6.58 3.14 3.67 3.32 2.76 3.58

Complementary OF [204] 11.3 3.476 4.44 2.51 3.93 3.87 3.17 4.64 2.17 3.08

Classic++ 15.1 3.920 3.37 3.28 5.46 3.63 3.24 4.65 3.09 4.64

Classic++Gradient 14.8 3.981 3.10 2.42 5.93 3.90 3.28 4.38 3.22 5.62

Classic+NL 6.0 2.904 3.20 3.02 3.46 2.78 2.83 3.40 2.87 1.67

Classic+NL-Full 6.1 2.843 3.23 3.23 3.34 2.73 2.73 3.03 2.83 1.62
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Table A.3. Models and pre-processing. Average end-point error (EPE) on the Middlebury training set for the classical model and different penalty functions.

By default, the input sequences were preprocessed using ROF texture decomposition; “brightness” means no preprocessing is performed. The statistical significance

is tested using the Wilcoxon signed rank test between each method and the baseline (Classic-C).

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 signif. p-value

Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 — —

Classic-C-brightness 0.288 0.268 0.166 0.215 0.134 0.146 0.584 0.352 0.437 0 0.9453

HS 0.384 0.337 0.219 0.189 0.118 0.204 0.688 0.463 0.853 1 0.0078

HS-brightness 0.387 0.335 0.226 0.252 0.154 0.185 0.639 0.564 0.743 1 0.0078

Classic-L 0.319 0.294 0.193 0.175 0.095 0.166 0.648 0.374 0.604 1 0.0078

Classic-L-brightness 0.325 0.292 0.207 0.274 0.145 0.158 0.588 0.451 0.484 0 0.2969

Table A.4. Models and pre-processing. Average angular error (AAE) on the Middlebury training set for the classical model and different penalty functions.

By default, the input sequences were preprocessed using ROF texture decomposition; ‘brightness’ means no preprocessing is performed. The statistical significance

is tested using the Wilcoxon signed rank test between each method and the baseline (Classic-C).

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 signif. p-value

Classic-C 3.518 4.463 3.097 1.960 2.981 2.298 6.116 2.529 4.698 — —

Classic-C-brightness 3.580 4.059 3.270 2.449 4.321 2.127 5.683 2.684 4.049 0 1.0000

HS 4.660 5.486 4.562 2.209 3.801 2.850 6.776 4.078 7.519 1 0.0078

HS-brightness 4.782 5.513 4.621 2.892 4.977 2.581 6.156 4.859 6.658 1 0.0078

Classic-L 3.910 4.993 3.928 3.022 4.543 2.178 5.756 2.876 3.980 0 0.2500

Classic-L-brightness 3.874 4.635 4.181 3.323 4.502 2.221 5.709 2.970 3.452 0 0.3125
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Table A.5. Pre-Processing. Average end-point error (EPE) on the Middlebury training set for the baseline method (Classic-C) using different pre-processing

techniques. The regularization weight λ parameter was tuned for each method to achieve optimal performance. The statistical significance is tested using the

Wilcoxon signed rank test between each method and the baseline (Classic-C).

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 signif. p-value

Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 — —

Gradient 0.305 0.288 0.141 0.167 0.092 0.165 0.614 0.385 0.588 0 0.4609

Gaussian 0.281 0.268 0.146 0.226 0.141 0.137 0.582 0.335 0.413 0 0.5469

Gaussian + Dx + Dy 0.290 0.280 0.126 0.174 0.105 0.154 0.588 0.470 0.420 0 0.6406

Dx + Dy 0.301 0.286 0.122 0.166 0.099 0.161 0.616 0.443 0.518 0 1.0000

Sobel edge[172] 0.417 0.334 0.149 0.184 0.130 0.194 0.757 0.451 1.135 1 0.0156

Laplacian [92] 0.430 0.374 0.170 0.176 0.096 0.175 0.756 0.464 1.232 1 0.0078

Laplacian 1:1 0.301 0.296 0.179 0.193 0.109 0.157 0.606 0.349 0.520 0 0.6641

Texture 4:1 0.286 0.271 0.159 0.175 0.100 0.154 0.587 0.349 0.490 0 0.5312

Unnormalized texture 0.298 0.279 0.152 0.166 0.092 0.158 0.623 0.348 0.563 0 0.3750

Table A.6. Additional results for HS. Average end-point error (EPE) on the Middlebury training set. The statistical significance is tested using the Wilcoxon

signed rank test between each method and HS.

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 signif. p-value

HS 0.384 0.337 0.219 0.189 0.118 0.204 0.688 0.463 0.853 — —

HS-Down-0.95 0.386 0.333 0.220 0.189 0.117 0.200 0.651 0.522 0.856 0 0.8125

HS 20× MF 0.365 0.299 0.214 0.184 0.104 0.196 0.699 0.431 0.792 1 0.0469
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Table A.7. Model and Methods. Average end-point error (EPE) on the Middlebury training set for the baseline model (Classic-C) using different algorithm

and modeling choices. The statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic-C).

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 signif. p-value

Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 — —

3 warping steps 0.304 0.283 0.122 0.163 0.095 0.150 0.622 0.357 0.644 0 0.9688

Down-0.5 0.298 0.280 0.152 0.166 0.092 0.158 0.626 0.349 0.562 0 1.0000

Down-0.95 0.298 0.281 0.151 0.168 0.099 0.165 0.661 0.339 0.523 0 0.9375

w/o GNC 0.354 0.303 0.160 0.171 0.105 0.183 0.835 0.316 0.759 0 0.1094

Bilinear 0.302 0.284 0.144 0.167 0.099 0.160 0.637 0.363 0.563 0 0.1016

w/o TAVG 0.306 0.288 0.149 0.167 0.093 0.163 0.647 0.345 0.593 0 0.1562

Central 0.300 0.272 0.156 0.169 0.092 0.159 0.608 0.349 0.597 0 0.7266

7-point [38] 0.302 0.282 0.168 0.171 0.091 0.163 0.601 0.360 0.584 0 0.3125

Deriv-warp 0.297 0.283 0.153 0.165 0.092 0.159 0.636 0.333 0.552 0 0.9531

Bicubic-II 0.290 0.276 0.132 0.152 0.083 0.142 0.624 0.338 0.571 1 0.0391

Deriv-warp-II 0.287 0.264 0.155 0.152 0.085 0.145 0.616 0.333 0.546 1 0.0156

Warp-deriv-II 0.288 0.267 0.155 0.151 0.085 0.147 0.630 0.328 0.542 1 0.0391

C-L (λ = 0.6) 0.303 0.290 0.158 0.171 0.094 0.158 0.611 0.367 0.579 0 0.1562

L-C (λ = 2) 0.306 0.281 0.174 0.173 0.096 0.164 0.662 0.343 0.557 0 0.1562

GC-0.45 (λ = 3) 0.292 0.280 0.145 0.165 0.092 0.154 0.612 0.340 0.546 1 0.0156

GC-0.25 (λ = 0.7) 0.298 0.283 0.128 0.169 0.094 0.150 0.617 0.353 0.594 0 1.0000

MF 3 × 3 0.305 0.287 0.155 0.168 0.094 0.162 0.616 0.372 0.583 0 0.1016

MF 7 × 7 0.305 0.281 0.152 0.173 0.095 0.174 0.676 0.330 0.557 0 0.5625

2× MF 0.300 0.279 0.152 0.167 0.093 0.163 0.650 0.339 0.555 0 1.0000

5× MF 0.305 0.278 0.152 0.171 0.093 0.172 0.682 0.329 0.561 0 0.6875

w/o MF 0.352 0.307 0.168 0.199 0.113 0.217 0.705 0.423 0.684 1 0.0078

Classic++ 0.285 0.271 0.128 0.153 0.081 0.139 0.614 0.336 0.555 1 0.0078
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Table A.8. Average end-point error (EPE) on the Middlebury training set for the proposed new objective with the area term and alternating optimization

(Classic-C-A) and its improved models. The statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline

(Classic-C).

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 signif. p-value

Classic-C 0.298 0.281 0.152 0.165 0.093 0.158 0.627 0.348 0.562 — —

Classic-C-A 0.305 0.281 0.140 0.159 0.092 0.167 0.676 0.334 0.594 0 0.8125

Classic-C-A-noRep 0.309 0.279 0.139 0.161 0.093 0.157 0.653 0.370 0.619 0 0.5781

Classic-C-A-II 0.296 0.278 0.153 0.166 0.091 0.168 0.656 0.329 0.531 0 0.7188

Classic-C-A-CGD 0.305 0.281 0.148 0.161 0.093 0.159 0.697 0.344 0.560 0 0.5625

Table A.9. Average end-point error (EPE) on the Middlebury training set for the proposed new objective with the weighted area term and its variants. The

statistical significance is tested using the Wilcoxon signed rank test between each method and the baseline (Classic+NL).

Average Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3 signif. p-value

Classic+NL 0.221 0.238 0.131 0.152 0.073 0.103 0.468 0.220 0.384 — —

Classic+NL-Full 0.222 0.252 0.135 0.156 0.074 0.097 0.469 0.214 0.382 0 0.8203

Classic+NL-Fast 0.221 0.233 0.117 0.151 0.076 0.098 0.464 0.210 0.421 0 0.3125

RGB 0.240 0.243 0.131 0.155 0.081 0.109 0.501 0.236 0.468 1 0.0156

HSV 0.231 0.245 0.131 0.152 0.074 0.110 0.492 0.222 0.424 1 0.0312

LUV 0.226 0.241 0.131 0.149 0.074 0.104 0.460 0.223 0.427 0 0.5625

Gray 0.253 0.253 0.133 0.158 0.086 0.125 0.547 0.242 0.479 1 0.0078

w/o color 0.283 0.258 0.128 0.157 0.087 0.155 0.633 0.303 0.543 1 0.0156

w/o occ 0.226 0.243 0.131 0.152 0.073 0.103 0.488 0.230 0.386 0 0.1250

w/o spa 0.223 0.237 0.132 0.154 0.073 0.102 0.475 0.213 0.398 0 0.5625

σ2 = 5 0.221 0.240 0.131 0.151 0.073 0.104 0.466 0.208 0.392 0 1.0000

σ2 = 10 0.224 0.238 0.132 0.153 0.073 0.102 0.485 0.228 0.384 0 0.2500

λ = 1 0.236 0.245 0.151 0.164 0.080 0.120 0.430 0.243 0.459 0 0.1406

λ = 9 0.244 0.249 0.137 0.160 0.091 0.111 0.577 0.201 0.426 0 0.1016

11 × 11 0.223 0.240 0.131 0.151 0.074 0.103 0.451 0.234 0.397 0 0.5938

19 × 19 0.220 0.238 0.132 0.154 0.073 0.103 0.470 0.210 0.384 0 0.8750

1
0
6



APPENDIX B

Gradient Formulae for Chapter 5

We derive the gradient for each individual term. From these individual terms, it is easy to obtain

the gradient formula for the overall objective. Most of the derivations are straightforward and we

only elaborate where there are subtle points.

B.1. Gradients w. r. t. the Support Function

Temporal coherence term. We can write the temporal coherence term using matrix vector

multiplication form. Let Wtk be the bi-linear warping matrix according to the flow field (utk,vtk)

and gtk(:) be the vectorized support function in a column-major way.

Etime(gtk,gt+1,k) = ||gtk(:)−Wtkgt+1,k(:)||2. (64)

Using matrix derivative, we have

∇gtk
Etime(gtk,gt+1,k) = 2

(
gtk(:)−Wtkgt+1,k(:)

)
, (65)

∇gtk
Etime(gt−1,k,gtk) = 2WT

t−1,k

(
Wt−1,kgtk(:)− gt−1,k(:)

)
, (66)

where T means the matrix/vector transpose operator. Note that there is no need to construct the

matrices Wt−1,k and Wtk in the implementation. We only need to perform the bi-linear interpolation

operation and its transpose.

Data term. Similarly, the support function gtk appears in the data term at time t and t− 1.

What is subtle is that the support function of a front layer influences the data term of the layers

behind. We will first give the gradient of the soft layer assignment w. r. t. the support function, which

plays a major role of the later derivations. Recall that the soft layer assignment is

s̃ptk =


σ(λeg

p
tk)
∏k−1
k′=1 σ(−λegptk′), 1 ≤ k < K∏K−1

k′=1 σ(−λegptk′), k = K.
(67)

Using the property of the logistic function σ′(x) = σ(x)σ(−x), we can obtain the gradient of the

soft thresholding function (67) w. r. t. the support function as

∂s̃ptk
∂gptl

=


0, k < l

λes̃
p
tkσ(−λegptl), k = l

−λes̃ptkσ(λeg
p
tl), k > l.

(68)

Note that the k < l case means that the support function of a layer behind does not influence the

data term of the layers in front of it.
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Let Mtk be a diagonal matrix with the element at the pth row pth column being
∑
q∈Np

tk
ρd(I

p
t −

Iqt+1). We can rewrite the data term as

Edata(ut,vt,gt,gt+1) =

K∑
k=1

s̃Ttk(:)MtkWtks̃t+1,k(:) (69)

and the gradients of the data term w. r. t. to the support functions are

∇gtk
Edata(ut,vt,gt,gt+1) =

K∑
k=1

∇gtk
s̃Ttk(:)MtkWtks̃t+1,k(:) (70)

∇gtk
Edata(ut−1,vt−1,gt−1,gt) =

K∑
k=1

s̃Tt−1,k(:)Mt−1,kWt−1,k∇gtk
s̃tk(:), (71)

where ∇gtk
s̃tk(:) is a diagonal matrix because

∂s̃ptk
∂gqtk

= 0 for p 6= q.

Color-modulated spatial term. It is easy to obtain the gradient of Espace w. r. t. the support

function because of its quadratic form:

∂Espace(gtk)

∂gptk
=
∑
q∈Γp

2wpq (gptk − g
q
tk). (72)

B.2. Gradients w. r. t. the Horizontal Flow Field

Due to symmetry, we only give the gradient formulae for the horizontal flow field; the vertical

case is analogous.

Temporal coherence term. Using the chain rule, we obtain

∂Etime(gtk,gt+1,k,utk,vtk)

∂uptk
=
∑
q∈Γp

2
(
gqt+1,k − g

p
tk

)(∂gt+1,k

∂x

)q
. (73)

Data term. The data term is different from the standard data term for optical flow estimation

in that the warped soft layer assignment s̃t+1,k(i+ uptk, j + vptk) also depends on the flow field. As a

result

∂Edata(ut,vt,gt,gt+1)

∂uptk
=− ρ′d(I

p
t − Iqt+1)

(∂It+1

∂x

)q
s̃ptks̃

q
t+1,k

+
(
ρd(I

p
t − Iqt+1)− λd

)
s̃ptk

(
∂s̃t+1,k

∂x

)q
. (74)

Spatial prior term. Before each warping step, we estimate the affine flow field (ūθtk , v̄θtk) for

each layer. We fix utk and minimize Eaff(utk, θtk) w. r. t. the parameters θtk using iterated reweighted

least squares methods.

With the affine flow field fixed, we can obtain the gradient of the spatial term w. r. t. the flow

field as
∂Eaff(utk, θtk)

∂uptk
=
∑
q∈Γp

ρ′s

(
(uptk − ū

p
θtk

)− (uqtk − ū
q
θtk

)
)
. (75)

With these gradient formulae, it is straightforward to perform the incremental estimation for

the flow field [133].
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