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We propose a new paradigm for vision-based human motion capture. This paradigm extends the traditional

capture of poses by providing guarantees of physical plausibility for the motion reconstructions and mecha-

nisms for adaptation of the estimated motions to new environments. We achieve these benefits by estimating

control programs for simulated physics-based characters from (potentially monocular) images. The con-

trol programs encode motions implicitly, based on their “underlying physical principles” and reconstruct the

motions through simulation. Feedback within the control allows application of the principles in modified

environments, providing an ability to adapt the motion to external events and perturbations. We explore two

control models: trajectory-control and state-space control. We first consider a trajectory-tracking controller

model where the desired behavior of the character is encoded as a sequence of per-frame target poses tracked

by the controller. We can recover this sequence incrementally and produce pose estimates that do not suffer

from common artifacts such as excessive jitter, out-of-plane rotations or foot skate. However, the inference

process is prone to overfitting, and because the feedback in control is limited and the decision making process

rudimentary, the encoding prohibits effective motion adaptation. To address both these limitations, we then

explore a more compact model that is less sensitive to the quality of observations and that learns and exploits

the underlying structure of the motion for control. State-space controllers allow concise representation of

motion dynamics through a sparse set of target poses and control parameters, in essence allowing a key-

frame-like representation of the original motion. We represent state-space controllers using state machines

that discriminatively characterize the desired behavior of the character in terms of motion phases (states) and

physical events that cause the phases to switch (transitions, e.g., a foot contact). Parameters of the controller

parameterize the control programs that reproduce the individual phases in simulation. Because this control

representation is sparse, we are able to integrate information locally from multiple (tens of) image frames

in inference, inducing smoothness in the resulting motion, resolving some of the ambiguities that arise in

monocular video-based capture and enabling inference with weak likelihoods. By learning the structure of

the motion, we can automatically estimate controllers that reproduce the observed behaviors directly from

monocular video. By using the structure and the feedback for control, we can provide motion adaptations.

We demonstrate our approach by capturing sequences of walking, jumping, and gymnastics. We evaluate

our methods quantitatively and qualitatively and illustrate that we can produce motion interpretations that go

beyond state-of-the-art in pose tracking and are physically plausible.
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ters, where the parameters characterize the specific behavior to be generated, and implicitly

reconstruct the motion (right). The motion reconstruction is either directly produced by phys-

ical simulation of the character with the estimated model parameters in the model, or strongly

biased to the results of such a simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Physical Constraints. A motion of the person is naturally driven by physical laws and inter-

actions of the person’s body with environment. Our goal is to build a motion capture system

that can incorporate these physical constraints directly into inference in order to provide more

accurate and realistic motion interpretations. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Typical Environment and Character Model. On the left, we illustrate a typical model of

an environment consisting of only a ground plane. In the middle, we show articulation and

shape of the humanoid character model from Chapter 4. The character model is actuated by

actuation forces produced by motors at the joints in the articulation. Corresponding shape

representation of the character in an image projection is visualized on the right. . . . . . . . 14

1.5 Our Approach and Components within Physical Model. At a high level, we represent the

person as a simulated character actuated by forces. We optimize for the forces, parameterized

by the model parameters, such that the motion generated by the simulation from the initial

pose matches the video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Our Approach and Actuation Forces. In more detail, we decompose forces to external

forces due to environment and forces due to internal body actuation. Assuming we know the

environment, external forces can be directly computed. . . . . . . . . . . . . . . . . . . . . 15
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1.7 Our Approach and Controllers. We model internal body actuation using a parameterized

controller and optimize for the parameters of the control model such that the generated motion

matches the video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Controller. Illustration of a concept of controller. A controller g computes actuation forces

ut for the character such that a desired motion, encoded by Θ, is generated by physical dy-

namics within the physical model. The controller monitors the current state xt of the character

and the world and computes actuation forces ut such that the character is driven from the cur-

rent pose towards the next desired pose by the model, as determined by Θ. We realize control

as a sequence of actions a generated by a decision-making process π , where actions corre-

spond to simple control tasks. We perform actions using a motion control process f̂−1 in the

controller. The motion control process takes as an input the current action at and the state

xt of the model and outputs actuation forces ut that are appropriate for the current state such

that the action is performed using physical dynamics f . In selecting actions, we utilize con-

textual information that is specific to the decision-making process in the controller and that

incorporates information about contact of the character with the environment. We encode

this context in the state xt . Using the contact feedback, the controller can explicitly react

to external events that happen in the modeled world and that introduce discontinuity in the

generated motion, such as when the body support transfers from the left foot to the right foot.

The ability of the controller to react to external events is important for the generalization of

control to new environments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.9 Controller for Walking. On the left, a high-level abstract description of walking is illus-

trated. In this abstraction, walking is characterized as a sequence of walking cycles. Each

cycle is described as a progression of actions that the person needs to perform in order to

complete the cycle and to keep walking. On the right, the same abstract description is rewrit-

ten in the form of a finite state machine, where machine states encode actions and transitions

between the states describe how actions are switched. This particular state machine models

walking as a sequence of four abstract actions that switch based on time or contact events. . 18
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1.10 Simulation and Control Loop. Illustration of the generative model of character motion.

The motion of the character is produced from an initial state by taking iterations in the loop.

Each iteration advances the model state by physical time ∆t from the current frame to the

next by (1) selecting an action for the character to perform (decision-making), (2) generat-

ing actuation forces to perform this action (motion control) and (3) applying the actuation

forces to the character model to update the pose and retrieve contact information for the pose

(physical dynamics). Actions encode actuation “programs”, parameterized by a desired pose

that the character attempts to reach when the action is active and parameters used to set up

the control laws to do so, taking scene geometry into account. Actions are selected by the

decision-making process in the controller, considering the current pose of the character, con-

tact information, current controller state and controller parameters. The updated pose and the

corresponding contact information are looped back to the decision-making process to help

select the action for the next frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.11 Our Pipeline. Our pipeline takes as an input a monocular video of a person performing a mo-

tion (left) and estimates a controller for the activity. The controller that we estimate implicitly

captures the motion of the person through simulation; it generates the poses by computing

actuation forces for the body and integrating them over time. Consequently, the produced

motion meets our definition of physical plausibility from Section 1.4.1. Furthermore, be-

cause the forces result from reactions to various events, such as a change of foot contact (see

Section 1.4.3.1), the estimated control mechanisms can be applied to simulated characters

in new situations, as motivated in Section 1.3.2, such as when e.g., these events happen at

different time instants. For instance, we may modify the slope of the ground plane or modify

frictional properties of the plane and see what the motion produced by the controller would

look like in this new environment (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.12 Silhouette-based Measure of Motion Consistency. We project hypothesized 3D poses of

the model produced by the simulation through the camera to obtain hypothesized silhouettes

(in green). We measure the consistency of the motion produced by the simulation as the

amount of overlap (in yellow) between the hypothesized silhouettes (in green) and observed

silhouettes (in red) obtained by background subtraction. We use the measure as an objective

value for controller optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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1.13 Desired Motion at Different Levels of Abstraction. We illustrate a jump at two different

levels of abstraction. At a high level, a jump can be intuitively characterized as a sequence

of six motion phases: compression (1), pushing off the ground (2), ascending (3), descending

(4), loading (5) and unloading (6), visualized in (a). A particular jump instance can be charac-

terized as a sequence of desired poses (b). In order to reproduce the jump by a controller, the

low-level motion control process within the controller needs to compute actuation forces for

the character such that the character will track the desired poses in the sequence. Without an

understanding of the high-level structure of the motion, a trajectory tracking controller will

store the desired pose for every frame in the sequence and attempt to track this sequence as

closely as possible (see (c) and Chapter 4). Alternatively, the structure of the motion can be

represented in the controller and desired poses can be specified for only specific key frames

associated with the motion phases from (a) and replicated for the remaining frames in the

same phase. Here, motion phases correspond to actions in a state-space controller (see (d)

and Chapter 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 LCP Conditions. Visualization of complementarity conditions on the values of λi and Ci
a(λ )

due to different kinds of one dimensional constraints i, where Ci
a(λ ) = Ji,Xi · aXi(λ )+ Ji,Yi ·

aYi(λ )− ci = Ai · λ + bi. Thick lines indicate permissible values for the (λi,Ci
a(λ )) pairs.

As can be seen, the equality constraint (left) requests Ci
a(λ ) to be zero and allows λi to take

an arbitrary value. The inequality constraint (middle) requests both Ci
a(λ ) and λi to be non-

negative and complementary to each other such that Ci
a(λ ) · λi = 0. The bounded equality

constraint (right) generalizes the two previous cases by introducing explicit bounds λ lo
i ≤ 0

and λ hi
i ≥ 0 on the values of λi. Note that, we illustrate the situation for one-dimensional con-

straints with one constraint row. For constraints with multiple dimensions, each row produces

similar LCP conditions as illustrated in the diagram. . . . . . . . . . . . . . . . . . . . . . . 106

3.2 Parameterization of Actions. We parameterize actions uniformly using the vector (qd ,ϑ ,α,s),
where qd encodes the desired pose for the character that should be reached when the action is

active, α describes the speed with which the pose is approached and s characterizes the soft-

ness of the actuation constraints that do so. The vector ϑ encodes parameters of a balancing

strategy that dynamically adjusts qd such that the character does not fall and we discuss this

strategy in Chapter 5. Here, we illustrate actuation results when no active balancing strategy

is employed such that ϑ = /0. The first row in the figure shows a character in the current pose

q, a desired pose qd that is to be reached and the pose that the character assumes in 1 second

for a certain setting of α and s. The second row illustrates how the assumed poses change as

a function of either α (b) or s (c), when all other parameters of the action remain fixed. . . . 136

4.1 Incorporating Physics-based Dynamic Simulation With Joint Actuation and Dynamic
Interaction Into Particle Filtering. We represent the person as a simulated character. The

motion of the character is determined by general physical laws, actuation forces at joints (top)

and interaction of shape surfaces at contacts (bottom). . . . . . . . . . . . . . . . . . . . . . 140
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4.2 Kinematic Trackers And Our Trackers. Comparison of the general pipeline of standard

kinematic trackers (a) to our physics-based hybrid tracker (b) and our physically-plausible

tracker (c). Kinematic trackers (a) take an estimate of the pose from the current frame and

update it through the kinematic motion model to produce a prediction for the pose for the

next frame for the tracker. Because the kinematic motion model is not aware of physical

constraints, the predicted pose can violate physical constraints. Contrary, with our hybrid

method (b), implemented in Section 4.2.4.2, we take the prediction as a target for simulation

with a trajectory tracking controller, simulate the character towards the desired pose and out-

put the pose the simulation ends in as a corrected prediction. As such, our hybrid method

filters predictions from the kinematic motion model, making sure the predictions are physi-

cally plausible, such that the character can move from the current pose to the predicted pose.

However, because the hybrid method adds noise to the poses produced by the simulation, the

estimated pose sequence may not be physically plausible. Our physically plausible tracker

(c), implemented in Section 4.2.4.1, addresses this problem by adding noise only to the de-

sired poses, before the low-level motion control takes place. . . . . . . . . . . . . . . . . . 142

4.3 Motion Model: Simulation and Control Loop. Each iteration advances the model state

[q, q̇,υ ] by the time ∆t by (1) generating a desired kinematic pose qd for the character to

follow (decision-making process in the controller), (2) computing actuation forces needed to

approach the desired pose (low-level motion control process in the controller) and (3) apply-

ing actuation forces on the character to update the current dynamic pose (physical dynamics).

Contact feedback information e records significant impacts of the character with the environ-

ment and affects selection of the control policy for the next iteration. . . . . . . . . . . . . . 145

4.4 Body and Shape Model. 31 degree-of-freedom (DOF) character model with simulation

shapes of the parts (left), the joints and skeletal structure (middle) and the image shapes in an

image projection (right). Most joints have 3 DOFs, except for the knee and elbow joints (1

DOF), spine joint and the clavicle joints (2 DOFs) and the root joint (6 DOFs). . . . . . . . 147

4.5 Control Policies. Predictions made by the control loop from a given initial dynamic pose

(top and bottom left) for the time duration of 2 seconds. The top row shows poses generated

by control with the active motion policy, the bottom row shows the poses generated by the

passive policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.6 Locomotion. Comparisons of motions generated by a joint DOF tracking controller based

on Kokkevis et al.[87] (right) and our hybrid controller (left) when the controllers follow the

same trajectories specified by the motion capture data. Differences in simulated dynamics

from the captured dynamics result in impacts between the right foot and the ground plane

(see the middle frame of the zoomed bottom animation). The impacts prevent the joint DOF

tracking controller from performing the motion correctly, resulting in the undesired step back-

wards, making the character stay to the right of the camera view. Our hybrid controller on

the other hand (see the zoomed top animation) is more robust to such artifacts, allowing the

body to faithfully follow the desired motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 151
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4.7 Low-level Motion Control. The input kinematic pose q determines the positions z j of mark-

ers on the feet (1), the desired kinematic pose qd defines their desired positions z j
d (2). The

desired positions are adjusted to prevent penetration with the ground (3) and constraints on

the marker world space velocities ż j and relative joint DOF velocities q̇k are formed. Con-

straints are solved for desired velocities q̇d , to be followed by the character during simulation,

using inverse dynamics. The velocities are followed by applying actuation forces Factuation,

computed by another inverse dynamics pass. . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.8 Image Likelihood. The coupled observation yt , consisting of two consecutive frames It

(upper left) and It+1 (lower left), explains the dynamic pose [qt , q̇t ] well (see Equation (4.15))

if silhouettes at the frame t fit the kinematic pose qt (red pose) and silhouettes at the frame

t +1 fit the kinematic pose q̂t+1 (green pose), where q̂t+1 = qt +∆t · q̇t is predicted from the

kinematic pose qt and the velocities q̇t using the constant velocity model. For the definition

of At , Bt and Ct see Equation (4.12), Equation (4.13) and Equation (4.11) respectively. . . . 156

4.9 Raw Simulation Results (Image Projections, Multi-view L1 Walking). Illustration of

motion reconstruction results on the multi-view L1 walking sequence obtained with our two

physics-based motion estimation methods. The odd rows (white character) show a motion

reconstruction using raw physical simulation. The method produces a physically plausible

motion interpretation that does not feature artifacts, but fails to fit images accurately due to

the high-dimensionality of the optimization space and the parameterization of desired motion.

Results produced by the hybrid physics-based method are visualized in the even rows (red

character). The hybrid method can achieve a better fit to the observations (by e.g., translating

the torso in a non-physical way), but can not guarantee the estimated pose sequence can be

simulated by the physical model. As such, it may include artifacts. In both cases, we use

an extended body model with extra parts for the feet so that the character can properly push

off the ground while walking, as required by the first method that produces raw simulation

results. See text in Section 4.2.4 for additional information on the two methods. . . . . . . . 157

4.10 Raw Simulation Results (Pose Renderings from A Different View, Multi-view L1 Walk-
ing). Visualization of motion reconstruction results on the multi-view L1 walking sequence

obtained with our physics-based motion estimation methods, rendered from a view not used

for the estimation. Motion of the white character was produced using raw physical simula-

tion. Motion of the red character was reconstructed using the hybrid physics-based method.

In both the cases, we used an extended body model with extra parts to represent feet. See text

in Section 4.2.4 for additional information on the methods. . . . . . . . . . . . . . . . . . . 159

4.11 Raw Simulation Results (Tracking Errors, Multi-view L1 Walking). Pose reconstruction

errors for results on the multi-view L1 walking sequence obtained with our physics-based

motion estimation methods and an extended body model with extra parts to represent feet.

See text in Section 4.2.4 for additional information on the methods. . . . . . . . . . . . . . 160
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4.12 Tracking Errors For Different Noise Distributions (Multi-view L1 Walking). Effects of

different ratios of noise added to desired poses vs to predicted poses on tracking errors. All

cases produce similar tracking results, except for the case 100 % - 0 %, when all noise is

added only to the desired poses and the tracker can not fix global translation errors until the

end of the stride. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.13 Prediction Error. Errors in predictions (0.5 seconds ahead) are analyzed as a function of
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foot pushes on the ground, light orange – change in the direction of the arm swing. . . . . . 164

4.14 Average Prediction Error. Illustrated, on the right, is the quantitative evaluation of the 5

different dynamical priors for human motion: smooth prior (No Prediction), motion capture

based prior without physics (Motion Capture), constant velocity prior and (separately) the

active and passive physics-based priors implemented here. On the left, the performance in

the presence of noise added to the initial ground truth poses is explored. For completeness,

top row shows the relative error and the bottom illustrates absolute error measure. See text
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4.15 Quantitative Tracking Performance. Illustration of the performance of the proposed physics-

based prior method (Physics) with different testing and training datasets versus standard Par-

ticle Filter (PF) and Annealed Particle Filter (APF 5) with 5 layers of annealing. Multi-view
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4.16 Monocular Tracking (Walking). Visualization of performance on a monocular walking se-
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the Annealed Particle Filter (APF 5) with the smooth and kinematic motion capture prior; in
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with the direction of motion. APF, on the other hand, produces poses that tend to drift along

the ground plane and face in an opposite direction (APF 5 Mocap). For quantitative evaluation

see Figure 4.15 (top right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
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4.18 Monocular Tracking (Jump). We illustrate an ability of the proposed model to generalize to
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5.7 Incremental Optimization. Illustration of the incremental construction of the state chain.

At the first stage, an initial controller consisting of a single state is defined. Parameters of this

controller are optimized to explain the initial optimization window at the first stage with the

first Ts frames of the input sequence. At all later stages, the optimization window is expanded

by Ts frames, local changes are proposed to the structure of the current controller and param-
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Chapter 1

Introduction

Motion capture is a popular approach for creating natural-looking human characters. Traditionally, the data is

captured using optical marker-based systems. However, such systems require instrumentation and calibration

of the environment and the actor. One way to mitigate this limitation is to perform motion capture from video

of an unmarked subject. This approach is particularly appealing for monocular video, which potentially al-

lows motion capture from legacy footage. We address this problem by estimating controllers that are capable

of simulating the observed human behavior.

We take as an input a sequence of images from one or more camera views that depict the motion of

the person and a coarse initial 3D pose of the person in the first image. We then capture a 3D full-body

character model from the images in the video and animate this model such that the motion that was observed is

reproduced in the animation. We produce this motion using simulation and control, where control represents

a “program” for internal actuation of the body and represents the motion implicitly, based on the “underlying

principles of the motion”. These principles reconstruct the motion but can also be directly applied to new

characters in new environments in order to obtain adaptations to these situations. We focus on the estimation

of human motion, in part, because of its potential for promising applications in robotics, gaming and computer

graphics. For example, in gaming, currently, human motion perceived through the use of Microsoft Kinect

sensor has been used to drive characters in virtual environments. Our goal is to provide a similar level of

perception by only using images from a standard color camera and by exploiting physical constraints to

regularize results.

We explore computer vision techniques, where visual information in the form of images is the only

direct source of information available to the system. This modeling choice allows for the most generic form

of motion capture, as it potentially does not impose any requirements on the scene and the appearance of

the person, but it introduces new challenges. In our work, we address these challenges by using physical

constraints, knowledge of the scene and implicit representations of motion through control. Specifically,

we use these tools to constrain potential motion interpretations to only those that are physically plausible in

the given environment, such that they can be realized by a human without falling. We demonstrate that by

utilizing these constraints, we can generate motion estimates that do not exhibit non-physical artifacts such as

foot skate and we can do so even when only information from a single camera view is available. We formally

1
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qualify our problem in the following problem statement.

1.1 Problem Statement

We focus on the problem of estimating a physically plausible three-dimensional motion of a single

articulated human subject from a calibrated monocular or multiocular video. We are interested in

recovering the 3D kinematic pose of the subject in every frame of the sequence, assuming the pose

at the initial frame is known, such that

1. the resulting skeletal motion is representative of the motion observed in the images (subject is

tracked, see part (a) in Figure 1.1) and

2. the recovered 3D pose trajectories do not violate physical laws imposed by the environment

and the body model (recovered motion is physically plausible, see part (b) in Figure 1.1).

Our main focus is addressing physical plausibility in the recovered motions. Our approach consists of

a physical model of the person and an inference mechanism. We assume the physical model can generate

the motion of the person observed in the video by simulating a virtual character representation of the person

from a given initial pose, and we seek parameters of this model such that the observed motion is reproduced

in simulation (see Figure 1.2).

1.2 Motion Capture: State-of-the-art

In order to motivate goals for our work, we provide a brief overview of the current state-of-the-art in motion

capture. In doing so, we first discuss current applications for general motion capture as well as available

methods that make these applications possible.

1.2.1 Applications

Current Applications. General estimation of human motion as a sequence of 3D poses over time (hu-

man motion capture) is important for many current and future applications in computer graphics, robotics,

medicine and surveillance. Perhaps the most prominent use for human motion capture is production of real-

istic high-quality content for virtual reality environments, including video games and animated movies. Such

content is most often produced through the use of a special motion capture equipment (e.g., optical marker-

based motion capture) that lets the computer “see” and accurately record the 3D skeletal motion of an actor in

a motion capture laboratory or a studio. The captured motion is then applied to an animated character in the

virtual environment to produce animations. This technique is particularly appealing because it (1) eliminates

much of the labor associated with manually producing realistic animations and (2) the recorded performance
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Figure 1.1: Physically Plausible Motion Estimation. We are interested in recovering the 3D kinematic pose
of the person in every frame of the sequence such that (a) the resulting skeletal motion is representative of
the motion observed from the view used for estimation, and (b) the recovered 3D poses trajectories do not
violate physical laws and do not exhibit non-physical artifacts such as a lack of balance or foot skate, even
when viewed from different angles.

captures the subtleties of the motion and ensures physical realism. When combined with methods for hu-

manoid control in robotics, the recorded motion can be applied to humanoid robots in order to make them

imitate the captured behaviors. In sports and medicine, the captured 3D pose sequences have been used to

analyze the performance of professional athletes during practice or competition, to analyze body mechanics,

or for studying diseases of the human musculoskeletal system.

Current Methods. The success of these applications heavily depends on the ability of the motion capture
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Figure 1.2: Our Approach at a Glance. We aim to estimate parameters of a physical model that generates the
motion of the person observed in the input video. Given the input video (left) and an initial pose of the person
(middle top), we seek parameters of the physical model (middle) such that the observed motion is reproduced
by the model. The physical model animates a virtual character representative of the person from the initial
pose using the model parameters, where the parameters characterize the specific behavior to be generated, and
implicitly reconstruct the motion (right). The motion reconstruction is either directly produced by physical
simulation of the character with the estimated model parameters in the model, or strongly biased to the results
of such a simulation.

systems to record the observed human motion accurately and without non-physical artifacts. Meeting such

demands is difficult in practice. The current methods attempt motion capture either from images or by relying

on special equipment and manual labor. Vision-based techniques are challenged with perception ambiguities

and noise, producing motion interpretations with feet sliding on the floor and not supporting the body prop-

erly. Commercial systems, on the other hand, make use of special equipment (e.g., markers) to simplify the

perception of the motion. Better perception simplifies motion estimation, improves the estimation accuracy

and reduces violation of physical laws, but does not remove the violations completely. Our goal with our

work is to address these shortcomings.

1.2.2 Vision-based Motion Capture

Multiple Views. Vision-based motion capture systems estimate motion of people by only analyzing pixels

in images. This general approach is particularly appealing for applications because it can aid in capturing

motions outside the motion capture studio and the approach does not require any use of special equipment,

nor cooperation of subjects. Because images from plain cameras can be used as an input, one can use such

systems to capture motion sequences in environments where the use of instrumentation (e.g., markers) or

other devices is not possible or would be difficult, as in jumping from a diving board. As such, vision-based

motion capture is the least invasive and most general method for motion capture. It can also be applied to

tracking other living beings besides humans, including wild animals in the nature.

With that said, the success of these systems is prone to perception ambiguities and the ability of the

systems to model pixel-wise appearance of people in images effectively such that the pose of the person

can be “seen” in the image. Modeling the changes in appearance between frames is difficult, because pixel

values change drastically with the viewpoint and the pose of the person. Background clutter, ambiguities due
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to camera projection and occlusion due to clothing make the estimation even more difficult. Consequently,

to reduce the ambiguities and provide more constraints for the estimation, vision-based motion capture has

typically been done from multiple camera views [25, 46, 57, 110, 189, 172], although approaches for a single

camera view have become available as well.

Single View. Estimation from a single camera view is more interesting, as it allows for more general appli-

cations. Single-view systems could potentially estimate motion from any existing video footage, such as a

personal video taken by a cellphone camera or an old movie that can not be easily reproduced. For example,

we may think of using such a system to reconstruct a motion of Charlie Chaplin in a movie clip downloaded

from the Internet and use the 3D reconstruction to provide new experiences. For example, the estimated

motion can be re-rendered from a different angle or a moving camera, to see how the scene would look like

if it was originally shot this way. On the other hand, the lack of multiple views makes motion estimation

ill-conditioned such that it is not always possible to tell which part of the body is closer to the camera. These

ambiguities can not be resolved in inference without making use of prior knowledge and assumptions.

In order to address these challenges, strong motion priors [183, 22, 106, 158, 48, 177] have been employed

to regularize estimation results. Despite many successes, the methods often produce impossible sequences

that violate physical laws. More recently, it has been demonstrated that physics-based models and physical

dynamics may provide an appropriate paradigm for addressing these shortcomings. With that said, the use of

physical models in computer vision has been limited to only a few instances [118, 205, 26] and none of these

methods was able to guarantee to produce motion interpretations that satisfy the laws exactly.

1.2.3 Commercial Motion Capture Solutions

Commercial motion capture systems rely on richer sources of information than monocular images in order to

simplify the motion estimation task. Such simplifications facilitate better perception of the motion and include

the use of multiple camera views, instrumentation of subjects and the environment with special sensors and

other equipment, and having the person wear tight-fitting clothes. Despite the impressive performance, these

systems still produce pose sequences that may not be physically plausible.

Markers. State-of-the-art optical marker-based motion capture systems (e.g., Vicon) recover human motion

by tracking retroreflective markers physically attached to the body of the person. Motion capture is realized

by using an array of calibrated infrared cameras that observe the scene and perceive the markers, and a

computer system that reconstructs 3D poses of the person from the 2D trajectories of the markers. Such

marker-based systems are known to produce high quality pose estimates in real time and have enabled many

current applications in computer graphics and movies. However, they are inherently limited to capturing

cooperative subjects wearing motion capture suits in laboratory environments, and capturing sessions require

thorough planning and setup.

Depth Maps. More recently, motion capture systems that use depth information as an alternative (e.g., Mi-

crosoft Kinect) have been proposed. Depth-based motion capture systems use sensors capable of measuring

pixel distances from the camera and are not restricted to work in controlled environments. Direct depth

information allows the efficient segmentation of the person from the background and resolves pose depth
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ambiguities during pose inference. These motion capture approaches facilitate pose estimation from a sin-

gle camera view, but the operational range of sensors is somewhat limited and prohibits tracking motions

involving significant interactions of the person with the environment or outdoors.

1.3 Beyond Motion Capture: Thesis Goals

The previous research methods and commercial solutions for motion capture produce motion interpretations

that may violate physical laws. Furthermore, the goal of those methods is only reconstruction of kinematic

poses in the sequence. Our effort contrasts this goal and pursues a new formulation for motion capture that

goes beyond pose estimation.

Our goal is to improve motion capture by providing a guarantee of physical plausibility for the motion

reconstructions and mechanisms for motion adaptation to new environments. We aim to achieve this goal

by using abstract motion representations that can be estimated directly from monocular video observations,

although our formulation should also be applicable to other input modalities, such as markers. This formu-

lation can improve applications from Section 1.2.1 by providing more physically plausible interpretations

for the observed motions as well as can enable new applications beyond traditional motion capture (see Sec-

tion 1.3.2). We further clarify and provide motivations for our goals below:

1. Monocular Observations.

Our formulation should permit vision-based marker-less motion capture from a single camera view so

that the capture can be realized in unrestricted environments (see Section 1.2.2).

2. Physical Plausibility.

Our formulation should directly incorporate physical constraints in order to make estimation from the

single view easier and to produce motion reconstructions that are physically plausible. Specifically, the

poses in the reconstructed sequence should not violate physical laws and constraints imposed by the

model of the body and the environment so that non-physical artifacts are eliminated from the motion

interpretations (see Section 1.3.1).

3. Adaptability to New Environments.

Our formulation should represent captured motions using higher-level abstractions such that the mo-

tions could be directly adapted to simulated characters in new situations. Towards that end, we propose

to represent motions using “physical principles” that generated them in physical simulation (see Sec-

tion 1.3.2).

1.3.1 Why Physical Constraints and Physical Plausibility?

Physical Models, Physical Constraints to Regularize Results. Accomplishing motion capture with a single

camera and without the aid of instrumentation is difficult. The information about markers and/or pixel depths

is not available and the motion of the person can only be perceived from indirect monocular measurements
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Figure 1.3: Physical Constraints. A motion of the person is naturally driven by physical laws and in-
teractions of the person’s body with environment. Our goal is to build a motion capture system that can
incorporate these physical constraints directly into inference in order to provide more accurate and realistic
motion interpretations.

(e.g., silhouettes) which are inherently inaccurate and ambiguous. Our aim is to alleviate such ambiguities

and to make motion estimation from a single camera view tractable by utilizing physical models of human

motion, physical cues in the image observations and physical constraints defined by the character model and

the environment. In doing so, we leverage recent advances in computer graphics, animation and robotics,

where physical models have been shown to be effective in modeling physically plausible human dynamics

through simulation.

Physical models represent human motion by modeling physical laws, constraints and underlying causes

that make the body move and implicitly produce motions that are consistent with such laws. Synthesis of

human motion through dynamical simulation in the physical model exploits the fact that human motion is

naturally driven by the physical laws, gravity and interactions of the human body with the environment (see

Figure 1.3). Simulation explicitly models these aspects in the synthesis process and produces realistic and

smooth motions that respond to the mass and inertia of the person, friction, body contact, balance and physical

disturbances, among others. Our goal is to demonstrate a motion capture system that can computationally

account for these aspects during pose inference in order to regularize the estimation results, to determine

which of the possible 3D motion interpretations, consistent with the image observations, are more reasonable,

and favor them during the inference. In doing so, we use physics as the most generic prior for the motion of

the person that is independent of the performed activity.

Physical Constraints to Produce Physically Plausible Reconstructions. Besides making the estimation

easier, we demonstrate in our work that the physical models and physical constraints can accomplish the

second core goal in our motion estimation problem formulation: consistency of motion interpretations with
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physical laws. The techniques that we propose can estimate not only poses representative of the images, but

they can also ensure that the generated motions are coherent and physically plausible as a whole, such that

they do not violate physical laws and physical constraints imposed on the body by the environment. In doing

so, the produced motion interpretations implicitly honor the following constraints:

• Kinematic constraints that prescribe how body parts should be located with respect to the environment,

or to other parts, so as to not cause penetration and to not violate joint angle limits. For example, feet

can be automatically constrained to stay on or above the ground.

• Dynamical constraints that enable dynamically plausible interactions of the body with the environment.

For example, the body can be automatically constrained to remain dynamically balanced such that the

feet are in contact with the ground and support walking. When performing a handstand, the same

constraints can request that the body is supported by the hands. These constraints are implicitly honored

during simulation; if they were to be violated, the character would either fall or not locomote properly,

resulting in a motion that does not match image observations.

Existing Methods, Physical Plausibility and Artifacts. Existing motion capture efforts focus only on the

pose estimation part of the problem, developing search methods and models for human motion that allow

for efficient pose inference alone and that ignore consistency with physical laws. Physical plausibility is

addressed only indirectly, by focusing on improving estimation accuracy.

The existing methods often utilize statistical models of human motion, where physical dynamics of the

human body and physical laws are encoded indirectly using statistical relations. These models are designed

with the aim of supporting tractable pose inference and encouraging temporal coherence of the recovered

poses, but they are unable to honor physical laws. As such, these models are effective for tracking specific

classes of low-energy motions, such as walking on level terrain or jogging, where exact enforcement of phys-

ical laws is not critical and their effects can be approximated well using statistics. However, such models

have difficulty tracking motions that are largely determined by interactions of the person with the environ-

ment, such as jumping off a ledge. In addition, because consistency with physical laws is not guaranteed by

such models, physical realism and plausibility of the recovered motions as poses over time remains mostly

unaddressed.

As a result, many existing methods for motion estimation produce pose sequences that can not be per-

formed by a human without sliding, falling or having to fly. Such violations of physical laws in the recon-

structions are demonstrated in the form of visually distinct and physically implausible artifacts that include

foot skate, levitation, out-of-plane rotations, lack of balance and excessive jitter. We hypothesize these arti-

facts can be attributed to the poor approximation of the true dynamics of the human body and the environment

in the employed models and the use of search methods for motion inference that are unable to honor physical

laws.

When contrasted with physical models, statistical models provide a less fundamental representation of

the motion that only encodes the effects of the causes for the motion, but not the causes themselves. We argue

that by using physical models that represent the causes, together with appropriate search mechanisms, it is
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possible to improve the quality of tracking, resolve ambiguities that are present in observations and produce

pose estimates that honor physical laws, thus address physical plausibility in the motion estimation problem.

Discussion. Our use of physical models is motivated by the ultimate desire to recover physically plausible 3D

pose trajectories that could eventually match the quality of the estimates produced by the previous solutions

while imposing simpler restrictions on the actors and environment during capture. By using physical models

in the context of computer vision, we hope to arrive at a new class of models that are capable of addressing

physical plausibility as well as enabling tracking of more complex dynamical motions. While we apply our

methods to the problem of estimating 3D motion of a person from video, our approach is not limited to image

observations. We can use similar physical constraints and models to smooth results from e.g., marker-based

motion capture. Furthermore, the benefits of using physical models are not restricted to the motion capture

formulation that we propose in our work. Such models can also be used to produce physically plausible

motion predictions for previous pose tracking methods, as discussed in Chapter 4. We claim such predictions

alone improve the quality of recovered poses and help estimate motions that do not suffer from common

artifacts such as excessive jitter, out-of-plane rotations or foot skate.

1.3.2 Why Motion Representation by Physical Principles?

Physical Principles. We aim to exploit physical models and model parameterizations that encode motions

based on the “physical principles” that produce them in simulations. For example, the parameters of our

model may capture how the observed motion segments into simpler actions, how these actions can be re-

produced through simulation and how the actions can be sequenced into valid motions (see Figure 1.9).

These motion representations provide a higher-level understanding of the motion and implicitly produce not

only motion reconstructions for characters in the original environments but can also be applied to simulated

characters in novel situations. This technique can be used to synthesize new similar motions in response to

perturbations of the environment or morphology of the person. As such, the representations allow us to go

beyond video inputs and kinematic pose capture and allow to ask “what if” questions.

Reconstruction in Original Environment. First, by applying the principles to a character in the original

environment, the understanding of the physical process implicitly enables reproduction of the observed mo-

tion in simulation. Using our approach, and in contrast to the previous motion capture formulations, our

method can generate motion reconstructions that obey physical laws set by the simulated physical model, as

discussed in Section 1.3.1. Because the encoding of the desired motion by the principles is compact, it can be

estimated from video effectively. Furthermore, the actual recovered poses do not have to be stored explicitly

and can be always reconstructed by simulation.

New Environments. Second, the understanding of the underlying physical process also allows the environ-

ment in which the recorded activity takes place to be changed. By applying the principles to a character in

a modified environment, new similar motions compliant with the new environment can be produced. For

example, walking on level ground could be captured using our approach as a progression of four actions that

the simulated character needs to imitate in order to walk (see Figure 1.9): the character needs to push off the
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ground with the right foot first, then it needs to swing the right foot forward, wait until the right foot hits the

ground, then push off the ground with the left foot, wait until the left foot hits the ground and repeat. Using

these concepts, we can characterize the entire process of walking in terms of the pattern for the foot-ground

contact and the maneuvers that produce this pattern. This high-level description of walking is universal over

walking styles and executions in different environments. Consequently, if the environment changes, and the

character is supposed to walk down a slope instead, the high-level description of the motion can still be

directly applied on a simulated character in this new environment and a new motion produced.

New Applications Beyond Current Motion Capture. For a large number of applications, estimation of

raw motion as poses over time may not be the final goal and the captured sequences may need be further

processed as a next step.

For example, with traditional kinematic motion capture, recovered 3D poses need be further edited before

they can be applied on a character in a movie or in a video game. This editing may include matching the

dynamics of the recorded actor to the dynamics of the new character, eliminating foot skate or adjusting the

estimated motion to dynamic changes in the environment. We hypothesize some of the required adjustments

may emerge automatically by reusing the estimated principles. These automatic adjustments would be partic-

ularly appealing for online applications, such as video games, where manual editing of poses is not feasible.

For example, we envision the proposed form of motion capture could be used as an input device for a video

game, where characters within the game would directly imitate motions of players recorded by the motion

capture system. The recorded motions could be either applied directly on the characters in the game or, alter-

natively, they could be used to build an offline library of motion skills that the characters would exploit while

navigating the game environment.

These aspects of motion editing currently fall outside the scope of computer vision and motion capture

techniques. The overarching goal of this research is to estimate physical models of the character from video

that are capable of performing the desired motion(s). We aim to learn the underlying physical principles that

produced the motion in the video and encode the desired motion for the model using the principles. The

proposed method and illustrated results are a step towards this ambitious goal that, we hope, will serve as a

stepping stone for future research. We view this form of capture of the principles, in addition to the pose, as

a next step in the evolution of motion capture.

1.4 Thesis Statement

The core objective of this thesis is to demonstrate that it is technically feasible to realize marker-less motion

capture from a single camera view, as defined in our problem statement in Section 1.1 and with the properties

motivated in Section 1.3. According to these motivations, we achieve this objective by trying to learn the

underlying physical principles that produced the motion in the video. We illustrate that such an approach is

enabled by the use of physical models of human motion and methods for humanoid control and we summarize

this finding in the following thesis statement:
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Physical models of human dynamics and methods for humanoid control can be used to estimate phys-

ically plausible human motions from image sequences, where physically plausible refers to motion

reconstructions produced by physical simulations of a character model from an initial pose.

We explain the terms in the thesis statement next. As discussed in Section 1.1, to estimate a motion from

image sequences means to estimate a full-body 3D pose of the person in every frame of the sequence such

that the pose fits what is seen in the particular frame. The key aspect of our effort is that we want the estimated

pose sequence to not only match the images, as is common for other motion capture systems, but we also

want the sequence to be physically plausible. We discuss the concept of physical plausibility in the following

section.

1.4.1 Physical Plausibility

We first explain what it means for a pose sequence (motion) to be physically plausible. We then discuss

how physically plausible sequences can be synthesized using physical models and how it can be determined

whether a given sequence is physically plausible. Finally, we discuss the consequences of our definition and

implications on tractability of inference of physically plausible motions.

Overview of Physical Models, Physical Dynamics. We assume that the motion of the person can be gen-

erated by a physical model of human dynamics. Physical models produce the motion by approximating

physical dynamics of the human body and actuation of the body. The physical dynamics component within

the physical model produces the motion through the application and integration of forces, where the forces

result from internal actuation of the body and general physical laws that account for the response to factors

external to the body, including contact between the person and the environment, and gravity. We assume

that the effects of the external factors are automatically incorporated in the modeled dynamics, such that it is

possible to parameterize motions only in terms of the body actuation. We outline physical laws and models

for the actuation of the body in Section 1.4.2 and Section 1.4.3, and discuss them later in depth in Chapter 3.

Physical Plausibility. Assuming a physical model is given, we have a definition for physical dynamics that

evolves poses between frames and a definition for actuation forces that control the evolution. We then say a

motion is physically plausible with respect to the dynamics, if the poses in the motion can be generated by the

physical dynamics from an initial pose by applying actuation forces. Because we model physical dynamics

on a computer, the modeled dynamics is discretized and approximated using a simulator. Consequently, in

practical terms, physical plausibility means that the pose sequence can be synthesized by physical simulation

of the character model within the physical model, where the behavior of the simulation is determined by the

actuation forces. We restate this definition in equations below.

We abstract physical dynamics within a physical model as a state dynamics function f : [xt ,u]→ xt+1 that

updates the state xt of the physical model from the frame t to the next frame t + 1 in response to controls

ut . Here, xt encodes the state of the physical model (world) at the frame t, where the encoding of the state

includes a representation of the pose of the character, and ut represents actuation forces for the character for

the frame. The actuation forces can be either automatically generated by an actuation mechanism with the
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physical model, or otherwise. Because external factors are incorporated in the dynamics, we characterize the

state dynamics as

xt+1 = f (xt ,ut). (1.1)

Given the initial state x1 of the world, including the pose of the character, and the actuation forces u1:T−1 for

all frames, where 1 is the first frame in the sequence and T is the last frame, we can apply Equation (1.1)

recursively for the individual frames t = 1, . . . ,T − 1 to compute the sequence of states x1:T and the corre-

sponding poses that result from the forces u1:T−1. On the other hand, given the poses, we can attempt to solve

for the actuation forces that reproduce the sequence using the physical dynamics.

For a given model of physical dynamics expressed as a function xt+1 = f (xt ,ut), a pose sequence

from x1:T is considered physically plausible if there exists a sequence of actuation forces u1:T that

produces this pose sequence from a given initial state x1.

Note that actuation forces are specific to the physical dynamics. For the purposes of this work, we employ a

humanoid character model from Section 1.4.3.3 where actuation forces are defined as joint torques, and refer

to physical plausibility with respect to this model.

Discussion. The definition of physical plausibility is consistent with our earlier motivations on physical

plausibility, which required poses in the sequence to follow general physical laws and physical constraints

defined by the body and the environment. To explain this consistency, consider a sequence generated by

the physical dynamics. Such a sequence implicitly obeys physical laws and constraints encoded by the

dynamics. On the other hand, if a pose sequence follows physical laws and constraints that can be expressed

in the dynamics, then there must exist actuation forces to act on the body that would reproduce that sequence

in the model. Because physically plausible motions are, according to our definition, exactly those sequences

that are raw results of physical simulations within the model of physical dynamics, the amount of jitter, foot

slippage and ground plane penetration that they can contain depends only on the allowances of the simulator:

the motion can only get as jittery as the internal actuation of the body permits, the feet can only slip as much

as the ground contact properties allow and so on. Other artifacts are simply filtered out by the definition,

because they can not be reproduced by the physical dynamics.

Our definition of physical plausibility is always specific to a particular model of physical dynamics. As

such, reasoning about physical plausibility of motions can only be done with respect to a particular model.

For example, when using a model that abstracts dynamics of a character with strong “muscles”, a given

motion can be seen as plausible. However when the same motion is evaluated with respect to a model with

weaker muscles, or a model with more detailed skeletal structure and a more faithful body actuation system,

the motion may look overpowered and not plausible: the character would not be able to perform the motion

the same way while staying balanced due to differences in the abstraction of the body and actuation. Note that

motions synthesized by a given model of physical dynamics are by definition always plausible with respect

to that model.

Note that physically plausible motion reconstructions do not need to provide the most accurate fit to the
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image observations. For many applications, it is more important to estimate motions that are smooth, human-

like and that capture the essence of the observed behavior rather than the ones that fit the images the best, but

also feature implausible artifacts. At the same time, physically plausible motions do not have to be physically

realistic. Physically realistic motions are physically plausible motions produced by accurate models of hu-

man dynamics that use detailed skeleton models actuated by true muscle forces. The level of physical realism

of the motions produced by a particular model depends on the accuracy of the model in approximating the

true human body dynamics. In this work, we settle with a rigid body dynamics approximation of human dy-

namics commonly used in computer graphics and animation. We use models that are specifically designed to

be approximations to the true body geometry and actuation of the body that is complex enough to model key

physical interactions, yet simple enough to facilitate motion inference from weak image observations. Our

models provide higher-fidelity modeling of human motion, but less realism than physically accurate muscu-

loskeletal models from biomechanics that have thousands of degrees of freedom and require rich sensor data

for simulation.

1.4.2 Physical Models of Human Dynamics

In order to produce physically plausible motions, we need a physical model of human dynamics that approx-

imates true physical dynamics of the observed person and models the actuation of the body.

Overview. The goal of physical models of human dynamics is to model human motion by simulating under-

lying physical processes that cause the human body to move. We aim to exploit these processes for motion

estimation and use physical models to reproduce the motion of the person in the video. We first describe

general aspects that need be abstracted in any physical model of human motion.

Motion of the Human Body. A particular physical model approximates the human body itself as well as

the physical processes that drive and produce the motion of the body. For the purposes of motion synthesis,

we can think of the real human body as consisting of multiple interacting parts supported by a rigid skeleton.

Motion of the body is driven by forces applied on the skeleton, resulting in change of the pose of the body.

Forces are applied by the surrounding environment (e.g., on contact) and muscles within the body, as a result

of internal muscle activation. Muscles are activated either involuntarily, by reflexes, or voluntarily by a

thought process and an active musculoskeletal control such that a desired motion, behavior or a high-level

goal is accomplished.

Physical Model for Motion of the Human Body. When abstracting these concepts in the physical model, the

following aspects thus need be considered and approximated: (1) shape and articulation of the human body,

(2) actuation of the human body and (3) effects of the environment. These aspects are typically accounted for

in the physical model by using parameterized components: a model of the geometry of the environment where

the motion is to take the place, a model for a virtual character that approximates the articulation and shape

of the person in the video, a model for actuation of the character that computes actuation forces to be applied

on the skeleton of the character, and a simulator of physical dynamics that uses these models to produce the

motion of the character. The character model, environment and actuation models provide constraints for the

simulation while the simulator itself implements general physical laws, integrates forces acting on the body
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Figure 1.4: Typical Environment and Character Model. On the left, we illustrate a typical model of
an environment consisting of only a ground plane. In the middle, we show articulation and shape of the
humanoid character model from Chapter 4. The character model is actuated by actuation forces produced
by motors at the joints in the articulation. Corresponding shape representation of the character in an image
projection is visualized on the right.

Input Video Motion Reconstruction 

Parameters 

Initial Pose 

Environment Character Model 

Simulator Forces 

Physical Model 

Figure 1.5: Our Approach and Components within Physical Model. At a high level, we represent the
person as a simulated character actuated by forces. We optimize for the forces, parameterized by the model
parameters, such that the motion generated by the simulation from the initial pose matches the video.

of the character and outputs a physically plausible motion that follows the constraints. See Figure 1.4 for an

illustration of typical models of the environment and the character that we use in Chapter 4.

Motion Synthesis using the Physical Model. The physical model produces the motion of the person by

applying forces to the skeleton of the simulated character (see Figure 1.5). The forces result from external

disturbances in the environment (e.g., gravity, wind), detected contacts between the body of the character

and the environment (e.g., non-penetration, friction), contacts between different parts of the body itself, body

articulation at joints (e.g., keeping body parts connected, damping of relative motion at joints and preventing
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Figure 1.6: Our Approach and Actuation Forces. In more detail, we decompose forces to external forces
due to environment and forces due to internal body actuation. Assuming we know the environment, external
forces can be directly computed.
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Figure 1.7: Our Approach and Controllers. We model internal body actuation using a parameterized
controller and optimize for the parameters of the control model such that the generated motion matches the
video.

hyperextension of limbs past their biomechanical limits) and internal body actuation.

Most of the abovementioned forces can be directly computed from physical laws, constraints and approx-

imations of the human body implemented by the model, using the models of the character, environment and

simulation. These general models encode general aspects of the motion such as how the foot should react to

an impact with the environment or that the knee should not extend past its limit. The models alone, however,

are not sufficient to constrain the motion to look like running, walking or any other voluntary activity. In order

to produce motion of characters that appear life-like and move actively, the body has to be actuated through

actuation forces (see Figure 1.6). We produce actuation forces using controllers and we discuss controllers in

the following section (Section 1.4.3). Once actuation forces are determined, the entire process of generating

the motion of the person using a physical model can be abstracted in terms of the physical dynamics function

from Equation (1.1).
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1.4.3 Methods for Humanoid Control

We provide actuation forces for the character using a controller (see Figure 1.8). Intuitively, a controller

determines actuation forces by reacting to the changes of the state of the physical model such that a desired

behavior of the character is achieved using the model (e.g., the character walks or jogs). In doing so, the

controller approximates underlying processes and physical principles that lead to the generation of the desired

behavior within the physical model. We assume controllers are encoded using control parameters. Control

parameters determine behavior of the controller and define the desired motion to be generated by the physical

model. We employ controller models and motion parameterizations previously featured in computer graphics

and humanoid robotics.

Formally, we define a controller as a function g : xt→ ut that provides actuation forces ut for the character

in the state xt . We encode the particular mapping implemented by g using the controller parameters Θ such

that

ut = g(xt ;Θ), (1.2)

where g characterizes the used controller model and Θ describes what motion is to be produced using the

control. We characterize the particular controller model that we use in this work in Equation (1.5).

Physical Principles for Control. Motivated by Section 1.3.2, we are interested in using controller models

that encode control in terms of physical principles. The principles we want to capture in the controller

representation should encode the general high-level structure of the motion such as the number of distinct

phases that there are in the motion and the way the phases follow each other as well as the low-level structure

characterizing how the body needs to be actuated to move from one phase to the next. A representation of the

desired motion by physical principles needs to identify important physical events that take place during the

course of the motion, learn the pattern for the events and encode how the body should react to these events.

Specifically, the representation needs to encode how the body should be actuated after an event so it can arrive

at the next event.

1.4.3.1 Controller Model

We realize control g as a parameterized two-level process. At the high level, a high-level decision-making

process defines a desired motion for the character as a sequence of abstract actions. At the low level, a low-

level motion control process computes actuation forces for the selected actions such that the desired behavior

encoded by the actions is achieved (see Figure 1.8). Formally, we express this control model as

at = π(xt ;Θ) (1.3)

ut = f̂−1(xt ,at) (1.4)

such that

g(xt ;Θ) := f̂−1(xt ,π(xt ;Θ)), (1.5)

where π implements the decision-making process, f̂−1 realizes the motion control process and at represents

an action. See Figure 1.8 for an illustration.
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Figure 1.8: Controller. Illustration of a concept of controller. A controller g computes actuation forces ut
for the character such that a desired motion, encoded by Θ, is generated by physical dynamics within the
physical model. The controller monitors the current state xt of the character and the world and computes
actuation forces ut such that the character is driven from the current pose towards the next desired pose by
the model, as determined by Θ. We realize control as a sequence of actions a generated by a decision-making
process π , where actions correspond to simple control tasks. We perform actions using a motion control
process f̂−1 in the controller. The motion control process takes as an input the current action at and the state
xt of the model and outputs actuation forces ut that are appropriate for the current state such that the action is
performed using physical dynamics f . In selecting actions, we utilize contextual information that is specific to
the decision-making process in the controller and that incorporates information about contact of the character
with the environment. We encode this context in the state xt . Using the contact feedback, the controller can
explicitly react to external events that happen in the modeled world and that introduce discontinuity in the
generated motion, such as when the body support transfers from the left foot to the right foot. The ability of
the controller to react to external events is important for the generalization of control to new environments.

Motion Control, Actions. We define actions as simpler control tasks for which actuation forces can be

computed directly using the low-level motion control process f̂−1. Intuitively, actions can be associated with

different phases of the motion such that each action encodes an actuation “program” that performs the motion

in the corresponding phase. Given a particular action a, the control process utilizes an approximation of the

physical dynamics f in order to determine how the body should be actuated through actuation forces such

that the action is performed.

We encode actions uniformly using vectors. Each action is described by a single desired pose that the

control process attempts to achieve when the action is active and parameters of the actuation strategy that is

used to do so. Parameters of the strategy represent various aspects of the body actuation, such as a speed with

which the individual degrees of freedom in the pose are reached, as well as how the body should balance. We

explain particular actuation strategies in Chapter 3, Chapter 4 and Chapter 5.

Decision-making Process, Finite State Machines. The action selection process is reactive. Rather than

planning for an optimal sequence of actions offline, we select actions during the generation of the motion by

reacting to changes of the state of the model. In doing so, we utilize state feedback that considers contact

information of the body.
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Figure 1.9: Controller for Walking. On the left, a high-level abstract description of walking is illustrated.
In this abstraction, walking is characterized as a sequence of walking cycles. Each cycle is described as a
progression of actions that the person needs to perform in order to complete the cycle and to keep walking.
On the right, the same abstract description is rewritten in the form of a finite state machine, where machine
states encode actions and transitions between the states describe how actions are switched. This particular
state machine models walking as a sequence of four abstract actions that switch based on time or contact
events.

We implement this process using the decision-making component π within the controller1. The decision-

making component monitors which parts of the body are supported by the environment and responds to

changes of this support (e.g., change of foot contact, transfer of weight from one foot to the other, etc.)

by switching the current action. We switch actions on contact changes because such changes introduce

discontinuities in the motion, which suggests that an actuation strategy (action, motion phase) might need

to switch too. For example, in order to locomote, the controller may be aware of which foot is currently

supporting the torso, apply actuation forces to swing the non-supporting foot forward and switch between

the feet in response to the transfer of the support (see Figure 1.9, left). Similarly, in order to jump, the

controller may keep track of whether the character is airborne and switch to a “loading” action when the feet

hit the ground such that the impact can be absorbed and the character will not fall (see Figure 1.13). We

encode the desired sequencing of actions for the decision-making process using finite state machines (FSMs;

see Figure 1.9, right), where states in the state machine represent actions and transitions between the states

encode possible ways the actions can switch.

1.4.3.2 Motion Synthesis with Controller

Actuated Physical Model. We incorporate our controller in the physical model, so that the model becomes

actuated (see Figure 1.7). Consequently, the resulting physical model consists of the controller g from Equa-

tion (1.2) that computes actuation forces for the character, and the physical dynamics f from Equation (1.1)

1Although the decision-making component in the controller is for notation simplicity expressed as a function π from a state to an
action, the function has side effects. Specifically, the current state xt of the model may change as a part of the evaluation of π(xt),
when the component reacts to contact feedback in the state.
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that uses the forces to generate the poses of the character.

Assuming that we have an actuated physical model, an initial state x1 for the model and a parameterization

of the desired motion for the character by Θ, we produce the motion from x1 by recursively applying g and f .

We use Equation (1.2) to compute the actuation forces ut for the individual frames t = 1, . . . ,T−1, and then

use the actuation forces and Equation (1.1) to update the model states from xt to xt+1,

xt+1 = f (xt ,g(xt ;Θ)). (1.6)

The representation xt of the state incorporates the pose of the character, contact information of the character,

and the state of the controller. Because we always start the controller from the first state in the finite state

machine, we only need to specify an initial pose of the character to bootstrap the process2.

Feedback Simulation and Control Loop. We implement the motion synthesis process from Equation (1.6)

using a feedback loop that incorporates character simulation and control (see Figure 1.10). Control within the

loop selects actions and computes actuation forces for the character, simulation of physical dynamics updates

the pose by applying the actuation forces. It also determines contact information for the pose in order to

update the state of the controller and to switch actions within the controller.

Control and simulation run in lock step. Each iteration of the loop propagates the state of the character

and the controller from one frame to the next. During this update (see Figure 1.10), the decision-making

process π within the controller first selects an action at for the current frame t using the state machine and the

contact information, using the contact information to switch the current state in the state machine. The result

of the decision-making process is an action that is associated with the current state in the state machine and

that is to be performed by the low-level motion control process. The low-level motion control process f̂−1

performs this action by computing actuation forces for the character such that the desired pose stored within

the action is approached. Actuation forces are computed using inverse dynamics and applied to the character

using the simulator for f within the physical model to produce the pose and contact information for the next

frame. The resulting pose and contact information are returned back as a feedback input for simulation and

control in the next iteration of the loop. We define contact information as an enumeration of all contact points

of the character with the environment together with the contact forces that act at them.

A particular motion produced by the simulation and control loop is determined by the initial pose of the

character, the parameters of the controller, and the physical dynamics. The controller parameters encode the

state machine and actions within the machine. Using the loop, one set of controller parameters may encode

a controller that produces walking while another set would define a controller for running. Note that in this

particular case, both walking and running can be represented by the same state machine with the same number

of states, except that actions within the machines are different and specific to either walking or running.

1.4.3.3 Humanoid Character Model

In order to make our methods computationally tractable, we use a humanoid character model similar to

character models commonly used in computer graphics and humanoid robotics. This model approximates
2We estimate initial contact information from the geometry of the environment and the initial pose of the character using collision

detection within the simulator.



20

Initialization 

Decision-Making Motion Control 

Physical Dynamics t

select action generate actuation forces 

apply forces on body set initial state 

action 
actuation 

forces 

initial pose, 

first FSM state 

new pose, 

contact 

actuation 

forces 

FSM 

state 
action 

pose, 

contact 

Figure 1.10: Simulation and Control Loop. Illustration of the generative model of character motion. The
motion of the character is produced from an initial state by taking iterations in the loop. Each iteration
advances the model state by physical time ∆t from the current frame to the next by (1) selecting an action
for the character to perform (decision-making), (2) generating actuation forces to perform this action (motion
control) and (3) applying the actuation forces to the character model to update the pose and retrieve contact
information for the pose (physical dynamics). Actions encode actuation “programs”, parameterized by a
desired pose that the character attempts to reach when the action is active and parameters used to set up
the control laws to do so, taking scene geometry into account. Actions are selected by the decision-making
process in the controller, considering the current pose of the character, contact information, current controller
state and controller parameters. The updated pose and the corresponding contact information are looped back
to the decision-making process to help select the action for the next frame.

human dynamics by using an articulated rigid body model for the body and low-level motion control by

motors at joints to provide actuation forces for the body (see Figure 1.4).

The rigid body model of the body consists of a set of rigid body links connected by joints. Rigid body

links represent different parts of the human body such as a head, torso or legs. The low-level motion control

process within the controller powers the motors integrated with the joints and directly controls the motion

of the connected body parts, by allowing them to rotate about actuated motor axes. Actuation forces are

generated as joint torques using the motors. With these approximations of the human dynamics, simulation of

the character in the physical model can be realized efficiently by off-the-shelf rigid body dynamics simulators

while the low-level motion control using joint motors can be implemented by techniques based on e.g., inverse

dynamics. We discuss this particular physical model in depth in Chapter 3. Now that we have set our physical

model, we will use Factuation in place of u to refer to the actuation forces.

Because we assume that the model for the character and environment is given and fixed, physical dy-

namics of the character within the physical model is fully determined. Consequently, we can re-parameterize
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Figure 1.11: Our Pipeline. Our pipeline takes as an input a monocular video of a person performing a
motion (left) and estimates a controller for the activity. The controller that we estimate implicitly captures
the motion of the person through simulation; it generates the poses by computing actuation forces for the
body and integrating them over time. Consequently, the produced motion meets our definition of physical
plausibility from Section 1.4.1. Furthermore, because the forces result from reactions to various events,
such as a change of foot contact (see Section 1.4.3.1), the estimated control mechanisms can be applied to
simulated characters in new situations, as motivated in Section 1.3.2, such as when e.g., these events happen
at different time instants. For instance, we may modify the slope of the ground plane or modify frictional
properties of the plane and see what the motion produced by the controller would look like in this new
environment (right).

motions of the character using controllers (see Figure 1.7). We utilize this fact for addressing motion estima-

tion in Section 1.5.

1.5 Approach Overview

We address the motion estimation problem defined in our problem statement by implementing an estimation

pipeline from Figure 1.11 that adheres to the goals set in Section 1.3. This pipeline not only captures 3D poses

of subjects, as is done with current motion capture systems, but it derives physics-based controllers for sim-

ulated characters that synthesize these poses in simulation. The representation of motions by parameterized

controllers reduces motion estimation to the estimation of controllers:

Assuming the character model, its initial pose and the environment are known, we accomplish our

goal and reconstruct the motion in the video by matching parameters of the controller model to the

poses in the video such that the observed behavior is reproduced in simulation (see Figure 1.7).

Pipeline. The proposed pipeline takes as an input a video of a person performing an activity and estimates a

controller for the observed behavior (see Figure 1.11). The estimation process does not rely on any auxiliary

instrumentation, such as markers, and as such, our subjects can wear regular street clothes. In addition,

the estimation can take place in unrestricted outdoor environments, as discussed in Section 1.2.2, and the

controller provides motion generalizations for new environments (see Figure 1.11, right).
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1.5.1 Motion Estimation

We realize motion estimation as an initialization followed by controller optimization. In order to implement

these steps, we need a physics-based model for the simulated character and an optimization mechanism. The

simulation works as a tool for the optimization and we use a standard model that we describe in Chapter 3 for

completeness. For inference, we explore incremental optimizations by either Particle Filter or Covariance

Matrix Adaptation.

Initialization. In initialization, we set up information that is needed for the modeling of the motion of

the person. Towards that end, we manually build the model of the actuated character, the 3D model of the

environment where the motion takes place and provide a rough estimate of the pose of the character in the

first frame of the video. We also calibrate camera(s) that observe the scene so that we can hypothesize how

the poses generated by the controller would look in images. We employ a generic character model from

Chapter 3 that represents an average person.

Controller Optimization. We formulate controller estimation as an optimization over actions in the con-

troller. We use an objective function for the optimization that attempts to make the synthesized motion

produced by the controller appear as close to the input video as possible. The optimization consists of a joint

(1) recovery of the state machine that segments the observed motion into actions separated by distinct physi-

cal events (e.g., a change of foot contact) and (2) optimization of the encoding of the actions in the machine.

The optimization process conceptually samples potential controllers to provide interpretation of the motion

and uses the objective function to evaluate inconsistency of the controller hypotheses and the images.

Our objective function is formulated as a measure of the inconsistency between observed images and

hypothesized synthetic images produced by the simulation with a proposed controller. We use a simple

silhouette-based measure to evaluate the inconsistency, where we look at differences between observed sil-

houettes and hypothesized silhouettes generated by our model (see Figure 1.12). We assume the person is

the only moving object in the environment and we apply background subtraction on the input images to re-

cover the observed silhouette of the person for every frame in the sequence. We then measure the amount of

overlap between the observed silhouettes and the hypothesized silhouettes, where hypothesized silhouettes

are obtained by projecting the 3D geometry of the posed character from the simulation into the image using

the camera projection. We use the control loop from Section 1.4.3.2 to produce poses for a particular control

hypothesis.

Actions and Controllers. In implementing the proposed controller optimization approach, we have two

options for modeling actions and the action selection process in the controller. For a start, we can either use

controllers that utilize a trivial selection process that switches actions with every frame, or we can employ a

more advanced model that attempts to switch actions intelligently, based on contact events and the underlying

structure of the desired motion. We explore each of these two options for completeness, but entirely focus on

the second more informed process, as motivated in Section 1.3.

When actions switch with every frame, actions generate a sequence of desired poses for the low-level

motion control process that is unstructured and parameterized in a dense way, such that an explicit desired

pose is provided for every frame in the sequence. The state machine for the selection of actions is implicit
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Figure 1.12: Silhouette-based Measure of Motion Consistency. We project hypothesized 3D poses of the
model produced by the simulation through the camera to obtain hypothesized silhouettes (in green). We
measure the consistency of the motion produced by the simulation as the amount of overlap (in yellow)
between the hypothesized silhouettes (in green) and observed silhouettes (in red) obtained by background
subtraction. We use the measure as an objective value for controller optimization.

in this case and consists of a chain of states for the frames in the sequence with the transitions happening

regularly based on the time between two frames. The control problem is then equivalent to the tracking of

the sequence of the desired poses using a trajectory tracking controller and the controller estimation reduces

to the estimation of the dense desired pose trajectory for this controller. We study this modeling option in

Chapter 4, where we recover such dense trajectories incrementally using a Particle Filter.

Alternatively, and according to our goals in Section 1.3, we can use actions that last for numbers of frames

and that switch based on rules explicitly encoded by a state machine. With this option, desired poses in the

sequence remain constant for extended periods of time and, as such, the parameterization of the desired pose

trajectory for the low-level motion control is structured and sparse. Consequently, the representation of the

controller using the state machine is low-dimensional and compact. By estimating the controller as a finite

state machine, we force the estimation process to attempt to understand the underlying physical process that

generates the observed behavior, learn the structure of the behavior and represent the entire motion in terms

of this structure. In particular, the estimation process has to learn the phases of the motion, physical events

that cause these phases to switch and the control strategies that reproduce these phases in simulation. We

recover these compact controllers using an incremental stochastic optimization over an expanding window

using the Covariance Matrix Adaptation (CMA) algorithm [67] in Chapter 5.

We briefly compare the two possible parameterizations of desired motion in Figure 1.13 and the cor-

responding controller estimation approaches in Table 1.1. At the highest level of abstraction, these two

approaches differ in the parameterization of the desired pose trajectory and the level of understanding of the

desired motion to be produced by the controller. At the low level, they differ in the optimization techniques

they used to recover the desired pose trajectory and the motion, as well as the guarantees they provide on the

produced motion reconstructions.
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Figure 1.13: Desired Motion at Different Levels of Abstraction. We illustrate a jump at two different levels
of abstraction. At a high level, a jump can be intuitively characterized as a sequence of six motion phases:
compression (1), pushing off the ground (2), ascending (3), descending (4), loading (5) and unloading (6),
visualized in (a). A particular jump instance can be characterized as a sequence of desired poses (b). In order
to reproduce the jump by a controller, the low-level motion control process within the controller needs to
compute actuation forces for the character such that the character will track the desired poses in the sequence.
Without an understanding of the high-level structure of the motion, a trajectory tracking controller will store
the desired pose for every frame in the sequence and attempt to track this sequence as closely as possible (see
(c) and Chapter 4). Alternatively, the structure of the motion can be represented in the controller and desired
poses can be specified for only specific key frames associated with the motion phases from (a) and replicated
for the remaining frames in the same phase. Here, motion phases correspond to actions in a state-space
controller (see (d) and Chapter 5).
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Chapter 4 Chapter 5
Decision-making Process trajectory control state-space control
Low-level Motion Control constraint-base servoing constraint-based servoing
Feedback ground impact contact and balance
Action Duration one frame many frames
Desired Pose Trajectory dense sparse
Desired Motion Prior motion capture trajectories pose-space PCA
Method Section 4.2.4.1 Section 4.2.4.2 Section 5.5
Inference Over desired poses poses and desired poses state machine
Motion Reconstruction by simulation biased towards simulation by simulation
Reconstruction Accuracy low high high
Adaptation to Environments limited none through control feedback

Table 1.1: Our Methods. Illustration of the two controller models and controller estimation approaches that
we discuss in our work.

1.5.2 Why Not Direct Force Estimation?

In order to address physical plausibility in motion capture, understanding of control mechanisms is not strictly

necessary. Instead, one may attempt to directly estimate forces that act on the body from image observations

and use them to re-synthesize the poses in the sequence. We argue this alternative approach is much harder

to accomplish, is less general than the controller capture that we propose and loses the ability to generalize.

First, actuation forces result from an internal control process that actively actuates the body. Understand-

ing of this process (causes for motion) not only helps regularize motion capture and allows to generalize, as

discussed in Section 1.3.2, but also provides more fundamental representation of motion. Forces, on the other

hand, are the result of this process, are specific to a particular motion execution and the environment subject

to the time of capture and can not be generalized easily.

Second, generating and matching of force hypotheses to images results in a very difficult problem that

requires direct modeling of forces in every frame of the sequence and the changes in forces between the

frames. This modeling is difficult because too many variables have to be estimated for each frame from

relatively little information: actuation forces are high-dimensional, because every joint angle in the body

needs be potentially actuated, discontinuous on body contact change, and unstable, such that they change

drastically between frames even when the body is almost still.

1.6 Challenges

We are addressing two difficult problems: vision-based motion capture and controller estimation. In doing

so, we face challenges that can all be attributed to the fact that we attempt to (1) build a physics-based model

of full-body 3D human motion that can produce all possible behaviors of interest in simulation and (2) we

want to fit this model to a single view video.

In order to meet the objective of this thesis and realize motion capture through controller capture, we

need to build a character model for the person that can be simulated and controlled efficiently and that uses
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compact high-level encodings of “actuation programs” for control. In building the model, we need to balance

the following aspects: generality of the model, effectiveness of simulation and control, and abstraction of

desired motion for control. In balancing these aspects, we also need to consider effects of visual perception

that affect control inference.

Character Model. The model that we build needs to be general and realistic enough so it can generate the

poses we wish to track. In doing so, the model needs to represent articulation of the human body with a

sufficient level of detail and with a sufficient fidelity. In modeling the motion of the person, the model needs

to account for compliance of body parts with the environment through contact, response to gravity and inertia

and provide a means for body actuation.

While simpler low-dimensional body models are easier to build, simulate and control, they may be re-

stricted to only specific classes of motions (e.g., walking). For example, a model without arms will not be

able to produce a hand stand and a model with abstracted legs without the parts for feet will have difficulty

locomoting in a physically plausible way. More general full-body 3D models, on the other hand, abstract

the human body with a sufficient level of detail, but require deliberate control and balancing strategies to

produce desired self-balanced motions, are more difficult to build and more expensive to simulate. Control

of these detailed models is challenging, because the models have many degrees of freedom to control and

the body is subjected to the effects of gravity and contact with the environment. These effects are caused

by factors external to the body, but they have to be anticipated and accounted for in control of the body. In

order to keep the body balanced, the global position and orientation of the body, important for balance, has to

be controlled, but it can only be affected indirectly, by controlling relative orientations of parts of the body.

Typical models of the human body have 40 or more degrees of freedom and all of them have to be controlled

(through low-level motion control) in order to achieve the desired coordination of the body.

Controller Model. In order to enable automatic estimation of controllers from video, we need to use a

universal controller model that is not restricted to a particular activity or a motion style. This requirement

makes control difficult, because it implies that (1) motion-specific strategies previously used in computer

graphics and robotics can not be used for control, (2) the complete behavior of the controller has to be

encoded using model parameters, and (3) this parameterization of the desired motion has to be rich enough

so that all potential motions can be generated. For example, the same controller model must be able to

generate walking, limping or gymnastics. Furthermore, the encodings of the motions have to be compact

such that they can be estimated automatically from noisy image observations.

In designing a model for the controller, it is important to find a good tradeoff between the detailed under-

standing of the underlying processes that actuate the body, the complexity of the representation of the desired

motion, and costs for simulation and controller estimation. For example, a controller that is given a desired

pose of the character for every frame in the sequence may compute actuation forces using optimization, but

it requires the poses to be already compliant with the environment and the dynamics of the character. Such a

representation also results in a high-dimensional encoding of the desired motion that is difficult to estimate

from video and limits generalization. On the other hand, structured higher-level representations of desired

motion provide a more detailed understanding of the motion and an ability to generalize, but require complex

inference. Our controllers fall within this second category.
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Our controllers explicitly model the structure of the desired motion and exploit this structure for control,

as explained in Section 1.5.1. Because the structure of the motion can not be assumed, we need to jointly

optimize over the structure of the motion as well as the control mechanisms that reproduce the motion.

The controller estimation results in a high-dimensional mixed optimization over discrete states in the state

machine within the controller and continuous parameters of actions within the states. The optimization is

difficult, because long motions consist of many phases and strategies (with many parameters) have to be

found for all of them.

Estimation of Motion Structure, Contact. Estimation of motion structure involves segmentation of the

observed motion into actions based on the coherence of motion phases and contact events that separate them.

In segmenting the motion to actions, the segmentation needs to detect when contact events happen and reason

about foot support. Contact and foot support is very difficult to measure but also critical for control, because

the changes of it imply discontinuity in the dynamics. Reasoning about these properties is problematic

because it requires hypothesizing about the pose and the actuation forces that currently act on the body.

However, actuation forces and poses result from control. Furthermore, estimating contact and foot support

alone is a difficult problem even if we already know an exact 3D pose reconstruction of the person for every

frame in the sequence, because it still requires knowledge of the actuation forces. To address these challenges,

we estimate poses, contact, foot support and control jointly and together with the estimation of the structure,

and directly from the video observations.

Estimation of Control Mechanisms. Estimation of control mechanisms for actions consists of the search

for continuous parameters within actions that give rise to the motion. This search is difficult because the

strategies need to encode low-level motion control of the body and this encoding has to be versatile such

that different motions can be produced. Consequently, the space of the strategies is high-dimensional and

the search for the best strategy gets often stuck in local optima, resulting in the character failing to complete

the motion (e.g., the character falls) or exploiting a strategy that does not appear human-like. This search

for strategies is further complicated by the fact that the strategies are global, affecting the entire motion, and

cannot be estimated from only a few frames of the video. The estimated strategies need to properly respond to

discontinuities in motion due to contact of the body with the environment, counteract effects of gravity such

that the body stays balanced and produce actuation forces that stay within specified bounds. When setting

force bounds for the character model, it is critical to find an effective compromise between loose bounds that

may produce motions that look overpowered and super-human and more realistic bounds that, in our case,

result in no solutions being found.

Visual Perception. Because we take monocular observations as an input, we need to deal with ambiguities

due to (1) self occlusions, where body parts obstruct the view of other parts, (2) lack of explicit depth infor-

mation, where relative ordering of body parts by their distance from the camera is unknown, (3) the change

of appearance of the body as the person moves (e.g., due to body shape deformation and clothing), and (4)

observation noise, such that we are never able to perceive the state of the body accurately. Motion capture

through controller estimation is particularly challenging in this setting, because all reasoning about the state,
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contact (as required by our formulation) and control of the character has to be done purely based on the ap-

pearance of the person in the images. For example, in the single view case, almost half of the body remains

unobserved and the pose of the occluded parts can only be determined from the motion of the visible parts,

history of past images and prior knowledge (experience).

In our work, we simplify the perception problem by assuming that the person always moves within the

field of view of the camera and that the view of the body is never obstructed by other objects. We also

use relatively simple models of the body appearance, shape and clothing, based on silhouettes. Despite the

simplicity of our observations, we illustrate that by using physical simulation and control we are capable of

recovering motions that are physically plausible and reproduce the observed behaviors. We leave the use of

more effective appearance models for future work.

1.7 Contributions

In this work, we have developed methods for addressing physical plausibility in estimating human motion

from video. We illustrate that physically plausible motions can be estimated directly from image sequences

by using physical models of human dynamics and methods for humanoid control. We summarize the key

contributions below:

• We introduce a definition for the physically plausible human motion estimation problem based on

capturing and estimating the dynamics of the human body and control mechanisms observed from

video,

• We propose methods for Particle Filtering with physically plausible motion predictions to improve the

accuracy and physical plausibility of human motion estimation (Chapter 4),

• We propose methods to capture control state machines from human motion observed in video in order

to recover a simulated character model that reproduces the motion (Chapter 5).

1.8 Thesis Outline

Chapter 1. Introduction. This chapter introduces the problem and motivates the formulations and techniques

used in this work. Challenges, contributions and outline of the structure of this thesis are discussed as well.

Chapter 2. Background. This chapter reviews existing approaches for motion estimation in computer vi-

sion, techniques for generating physically plausible motion in computer graphics and methods for humanoid

control in computer graphics/robotics.

Chapter 3. Modeling Human Body in Dynamics. This chapter introduces a physical model of the person that

we use throughout this work. The chapter reviews concepts for modeling rigid body dynamics and illustrates

how we use these concepts as a tool to build an articulated actuated model of the person for our methods.

Chapter 4. Physics-based Particle Filtering. This chapter describes our basic approach towards addressing

physical plausibility in motion estimation. In this approach, we use a Particle Filter to directly construct the
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desired pose trajectory for the character model and use a trajectory tracking controller to perform and validate

the proposed trajectories against image observations.

Chapter 5. Controller Capture. A desired pose trajectory can only be reliably estimated by a Particle Filter

in presence of strong likelihoods. Rather than focusing on employing stronger observation models, we relax

the assumptions of strong likelihoods and approximate the desired pose trajectory as a sequence of sparse

actions selected by a state machine. We then optimize in a batch or incrementally over the structure of the

machine and controller parameters in order to find a physically plausible interpretation of the entire motion.

Chapter 6. Summary and Discussion. This chapter summarizes the developed methods and proposes direc-

tions for future research.



Chapter 2

Background

Marker-less motion capture is a challenging problem, particularly when only monocular video is available.

We estimate physically plausible three-dimensional motion of a person from monocular video by recover-

ing a controller capable of generating the observed motion and replaying this motion in other environments

and under physical perturbations. Our work relates to a number of distinct disciplines in computer science:

pose and motion estimation in computer vision, synthesis of physically realistic human motion in computer

graphics, methods for humanoid simulation and control in robotics, and controller learning from demonstra-

tion in artificial intelligence. In addressing vision-based motion capture, we use techniques from computer

vision to analyze images and provide constraints for controller estimation. In turn, we use methods from

computer graphics, robotics and stochastic optimization to estimate a controller that matches the constraints

and produces a physically plausible motion interpretation of the observed motion using simulation.

The problems of motion estimation and humanoid control have been studied extensively in isolation in the

computer vision, robotics, and computer graphics literature. Despite their research history, both remain open

and challenging problems. Approaches that utilize physics-based constraints in estimation of human motion

from video have been scarce to date (see Section 2.1.5.6) or required user intervention (see Section 2.3.4).

Physics-based controllers for humanoid characters have been explored in computer graphics and robotics

(see Section 2.3.5). The controllers often rely on motion capture data, e.g., as a target trajectory for the

desired controller behavior. However, motion capture data often needs to be modified or rectified in non-

trivial ways beforehand to make it physically correct or a good match to a dynamic model of the character.

In our formulation, we combine these two problems. Casting the video-based motion capture problem as one

of direct estimation of underlying character control leads to the following two benefits: (1) the physics-based

character controller can serve as an effective motion prior for estimating human motion with elements of

physical realism from weak video-based observations, and (2) the recovered controller can be used to directly

simulate dynamic and responsive virtual characters without any intermediate processing or rectification. To

our knowledge, there is no previous work on estimating full-body controllers from video directly. In artificial

intelligence, methods for learning controllers from demonstration have been developed, but they have only

been applied to simpler low-dimensional control problems different from ours (see Section 2.2).

30
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Our goal in this chapter is to provide a review of the state-of-the art in motion estimation through frame-

to-frame pose tracking (see Section 2.1), realistic human motion synthesis in graphics (see Section 2.3) and

controller learning in artificial intelligence (see Section 2.2). We start our review with the discussion of

relevant approaches to motion estimation in computer vision. Readers are recommended surveys [121, 122,

139] by Moeslund et al.and Poppe et al.for a comprehensive review of motion estimation literature covering

research from 1980 till 2006.

2.1 Motion and Pose Estimation

The problem of estimating articulated human motion from video has been an active topic of research in

computer vision for over two last decades. Availability of high-performance computing and development of

new algorithms has made significant advances towards solving the problem possible and has enabled current

applications in surveillance, human-computer interaction and entertainment. Although substantial progress

has been made, the current approaches to motion estimation still rely on many simplifying assumptions and

have difficulty estimating motions that are smooth and consistent with physical laws.

The general problem of recovering the smooth 3D motion of a person in typical environments from

monocular image observations remains largely unsolved. Most of the issues that have to be overcome are due

to (1) the high dimensionality of the human pose, (2) subtleties of the motions with which humans move and

(3) variability in imaging conditions, human appearance and clothing. As such, most previous approaches

have concentrated on modeling aspects of the imaging process through which humans can be perceived and on

developing search methods and motion models (based on statistical principles) that allow for efficient motion

inference. However, in doing so, relatively little attention was paid to the quality of the recovered motions.

As a result, many existing methods produce motions that violate constraints imposed on the body by the

world or environment, producing visually distinct and physically implausible artifacts, including foot skate,

out-of-plane rotations and jitter. While such results may be adequate for specific needs in e.g., surveillance or

activity recognition, many other applications can benefit from more accurate and physically plausible motion

estimation. Our goal in this work is to pursue a formulation for human motion estimation that produces

physically plausible motion interpretations.

A goal of any motion estimation method is to recover the motion of the person observed in the input

images. This motion is characterized by a sequence of high-dimensional vectors that encode the poses that

the person assumes in the individual image frames. While many pose sequences can produce a good fit to the

images, only a small portion of all such sequences is physically plausible. Restricting (or biasing) the search

for motions to physically plausible interpretations, that satisfy the laws of physics, seems to be one of the

ways towards recovering smooth and naturally looking motions. Towards that end, our goal in this thesis is to

build a motion estimation system that can take advantage of physical simulations of the model of the person

in order to produce such plausible interpretations.
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2.1.1 Methodology Overview

Traditional Pipeline. Motion estimation is typically realized as a cascade of operations consisting of model

initialization, pose estimation in the initial frame and frame-to-frame pose tracking. For increased robustness

against ambiguities in inference, motion estimation is most often formulated probabilistically.

The purpose of model initialization is to gather information required to bootstrap tracking. For example,

an initial model of the person that encodes the pose, shape and appearance of the person at the first frame

may be established. Next, the motion of the person is tracked between frames, which means that the initial

model is updated through time in order to characterize poses in the remaining frames. Tracking consists of

extracting meaningful information from the images that leads to the estimation of poses in the individual

frames. This information is typically propagated temporally, so that the search for poses in the frames can be

focused at relevant portions of the pose space and correspondences of estimated poses in consecutive frames

can be established. In specific cases, when information from all image frames is available, the entire motion

can be estimated as a whole and tracking and pose estimation processes are fused. Tracking can be followed

by motion analysis and recognition, depending on the desired application.

Our Pipeline. Our formulation for motion estimation is substantially different from the traditional pipeline.

Our pipeline is not based on frame-to-frame pose tracking, produces different outputs, uses different tech-

niques to estimate the poses in the video, and provides a guarantee of physical plausibility for the motion

reconstructions and mechanisms for motion adaptation to new environments. We characterize our goals and

pipeline in full in Section 1.3, Section 1.5.1 and Section 2.1.5.10.

For the purposes of this review, we focus on kinematic pose tracking, implemented by the traditional

pipeline, because this is the paradigm for motion estimation that has been explored in the literature thus far.

2.1.2 Body Model

In order to implement a pose tracking system, we need to define a model for the human body. At the very

least, the body model needs to represent kinematic properties of the body including joint articulation and

pose. Joint articulation encodes parts of the body and specifies how the parts connect to each other at joints.

The pose of the body describes 3D or 2D locations of the parts and joints in the articulation and locates the

parts in the image. In addition, shape and appearance of the body (“flesh”) may need to be represented in

the model. This additional information may be provided for two reasons. First, it can characterize the body

with a greater fidelity which can be used for visualization purposes and can be beneficial for applications in

e.g., human-computer interaction and entertainment. Second, this detailed representation can facilitate more

accurate pose inference, because the detailed shape and appearance information can simplify matching of the

pose to the image. We next consider how the kinematic properties of the body can be represented in the body

model.
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2.1.2.1 Kinematic Models

Kinematic models encode kinematic properties within the body model and characterize the body pose. Most

often, human bodies are modeled as three-dimensional or two-dimensional articulated structures with parts

connected by joints.

Kinematic Tree. Representations by kinematic trees [115, 11, 46] model parts as nodes in trees (called

“skeletons”) and parameterize the configuration of the articulated body recursively, utilizing hierarchies de-

fined by the trees. A body pose is encoded using the tree by the position and orientation of the root part in the

reference space and orientations of the child parts relative to their parent parts in the tree. This representation

can be defined for parts in both 2D and 3D. In 3D, the position and orientation of the root part is specified in

the world space1 and orientations of the remaining parts are defined as rotations in the spaces of the parents.

General orientations in 3D can be expressed in many ways, using rotation matrices, Euler angles, axes-and-

angles, unit quaternions [156] or exponential maps [59, 24]. Some joints, such as a knee or a elbow, permit

only rotations about specific axes; rotations for those joints are then expressed as angles about those axes.

In 2D, the position of the root part is defined directly in the image plane and rotations are modeled by 1D

angles.

Parts. The recursive representation by a kinematic tree implicitly rules out many impossible poses. For

example, parts can not be torn apart and elbows can not twist or bend backwards, if the model is equipped

with joint angle limits. On the other hand, because such constraints on the pose are encoded implicitly in

the recursive parameterization of the pose, parameter values are coupled and correlated both spatially and

temporally in a complex way. All these aspects complicate pose inference and tracking.

As a popular alternative to the kinematic tree representation, body can be modeled as a collection of in-

dependent parts. In this representation, parts are parameterized independently such that the configuration of

one part is given by its absolute position and orientation in the reference space, independently of the config-

uration of another. This representation is redundant and consistency of the pose (e.g., connectivity of parts at

joints) has to be enforced explicitly. However, because such an enforcement can take place later in the pose

estimation process, pose recovery and tracking can be made easier. Specifically, part-based representations

facilitate bottom-up pose reconstructions where parts are searched for in the images independently first and

only assembled later to produce consistent pose interpretations. Part-based models can be used both in 3D

and 2D.

In our simulations, we represent the body of the person as a collection of independent parts. We constrain

the parts by articulation constraints in simulations such that the parts remain connected during pose updates.

2.1.2.2 Shape Models and Appearance Models

In order to detect the pose of the body in an image, it is often necessary to characterize the shape of the

parts and their pixel-wise appearance in the image plane. This information may be used to predict how a

hypothesized pose may look like in the image and to determine consistency with the image. It can also be

used to look for parts of the body in the image directly.
1In special cases, only orientation of the root part with respect to the camera is encoded.
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These imaging aspects are usually encoded using the models of body shape and appearance. These

encodings can be either quantitative, such that the exact shapes and pixel values are stored, or qualitative,

using statistics. For many applications, reconstruction of the pose is not the final goal and knowledge of

the exact shape or appearance may be required. Towards that end, quantitative models maintain an explicit

geometric representation of the shape and texture for the body model, such that it is possible to generate an

image of the model from a given view. Quantitative models, on the other hand, do not record exact geometric

and textural representations but provide qualitative information that characterizes the shape and appearance

in one way or another. Qualitative representations of shape are often fused with qualitative representations

of appearance such that only statistics over pixel values for the body need be stored. Shape and appearance

models take different forms and can represent both 3D and 2D information.

3D Models. Shape of the human body in 3D has traditionally been modeled as a collection of rigid parts. In

the context of computer vision, simple parametric representations by geometric primitive,s such as truncated

cones [46, 162, 157], cylinders [160, 158], ellipsoids [24] or superquadrics [58], have been explored due to

their simplicity and ease of use. More detailed rigid polygonal models [99] have been studied as well.

Despite the successes, it has been recently argued that rigid representations of shape do not facilitate

accurate pose inference. Specifically, fine details in shape such as a stretching of skin about joints or bulging

of muscles can not be expressed well using a rigid model, suggesting image evidence can not be explained

fully using these models. Consequently, more complex and realistic deformable models of the entire body

[69, 172, 57, 15, 14] that are capable of modeling subtleties of the human shape have been explored. These

detailed models were originally used in the context of image synthesis in computer animation. In vision, they

have been used to enable joint estimation of the 3D polygonal surface of the body and the pose. In its most

simplistic form polygonal models were used as passive templates [15] that replaced rigid parts with a smooth

polygonal surface that deformed with the motion of the underlying skeleton (skinning). In Starck et al.[172],

the mesh model was actively deformed and vertices in the model moved through optimization in order to

explain image evidence the best. The data-driven models of Balan et al.[14] and Guan et al.[66] make this

optimization more tractable by ignoring clothing and optimizing in a low-dimensional statistical space of

“naked” body shapes conditioned on the pose. In order to consider clothing and to explicitly model small

scale deformations of the skin and garment, Gall et al.[57] optimizes for an offset from a deformed mesh

produced by the skinning method of Kavan et al.[82]. This particular shape model is more general and is not

limited to humans. Specifically, the model has been illustrated to be capable of fitting surface of animals as

well.

In the context of 3D pose estimation and tracking, relatively simple appearance models of the body shape

have been used. In most cases, shapes have been modeled as solids in the image plane that are optimized

to cover a foreground blob obtained by foreground segmentation [14] or whose outlines are to coincide

with edges in the image [46]. Sometimes, statistical features, computed over local image patches centered

at detected keypoints in the image, are used to establish correspondences between keypoints in different

views and frames [69, 172, 173] and use them as soft constraints for the reconstruction. With that said,

more elaborate models of 3D surface appearance are usually not built or are only used for visualization

purposes [69, 172, 173] and not to aid pose inference. A notable exception to this common practice are the
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works of Sidenbladh et al.[160, 158] and, more recently, Balan et al.[12] and Guan et al.[66]. Sidenbladh et

al.proposes a generative texture-based model of part appearance where 2D pixel-wise texture of individual

parts is maintained by the appearance model and mapped onto the body surface in order to verify consistency

of future pose hypotheses with images. In Balan et al.and Guan et al., surface appearance is modeled as a lit

textured surface. In their case, the estimated texture records diffuse reflectivity of the points on the surface

(albedo) and the final shaded appearance of the body is obtained by rendering, considering the estimated

position of the light source. It was then demonstrated that such a representation of appearance facilitates

inference of both the shape as well as the pose of the person.

2D Models. As a computationally more attractive alternative to 3D models, shape and appearance of the hu-

man body have also been modeled directly in 2D. Two-dimensional models are particularly popular because

they work with images with clutter, in presence of unknown backgrounds, occlusion and under the effects of

lighting artifacts, substantial pose changes and across many subjects, [6].

In 2D, body parts are most often modeled as rectangles [72, 107] or general planar patches [79] that

can rotate [72, 107], scale [4] and/or skew [51, 163] in order to accommodate the 2D body pose. These

shape models are typically integrated with appearance models to characterize pixel values within the parts.

The combined models are then used to help localize the parts in the image. In the early work of Ju et

al.[79], textures of planar parts were captured in the initial frame and optical flow was used to predict the

locations of the parts at later frames based on the pixel correspondence. More recently, however, general

qualitative appearance models [51, 211] became widely used. This adoption was mostly due to the fact that

qualitative appearance models could use discriminative statistics that could capture how the parts stand out

from the background as opposed to how they look like exactly, and the used statistics were robust to changes

in pixel values in presence of subject, clothing and illumination changes. Furthermore, parameters of these

models could be learned automatically from annotated training images [51, 6, 211] and the models could

be automatically adapted [142] to observed subjects during pose estimation. Lastly, these representations

allowed for efficient inference [163] of 2D pose.

When accurate recovery of 2D shape is required (e.g., so that the person can be segmented from the back-

ground), the representation of parts by rectangles is too crude. In order to model body outline more faithfully,

it has been recently proposed to explicitly represent the shape of the entire person using a deformable shape

model [55, 65]. In contour person model of Freifeld et al.[55], shape of a “naked” person is modeled as a

single closed contour using a 2D version of the statistical 3D shape model from Balan et al.[14]. Similarly

to the 3D naked model [14], this 2D model is capable of capturing effects of local non-rigid deformation

of the skin in response to the motion of the underlying 2D kinematic model as well as to model variability

of body shape across population. This model was recently extended by Guan et al.[65] to explicitly model

shape deformation due to clothing, allowing the shape model to fit image observations better. Contour shape

models have so far been combined with simple appearance models: contours should appear as edges in the

image and statistics of pixel intensities and colors inside and outside of the contour should differ [55], making

the segmented shape stand our from the background.

In our work, we represent parts in the body using 3D rigid geometric primitives. We model the appearance

of the parts as solid regions in the 2D image plane that we obtain by projecting the 3D geometry through the
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calibrated camera(s). We now move onto the discussion of what information we can extract from images in

order to enable matching of poses to images.

2.1.3 Image Observation Models

Images from the input video sequence constitute the only source of information for the vision-based motion

estimation system and provide cues through which the person can be observed. This information is generally

referred to as observations, image evidence or image features. Image features can take a number of distinct

forms that are abstracted by a feature model.

Feature models quantitatively or qualitatively describe regions in the image(s) so that the pose, shape,

appearance and motion of the person can be estimated. These descriptions characterize images at different

levels of abstraction. At the lowest-level, individual pixels in the image are described. These low-level

descriptions, or low-level features, are extracted directly from the images by applying simple operations at

the individual pixels and provide information on e.g.color, edges, gradients or silhouettes of objects in the

scene. Higher-level descriptions, abstracted by image descriptors, combine information from lower-level

features in order to qualitatively describe larger regions in the image. Ideally, image descriptions should be

invariant to noise and differences in lighting and imaging conditions so that images can be described robustly.

The particular choice of the feature model is typically dictated by the employed inference method and the

associated models used to represent the pose, shape and appearance of the person. We list some of the most

popular feature models next. These models are usually combined in practice in order to build more powerful

models that can exploit multiple sources of information.

2.1.3.1 Low-level Features

Silhouettes. Many current vision-based systems for pose estimation and tracking start the analysis of an input

image with explicit segmentation of foreground objects from the background so that further analysis can be

focused only to the foreground objects of interest. During segmentation, a binary image mask is constructed

to identify pixels in the image “foreground”. Assuming the person is the only foreground object in the scene,

as is often the case in controlled environments, the foreground segmentation mask quantitatively describes

the silhouette of the observed person.

Silhouettes are quite popular for pose estimation and tracking in computer vision because (1) silhouettes

can provide powerful cues on both the pose and shape of the body of the person [81, 46, 14, 66], (2) can

be directly matched to hypothesized silhouettes synthesized by the shape model with respect to a proposed

pose [81, 44, 46], (3) silhouettes can be extracted from images quite reliably and efficiently in controlled

environments and (4) knowledge of the silhouette mask allows to exclude irrelevant portions of the image

from further processing.

Silhouettes of foreground objects have traditionally been obtained by background subtraction, that is, by

thresholding differences of pixel values in the input image from the pixels in a known background image.

In chroma-keying [42], pixels in the background image are all supposed to have a single color distinct from

the clothing of the person, usually blue or green, so that extraction of the silhouette of the person can be
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implemented by color thresholding. For less controlled environments, such as outdoors, per-pixel statistical

models of background pixel values can be learned. Foreground silhouettes can then be extracted by thresh-

olding “distances” of the pixel values of the input image from the distributions of the background pixels. In

most cases, these distributions are either modeled as static Gaussians [204] or adaptive mixtures of Gaussians

[174]. The mixture of Gaussians model [174] is particularly appealing because its multiple modes can model

repetitive changes in the background (e.g., motion of leaves in the wind, rain, a construction flasher, etc.) and

the modeled distributions of background pixels can adapt to slow changes in the environment (e.g., day and

night, placement and removal of objects to and from the scene, etc.).

With that said, accurate recovery of silhouettes in general environments remains a challenge, especially

when objects move rapidly, change their appearance with pose and in presence of clutter, occlusions and

strong lighting and imaging artifacts (e.g., specularities, shadows, image blur). While more complex segmen-

tation models have been proposed, more recent 2D methods [142, 52, 6, 211] for motion and pose estimation

do not rely on explicit pose segmentation and estimate poses directly from unsegmented images, or estimate

the pose and the segmentation of the person from the background simultaneously [124, 65].

Edges. Edges are another popular means of describing images at the low level. Edges correspond to the points

where pixel values or gradients change discontinuously and thus localize important structural aspects in the

image, including boundaries of objects, changes in surface properties or variations in scene illumination that

may be relevant for further analysis of the image. Unlike silhouettes, edge features describe images locally

and capture fine details of the shape, both at its boundary as well as in the interior. As such, they can be

used to disambiguate poses that yield similar silhouettes, support more exact matching of shape boundaries

to the actual outlines observed in the image [58] or accurately segment the person from the background [65].

Similarly to silhouettes, edges can be directly matched to proposed segment boundaries [71, 58, 46] and can

be extracted from images efficiently.

Most often, edges are localized by edge detectors that look for excessive magnitudes of first-order image

gradients or zero-crossings of second-order image derivatives. Because image derivatives are used for edge

detection, edge features are usually robust to local changes in contrast and lighting, making them appropriate

for modeling appearance templates for segments in the body model [142] and using them as building blocks

for higher-level descriptions of images. For pose estimation, edge features are usually used in conjunction

with other features (e.g.silhouettes, gradients or color information) so that edges can be matched to the shape

model robustly in complex and cluttered backgrounds, where only a small fraction of detected edges is

relevant for the estimation of the pose of the body.

Color. Images are also often characterized in terms of their pixel-wise color properties. Models of pixel

colors, as discussed above in the context of background subtraction, have been used to discriminate fore-

ground pixels from the background. Similar principles can be used to model color appearance of segments in

the body and to segment parts from other parts. However, because color appearance varies over people and

time significantly e.g., due to clothing and lighting conditions, building color models that would be general

is difficult. Consequently, learned models of pixel color have mostly only been used for skin detection [78],

utilizing the fact that skin color tends to remain distinctive even in presence of lighting variations. With that in

mind, Lee et al.[95] uses skin detection to help localize position of the head and hand segments in 2D. Other
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methods [204, 85, 135] learn color appearance of parts online from the input image, by clustering pixels with

similar colors to compact blobs. In Park et al.[135], extracted blobs are associated with parts in the body and

tracked over time while gracefully handling self-occlusions and occlusions by other tracked people.

More recently, statistical color models have been combined with other feature models in order to build

qualitative appearance models for the parts in the body. These models are then used to verify hypotheses

about the locations and shapes of the parts proposed by a pose inference mechanism. The models characterize

foreground regions for the proposed parts together with adjacent background regions and measure how the

proposed foreground regions stand out from the background, rather than what the regions look like exactly.

In Roberts et al.[146], this technique is implemented in the form of probabilistic shape template masks.

These masks are superimposed on the hypothesized parts in the image and color appearance models of the

shape foreground, defined by a given mask, and adjacent background are learned from the pixel values in

the masked foreground and background regions. The quality of the segment hypothesis is then scored based

on the difference of the foreground and background appearances, assuming the appearance of the foreground

should be significantly different from the background for a valid hypothesis. A similar idea is exploited by

other methods [141, 77, 65]. In Johnson et al.[77], candidate segment locations are first proposed based on

edge/gradient cues [41] and the appearance of the foreground is learned from the pixels along the medial axis

of the hypothesized shape. Ramanan et al.[142] and Ferrari et al.[52] employ an iterative “parsing” technique,

where segments are first estimated using a weak edge-based model and a non-informative appearance model.

The initial estimation results are then used to update the foreground and background color models for the

parts and the parts are re-estimated using the updated models, possibly repeating the process. Ferrari et

al.[52] propagates cues and appearance models across multiple frames in order to re-estimate appearance and

poses in TV movie sequences.

Texture. As an alternative to the representation by colors, appearance of parts can be described by encoding

textural structures of the surfaces of the shapes of the parts. These structures can be modeled quantitatively

as bitmaps that directly record pixel values [79, 69, 172, 173, 160, 158] (or albedo [14, 65]) mapped onto

the 2D or 3D surface of the shape, or qualitatively using statistical models. In pose tracking, the bitmap-

based descriptions are used as templates that are matched to pixel values in images in order to localize parts.

The templates can either be captured before tracking [99] or estimated together with the shape and pose

[160, 158, 14] during tracking. Statistical models of texture, on the other hand, describe the surface structure

in terms of qualitative properties (e.g., histograms) such that it is possible to discriminate whether a given

region has the same texture/material as another and separate (segment) the two regions from each other in the

image. Similarly to the statistical models of color appearance, statistical models of textural appearance can

be used to discriminate between foreground segments and background regions and can be learned efficiently

from images [6].

Textural appearances are most often modeled statistically as a set of responses of oriented Gaussian

derivative filters of different orders, orientations and scales [114, 51]. Following bag-of-words approach for

statistical classification, Malik et al.and Leung et al.[114, 100], quantize and match the responses of filters

to learned prototypical responses called textons and characterize the texture of the given surface patch as

a histogram over textons. For discrimination between two textural appearances, χ2 difference of the two
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histograms is used. Mori et al.[124] uses this textural appearance analysis for clustering pixels into small

coherent regions called superpixels [145] and assembles the superpixels to form parts of the body.

Optical Flow. Optical flow records relative pixel motion between frames in an image sequence. This relative

motion can then be used to segment moving objects from the background, solve for motion of the parts in

the body model [79] or used to validate hypotheses about velocities with which the parts in the body move

[27] while estimating the motion of the person. With that said, recovering optical flow is itself a hard open

problem, especially when images are corrupted with noise, there are many objects in the scene that move in

different ways and occlude each other and when the lighting conditions and appearance of objects change.

We now look into more global image features that operate on a higher level of abstraction. Contrary to the

lower-level features that only analyze edges, colors and textures, these higher-level features provide a more

abstracted understanding of the image and the regions within the image and allow to e.g., match one image

region to a similar instance of the same region in a different image/view.

2.1.3.2 Image Descriptors

Image descriptors are higher-level image features that characterize regions of interest within images at a

higher level of abstraction by aggregating information from lower-level features such as edges, color and

texture structure. These descriptions are qualitative and are designed so that they can be computed robustly

from incomplete and noisy image observations and under image perturbations.

There have been many descriptor types with different properties studied in the literature. Despite the

differences, the goal of all types of descriptors is to provide a concise high-level descriptions of image regions

that are distinctive and robust to image perturbations. In addition to these properties, many descriptions are

also invariant to specific geometric and photometric transformations of the images and objects within the

scene, enabling applications in e.g., object recognition, surface matching, and image indexing, that could be

realized by operating on these abstract descriptions of the images. Here, we list some of the most common

image descriptors used for pose and motion estimation and refer the reader to the survey of Mikolajczyk et

al.[119] for a more detailed information on image descriptors.

Histogram of Oriented Gradients (HOG). Histogram of Oriented Gradients [41] decomposes an entire

image patch to smaller rectangular cells of the same size and describes the cells by discrete distributions of

oriented gradients (edge directions) detected for pixels in the cells. This description is compact, discrimina-

tive and robust to noise, background clutter and minor variations in the shape and appearance of the object

depicted in the patch. Specifically, the description of cells by distributions implicitly records information

about which edge orientations are dominant in which cells and thus encodes a generic template of the shape

and its appearance. Because orientations are quantized, minor geometric and image transformations applied

at the patch produce identical or similar descriptors, as long as dominant edges fall into the same cells and

maintain their same quantized orientations. Lastly, edges tend to be preserved when images are corrupted

by noise, making them appropriate for higher level descriptions of images and matching. For improved ro-

bustness to additional photometric effects, cells can be combined into overlapping blocks and contrast in

the blocks locally normalized before edges are extracted. Although the descriptor was originally proposed
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to parameterize appearance of pedestrians, HOG descriptors have recently been shown to be effective for

modeling shape and appearance of 2D parts in body models [77, 211] and used for pose estimation.

Shape Context. Shape Context descriptor [20] encodes a distribution of quantized vectors that connect the

center of the image region with the points on the edges within the region. Unlike, the HOG descriptor, the

Shape Context descriptor splits the image region to a log-polar grid and characterizes the entire region by a

single histogram, encoding how the shape/edges vary with respect to the center point. Entries in the histogram

are associated with cells in the grid and record how many points on the edges belong to a particular cell.

Similarly to HOG, quantization makes the representation invariant to minor shape deformations and noise.

Shape Context descriptors were originally introduced to match contours of two shapes [20]. This matching

was realized by sampling center points on the contours and comparing descriptors computed from the center

points in order to establish correspondences between those points. More recently, Agarwal et al.[2] employed

a bag-of-words approach to construct a vocabulary of typical shape descriptors for person silhouettes and

described human poses in terms of histograms over code words in the vocabulary. Mikolajczyk et al.[119]

extended the Shape Context descriptor to record not only the distribution of the locations of the edges but

also the orientations. This extended descriptor was used by Andriluka et al.[5, 6] in their 2D pose estimation

approach for modeling the shape and appearance of limbs in the body model.

Scale-invariant Feature Transform (SIFT). Scale-invariant Feature Transform descriptors [111] describe

oriented image patches centered at distinctive points of interest (key-points) in the image. The orientation and

scale of a particular patch is automatically determined from the properties of the associated point of interest2

and the patch is described with respect to this orientation and scale. Hence, the description is invariant to the

global orientation and scale of the image. In computing the descriptor, the scaled and oriented image patch

is split to a rectangular grid and described in terms of its cells. Each cell is characterized by a histogram of

quantized gradient orientations weighted by the gradient magnitudes. These descriptions are distinctive and

robust to changes in illumination, noise and minor changes in viewpoint. In the original work of Lowe [111],

SIFT descriptors were applied at the problem of object recognition. SIFT descriptors were automatically ex-

tracted for a set of interest points detected in the image and their presence, spatial arrangement and similarity

to the descriptors extracted from training images were used as cues for the recognition of the object in the

image. In the context of pose and shape estimation, Starck et al.[173] used SIFT descriptors to establish

correspondences between points on the body of the person across different camera views.

We next talk about how we can use image features to estimate the pose of a person from a single still

image. In our work, we use silhouettes as the only source of information for the estimation.

2.1.4 Pose Inference

Pose estimation refers to the process of reasoning about cues extracted from image observations in order

to recover the configuration of the body of the person observed in the image. This process can be either

performed separately for an individual image or for a sequence of images as a part of frame-to-frame pose

2The orientation of the gradient at the interest point defines the orientation of the patch, scale at which the point was detected in the
image defines the scale of the patch.
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tracking, utilizing observations from many images. In this section, we review common inference methods for

estimating human poses from a single monocular or multiocular image. We note that many actual methods

for pose estimation employ generic inference mechanisms that are not specific to pose estimation. As such,

these general mechanisms are adapted to this particular application through the use of the models of the body,

shape and appearance. We have discussed these models in earlier sections and here we only review specific

inference methods.

The problem of pose estimation is most often formulated as a probabilistic inference of a distribution of

body configurations given observations extracted from the image, where the goal is to determine which poses

are more likely to be correct interpretations of the image for the given observations and which are not. This

probabilistic formulation naturally allows to incorporate uncertainty of the pose resulting from ambiguities

and noise in the image observations. For example, when image observations in the form of silhouettes permit

multiple correct interpretations for the pose, all such interpretations can have assigned high weights in the

recovered pose distribution.

For the purposes of taxonomy, approaches to pose estimation can be classified as those that directly

employ parameterized models of the body, shape and appearance (generative model-based approaches) in

order to infer the pose, and those approaches that do not (discriminative approaches). Generative methods

attempt to model the imaging process that produces the image and optimize for the parameters of this process

such that the synthetic image matches the features extracted from the observed image as closely as possible.

Discriminative methods, on the other hand, do not model the imaging process explicitly and directly focus on

learning the probabilistic mapping from the observed features to the pose parameters.

2.1.4.1 Generative Methods

Analysis-by-synthesis. Generative methods aim to explicitly model the pixel formation process that produces

an image of the person. Assuming pixel formation can be characterized using a parameterized model that

encodes various aspects of the imaging process, including e.g., pose of the person and shape and appearance

of the body of the person, any observed image can be “explained” by a suitable set of model parameters that

will reproduce this image. Pose of the person can then be estimated from an input image by maximizing an

objective function (energy) that measures similarity between the observed image and the image synthesized

by the model from a proposed set of model parameters, using the optimized parameters as an interpretation

of the image and the pose of the body. The similarity measure is implemented by an appearance model.

It scores the plausibility of the image interpretation with the model parameters in terms of how well the

synthesized image matches the features extracted from the observed image. This approach to inference is

in the literature known as analysis-by-synthesis or generate-and-test, reflecting on one of the possible ways

how representative model parameters can be estimated, that is, by generating hypotheses about the model

parameters and evaluating their objective values.

Optimization. Although conceptually simple, performing this optimization efficiently is difficult because

the objective function typically involves many parameters and the dependence of the function value on the

parameters is non-linear (e.g., because of edges in the image). The parameters of the generative model at the
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very least include the parameters of the body model, shape model and appearance model and form a vector

in a high-dimensional space. Even though some parameters can be known in advance and fixed, such as

the parameters of the shape and the appearance models, parameterization of the pose itself often produces

high-dimensional state vectors. In addition, although simpler lower-dimensional models of the human body

can be used to decrease the dimensionality of the search space for the optimization, such models may not

be expressive enough to explain the image evidence properly. Consequently, a good trade-off between the

simplicity and expressiveness of the models has to be found. The objective function itself may be complex,

discontinuous and can contain many local extrema that provide wrong interpretations of the image and leave

other parts of the image unexplained (e.g., two legs may occupy the same region in the image while the region

for the other leg in the image is not matched to any part of the body). To make the function better suited for

optimization, the optimization objective is often modified to penalize unlikely model parameters, effectively

imposing a strong prior over the parameters. In such cases, one then looks for image interpretations that

are both typical as well as explain the image evidence well. Despite these simplifications, characterizing the

distribution of model parameters and finding the most probable parameters is still problematic, especially

for models in 3D. Consequently, many optimization methods get trapped in local optima and rely on good

initializations to bootstrap the optimization.

The choice of a particular optimization technique to implement inference in a generative method is typi-

cally dictated by the representation of the body pose. We thus proceed with further discussion of optimization

techniques based on which pose models they exploit, considering the representations by kinematic trees and

parts, as discussed in Section 2.1.2.1.

2.1.4.2 Generative Inference with Tree Models

Kinematic Tree Models. Recursive parameterizations of the human pose by kinematic trees produce high-

dimensional vectors with coupled interrelated components3 that contribute to the model parameter set. Op-

timizing these parameters and finding a global optimum is thus a very hard problem. Many 3D methods

[58, 44, 168, 46, 14, 12, 66, 56] as well as 2D methods [72, 65] address this challenge by resorting to variants

of local search combined with various heuristics that let them escape some of the local extrema.

Optimization. This search usually takes the form of stochastic optimization that outputs a distribution over

model parameters given the image evidence, taking an initial estimate of this distribution as an input. Sim-

ilarly to particle filters, these distributions are approximated by so-called particles that record hypotheses

about model parameters with weights determined by their objective values. During optimization, new hy-

potheses are generated from the old hypotheses in order to explore the search space. Variants of simulated

annealing [46, 56], importance sampling [14], partitioned sampling [15] or genetic algorithms [72] are some

of the typical methods used for the space exploration. Deutscher et al.[46] follows the idea of annealing to

escape local extrema. Towards that end, particles in the particle set are propagated through annealing layers,

where each layer replaces particles in the set with new particles sampled in the neighborhoods of the old

3For example, the parameters of the location of a hand in the recursive parameterization depend on the parameters of the locations
for the forearm, upperarm and torso.
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particles. Weights of the particles used for the resampling are determined by the objective function whose

shape gradually changes from being flat to more peaked, encouraging the search to explore different parts of

the parameter space earlier in the annealing process and making the search more focused later. Bandouch et

al.[15] employs a hierarchical approach to sampling that partitions search space to subspaces and explores the

subspaces in stages. In the first stage, parameters describing the location of the torso are optimized. After a

good fit is found for the torso, parameters for the other parts are optimized, proceeding from the torso towards

the extremities.

Other methods [71, 58, 44, 168, 55] do not attempt to model the distribution over likely poses but directly

optimize for the most likely pose that provides the best interpretation of the image. Gavrila et al.[58] uses

the best-fit algorithm to search through the high-dimensional parameter space. Delamarre et al.[44] solves

for a corrective motion that needs be applied at the current hypothesis in order to bring the contour of the

synthesized pose into alignment with the contour of the observed person. Freifeld et al.and Guan et al.[55, 65]

optimize the objective using a local gradient-free direct search simplex method.

The success of the kinematic tree based methods depends on providing good initial estimates for the model

parameters that are close to the optimum. The initial estimates can either be obtained by using other inference

techniques [162, 167, 6], manually [66] or by utilizing parameter estimates from past frames [46, 14], when

pose estimation takes place for images in a sequence.

2.1.4.3 Generative Inference with Part-based Models

Part-based Models. While kinematic tree models parameterized body poses recursively and facilitated top-

down inference (only hypotheses about the entire pose were made), part-based models parameterize body

parts independently and enable bottom-up inference of the pose (hypotheses about different parts can be

generated separately). In the part-based approach, search for the pose is decomposed to a number of simpler

searches: parts in the body model are first detected in the image as independent entities based on their

appearance, then they are assembled into consistent body configurations based on the spatial arrangements

of the part detections. Part-based models have so far been most often only used for pose estimation in 2D

[51, 163, 142, 52, 5, 6, 65, 211], but 3D methods [162, 94] have been implemented as well.

Pictorial Structures. This concept of bottom-up inference and of modeling deformable bodies as collec-

tions of rigid parts was first introduced by Fischler et al.[53]. In this pictorial structures model, parts were

connected by manually tuned “springs” that encoded desired spatial arrangements of the parts and the ap-

proach was demonstrated to localize eyes, nose, mouth, head top and cheeks of the human face in images.

This concept was later revisited by many others, this time for modeling the human body. In these modern

implementations [51, 162], the bottom-up pose estimation has been formulated as a generic stochastic infer-

ence in a Markov Random Field where nodes correspond to the parts in the body model and edges represent

potentials encoding spatial constraints between the parts. The estimated parameters for each part typically

consist of the location, orientation and scale of the part in the image plane for 2D models and the position and

orientation in world space for 3D models, assuming the shape of the part is known. A variety of algorithms

were used to perform the inference in this model: belief propagation (phrased as dynamic programming)
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[51], approximate belief propagation [162, 163, 6] or branch and bound [178].

Perhaps the most influential implementation of a pictorial structures model is that by Felzenszwalb et

al.[51]. In this work, a computationally efficient framework based on dynamic programming is introduced.

This implementation can infer globally optimal pose of the person when (1) constraints in the model are only

formulated over adjacent parts in the body articulation and (2) the corresponding potentials due to constraints

are Gaussian. However, both of these requirements are not practical. One of the issues that are desirable to

avoid is that of double counting, when multiple parts (e.g., the left and the right arm) are assembled to occupy

the same region in the image. Such body configurations are legal in the original model and can only be

avoided in a principled way by incorporating additional occlusion and non-penetration constraints over non-

adjacent segments [163]. Doing so introduces loops in the graphical model representation and the dynamic

programming inference can no longer be used. To address this issue, Sigal et al.[163] uses approximate belief

propagation to handle models with loops. Tian et al.[178] introduces a branch and bound algorithm that can

find globally optimal body configurations even in presence of loops. To make constraints over legal poses

more informative, Andriluka et al.[5] shows that non-Gaussian priors over part locations can be expressed as

Gaussian priors by using transformations. Recently, 2D pictorial structures paradigm was extended by Yang

et al.[211] to model body as a composition of non-oriented semantic templates and search for the types and

locations of the templates that would match the image evidence the best. Because template types can have

associated semantic meanings, this model can capture not only spatial correlations between parts but also

correlations between semantics of their types, such as that open eyes tend to appear together with a smiling

mouth, etc.

Other Methods. Other formulations for part-based bottom-up inference have been proposed as well. Ren

et al.[145] looks for part candidates in an edge map exploiting parallelism of part boundaries. Parts are

assembled to a body configuration using Integer Quadratic Programming with constraints between body

parts. Mori et al.[124] uses local segmentation to separate image to coherent superpixels that are assembled

into parts. Parts are then aggregated into a body pose using a top-down combinatorial approach.

Discussion. Compared to kinematic tree models, the part-based search strategy makes the optimization more

tractable as well as more robust to occlusions or lighting variations because (1) hypotheses about individual

part locations can be generated and verified independently using local part detectors and (2) it can still be

possible to reconstruct the pose even when some of the parts can not be detected reliably. In addition,

because the part-based pose optimization methods do not require manual initialization, they can be used as

a preprocessing step for other methods, e.g., to bootstrap pose tracking or to initialize the kinematic tree

based pose optimizations [65]. On the other hand, part-based methods are not suitable for motion estimation,

because the independent search for parts makes direct incorporation of a global motion model (needed for

ensuring temporal consistency of the pose reconstructions) difficult.

Our approach uses a physical model to generate hypotheses for the whole pose, but optimizes over the

parameters of the physical model that drives the motion of the body to recover the pose, not the parameters

of the pose. We now consider a different class of pose estimation methods that formulate pose estimation as

a regression.
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2.1.4.4 Discriminative Methods

In order to avoid explicit modeling of the imaging process using a generative model, discriminative methods

directly learn mapping from observed image features (taken from either a single image [155] or images from

multiple views [60]) to the pose. In doing so, images and poses are described by opaque (uninterpreted) fixed-

length vectors that characterize the content of the image(s) and the correlations between poses and the vector

descriptions are automatically discovered from training associations using machine learning techniques. The

process of using a discriminative model consists of learning and inference. In the learning phase, typical

images with labelled poses are gathered (training dataset) and processed by the machine learning technique

of choice to learn the correlations. During inference, the correlations are used to recover the pose given an

unseen input image. The key questions that need be answered when designing a discriminative model are thus

(1) how images should be described so that the vector descriptions can discriminate between poses, (2) how

the training dataset should be obtained and (3) what machine learning techniques should be used to model

and learn the mapping from the image descriptions to the poses.

Bag-of-words, Probabilistic Regression. Discriminative models are often implemented through proba-

bilistic regression, where image features are regressed onto 3D [155, 2, 167, 23] poses, using parametric

[2, 167, 23, 132] or non-parametric [155] regression models. A prime example of the discriminative ap-

proach is the work of Agarwal et al.[2]. In this work, images are described following the bag-of-words

methodology, where image descriptions record histograms over learned prototypical shape context descrip-

tors [20] (“visual words”) found in silhouettes of common people. Any silhouette is thus described only in

terms of presence/absence of the prototypical shape context descriptors, ignoring the locations where they

were detected in the image. The obtained shape context histograms are mapped to poses using non-linear

unimodal regression by either a Support Vector Machine or a Relevance Vector Machine. In order to char-

acterize multi-modal pose distributions that result from observation ambiguities, such as when a particular

limb can not be seen or it can not be determined which side of the body is closer to the camera using the

observation model, Sminchisescu et al.[167] and Bo et al.[23] use Bayesian Mixture of Experts to model the

regression. Ning et al.[132] goes further and replaces shape context descriptors with appearance and context

descriptors [132] that are invariant to background clutter and allow for pose estimation without explicit back-

ground subtraction. Probabilistic regression based on Gaussian Processes (GP) models for large data sets

have been explored by Urtasun et al.[182].

Other Methods. As an alternative to the parametric models discussed above, Shakhnarovich et al.[155] pro-

poses a non-parametric exemplar-based method that implements computationally efficient Nearest Neighbor

regression and Kernel regression for large datasets using parameter sensitive hashing. By using an exemplar-

based method, arbitrarily complex correlations between images and poses can be represented in the model.

Discussion. Discriminative methods serve as a popular alternative to the generative models that do not require

any (or only very little) prior knowledge of the image, person or the imaging and camera conditions. Con-

sequently, discriminative methods have been successfully used to initialize local search in generative models

[12] and to initialize generative models for pose tracking in 3D, when the initial pose of the person, needed

for tracking, is not known. Note that all aspects of the imaging process, including the camera projection and



46

pixel changes due to the variability of the pose, shape and appearance of the person, are implicitly encoded

in the learned probabilistic function, based on how these aspects were captured in the training images. This

feature is both good and bad. On one hand, effects of all these aspects are encoded in the model automatically.

On the other, the fact that they are represented implicitly implies that huge datasets are required for training.

Obtaining such datasets and learning from those sets is difficult. First, the dataset needs to capture all possible

poses, shapes and appearances of people in images4. Consequently, it is difficult to build such large datasets

from real data, and many current methods, thus, rely on artificial sets produced by graphics software, result-

ing in learning the aspects of the synthetic imaging process of the particular graphics program as opposed to

the real-world process. Second, learning the mapping from these large datasets that can generalize beyond

the training data is both a difficult computational problem [23] as well as a hard machine learning problem.

2.1.5 Motion Inference

Motion estimation refers to the process of estimating a sequence of poses representative of the motion of the

person observed in the input images. Similarly to pose estimation, features extracted from images are used

to reconstruct the poses in the sequence. With that said, the estimation process is significantly different from

an iterated pose estimation applied at the individual frames separately.

First, the goal of motion estimation is to recover a pose sequence that is temporally coherent. That is,

the pose reconstructions in consecutive frames should be similar and consistent with respect to the model of

the body and ambiguities in the visual perception should be resolved consistently across frames (e.g., fore-

shortening of the body is not explained by changing the dimensions of the body and the left and right parts of

the body do not flip between frames). Ideally, the estimated pose sequence should look smooth and natural,

even when seen from a different viewpoint that was not used for the estimation. Second, cues extracted from

different image frames should participate in the inference in order to exploit important temporal correlations

between poses in the frames, resolve ambiguities and improve overall plausibility of the reconstruction. For

example, while it may not be possible to estimate the pose robustly for a particular frame due to e.g., occlu-

sions or lack of distinctive strong features, candidate poses can possibly be disambiguated by incorporating

features from other frames and/or using prior knowledge about the person and the motion. To address these

goals, motion estimation conceptually extends previous models for pose estimation by adding a notion of

time and by incorporating generative models of state dynamics to explicitly represent the evolution of model

states in time.

Motion estimation typically consists of two distinct phases: initialization, where initial models of the

kinematic structure of the body, shape and appearance are built (or specified by an operator) from the first

few frames in the sequence, and tracking, where these models are updated through time using a generative

inference framework to estimate the poses in the rest of the sequence. During tracking, a model of the motion

of the person, incorporated in the state dynamics, is utilized in order to facilitate continuity of poses, guide

the motion inference and resolve ambiguities.
4To reduce the size of the database and to avoid the learning of pose translation, training images are most often cropped such that

they only contain the bounding box of the person. In inference, a detection window is slid across the image and poses are detected
and recovered with respect to the position of the window. This strategy is equivalent to assuming that the camera implements
orthographic projection.
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In the rest of this section, we discuss some of the typical approaches to initializing tracking, models of

body state dynamics to model motion of the person and methods for 3D motion inference using these models.

2.1.5.1 Initialization

The purpose of initialization is to establish the initial state of the model, to be later updated during tracking.

The initialization comprises defining the initial kinematic structure of the body, shape and appearance of the

body as well as the initial pose of the person so that tracking can be started. The exact initialization procedures

are specific to the actual employed models of the body, shape and appearance and have traditionally been

treated as research problems of their own, separate from motion estimation.

The initialization procedures roughly correspond to two conceptually decoupled steps consisting of (1)

person-specific initializations that do not depend on the image sequence to be tracked and (2) initializations

that depend on both the person and the image sequence (activity). The first step can be thought of as a pre-

processing step that includes taking measurements of the body shape of the person in order to set up the shape

model [46], perhaps followed by the capture of the appearance of the person [69, 172]. Kinematic structure of

the body is often assumed to be given and fixed by the motion estimation algorithm. This pre-processing step

typically needs only be performed once for a particular person and the scene. The second step in initialization

consists of establishing the initial pose of the person in the first frame of the image sequence in order to allow

tracking. Both the two initialization steps can be done either manually or by making use of some level of

automation.

Earlier methods for 3D motion estimation employed relatively simple shape models consisting of pa-

rameterized rigid primitives associated with segments in the body model. Parameters of such shape models

incorporated direct anthropometric measurements including lengths and widths of limbs and were most often

either measured/tuned manually [46] or obtained automatically using optical motion capture [13]. Gavrila

et al.[58] estimated shape parameters automatically from an image of the person in a predefined calibration

pose. The idea of calibration poses, further developed into general calibration protocols, was later used to

estimate parameters of more detailed body shapes such as meshes, [69, 15]. Similar manual procedures

[44, 46], procedures utilizing optical motion capture [13] and vision-based calibration protocols [58] were

used to provide initial poses for tracking. More recently, however, advances in discriminative pose infer-

ence from a single image made fully automatic 3D pose initializations possible. Such methods are robust to

variability in person appearance and background clutter [6] and either provide direct 3D pose initializations

[2, 132] or only 2D pose estimates [164, 6] that have to be mapped to 3D. Towards that end, Sigal et al.[164]

learns a conditional discriminative mapping from a 2D pose to 3D poses and samples from the learned pose

distribution to bootstrap 3D tracking. Newer methods combine discriminative pose inference with a gener-

ative inference. Balan et al.[12] uses importance sampling initialized by the discriminative pose estimation

approach of Agarwal et al.[2] to jointly estimate the 3D pose and shape of the person in one step. Gall et

al.[56] introduces a global generative pose optimization method based on simulated annealing that does not

require any initialization. The annealing approach is applied at every frame in the sequence to provide rough

estimates of the pose and the pose estimates are further refined by optimizing locally and jointly for the shape

and the pose in order to fit the image best.
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We initialize our model by manually providing a rough estimate of the initial pose and use a generic shape

model for the body that represents an average person.

2.1.5.2 State Dynamics

Models of body state dynamics capture evolution of body states (poses, shapes and appearance) from an

initial state over time. The purpose of state dynamics is to propose informative updates of the body model for

pose inference in future frames as well as to facilitate frame to frame consistency of the model representation.

Most often, shape and appearance of the body are parameterized relative to the pose [46, 14]. That is, e.g.,

instead of recording the actual posed geometric shapes, the shapes are determined from the parameterization

of the pose and the parameters of the shape model. This way, variations of the shape and appearance due to

pose changes can be separated from the encoding of the pose and modeled separately, independently of the

pose. Consequently, the representations of the shapes and appearance can remain fixed or nearly constant over

time. In other cases where shape and appearance models can be learned from individual images separately

[141], the representations may need not be tracked and propagated through time by the state dynamics model.

Consequently, in either case, modeling body state dynamics really means modeling pose dynamics and, as

such, pose dynamics is a major concern of our work.

State Dynamics. State dynamics models encode temporal relationships between body states in the frames in

the sequence and implicitly approximate underlying physical processes that govern the motion of the person.

The frame to frame state correspondences are typically characterized by conditional probabilistic distributions

encoding what states are more likely to follow a particular past state, with respect to some discretization of

time, as in

p(xt |xt−1). (2.1)

Here, xt encodes the body state at the discrete time instant t and xt−1 records the state at the corresponding

preceding time instant t − 1. In accordance with standard practices in computer vision, the time instants

correspond to times of frames and t thus indexes frames in the sequence (as opposed to provide a physical

time of the frame when it was taken by the camera). We may use the terms time t and frame t interchangeably.

Motion Model, Predictions. Most often, parameters of the shape and appearance models are fixed in the

model and only the representation of the pose is allowed to change. Hence, typically, xt = qt , where qt

represents the kinematic pose of the body at the time t. A great deal of modeling state dynamics thus consists

of representing the relationships between consecutive poses and we can think of the state dynamics model as

of the motion model of the person.

Given this model structure, state dynamics models can be used for making predictions about the future

motion of the person. Specifically, assuming an estimate of the initial state x1 at the frame 1 is given,

sampling the conditional distribution recursively for the future frames produces a hypothesized state sequence

x1, . . . ,xt that can be directly validated against image evidence within the context of an analysis-by-synthesis

framework in order to find the best interpretation of the sequence5. The ability of the state dynamics model to

produce accurate predictions is thus important for the success of such an approach for motion estimation. In
5The same pose sampling techniques are also used for synthesizing motion in computer graphics (see Section 2.3).
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general, predictions of the poses made by the model should be (1) close to the actual observed poses and (2)

physically feasible so that the recovered motion does not violate physical laws imposed by the body model

and the environment. Although the sampled sequences can be further refined by the inference mechanism in

order to better fit image observations (e.g., by applying local search on the poses), the refinement can cause

the poses to violate physical laws. Consequently, approximating the true physical processes that govern the

human motion at a sufficient level of fidelity in predictions is essential to physically plausible tracking.

Current Models. Most current approaches to tracking [160, 46, 22, 186] employ relatively simple models

of body state dynamics. In these approaches, the true physical dynamics of the human body is either approx-

imated in a very crude way, by only encouraging temporal coherence of model states [46], or indirectly, by

learning statistical models of human motion from reference human motion capture data, as in [186].

2.1.5.3 Linear Motion Models

Linear Dynamical Systems. To facilitate continuity in the recovered poses, motion of the person has often

been modeled as a Linear Dynamical System (LDS), where the state at the current frame was predicted by a

linear transformation of the past state with additive Gaussian noise, using

p(xt |xt−1) = N (Axt−1,Σ) (2.2)

with the matrix A to model the transformation of the past state toward the current state, N representing the

Gaussian noise function and Σ determining the amount of noise to be added to the transformed state. Variants

of linear dynamical models with different state representations and manually tuned [46, 13] or learned [133]

A matrices have been used in the literature. We review some of those variants next.

Smooth Prior. Earlier approaches to tracking by Sidenbladh et al.[160], Deutscher et al.[46] or Balan et

al.[13] model the motion of the person by the non-informative smooth motion prior,

p(qt |qt−1) = N (qt−1,Σ), (2.3)

assuming the relative motion between consecutive frames is small and can be explained by sampling from

Gaussians centered at the previous states. While effective for modeling slow low-energy motions such as

walking, the slow motion assumption can be easily violated for other sequences.

Higher-order Models. Other variants attempt to account for higher-order dependencies between kinematic

poses and permit larger changes in the pose between frames. Towards that end, body state representations that

incorporate histories of poses have been proposed6 and integrated with the motion model. Constant velocity

motion priors [133, 157] of the form

p(qt |qt−1,qt−2) = N (qt−1 + γ(qt−1−qt−2),Σ), (2.4)

where (qt−1−qt−2) is an estimate of the (scaled) body velocity and 0 ≤ γ ≤ 1 is a damping constant, are

an example of motion models that exploit this paradigm. North et al.[133] explored general higher-order
6For example, the body state xt at the frame t then consists of the parameterizations of the kinematic poses q from the frames t−K

through t, xt = [qt−K , . . . ,qt ], where K is the length of the pose history to be accounted for.
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histories of kinematic poses from the past K frames with the transformation matrices A learned from training

motions. It was shown that the learned structure of the matrix A allowed to automatically capture the coupling

in the motion of different joints as exhibited during training, thus making the predictions more informed.

Switching Linear Dynamical Systems. With that said, linear dynamical models can only model state pro-

gressions that are linear, but human motion, in general, is non-linear (e.g., on change of foot contact). For this

reason, linear dynamical models have been extended to approximate human pose dynamics as a progression of

linear models that switch over time. These models, known as Switching Linear Dynamical Systems (SLDS),

consist of a set of LDS models and an indexing variable that determines which linear model is currently in

effect for making predictions. Pavlovic et al.[136] used SLDS models for tracking and synthesizing human

walking. Despite the successes, it is not clear how the switching mechanism scales for more complex motions

that require many LDS components or how the models can be constrained to only produce biomechanically

possible pose predictions, such as that joint angles would stay within their respective biomechanical limits

and parts of the body would not penetrate each other.

To address these concerns, it became customary to employ data-driven models that learn the non-linear

pose dynamics from offline demonstrations of a given activity.

2.1.5.4 Data-driven Motion Models

Data-driven models aim to utilize examples from a training motion (obtained offline by e.g., optical motion

capture) in order to learn what kinematic poses are typical for the particular person and the activity and to

learn how these poses can be sequenced into valid motions. These models are then used to formulate pose

dynamics with respect to the set of the typical poses and to bias pose inference during tracking to the poses

in this set. The set of typical poses can be represented either in the original high-dimensional space [155] or

in one of its many explicit low-dimensional embeddings. These embeddings have a long history in computer

vision [182, 33, 184, 7], graphics [196, 197] and robotics [76]. Here, we review the use of these models in

computer vision.

Linear Embeddings. For example, Sidenbladh et al.[158] and Urtasun et al.[184] learn a linear, activity-

specific kinematic model for the entire pose trajectory from a set of training sequences that capture the typical

variations in the execution and style of the activity. The set of training sequences is processed by Principal

Component Analysis (PCA) in order to (1) reveal the components that characterize the major stylistic vari-

ations in the pose and the pose sequencing and to (2) parameterize poses in motions that are similar to the

training sequences in terms of their stylistic parameters (as linear weights of the PCA components) and pro-

gressions along the motion (frame index). Linear dynamical models from Equation (2.3) are used to model

the evolution of the stylistic parameters and the frame index of the pose over time during tracking. Examples

of successful tracking of walking [158, 184] and running [184] using these models have been demonstrated

in the literature.

Non-linear Embeddings. With that said, typical poses often lie on a non-linear manifold in the high-

dimensional pose space, as is the case even for walking [184, 183], and the structure of this manifold may
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be parameterized more efficiently using a non-linear model. For this reason, explicit low-dimensional non-

linear activity-specific embeddings [33, 112, 166, 185, 183, 186] (or mixtures of low-dimensional linear-

embeddings [105]) became popular. Low-dimensional embeddings are particularly attractive because they

reduce the dimensionality of the search space and allow to formulate tracking and pose dynamics in these

more manageable spaces. For example, pose dynamics that is non-linear in the original high-dimensional

space may be well approximated by linear dynamics in the low-dimensional pose space. Models that are

capable of such embeddings often take the form of Gaussian Processes Latent Variable Models (GPLVMs)

[182, 185, 183, 186]. These models provide smooth probabilistic mapping from the low-dimensional poses,

either on the pose manifold or in the vicinity of the manifold, to the corresponding high-dimensional poses

and can model the uncertainty in this mapping. Therefore, they can facilitate efficient tracking in the low-

dimensional space. Furthermore, they can represent poses outside the training set and cluster poses that are

close in the high-dimensional space to the nearby poses in the low-dimensional space, such that it is possible

to refine a pose by refining its low-dimensional representation.

Multiple Embeddings. The embeddings from above are, however, only effective when they are built from

motion sequences that do not exhibit too much variability and when they all come from a single activity. To

enable tracking of different activities and styles in the same activity, multiple manifolds have to be built and

integrated with the model and transitions between the manifolds represented. Towards that end, Urtasun et

al.[185] constrains the topology of the learned pose manifolds. Specifically, the individual dimensions of the

recovered manifolds are confined to have particular semantic interpretations that represent different aspects

of the motion of the person, such as the motion style or progression along the motion, and manifolds are

switched based on this structure.

Discussion, Learning from Motion Capture. Note, in many cases, particular motion executions and styles

are largely driven by the physics of the human body and result from the interactions of the body with the

environment. For example, while walking up a slope, our body tends to tilt forward to counteract gravity

and to produce a more efficient gait. When moving on an icy surface, we are more careful about keeping our

body balanced at all times so we will not fall. These observations suggest that many interesting motions can

be generated readily from the physical and biomechanical principles of the human body. With that said, data-

driven methods do not learn these principles directly, because they are only allowed to observe the effects of

the principles, as they are exhibited in the training motion capture data.

Motion capture data can be thought of as a snapshot of the dynamics that occurred at the time when

the motion was captured and within a given environment where it was performed (e.g., typically on a non-

compliant level surface/ground). Models learned from such data are thus limited to a specific motion, or class

of motions (e.g., walking [183, 6], golf swing [186]), subject to the effects of the environment at the capture.

Consequently, when the effects of the environment change (such as when the floor becomes tilted), the learned

models have difficulty generalizing to these new situations. For example, if a data-driven model is trained on

the data of a person walking on level ground, the model may generalize well to other people walking on the

level ground with different styles or speeds [183, 6]. However, the model is not able to generalize to a person

walking up the stairs, because the necessary changes in the upper and lower body dynamics (only needed for

this particular activity) have not been observed during training and are due to physics of the human body that
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is not represented in the model. While, in theory, physical dynamics could possibly be learned from data that

captures all variability across all possible motion executions, styles and environmental conditions, obtaining

such amount of data is not realistic and in many cases not even possible (e.g., diving). Even if the data can be

captured, learning from such large data sets would pose a significant challenge. Consequently, representing

the physical principles that produce the desired motion explicitly in the model may be more effective.

2.1.5.5 Geometric Motion Models

To model geometric aspects of the human motion, geometric models attempt to directly constrain pose kine-

matics with constraints on the locations of body parts imposed by the environment [148, 147]. For example,

these models are able to encode constraints that the feet should not penetrate the ground plane [148] or that

the feet or hands must be in some fixed relative configuration (as dictated by the environment) with respect

to one another [147]. Such geometric models are not able, however, to allow dynamically plausible environ-

mental interactions, e.g., encode that the feet must be in contact with the ground in such a way as to support

the resulting motion so that the body stays balanced, etc.

2.1.5.6 Physical Motion Models

One way to address the weaknesses of all previous models is to incorporate physical and geometric constraints

directly in the motion model by using physical simulation and control, as we propose in Chapter 1. The

main motivation for doing so is that simulation and control allow to model the underlying physical and

biomechanical causes for the motion, as opposed to only the effects of these causes, as is the case with the

previous models.

Physical Models in Graphics, Features. Physical simulation has a large body of existing work in animation

[18, 70, 87, 126, 210, 215, 206, 40, 96] and robotics [32, 140, 171, 210, 209] and is now a commodity

technology. Together with control mechanisms [70, 40, 209, 96, 213, 43], that provide actuation forces to

actively actuate the body, simulation produces motions that are driven by physics and consistent with physical

laws. The simulation allows to naturally account for various physical factors that affect human motion, such

as a person’s mass, gravity, interaction with the ground plane, friction and responses to self-collisions and

physical disturbances. On the other hand, control allows to react to these aspects in order to produce motions

that adapt to the effects of the aspects and that are desired. Modeling all these principles makes it possible for

the model to generalize to different situations, by simulating the effects of the principles in these situations.

In the context of offline physics-based motion synthesis, optimization methods [138, 50, 151, 116, 108, 202]

have been used to generate physically realistic motions from constraints (e.g., desired poses at specific time

instants and foot placement constraints) and optimization objectives that abstract physical and biomechanical

aspects of the human motion.

The generalization capabilities of physical models and the ability to generate plausible human-like motion

have been so far demonstrated mostly in graphics and robotics, where physical models have been shown to be

able to faithfully model environmental interactions, plausibly re-target the original kinematic motions to other

environments [138], dynamic interactions with the environment [206] and temporal executions [116]. We
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conjecture that the use of similar models in motion estimation would allow generation of pose predictions that

are (1) physically plausible, (2) effectively generalize to a wide range of motion executions, environmental

conditions and perturbations (beyond the scope of data-driven methods) and that (3) do not rely on large

databases of human motion capture data. With that said, the use of physics-based human models for motion

prediction in vision has been limited to date.

Passive Dynamics Without Contact in Vision. Earliest work on integrating physical models with vision-

based person tracking can be attributed to Metaxas et al.[118] and Wren et al.[205]. Metaxas et al.approximated

physical dynamics of the human body by simulating an articulated model of the person under the effects of

damping forces. Because gravity and contact of body parts with the environment (and other parts) were not

modeled, the motion synthesized by the model was linear and resulted only from the velocity and inertial

properties of the parts. Consequently, it was possible to integrate the model with Kalman filter for motion

inference, but it is reasonable to assume that equally effective motion predictions and motion reconstructions

could be produced by using much simpler linear constant velocity models. Wren et al.utilized a similar model

of linear dynamics without control. Both these two methods were demonstrated to be able to track only sim-

ple upper body motions of stationary subjects in controlled environments without contact and required rich

image observations to facilitate tracking, including segmented 3D markers [118] and stereo features [205].

Abstracted Low-Dimensional Models for Walking in Vision. More recently, Brubaker et al.[27, 26] ex-

plored planar approximations of simplified lower-body dynamics for predicting walking on the ground plane.

Their 2D physical models, inspired by the powered walking model of Kuo et al.[93], modeled the human

body as a collection of connected point masses that represented the body center and two straight [27] or pos-

sibly bent [26] legs with rolling feet. This particle system was subjected to (1) external gravity and contact

forces to account for physically plausible interactions of the legs with the ground plane and (2) internal forces

to control and power the model. A controller of the model made the simulated body locomote and push for-

ward by applying (1) torsional spring forces between the legs and (2) “toe-off” impulses on the stance (back)

foot when transferring weight between the feet. By varying parameters of the controller, that consisted of the

parameters of the springs and the amount of the push on weight transfer, the controller was able to synthe-

size human-like gaits with different speeds and step lengths. This property was used for estimating walking

motions from monocular video using a particle filter as an inference mechanism. Similar to us in spirit, the

goal was to explain the motion of the person in terms of the parameters of the controller that would recon-

struct the observed motion the best. However, because the physical model operated only on the 2D simplified

model of the lower body of the person, pose predictions had to be lifted to 3D in order to enable full-body

3D tracking. Towards that end, an additional 3D kinematic model was introduced and tracked together with

the 2D model. Motion inference was formulated as that of over the control parameters of the 2D model and

that of the kinematic poses of the 3D model, constraining the motion of the 3D model to be consistent with

the motion of the 2D model. The remaining degrees of freedom that were not represented by the 2D model

(such as the global heading or roll) were let move freely, assuming smooth dynamics sampled by a random

walk. Note that although the motion of the underlying 2D abstract model was physically plausible, the final

reconstructed 3D motion was not a result of physical simulation. As such, the tracker was driven towards

physically plausible 3D interpretations but was not able to guarantee them.
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Our Model. In contrast to the above physical models, our physics-based approach is formulated directly

in 3D, models full body motion, is not limited to walking, or any other activity, and can guarantee that the

recovered 3D motions are results of raw simulations, as demonstrated in Chapter 5. Next, we discuss how

motion models can be used for motion inference.

2.1.5.7 Generative Inference

In this section, we outline a standard approach for motion estimation using a generative model. The approach

extends the pose estimation paradigm from Section 2.1.4.1 by using a generative model that characterizes

the imaging process of the person for the entire frame sequence, as opposed to only a single frame. This

imaging process is usually encoded in the model by characterizing (1) how body states in the frames can be

generated from an initial state through the use of a model of state dynamics (see Section 2.1.5.2) and (2) how

pixels in the corresponding images can be formed from the proposed body states using shape and appearance

models (see Section 2.1.2.2). This way, the variability in appearance of the person due to pose changes is

decomposed from the motion of the person.

Optimization Objective. Analogously to the pose estimation problem, the motion of the person can be esti-

mated from the input image sequence by maximizing an objective function that measures similarity between

the observed images and the images synthesized by the generative model from a proposed set of model pa-

rameters, using the optimized parameters as an interpretation of the image sequence and the motion of the

person. Once optimized, motion reconstruction can be obtained e.g., as the set of poses generated from the

optimized parameters. As before, the similarity measure can be implemented by a generative appearance

model of the body of the person. The measure scores the plausibility of the image interpretations with the

model parameters in terms of how well the synthesized images in frames match the features extracted from

the corresponding observed images and, due to the decomposition of appearance from the motion, can be

evaluated on the frame-by-frame basis using the methods from Section 2.1.4.1.

Note that the generative methodology for motion estimation can be combined with discriminative appear-

ance models and discriminative pose estimation for scoring the pose hypotheses from the motion optimiza-

tion. In this case, the generative model is restricted to modeling only state dynamics of the body, the objective

function is formulated with respect to a discriminative appearance model of the body of the person and the

synthetic images are not generated. Discriminative pose estimation models are then used to produce 2D or

3D pose estimates from the still images for the individual frames in the sequence and the poses proposed by

the motion optimizer are scored based on their consistency with these estimates. With that said, there are

no purely discriminative methods for the motion estimation itself; the generative inference framework is still

needed at least for the modeling of the motion of the person (in terms of state dynamics) and propagation of

the pose estimates over time.

Optimization. The generative motion optimization can be implemented within the framework of analysis-by-

synthesis, where the optimizer samples the underlying generative model to propose various interpretations

of the image sequence, the interpretations are scored based on their consistency with the observed images

(or individual pose estimates from the still frames) and the scores are used as a feedback to guide further
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optimization in order to find the best interpretation. This inference can also be implemented probabilistically,

where one is interested in recovering a distribution of likely image/pose interpretations given observed image

features. The main difficulties in performing this optimization are due to the number of parameters that have

to be optimized and the non-linear dependencies of the objective value on the parameters. The parameters of

the generative model for motion estimation need to encode at least the pose of the body for every frame in

the sequence and this number grows with the length of the sequence. Consequently, full optimization over all

parameters in the generative model soon becomes untractable.

Batch and Incremental Optimization. The optimization, as described above, assumes that it operates over

the entire sequence. This assumption may not be practical for long sequences and solutions that are able

to leverage information from only portions of the sequence, while only optimizing over smaller subsets of

the parameters in the model, have been proposed. Depending on what image observations participate in

the estimation of the pose for the current frame, methods for motion estimation can thus be classified to

those that perform the inference online and those that estimate the poses in the sequence in a batch. Online

methods combine the image evidence from the past frames and the current frame, without considering any

future frames. As such, online inference can proceed incrementally, without having to wait until the full

sequence is captured. Batch methods, on the other hand, operate on the entire image sequence, making use

of the full image evidence from all the past, current and future frames, thus having a chance to produce

more informed results. While appealing, the batch method can only be applied for short image sequences.

First, batch optimization requires all image evidence to be kept in the memory and to participate in the

inference, requiring to deal with huge amounts of data, which results in a significant computational burden.

Second, in many cases, it is not possible to optimize over the entire sequence at a time, because the number

of parameters needed to explain the sequence may be too high. In those situations, the optimization may

proceed incrementally, by e.g., only optimizing for a single frame at a time. Consequently, most research

effort has been concentrated on developing efficient online inference methods.

We next discuss previous optimization methods in motion estimation. These methods store an explicit

pose representation of the person in the model state for every frame in the sequence and propagate this pose

through time using a model of state dynamics. The particular type of the pose representation dictates how

state dynamics can be formulated and affects the structure of the search space for optimization. Therefore,

we review these methods based on the pose representations that they employ.

2.1.5.8 Generative Inference with Tree Models

Kinematic Tree Models. For the purposes of motion estimation, human poses in model states and motion

models have most often been parameterized recursively using kinematic trees (see Section 2.1.2.1), facili-

tating top-down inference. These parameterizations have become common in part, because they implicitly

honor body articulation constraints that request the parts to stay connected at joints. Consequently, when the

poses are updated by a motion model, the constraints remain always maintained, regardless of the formulation

of the model. Specifically, because the constraints do not have to be explicitly accounted for during inference,

black-box inference methods that do not have the knowledge of the constraints can be used and together with
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simple smooth or statistical motion models.

Using these pose representations, motion optimizations have usually been implemented incrementally

over individual frames. Each frame was interpreted using a local optimization over the parameters of the

model state at the given frame, initialized by the state predictions from the previous state by the state dynamics

model, either in 3D [58, 44, 168, 46, 14, 12, 66, 56] or 2D [72, 65]. We now describe this incremental

optimization in greater detail.

The entire incremental optimization is typically performed online, with the local per-frame optimizations

implemented using a stochastic search that exploits the sampling techniques similar to the techniques previ-

ously used for estimating poses from still images in Section 2.1.4.2. The main difference in this search is that

the sampling process now considers time. That is, model state hypotheses for the current frame are sampled

not only spatially (with respect to image coordinates in the current frame, as before) but also temporally,

making use of the motion model, to model how the hypotheses may change over time.

Per-frame Optimization. Extending the still image case, the goal of the per-frame optimization for the

current frame is to approximate the distribution over likely model parameters for that frame given the image

evidence from the first frame up to and including the current frame. As before, this distribution is usually rep-

resented by weighted particles that record possible hypotheses about the model parameters with the weights

determined by the values of the objective function evaluated for the hypotheses. Assuming the initial hy-

potheses for the first frame are already determined (or given), the entire incremental optimization proceeds

in steps to update the state hypotheses from frame to frame. At each step, the motion model is first applied

to the hypotheses from the previous frame in order to produce predictions about the new values of the model

parameters for the current frame. The predictions may then be refined using another local optimization in

order to fit the predicted parameters better to the actual image observations available at that frame and the

incremental optimization proceeds to the next frame.

A prime example of this concept is a particle filter, first used for vision-based tracking by Isaard et al.[74].

Other popular examples include simulated annealing [46, 56] and partitioned sampling [15], differing from

the basic particle filter in the sampling techniques they employ to explore the state space and in their abilities

to escape local minima.

In general, these classes of methods are called top-down because the hypotheses for poses are generated

for the entire body at once. Contrary, bottom-up methods discussed next generate hypotheses for parts of the

body separately and try to combine them in order to arrive at a plausible interpretation of the entire body.

2.1.5.9 Generative Inference with Part-based Models

Part-based Models. Part-based models parameterize segments in the body using independent coordinates,

attempt to locate the segments independently in the image and assemble the possible detections into consistent

body configurations using optimization, facilitating bottom-up inference. Conceptually, the optimization

proceeds similarly to the previous optimizations methods for kinematic trees, where the motion estimation is

formulated as a (probabilistic) optimization of an objective function.

In this case, however, the optimization is now more challenging because the objective function involves
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many more parameters, due to redundancy in the pose representation, and the parameters in the state vectors

for frames are constrained by constraints that have to be explicitly accounted for during the optimization.

Specifically, the optimization mechanism needs to be aware of the articulation constraints due to joints in the

body in order to produce consistent poses for frames that maintain these constraints. In motion estimation,

these constraints need be maintained not only for a single frame but also over time. Maintaining these

constraints exactly has been shown difficult and all previous methods that exploit the part-based approach

implement constraints only approximately, in terms of penalty terms in the objective function that penalize

the violations. Consequently, it is not guaranteed that valid poses will be found. As before, to handle the

high dimensionality of the optimization problem, the methods employ online incremental optimizations to

optimize the entire motion, where each frame in the image sequence, or a number of consecutive frames, is

optimized independently using a local optimization. Here, we illustrate one example of such a method.

Loose-limbed Model. Sigal et al.[162] proposes a loose-limbed model that extends the part-based optimiza-

tion for a still image to optimize pairs of consecutive frames in the sequence, and uses it to implement local

optimizations in the incremental optimization of the entire motion. Towards that end, pose estimation from

a still image is formulated as an inference in a graphical model using belief propagation and the graphical

model is extended to model temporal dependencies between frames. In this graphical model, nodes corre-

spond to states of body parts at individual time instants and edges encode geometric and temporal constraints

between the parts. The model can be seen as a model for a single frame that was replicated such that each

frame receives its own set of nodes and edges to characterize the state of the body at that frame. Nodes for

corresponding body parts from consecutive frames are then connected by edges to model temporal relation-

ships between the states of the parts, as dictated by the motion model. Motion inference then amounts to the

general inference in this graphical model, which contains loops.

Discussion. Part-based models can also be integrated with generative inference to validate pose hypotheses

produced by the previous top-down motion estimation methods. Towards that end, the objective function of

the top-down method can be modified to measure the similarity between the proposed full-body poses and the

results of the pose estimation from the single frame obtained using a part-based method from Section 2.1.4.3.

Effectively, the full-body poses are thus matched against pose detections, as opposed to image features,

replacing noisy image observations with more robust detections. A typical example of this approach is the

work of Andriluka et al.[6].

2.1.5.10 Inference in Our Methods

Our methods, as outlined in Section 1.5, follow the generative top-down approach for motion estimation but

differ from the previous top-down methods in a couple of critical aspects.

We exploit a compact representation of motion based on physical principles from Section 1.3.2 that re-

duces the dimensionality of the search space for optimization. Unlike the previous methods, we do not

represent poses in the motion explicitly, as a sequence of independently parameterized and tracked poses in

frames, but produce these poses implicitly, by simulating a physical model of the human body from an initial

pose. Furthermore, we do not store the current pose in the model state and we do not formulate optimization



58

in motion estimation as that over the kinematic pose. Instead, we represent parameters of the physical process

that produces the motion in the model state and optimize parameters of this process. The physical model ef-

fectively re-parameterizes the motion of the person in terms of control mechanisms that produce this motion

in simulation. This parameterization leverages the underlying physical structure of the motion and represents

the motion as a composition of physical actions that the person needs to perform in order to complete the

motion. This parameterization of motion, encoded in our generative model, is sparse and compact compared

to the previous representations by pose sequences. Consequently, our model is easier to optimize and also fa-

cilitates physically plausible motion estimation as stated in our problem statement (see Section 1.1). Because

we optimize over the control mechanisms for the entire motion, and not the per-frame poses, our method is

not similar to any of the previous methods.

Our methods exploit both the batch and the incremental approach for the optimization of the entire motion,

in terms of the control mechanisms that explain (portions) of the sequence. Unlike previous methods, our in-

cremental approach is able to guarantee that the current interpretation produced by the incremental optimizer

is physically plausible at any time in the process. Specifically, interpretations for new frames are optimized

in the process such that they will not break physical laws and will follow consistently on the interpretations

from the previous frames. When the incremental optimization completes, the entire motion is interpreted

by a single sequence of poses directly produced by physical simulation with the estimated controller (see

Section 1.4.3, Section 1.5 and Chapter 5).

2.2 Learning from Demonstration

Our research on human motion capture also relates to learning of controllers and policy functions for deci-

sion processes in computer graphics, robotics and artificial intelligence. According to our motion capture

formulation through controller capture (see Section 1.5.1), we aim to use the video as a demonstration of the

desired motion for a humanoid character and learn a controller that reproduces it. Consequently, we provide

a brief overview of general techniques for learning from demonstration, as currently applied to problems in

computer graphics and robotics, and discuss how the methods relate to our approach.

2.2.1 Overview

Learning from demonstration refers to a general methodology for deriving control “programs” for dynamic

systems, where the programs to achieve desired system dynamics (behaviors) are learned from recordings of

expert demonstrations of the dynamics. At the core of learning from demonstration is establishing of a control

policy for the system that decides what actions should be applied on the system when in a particular state such

that a desired demonstrated behavior is achieved. We assume actions are selected using a controller according

to a policy function that maps states of the system to the actions. The goal of learning from demonstration is

to learn a policy function for the controller by observing state-action pairs executed by an expert.

This methodology for deriving control is particularly appealing, because it allows users to focus on how

the desired dynamics can be demonstrated effectively as opposed to how it can be achieved in control. As
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such, it potentially allows users to program complex dynamic systems without having to actually derive math-

ematical formulas for the control. Consequently, the methodology has many applications. In robotics, this

methodology has been used to teach robots perform various skills, such as grasping objects [144], navigat-

ing environments [144, 88, 1, 214, 101] or playing robot soccer [64], among others. In computer graphics,

learning from demonstration has been used to animate life-like humanoid characters in virtual environments

[179, 97, 38, 102].

We next overview general methods for learning policy functions, focusing on applications in computer

graphics. Policy functions can take many forms and can be learned in different ways. Most often, policy

functions are learned through classification [152] or regression [153, 127, 61, 62], by using reinforcement

learning [165, 179, 97, 38, 102] or inverse reinforcement learning [103, 101], or other methods [144, 1].

Policy functions can also be built manually, as often practitioned in computer graphics (see Section 2.3.5).

We refer interested readers to the survey of Argall et al.[8] for a comprehensive review of methods for learning

from demonstration in robotics.

2.2.2 Regression and Classification

When temporal ordering of demonstrated state-action pairs is not considered in the learning process, the

policy function can be learned by either regression or classification. Regression and classification methods

use demonstrated state-action pairs to directly learn a mapping function from states to actions. The intent

of the learning algorithms is to approximate the policy of the expert such that the demonstrated states map

to demonstrated actions and meaningful generalizations are produced for states that are not present in the

demonstration. The particular learning methods primarily differ in whether the mapping functions produce

continuous or discrete actions. The methods also differ based on whether they require full demonstration data

during run-time or only an aggregate information extracted from the demonstration. In learning the mapping,

the methods build the mapping function either incrementally as demonstration data arrives or from the entire

demonstration in a batch.

Classification. In classification, the set of actions is discrete and the mapping function assigns input states

with action labels. As an example, Saunders et al.[152] uses action labels to identify primitive motor com-

mands for a robot, such as moving forward, backward or turning left or right, and implements the mapping

function using k-Nearest Neighbors classification. In Chernova et al.[34], classification is applied to the prob-

lem of simulated driving on a highway, where the simulated driver chooses between staying in the current

lane or shifting one lane to the left or right in order to avoid collisions with other cars.

Regression. In contrast, regression methods produce mapping functions that output continuously parame-

terized, and potentionally high-dimensional, actions. These outputs may be obtained by averaging actions

from state-action pairs using e.g., k-Nearest Neighbors regression [175, 21], by performing regression locally

over demonstrated states close to the query states [153, 127], by combining outputs from multiple regressors

[187, 61, 30, 64, 29] or by using other methods, such as Neural Networks [137]. Here, we illustrate a few

uses of such methods for applications in robotics. Locally Weighted Regression [153] has been employed
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by Nakanishi et al.[127] to learn desired pose trajectory for biped robot locomotion. A sparse incremen-

tal variant of the regression, Locally Weighted Projection Regression (LWPR) [188], has been explored by

Grollman et al.[61] for learning basic robot soccer skills. Later variants of this work [62] replaced LWPR

regression with Sparse Online Gaussian Processes [39] in order to reduce memory consumption and improve

computational performance for the learned tasks.

2.2.3 Learning State Machines

Multiple Actions. Regression methods are beneficial for modeling decisions for processes with continuous

actions in high-dimensional spaces. However, because they assume that the demonstrated state-action pairs

sample a policy function (as a mapping from states to actions), they are inherently limited to learning be-

haviors that are expressed as functions. As such, they expect that only one true action can happen in each

potential state and assume that similar states lead to similar actions.

This restriction may prevent successful learning of the demonstrated behavior [63], because either the

expert may be inconsistent in choosing their actions (e.g., different actions can be demonstrated for the same

or a similar state) or the information that the expert uses to discriminate the actions is hidden and not directly

represented in the state vector. For example, when the expert teaches a robot to scan a game field to look for

a ball using kinesthetic teaching (when the robot records its state as its pose is being physically manipulated

by an expert [30, 29]), the recorded state information in the demonstration may permit both a “turn-head-left’

and “turn-head-right” action when the ball is not seen. Although both actions are valid in the given situation,

they may be interpreted by the regression algorithm as noisy instances of a “keep-head-still” action encoded

as an average of the two other actions. Consequently, an undesired behavior would be learned [63].

Context for Regression. To address this difficulty within the regression framework, one may assume the

expert always selects the same action when in particular situation and attempt to recover the hidden contextual

information that allows to disambiguate actions. Using this decomposition, it is possible to learn policy

functions for different contexts using regression and use the policy function for control that is currently

applicable for the present context. For example, to disambiguate the “turn-head-left” action from the “turn-

head-right” action in the example above, the robot may need to be aware of whether it is currently scanning

the field from the right to the left or from the left to the right and apply different policy functions based on

this context. Additionally, to allow autonomous operation, the robot needs to know how contexts switch over

time such that e.g., the context for scanning from the right to the left becomes effective after the scanning

from the left to the right has completed (and vice versa).

Learning State Machines. Mathematically speaking, the problem of finding an appropriate decomposition

for the observed behavior can be phrased as a learning of a state machine for the behavior, where states

represent different contexts for regression and transitions encode when and how the contexts switch. More

generally, the contexts can be interpreted as identifications of subtasks within the overall task and the learning

of the state machine corresponds to the learning of the subtasks, policy functions for the individual subtasks

and transitions between them [63]. Our motion capture through controller capture attempts to achieve a

similar high-level objective, learning of a state machine based controller for the observed behavior. However,
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unlike the discussed methods, our approach is not motivated by the desire to resolve action conflicts in

regression but to segment the observed motion into longer-term actions that last over many steps (tens of

milliseconds), are specific to the motion and are separated by physical events. As such, our methods are both

more constrained as well as use different techniques for learning, based on optimal control.

Existing methods for learning state machines from demonstration in robotics often address only specific

parts of the state machine learning problem. When the number of states in the state machine and the policy

functions for the states are already known, methods that can learn transitions between the machine states are

available [21, 129]. If instead the number of states in the state machine and the transitions between the states

are given, policy functions for the individual states can be derived [149, 176, 128]. In the most general case,

when nothing is known about the task, methods that can estimate the number of machine states and policies

for the states have been implemented [64, 29]. However, with the exception of the method of Butterfield et

al.[29], they have been unable to learn transitions between the states. Given that our approach has a similar

constraint (we do not know the number of states in the state machine beforehand), we further discuss this

class of methods.

The goal of the method of Grollman et al.[64] is to determine how many subtasks there are in the demon-

stration and to associate state-action pairs from the demonstration with subtasks, such that policy functions

can be learned for each subtask using regression. The method learns states in a state machine, but it can not

predict when the current state should switch. Consequently, the method can not be directly used for control.

Niekum et al.[131] addresses a similar high-level goal of segmenting the demonstrated task into subtasks.

Unlike [64], however, each subtask is encoded as a dynamical system that starts in a particular configuration,

evolves over time and ends in a final configuration. Given the ordering of the subtasks in the segmentation,

the method is able to apply the learned dynamical systems on a robot in order to replay the demonstration and

adapt it to perturbations. With that said, the method does not learn general policy functions for the subtasks

and, similarly to [64], does not recover the principles that cause the subtasks to switch.

Butterfield et al.[29] recovers a full state machine with states for different subtasks, a model for switching

subtasks and policy functions for the states, where states correspond to different regression contexts. The

method uses Hierarchical Dirichlet Process Hidden Markov Model to encode the switching process and a

regression based on Gaussian processes to model per-frame policies for the individual subtasks. Our method

is different in assuming that states produce constant policy functions that select the same long-term actions,

and in conditioning the transitions between the states based on physical events, not decisions made by a

statistical model. We next discuss our methods for learning state machines and policy functions in more

detail.

Our Methods. Typical regression methods operate at the granularity of a few milliseconds, such that deci-

sions about actions are made very frequently. Contrary, for stability in physical simulations, we employ a

hierarchical form of control with a decision making process that selects longer-term actions and a low-level

motion control process that performs these actions using manually developed policies. We select actions

using a state machine that encodes the underlying structure of the observed motion. We learn the num-

ber of states and transitions within the machine automatically and jointly with actions for states (encoded

through control parameters) using incremental optimization. Estimated state transitions in the machine are
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conditioned on distinct physical events that happen in the simulated physical world, such as a change of foot

support or body contact. This modeling option promotes the success of learning from noisy observations, as

is our case, because it encourages recovery of longer-term stable actions. As such, encoding of the controller

is sparse and the learning of parameters for actions is reinforced by observations from many frames. The

conditioning of transitions on physical events also improves the ability of the learned controller to generalize

beyond the single motion demonstration, when the learned events happen at different time instants. Our pa-

rameterization of desired motion for the character using a sparse set of key poses have been previously used

in graphics [70, 213, 203] and robotics [3]. Effects of these sparse parameterizations on the ability of experts

to demonstrate motions to robots in kinesthetic learning of robot arms have been studied in [3]. Unlike the

previous work [64, 29] in learning state machines from demonstration, we do not recover a distribution over

state machines but a single state machine that best fits the observations.

2.2.4 Markov Decision Processes

We now consider a different class of learning algorithms that explicitly utilize temporal ordering of state-

action pairs in the demonstration, account for the dynamics of the system state in the process of learning of

the policy function, and permit multiple valid actions to be paired with the same state in the demonstration.

These algorithms are usually formulated within the context of Markov Decision Processes that we overview

next.

Markov Decision Process. A Markov Decision Process models decisions in a dynamic system with a set

of states, actions, transitions and rewards. At any time instant, the system resides in one of the states from

the state set and transitions to a new state by taking an action from the action set, where decisions to take

particular actions are motivated by rewards (scalar numbers). The problem within MDP is that of deriving

a policy for selecting actions, as a mapping function from states to actions, such that the cumulative reward

associated with the actions selected by the policy is maximized if the system runs for a long time.

In formulating real problems as MDPs, the goal is to encode all contextual information that may be

relevant for the optimal selection of the action for the task at the current time (and in the future) in the state

vector, such that the decision can be made locally, and only based on the current state. Assuming we can

model the contextual information for the task we want to learn, the policy function can be learned from

training data that demonstrates optimal decisions made by the expert in typical situations. Note that the

optimal policy does not necessarily choose actions with highest immediate rewards and instead considers

future consequences of the actions taken.

Example. Many practical problems of interest can be phrased as MDPs. Perhaps the closest field that uses

these models, in a way that relates to our work, is computer graphics, where MDPs have been used to model

decision processes for humanoid characters in virtual environments.

Consider a motion synthesis problem of stitching clips from human motion capture such that the modeled

character walks to a target (we discuss this problem in more depth in Section 2.3.3). This problem can be

formulated as an MDP using state-actions pairs, where (1) states encode potential contexts for the character

(pose, motion, obstacles, target location), (2) actions represent possible clips that can be replayed and result
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in the change of the state, and (3) rewards associated with the pairs encode how beneficial it is to select

a particular clip in a given state, such that the character moves towards the target. Given this abstraction

and assuming an initial state, the problem of the motion synthesis is to optimize for a sequence of actions

in the MDP such that the overall reward is maximized. While the optimization can be performed through

offline search, for each initial state of the character and the target location, it is often not practical because

the generated motion can not directly adapt to changes in the environment and the target location (without

reoptimization). As an alternative, one may attempt to learn what optimal motion clips are typically replayed

when the character is in a particular state [179] and use this information for the synthesis in place of the offline

search. The goal of learning from demonstration is to learn policy functions that can make these informed

decisions.

Policy functions for MDP problems are typically learned by either reinforcement learning or inverse

reinforcement learning, depending on whether rewards for actions are known or not.

Reinforcement Learning. Reinforcement learning derives policy functions for MDP problems with known

rewards for demonstrated state-action pairs. Because the learning essentially involves precomputing optimal

action sequences for all possible state combinations, the process requires some discretization [38] or approx-

imation [179] of the state-action space so that the optimal policy can be learned and stored in the computer.

Finding an appropriate discretization is a key challenge for applications in graphics, because state parameter-

izations are usually continuous [179]. In robotics, it is often assumed the space of actions is already discrete

such that actions encode basic motor commands for the actuation of a robot and, furthermore, the number of

possible actions is relatively low [165], which simplifies learning.

Inverse Reinforcement Learning, Inverse Optimal Control. Specifying appropriate rewards for actions

in a MDP can be non-trivial [8]. In fact, in many real-world cases, an expert may be able to demonstrate

what actions should be taken in specific situations while actually being unable to quantify the rewards (say

which action is better and by how much) and tell the motivations behind the particular decisions they have

made. As such, the demonstrated experience may very well depend on the expert’s intuition. Consequently,

for practical problems of interest, demonstrations often do not reveal the intent/objective of the motion and

this intent (encoded through rewards) has to be determined by the learning algorithm.

The problem of learning rewards from demonstration is known as inverse reinforcement learning [103,

101]. It is an instance of a more general inverse optimal control problem, where the goal is to learn the

objective for control. The problem is very difficult and only a few advances have been made so far. Current

methods for inverse optimal control model the unknown rewards for actions as either linear [144, 88, 214, 130,

101] or non-linear [103, 101] combinations of feature vectors extracted from the actions, where the weights

are optimized by the learning algorithm. Weights for the features have been optimized in the literature either

using methods based on large margin structured classification [144], using principle of maximum entropy to

resolve ambiguities in the weights [214, 101] or genetic algorithms [130]. In robotics, inverse optimal control

has been used to plan foot steps for a quadruped robot in challenging environments [144, 88], grasp objects

by a robotic hand [144] and navigate car drivers [1, 214], among others. Until recently, however, methods

for inverse optimal control required discrete state-action spaces. Motivated by the needs in graphics, Levine

et al.[101] uses local approximations of reward functions to learn rewards for high-dimensional continuous
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actions and demonstrates it is possible to learn driving styles for cars in physics-based 2D driving simulations

using their method.

2.2.5 Applications in Humanoid Motion Synthesis

Learning controllers for tasks from demonstration is a very appealing paradigm. It provides an automated way

to determine general control policies without having to manually program the control systems. Furthermore,

by having the systems learn the policies, the systems are forced to understand the underlying objectives

of the demonstrated behavior(s). Consequently, the learned control mechanisms may provide meaningful

generalizations when they are applied to systems in new situations that are substantially different from the

demonstrations. These properties are beneficial for applications in e.g., human motion synthesis in computer

graphics, where one may represent demonstrated motions for the character using controllers. Such a rep-

resentation of motions may be particularly helpful for human motion capture, as motivated in Section 1.3,

because it may allow to naturally adapt the observed motions to new environments and perturbations.

With that said, the current general methods for learning controllers are often limited to discrete control

spaces with a small number of dimensions, making them difficult to apply to problems in human motion

synthesis. In order to keep the dimensionality of the space low, one typically has to carefully engineer the

structure of the state-action space (and the set of features for actions when using inverse optimal control

methods), as required by the particular task. Specifically, one has to decide what information is going to be

stored in the state, what contextual information may be needed for decision making for the task and what

actions can be performed by the character. Given these difficulties, the general learning methods have to

date only been applied to selecting kinematic motion clips for characters from prerecorded motion databases

[179, 97, 102] (see Section 2.3.3) and self-balanced step-actions for simulated physics-based characters from

a motion library [38].

2.2.6 Relation to Our Motion Capture Approach

Our formulation of human motion capture through controller capture from video (see Section 1.5.1) relates to

general learning from demonstration. At the core, the underlying problem is the same learning of controllers,

except that observations, in our case, come from images. Despite this high-level similarity, we do not formu-

late controller learning within the learning from demonstration framework. Our approach to controller esti-

mation utilizes optimal control principles previously explored in computer graphics, assumes a physics-based

humanoid controller model from Section 2.3.5.2 and recovers the policy function using direct optimization.

We describe research in physics-based controller design that relates to our work in Section 2.3.5.3. We char-

acterize our approach by contrasting it to the general controller learning paradigms from above and provide

motivations for pursuing our specific formulation below:

• State-action space:

Current methods for learning controllers within the learning from demonstration framework require

state-action spaces with relatively small number of dimensions, have difficulty handling continuous

parameters in states and actions and require manual crafting of states, actions (and features for rewards
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in the case of inverse optimal control) in order to accommodate the particular task to be learned (see

Section 2.2.5).

However, actions in our control model have many dimensions and all parameters are continuous. We

also do not know which task we are going to observe and our motion capture approach needs to work

across all tasks that we may want to capture. Consequently, we need to use a method with a control

model that is not specific to any particular task. In our method, we use actions that are learned for

the observed task (i.e., they are not taken from a predefined motion library) and the learning proceeds

incrementally as video frames arrive.

• Demonstrations:

The general learning methods based on the learning from demonstration formulation typically require

many demonstrations of the same behavior (with necessary variation) in order to learn a meaningful

policy for the task. In contrast, our system has a chance too see only one such a demonstration and

learns the controller from this only motion instance.

2.3 Motion Synthesis

We estimate controllers within an analysis-by-synthesis framework with the synthesis component realized

using simulation and control. We implement the analysis component through optimization that we constrain

by constraints extracted from the images. In implementing the synthesis component, we use methods for syn-

thesizing physically realistic human motion from graphics and methods for humanoid control from robotics.

We review these methods and related work here.

Motion Synthesis. In this section, we outline methods for human motion synthesis. We assume the desired

motion for the synthesis can be abstracted using motion objectives that encode various constraints on the

motion of the character and survey methods from graphics and robotics that produce the motion that meets

these objectives.

The objectives for the synthesis can take many different forms and control various aspects of the motion.

The objectives also characterize the desired motion at different levels of detail and abstraction. For example,

in one case, the objectives may just specify a start and an end point for the character in the environment.

In another case, the objectives may prescribe the poses that the character should approach at specific key

time instants and when toes or feet should stay in contact with the ground. This form of encoding of desired

motion is appealing, because it allows to characterize key aspects of the motion while leaving unimportant

details unspecified and to be determined by the motion synthesis process automatically. The objectives can

be defined either by a user or generated programmatically.

Given the objectives, the goal of motion synthesis is to produce a pose sequence such that (1) the generated

motion is plausible with respect to what pose sequences are typical/natural for the character, as dictated by

an underlying motion model of the character, and (2) the motion meets the specified motion objectives. At a

high-level, we can produce motions using either data-driven kinematic methods or physics-based methods.



66

Data-driven Kinematic Methods. One of the typical ways to generate realistic animations in computer

graphics that meet specified objectives is to edit, blend and stitch clips from a prerecorded database of human

motion capture data. This data-driven process usually consists of two steps: (1) building a data structure to or-

ganize clips in the motion database and (2) using the data structure to search for an optimal sequence of clips,

that meet the objectives and is plausible, and assembling the clips into the final motion. The data structure,

built offline, represents the clips as well as records the possible ways how the clips can be stitched and blended

into new motions. Organizations into graph-like structures abstract this concept naturally. These structures

can be either searched for optimal motion sequences during runtime through planning (see Section 2.3.2) or

such searches can be “precomputed” by learning controllers (see Section 2.3.3).

Physics-based Methods. Kinematic data-driven models from above can only synthesize motions that look

human-like as long as they remain close to the sequences recorded in the motion database. In practice, it

means that either the repertoire of the skills that the character can perform is limited (because not all possible

skills and motion executions in all possible environments can be recorded) or physical plausibility of the

synthesized motion is compromised, resulting in visual artifacts. Some of the common artifacts are sliding

of feet on the ground and maintaining of poses that are not dynamically balanced. These artifacts are usually

caused by the blending of motion clips that have different contact patterns and by applying the recorded

motion to characters in non-compliant environments, such as when there is clutter on the ground that was not

present in the scene at the time of the capture. While some of these most apparent problems can be mitigated

by e.g., fixing or correcting the position of the contact foot based on geometric constraints imposed on the

body by the environment using inverse kinematics, there is no guarantee such resulting motions would obey

physical laws. A more principled answer to these problems may be the use of physics-based methods that

account for the physical laws directly through simulation or optimization.

Physics-based methods produce new animations of characters through physical simulation of the body

of the character effected by forces or by optimizing for the forces. As such, they generate motions that

explicitly follow Newtonian principles, that are not restricted to copying pre-recorded kinematic data and

that properly comply with the environment. The generated motions are fully determined by the initial pose of

the character, its initial velocity, the forces exerted on the character over the course of the simulation and the

employed simulation/dynamics model. These models can be arbitrarily complex, ranging from simpler rigid

body dynamics approximations of the human body to biomechanically correct musculo-skeletal models [126]

that model the character as a rigid human skeleton actuated by real muscles. Although some of these models

can be easier to simulate than others, given the forces, the real challenge comes in the computation of the

internal actuation forces that will produce the desired motion of the character such that all specified motion

goals are met. As such, the major burden in building physics-based animation systems is modeling actuation

of the body. See Section 1.4.2, Section 1.4.3 and Section 1.5.2 for an additional overview of physics-based

modeling of human motion and why modeling of actuation forces is difficult.

As demonstrated by previous research in computer graphics, it is feasible to determine actuation forces

for rigid body based models. In those cases, actuation forces can be obtained either through offline search

(see Section 2.3.4), by building reactive physics-based controllers for the motion or by combining motion

planning with reactive control. We next survey particular methods for the motion synthesis.
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2.3.1 Planning

Many methods for human motion synthesis in graphics can be phrased as a deliberative planning for actions

of the character model such that the specified motion objective is met. The origins of these algorithms

can be traced back to robotics, where they have been used to plan for the motion of articulated robots in

environments with obstacles [86, 91, 83]. There, planning was usually phrased as a search for paths in the

high-dimensional configuration space of the robot and the goal was to develop algorithms that could explore

these spaces efficiently. Motivated by the problem of finding a path for the robot from the start location to

the end, Kuffner et al.[91] explored the space by sampling random configurations for the robot within the

proximity of obstacle-free configurations and recorded the discovered reachable configurations into trees.

Kavraki et al.[83] used a similar idea to precompute a “roadmap” for the entire space and used the map for

path planning. Khatib et al.[86], on the other hand, uses local planning based on potential fields to attract

the robot away from nearby obstacles. Similar ideas have been reapplied later within the context of computer

graphics.

In the context of realistic human motion synthesis in graphics, planning has been applied to configuration

spaces of humanoid characters performing actions. Actions typically consist of either shorter motion clips

(see Section 2.3.2) or actuation forces (see Section 2.3.4). Planning is complicated in this case, because

aspect of body contact with environment have to be accounted for. For example, the planner must be aware

of when feet are in contact with the ground and plan for the motion of the torso accordingly such that the

resulting motion will not make the feet slide on the floor. The planning is often prone to local extrema in

the optimization objective, such that the resulting motion does not meet all the objectives and violates some

constraints.

2.3.2 Motion Graphs

In this part, we explore kinematic data-driven methods that generate motion by stitching motion capture clips.

These methods work by first preprocessing training motion capture data in order to identify usable motion

clips for stitching, organize the clips into data structures such that the clips can be found efficiently and then

use the data structure to plan for the motion of the character.

Perhaps one the first uses of graphs to organize kinematic motion, motivated by the needs in the video

game industry, was demonstrated by Miziguchi et al.[120]. In order to realize real time animation of in-

teractive characters in the game, Miziguchi et al.captures motion for the character in all possible situations

that can happen in the game. The captured motions are then manually segmented and organized into con-

stituent actions that the character can perform and this organization is represented by a graph. In this graph,

nodes correspond to the actions and edges record possible transitions between them. Transitions are equipped

with interpolation information that needs to be applied on the previous and the new motion segment in or-

der to produce a seamless blend and allow for a naturally looking transition. While effective, the repertoire

of possible transitions is restricted to exactly those defined by an animator when building the structure and

the transitions can only happen at the designated time instants. Consequently, the character may be slow to

respond to changes in the desired motion (goals) and the range of motions that can be synthesized is limited.
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Motion Graph. To address these problems, Kovar et al.[90] builds a structure called motion graph from

motion capture data automatically that permits any two motion segments (portions of motion clips from the

database) to be assembled into a longer motion as long as the frames near the seam look similar. Because

the opportunities for seams are searched for automatically, the resulting structure is more rich and allows to

switch between clips more often, resulting in the ability to generate motions with greater variability. Unlike

the previous data structure [120], motion graphs organize the motion in a slightly different way. Nodes in the

motion graph correspond to the seams and directed edges represent the segments that can be pasted. Conse-

quently, paths in the motion graph define possible segment concatenations. New motions can be synthesized

by optimizing for a path in the graph that satisfies given motion objectives, by e.g., a branch and bound

algorithm to deal with the complexity of the graph.

Variants. Computationally more efficient variants [9, 10, 89], variants employing parametric compact rep-

resentations of motion clips [68] and extensions capable of generating motions beyond the motion database

[150] have been introduced later. Arikan et al.[9] builds a hierarchy of graphs to search at different lev-

els of detail using a randomized search algorithm to reduce computational costs. A dynamic programming

based search has been employed in [10]. To produce compact graph representations that are faster to search,

parametric motion graphs [68] have been developed. In this parametric representation, nodes parameterize

families of logically similar motion clips and edges encode possible transitions between parameterized clips

in the families. Other extensions have focused on improving the ability of the method to synthesize mo-

tions that were not seen in the motion database. Producing new motions for characters is difficult because

the character needs to properly locomote/maintain contact with the ground such that the motion will appear

sufficiently believable. Ad-hoc blending of different motion clips usually results in motions that suffer from

artifacts, such as sliding of the feet on the ground and motion of the torso that is not properly supported by

the legs. Safonova et al.[150] addresses this problem by only interpolating motion segments that have similar

foot contact patterns. Other methods [179] interpolate motion only between foot contacts in order to prevent

slippage.

We now consider the second approach for motion generation, where the logic of selecting an optimal path

in the motion graph is replaced with interactive control of the character. The purpose of control is to make

the decisions about what motion clips should be played next interactive, as the motion progresses.

2.3.3 Kinematic Controllers

Based on the learning techniques from Section 2.2, the process of searching for an optimal path in the mo-

tion graph can be learned. Treuille et al.[179] and others [97, 98] learn kinematic controllers for common

navigation tasks for characters in game environments. Learning corresponds to precomputing optimal ways

to achieve specific goals for characters in particular situations and is typically performed offline by e.g., rein-

forcement learning [179, 97]. The result of the learning process is a policy function for a kinematic controller

for the character that selects new motion segments online and in response to the current state and goals of the

character. Specifically, because the segments in the sequence are not pre-planned, the synthesis process can

respond to immediate changes in the motion objectives (e.g., direction of walking for an interactive character)

and external disturbances during the synthesis.
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A key challenge in building policy functions is (1) determining the repertoir of motion segments for the

character, (2) finding contextual properties that are relevant for making decisions in control, and (3) encoding

these properties together in a low-dimensional space so that an appropriate policy can be learned. Given the

number of possible motion segments, motion goals and states that the character can be in, learning the policy

function and storing it in memory is difficult. To address the challenge, the state space for control has to be

crafted in a specific way in order to accommodate the task, enable low-dimensional encoding and facilitate

learning.

For example, in order to learn a policy for a character that can navigate an environment with obstacles with

a main goal to reach a target location, the encoding of the state vector may need to incorporate at least the pose

of the character, the direction towards the target, and a vector towards the closest obstacle [179]. Using these

encodings, the decision process may have enough contextual information to select optimal motion segments

based on the situation that the character is currently in. The learned policy will try to select motion segments

in order to achieve the global goal (moving the character towards the target) as well as to react to local

immediate goals (avoiding obstacles). The training data may consist of recordings of an expert navigating the

character through common environments in this case [179].

Kinematic Controllers. Treuille et al.[179] learns controllers for interactive characters in video games that

can walk, run, turn and avoid stationary or moving obstacles while responding to user inputs in real time.

Lee et al.[97] uses a similar approach but can accommodate a wider variety of behaviors. Towards that end,

a more efficient encoding of the policy function is needed such that it can still be kept in memory and yet

provide a detailed enough approximation that allows for making optimal decisions.

To make characters more responsive to changes in motion goals (e.g., desired heading, disturbances),

Lee et al.[98] organizes the motion database to a structure called the motion field. This structure does not

organize motion segments but body configurations of the character and uses changes in body configurations

between frames as actions for control. Given a query configuration of the character, the structure allows to

enumerate all neighboring configurations in the database. Each found configuration can then be used as an

action for control that brings the character from the query configuration to this new configuration. Using this

representation, the goal is to learn a controller that switches between neighboring configurations of the body,

as opposed to motion segments, making the controller more responsive and the character free from following

edges in the motion graph. The controller directly chooses a new configuration for the character for the next

frame and these decisions are made with every frame. This form of control allows the controller to produce a

motion from any initial configuration of the body and the produced motion is not limited to pasting segments

from the database. Furthermore, body configurations can be interactively altered by physical simulation

or inverse kinematics to model external disturbances. At the same time, the information from the motion

database can be used to make the character “recover” from such disturbances, by naturally attracting the

configuration of the body towards a recorded motion using kinematic control. As before, the policy function

of the controller is learned using reinforcement learning but it needs to be substantially compressed in order

to allow control at this detailed frame-configuration level.

Kinematic Controllers and Planning. Levine et al.[102] combines controllers [179] for specific motion

skills such as jumping or obstacle avoidance with online motion planning in space and time. This planning
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allows to implement navigation for characters in complex dynamic environments. A space-time planner is

used to determine which controllers must be executed and in which order so that the character reaches a

given goal destination. As the character performs the planned motion, it can properly react to the changes

in the environment and, when possible, make use of such changes to its advantage in order to follow a more

cost-effective plan. For example, when certain changes in environment can be anticipated, such as a regular

movement of platforms, cars or trains in a video game, the planner is able to decrease the travel cost for the

character by having it jump on the platforms and the cars. The proposed planner, based on the A∗ algorithm,

can find paths in space and time even if no valid path from the initial configuration to the target configuration

exists in any static snapshot of the environment.

We next consider methods for motion synthesis that utilize physical laws and physical simulation. These

methods computationally account for physical aspects of the motion, as opposed to modeling them indirectly

by relying on motion capture data. We first consider a physics-based method that searches for forces to be

applied on the character model such that specified motion objectives are met.

2.3.4 Space-time Optimization

Space-time optimization method proposed by Witkin et al.[203] generates human motion by assuming a

physics-based model for the character and optimizing for forces to act on the model such that the desired

motion is produced.

The goal of space-time optimization is to search for a motion that (1) complies with the equations of

motion of the given physical model, so that the motion looks plausible, (2) satisfies animation constraints

(motion goals), so that the desired motion is produced, and (3) minimizes a certain overall objective, such as

an amount of “muscle” exertion/energy spent performing the motion, so that the motion is fully determined.

Given the overall objective, the method discretizes the equations of motion over frames and simultaneously

optimizes for the states of the character at the individual frames as well as the forces that need to be applied on

the character between the frames in order to attain those states, subject to physical constraints and animation

constraints.

Here, physical constraints request that the changes of the character states between frames are consistent

with the discretized equations of motion and the estimated forces. Animation constraints correspond to

the animation goals specified by an operator and may include a desired initial pose, a desired end pose

and desired/target poses at other specific time instants. These constraints can be sparse, such that they are

specified for only distinct time instants. In particular, one does not need to specify desired poses for the

character for every frame in the sequence, which distinguishes the method from direct inverse dynamics.

Because the optimization is performed both in space and time, the optimization objective can determine the

motion between constraints automatically.

Basic Optimization. Given the constraints, the original space-time optimization [203] and its more recent

variants [138, 50, 151, 108, 116, 201] aim to automatically find a way to perform the desired motion such

that the constraints are satisfied and the overall optimization objective is met. However, the optimization is

expensive and can only be applied to offline characters. Because automatic handling of contact requires non-

linear constraints and produces non-linear motions, that can not be handled by the optimizers, the method
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also requires manual specification of contact configurations for the feet of the character in frames in order to

succeed [108, 31, 201, 202]. Manual specification of contact constraints fixes the contact configurations for

the body and effectively turns linear-complementarity contact constraints (see Section 3.2.2.4) to equalities

that can be understood by the current optimizers.

VideoMocap. Wei and Chai [201] introduces a VideoMocap system, where the space-time optimization

method [203] is applied to obtain realistic interpretations of motions of subjects observed in annotated videos.

Because video observations (or pose reconstructions from single frames) alone do not provide reliable con-

straints for the space-time optimization (e.g., because the pose reconstructions from different frames may

conflict when used as targets for the optimization), the proposed method relies on manual annotation of the

frames in the video. Towards that end, an operator needs to specify target poses for distinct frames in the

video as well as contact constraints for the limbs. The method uses automatic 2D pose tracking in the image

plane to determine additional pose constraints for the inbetween frames such that the reconstructed motion

will be forced to imitate the style of the motion observed in the video. In contrast, our motion estimation

methods do not rely on manual intervention in specifying the target poses for the character and we also do

not rely on manual specification of contact or foot placement constraints, as here [201] or in other methods

[202, 108] based on space-time optimization.

Optimization with Style. While direct space-time optimization allows to describe many motions using only

sparse sets of constraints, many stylistic variations can not be described in this simple way. Specifically,

stylistic variations in motion executions for low-energy activities, such as walking, are difficult to generate

purely from physical constraints and simple optimization objectives that e.g., only minimize the amount

of the actuation force. For example, “sneaky” walking is more a result of the person’s own preferences

than of the principles of optimal human walking, biomechanics of the human body and physical dynamics.

Consequently, in order to constrain the search for motions with these simple objectives to the desired style,

one needs to specify desired poses for many frames, making the approach less practical.

To address this challenge, Liu et al.[108] takes a biomechanically inspired approach and assumes that any

walking style results from differences in the underlying actuation model of the body and is optimal with re-

spect to that model. It is assumed that the actuation model is parameterized and a given style can be produced

using standard space-time optimization that minimizes the amount of the actuation force by choosing the right

parameters of the actuation model. The parameters of the actuation model encode personal preferences over

which “muscles” to use to actuate the body, as well as joint stiffnesses and other biomechanical properties

of the body. The actuation parameters for a given style can be learned from a short reference motion sample

automatically. Once learned, the actuation model can be used during space-time optimization to produce new

motions with the demonstrated style.

Wei et al.[202] combines data-driven methods for modeling human motion with space-time optimization.

Instead of changing the actuation model to only produce motions with a given fixed style, as was the case with

the previous approach, the proposed method [202] uses a generic model that learns what force trajectories

are typical for the motion styles observed in the given motion database and attempts to produce motions

that mimic the observed styles. Towards that end, the energy minimization objective within the space-time

optimization framework is replaced with the one that favors actuation forces that are both typical and that
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produce motions that are closer to the sequences in the database. Typical forces are modeled using a data

structure called the force field. This structure consists of a Gaussian Process based model that learns from the

motion database what actuation forces are typically applied at the character in a particular state. New motions

are synthesized from the force field using space-time optimization with a new objective that maximizes

consistency with the specified animation constraints, applies forces close to those predicted by the force

field and penalizes motions that violate the laws of physics. Because the optimization is strongly biased

to find physically valid motions, consistent with the optimized forces, the optimizer can produce naturally

looking motions even when the environment changes from the one used for training or when the character is

perturbed by external disturbances.

Discussion. Despite these successes, space-time optimization has downsides. First, space-time optimization

only gives forces valid with respect to the particular discretization of the equations of motions and an opti-

mization instance with a given set of animation constraints. The method can not guarantee that the optimized

motion can actually be reproduced by a physical simulation with the obtained forces and there is no direct

way to adapt/generalize these forces for changes in the environment or perturbations. Furthermore, when the

set of constraints changes after the motion has been optimized, the entire motion has to be reoptimized. Next,

none of the methods based on space-time optimization to date can automatically optimize for foot placement.

Consequently, desired changes in the contact configuration of the character (when contact forces should and

should not act on the feet, with respect to the environment) have to be manually specified as constraints for

the optimization, disqualifying the method for automatic applications in computer vision. Lastly, the opti-

mization can only operate in a batch mode and, as such, can only optimize sequences with a limited length.

In contrast, our methods do not require operator intervention in specifying contacts and can run online.

2.3.5 Physics-based Controllers

As an alternative to space-time optimization, one can produce actuation forces for the character using a

physics-based character controller and apply the forces on the character in simulation.

Physics-based controllers are designed to imitate particular motion skills by computing the actuation

forces that reproduce the skills in simulation. Actuation forces are computed using a control policy function

that reacts on the current state of the character and the environment and outputs the forces that should be

applied on the body of the character in this particular state in order to meet animation goals and achieve the

desired behavior. As such, the policy function actively controls the simulation and the motion of the charac-

ter. Because actuation forces are applied online during the simulation, and in response to the changes of the

body state and the environment that happen in this simulation, the control can directly react to changes in the

environment and the animation constraints as well as respond to external perturbations. Analogously to kine-

matic control, physics-based controllers replace offline search for actuation forces with the online application

of the control policy function and simulation. Consequently, given a motion skill to be reproduced, the key

problem in motion synthesis using physics-based control is learning/building an appropriate policy function

for the skill.

Building a control policy function is difficult. Such a function depends on many input variables, including

dynamic state of the body, environment, corresponding body contact configuration and animation goals. The
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actuation forces that it outputs are used to actuate individual parts of the body and must be computed in

such a coordinated way so that (1) a desired motion of the entire body is achieved and the motion skill is

reproduced and (2) the body is kept balanced. Consequently, the relation between the control inputs and

force outputs, that are both high-dimensional and continuous, is complex. As such, the function is usually

not built manually nor learned directly. Instead, various algorithmic procedures and control strategies based

on constraint solving or optimization have been employed in the literature to implement the computation

within the function.

Passive Dynamics Controllers. For special cases of motions, surprisingly simple control models based on

passive dynamics have been built in robotics. McGeer [117] illustrates that simplified humanoid walking can

be realized by a passive dynamic walker model that can walk stably on a slope solely under the effects of

gravity without any actuation or control. Kuo et al.[93] extends the model by a simple actuation mechanism

that powers the legs using a spring and applies impulses to toes when leg support transfers in order to produce

an energy efficient gait on the level ground. Collis et al.[37] demonstrates that it is possible to build detailed

humanoid robots that can walk and turn without the need for precise control. These robots still exploit passive

dynamics principles, similar to humans, in order to generate motions that are energy efficient and appear

human-like, but substitute small active power sources for gravity so they can walk on the level ground. The

robots can walk successfully by only adding small amounts of power at ankles or hips.

Powered Controllers. For general full-body motions, more elaborate control that powers the body may be

needed to produce the desired motion. In these cases, control is typically realized as a two-level procedure.

At the high level, the controller synthesizes target poses for the character, considering the desired motion,

balance and environment constraints. At the low level, low-level motion control process within the controller

generates actuation forces to approach the target poses (see Section 1.4.3.1). The current strategies differ

in the ways how the desired motion (animation goals) is specified for the controller and how this motion is

adjusted to maintain balance of the character. Next, we review control strategies based on how the desired

motion is defined.

2.3.5.1 Unstructured Desired Motion

One way to define the desired motion is to employ a data-driven approach and characterize the motion by

an unstructured sequence of desired 3D poses that the character should follow. The sequence prescribes

the target pose for the character for every frame in the simulated sequence and the goal of the controller

is to track these poses as closely as possible while maintaining balance [170, 209, 40, 96, 125, 109]. The

target poses can come directly from reference motion capture data, in which case the controller attempts to

“replay” the captured motion in a way that will comply with the simulated character and the environment, or

they can be synthesized from the motion capture data e.g., using kinematic techniques from Section 2.3.2 and

Section 2.3.3. In the latter case, the controller will “filter” the kinematic motion such that the resulting motion

produced by simulation will be consistent with physical laws and the constraints imposed on the character by

the environment. We refer to this class of controllers as data-driven tracking controllers.

Because the reference motion to be tracked by the controller usually does not match the dynamics of the
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simulated character model exactly (i.e., the simulated body approximates the captured human body to only a

certain extent), a form of balance has to be incorporated to recover from the discrepancies. Towards that end,

data-driven controllers are usually decomposed to two components: a balancing controller and a tracking

controller.

Overview. The purpose of the balancing controller is to plan for the motion of the character through contact

changes such that the character will stay balanced while tracking the reference motion. This planning is made

difficult by the discontinuities in velocities and changes in motion that happen when contacts emerge or van-

ish. In fact, just making the character stand still upright on a spot may pose a significant challenge, especially

when the character has too many degrees of freedom to control and/or the character is subjected to strong

external disturbances (e.g., pushes). Consequently, the motion plan has to be continually re-evaluated and

updated to the current situation such that appropriate corrective actions are taken by the character. To reduce

some of these challenges, for practical reasons, the motion planning is usually implemented on a simplified

lower-dimensional model of human dynamics, for which efficient balancing strategies can be found. Given

the planned motion of the simplified model, the tracking controller optimizes for the actuation forces to be

applied on the full-body model in order to track the target poses while keeping the dynamics of the body

consistent7 with the low-dimensional motion plan of the simplified body. Actuation forces for the full body

are usually obtained through quadratic programming [40, 209].

Balance. Lower-dimensional inverted pendulum models [40, 125, 181] with dynamics modeled by a linear

quadratic regulator [40] or non-linear quadratic regulator [125] are typical model choices for approximating

humanoid balance. For walking, da Silva [40] linearizes non-linear walking dynamics into linear segments

that switch on foot contact changes. Each segment in the motion corresponds to a distinct phase in the walking

cycle where the body is supported by a single foot. Balance for each such segment is then approximated

using a low-dimensional inverted pendulum model and the motion of the full body is constrained to be

consistent with this model. Mordatch et al.[123] models lower-dimensional dynamics using a spring-loaded

inverted pendulum model to build controllers that can traverse challenging terrains and react to strong external

disturbances. Macchietto et al.[113] maintains character balance by simultaneously tracking desired values

for the angular and linear momentum of the full-body model as well as the specified target poses. Lee et

al.[96] dynamically modulates reference pose trajectory for the lower body in order to compensate for the

possible loss of balance. Here, heuristic rules based on the position and velocity of the center of mass of

the character, similar to [213], have been used to adjust the desired joint angles of the legs. Other, more

conservative, methods for humanoid balance have been applied mostly in the context of robotics. There,

zero-moment point strategy [195] is typically used to restrict the motion of the robot such that its center of

mass is always kept above the center of pressure or within the support polygon.

Discussion. The key benefit of data-driven tracking controllers [40, 209, 113] for humanoid control is the

ability to reproduce particular style in the generated motion. In particular, because the target poses are spec-

ified for every frame in the sequence, the produced motion is not only physically plausible, but also the

7For example, one may want to constrain the center of pressure (COP) of the full-body model to coincide with the COP of the
simplified model, as in [209].
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subtleties and style of the produced motion that come from the reference motion capture data are directly

reflected in the motion. With pure data-driven methods [209], however, it is often difficult to handle large

deviations from the desired motion, through e.g., perturbations or unanticipated impacts with the environ-

ment, and changes in the environment geometry. A notable exception is the approach of [109] which allows

physics-based reconstruction of a variety of motions including: walks, cartwheels, and kicking, by random-

ized sampling of controls within user-specified bounds. As a result, the original motion capture trajectories

are effectively converted into open-loop control.

We now review another class of controllers that assume the desired motion has a specific underlying

structure (i.e., actions and transitions) and exploit this structure in the model.

2.3.5.2 Structured Desired Motion

Reactive Control. Model-based methods generate motion of the character by making use of models of

motion specific to given skills or activities. These models assume a structure for the desired motion and

utilize this structure for control. A typical example of this approach is modeling of stable gait patterns for

walking in robotics [73, 80, 93] or computer graphics [213, 123, 38], where cyclic walking is modeled as a

sequence of distinct motion phases that switch by reacting to the change of foot support.

Sparse Parameterization. Model-based approaches characterize the desired motion in terms of its structure,

that may encode the phases in the motion, and sparse target values for the controller to track. Unlike the

previous data-driven methods, the parameterization of the desired motion in model-based methods is sparse,

such that the target values are specified for only specific time instants (key frames) in the motion, allowing

greater flexibility for the controller to move the character between the targets. The values to be tracked can

include target poses [70, 213], target position for the center of mass [43] or target values for the angular

momentum [43]. We are particularly interested in controller models that model the structure of the desired

motion using finite state machines, as described in Section 1.4.3.1. These models are generally known under

the name state-space controllers, suggesting the control is implemented by switching states in the machine.

The states can switch either based on manually defined transitions [70, 213] that are taken in response to

simulation events, based on events and an optimized motion plan [43], or using a learned policy function

[38].

State-space Control. Hodgins et al.[70] demonstrated state-space controllers to be effective in modeling

variety of motions, including walking, running, vaulting and diving. Methods for augmenting such models

with balance control [213, 43] have also been introduced, making them less reliant on environment and

terrain. These controllers have also been shown to be composeable [35, 38] and even capable of encoding

stylistic variations [199] through use of different parameters.

Balance in these methods is usually achieved by dynamically modifying the target values using heuristics

based on simulation feedback [213] or by directly optimizing for the actuation forces that meet both tracking

and balancing goals, as in [43]. Yin et al.[213] implements a form of implicit balancing, where the controller

attempts to maintain a desired world space orientation of the root segment and upper legs, as dictated by the

current state in the machine. The desired pose is further heuristically adjusted according to a balance feedback
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from the simulation in order to improve the ability of the character to balance. De Lasa [43] implements

a different balancing strategy, where desired joint angle values, positions of end effectors, the value of the

angular momentum and the position of the center of mass are tracked by the controller while keeping the body

balanced. Actuation forces for control are obtained from motion constraints using a prioritized optimization

that favors satisfaction of balance constraints over the pose tracking constraints. Because the desired behavior

of the character is encoded by constraints, the same control mechanisms can be applied to characters in new

situations, characters with modified body models and/or mass distributions as well as modified geometry.

Our approach to motion control falls within the category of reactive state-space controllers. The main

benefit of using this class of models is the compactness of their representations, robustness to external distur-

bances and ability to generalize to new situations.

Controllers and Step Planning. State-space controllers are often combined with online planning [123,

38] in order to build more robust task-specific control policies for responsive characters that can navigate

challenging terrains based on user commands and in response to perturbations. Mordatch et al.[123] plans

for the gait, footsteps and transitions of a lower-dimensional body model that responds to the commands. The

produced plan is tracked by a full-body controller and is continually refined based on the simulated full-body

dynamics. Coros et al.[38] precomputes a high-level control policy for the character using reinforcement

learning to select actions (steps) online that let the character move efficiently towards the goal. In robotics,

planning methods based on zero-moment point strategy [195, 80] are used to deliberately plan placement of

feet so as to preserve dynamical stability. Yagi et al.[208] varies step length and clearance of the swing leg

and switches between forward-stepping, side-stepping and stepping on and off an obstacle as obstacles are

discovered in order to navigate cluttered environments. Kuffner et al.[92] plans for statically-stable footstep

locations for a humanoid robot in a known littered environment via dynamic programming such that the

number and complexity of the step motions of the robot is minimized.

2.3.5.3 Controller Design

Building or adjusting existing controllers to produce motions with a particular desired style that e.g., matches

a given reference motion has been shown problematic.

Previously, controllers for physics-based humanoid characters have only been built manually, following

the state-space control paradigm, by relying on tedious manual tuning of parameters, as well as manual spec-

ification of the controller structure. A few recent methods addressed automatic parameter estimation through

optimization [198, 199, 212], but only for short sequences with manually defined optimization objectives to

specify the desired motion for the character and close enough initializations for the optimization. Using this

approach, a controller for walking was optimized in Wang et al.[198] by specifying the structure for the con-

troller and an optimization objective that characterized walking. The objective was constructed by looking

for various aspects of human motion that are specific to walking, such as regularity of the gait, stability of

the upper body, energy expenditure, etc., and encoding them in the objective function such that motions that

violate these principles are penalized in the optimization. While this approach worked for walking, it is not

clear what the underlying biomechanical principles would be for many other motions. Consequently, it is

not feasible to manually design objective functions that produce given desired motions and with a particular
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style. Furthermore, all of the previous methods for building controllers assumed the structure of the motion

was already given and coded manually for a given behavior.

Our Methods. In our formulations, we use images to demonstrate what the desired motion for the character

should look like. We use a general objective function for optimization that is not specific to the motion and

we automatically optimize both the structure as well as parameters of the reactive state-space controller to

reproduce the motion that was observed (see Chapter 5). In doing so, we do not require manual initialization

of the optimizer and our method is able to recover controllers for long sequences.



Chapter 3

Physical Model Of Human Body

Motivated by recent successes of physics-based modeling of virtual characters in computer graphics, we

model the body of the person as a collection of rigid bodies connected by joints that move in the surrounding

environment. The rigid bodies in the collection model parts of the body, such as the head, chest, torso or hips,

and the joints connect the parts together in order to approximate articulation of the human body. Each body

in the rigid body system has associated a shape and mass so it can respond to forces and interact with other

bodies on contact. We model the environment as a collection of fixed rigid bodies that have an infinite mass

and can not move.

Unlike kinematic models, the only way to influence the motion of the body model is by applying forces

on it. To facilitate further exposition and illustrate how we are going to model the motion of the body, we

discuss next what kinds of forces we need to account for, what options we have for modeling these forces and

what approach we take in our implementation to compute the forces.

Forces. The motion of our body model is determined by forces that act on its parts. The forces result from

external factors, such as the gravity, effects of the environment (contact) and interaction of body parts with

other parts (joint articulation, joint angle limits, contact), as well as internal body actuation. Body actuation

powers the model by approximating effects of true muscles and keeps the body balanced. It computes actu-

ation forces for the parts of the body in order to deliberately control the motion of the body and produce an

intended behavior. In more detail, we model the following types of forces:

1. Gravity

Gravity force Fgravity models attraction of the model towards the ground plane and accelerates the parts

of the body downward.

2. Contact

Contact force Fcontact models non-penetration and friction between body parts and the parts and the

environment.

The force acts at contact points detected by the underlying collision detection library based on the

current placement of the bodies in the world and their geometric shapes. Here, contact points can be

78
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imagined as the points where any two bodies touch and where the contact force may need to act in order

to support the bodies and prevent their penetration. For example, in order to account for the contact

between the foot and the ground, a force may need to act on the toe to prevent the foot from falling

through the ground.

Contact force is computed according to a contact model. In the practice, the force is produced either

from constraints, that prevent bodies in contacts from moving against each other and resist sliding,

or by using a penalty method that penalizes penetrations and slippage, but does not prevent it from

happening. We use the constraint-based formulation to implement contact.

3. Articulation

Articulation force Farticulation implements joints and body articulation and anchors body parts together.

This force has to be modeled in systems where the motion of the entire body is modeled as a collection

of independently moving parts. Using this parameterization, in so called maximal coordinates, there

is nothing in the underlying equations of motion that stops the simulator from popping the parts apart,

except the articulation forces that anchor the parts together. In order to implement the desired coor-

dination of the motion properly, articulation forces need be produced from constraints on the relative

motion of the parts.

Alternatively, one can model the motion of the parts in the body relative to the motion of their parent

parts, parameterizing the state of the body recursively using a reduced set of generalized coordinates,

and simulate the entire articulated body as a single entity. This other approach has the benefit that

the articulation constraints are implicitly accounted for in the equations of motion. However, it does

not offer as much flexibility, because the equations are specific to the particular branching structure

and have to be reformulated for each new kind of structure. In addition, the generalized coordinates

approach prohibits simulation of certain effects, such as tearing of an arm on a strong pull. We follow

the maximal coordinates approach for simulation.

4. Joint angle limits

Joint angle limits force Flimits approximates biomechanical constraints on the valid pose of the body

and aim to prevent the parts in the body to extend over respective angle limits at the joints. For example,

the force can model the fact that the knee should only bend forward.

Joint angle limits forces are typically produced either from constraints that prevent extension of parts

past the angle limits, using penalty methods or are simply ignored. Penalty methods do not prevent

violations of the limits but attempt to recover from the violations by applying restoration forces. We

implement joint angle limits using constraints for robustness.

5. Actuation

Actuation force Factuation actuates parts in the body so that the body performs an intended coordinated

motion.
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The forces are responsible for the “powering” of the joints in the body so that the parts of the body

are positioned as intended and in such a way that the parts support the entire body and prevent it from

falling. For example to make an arm contract at an elbow to a specified angle, as dictated by a high-

level decision-making process in a controller, a spring-like force may need be applied on the forearm

and the upper arm to achieve the effect. The required actuation forces are produced from the overall

control goal typically by either penalty methods, constraints over the velocities and positions of the

parts or optimization. We employ constraints for the actuation of the body.

Although the force types implement different aspects of the motion of the body, they can be modeled

by similar principles. Specifically, each type attempts to achieve a specific objective that can be phrased as

keeping the rigid body system in a particular state. It can be shown that all these aspects can be phrased as

constraints over relative motion of the bodies in the system and the desired behavior of the system can be

achieved by computing the forces that maintain the constraints. Note that all force types, except for actuation

forces, result from physical laws and universal constraints that do not depend on the application. As such,

they can be directly provided by the underlying simulator. Actuation forces, on the other hand, result from

the control of the body and are specific to the application.

To model the behavior of the system by constraints, there are two questions to be answered: (1) how the

interesting behaviors (e.g., non-penetration, friction, body actuation) we want to achieve can be expressed as

constraints and (2) how the constraints can be translated to forces to realize the objective of the constraint.

We give detailed answers to both these questions in the remainder of this section. For now, let us provide a

high-level informal overview of possible options for modeling constraints and methods for implementing the

constraints.

Constraints. Constraints encode aspects of the desired behavior of the rigid body system. They are abstracted

by equality or inequality equations over positions and velocities of bodies and request selected properties of

rigid bodies to be either kept fixed at a given value or above/below the value. Motivated by our initial

examples, we may want to request non-penetration of the foot with the ground by specifying that the distance

between the toe and the ground plane needs be positive or zero. At the same time, we may want to contract

the arm such that the angle between the forearm and the upper arm equals π/2, as described by another

constraint. By encoding the entire desired behavior as a collection of constraints, we can characterize each

aspect of the behavior more effectively.

Constraint Methods. Constraint methods directly solve for the constraint forces that need be applied on

the bodies so that the desired collaborative behavior described by the constraints is achieved exactly and all

constraints hold. The methods are designed such that the system never deviates from the desired state defined

by the constraints and produces stable systems that can be integrated robustly with large integration steps.

Penalty Methods. Penalty methods attempt to approximate constraints by letting the system deviate from

the desired state and applying penalty (restoration) forces to restore the deviations. As opposed to solving for

the exact forces, penalty methods rely on a feedback loop, where current violations determine the restoration

forces. The penalty forces for a given constraint are computed locally and independently of other constraints.

Consequently, penalty forces due to different constraints compete and easily fail to achieve the collaborative
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Method Contact Articulation Actuation
Wang et al.[198] Constraints Constraints Penalty Forces
Brubaker et al.[26] Penalty Forces N/A Penalty Forces
Kokkevis et al.[198] Constraints Generalized Coordinates Constraints
Ours Constraints Constraints Constraints

Table 3.1: Body Modeling Options. Illustration of a few previous methods for modeling the body of the
person and the design choices to implement various aspects of the behavior of the body.

behavior. To ensure the system stays stable, extremely small integration steps have to be taken, such as of

10−4 seconds. Nevertheless, penalty forces are easy to implement and cheap to compute.

Previous methods used both the constraint methods and penalty methods to implement various behavior

aspects of the rigid body system. In our work, we model all forces using constraints and solve for the

constraint forces using a constraint solver. This way, we can handle all behavior aspects uniformly within

the constraint solving framework as well as achieve a robust and stable performance. See Table 3.1 for the

illustration of the modeling options.

Chapter Outline. We next discuss in this chapter how we are going to model the motion of a single rigid body

in the rigid body system. This rigid body can either be a part of the model of the body of the person or any

other rigid body in the simulated world, such as the ground, a falling brick or a projectile. In later sections, we

introduce constraints to glue rigid bodies into an articulated structure that we then use to represent the body

of the person. We will also use constraints to control the motion of the structure and to model interactions of

the structure with the environment.

In explaining these concepts, we provide equations that fully characterize the motion of the model of the

person in simulation and let us perform the simulation. Our goal in this chapter is to provide enough detail

on the simulation of the model so that (1) understanding of the following chapters that use this simulation

as a tool is improved and (2) the entire motion capture system can be reproduced. With that said, we note

that it is not necessary to build the simulation system from scratch according to our explanations. In fact,

the formalization of the rigid body dynamics that we employ in our work and present here is standard and is

directly implemented by available physics simulators, both commercial and open-source. We provide these

explanations for completeness.

Underlying Formalisms. We explore the simulation paradigm where states of rigid bodies are parameterized

in maximal coordinates and constraint forces enforce the constraints. The use of maximal coordinates brings

us the necessary flexibility that we need in modeling the motion of the body: an ability to add or remove

constraints dynamically as they emerge (e.g., contact points), without the need for reparameterizing body

states and reformulating equations of motions in terms of these new parameters. Furthermore, the maximal

coordinates approach encourages a modular design of the simulator and the constraints because no constraints

are hard-coded in the equations of motions. The theory behind simulation, the dynamics model, as well as

the implementation ideas draw from papers [17, 18], tutorials [19], and the dissertation thesis [16] of David

Baraff. We adopt lo-hi linear complementarity problems formulations from the Open Dynamics Library

(ODE) [169] by Russell Smith. Derivations of the concepts can be found in [17, 18, 19, 49, 191, 194, 192].
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Technical Details Overview. Our model of the person is integrated directly with the simulation engine

Crisis [190] that represents system dynamics. In doing so, we use constraints to update body pose over time

and to achieve articulation and actuate the body. Crisis employs simulation, constraint and contact model

formulations that are identical to those in ODE [169]. Our model differs from ODE in a way that it uses an

explicit integration and supports both acceleration and velocity constraints.

We formulate constraints as linear equations over acceleration and velocities of body pairs that should be

maintained subject to constraint force bounds, and use the Lagrange multiplier method to express constraint

forces and impulses as a solution to a lo-hi linear complementarity problem (LCP) built from the constraint

specifications. We use a generic constraint model capable of modeling both bilateral as well as unilateral

constraints, soft constraints and constraints with finite force bounds. We use a constraint solver to solve for

the constraint force (or constraint impulse) for the individual constraints such that the resulting forces for all

constraints are all within the bounds and all complementarity conditions from the LCP formulation hold. We

use the method of [18] and a variant of the Dantzig pivoting solver from [169] to obtain valid constraint forces

for constraints with fixed force bounds. To handle friction constraints with friction force bounds depending

on contact surface normal forces, we alternate between fixing and re-estimating the bounds for the LCP. To

minimize a risk of over-constraining the LCP, all the constraints that we use to build the model of the person

are soft to a certain extent. We also use constraints with finite force bounds (e.g., for body actuation) which

can always be satisfied by applying forces with maximum possible magnitudes.

We use Newton-Euler equations of motion to describe the motion of the simulated rigid body system

under effects of external forces (e.g., gravity), actuation forces and other constraint forces produced by the

constraint solver. For the experiments in this work, we integrate the underlying equations of motion using an

Euler method with a sufficiently small step size (e.g., 1/120 s).

3.1 Rigid Body

In this section, we develop concepts that let us define and model the motion of a single rigid body in an

otherwise empty world. In doing so, we follow the approach presented in [19]. We intuitively imagine the

body as a solid structure that has a fixed non-deformable shape and that can translate and rotate in response

to forces that act on it.

We characterize the body in terms of its mass properties that describe the distribution of the mass of the

body over its volume, the position and orientation of the body in the world space and the velocity with which

the body moves in the world. The motion of the body results from forces that are applied on the body. The

relation between the forces and the motion is indirect. The forces first effect the velocity of the body and the

velocity of the body makes the body change its position and orientation in the world.

We next introduce the parameterization of the position and orientation of the body, discuss the concept of

velocity and force of the body and show how the force affects the position and orientation of the body. Using

these relations, we will produce the motion of the body by computing forces and simulating the effects of the

forces.
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3.1.1 Concepts

Body Space. Because the rigid body can not deform, its shape and volume can be defined within a local coor-

dinate system associated with the body called the body space. The body space establishes a local coordinate

frame of reference for the body.

Mass Properties. Mass properties are statistics computed from the distribution of the mass over the body.

The statistics encode how the body responds to forces and we use this information to simulate the motion of

the body. The responses to forces are independent of the shape of the body and the information about the

shape is only needed for modeling contact between multiple bodies, as discussed in Section 3.4.

We define mass properties of the body as moments of the density function ρ : R3→R+ that characterizes

the distribution of the mass of the body over the points rb in the body space:

total mass m =
∫

ρ(rb)drb (3.1)

center of mass in body space rb
cm =

∫
rb ·ρ(rb)drb

m

moment of inertia about the body x axis Ib
xx =

∫
((rb

y)
2 +(rb

z )
2) ·ρ(rb)drb

moment of inertia about the body y axis Ib
yy =

∫
((rb

x)
2 +(rb

z )
2) ·ρ(rb)drb

moment of inertia about the body z axis Ib
zz =

∫
((rb

x)
2 +(rb

y)
2) ·ρ(rb)drb

product of inertia about the body x, y axes Ib
xy =

∫
rb

x · rb
y ·ρ(rb)drb

product of inertia about the body x, z axes Ib
xz =

∫
rb

x · rb
z ·ρ(rb)drb

product of inertia about the body y, z axes Ib
yz =

∫
rb

y · rb
z ·ρ(rb)drb,

where the moments of inertia Ib
xx,Ib

yy,Ib
zz and the products of inertia Ib

xy,Ib
xz,Ib

yz are computed in the body space

and are expressed relative to the origin 0 of the body space. We further record these statistics into the body

space inertia matrix Ibody,

Ibody =


Ib

xx −Ib
xy −Ib

xz

−Ib
xy Ib

yy −Ib
yz

−Ib
xz −Ib

yz Ib
zz

 (3.2)

for notation convenience. We encode the mass properties of the rigid body using a pair that consists of the

total mass from Equation (3.1) and the body space inertia matrix from Equation (3.2),(
m,Ibody

)
. (3.3)

We assume these properties do not change over time.

Position and Orientation. In order to simulate the body, we need to parameterize the location of the body

in the world and place it in the world based on this parameterization. To place the rigid body in the world,

the body space has to be mapped to the world space. Specifically, (1) axes of the body space have to be first
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rotated to achieve the desired orientation R of the body in the world space and then (2) the center of mass of

the body has to be translated to achieve the desired position x in the world space.

To facilitate the mapping, we assume that the center of mass of the rigid body lies at the origin of the

body space, rb
cm = 0. We then let

r = R · rb +x (3.4)

for a point rb in the body space and the corresponding mapped point r in the world space, where R is a 3×3

rotation matrix and x is a translation. Here, R encodes the orientation of the body in the world space and

characterizes how the local axes of the body map to the world space. The x vector defines the position of the

body in the world space and this position coincides with the center of mass of the body.

Velocity. Having placed the body in the world, we are interested in characterizing how the position and

orientation of the body changes over time so we can model these quantities and produce the motion of the

body in simulation. We decompose the instantaneous motion of the body over infinitesimally short time

periods to the translational (linear) motion of the center of mass of the body and the rotational (angular)

motion of the volume of the body and characterize each of these two motions separately using velocities.

The linear velocity v characterizes the instantaneous linear motion and describes the direction and speed

with which the body translates. The linear velocity of the body is defined as the time derivative of the position

x of the body such that v = ẋ.

The angular velocity ω characterizes the instantaneous rotational motion as a rotation about a time vary-

ing axis that passes through the center of mass of the body. The angular velocity ω is defined as world-space

vector whose direction describes the instantaneous rotation axis and whose magnitude in rad · s−1 defines the

instantaneous rotation speed.

Relation between Position and Velocity. The linear and angular velocity together characterize the instanta-

neous velocity of any point or a vector attached to the body. Specifically, if r = p−x is the vector between a

point p on the body and the center of mass of the body x then

ṙ = ω× r (3.5)

ṗ = v+ω× r (3.6)

according to [19]. Note that the same equation holds for a vector r attached to the body, such that it rotates

with the body. Applying this equation on the local axes and the center of mass of the body, we obtain a

relationship between the position of the body and its velocity,

ẋ = v (3.7)

Ṙ = ω
∗ ·R, (3.8)

where ω∗ is a “cross-product matrix” such that ω∗ · r = ω× r.

Momentum. We further express the linear and angular velocity of the body in the form of linear and angular

momentum of the body, as defined below, so that we can conveniently characterize the relationship between

forces and velocities. The reason for using momentums for expressing this relationship is that the velocity of
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the body can change because of inertial effects even when no force acts on the body, whereas the momentums

remain constant in that case.

We define the linear momentum P and the angular momentum L of the body as

P = m ·v (3.9)

L = I ·ω, (3.10)

(3.11)

where

I = R · Ibody ·RT (3.12)

is the world space inertia matrix of the body, [19]. The momentum characterizes the kinetic motion of the

body using the velocity and the mass properties of the body, as expressed in world space through m, and I.

Mass Matrix. We encode the mass properties of the body expressed with respect to the world frame using

the mass matrix M,

M =

(
m ·E 0

0 I

)
, (3.13)

where E is a 3×3 identity matrix. Note that the mass matrix depends on the current orientation of the body

and, as such, is not necessarily constant.

Forces. Forces abstract causes for the motion of the body. They are modeled as vectors F(p) that act at

specific locations p of the body and encourage the body to move along the directions they act. Forces affect

both the instantaneous linear and angular motion of the body, possibly causing the body to spin, with the

actual effects depending on the points of applications and the distribution of the mass in the body.

We model effects of forces by force-torque pairs. Given a force F(p) that acts on the body at the world

space location p, the force produces the force-torque pair [F(p),τ(p,F(p))], where

τ(p,F(p)) = (p−x)×F(p) (3.14)

is the torque about the center of mass of the body due to the force F(p). Intuitively, F(p) attempts to push

the body in the direction of the force, while τ(p,F(p)) attempts to make the body spin along the direction of

the torque vector with a speed proportional to the magnitude of the torque.

For example, the gravity force Fgravity that acts on the body to push it down toward the ground can be

modeled by the pair

[m ·g,0], (3.15)

where g is the gravity constant indicating how strongly the force acts.

Effects of forces are additive. That is, to capture the overall effect of all force-torque pairs [Fi,τi] due to

all forces acting on the body, it is sufficient to maintain only the aggregate force-torque pair [Ftotal ,τ total ],

where Ftotal = ∑i Fi is the total external force and τ total = ∑i τi is the total external torque about the center of

mass of the body.
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Relation between Forces and Momentum. Forces applied on the body cause the motion of the body to

change. This change is characterized in terms of the aggregate force-torque pair [Ftotal ,τ total ] and the mo-

mentum of the body as

Ṗ = Ftotal (3.16)

L̇ = τ
total . (3.17)

The aggregate force-torque pair encodes how the total force works to push and spin the body and how this

work affects the instantaneous linear and angular motion of the body, encoded by the momentum [49, 19].

Specifically, the equation says that the linear motion of the rigid body is equivalent to the motion of a particle

with the total mass m affected by the total force Ftotal .

Acceleration. We define the linear acceleration and angular acceleration of the body as the time derivatives

of the linear velocity v and the angular velocity ω of the body,

a = v̇ (3.18)

α = ω̇. (3.19)

It can be shown that at any time, the acceleration of the body due to the aggregate force-torque pair applied

on the body is given by

a = m−1 ·Ftotal (3.20)

α = I−1 · (τ total + τ
coriolis), (3.21)

where τcoriolis = (I×ω)×ω is an implicit internal inertial (coriolis) torque due to body rotation, τ total is the

total external torque applied on the body and Ftotal is the total external force, [19].

From these equations, we see that the effects of forces and torques are not “immediate”. These quantities

control the acceleration of the body and the accelerations have to be integrated over time in order to modify

the velocity. As such, forces change the velocity of the body indirectly, by only changing its time derivative.

Impulsive Forces and Relation to Momentum. In specific cases, it is important to change the velocity of

the body directly and instantly, right at the current time (e.g., to resolve an impact between bodies and prevent

penetration). Towards that end, we introduce impulsive forces that change the linear and angular momentum

of the body, as opposed to the time derivatives of the momentums (i.e., what regular forces do).

We define impulsive force Fimp as a force with the “units of momentum”. If P and L are the linear and

angular momentum of the body and Fimp is applied to the body at the world space position p, then the linear

momentum P changes by the value ∆P and the angular momentum L changes by the value ∆L,

∆P = Fimp (3.22)

∆L = τ
imp, (3.23)

where τ imp = (p−x)×Fimp is the impulsive torque about the center of mass of the body due to the impulsive

force Fimp, [19]. These equations are analogous to Equation (3.16) and Equation (3.17), except that they

relate impulsive forces to the changes of the momentums.
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3.1.2 Equations of Motion: Second Order Dynamics

We use the rigid body concepts from above to formulate equations of motion for the rigid body. These

equations, written in the form of first order ordinary differential equations (ODEs), fully determine the motion

of the body in Newtonian dynamics under the effects of forces. Numerical integration of these equations

produces the motion of the body. The equations can be integrated using standard numerical ODE solvers. We

outline the integration process later.

We explore several formulations of the equations of motion. Each formulation defines a representation

for the state y of the rigid body and an equation to describe how the time derivative of the state ∂y
∂ t changes

over time in response to the forces applied on the body. The representation of the state encodes information

about the current position and orientation of the body as well as velocity. We always use Equation (3.7)

and Equation (3.8) to model the changes of the position and orientation of the body and only study different

formulations for the modeling of the velocity of the body.

Here, we discuss second-order formulations of Newtonian dynamics, where the equations of motion relate

the position of the body to its second-order time derivative (acceleration) through forces.

Momentum Form. Using the linear and angular momentum of the body to represent the velocity, we can

parameterize the state y of the rigid body by the vector y = (x,R,P,L). This parameterization produces the

equation of motion for the rigid body in the momentum form, [19],

∂

∂ t


x
R
P
L

=


v

ω∗ ·R
Ftotal

τ total

 , (3.24)

where v and ω are auxiliary quantities derived from the state vector y, v = m−1 ·P, ω = I−1 ·L, I = R · Ibody ·
RT and I−1 = R · I−1

body ·R
T .

Velocity Form. Alternatively, representing the velocity of the body using the linear and angular velocity

vectors, the body state y can be parameterized by the vector y = (x,R,v,ω). This more common parameter-

ization produces the equation of motion for the rigid body in the velocity form,

∂

∂ t


x
R
v
ω

=


v

ω∗ ·R
m−1 ·Ftotal

I−1 · ((I×ω)×ω + τ total)

 (3.25)

Mass Matrix Form. We further elaborate on the velocity form of the equation of motion and define the

notion of generalized quantities for the rigid body. Using this new notation, we can treat the linear and

angular motion of the body uniformly and we can express the dynamics of the rigid body using the mass

matrix of the rigid body, producing an equation that resembles the Newton’s second law for a particle.

We call any block vector consisting of a block due to a linear quantity and a block due to the corre-

sponding angular quantity a generalized quantity. This way, we obtain the generalized velocity vgen = (v,ω),
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the generalized acceleration agen = (a,α), the generalized total external force Ftotal
gen = (Ftotal ,τ total), the

generalized coriolis force Fcoriolis
gen = (0,τcoriolis) and the generalized position xgen = (x,R).

Using Equation (3.20) and Equation (3.21), we can rewrite the relation between forces and accelera-

tions using the generalized form as M · agen = Ftotal
gen +Fcoriolis

gen . Let us assume that the generalized coriolis

force Fcoriolis
gen is always implicitly incorporated into the total generalized external force Ftotal

gen and, to improve

readability, let’s remove the “gen” subscripts and omit the “generalized” adjective whenever it is clear the

generalized notation is used. Using these assumptions, we can write

M ·a = Ftotal , (3.26)

which yields a general relation between the total force Ftotal and the total acceleration a of the body due to

the force. Because this relation is linear, the equation also holds for any force F that acts on the body and

the corresponding acceleration a = M−1 ·F that the body gains in response to the application of the force

F1. The relation resembles the Newton’s Second Law for a particle and, consequently, rigid bodies can be

imagined as special particles with time-varying masses M that move in R6.

Using the generalized notation, we can parameterize the body state y using the vector y = (x,v) and

obtain the equation of motion for the rigid body in the mass matrix form,

∂

∂ t

(
x
v

)
=

(
x′

M−1 ·Ftotal

)
, (3.27)

where x′ = (v,ω∗ ·R).

3.1.3 Equations of Motion: First Order Dynamics

Regular forces effect the position and orientation of the body by second-order (Newtonian) dynamics in

which velocities change through the integration of forces while positions change through the integration of

velocities. With impulsive forces, the effects of forces on positions and orientations are determined by first-

order (impulsive) dynamics, where velocities change directly through the application of impulsive forces and

positions change through the integration of velocities. Here, we describe equations of motion for impulsive

dynamics that relates the position of the rigid body to its first-order time derivative through application of

impulsive forces. We reuse and build upon the generalized notation from above.

Similarly to second-order dynamics, we couple linear and corresponding angular quantities to generalized

quantities. This way, we obtain the generalized impulsive force (impulse) Fimp = (Fimp,τ imp) and the gener-

alized momentum Ftotal
imp = (P,L), that serves the purpose of an analog of Ftotal in second-order dynamics.

Impulsive Dynamics. Then, if M is the mass matrix of the rigid body and v is the generalized velocity of

the body, the definitions of the linear and angular momentum in Equation (3.9) and Equation (3.10) directly

provide that M ·v = Ftotal
imp . Furthermore, the definitions of momentum updates in Equation (3.22) and Equa-

tion (3.23) state that the change ∆v of the generalized velocity v due to the application of the generalized

1If F refers to the total external force exerted on the body, the coriolis force Fcoriolis is assumed to be included in F.
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impulse Fimp equals ∆v = M−1 ·Fimp. Therefore, the first-order dynamics that relates velocities v to impulses

Fimp is given by

M ·v = Fimp (3.28)

and the generalized momentum Ftotal
imp can be seen as a generalized total external impulse that acts on the

body and that consists of the only term, the inertial term (P,L). Note that this formulation of first-order

dynamics using generalized notation and the mass matrix directly matches the case of second-order dynamics

in Equation (3.26), which relates accelerations a to forces F by M ·a = F.

First-order Equation of Motion. The state y of a rigid body in a purely first-order dynamics system (with no

acceleration) can be parameterized using the regular notation by a vector y = (x,R). This parameterization

produces the first-order equation of motion for the rigid body,

∂

∂ t

(
x
R

)
=

(
v

ω∗ ·R

)
, (3.29)

where the motion of the body is only produced by applying impulses and the body stops instantly if no

impulse acts on the body2.

We never model first-order rigid body dynamics directly. Instead, we combine first-order dynamics with

second-order dynamics. Specifically, we use the second-order (Newtonian) equations of motion from Equa-

tion (3.24) to model the motion of the body with accelerations and use the first-order dynamics rules from

Equation (3.28) to update the velocity of the body when an impulse needs be applied.

3.1.4 Simulation

We produce the motion of the rigid body by numerically integrating the second-order equations of motion of

the body from Equation (3.24), using Equation (3.28) to apply impulses on the body. The motion of the body

can be generated from the equations of motion using an arbitrary ODE solver.

Integration. In our implementation [191, 192], we use an explicit integration method. The integration

process can be imagined as an iterative application of the integration function f : yt → yt+1 on the initial state

y1 of the body, where each f (yt) updates the state of the body from a frame t to the frame t +1. During the

update at the time t, the function proposes a number of hypothetical states Ŷt = {ŷt ′ | t ≤ t ′ < t +1} for some

sampling of the time interval between the frames, evaluates the forces that act on the body in the proposed

states at the sampled time instants and uses this information to compute yt+1. If an impulse is applied on

the body during the state update, the update rules from Equation (3.28) produce a new initial state y for the

integration function and the integration is restarted from this new state.

Euler Method. For example, if the integration is implemented using an explicit Euler method with one step

per frame, then Ŷt = {yt} and the integration function f : yt → yt+1 updates the state by

yt+1 = yt +∆t · ∂yt

∂ t
, (3.30)

2In contrast, in second order dynamics, the body stops accelerating if no force is applied but it keeps moving with a velocity
determined by its momentum.
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where ∆t is the time difference between two frames and the difference equals the integration step size and
∂yt
∂ t is evaluated from Equation (3.24) using the values of Ftotal and τ total that act on the body in the state yt .

That is, the new state is produced as

xt+1 = xt +∆t ·vt

Rt+1 = Rt +∆t ·ω∗t ·Rt

Pt+1 = Pt +∆t ·Ftotal
t

Lt+1 = Lt +∆t · τ total
t

In our implementation [191, 192], we implement a variety of higher-order integration methods that sample

the time interval in order to approximate higher order time derivatives of the state and achieve higher accuracy.

Our methods can also substep between frames and control the size of the integration step dynamically for

improved stability and performance.

3.2 Constraints

The technique for modeling the motion of a single rigid body directly generalizes for the case of multiple

bodies in a rigid body system. In order to produce the motion of multiple bodies, we only need to update

states of all bodies in the system at the same time. In doing so, however, potential interactions between bodies

have to be accounted for and modeled through forces. For example, in order to model a brick in the free fall,

the only force that acts on the brick is the gravity force. When the brick approaches the ground, however,

interaction between the ground and the brick has to be modeled. In particular, a force need to be applied on

the brick to prevent it from going through the ground. In order to model the body of the person, we can use

independent rigid bodies to model parts of the body, but we need to glue the bodies together at joints in order

to model the articulation of the body, etc. As such, the key challenge in physical simulation of the rigid body

system is modeling of forces so that the bodies in the system would move as desired.

Rather than trying to generate these forces directly, we characterize the desired motion of the system using

motion constraints over accelerations, velocities and positions of pairs of rigid bodies and use a constraint

solver to solve for the forces that produce the desired behavior described by the constraints. We use the

Lagrange multiplier method to express constraint forces as a solution to a linear complementarity problem

(LCP) built from the constraint specifications. We use a generic constraint model capable of modeling both

bilateral as well as unilateral constraints, soft constraints and constraints with finite force bounds. We use

constraints to (1) build articulated bodies consisting of rigid parts connected by joints in Section 3.3, (2) limit

angles at the joints in the body to prevent infeasible body configurations in Section 3.5, (3) model contact

between parts of the body and the environment in Section 3.4 and (4) power joints in the body in Section 3.6.

Because we do not integrate constraints with the equations of motions, which gives us the flexibility to

change these constraints dynamically, the motion of the constrained rigid body system is produced by exactly

the same original equations and the same numerical solvers as in the unconstrained case that we described

earlier.
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Constraint Forces and Accelerations. We implement constraints by computing constraint forces. Con-

straint forces act on the rigid bodies and implicitly enforce the desired behavior of the system by controlling

the acceleration of the bodies in the system. We employ the approach of Lagrange multipliers to formulate

the forces. This approach allows us to handle all constraints in the same uniform way and to combine con-

straints automatically and dynamically. Using this approach, we can characterize the desired behavior of the

rigid body system in terms of individual constraint objectives, where each objective controls one aspect of the

motion using separate, yet uniform, formulations (e.g., body articulation, non-penetration, friction, actuation

of the body, etc.). In modeling the motion of the person, all forces that we apply on the model of the person

result either from constraints or universal physical laws, such as the gravity.

In general, we are often interested in defining constraints over positions and orientations of the bodies

(e.g., to model body articulation and non-penetration). However, as stated previously, we implement con-

straints by computing constraint forces, and forces are directly related to accelerations of the bodies, not the

positions. Consequently, to compute constraint forces for other constraint types, we need to reformulate the

constraints as constraints over accelerations.

Outline. In further exposition, we outline the general approach for maintaining constraints using Lagrange

multipliers. We then formally introduce constraints over accelerations of bodies in the system and illustrate

how acceleration constraints can be handled directly. We then introduce constraints over velocities and show

how velocity constraints can be handled incrementally by converting them to constraints over accelerations

and computing corresponding constraints forces. We also show how velocity constraints can be handled

directly on the velocity level by computing constraint impulses. Lastly, we define constraints over positions

and show how the position constraints can be handled incrementally by maintaining corresponding velocity

or acceleration constraints.

3.2.1 Example: Point-To-Point Equality Constraint

We start our exposition of constraints and the explanation of the general constraint method with a motivational

example that is of practical importance for the building of our physics-based model of the body of the person.

The purpose of this example is to illustrate how one specific constraint type, the point-to-point constraint,

can be implemented as well as to introduce general concepts for the constraint method that we utilize in later

sections.

Imagine we are given two rigid bodies, denoted X and Y , that we want to glue together so that the bodies

stay connected in motion. For example, one body may represent an upper arm of the body of the person,

while the other one may represent the forearm and we may want to connect these parts at the elbow. We can

realize the desired coupling between the motion of the two bodies by a constraint

pX = pY , (3.31)

where pX is the point on the body X and pY is the point on the body Y and the two points are constrained to

occupy the same world space location such that the bodies would not tear apart. For example, the pX and pY

points may define the anchor points for the upper arm and the forearm.
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Position-level Constraint. In order to enable uniform handling of similar constraints, we abstract the con-

straint from Equation (3.31) in the form of a vector constraint function Cp : [xX ,xY ]→Rm and the constraint

equation,

Cp(xX ,xY ) = 0 ∈ Rm, (3.32)

where the constraint function Cp is defined in terms of the generalized positions xX , xY of the two bodies

for which the constraint is to be maintained and the function measures the violation of the constraint with

respect to the position states of the bodies. The constraint function implicitly parameterizes the set of valid

body state pairs (xX ,xY ) when the constraint holds exactly and this set corresponds to the position manifold

Cp(xX ,xY ) = 0. The value of m defines the dimensionality of the constraint. In our example, m = 3 and

Cp(xX ,xY ) = pY −pX .

Maintaining Constraint Incrementally. Our goal is to maintain the constraint from Equation (3.32) incre-

mentally, by (1) starting from an initial state where the constraint holds already and (2) computing appropriate

constraint forces to affect the future motion of the constrained bodies such that the constraint will be kept

maintained in the future as well. Specifically to our example, this strategy means that the simulation should

start from a state where the bodies are connected and the constraint forces computed such that the bodies

remain connected as the time progresses.

In maintaining the constraint incrementally, we may assume that the constraint holds at the current time

such that (xX ,xY ) is on the position manifold. To keep the constraint maintained in the future, the constraint

force applied on the bodies at this time needs to make sure that (xX ,xY ) stays on the position manifold during

the integration step. In order to achieve this goal, the constraint force needs to cancel the components of

the accelerations of the bodies due to applied external forces that make the bodies accelerate away from the

position manifold.

Because the original constraint is defined over positions of bodies and forces are related to accelerations,

the position-level constraint has to be reformulated as a constraint over accelerations of the bodies. Towards

that end, the original constraint formulation from Equation (3.32) is differentiated twice with respect to time,

producing the corresponding velocity-level and acceleration-level formulations of the constraint. Using the

acceleration-level formulation of the constraint, we compute the constraint forces. We illustrate this process

in the remainder of this section.

Velocity-level Formulation. We obtain the velocity-level formulation of the original constraint by taking the
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time derivative of Equation (3.32),

Ċp =
∂pY −pX

∂ t
=

∂ (xY + rY )− (xX + rX )

∂ t

= (ẋY +ωY × rY )− (ẋX +ωX × rX )

= ẋY − rY ×ωY − ẋX + rX ×ωX

= ẋY − r∗Y ·ωY − ẋX + r∗X ·ωX

=
(

E −r∗Y
)
·

(
ẋY

ωY

)
+
(
−E r∗X

)
·

(
ẋX

ωX

)

=
(
−E r∗X E −r∗Y

)
·


ẋX

ωX

ẋY

ωY


=
(

JX JY

)
·

(
vX

vY

)
= 0,

where rX is attached to the body X and rY is attached to Y such that pX = xX + rX and pY = xY + rY and JX

and JY are 3×6 matrices called the Jacobian matrices due to the position constraint function Cp and the first

and the second body.

This way, we are able to reformulate the original constraint, specified in terms of generalized positions,

to a constraint specified in terms of generalized velocities. This velocity-level formulation of the constraint

can be generally written using the velocity-level constraint function Cv : [vX ,vY ]→ Rm as

Cv(vX ,vY ) := JX ·vX +JY ·vY = 0, (3.33)

where JX =
(
−E r∗X

)
and JY =

(
E −r∗Y

)
for our example case.

Acceleration-level Formulation. We obtain the acceleration-level formulation of the original constraint by

taking the time derivative of Equation (3.33),

Ċv =
∂JX ·vX +JY ·vY

∂ t
= JX ·aX +JY ·aY + J̇X ·vX + J̇Y ·vY = 0

This way, we are able to reformulate the original constraint, specified in terms of generalized positions,

to a constraint specified in terms of generalized accelerations. This acceleration-level formulation of the

constraint can be generally written using the acceleration-level constraint function Ca : [aX ,aY ]→ Rm as

Ca(aX ,aY ) := JX ·aX +JY ·aY − c = 0, (3.34)

where JX and JY are the Jacobian matrices as defined above, J̇X and J̇Y are the time derivatives of the

matrices and c=−J̇X ·vX− J̇Y ·vY . Note, because the constraint is formulated directly in terms of generalized

accelerations of the bodies and we know the relation between forces and accelerations, the equation provides

a constraint on the forces that can act on the two bodies.
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To complete the formulation of Equation (3.34) for our example case, we need to determine the value of

c. It is usually easier to compute c directly from Ċv, rather than through the explicit derivation of the time

derivatives of the Jacobian matrices,

Ċv =
∂−ẋX −ωX × rX

∂ t
+

∂ ẋY +ωY × rY

∂ t

= (−ẍX − ω̇X × rX −ωX × (ωX × rX ))+(ẍY + ω̇Y × rY +ωY × (ωY × rY ))

= (−ẍX + r∗X · ω̇X −ωX × (ωX × rX ))+(ẍY − r∗Y · ω̇Y +ωY × (ωY × rY ))

=
(
−E r∗X E −r∗Y

)
·


ẍX

ω̇X

ẍY

ω̇Y

−ωX × (ωX × rX )+ωY × (ωY × rY )

=
(

JX JY

)
·

(
aX

aY

)
− c,

where c = ωX × (ωX × rX )−ωY × (ωY × rY ).

Given the original position-level formulation of the constraint in the form of Cp = 0, we obtained

the velocity-level formulation Ċp = 0 and the acceleration-level formulation C̈p = 0 of the constraint. If

Cp(xX (t),xY (t)) = 0 and Ċp(vX (t),vY (t)) = 0 at the current time t, we can implement the original position-

level constraint incrementally by solving for the constraint forces to be applied on X and Y such that C̈p(vX (t),

vY (t)) = 0.

Constraint Force Basis. Our goal is to construct the constraint forces
(
Fconstraint

)
X and

(
Fconstraint

)
Y to

be applied on the bodies in order to produce the accelerations aX , aY that are consistent with the constraint

in Equation (3.34). Following the Lagrange multiplier method, [18], we define the constraint force for the

constraint from Equation (3.34) as a linear combination of the rows of the Jacobian matrices,(
Fconstraint)

X = JT
X ·λ (3.35)(

Fconstraint)
Y = JT

Y ·λ , (3.36)

where the Jacobian matrices are known a priori and come from the definition of the constraint, and the

coefficients (Lagrange multipliers) λ in the combination are unknown and have to be determined. As such,

the constraint force is parameterized by λ . Furthermore, it is possible to predict, how the acceleration of the

bodies changes had the constraint force been applied and we use this information to solve for the constraint

force exactly.

Given the total external forces Ftotal
X and Ftotal

Y acting on the two bodies, the external forces produce the

accelerations aX = M−1X ·Ftotal
X and aY = M−1X ·Ftotal

Y of the bodies according to Equation (3.26). When

the constraint force is added, the acceleration of the bodies changes and the resulting acceleration can be

expressed as a function of the multipliers λ ,

aX (λ ) = M−1X · (Ftotal
X +JT

X ·λ ) (3.37)

aY (λ ) = M−1Y · (Ftotal
Y +JT

Y ·λ ). (3.38)
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Solving for Multipliers. We solve for λ such that the resulting acceleration satisfies JX ·aX (λ )+JY ·aY (λ )−
c = 0 and the constraint in Equation (3.34) is maintained. Towards that end, we first stack individual vectors

and matrices into global vectors and matrices that characterize the entire rigid body system, obtaining a =

(aX ,aY ), J =
(

JX JY

)
, Ftotal = (Ftotal

X ,Ftotal
Y ), Fconstraint = JT · λ = (

(
Fconstraint

)
X ,
(
Fconstraint

)
Y ), M =(

MX 0
0 MY

)
and J ·a = c.

Using this notation, we see that the acceleration a(λ ) of the rigid body system after the total external force

Ftotal and the constraint force Fconstraint are applied on the system equals a(λ ) = M−1 · (Ftotal +Fconstraint) =

M−1 · (Ftotal +JT ·λ ) = M−1 ·Ftotal +M−1 ·JT ·λ . This acceleration has to satisfy the constraint J ·a(λ ) = c
and so J ·M−1 ·Ftotal +J ·M−1 ·JT ·λ = c. We can rearrange the last equation as a system of linear equations

in the form of

A ·λ +b = 0, (3.39)

where A = J ·M−1 · JT is a 3× 3 matrix, b = J ·M−1 · Ftotal − c is a 3× 1 vector and λ ∈ R3 are the

Lagrange multipliers to be solved for. Once λ are computed, the constraint force Fconstraint = JT · λ =

(
(
Fconstraint

)
X ,
(
Fconstraint

)
Y ) is applied as a regular force on the bodies.

Hypersurface Interpretation. Maintaining the position-level constraint in Equation (3.32) corresponds to

keeping the (xX ,xY ) point on the position manifold. We achieve this goal incrementally, by “projecting” the

current acceleration of the system due to external forces to the set of valid accelerations, consistent with the

acceleration-level formulation of the constraint in Equation (3.34).

Each row of the m rows in the acceleration-level formulation, JX · aX + JY · aY = c ∈ Rm, defines a hy-

persurface for valid accelerations in the space of all accelerations (aX ,aY ). Components within the linear

combination JT ·λ that implements the constraint force are associated with these hypersurfaces and realize

projections to each of them.

Specifically, the JT
k ·λk, 1≤ k ≤ m component within the linear combination acts to project the accelera-

tion (aX ,aY ) to the hypersurface due to the k-th constraint row, by affecting the acceleration along the normal

of the hypersurface such that3 (JX )k · aX (λ )+ (JY )k · aY (λ )− ck = 0. The idea is that the constraint force

component should only cancel the components in accelerations that move the (xX ,xY ) point away from the

position manifold, along or against the normal direction, but let the point move freely along the manifold.

Because the normal of the k-th hypersurface equals the k-th row of
(

JX JY

)
, the constraint force compo-

nent for the k-th row needs to apply the λk ·
(
JT

X
)

k force on the body X and λk ·
(
JT

Y
)

k on the body Y for some

value of λk.

The linear system in Equation (3.39) represents interactions between the components JT
k · λk of the

constraint force in changing the acceleration a(λ ) of the rigid body system and the corresponding values

J · a(λ )− ck′ of the constraint function for the constraint rows 1 ≤ k′ ≤ m. Solving for λ in this system is

equivalent to projecting the acceleration a to the intersection of all hypersurfaces such that J ·a(λ )− c = 0.

Discussion. Although it is possible to build linear systems from Equation (3.39) for different constraints (and

combinations of constraints) manually, doing so is not practical. In the following sections, we illustrate how

3Note that the value of the constraint function Jk ·a(λ )− ck for the k-th row depends on the value of all multipliers λ , not only λk .
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such systems can be build automatically for a variety of constraints and constraint types and how the systems

can be solved using a constraint solver to produce a constraint force that satisfies all such constraints.

3.2.2 Acceleration Constraints

We now generalize the approach for handling a single constraint over two rigid bodies from the previous

section for c constraints, n rigid bodies and other constraint types that are not described by equations with

equalities.

We will focus directly on acceleration-level formulations of constraints, where accelerations of body pairs

are constrained using linear functions. We use these constraints as building blocks for the construction of the

physics-based model of the articulated body of the person. The constraints can take different forms and can

be defined by equalities (see Section 3.2.2.3), inequalities (see Section 3.2.2.4) or equalities with bounded

constraint forces (see Section 3.2.2.5). Each constraint type forces the value of the constraint function to a

specific value, a range of values or combination of both subject to constraint force bounds.

3.2.2.1 Notation

We first define general notation for constraints, bodies and constraint forces that we are going to use in this

section. We define this notation with respect to acceleration constraints defined by equality equations that

force the value of the constraint function to a fixed value. We then provide formal definitions for other

constraint types that we need to model in our system and show how constraint forces for all the constraint

types can be solved for in terms of the multipliers λ , the matrix A and the vector b. We obtain the value of

λ as a solution to a linear complementarity problem (LCP) defined by the A, b and bounds on the constraint

force, as defined by the constraints.

Basic Notation. We will use the index j to index rigid bodies in the system, j = 1, . . . ,n, the index i to index

constraints, i = 1, . . . ,c, and the index k to index constraint rows in constraint equations, k = 1, . . . ,mi, where

mi is the number of constraint rows in the definition of the constraint i.

The vectors x = (x1, . . . ,xn), v = (v1, . . . ,vn) and a = (a1, . . . ,an) will refer to the generalized position,

velocity and acceleration of the rigid body system, Ftotal =
(
Ftotal

1 , . . . ,Ftotal
n
)

will refer to the total external

force exerted on the system and Fconstraint =
((

Fconstraint
)

1 , . . . ,
(
Fconstraint

)
n

)
will refer to the total constraint

force applied on the system due to all constraints.

Let M j be the mass matrices of the individual bodies in the system. We define the mass matrix of the

rigid body system M as the square block diagonal matrix M with the individual matrices M j on the diagonal,

M =


M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...

0 0 . . . Mn

 .

Because M j · a j = Ftotal
j , we can express the acceleration a of the system due to the application of Ftotal as

a = M−1 ·Ftotal .
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Constraint. We next describe the notation for a single constraint i. In defining the notation, we can imagine

that the constraint describes an acceleration-level equality constraint from Equation (3.34) that we generalize

for two selected bodies Xi and Yi as

Ci
a(aXi ,aYi) := Ji,Xi ·aXi +Ji,Yi ·aYi − ci = 0, (3.40)

where Ci
a(aXi ,aYi) := Ji,Xi ·aXi +Ji,Yi ·aYi−ci is the constraint function for the constraint. The constraint may

request e.g., the two bodies to stay connected at a common anchor point, as in the point-to-point example

from before.

Note that, although this particular constraint is defined by an equality equation in this case, requesting

the linear combination of the accelerations of two bodies to equal a specific value, our system can also work

with inequalities and equalities with bounded constraint forces that we introduce later in Section 3.2.2.4

and Section 3.2.2.5. While these other constraint types use different definitions for the constraint equation,

they use the same constraint functions Ci
a and share the same notation that we explain here. We define the

constraint notation with respect to the case of the equality constraint from Equation (3.40).

Single Constraint Notation. We assume the constraint i, defined e.g., as in Equation (3.40), effects two

bodies with the indices Xi and Yi and is described by an equation that has mi constraint rows. The constraint is

characterized by a mi×6n matrix Ji of rank mi called the Jacobian matrix of the constraint and the constraint

equation vector ci of the length mi. We call Xi the first body constrained by the constraint and Yi the second

body. We refer to the value of Ci
a(aXi ,aYi) = Ji,Xi · aXi + Ji,Yi · aYi − ci as the value of the constraint function

for the constraint.

The value of mi defines the dimensionality of the constraint and determines how many mi degrees of

freedom (DOFs) are removed from the system by the constraint. For example, the point-to-point constraint we

discussed earlier has mi = 3, because the joint constrains the movement of the two bodies in three orthogonal

directions at the anchor point. Note that although this constraint removes only 3 degrees of freedom, it affects

both linear and angular properties of the two bodies. A hinge joint constraint removes two additional degrees

of freedom, allowing only rotational motion of the bodies about a given axis at the anchor point, resulting in

a constraint with mi = 5, etc.

The matrix Ji consists of n blocks of size mi× 6. Blocks in the matrix are indexed by the bodies in

the rigid body system such that each block is due to a particular body. Because the constraint is pair-wise

by definition and can only effect the bodies Xi and Yi, Ji has only two non-zero blocks, one due to the first

constrained body Xi and one due to the second constrained body Yi, referred to by Ji,Xi and Ji,Yi .

According to the Lagrange multiplier approach, the constraint i is implemented by applying a constraint

force Fconstraint
i = JT

i ·λi =
((

Fconstraint
i

)
1 , . . . ,

(
Fconstraint

i
)

n

)
to the rigid body system, where the constraint

force is parameterized by the values of mi multipliers encoded in λi and the generalized force
(
Fconstraint

i
)

j

is applied on the j-th body. Each row k = 1, . . . ,mi of Ji removes one DOF from the system and contributes

to the constraint force Fconstraint
i by exerting the force (λi)k · (Ji)

T
k on the system. Due to the way Ji is

defined,
(
Fconstraint

i
)

Xi
= JT

i,Xi
·λi and

(
Fconstraint

i
)

Yi
= JT

i,Yi
·λi are the only non-zero blocks of Fconstraint

i , where(
Fconstraint

i
)

Xi
is the constraint force applied to the first body Xi and

(
Fconstraint

i
)

Yi
is the constraint force applied

to the second body Yi.
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Multiple Constraints Notation. To capture the effect of all constraints, defined e.g., as in Equation (3.40),

we stack the individual mi× 6n Jacobian matrices Ji by rows to a single m× 6n Jacobian matrix J, where

m = ∑i mi is the total number of DOFs removed from the system (constraint rows). After stacking, the matrix

J is then a block matrix with c×n blocks indexed by constraints and bodies, with the only non-zero blocks

being Ji,Xi and Ji,Yi for i = 1, . . . ,c. Then, the total constraint force Fconstraint exerted on the system equals

Fconstraint = ∑i Fconstraint
i = JT ·λ , where λ = (λ1, . . . ,λc) is a m×1 vector of Lagrange multipliers due to all

constraints. Because individual constraints should not conflict each other, J is assumed to have full rank.

As before, we define A = J ·M−1 · JT and b = J ·M−1 ·Ftotal − c, where c = (c1, . . . ,cc). The matrix A
is a m×m matrix that encodes interactions between components of the constraint force due to constraints

and constraint rows in changing the values of the constraint functions for the constraints. It can be imaged

as if it consists of c× c blocks due to individual constraint pairs such that the value of the (i1, i2)-th block of

size mi1 ×mi2 due to the i1-th constraint and the i2-th constraint is given by Ai1,i2 = ∑ j Ji1, j ·M
−1
j · (Ji2, j)

T .

This block models how the value of the constraint function Ci1
a for the constraint i1 changes in response to

the scaling of the components of the constraint force due to the constraint i2. We will use Ai to refer to the

i-th block row of A due to the constraint i. Note that A is positive definite, because the matrices M j, M−1
j are

positive definite and J is assumed to have full rank. This fact is important for feasibility of solutions when

solving for λ .

The vector b is a vector of the length m and can be imagined as consisting of c blocks due to individual

constraints. We use bi to refer to the i-th block b of the length mi due to the constraint i.

Value of Constraint Function. When the total external force Ftotal is applied on the bodies in the system,

the force produces the acceleration a = M−1 ·Ftotal and this acceleration has to be corrected by adding a

constraint force JT ·λ so that the constraints will hold. When the constraint force is added, the acceleration

of the system changes and, because the constraint force is parameterized by λ , the resulting acceleration can

be expressed as a function of λ ,

a(λ ) = M−1 · (Ftotal +JT ·λ ). (3.41)

Consequently, we can express the values of constraint functions for constraints in terms of λ .

Specifically, the value of the constraint function for the constraint i is determined by

Ci
a(λ ) := Ji,Xi ·aXi(λ )+Ji,Yi ·aYi(λ )− ci

= Ji ·a(λ )− ci

= (J ·a(λ )− c)i

=
(

J ·M−1 · (Ftotal +JT ·λ )− c
)

i

=
(

J ·M−1 ·Ftotal +J ·M−1 ·JT ·λ − c
)

i

=
((

J ·M−1 ·JT ) ·λ +
(

J ·M−1 ·Ftotal− c
))

i

= (A ·λ +b)i

= Ai ·λ +bi, (3.42)
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because Ji has the only non-zero blocks Ji,Xi and Ji,Yi . This relation between λ and the value of constraint

functions is central for the process of computing λ and determining the constraint force. In particular, the

relation encodes how a particular constraint i gets violated by applying a hypothetical constraint force with

given values of the multipliers λ . Using this relation, we can solve for λ such that all constraints will be

maintained exactly.

3.2.2.2 Overview and Outline

Given acceleration constraints in the system, defined e.g., as in Equation (3.40), our goal is to illustrate

how we can compute the constraint force, parameterized by λ , such that all constraints are maintained. We

follow the Lagrange multiplier approach and reformulate constraints, originally specified over accelerations

of bodies in the rigid body system, as conditions over the multipliers λ that produce the constraint force.

These conditions have a specific form and yield a problem in the literature known as the LCP. We formulate

the LCP in terms of A and b, such that the solution to the LCP produces the multipliers λ that satisfy the

acceleration constraints.

In formulating the LCP, we proceed first by providing formal definitions for the types of acceleration

constraints that we need to model. We show for each acceleration constraint i with a given type the conditions

on the values of λ , defined in terms of A and b, that lead to the computation of the constraint force for the

constraint. According to our earlier discussion, each constraint i will generate a constraint force of the same

form Fconstraint
i = JT

i ·λi. However, different types of acceleration constraints will lead to different conditions

on the values of λ , thus constraining how the constraint force can act. In deriving the actual conditions

for λ for each constraint type and each constraint in the LCP, we will show that each constraint i can be

characterized in terms of:

LCP1 Linear conditions on the values of λ that relate the value of the constraint function Ci
a(λ ) to the values

of all multipliers λ , using A and b.

The purpose of these conditions is to force a value of λ such that the constraint i is maintained.

We express these conditions based on Equation (3.42), which characterizes how a particular constraint

i gets violated by applying a constraint force JT ·λ due to all constraints on the rigid body system. The

goal of the linear conditions for the constraint i is to force a value of λ such that the resulting constraint

force produces a value of the constraint function Ci
a(λ ) that is requested by the constraint i.

We will show that acceleration constraints defined by equalities can be fully characterized using only

the linear conditions on λ .

LCP2 Bounds on the legal values of the multipliers λi for the constraint force due to the constraint i.

The purpose of these conditions is to force a value of λ that is within given bounds so that the generated

constraint force due to the constraint is bounded and/or only acts in a specific direction.

These conditions are specific to a particular constraint type and make the constraint force due to the

constraint i act only in a specific direction and/or with a bounded magnitude. For example, the con-

straint force may be requested to only “push” the constrained bodies but not “pull”. We discuss these
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conditions when we talk about inequality constraints and bounded equality constraints.

We will show that acceleration constraints defined by inequalities and equalities with bounded con-

straint forces require bounds on the values of the multipliers λi.

Bounding of the constraint multipliers has the effect that the constraint force for a given constraint can

e.g., only act in a specific direction, but not in the opposite direction (see Section 3.2.2.4) or that the

amount of the force that the constraint can generate can not exceed a given limit (see Section 3.2.2.5).

For example, to implement repulsification of two bodies using a constraint (to e.g., prevent penetration),

the corresponding constraint force needs to act to push the bodies away from each other, but it is not

allowed to pull them back together. As such, the force can only act in one direction, allowing the bodies

to move freely in the opposite direction.

LCP3 Complementarity conditions between the value of the constraint function Ci
a(λ ) and the multipliers λi

due to the constraint i.

The purpose of these conditions is to force a value of λ that minimizes the amount of the generated

force for the constraint i.

These conditions force a value for λi that makes the constraint force act as lazily as possible. Specif-

ically, the conditions prevent the constraint force due to the constraint i from acting if the constraint

is already satisfied by an external force or a constraint force due to another constraint. We define

complementarity conditions when we introduce inequality and bounded equality constraints.

Finally, we use the derived conditions to build the LCP representation of all acceleration constraints and

show how the LCP can be solved to obtain λ and the constraint force.

3.2.2.3 Equality Constraints

We now introduce equality (bilateral) constraints. We use equality constraints to e.g., implement joints that

anchor parts of the model of the person together.

Definition. We define an acceleration-level equality constraint i that acts on two bodies Xi and Yi by a

constraint equation

Ji,Xi ·aXi(λ )+Ji,Yi ·aYi(λ )− ci = 0, (3.43)

where Ji,Xi and Ji,Yi are two mi×6 matrices, ci is a mi×1 vector and mi is the dimensionality of the constraint.

The Ji,Xi and Ji,Yi matrices are called the Jacobian blocks due to the first and the second body and are

supposed to have full rank. When the acceleration-level constraint implement a position-level constraint

Cp(xXi ,xYi) = 0 or a velocity-level constraint Cv(vXi ,vYi) = 0, then Ji,Xi =
∂Cp
∂xXi

, Ji,Yi =
∂Cp
∂xYi

or Ji,Xi =
∂Cv
∂vXi

,

Ji,Yi =
∂Cv
∂vYi

.

The equality constraint constrains the accelerations aXi(λ ) and aYi(λ ) of the two bodies such that the

value of the constraint function Ci
a(λ ) = Ji,Xi ·aXi(λ )+Ji,Yi ·aYi(λ )− ci is exactly 0. The constraint is called

an equality constraint, because it is described by a linear equality.



101

LCP Conditions on Multipliers. The equality constraint only requires the satisfaction of Ci
a(λ ) = 0. In

doing so, it does not impose any bounds on the multipliers λi due to the constraint and it does not impose

any complementarity conditions on the value of the constraint function and the multipliers. Consequently,

the LCP conditions for the equality constraint i are

Ci
a(λ ) = 0. (3.44 [LCP1])

According to Equation (3.42), these conditions can be rewritten using the matrix A and the vector b as

Ai ·λ +bi = 0, (3.45 [LCP1])

which is a system of linear equations with the unknown λ .

3.2.2.4 Inequality Constraints

We now define inequality (unilateral) constraints that replace the = sign in the constraint equation with the≥
or ≤ sign. We use inequality constraints to e.g., implement non-penetration between body parts and the parts

and the environment. We also use inequality constraints to implement joint angle limits at joints in the body

model of the person so that e.g., forearm would not bend backwards.

Definition. We define an acceleration-level inequality constraint i that acts on two bodies Xi and Yi by the

constraint equation

Ji,Xi ·aXi(λ )+Ji,Yi ·aYi(λ )− ci ≥ 0, (3.46)

where Ji,Xi and Ji,Yi are mi×6 Jacobian matrices due to the constrained bodies, ci is a mi×1 vector and mi is

the dimensionality of the constraint. The inequality constraint constrains the accelerations aXi(λ ) and aYi(λ )

of the two bodies such that the value of the constraint function Ci
a(λ ) = Ji,Xi · aXi(λ )+ Ji,Yi · aYi(λ )− ci is

greater or equal to 0, componentwise.

Derivation. We now derive conditions on the multipliers λ due to the inequality constraint i.

LCP1 The constraint equation directly requires Ci
a(λ )≥ 0, which we will use as one of our conditions on λ ,

hence

Ci
a(λ )≥ 0. (3.47)

LCP2 Furthermore, we need to restrict legal directions for the components of the constraint force, so that the

force will not “pull” the bodies to the state where Ci
a(λ ) = 0. This restriction will result in conditions

on the bounds of the multipliers λi.

According to our definition of the constraint force Fconstraint
i = JT

i ·λi due to the constraint i, the con-

straint force acts to cancel the components of accelerations that make the bodies violate the constraint.

In the case of an equality constraint, discussed in Section 3.2.1, the constraint force acted to project

the accelerations of bodies due to external forces on the intersection of the hypersurfaces due to the

constraint rows, by cancelling any accelerations along the directions of the normals of the hypersur-

faces. In the case of an inequality (greater-or-equal) constraint, however, accelerations to the front of
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hypersurfaces, along the positive directions of the normals, are legal and must not be canceled. Conse-

quently, the constraint force can only act along the positive directions of normals, which implies that

the multipliers have to be bounded as

λi ≥ 0. (3.48)

LCP3 Lastly, the generated constraint force should do as little work as possible such that it only acts along a

given hypersurface k = 1, . . . ,mi if and only if
(
Ci

a
)

k (λ ) = 0. This requirement results in complemen-

tarity conditions on the values of
(
Ci

a
)

k (λ ) and (λi)k for each k.

The purpose of these conditions is to make the constraint force work as lazy as possible such that no

energy is added to the system.

Recall that the (Ji)k · (λi)k component within the linear combination Fconstraint
i = JT

i · λi implements

the constraint force for the k-th row of the constraint i and controls the acceleration along the k-th

hypersurface. We now define the complementarity conditions for the constraint row k.

If
(
Ci

a
)

k (λ )> 0 such that the bodies accelerate to the front of the hypersurface k under the constraint

force JT ·λ , then there is no need to push the bodies in that direction even more. Hence, in order to

minimize the amount of work done, the constraint force due to that hypersurface must vanish, that is,

(λi)k = 0, (
Ci

a
)

k (λ )> 0⇒ (λi)k = 0. (3.49)

Similarly, if the constraint force (Ji)k · (λi)k is acting along the normal of the hypersurface k, (λi)k > 0,

then it should only work as little as possible to make the bodies stay on the hypersurface, that is,(
Ci

a
)

k (λ ) = 0,

(λi)k > 0⇒
(
Ci

a
)

k (λ ) = 0. (3.50)

The complementarity conditions can be rewritten in the form of single a condition,(
Ci

a
)

k (λ ) · (λi)k = 0. (3.51)

To interpret the complementarity of
(
Ci

a
)

k (λ ) and (λi)k in an intuitive way, imagine that the inequal-

ity constraint implements non-penetration between the ground and a ball at rest such that
(
Ci

a
)

k (λ )

measures the upward acceleration of the ball and (λi)k defines the amount of the non-penetration force

applied on the ball to prevent it from going down through the ground. Now, if the ball already acceler-

ates away from the ground with a positive acceleration, the non-penetration force need not act and so

it is forced to not act. On the other hand, if the force acts, it should only act to cancel the downward

acceleration, but it should not bounce the ball away from the ground with a positive acceleration.

LCP Conditions on Multipliers. The inequality constraint requires the satisfaction of Ci
a(λ )≥ 0. In doing

so, it imposes bounds on the multipliers λi due to the constraint, λi ≥ 0, and it requires complementarity

between the values of the constraint function and the multipliers. Consequently, the LCP conditions for the
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inequality constraint i are

Ci
a(λ )≥ 0 (3.52 [LCP1])

λi ≥ 0 (3.53 [LCP2])

Ci
a ·λi = 0, (3.54 [LCP3])

where λi ·Ci
a = ∑

mi
k=1 (λi)k ·

(
Ci

a
)

k = 0 in facts means (λi)k ·
(
Ci

a
)

k = 0 for k = 1, . . . ,mi, because both the

products have to be non-negative.

According to Equation (3.42), these conditions can be rewritten using the matrix A and the vector b as

Ai ·λ +bi ≥ 0 (3.55 [LCP1])

λi ≥ 0 (3.56 [LCP2])

(Ai ·λ +bi) ·λi = 0. (3.57 [LCP3])

Less-Or-Equal Inequalities. Notice that we defined the inequality constraint as a “greater-or-equal” con-

straint. We note that the “less-or-equal” variant that replaces the ≥ sign with the ≤ sign in the constraint

equation can be defined and handled analogously. The “less-or-equal” variant can also be converted to the

“greater-or-equal” case by multiplying the constraint equation by −1.

3.2.2.5 Bounded Equality Constraints

As the next step, we define a constraint that behaves like an equality constraint that is maintained subject

to constraint force bounds. The constraint works as hard as possible to satisfy the constraint equality, but it

is allowed to be violated if a force bound is hit. We specify bounds for the constraint force as bounds on

the values of the multipliers due to the constraint rows in the equality. The bounds determine whether the

generated constraint force due to the constraint can “pull” and/or “push” and how strongly when working to

maintain the equality.

We use bounded equality constraints to build “motors” with limited power that implement actuation of

the model of the person and to model friction between parts of the body and the parts and the environment.

These constraints employ a best-effort strategy to achieve the constraint objective (e.g., to contract an arm or

to stop contacting bodies from sliding), but are allowed to fail gracefully if the objective can not be satisfied

because of a power limit (e.g., joint torque bound, friction cone), given by the bounds.

Motivation. Our goal is to define a constraint i that acts like an equality constraint Ji ·a(λ )− ci = 0 but that

breaks if the magnitude of the generated constraint force Fconstraint
i = JT

i ·λi exceeds a limit.

If the constraint is one-dimensional, such that mi = 1, the magnitude of the constraint force is given

by ||JT
i || · |(λi)1 |. Because ||JT

i || is fixed, given the constraint definition, limiting of the magnitude can be

realized by enforcing lower and upper bounds on the legal values of the multiplier (λi)1. Consequently, we

assume the constraint force is bounded by specifying the limits on the multiplier.

In the general case of multi-dimensional constraints, we approximate the L2 norm in ||Fconstraint
i || with

L∞ norm, for computational tractability, and implement the bounding of the constraint force by limiting the
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multipliers. Towards that end, we assume that each multiplier has its own bounds, independent of the values

of other multipliers, such that bounding of different multipliers can be realized separately. We assume that

the bounds for the bounded equality constraint i are specified by the vectors λ lo
i and λ hi

i of the length mi such

that the bounding of the multipliers λi due to the constraint can be realized componentwise by requesting(
λ

lo
i

)
k
≤ (λi)k ≤

(
λ

hi
i

)
k
, (3.58)

where k = 1, . . . ,mi.

Note that the bounding of the multipliers and the graceful failure of the constraint can not be emulated by

treating the constraint as an original (unbounded) equality constraint, solving for the exact constraint force

due to λ and clamping the multipliers λi into the valid range by applying Equation (3.58). The clamping may

change the values of possibly all constraint functions Ci′
a(λ ), thus, breaking all other constraints i′ 6= i in the

system. Instead, the clamping has to be integrated with the LCP formulation such that the solution process

that computes λ is aware of the effects of Equation (3.58). Towards that end, we define a new bounded

equality constraint type.

Similarly to equality and inequality constraints, we will define this new constraint in terms of the con-

straint force Fconstraint
i = JT

i ·λi and LCP conditions on the corresponding multipliers λi to handle the clamp-

ing. The multipliers λi have to be not only clamped in the LCP formulation but they also have to be tied

to the value of the constraint function Ci
a(λ ) by complementarity conditions to minimize the amount of the

generated force.

Definition. We define an acceleration-level bounded equality constraint i as a constraint that acts on two

bodies Xi and Yi, has a dimensionality mi and is specified by two mi×6 matrices Ji,Xi and Ji,Yi , a vector ci of

the length mi and bounds λ lo
i ≤ 0 and λ hi

i ≥ 0 on the values of the multipliers λi due to the constraint. The

constraint equation requests

Ji,Xi ·aXi(λ )+Ji,Yi ·aYi(λ )− ci = 0 (3.59)

subject to constraint force multipliers bounds

λ
lo
i ≤ λi ≤ λ

hi
i , (3.60)

such that Equation (3.59) can be violated if a multiplier bound is hit.

Specifically, the constraint works to keep the value of the constraint function Ci
a(λ ) = Ji,Xi ·aXi(λ )+Ji,Yi ·

aYi(λ )−ci at 0, componentwise, but it is allowed to produce
(
Ci

a
)

k (λ )> 0 or
(
Ci

a
)

k (λ )< 0 for a constraint

row k as long as the multiplier (λi)k of the constraint force (Ji)
T
k · (λi)k due to the constraint row hits either

the lower bound
(
λ lo

i
)

k or the upper bound
(
λ hi

i
)

k.

Derivation. We now derive conditions on the multipliers λ due to the bounded equality constraint i. Because

individual multipliers are bounded independently in our definition of the bounded equality constraint, we

derive the conditions for the multipliers for each constraint row k separately. If the multiplier bounds do not

permit generation of any force,
(
λ lo

i
)

k =
(
λ hi

i
)

k = 0, we ignore the constraint row.

We follow up on the hypersurface interpretation of the equality constraint Ci
a(λ ) = 0.



105

LCP1 According to the definition, the constraint is supposed to work as hard as possible to maintain
(
Ci

a
)

k (λ )=

0 and the equation can only break if the constraint force (Ji)
T
k · (λi)k is at a bound, hence(

λ
lo
i

)
k
< (λi)k <

(
λ

hi
i

)
k
⇒
(
Ci

a
)

k (λ ) = 0. (3.61)

LCP2 The constraint definition also directly requires the multiplier (λi)k to be bounded, hence(
λ

lo
i

)
k
≤ (λi)k ≤

(
λ

hi
i

)
k
. (3.62)

LCP3 When a constraint force bound is hit, the constraint equation is allowed to break such that
(
Ci

a
)

k (λ )≥ 0

or
(
Ci

a
)

k (λ )≤ 0.

The breakage results from the fact that the acceleration along the normal of the hypersurface due

to the constraint row k has to be cancelled by the constraint force (Ji)
T
k · (λi)k in order to maintain(

Ci
a
)

k (λ ) = 0 exactly. When the multiplier (λi)k is forced to stay within the bounds,
(
λ lo

i
)

k ≤ (λi)k ≤(
λ hi

i
)

k, the generated constraint force may not be strong enough to cancel the acceleration, resulting in(
Ci

a
)

k (λ )≥ 0 or
(
Ci

a
)

k (λ )≤ 0, depending on which bound is hit.

Specifically, if the lower bound is hit, (λi)k =
(
λ lo

i
)

k > 0, the constraint force was trying to “pull” a(λ )
from the front of the hypersurface onto the hypersurface, because

(
λ lo

i
)

k > 0. Since the bound was

hit, the resulting λ may yield the acceleration a(λ ) that is still in the front of the hypersurface, hence(
Ci

a
)

k (λ )≥ 0,

(λi)k =
(

λ
lo
i

)
k
⇒
(
Ci

a
)

k (λ )≥ 0. (3.63)

Similarly, if the upper bound is hit, 0 <
(
λ hi

i
)

k = (λi)k, the constraint force was trying to “push”

a(λ ) from the back of the hypersurface onto the hypersurface, because 0 <
(
λ hi

i
)

k. Since the bound

was hit, the resulting λ may yield the acceleration that is still in the back of the hypersurface and so(
Ci

a
)

k (λ )≤ 0,

(λi)k =
(

λ
hi
i

)
k
⇒
(
Ci

a
)

k (λ )≤ 0. (3.64)

LCP Conditions on Multipliers. The bounded equality constraint imposes bounds on the multipliers λi due

to the constraint, requires satisfaction of Ci
a(λ ) = 0 subject to constraint force bounds and ties the value of

the constraint function Ci
a(λ ) to the value of the multipliers λi using complementarity constraints. The LCP

conditions for the bounded equality constraint are(
λ

lo
i

)
k
≤(λi)k ≤

(
λ

hi
i

)
k

(3.65 [LCP2])

(λi)k =
(

λ
lo
i

)
k
⇒
(
Ci

a
)

k (λ )≥ 0 (3.66 [LCP3])

(λi)k =
(

λ
hi
i

)
k
⇒
(
Ci

a
)

k (λ )≤ 0 (3.67 [LCP3])(
λ

lo
i

)
k
< (λi)k <

(
λ

hi
i

)
k
⇒
(
Ci

a
)

k (λ ) = 0, (3.68 [LCP1+ LCP3])

where k = 1, . . . ,mi.
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Figure 3.1: LCP Conditions. Visualization of complementarity conditions on the values of λi and Ci
a(λ ) due

to different kinds of one dimensional constraints i, where Ci
a(λ )= Ji,Xi ·aXi(λ )+Ji,Yi ·aYi(λ )−ci =Ai ·λ +bi.

Thick lines indicate permissible values for the (λi,Ci
a(λ )) pairs. As can be seen, the equality constraint

(left) requests Ci
a(λ ) to be zero and allows λi to take an arbitrary value. The inequality constraint (middle)

requests both Ci
a(λ ) and λi to be non-negative and complementary to each other such that Ci

a(λ ) ·λi = 0. The
bounded equality constraint (right) generalizes the two previous cases by introducing explicit bounds λ lo

i ≤ 0
and λ hi

i ≥ 0 on the values of λi. Note that, we illustrate the situation for one-dimensional constraints with
one constraint row. For constraints with multiple dimensions, each row produces similar LCP conditions as
illustrated in the diagram.

These conditions can be rewritten using the matrix A and the vector b as(
λ

lo
i

)
k
≤(λi)k ≤

(
λ

hi
i

)
k

(3.69 [LCP2])

(λi)k =
(

λ
lo
i

)
k
⇒ Ai ·λ +bi ≥ 0 (3.70 [LCP3])

(λi)k =
(

λ
hi
i

)
k
⇒ Ai ·λ +bi ≤ 0 (3.71 [LCP3])(

λ
lo
i

)
k
< (λi)k <

(
λ

hi
i

)
k
⇒ Ai ·λ +bi = 0 (3.72 [LCP1+ LCP3])

for k = 1, . . . ,mi. See Figure 3.1, right.

Special Cases. The bounded equality constraint type generalizes both inequality and unbounded equality

constraints (see Figure 3.1):

• If we set λ lo
i = 0 and λ hi

i =+∞, then the bounded equality constraint i turns to an equivalent greater-

or-equal constraint i with the same Jacobian blocks and the vector ci.

• By setting λ lo
i =−∞ and λ hi

i = 0, the bounded equality constraint i turns to an equivalent less-or-equal

constraint.

• Finally, λ lo
i =−∞ and λ hi

i =+∞ produced an unbounded equality constraint.

Consequently, we only need to implement bounded equality constraints.
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3.2.2.6 Soft Constraints

The constraints we have defined so far were all considered “hard” such that the requested values of the

constraint functions were to be maintained exactly. In many cases, such a behavior is not desirable and we

may want to specify constraints that are designed to break.

In this section, we introduce a special kind of “soft” constraints, defined according to [169], that request

slack in the value of the constraint function such that the original constraint equation is not maintained exactly.

These constraints request the slack to be proportional to the constraint force that implements the constraint,

allowing bigger slack for constraints that have to work harder at the current time. When soft constraints

are combined with constraint stabilization (e.g., see Section 3.2.4.1), interesting spring-like behaviors can be

realized, where soft constraints allow the original hard constraint to break and the stabilization mechanism

works to recover from the breakage, by reducing the current constraint error. We use these two mechanisms

to implement body actuation in Section 3.6.

Note that this definition of soft constraints may be different from “soft constraints” used in computer

graphics. Specifically, our soft constraints request an exact slack in the value of the constraint function and

this slack is enforced exactly. In contrast to other soft constraint formulations, in particular, we do not use

optimization to minimize the slack, but achieve the desired slack. As such, our soft constraints are a variant

of the original hard constraints that do not request any slack. Similarly to hard constraints, soft constraints

prescribe control objectives for the simulation that are all achieved exactly by solving a LCP. We implement

soft constraints as a different form of hard constraints and look for an exact solution, via a LCP, that satisfies

all of them. Consequently, the effects of soft constraints are predictable and guaranteed.

We introduce soft constraints for the case of unbounded equality constraints, but the exactly same ap-

proach can be taken to implement soft inequality and soft bounded equality constraints.

Definition. We define a soft acceleration-level equality constraint i that acts on two bodies Xi and Yi by a

constraint equation

Ji,Xi ·aXi(λ )+Ji,Yi ·aYi(λ )− ci− si ·E ·λi = 0, (3.73)

where Ji,Xi and Ji,Yi are two mi×6 matrices, ci is a mi×1 vector, si is a mi×1 vector of softness constants,

mi is the dimensionality of the constraint and λi is a vector of Lagrange multipliers due to the constraint. The

individual softnesses constants (si)k are positive numbers and indicate how much soft the particular constraint

row k is. A zero softness indicates that the constraint row should be hard and work exactly as before.

When compared to the corresponding hard constraint in Equation (3.43), the constraint equation for the

soft constraint defines the slack si ·E ·λi that is to be achieved with respect to the hard constraint. This slack is

proportional to the softness constants and the multipliers λi that measure how hard the constraint force needs

to work to maintain the constraint. The soft formulation attempts to trade off the constraint slack (error) for

the amount of the generated force, by directly requesting the slack at the k-th row to be (si)k · (λi)k, allowing

more slack for constraint rows that have to work harder.

The soft constraint equation in Equation (3.73) serves as a replacement for Equation (3.43). The soft

equality constraint constrains the accelerations aXi(λ ) and aYi(λ ) of the two bodies such that the value of

the soft constraint function Ci
a,s(λ ) = Ji,Xi · aXi(λ )+ Ji,Yi · aYi(λ )− ci− si ·E ·λi is exactly 0. In doing so, it
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constrains the accelerations such that corresponding hard constraint function Ci
a(λ ) attains the error si ·E ·λi.

Derivation. Our goal is to reformulate the soft constraint as a set of hard conditions on the multipliers λ for

the LCP. As it turns out, the incorporation of softness constants only changes the definition of the matrix A.

As such, the LCP conditions over λ can be expressed using this new matrix A, that we refer to as As, in the

same way as before.

To show these results, we need to evaluate how the value of the soft constraint function Ci
a,s(λ ) changes

as a function of λ and use it everywhere in place of the original hard constraint function Ci
a(λ ). Let us assume

that all constraints i have defined softness constants si that we stack into s = (s1, . . . ,sc). Let us also define

the softness matrix S as a square matrix with the values of s on the diagonal, S = s ·E. Then, by following

the derivation from Equation (3.42), we see that

Ci
a,s(λ ) := Ji ·a(λ )− ci− si ·E ·λi

= (J ·a(λ )− c−S ·λ )i

=
(

J ·M−1 ·
(

Ftotal +JT ·λ
)
− c−S ·λ

)
i

=
((

J ·M−1 ·JT +S
)
·λ +

(
J ·M−1Ftotal− c

))
i

= ((A+S) ·λ +b)i

= (As ·λ +b)i

= As
i ·λ +bi (3.74)

where

As = J ·M−1 ·JT +S = A+S (3.75)

b = J ·M−1 ·Ftotal− c. (3.76)

LCP Conditions on Multipliers. Because the objective of the soft constraint is to keep Ci
a,s(λ ) at 0, not

Ci
a(λ ), we can use Equation (3.74) in place of Equation (3.42) and follow the original derivation from Sec-

tion 3.2.2.3 to obtain the LCP conditions for λ for the soft constraint. The conditions that we get this way

are formulated in terms of the new matrix As but are otherwise identical to the original conditions in Equa-

tion (3.45 [LCP1]).

Equalities, Inequalities, Bounded Equalities. We define and implement soft variants of equality constraints,

inequality constraints and bounded equality constraints by (1) assigning softness constants (si)k with the rows

k in the original formulations of the constraints i and (2) using the matrix As from Equation (3.75), that

incorporates the effects of the softnesses, for the LCP. We use the same LCP conditions over multipliers as in

the hard constraints case.

3.2.2.7 Reduction to LCP

Given the definitions of (soft) constraints i over accelerations of bodies that are currently in effect, our goal is

to reformulate these constraints in the form of LCP such that the solution to the LCP produces the constraint

force, parameterized by λ .
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We use LCP conditions over λ to capture the effect of the acceleration constraints. Once reformulated as

a LCP, we solve this LCP to obtain λ . The solution to the LCP is a vector λ that determines the constraint

force JT ·λ to be applied on the rigid body system. The value of λ is computed by th LCP solver such that

the resulting acceleration a(λ ) of the rigid body system is consistent with all acceleration constraints.

The LCP that we construct has a special structure, known as the lo-hi linear complementarity problem,

[169]. We formulate the LCP as described below. The LCP is characterized by:

• The unknown multipliers λ that will determine the constraint force and that we need to solve for.

• Known matrix As and the vector b from Equation (3.75) and Equation (3.76).

Content of these matrices and vectors is computed from the definitions of As and b and the specifica-

tion of the constraints, using the values of Ji,Xi , Ji,Yi , ci, si and the current external force Ftotal . See

Section 3.2.2.1 and Section 3.2.2.6 for information on the block structure of A, As and b and how the

blocks can be filled.

• Known LCP conditions over the values of the multipliers λi and the values As
i · λ + bi of the soft

constraint functions Ci
a,s(λ ), as given by constraint specifications.

The LCP conditions are specific to each constraint i and the type of the constraint. They consist of the

conditions [LCP1], [LCP2] and [LCP3] and are given by the definition of each constraint. Note, As is

used in place of A to account for the softnesses of constraints:

1. The unbounded equality constraint uses the LCP conditions from Equation (3.45 [LCP1]),

As
i ·λ +bi = 0. (3.77)

2. The inequality constraint uses the LCP conditions from Equation (3.55 [LCP1]), Equation (3.56

[LCP2]), Equation (3.57 [LCP3]),

As
i ·λ +bi ≥ 0 (3.78)

λi ≥ 0 (3.79)

(As
i ·λ +bi) ·λi = 0. (3.80)

3. The bounded equality constraint uses the LCP conditions from Equation (3.69 [LCP2]), Equa-

tion (3.70 [LCP3]), Equation (3.71 [LCP3]), Equation (3.72 [LCP1+ LCP3]),(
λ

lo
i

)
k
≤(λi)k ≤

(
λ

hi
i

)
k

(3.81)

(λi)k =
(

λ
lo
i

)
k
⇒ As

i ·λ +bi ≥ 0 (3.82)

(λi)k =
(

λ
hi
i

)
k
⇒ As

i ·λ +bi ≤ 0 (3.83)(
λ

lo
i

)
k
< (λi)k <

(
λ

hi
i

)
k
⇒ As

i ·λ +bi = 0. (3.84)
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Second Order Inverse Dynamics. We abstract the process of building the LCP and solving the LCP using a

constraint solver component [191] within the system. The constraint solver component works as a black box

that implements inverse dynamics within the rigid body system. The component takes as an input the external

force that acts on the system and the formulations of constraints that are to be maintained. It automatically

builds the LCP to capture the effects of constraints, solves the LCP using a LCP solver [191, 169, 192] and

outputs the constraint force that arises in response to the external force and the constraints and that satisfies

the constraints.

When solving for the constraint force, all constraints are handled uniformly and no special knowledge

of constraints, besides the descriptions in terms of e.g., Equation (3.73), is required by the constraint solver.

Furthermore, the set of constraints can change dynamically and new constraints (and behaviors) can be au-

tomatically implemented by simply providing descriptions for the constraints. We exploit these features in

later sections when we implement body articulation, limits at joint angles, actuation of the body and contact

with the environment, when we implement all these aspects of the motion of the model of the person by

constraints.

We internally use a modified formulation of the LCP in our constraint solver implementation [191] based

on [18]. This formulation lets us maintain equality constraints in an articulated structure to implement artic-

ulation of the structure in linear time, thus rivaling performance of simulations that use reduced coordinates

to express the motion of the structure.

3.2.3 Velocity Constraints

The constraints we have defined in Section 3.2.2 were all formulated over accelerations of bodies. The

constraints were maintained by solving for the constraint force that adjusts the accelerations such that the

constraints are maintained, utilizing second-order dynamics rules from Equation (3.26).

In specific cases, it is important to characterize a desired behavior of the system directly in terms of

velocities of the bodies. For example, when a foot hits the ground plane, we need to change the velocity of

the foot instantly so that the foot would not go down through the ground. Towards that end, we introduce

constraints that are directly formulated over velocities of the bodies in the system and solve for an impulsive

constraint force that adjusts the velocities of the bodies directly such that the velocity constraints will hold,

utilizing first-order dynamics rules from Equation (3.28).

We define and handle velocity constraints analogously to the acceleration case, except that we replace

Equation (3.26) with Equation (3.28) and use velocities and impulsive forces instead of accelerations and

forces. In doing so, we utilize the notation similarity between the second-order and the first-order dynamics

that we established in Section 3.1.3.

We next describe the notation that we use to express constraints over velocities of bodies in the system.

We then introduce formulations of the constraints and directly show how impulsive constraint forces can be

computed in terms of λ to satisfy the constraints. The impulsive constraint force will be computed analo-

gously to the acceleration case via a LCP, defined in terms of the velocity-level variants Av,s and bv of As, b
and impulsive constraint force bounds λ lo and λ hi. The LCP is built identically to the acceleration case, ex-

cept that acceleration-level quantities, relevant to second-order dynamics, are replaced with the corresponding



111

velocity-level quantities in the formulation. When implementing a constraint solver on the computer, an iden-

tical code can be used to implement velocity-level constraints, by using an abstraction wrapper that accesses

either the velocity-level or acceleration-level quantities.

Notation. We reuse the generalized notation from Section 3.2.2.1 and bring it to the velocity level. Towards

that end, we define Ftotal
imp =

((
Ftotal

imp

)
1
, . . . ,

(
Ftotal

imp

)
n

)
to refer to the total external impulse (momentum)

applied on the rigid body system and Fconstraint
imp =

((
Fconstraint

imp

)
1
, . . . ,

(
Fconstraint

imp

)
n

)
to refer to the total

constraint impulse applied on the system due to all velocity constraints.

We will work directly with velocity-level soft constraint functions Ci
v,s(λ ),

Ci
v,s(λ ) := Ji,Xi ·vXi(λ )+Ji,Yi ·vYi(λ )− cimp

i − si ·E ·λi, (3.85)

where Ji,Xi , Ji,Yi are mi×6 Jacobian matrices defined as before, cimp
i is a mi×1 vector, si is a mi×1 vector with

softness constants, λi is the mi×1 vector of Lagrange multipliers that parameterizes the impulsive constraint

force
(

Fconstraint
imp

)
i
= JT

i · λ due to the constraint, v(λ ) is the velocity of the rigid body system after the

entire impulsive constraint force JT ·λ due to all velocity constraints is applied on the system and mi is the

dimensionality of the constraint.

Using first-order dynamics from Section 3.1.3, the velocity v(λ ) is given by

v(λ ) = M−1 ·
(

Ftotal
imp +JT ·λ

)
. (3.86)

Consequently, following the derivation of Equation (3.74) the value of the velocity-level soft constraint func-

tion Ci
v,s(λ ) equals

Ci
v,s(λ ) = (Av,s)i ·λ +(bv)i , (3.87)

where

Av,s = J ·M−1 ·JT +S = A+S, (3.88)

bv = J ·M−1 ·Ftotal
imp − cimp (3.89)

and cimp =
(

cimp
1 , . . . ,cimp

c

)
. As such, Av,s is identical to the acceleration case and bv differs from the accel-

eration case by using Ftotal
imp instead of Ftotal and cimp instead of c.

Definitions of Constraints. We define a velocity-level constraint i in terms of the soft constraint function Ci
v,s

from Equation (3.85) that is described by Ji,Xi , Ji,Yi , cimp
i and si. The constraint exerts a constraint impulse(

Fconstraint
imp

)
i
= JT

i ·λi parameterized by the multipliers λi and implements either

• an unbounded equality constraint, when the value of the function is requested to be exactly 0, such that

Ci
v,s(λ ) := Ji,Xi ·vXi(λ )+Ji,Yi ·vYi(λ )− cimp

i − si ·E ·λi = 0, (3.90)

• a inequality constraint, when the value of the function is requested to be greater-or-equal to 0, such

that

Ci
v,s(λ ) := Ji,Xi ·vXi(λ )+Ji,Yi ·vYi(λ )− cimp

i − si ·E ·λi ≥ 0, (3.91)

or
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• a bounded equality constraint, when the value of the value of the function is requested to be kept at 0,

such that

Ci
v,s(λ ) := Ji,Xi ·vXi(λ )+Ji,Yi ·vYi(λ )− cimp

i − si ·E ·λi = 0, (3.92)

subject to bounds on the multiplier values, λ lo
i ≤ λi ≤ λ hi

i , where λ lo
i ≤ 0 and λ hi

i ≥ 0.

LCP Conditions on Multipliers. Velocity-level constraints produce LCP conditions on the multipliers λ

that are specific to the type of the constraint and are identical to the cases of corresponding acceleration

constraints. The conditions can be formally derived by following the original derivations for acceleration

constraints while replacing

• acceleration a with velocity v,

• total external force Ftotal with total external impulse Ftotal
imp ,

• constraint force Fconstraint with impulsive constraint force Fconstraint
imp ,

• vectors c with cimp and

• soft acceleration-level constraint functions Ci
a,s with soft velocity-level constraint functions Ci

v,s.

The resulting LCP conditions that are obtained this way are formulated with respect to the matrix Av,s

defined in Equation (3.88) and the vector bv defined in Equation (3.89).

First Order Inverse Dynamics and Multiplier Bounds. Velocity-level constraints are solved using a con-

straint solver that implements first-order inverse dynamics. The solver takes the total external impulse Ftotal
imp

and the descriptions of velocity-level constraints, formulates the LCP over λ in terms of Av,s and bv and the

multiplier bounds λ lo, λ hi, as described in this section, solves the LCP and outputs the impulsive constraint

force Fconstraint
imp = JT ·λ that satisfies the velocity constraints.

Note that the multiplier bounds λ lo, λ hi limit the components of the impulsive constraint force, not the

constraint force, in this case. As such, they have “units of momentum” and determine how much momentum

of the rigid body system can change along a given impulsive force direction at one application of the im-

pulse. These units are different from Newtons, used by the multiplier bounds in the acceleration case. If the

equations of motion are integrated using an Euler method with the step size ∆t (see Section 3.1.4), then the

impulsive bounds λ lo
v , λ hi

v , can be related to the acceleration bounds λ lo
a , λ hi

a as

λ
lo
a =

λ lo
v

∆t
(3.93)

λ
hi
a =

λ hi
v

∆t
, (3.94)

because the effects of an impulse Fimp can be simulated by the force F =
Fimp

∆t . We use these equations to

implicitly adjust the bounds when switching between velocity-level and acceleration-level formulations of

constraints.



113

Maintaining Velocity Constraints by Constraining Accelerations. Note that if all velocity-level con-

straints already hold, such that no impulses need be produced to maintain them, we can constrain accelera-

tions to be consistent with the velocity formulations. By constraining the accelerations in this case, (1) we can

ensure that the velocity constraints will hold in the future as well, after the accelerations have been integrated

by the simulator, and (2) velocities of the bodies in the system will not have to be corrected by impulses.

Our goal is to limit the use of impulses as much as possible. First, we want to simulate Newtonian

second-order dynamics that is driven by forces and not impulses, which implement only first-order dynamics.

Second, each time an impulse is applied, the state of the rigid body system is changed disruptly and integration

(simulation) has to be restarted from this new state (see Section 3.1.4). Thus, whenever possible, we attempt

to maintain velocity constraints incrementally, by only applying forces and strictly adhering to Newtonian

second-order dynamics.

The acceleration level formulations of velocity constraints are obtained by taking the time derivatives of

the velocity-level constraint functions from Equation (3.85) and using them as the acceleration-level con-

straint functions for the corresponding types of acceleration constraints4.

3.2.4 Position Constraints

We next introduce constraints formulated over positions and orientations of rigid bodies. Such constraints

are important because they can express many practical aspects of desired motion of the rigid body system

in a natural way. For example, to build an articulated model of the person, position constraints can be used

to attach parts of the body together at joints in the body, limit the motion of the parts relative to each other

to prevent biomechanically impossible poses of the body (e.g., bending of the knee backwards), ensure non-

penetration of the parts and to actuate the body.

With that said, position constraints can not be implemented by directly adjusting positions and orien-

tations of bodies. In systems driven by physical laws, positions and orientations of bodies change only

indirectly, in response to forces and impulses that are applied on them, as encoded by the equations of mo-

tion. Consequently, in order to implement position constraints, we need to reformulate such constraints as

constraints over velocities and/or accelerations and maintain the original constraints incrementally, by ensur-

ing the velocities and accelerations remain consistent with the original position formulations. In doing so, we

follow and extend the approach previously outlined in Section 3.2.1.

We work with both equality constraints over body pairs, that fix a specific configuration of bodies, such as

a desired angle at a joint or connection of bodies at a joint, and inequality constraints. Inequality constraints

are only effective when a specific configuration of bodies is reached (e.g., a joint angle is hit). We next

define the constraints, outline the general course of action in maintaining the constraints and show how each

constraint type can be implemented.

Definitions. We formulate position-level constraints using position-level constraint functions. We reuse the

generalized notation introduced in Section 3.2.1 and Section 3.2.2.

4When we reformulate a velocity constraint as an acceleration constraint, we implicitly adjust the force bounds according to Equa-
tion (3.93) and Equation (3.94).
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We define the position-level constraint function for the constraint i as a function Ci
p : [xXi ,xYi ]→ Rm

i that

is differentiable with respect to time. The function acts over the bodies Xi and Yi and has the dimensionality

mi. It defines a position manifold
{
(xXi ,xYi) | Ci

p(xXi ,xYi) = 0
}

for the points (xXi ,xYi).

A position-level equality constraint i constrains the generalized positions of the bodies Xi and Yi to lie on

the position manifold, such that

Ci
p(xXi ,xYi) = 0. (3.95)

A position-level inequality constraint i constrains the generalized positions of the bodies to lie on or in

the front of the position manifold, such that

Ci
p(xXi ,xYi)≥ 0. (3.96)

Similarly to the case of acceleration and velocity constraint functions, the value Ci
p(xXi ,xYi) of the con-

straint function for the constraint i can be interpreted as a measurement of the position error for the bodies at

the position xXi and xYi . For simplicity, we assume that mi = 1 for inequality position constraints.

Maintaining Constraints Incrementally. We maintain position constraints incrementally, by using their

velocity-level and acceleration-level formulations. These formulations are obtained by taking the first-order

and second-order time derivatives of the position-level constraint equations.

The position-level constraints are maintained by (1) starting from a state that honors the position-level

formulations and (2) using the velocity-level formulations as real constraints for simulation. According to the

discussion in Section 3.2.3, we always implement velocity constraints as constraints over accelerations when

permitted (that is, when all velocity constraints are already satisfied). We describe the handling of each type

of position constraint in greater detail next.

3.2.4.1 Equality Constraints with Stabilization

We use position-level equality constraints to model articulation of the model of the person and to actuate the

model. We implement a particular position-level equality constraint i Ci
p(xXi ,xYi) = 0 from Equation (3.95)

by exploiting its velocity-level and acceleration-level formulations.

Velocity and Acceleration Formulations. We obtain the velocity-level formulation of the constraint from

Equation (3.95) by differentiating the position-level constraint equation with respect to time. We get the

velocity-level constraint equation

Ci
v(vXi ,vYi) = 0, (3.97)

where Ci
v(vXi ,vYi) = Ċi

p(xXi ,xYi) = Ji,Xi ·vXi +Ji,Yi ·vYi , which is a special case of the general velocity-level

equality constraint from Equation (3.90).

We obtain the acceleration-level formulation of the constraint from Equation (3.95) by differentiating the

position-level constraint equation with respect to time twice. We get the acceleration-level constraint equation

Ci
a(aXi ,aYi) = 0, (3.98)

where Ci
a(aXi ,aYi) = Ċi

v(vXi ,vYi) = C̈i
p(xXi ,xYi) = Ji,Xi ·aXi +Ji,Yi ·aYi−ci and ci =−J̇Xi,·vXi− J̇Yi,·vYi , which

is a special case of the general acceleration-level equality constraint from Equation (3.43).
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Maintaining Position Constraint Incrementally. Given the velocity-level and acceleration-level formula-

tions of the original constraint, we may attempt to maintain Equation (3.95) incrementally either

• on the acceleration level, by starting from a state where Ci
p = 0 and Ċi

p = 0 and applying constraint

forces such that C̈i
p = 0, or

• on the velocity level, by starting from a state where Ci
p = 0 and applying constraint impulses such that

Ċi
p = 0, eventually reducing to the first case.

This proposed approach can, however, only work when the velocity and acceleration formulations of

the constraint are maintained exactly in simulation. In the first case, constraint forces are applied under the

assumption that Ci
p = Ċi

p = 0 at any time, while in the second case constraint impulses are applied under the

assumption of Ci
p = 0. Neither of these assumptions need to hold in the practice. For example, the numerical

solver that integrates the equations of motion may incur an integration error during simulation, constraint

forces and impulses may be computed with an insufficient precision or we may even want to start from a

state when the position constraint does not hold exactly. When these aspects occur, the incremental approach

can easily fail at maintaining the original position constraint. To remedy the problem, we need to be able to

reduce the violations of these assumptions as they happen. Towards that end, we stabilize constraints.

Constraint Stabilization on Velocity Level. Let us assume that we implement the position level constraint

i by imposing a velocity constraint. If the constraint is currently broken, such that Ci
p 6= 0, we want to

generate a constraint impulse so that the constraint error Ci
p is decreased and the original position constraint

is stabilized. A simple stabilization technique can be implemented for any position constraint by following a

procedure suggested in [36]. In this procedure, one uses

Ċi
p =−Ci

p ·α, (3.99)

as a velocity constraint to implement the original position constraint instead of Ċi
p = 0 from Equation (3.97),

where α ≥ 0 is a constraint stabilization constant, dependent on the integration step size.

The constant determines what fraction of the constraint error should be reduced in one integration step.

As such, the stabilization constant controls the speed with which the constraint error is fully removed (the

constraint is stabilized) and it serves a role similar to gain constants in penalty methods. Note that, however,

unlike the penalty methods, the constraint stabilization procedure discussed here guarantees that the constraint

error is reduced as the time progresses and in presence of other constraints. Specifically, if we interpret Ci
p(t)

as a measurement of the constraint error at the time t and if tcurrent is the current time and ∆t the integration

step size, we can express the error decay between the time tcurrent and tcurrent +∆t using Taylor expansion at

tcurrent and Equation (3.99) as

Ci
p(tcurrent +∆t)≈ Ci

p(tcurrent)+∆t · Ċi
p(tcurrent)

= Ci
p(tcurrent)−∆t ·Ci

p(tcurrent) ·α

= Ci
p(tcurrent) · (1−∆t ·α).

Consequently,

Ci
p(t
′) ∝ Ci

p(tcurrent) · exp(−α · t ′) (3.100)
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for t ′ ≥ tcurrent and the decay of the position constraint error is exponential with the decay speed controlled

by the constant α .

Constraint Stabilization on Acceleration Level. We can use the same stabilization technique to stabilize a

broken velocity constraint so that the velocity constraint can be implemented by an acceleration constraint.

This way, we can implement the original position constraint i by imposing an acceleration constraint. In this

case, we need to reduce both the position error Ci
p as well as the velocity error Ċi

p.

We can reduce these errors by using

C̈i
p =−Ci

p ·α− Ċi
p ·β (3.101)

as an acceleration constraint to implement the original position constraint instead of C̈i
p = 0 from Equa-

tion (3.98), where α ≥ 0 is a position constraint stabilization constant and β ≥ 0 is a velocity constraint sta-

bilization constant, both being dependent on the integration step size. We use β = 2 ·α . Because Ċi
p = Ji ·v,

we can implement the stabilization by

C̈i
p =−Ci

p ·α−Ji ·v ·β . (3.102)

Maintaining Position Constraint Incrementally with Stabilization. Using the stabilization techniques

from above, we can implement the original position equality constraint i incrementally by requesting either

• the velocity-level equality constraint i

Ji,Xi ·vXi(λ )+Ji,Yi ·vYi(λ )− cimp
i = 0, (3.103)

where cimp
i =−Ci

p ·α , or

• the acceleration-level equality constraint i

Ji,Xi ·aXi(λ )+Ji,Yi ·aYi(λ )− ci = 0, (3.104)

where ci =−Ci
p ·α−Ji,Xi ·vXi ·β −Ji,Yi ·vYi ·β − J̇Xi,·vXi − J̇Yi,·vYi .

These constraints can be accompanied with constraint force/impulse bounds in order to turn them to

bounded equality constraints such that powering limits can be accounted for. This way, the position constraint

will only be maintained as long as the constraint has enough power. Furthermore, the constraints can be

made soft by incorporating softness constants as introduced in Section 3.2.2.6. Using these two features,

the original position constraint is encouraged to break and the stabilization mechanism works to reduce the

breakage.

By using soft constraints and/or constraints with bounds that allow the position constraint to break, one

can build spring-like systems that oscillate around the desired state and that do not reach the desired state

exactly in one integration step. We use these techniques for the actuation of the model of the person in

Section 3.6, where the current pose of the body is stabilized using soft constraints with powering bounds

towards a desired pose.
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3.2.4.2 Inequality Constraints with Stabilization

We use position-level inequality constraints to model joint angle limits in the model of the person and to en-

force non-penetration between parts of the body and the parts and the environment. We maintain a particular

one-dimensional position-level inequality constraint i, Ci
p(xXi ,xYi) ≥ 0, from Equation (3.95) incrementally,

by considering the velocity-level and acceleration-level formulations Ċi
p(vXi ,vYi)≥ 0 and C̈i

p(aXi ,aYi)≥ 0.

We implement the constraint using an incremental approach with stabilization based on Section 3.2.4.1.

Handling of the inequality constraint differs from the previous equality constraint case in one fundamental

aspect though. First, the equality constraint works to keep positions of bodies on the constraint position

manifold at all times. The approach from Section 3.2.4.1 does so by imposing the same kind of velocity

or acceleration constraint at every integration step. On the other hand, the inequality constraint attempts to

keep the positions of the bodies in the front of the position manifold or on the manifold, and no velocity or

acceleration formulations of the constraints are considered by the dynamics until the bodies hit or already

lie on the manifold. Consequently, the velocity and acceleration formulations of the constraint are only

effective at specific time instants and we may need to use impulsive dynamics to implement the constraint.

For example, when we use the inequality constraint to keep a ball in the free fall on or above the ground,

no velocity or accelerations constraints are effective until the ball hits the ground. At the time of impact,

however, the velocity of the ball has to be reversed instantly (via a constraint impulse) to avoid a violation of

the position constraint.

The position inequality constraint i is satisfied by its velocity or acceleration formulations depending on

the current value of the position constraint function Ci
p(tcurrent). We consider the following cases, with respect

to a tolerance ε:

1. |Ci
p(tcurrent)|< ε:

When Ci
p(tcurrent) = 0, the positions of bodies lie on the constraint position manifold (e.g., the ball

just hit the ground or rests on the ground). To ensure the positions do not move past the manifold, we

request the Ċi
p(tcurrent)≥ 0.

We implement this request as a velocity constraint with position stabilization using the technique from

Equation (3.103),

Ji,Xi ·vXi(λ )+Ji,Yi ·vYi(λ )− cimp
i ≥ 0, (3.105)

where cimp
i =−Ci

p ·α , α is a position stabilization constant and Ji,Xi and Ji,Yi come from the formulation

of Ċi
p.

According to the discussion from Section 3.2.3, this velocity constraint can be implemented on the

acceleration level when all velocity constraints already hold (e.g., the ball rests on the ground, but it

does not strike it with a non-zero speed). In that situation, we use the following acceleration constraint

with position and velocity stabilization terms from Equation (3.104),

Ji,Xi ·aXi(λ )+Ji,Yi ·aYi(λ )− ci ≥ 0, (3.106)

where ci = −Ci
p ·α − Ji,Xi · vXi · β − Ji,Yi · vYi · β − J̇Xi,·vXi − J̇Yi,·vYi and α is a position stabilization

constant and β is a velocity stabilization constant.
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As before, we can use soft velocity or acceleration constraints and constraints with multiplier bounds

to implement the original position constraint.

2. Ci
p(tcurrent)≥ ε:

When Ci
p(tcurrent)> 0, the positions of bodies are in the front of the position manifold (e.g., the ball is

in the air and does not touch the ground) and, consequently, no constraints will be defined for dynamics.

3. Ci
p(tcurrent)≤−ε:

When Ci
p(tcurrent) < 0, the current state violates the position constraint (e.g., the ball is below the

ground). We roll the simulation state back to the previous state in this case and use a binary search

algorithm [19] to find the latest valid state at the time t < tcurrent , where |Ci
p(t)| < ε . We then resolve

this new situation using (1).

In the remainder of this chapter, we illustrate how we use position constraints to implement articulation

of the model of the person, angle limits at joints, contact and perform low-level actuation (motion control) of

the body.

3.3 Articulated Body

In this section, we illustrate how we build an articulated physics-based model of the person from its rigid

parts. We connect the parts using joints that we implement as position constraints from Section 3.2.4. The

constraints restrict relative motion of the parts to prevent tearing and to ensure that only relevant rotations

about specific joint axes are possible. We discuss the articulated body model in greater detail next, focusing

on the formulations for the constraints that implement the joints in the body.

Articulated Body. We model the articulated body of the person as a composition of rigid parts connected

by joints of specific types. Each part in the model is represented as a rigid body from Section 3.1 and is

described by (1) the mass properties from Equation (3.3), (2) a rigid shape that defines the geometry of the

part and (3) anchor points for the locations of joints where the part connects to other parts.

Shapes and Mass Properties. We model the shape of a part as an abstracted assembly of rigid geometric

primitives such as boxes, capsules and spheres, and we use this geometric information to model the interaction

of the part with other parts and the part with the environment in Section 3.4. Mass properties encode how the

part responds to forces and we derive these properties automatically from the rigid shape information using

the definition of the properties in Section 3.1.1, assuming a known uniform density for the part [45].

In motion estimation, we use the shape representation of parts to predict how a particular pose of the

model is going to look like in an image, when projected through the camera. Note, the shape representation

used for the projection (image shape) may be more detailed than the rigid representation used for the simula-

tion (simulation shape). For example, the image shape model can attempt to capture e.g., the deformation of

the skin/cloth based on the pose of the body or model the variation of the thickness of limbs along the bones

in the body.
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Joint Parent Joint Joint Type Number of DOFs Geometry Type
Root Ground Root 6 Cube
Spine Root Saddle 2 Cube
Neck Spine Ball-and-socket 3 Capsule
Right Clavicle Spine Saddle 2 Capsule
Right Shoulder Right Clavicle Ball-and-socket 3 Capsule
Right Elbow Right Shoulder Hinge 1 Capsule
Left Clavicle Spine Saddle 2 Capsule
Left Shoulder Left Clavicle Ball-and-socket 3 Capsule
Left Elbow Left Shoulder Hinge 1 Capsule
Right Hip Root Ball-and-socket 3 Capsule
Right Knee Right Hip Hinge 1 Capsule
Left Hip Root Ball-and-socket 3 Capsule
Left Knee Left Hip Hinge 1 Capsule

Table 3.2: Structure of Body Model in Chapter 4. Our simpler model has 13 body parts associated with
joints and the total number of 31 degrees of freedom.

Joint Types. We implement ball-and-socket joints that connect two body parts together at a common anchor

point but do not restrict the relative motion of the parts otherwise, hinge joints that only permit rotation about

a common hinge axis at the joint and saddle joints that allow rotation about two axes at the joint. We refer to

the constraints imposed by the joints as the joint articulation constraints.

3.3.1 Our Models

We use generic body models that represent an “average” male person. In designing these models, we are

inspired by current character models in computer graphics. These models use sufficient number of parts to

capture the articulation of the human body in various poses faithfully and define the part geometry and anchor

points such that the locations of joints in the models coincide with the locations of major joints in the human

body. We use two body models, a simpler model with 13 rigid parts (see Figure 4.4, Figure 5.3 and Chapter 4)

and a more detailed model with 18 parts (see Table 3.2, Table 3.3 and Chapter 5), resulting in pose spaces

with Ndo f s = 31 or Ndo f s = 43 degrees of freedom (DOFs). For better compliance of the model with the

environment, the detailed body model uses parts to represent feet and hands in the model.

We define joint types, anchor points and shape and mass properties for each part in either model man-

ually, based on biomechanical principles, proportions of the average body, the average weight and general

population statistics [45]. We organize parts in the models into kinematic tree hierarchies such that children

in the hierarchies connect to their parents by joints. The root parts are “connected” to the world space origin

on the ground by virtual 6-DOF global “joints” that track how the root parts translate and rotate in the world.

We illustrate these hierarchies for the two models in Table 3.2 and Table 3.3.
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Joint Parent Joint Joint Type Number of DOFs Geometry Type
Root Ground Root 6 Cube
Spine Root Ball-and-socket 3 Cube
Clavicle Spine Ball-and-socket 3 Cube
Neck Clavicle Ball-and-socket 3 Cube
Right Shoulder Clavicle Ball-and-socket 3 Capsule
Right Elbow Right Shoulder Hinge 1 Capsule
Right Wrist Right Elbow Ball-and-socket 3 Cube
Left Shoulder Clavicle Ball-and-socket 3 Capsule
Left Elbow Left Shoulder Hinge 1 Capsule
Left Wrist Left Elbow Ball-and-socket 3 Cube
Right Hip Root Saddle 2 Capsule
Right Knee Right Hip Hinge 1 Capsule
Right Ankle Right Knee Ball-and-socket 3 Cube
Right Ball Right Ankle Hinge 1 Cube
Left Hip Root Saddle 2 Capsule
Left Knee Left Hip Hinge 1 Capsule
Left Ankle Left Knee Ball-and-socket 3 Cube
Left Ball Left Ankle Hinge 1 Cube

Table 3.3: Structure of Body Model in Chapter 5. Our more detailed model has 18 body parts associated
with joints and the total number of 43 degrees of freedom.

3.3.2 Articulation Constraints

In this section, we show formulations for the types of articulation constraints that we use in our body models.

We define constraint equations for ball-and-socket joints, saddle joints and hinge joints. We implement

articulation constraints as position-level equality constraints from Section 3.2.4.1. In defining the constraints,

we use the notation from Section 3.2.4 and assume we define a constraint with the index i that connects the

part Xi (first) to the parent part Yi (second).

3.3.2.1 Ball-and-socket Joint

Definition. A ball-and-socket joint i is defined by the anchor points rb
Xi

and rb
Yi

that are fixed in the body

spaces of the parts Xi and Yi such that they move with the parts. Together, the point locations are constrained

to occupy the same position in the world space. The joint removes three degrees of freedom from the system,

but does not restrict the rotation about the anchor point in any other way. The connected parts are allowed to

rotate with respect to each other in three orthogonal directions at the anchor location.

Formulation. The constraint works exactly like our point-to-point example constraint in Section 3.2.1. If

xXi and xYi are the positions of the parts Xi and Yi and RXi and RYi are the orientations of the parts, then

pXi = xXi + rXi and pYi = xYi + rYi are the world space positions of the anchors at any time instant, where

rXi = RXi · rb
Xi

and rYi = RYi · rb
Yi

. The positions are constrained using a position-level constraint such that

Ci
p := pYi −pXi = 0. (3.107)
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Implementation. Following the derivations from Section 3.2.1, the constraint produces

Ci
p = pYi −pXi (3.108)

Ji,Xi =
(
−E r∗Xi

)
(3.109)

Ji,Yi =
(

E −r∗Yi

)
(3.110)

J̇Xi,·vXi + J̇Yi,·vYi = ωYi × (ωYi × rYi)−ωXi × (ωXi × rXi) (3.111)

mi = 3. (3.112)

We can implement the ball-and-socket joint by substituting these quantities into Equation (3.103) or Equa-

tion (3.104).

3.3.2.2 Saddle Joint

Definition. A saddle joint extends the ball-and-socket joint by removing one rotational degree of freedom

from the articulated body such that the connected parts can only rotate about two remaining axes at the

anchor location. The two axes are defined explicitly and are perpendicular to each other, where the first axis

is attached to the first part Xi and the second axis is attached to the second part Yi. The saddle joint i is defined

by the positions of the anchor points rb
Xi

and rb
Yi

and the directions ub
Xi

and ub
Yi

of the two joint axes defined in

the body spaces of the parts.

Formulation. Given the world space locations pXi = xXi +RXi · rb
Xi

and pYi = pYi +RYi · rb
Yi

of the anchor

points and the world space directions uXi = RXi ·ub
Xi

and uYi = RYi ·ub
Yi

of the joint axes, computed according

to Equation (3.4), the joint requests the anchor points to occupy the same world space location and the axes

to be perpendicular in world space,

Ci
p :=

(
pYi −pXi

−uXi ·uYi

)
=

(
0
0

)
. (3.113)

The constraint removes four degrees of freedom, mi = 4, and is defined by four constraint rows
(
Ci

p
)

k = 0,

k = 1, . . . ,4, of which the first three rows are due to the ball-and-socket joint from above. The fourth row is

given by
(
Ci

p
)

4 :=−uXi ·uYi = 0. The row produces(
Ċi

p
)

4 := (uXi ×uYi) · (ωYi −ωXi) = 0 (3.114)(
C̈i

p
)

4 := (uXi ×uYi) · (αYi −αXi)+((ωXi ×uXi)×uYi +uXi × (ωYi ×uYi)) · (ωYi −ωXi) = 0. (3.115)



122

Implementation. Utilizing the quantities from above, we can implement the saddle joint using Equa-

tion (3.103) or Equation (3.104) with the following values for the terms in the formulations

Ci
p =

(
pYi −pXi

−uXi ·uYi

)
(3.116)

Ji,Xi =

(
−E r∗Xi

0T −(uXi ×uYi)
T

)
(3.117)

Ji,Yi =

(
E −r∗Yi

0T (uXi ×uYi)
T

)
(3.118)

J̇Xi,·vXi + J̇Yi,·vYi =

(
ωYi × (ωYi × rYi)−ωXi × (ωXi × rXi)

((ωXi ×uXi)×uYi +uXi × (ωYi ×uYi)) · (ωYi −ωXi)

)
(3.119)

mi = 4. (3.120)

From Equation (3.103), we see that the saddle joint works exactly like the ball-and-socket joint but addi-

tionally prohibits the rotation of the parts about the axis uXi ×uYi . The value of
(
Ċi

p
)

4 measures the relative

angular velocity (rotation speed) about the axis uXi×uYi and the corresponding velocity constraint row forces

this value to zero.

3.3.2.3 Hinge Joint

Definition. A hinge joint extends the ball-and-socket joint by removing two rotational degrees of freedom

from the articulated body so that the connected parts can only rotate about a single common axis (hinge axis)

at the anchor. The hinge joint i is defined by the anchor positions rb
Xi

and rb
Yi

in the body spaces of the parts

and the directions ub
Xi

and ub
Yi

of the hinge axis expressed in the body spaces of the parts. The joint works to

align the anchor points and the axes in world space and permits only rotations of the parts about the hinge

axis. In aligning the anchor points, it works exactly like the ball-and-socket joint.

Formulation. Because velocity constraints allow to naturally express requests on the axes that the parts can

and cannot rotate about, we define the constraint equation for the joint directly on the velocity level. The

constraint removes five degrees of freedom, mi = 5, and is defined by five velocity constraint rows
(
Ci

v
)

k = 0

with stabilization, k = 1, . . . ,5, where the first three rows are due to the ball-and-socket joint from above. The

remaining two rows
(
Ci

v
)

4 = 0 and
(
Ci

v
)

5 = 0 implement the constraint due to the hinge axis and the rows

are defined as follows, (
Ci

v
)

4 := g · (ωYi −ωXi)−g · (uYi ×uXi) ·α = 0 (3.121)(
Ci

v
)

5 := h · (ωYi −ωXi)−h · (uYi ×uXi) ·α = 0, (3.122)

where uXi = RXi ·ub
Xi

and uYi = RYi ·ub
Yi

are the world space directions of the hinge axis, as attached to the

first and the second part, g and h are any two orthogonal vectors such that g×h = uXi and α is a stabilization

constant from Equation (3.103).
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The last two rows can be formulated as constraints over accelerations, by taking the time derivative of the

velocity-level formulation and adding the stabilization terms according to Equation (3.104),(
Ci

a
)

4 := g · (αYi −αXi)+(ωXi ×g) · (ωYi −ωXi)−g · (uYi ×uXi) ·α−g · (ωYi −ωXi) ·β = 0 (3.123)(
Ci

a
)

5 := h · (αYi −αXi)+(ωXi ×h) · (ωYi −ωXi)−h · (uYi ×uXi) ·α−h · (ωYi −ωXi) ·β = 0, (3.124)

because we can assume g and h are attached to the first part.

Implementation. Utilizing the quantities from above, we can implement the hinge joint using Equation (3.103)

or Equation (3.104) with the following values for the terms in the formulations

Ci
p =


pYi −pXi

g · (uXi ×uYi)

h · (uXi ×uYi)

 (3.125)

Ji,Xi =


−E r∗Xi

0T −gT

0T −hT

 (3.126)

Ji,Yi =


E −r∗Yi

0T gT

0T hT

 (3.127)

J̇Xi,·vXi + J̇Yi,·vYi =


ωYi × (ωYi × rYi)−ωXi × (ωXi × rXi)

(ωXi ×g) · (ωYi −ωXi)

(ωXi ×h) · (ωYi −ωXi)

 (3.128)

mi = 5. (3.129)

Interpretation. The last two rows
(
Ci

v
)

4 = 0 and
(
Ci

v
)

5 = 0 in the velocity formulation of the constraint

constrain the relative rotation of the body parts about the axes g and h that are perpendicular to uXi so that (1)

only rotations about uXi are allowed (relative rotation speed about any axis perpendicular to uXi is constrained)

and to (2) stabilize the orientation of the parts such that uXi = uYi in the future.

Specifically, if the parts are not aligned properly, uXi 6= uYi , the parts need to rotate with respect to each

other at the anchor in order to recover the alignment. This recovery rotation can be characterized by the vector

uYi×uXi , where the direction of the vector determines the axis for the recovery rotation and the magnitude of

the vector is proportional to the current alignment error and the rotation angle in the recovery rotation. We

enforce the recovery rotation using the stabilization technique from Section 3.2.4.1, by requesting rotation

speeds along the axes g and h.

3.4 Contact

In order to model the motion of the articulated body of the person in an environment, we need to (1) repre-

sent the environment and (2) account for the interactions of the body model with this environment. We are
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interested in two kinds of such interactions: preventing penetration of body parts with the geometry of the

environment and accounting for friction.

Because the motion of the model is produced by physical simulation in our approach, we model these

interactions through forces. We produce the forces from constraints that are set up based on the geometry of

the parts and the environment. In modeling these interactions, we make use of non-penetration and friction

constraints defined over pairs of contacting rigid bodies in the simulated world. The bodies in constraints

may represent parts of the model of the person, objects in the static environment (e.g., a ground plane) or any

other dynamic objects in the world (eg, a falling brick or parts of a trampoline), allowing to model interactions

between all of them. In particular, we use the same constraints to model non-penetration and friction between

the parts of the body and the environment as well as the parts and other parts in the body model.

Environment. We model the (static) environment G as a set of rigid bodies that have infinite masses and

remain fixed in the world. Each body in the environment has assigned a rigid shape that defines that part of the

environment. For example, we use a single fixed rigid body to model the ground plane and a set of additional

fixed bodies to model stairs. The shapes are defined as compositions of simple geometric primitives, including

boxes, capsules, spheres and polytopes.

Body Parts. Parts of the model of the person are represented as rigid bodies with (finite) mass properties de-

rived from the rigid shapes of the parts. For the purposes of simulation, we use the same geometry primitives

as above. See Section 3.3 for more information on how we set up the geometry of the model.

Interactions. Motion of the model results from forces applied on the body. Consequently, all effects of

the environment on the motion of the body have to be accounted for through forces. The forces have to

be computed exactly, so that a desired effect is achieved. For example, when a foot hits the ground, an

appropriate force has to be applied on the foot to prevent it from going down through the ground or the model

falls through the ground. We account for two aspects of motion, non-penetration and contact with friction.

The aspect of non-penetration is to ensure that the shapes (geometries) of rigid bodies in the system

do not penetrate when their positions are updated using equations of motion while, at the same time, the

bodies properly respond to forces and impulses applied on them. We model non-penetration by introducing

non-penetration constraints that we formulate as position-level inequality constraints. We implement non-

penetration incrementally just like any other inequality constraints. That is, assuming that the shapes do

not penetrate at the initial state, we apply non-penetration constraints at individual time steps to ensure that

penetration will not occur in the future. The constraints are defined between the parts of the body and

rigid bodies in the environment as well as parts and other parts. The other aspect we account for is that

of contact, where the goal is to enforce non-penetration while realistically responding to body collisions

and accounting for friction. We model contact with friction by combining non-penetration constraints with

friction constraints.

In order to model contact of rigid bodies, we need (1) a collision detection library to detect contacts

between the shapes of the bodies and (2) contact constraints to model the response to the contact. We discuss

these concepts next. We omit derivations for the concepts and constraints and refer interested readers to

related work [191, 194, 192, 19].
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3.4.1 Collision Detection

Given a simulation state at a particular time, we use a collision detection library to find which pairs of rigid

bodies are in contact, such that their shapes touch. In accordance with Section 3.2.4.2, if the collision detec-

tion finds that shapes already penetrate, the simulation state is rolled back to a previous state and simulation

is restarted with a smaller simulation step size so that the penetration is avoided. In the practice, we use a

sufficiently small step size for simulation so that penetrations do not occur.

Contact. We informally define contacts as relevant pairs of close points on two body shapes where contact

forces or impulses should act in order to prevent penetration. For example, a ball resting on the ground may

produce one contact point at the bottom of the ball while a brick may produce four contacts at the corners

of the bottom face. The problem of finding contacts for shapes is a geometric problem that can be solved

efficiently using specialized libraries. We assume contacts are described by tuples

(Xi,Yi,pXi ,pYi ,ni, ṅi) (3.130)

such that the contact i involves the rigid bodies Xi and Yi that contact at the world space point pi = (pXi +

pYi)/2, where pXi and pYi are the corresponding close points attached to Xi and Yi, the contact surface normal

at pi is given by a unit vector ni pointing away from Xi toward Yi and ṅi is the time derivative of ni. Note,

when the normal is attached to Xi, ṅi = ωXi ×ni. We will use rXi = pXi −xXi and rYi = pYi −xYi .

Response to the contact of bodies is modeled solely based on the contact information reported by the col-

lision detection library. This information is specific to the simulation state. We use the contact information to

formulate non-penetration and friction constraints to constrain relative body motion at the contacting points,

accounting for contact effects only at the contact points. We next look into modeling non-penetration.

3.4.2 Non-penetration

Formulation. We model non-penetration at the contact i by requesting

Ci
n := ni · (pYi −pXi)≥ 0, (3.131)

which is a one-dimensional position level inequality constraint. We use ni to refer to the value of the constraint

function due to non-penetration. The function measures separation distance of the body Yi from the first body

Xi along the contact normal ni and the constraint requests the separation distance to be non-negative at the

contact, such that the shapes do not penetrate locally at the contact point.

By taking the time derivatives of the constraint function and assuming that pXi = pYi , we get the velocity-

level and acceleration-level formulations

Ċi
n = ni ·vYi +(rYi ×ni) ·ωYi −ni ·vXi − (rXi ×ni) ·ωXi ≥ 0 (3.132)

C̈i
n = 2 · ṅi · (vYi +ωYi × rYi −vXi −ωXi × rXi)+(ni ·aYi +(rYi ×ni) ·αYi −ni ·aXi−

(rXi ×ni) ·aXi +ni · (ωYi × (ωYi × rYi))−ni · (ωXi × (ωXi × rXi)))≥ 0 (3.133)
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Implementation. Because the contact point is reported only when the separation distance at the contact is

within the tolerance ε , we can implement non-penetration at the contact i using Equation (3.105) or Equa-

tion (3.106) using the rules from Section 3.2.4.2 with the following values for the terms in the formulations

Ci
p = ni · (pYi −pXi) (3.134)

Ji,Xi =
(
−nT

i −(rXi ×ni)
T
)

(3.135)

Ji,Yi =
(

nT
i (rYi ×ni)

T
)

(3.136)

J̇Xi,·vXi + J̇Yi,·vYi = 2 · ṅi · (vYi +ωYi × rYi −vXi −ωXi × rXi)+ (3.137)

ni · (ωYi × (ωYi × rYi)−ωXi × (ωXi × rXi)) (3.138)

mi = 1. (3.139)

Interpretation. The non-penetration constraint has the following direct interpretation. The value Ci
n mea-

sures relative body separation at the contact i along the contact normal, Ċi
n measures normal velocity at the

contact and C̈i
n measures normal acceleration.

If λ n
i is the Lagrange multiplier due to the acceleration-level formulation of the constraint Equation (3.106),

then λ n
i equals the normal force magnitude at the contact and the force −ni ·λ n

i constraint force is applied

on Xi at the point pXi and the force ni ·λ n
i is applied on Yi at pYi . The LCP conditions from Equation (3.55

[LCP1]), Equation (3.56 [LCP2]) and Equation (3.57 [LCP3]) due to the non-penetration constraint thus

specify that both the normal acceleration and the normal force magnitude have to be non-negative and com-

plementary to each other.

If λ n
i is the Lagrange multiplier due to the velocity-level formulation of the constraint Equation (3.105),

then −Ċi
n(λ ) measures the relative speed with which the bodies approach under the impulsive constraint

force due to λ . The value of λ n
i computed by the constraint solver equals the magnitude of the impulse along

the normal of the contact that has to be applied to stop the bodies from approaching at the point pi such that

Ċi
n(λ )≥ 0. We utilize this fact to model impacts.

3.4.3 Impacts

We model impacts of bodies by modifying the velocity-level formulation of the non-penetration constraint

in Equation (3.132). Instead of requiring the bodies to stop approaching at the contact, we require the speed

−Ċi
n(λ ) of approach to be reversed such that the bodies will bounce off. We model this effect by using

Ċi
n∗ = ni ·vYi +(rYi ×ni) ·ωYi −ni ·vXi − (rXi ×ni) ·ωXi ≥−r · Ċi

n(0) (3.140)

in place of Equation (3.132), where −Ċi
n(0) is the original speed of approach before constraint impulses are

applied and r is a coefficient restitution, 0≤ r ≤ 1. In our simulations, we use r = 0 most of the time.

This change results in the modification of the term cimp
i from Equation (3.105) that implements the non-

penetration constraint such that

cimp
i =−Ci

n ·α + r · Ċi
n(0). (3.141)
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3.4.4 Friction

Another important phenomenon that occurs at contacts is friction. Friction acts along directions tangential to

the contact normals and works to resists sliding of bodies along those directions. We account for these effects

by introducing friction constraints.

Friction is usually modeled according to Coulomb friction law, [180]. The Coulomb law defines friction

forces that act along the tangential directions at contacts and extends the linear complementarity conditions on

the normal acceleration and normal force magnitude from Equation (3.55 [LCP1]), Equation (3.56 [LCP2])

and Equation (3.57 [LCP3]) due to the non-penetration constraint by adding conditions on the friction force.

The conditions on the friction force relate the force to the relative sliding velocity at the contact and the normal

force magnitude. Because this relation is quadratic, it is usually linearized for efficient implementation, by

considering two friction directions that the friction force can act along at each contact and implementing

friction in each direction separately [180]. As such the friction cone in the Coulomb law is replaced with a

friction pyramid. We follow this approximation in our work.

Definition. We approximate friction at the contact i by two additional friction bounded-equality constraints

that constrain relative body motion in two tangential (friction) directions tx
i and ty

i that are attached to Xi and

perpendicular to each other and to the contact normal ni, such that tx
i · t

y
i = 0 and tx

i × ty
i = ni.

Friction constraints work as hard as possible to prevent relative body motion along the friction directions

but are allowed to fail if stopping the bodies requires too much force. We can express this goal as position-

level constraints

Ci
x := tx · (pYi −pXi) = 0 (3.142)

Ci
y := ty · (pYi −pXi) = 0 (3.143)

(3.144)

that work subject to constraint force bounds specified below. Note that each of the two friction constraints is

associated with one friction direction and works independently of the other constraint in constraining the mo-

tion of the contacting bodies. The friction constraints are implemented using bounded equality constraints,

defined either on the velocity level, as Ċi
x = 0, Ċi

y = 0, or acceleration level, as C̈i
x = 0, C̈i

y = 0, with (impul-

sive) constraint force bounds dependent on the amount of the (impulsive) normal force applied at the contact.

As such, the bounds are not constant and the constraints are “special”.

To approximate coupling between the forces due to non-penetration and due to friction, as required by

the Coulomb law, we use the velocity-level formulation of the friction constraints when the corresponding

non-penetration constraint is implemented on the velocity level. Otherwise, we use the acceleration-level

formulation. Constraint formulations with the friction bounds are as follows:

• If the non-penetration constraint from Equation (3.131) is implemented on the velocity level, we im-

plement friction constraints for the contact i on the velocity level, by requesting

Ċi
x = tx

i ·vYi +(rYi × tx
i ) ·ωYi − tx

i ·vXi − (rXi × tx
i ) ·ωXi = 0 (3.145)

Ċi
y = ty

i ·vYi +(rYi × ty
i ) ·ωYi − ty

i ·vXi − (rXi × ty
i ) ·ωXi = 0 (3.146)
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subject to the bounds (λ x
i )

lo =
(
λ

y
i

)lo
= −µi ·λ n

i and (λ x
i )

hi =
(
λ

y
i

)hi
= µi ·λ n

i , where λ x
i scales the

impulsive friction force along tx
i and λ

y
i along ty

i , µi ≥ 0 is an impulsive friction coefficient and λ n
i is

the normal impulse magnitude at the contact, [84].

• If the non-penetration constraint from Equation (3.131) is implemented on the acceleration level, we

implement friction constraints for the contact i on the acceleration level, by requesting

C̈i
x = 2 · ṅi · (vYi +ωYi × rYi −vXi −ωXi × rXi)+(tx

i ·aYi +(rYi × tx
i ) ·αYi − tx

i ·aXi−

(rXi × tx
i ) ·aXi + tx

i · (ωYi × (ωYi × rYi))− tx
i · (ωXi × (ωXi × rXi))) = 0 (3.147)

C̈i
y = 2 · ṅi · (vYi +ωYi × rYi −vXi −ωXi × rXi)+(ty

i ·aYi +(rYi × ty
i ) ·αYi − ty

i ·aXi−

(rXi × ty
i ) ·aXi + ty

i · (ωYi × (ωYi × rYi))− ty
i · (ωXi × (ωXi × rXi))) = 0 (3.148)

subject to the bounds (λ x
i )

lo =
(
λ

y
i

)lo
= −µi ·λ n

i and (λ x
i )

hi =
(
λ

y
i

)hi
= µi ·λ n

i , where λ x
i scales the

friction force along tx
i and λ

y
i along ty

i , µi ≥ 0 is a static friction coefficient and λ n
i is the normal force

magnitude at the contact.

Implementation. Utilizing the fact that all constraints can be formulated as bounded equality constraints with

appropriate force bounds, the procedure from above can be implemented using a bounded equality constraint

that uses Equation (3.105) or Equation (3.106) with the following values for the terms and the bounds for the



129

constraint forces in the formulation,

Ci
p =


ni · (pYi −pXi)− r

α
· Ċi

n(0)
0

0

 (3.149)

Ji,Xi =


−nT

i −(rXi ×ni)
T

−(tx
i )

T −(rXi × tx
i )

T

−(ty
i )

T −(rXi × ty
i )

T

 (3.150)

Ji,Yi =


nT

i (rYi ×ni)
T

(tx
i )

T (rYi × tx
i )

T

(ty
i )

T (rYi × ty
i )

T

 (3.151)

J̇Xi,·vXi + J̇Yi,·vYi =



2 · ṅi · (vYi +ωYi × rYi −vXi −ωXi × rXi)+

ni · (ωYi × (ωYi × rYi)−ωXi × (ωXi × rXi))

2 · (ωYi × tx
i ) · (vYi +ωYi × rYi −vXi −ωXi × rXi)+

tx
i · (ωYi × (ωYi × rYi)−ωXi × (ωXi × rXi))

2 · (ωYi × ty
i ) · (vYi +ωYi × rYi −vXi −ωXi × rXi)+

ty
i · (ωYi × (ωYi × rYi)−ωXi × (ωXi × rXi))


(3.152)

λ
lo
i =


0

−µi ·λ n
i

−µi ·λ n
i

 (3.153)

λ
hi
i =


+∞

µi ·λ n
i

µi ·λ n
i

 (3.154)

mi = 3, (3.155)

where λi = (λ n
i ,λ

x
i ,λ

y
i ) are the Lagrange multipliers for the constraint force due to the constraint. This

formulation accounts for non-penetration, impacts and friction at the contact i at the same time.

Handling Friction Force Bounds. Note that for the friction constraints rows, constraint force bounds are not

constant and depend on the current value of λ n
i . Consequently, to account for the friction constraints, we need

to modify the solution procedure from Section 3.2.2.6 that computes λ . We employ an iterative approach,

where we alternate between fixing and re-estimating the bounds for the LCP. We solve the LCP with fixed

bounds in a loop, using the values of λ n
i from the current iteration to update and fix bounds for the values of

λ x
i and λ

y
i in the next iteration. At the first iteration, we set the friction bounds to zero.

3.5 Joint Angle Limits

In order to make sure that physical simulation does not generate poses of the model of the person that are

impossible for the real human body, we define constraints over the kinematic pose. For convenience, and to
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follow common practice in computer graphics and vision, we define these constraints as limits on the valid

values of joint angles at the joints in the model. In defining the constraints, we utilize a representation of

the body pose in reduced coordinates, where the pose parameters encode the position and orientation of the

root part and the remaining parts are encoded recursively using the values of angles at the joints in the body.

We formally define the bounding constraints as position inequality constraints over the individual joint angle

values and implement these constraints incrementally by constraining joint angle velocities.

Implications for Motion Estimation. Joint angle limits as defined in this section restrict the set of kinematic

poses that the model of the person can assume. The position constraints that achieve this kinematic effect

have been explored previously in both computer graphics and vision. However, together with simulation,

the constraints achieve a dynamic effect that has not been implemented in vision applications thus far. The

kinematic bounding ensures that the poses produced by the simulation are not only possible kinematically,

but also that they can be attained by a human without falling or having to fly, thus enforcing much stronger

constraints.

We next describe the representation of the pose of the body using reduced coordinates. We then illustrate

how we use this pose representation to constrain the poses.

3.5.1 Pose Representation

Pose. Assuming the parts in the articulated body are organized into a hierarchy (e.g., as in Table 3.3), we

characterize the spatial configuration of the parts in terms of parameters that automatically incorporate the ar-

ticulation constraints from Section 3.3.2. Towards that end, we re-parameterize the positions and orientations

of the parts in the articulated body recursively, relative to their parent parts, using the values of displace-

ments and angles at joints in the body as the parameters. We concatenate these values into the pose vector

q ∈RN
do f s, where Ndo f s is the total number of parameters. This representation of pose parameterizes the pose

using reduced coordinates.

The pose vector q describes the pose of the model and consists of the root position qpos, root orientation

qrot and joint angles qang,

q =
(
qpos,qrot ,qang) , (3.156)

where qpos ∈ R3 records the displacements at the root joint and encodes the 3D root position of the model,

qrot ∈ R3 records the angles at the root joint and describes the 3D root orientation and qang ∈ RNdo f s−6 stores

joint angles along the hierarchy and describes the pose of the model relative to the root. We encode the values

of rotational joint DOFs using Euler angles.

In encoding qang, we assume each joint angle qang
i , i = 1, . . . ,Ndo f s−6, is due to an angular joint DOF i

characterized by the tuple

(Xi,Yi,wb
Xi,i,q

ang
i ), (3.157)

where Xi and Yi are the body parts affected by the DOF, wb
Xi,i is the direction of the joint axis of the DOF in

the body space of Xi and qang
i is the current value of the DOF. We assume that the DOF is set up such that

the world space joint axis wXi,i = RXi ·wb
Xi,i is attached to the part Xi and that qang

i measures the angle that the

part Yi is rotated about this joint axis with respect to the part Xi.
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We take the same approach and characterize the angular root DOFs i that encode the root orientation qrot

and the linear root DOFs i that encode the root position qpos by the tuples

(Xi := ground,Yi := root,wi,qrot
i ) (3.158)

(Xi := ground,Yi := root,wi,qpos
i ), (3.159)

where wi is the i-th world space axis attached at the world space origin to the rigid body Xi that represents

the ground, qrot
i measures the rotation of the root part about this axis and qpos

i records the displacement of the

position of the root part from the world space origin along the axis.

Velocity. Using the same parameterization, we recursively re-parameterize the linear and angular velocities

of the parts in the articulated body and encode the velocities of the parts relative to the motion of the parent

parts, obtaining the velocity of the body. We define pose velocity q̇ of the model as the time derivative of the

pose,

q̇ =
∂q
∂ t

. (3.160)

The components of q̇ can be characterized using the descriptions of DOFs from Equation (3.157), Equa-

tion (3.158) and Equation (3.159). Specifically, if i is an index of an angular joint DOF, then

q̇ang
i = wXi,i · (ωYi −ωXi). (3.161)

Similarly, if i is an index of an angular root DOF or a linear root DOF, then

q̇rot
i = wi ·ωroot (3.162)

q̇pos
i = wi ·vroot . (3.163)

Dynamic Pose. The pose q together with the pose velocity q̇ encode the dynamic pose (q, q̇) of the model.

The dynamic pose characterizes the kinetic state of the entire articulated body, while implicitly accounting

for the effects of the articulation constraints. Specifically, it specifies how the parts of the body are placed

and oriented in the world with respect to each other and how the parts move at the current time instant so that

the articulation constraints hold. We refer to the pose q as the kinematic pose when we want to be specific

about the fact that the pose q encodes only the kinematic configuration of the body and not the velocity.

Note that reduced coordinates approaches for the simulation of the articulated body formulate equations of

motion for the body directly in terms of the dynamic pose. We use the dynamic pose only for parameterization

convenience and always simulate the body in maximal coordinates so that (1) we can directly implement other

types of constraints and (2) implement all constraints in a uniform way.

3.5.2 Angle Limits Constraints

Formulation. We define joint angle limits constraints as position-level inequality constraints that are specific

for individual angular joint DOFs i = 1, . . . ,Ndo f s−6. Each DOF i produces two constraints

Ci
p,lo := qang

i −
(
qang

lo

)
i ≥ 0 (3.164)

Ci
p,hi :=−qang

i +
(
qang

hi

)
i ≥ 0, (3.165)
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where
(
qang

lo

)
i is the lower bound for the joint angle due to the DOF and

(
qang

hi

)
i is the upper bound. We set

the bounds for the body models manually or from training motion capture data (when available), based on

biomechanical principles.

We maintain the position-level constraints incrementally, using the technique from Section 3.2.4.2. In

doing so, we utilize the velocity-level formulations of the constraints

Ċi
p,lo = q̇ang

i ≥ 0 (3.166)

Ċi
p,hi =−q̇ang

i ≥ 0 (3.167)

that are in effect when a joint angle bound is hit. According to Equation (3.161), we have Ċi
p,lo = wXi,i ·(ωYi−

ωXi) and Ċi
p,hi = −wXi,i · (ωYi −ωXi). Therefore, C̈i

p,lo = (ωXi ×wXi,i) · (ωYi −ωXi)+wXi,i · (αYi −αXi) and

C̈i
p,hi =−(ωXi ×wXi,i) · (ωYi −ωXi)−wXi,i · (αYi −αXi).

Implementation. Consequently, we can implement the lower bound for the angular joint DOF i from Equa-

tion (3.164) using Equation (3.105) or Equation (3.106) according to the rules in Section 3.2.4.2 with the

following values for the terms in the formulations

Ci
p = Ci

p,lo (3.168)

Ji,Xi =
(

0T −wT
Xi,i

)
(3.169)

Ji,Yi =
(

0T wT
Xi,i

)
(3.170)

J̇Xi,·vXi + J̇Yi,·vYi = (ωXi ×wXi,i) · (ωYi −ωXi) (3.171)

mi = 1. (3.172)

The upper bound for the DOF i from Equation (3.164) is implemented analogously, using the following values

for the terms

Ci
p = Ci

p,hi (3.173)

Ji,Xi =
(

0T wT
Xi,i

)
(3.174)

Ji,Yi =
(

0T −wT
Xi,i

)
(3.175)

J̇Xi,·vXi + J̇Yi,·vYi =−(ωXi ×wXi,i) · (ωYi −ωXi) (3.176)

mi = 1. (3.177)

3.6 Actuation

Constraints from previous sections can only generate a motion of the model that is passive. The motion

complies with the geometry of the environment, articulation constraints and kinematic constraints on the pose,

but the simulated character appears unconscious and falls straight down on the ground during simulation. To

generate motions that are voluntary and realize particular desired behaviors, the model needs be actuated.
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We actuate the model by equipping the articulated body with motors and by activating these motors using

a controller. In this section, we focus on the presentation of a general low-level motion control (body actua-

tion) paradigm within the controller for the character, where the desired behavior for the model is described

by actions. We define actions momentarily and illustrate how the actions can be performed by powering the

motors. We refine the actuation paradigm in following chapters, when we talk about particular high-level

control processes in controllers that generate actions.

We next describe the motors, actions and powering of the motors to perform the actions. In explaining the

body actuation, we assume actions are generated by a high-level decision-making process in the controller

that we overviewed in Section 1.4.3.1. We discuss particular decision processes in Chapter 4 and Chapter 5.

Joint Motors. We employ a humanoid body model for actuation, where parts of the body are actuated by

motors integrated with the joints in the articulated body. The motors directly control angular joint DOFs in

the body model (e.g., an angle at the knee), by producing torques about the corresponding joint axes. We

generate the torques from position-level actuation constraints that specify desired values for the individual

DOFs.

We implement body actuation as an incremental stabilization of the actuation constraints, using the ap-

proach from Section 3.2.4.1. The actuation constraints are maintained as soft velocity-level or acceleration-

level bounded-equality constraints from Equation (3.103) and Equation (3.104) with constraint force bounds.

Actions. Actions characterize instantaneous desired actuation of the body. The parameters of an action

include an encoding of a single desired (target) pose qd for the model that the motors attempt to follow and

a parameterization of the strategy to achieve the pose. In actuating the body, actions encode simpler control

tasks. More complex behaviors of the model are produced by switching actions using a high-level control

process (see Section 1.4.3.1).

3.6.1 Actuation Constraints

Assuming we have an action that the motors should perform, we realize the actuation by defining actuation

constraints for the individual degrees of freedom in the body.

Overview. We implement actuation using constraint-based springs. The springs are realized as stabilized

soft constraints with constraint force bounds (see Section 3.2.4.1), where the constraints work to stabilize the

current pose q of the body towards a desired pose qd in the action and the parameters of the constraints encode

the actuation strategy. The strategy is described in terms of parameters α of the stabilization mechanism that

stabilizes the constraints, softnesses s of the constraints and constraint force bounds λ lo, λ hi:

• The stabilization mechanism powers the body and actuates it towards the desired pose qd . It uses

an exponential decay to reduce the difference between the current pose and the desired pose, based

on the discussion in Section 3.2.4.1. Parameters α of the stabilization mechanism in the constraint

formulations control the speed of stabilization and correspond to gains of springs.

• Softnesses s of the constraints damp the stabilization process and make the body appear less stiff.

Softness parameters in the formulation correspond to damping parameters of springs.
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• Constraint force bounds λ lo and λ hi account for the powering limits of the motors and make the gen-

erated motions appear more human-like such that super-human forces can not be generated.

By using soft constraints and constraints with bounds for the actuation of the body, we explicitly request

the pose of the body oscillate around the desired pose such that it does not reach the desired pose exactly

in one simulation step. By using appropriate parameters for the constraints, encoded in the action, we can

encode behaviors that last for many frames. Consequently, our actions need not change with every frame and

we can characterize the desired behavior for the model in a sparse way, using only a few actions. We utilize

this fact extensively in Chapter 5.

Joint DOF Actuation. We now define the actuation constraints. Our goal is to control all degrees of freedom

in the body such that the desired pose qd is achieved, but in doing so, only joint angles can be powered

directly. Consequently, the root part remains unactuated (i.e., there are no magic forces that hold and drive

the root) and the position and orientation of the root results from the motion of the rest of the body and the

interactions of the body with the environment.

We formulate low-level motion control of the character as a collection of position-level equality con-

straints i, such that the i-th constraint actuates the i-th angular joint DOF in the pose representation. Utilizing

the representation of the pose and the characterization of the DOF from Section 3.5.1, the i-th DOF is actuated

by the constraint

Ci
p,ang := qang

i − (qang
d )i = 0, (3.178)

where (qang
d )i is the desired value for the DOF, as given by the desired pose qd . This position-level constraint

is similar to the joint angle limit constraint from Equation (3.164), except that it is an equality constraint.

Similarly to before, it produces Ċi
p,ang = wXi,i · (ωYi −ωXi) and C̈i

p,ang = (ωXi ×wXi,i) · (ωYi −ωXi)+wXi,i ·
(αYi −αXi).

Implementation. Using the formulations from above, we can implement the constraint in terms of Equa-

tion (3.103) or Equation (3.104). To maintain the semantics we promised, we take these equations as the defi-

nitions of soft bounded-equality constraints (see Section 3.2.2.6) with the softness parameter si and constraint

force bounds λ lo
i and λ hi

i . We also force the use of the stabilization parameter αi. The constraint produces



135

the following terms for the soft bounded-equality variants of Equation (3.103) and Equation (3.104),

Ci
p = Ci

p,ang (3.179)

Ji,Xi =
(

0T −wT
Xi,i

)
(3.180)

Ji,Yi =
(

0T wT
Xi,i

)
(3.181)

J̇Xi,·vXi + J̇Yi,·vYi = (ωXi ×wXi,i) · (ωYi −ωXi) (3.182)

mi = 1 (3.183)

α = αi (3.184)

si = si (3.185)

λ
lo
i =−γ · mXi +mYi

2
(3.186)

λ
hi
i = γ · mXi +mYi

2
. (3.187)

We set the bounds for the constraint force based on the values of the masses mXi and mYi such that

λ
lo
i :=−γ · mXi +mYi

2
≤ λi ≤ λ

hi
i := γ · mXi +mYi

2
, (3.188)

where λi is the multiplier due to the constraint force due to the actuation constraint i and γ is a single parameter

for the entire body that controls the strength of the motors in the body. Intuitively, these bounds implement

the notion that heavier body parts contain larger muscle volume and, hence, can apply larger torques about the

joint axis. To account for the fact that the two parts Xi and Yi connected at the joint may have disproportional

mass, we take an average of mXi and mYi . This bounding is an approximation to the answer that would take

into account moment of inertia of the affected parts.

Balance. The actuation mechanism described here only actuates joint angles such that qang approaches

qang
d . In doing so, and because qang encodes the pose of the body relative to the root part, it does not take

into consideration whether the root tracks the desired root position and orientation in qd . Consequently, the

orientation of the root can deviate from the desiredata and the simulated model can stumble and/or fall.

To address this problem, a form of balance has to be integrated with body actuation. We assume that

balancing is realized by high-level control processes (discussed e.g., in Chapter 5) that dynamically adjust

the desired joint angles in actions based on the state of the model such that the joint angles are tracked and

the model stays balanced. We employ a feedback-based method of Yin et al.[212] for balance control in

Chapter 5 that adjusts the desired pose and actuates the body such that both the desired joint angles and the

desired root orientation in qd are tracked.

Action Parameterization. We refer to actions by a. We characterize each action by the desired pose qd , bal-

ance parameters ϑ , specific to the used high-level balancing strategy, and constraint stabilization parameters

αi and constraint softness parameters si for each angular joint DOF i that we concatenate into α and s,

a = (qd ,ϑ ,α,s). (3.189)

For notation convenience, we collect α and s into the vector θ ,

θ = (α,s), (3.190)
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such that θ encodes the control strategy and ϑ encodes the balance strategy. Using this notation, we can

parameterize the action by an equivalent vector

a = (qd ,ϑ ,θ). (3.191)

We illustrate the parameterization in Figure 3.2.

),,,( s
d

qAction 

Current pose q Desired pose 
d
q Future pose 

),( s
(a) 

s



(b) 

s



(c) 

Figure 3.2: Parameterization of Actions. We parameterize actions uniformly using the vector (qd ,ϑ ,α,s),
where qd encodes the desired pose for the character that should be reached when the action is active, α

describes the speed with which the pose is approached and s characterizes the softness of the actuation
constraints that do so. The vector ϑ encodes parameters of a balancing strategy that dynamically adjusts qd
such that the character does not fall and we discuss this strategy in Chapter 5. Here, we illustrate actuation
results when no active balancing strategy is employed such that ϑ = /0. The first row in the figure shows a
character in the current pose q, a desired pose qd that is to be reached and the pose that the character assumes
in 1 second for a certain setting of α and s. The second row illustrates how the assumed poses change as a
function of either α (b) or s (c), when all other parameters of the action remain fixed.

3.7 Constrained Simulation

Simulation. We simulate the articulated model of the person using the method from Section 3.1.4 that we

apply to the state y of the entire model. Specifically, we use y = (y1, . . . ,yn) to represent the model state,

where y j is the state of the part j in maximal coordinates and n is the number of parts, and use the integration
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Aspect Constraint Formulation Type Section
Articulation Ball-and-socket Joint Position Equality Section 3.3.2.1
Articulation Saddle Joint Position Equality Section 3.3.2.2
Articulation Hinge Joint Position Equality Section 3.3.2.3
Non-penetration, Friction Contact Special Bounded Equality Section 3.4.4
Possible Poses Joint DOF Limits Position Inequality Section 3.5.2
Body Actuation Joint DOF Actuation Position Equality Section 3.6.1

Table 3.4: Summary of Constraints. Summary of constraints that we employ to build our model of the
person. We model the person as a collection of constrained rigid bodies where constraints implement various
aspects of motion control. We list the aspects and point to sections that define the constraints that model
them.

function f : yt → yt+1 to update the state from the time t to the time t + 1. The function operates as in

Section 3.1.4, except that it updates states of all parts at the same time, based on the forces and impulses that

are applied on the parts.

We use constraints on acceleration and velocities5 of the parts in the model to produce forces for the parts

such that the parts stay connected at joints (see Section 3.3.2), contact of parts and the environment is ac-

counted for (see Section 3.4.4), kinematically impossible poses of the model are avoided (see Section 3.5.2)

and joint angles in the body are actuated as desired (see Section 3.6.1). These constraints are always formu-

lated with respect to the current state of the model and we summarize the constraints in Table 3.4.

We apply the following forces and impulses on the model:

• constraint impulse Fconstraint
imp due to current velocity-level constraints,

• constraint force Fconstraint due to current acceleration-level constraints, and

• gravity force Fgravity from Equation (3.15) that is applied on each body part separately.

Inverse Dynamics. We compute constraint forces and impulses using a constraint solver and the built-in

support for inverse dynamics. The support takes as an input a potential state y of the model and formulations

of velocity-level and acceleration-level constraints from Section 3.2.2 and Section 3.2.3 to be satisfied in

that state, and outputs the constraint impulse Fconstraint
imp and the constraint force Fconstraint that implement the

constraints.

The support computes the constraint impulse Fconstraint
imp with respect to the state y by reducing the formu-

lations of velocity constraints to a LCP using the method described in Section 3.2.3. It applies the impulses

on the state and solves for the constraint force Fconstraint to satisfy acceleration constraints formulated with

respect to the updated state. Constraint forces are obtained via an analogous reduction to a similar LCP, as ex-

plained in detail in Section 3.2.2.7. We handle LCP constraints with non-constant force bounds for modeling

friction using the approach from Section 3.4.4.

We use this support for inverse dynamics in our controllers in Chapter 4 and Chapter 5 to compute the

actuation forces for the model and to determine contact forces so that the controllers can reason about which
5We request most constraints on the velocity level and implement them on the acceleration level, according to discussion in Sec-

tion 3.2.3, when all velocity constraints are already satisfied.
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parts of the body are currently supported by the environment. We also use this contact force information to

generate contact events for the controllers.

Implementation. We refer interested readers to [191, 192] for detailed information on the implementation

of the simulator.



Chapter 4

Physics-based Particle Filtering

This chapter describes our basic approach towards addressing physical plausibility in motion estimation. In

this chapter, we integrate physically plausible motion predictions produced by a trajectory tracking controller

with pose tracking by a Particle Filter. We use the Particle Filter to estimate a desired pose trajectory for the

character as an unstructured sequence of desired poses specified for every frame in the sequence and we use

a trajectory tracking controller to realize the motion encoded by the sequence and produce the interpretation

of the images.

In doing so, we pursue the general controller estimation approach outlined in Section 1.5.1 that we apply

to a trajectory tracking controller model. A trajectory tracking controller (see the part (c) in Figure 1.13) takes

the representation of the desired motion for the character as an unstructured sequence of desired poses and

tracks the poses in the sequence as closely as possible. We use optimization by a Particle Filter to recover the

desired poses in the sequence incrementally from image observations using analysis-by-synthesis such that

the motion produced by the tracking controller with the estimated sequence matches image observations the

best. The approach uses the general method from Section 1.5.1 for the estimation of the desired poses for the

tracking controller. In doing so, it makes use of the character model from Chapter 3.

In order to facilitate efficient inference of the desired pose trajectories, we utilize an exemplar-based

method for control that biases the trajectories to pose sequences similar to training motions. The resulting

simulation-based method can estimate human motion from a single-view or multiple-view imagery. It uses

an explicit knowledge of the environment to model physical ground-person interactions as well as other

physical laws encoded by the underlying physical model (see Chapter 3) to regularize tracking. We show,

both quantitatively and qualitatively, that our physics-based method improves upon other Bayesian filtering

methods with standard motion priors and enables motion estimation in presence of strong person interactions

with the ground.

139
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Figure 4.1: Incorporating Physics-based Dynamic Simulation With Joint Actuation and Dynamic Inter-
action Into Particle Filtering. We represent the person as a simulated character. The motion of the character
is determined by general physical laws, actuation forces at joints (top) and interaction of shape surfaces at
contacts (bottom).

4.1 Introduction

Our method integrates full body physical simulation of the model of the person with pose tracking by a

Particle Filter. We take the humanoid character model from Chapter 3 and actuate it using a trajectory tracking

controller that we introduce in this chapter to generate pose predictions for the tracking. Pose predictions are

generated using the simulation and control loop from Section 1.4.3.2, where the trajectory controller provides

desired poses for low-level motion control of the character from Section 3.6.

Our method can be interpreted in two ways: (1) as a special case of the general controller estimation

approach from Section 1.5.1 that is applied for the estimation a trajectory tracking controller and (2) as a

generalization of standard kinematic pose tracking using a Particle Filter, where simulation and the control

loop of the physical model replaces the kinematic motion model in the filter. We discuss each of these two

interpretations next. In later exposition, we refer to any of these interpretations as convenient.

4.1.1 Relation to Controller Estimation

From the point of view of the controller estimation approach from Chapter 1, our goal in this chapter is to

estimate a trajectory tracking controller for the observed motion and use it to re-synthesize the poses in the

image sequence. We characterize the controller and the controller estimation process as follows.

Actions. The trajectory tracking controller uses actions from Section 3.6 that switch with every frame in

the sequence and that are parameterized by Equation (3.189) each. Actions encode strategies for low-level

motion control of the character that drives the pose of the character towards desired poses represented by the

actions.
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Because actions are short-time in this case, we can assume all aspects of low-level motion control can

be encoded by varying the desired pose for the character between frames. As such, the controller does

not employ any explicit strategy for body balance and it uses fixed constraint stabilization constants α and

softness parameters s for the actuation constraints. These parameters are shared by all joint angle DOFs and

all actions. Consequently, only the encoding of the desired pose qd within Equation (3.189) is relevant for

each action and we use desired poses as representations of actions.

Action Selection. Actions in our trajectory tracking controller switch regularly, with an ability to perform a

“passive” action that does not produce any actuation forces when the model incurs a heavy impact. Conse-

quently, the state-machine for actions (as defined in Section 1.4.3.1) is not maintained explicitly.

Controller Estimation. Given this characterization of actions and the process that selects actions, the desired

motion for the trajectory tracking controller is fully determined by the sequence Θ= {(qd)t}T
t=1 of the desired

poses (qd)t for the frames, where t refers to frames and T is the number of frames in the sequence. Here, Θ

encodes the full parameters of the controller and the estimation of the controller amounts to the estimation of

the desired pose for the character in every frame of the sequence.

The high dimensionality of Θ (T ×Ndo f s dimensions) makes a batch optimization for the entire pose

trajectory difficult. To address this problem, we optimize Θ incrementally using a Particle Filter, where each

iteration in the filter recovers a desired pose for one additional frame in the sequence (see (c) in Figure 4.2).

For practical reasons, we also implement a hybrid method that adds noise to the poses produced by the

simulation in order to achieve a more accurate motion reconstruction (see (b) in Figure 4.2). In doing so, we

reflect on the fact that the inference of Θ alone is prone to overfitting to individual frames and usually fails to

achieve an accurate overall fit. By allowing the reconstructions to deviate from the simulated motion, we can

get a more accurate motion interpretation but we lose physical plausibility.

4.1.2 Relation to Kinematic Trackers

From the point of view of Bayesian kinematic trackers, our goal is to clean pose predictions within the

trackers so that the predictions alone would be physically plausible (see Figure 4.2).

Kinematic Trackers. Kinematic trackers (see (a) in Figure 4.2) realize direct inference over kinematic poses

in the image sequence. They are typically implemented by Particle Filters. The filter maintains hypotheses

about possible interpretations of the current frame in terms of the pose q and propagates these hypotheses

incrementally from one frame to another. The update mechanism is illustrated in Figure 4.2 (a), where a

pose hypothesis qt at the current frame is updated for the next frame by applying a kinematic motion model

to predict a possible pose qt+1 for the character at the next frame. The new hypothesis is subjected to the

addition of a random noise to account for the dynamics that is not modeled by the motion model and the

validity of the hypothesis (weight) is evaluated with respect to the image observations at the next frame. This

evaluation may include e.g., measuring of the overlap between the observed silhouette of the person in the

next frame and the hypothesized silhouette, as generated from the pose hypothesis and the geometry of the

character using camera projection (see Section 1.5.1). Because the kinematic motion model does not account

for physics directly, it may generate predictions that are not physically plausible, in a way that they simply
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Figure 4.2: Kinematic Trackers And Our Trackers. Comparison of the general pipeline of standard kine-
matic trackers (a) to our physics-based hybrid tracker (b) and our physically-plausible tracker (c). Kinematic
trackers (a) take an estimate of the pose from the current frame and update it through the kinematic motion
model to produce a prediction for the pose for the next frame for the tracker. Because the kinematic motion
model is not aware of physical constraints, the predicted pose can violate physical constraints. Contrary, with
our hybrid method (b), implemented in Section 4.2.4.2, we take the prediction as a target for simulation with
a trajectory tracking controller, simulate the character towards the desired pose and output the pose the sim-
ulation ends in as a corrected prediction. As such, our hybrid method filters predictions from the kinematic
motion model, making sure the predictions are physically plausible, such that the character can move from
the current pose to the predicted pose. However, because the hybrid method adds noise to the poses produced
by the simulation, the estimated pose sequence may not be physically plausible. Our physically plausible
tracker (c), implemented in Section 4.2.4.1, addresses this problem by adding noise only to the desired poses,
before the low-level motion control takes place.

penetrate the environment or it is not biomechanically possible for a human to move to the predicted pose

from the current pose.

Our Hybrid Tracker. To improve physical plausibility of predictions and the recovered motions, we pro-

pose a hybrid pose tracker that integrates physical simulation with a trajectory tracking controller into the

prediction module in the Particle Filter (see (b) in Figure 4.2).
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The purpose of the simulation is to correct next pose predictions from the kinematic motion model such

that the predictions would be consistent with physical laws and the poses could be reached from the current

pose by a human. Towards that end, the physics-based tracker uses the kinematic motion model to sample

desired poses for the trajectory controller and uses physical simulation with the controller to drive the char-

acter model towards them. The poses produced by the simulation are then used as new/corrected predictions

for the filter. As such, predictions made by our physics-based motion model can be seen as results of a fil-

tering process built on top of the more traditional kinematic motion model that makes predictions physically

plausible.

Our Physically-plausible Tracker. The controller estimation approach, as applied to the trajectory-tracking

controller model in this chapter, is implemented as a desired pose tracker. This tracker differs from the

hybrid tracker by adding noise only to the desired poses generated by the kinematic motion model (see (c)

in Figure 4.2). The desired poses followed by the low-level motion control process in Figure 4.2 (c) encode

the desired pose trajectory Θ = {(qd)t}T
t=1 for a trajectory-tracking controller that reconstructs the entire

observed motion in simulation.

Prior over Desired Poses. We sample desired poses for control from a kinematic prior that can be used by

any kinematic pose tracker. We use this prior to limit the effective search space for the desired poses and

allow tractable inference of poses. Although we can use any kinematic prior for this purpose, we make use

of an exemplar-based prior similar to [155]. Priors similar to ours have been successfully used for articulated

pose estimation in [155, 159, 186], dynamically adaptive animation [215], and humanoid robot imitation [75].

Here, we utilize the previous exemplar methods [155] in a new domain, to deal with exemplars that account

for single-frame kinematics and dynamics of human motion.

Control. Our exemplar-based prior provides desired poses for a constraint-based trajectory-tracking con-

troller for an articulated body similar to that of Kokkevis et al.[87], where joint DOF trajectories are defined

on a frame-by-frame basis from a database of motion capture data.

Benefits. Our simulation-based approach has a number of benefits over the kinematic trackers: (1) predicted

poses are implicitly biased towards physically plausible interpretations and (2) reasonable predictions can be

made even when there is not enough training data available due to the direct incorporation of physics.

We demonstrate these benefits in quantitative and qualitative tracking experiments that involve subjects

under effects of dynamic human-environment interactions. We illustrate that the proposed physics-based pose

tracker achieves a better tracking accuracy than previous kinematic trackers and is able to better generalize to

certain new environments and physical interactions. In order to facilitate a better understanding of this model

and promote the use of physical simulation for tracking, we have made the source code of our controller

and the simulation-based motion model available on our project website at http://brown-robotics.

org/wp/projects/current/dynamical_tracking/. The project website also features videos

that supplement experiments from this chapter.

http://brown-robotics.org/wp/projects/current/dynamical_tracking/
http://brown-robotics.org/wp/projects/current/dynamical_tracking/
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4.1.3 Particle Filter for State Inference

In order to formulate our tracker, we first provide a background on general tracking of a model state based

on indirect observations of the state using a Particle Filter (PF). We use this general mechanism for the

inference of the pose. In the context of this chapter, our goal is to jointly track the pose of the simulated

character and the state of the underlying control process between frames, encoded into the state vector x,

utilizing silhouettes from the video frames, encoded in y.

Tracking with PF is formulated as an estimation of the posterior p(xt |y1:t) for frames t = 1, . . . ,T , where

xt is the state of the model at the frame t and y1:t is the set of observations up to and including the frame t.

The posterior characterizes the density over potential model states at the frame t and provides the estimation

of the true state at that frame. We wish to recover this density for every frame t in the sequence.

This density is in PF approximated using a set of (typically) weighted samples/particles and is computed

recursively from the representation at the previous frame,

p(xt |y1:t)︸ ︷︷ ︸
Posterior at t

∝ p(yt |xt)︸ ︷︷ ︸
Likelihood

∫ Temporal Prior︷ ︸︸ ︷
p(xt |xt−1)

Posterior at t−1︷ ︸︸ ︷
p(xt−1|y1:t−1) dxt−1︸ ︷︷ ︸

Predictive Density

. (4.1)

In this formulation, p(xt−1|y1:t−1) is the posterior from the previous frame and p(yt |xt) is the likelihood that

measures how well a hypothesis at the frame t explains the observations at the frame. The density p(xt |xt−1)

is often referred to as the temporal prior, or motion model, and is the main focus of our work in this chapter.

Temporal Priors. Temporal prior encodes temporal relationship of model states between frames and is

usually represented as a first or a second order linear dynamical system with Gaussian noise [13, 46, 157].

For example, in [13, 46] the non-informative smooth prior,

p(xt |xt−1) = N (xt−1,Σ), (4.2)

which facilitates continuity in the recovered motions, was used; alternatively, constant velocity temporal

priors of the form:

p(xt |xt−1,γt−1) = N (xt−1 + γt−1,Σ), (4.3)

where γt−1 is scaled velocity learned or inferred (e.g., γt−1 = xt−1− xt−2), have also been proposed [157]

and shown to have favorable properties when it comes to monocular imagery. However, human motion, in

general, is non-linear and non-stationary. Kinematic data-driven models (e.g., see Section 2.1.5.2) attempt to

capture these aspects implicitly, by learning models of human motion from training motion capture data. In

contrast, we argue such aspects result from physical laws and interactions of the body with an environment,

and can be represented explicitly by incorporating these laws into the prior through physical simulation.

Inference Using PF. General inference with a Particle Filter proceeds incrementally by updating the repre-

sentation of p(xt−1|y1:t−1) from the frame t−1 to the frame t using Equation (4.1). In doing so, the motion

model within the filter is first applied onto the particles from the frame t−1 to generate (predict) hypotheses

for the new model states at the frame t by sampling from p(xt |xt−1). The new hypotheses are then scored

and re-weighted using the likelihood model, based on how well they match the observations yt at the frame
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Figure 4.3: Motion Model: Simulation and Control Loop. Each iteration advances the model state [q, q̇,υ ]
by the time ∆t by (1) generating a desired kinematic pose qd for the character to follow (decision-making
process in the controller), (2) computing actuation forces needed to approach the desired pose (low-level
motion control process in the controller) and (3) applying actuation forces on the character to update the
current dynamic pose (physical dynamics). Contact feedback information e records significant impacts of the
character with the environment and affects selection of the control policy for the next iteration.

t. Assuming the initial state x1 is given, this process can be repeatedly applied on x1 to estimate p(xt |y1:t) for

any t = 2, . . . ,T .

In our pose tracker in this chapter, we use a variant of PF that augments the representation of particles.

Each particle stores not only a potential hypothesis for the model state at the current frame, but also the full

history of the previous hypotheses from the previous frames that the particle was generated from. We use

this information to trace how a given model state evolved from the initial state and to report the most-likely

consistent motion interpretation of the entire sequence that is physically plausible when tracking finishes.

From now on, we assume that the representation of each state hypothesis xt at the frame t implicitly records

the entire history of the states x1:t = {xi}t
i=1 for the frames up to and including the frame t, such that each xi

in the history was produced by sampling from p(xi|xi−1) for i = 2, . . . ,T .
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4.2 Tracking with Physical Dynamics

We realize pose tracking by utilizing the general tracking approach from Section 4.1.3 with the temporal prior

p(xt |xt−1) based on simulation of physical dynamics of the model of the person. We run our simulations in

a world model consisting of a known static environment, G , and a character model from Chapter 3 that

represents the person (Figure 4.4). We assume “physical properties” (mass, inertial properties and shapes)

are known for each part of the body.

Our temporal prior is implemented as a feedback control loop from Section 1.4.3.2 that we integrate with

a trajectory tracking controller. As motivated in Section 4.1.1, the controller uses actions that switch at the

beginning of each frame. These actions are parameterized by desired poses that the low-level motion control

process attempts to reach in simulation, and the process applies the same control strategy for performing all

actions. At any frame t, the decision- making process in the controller determines the desired pose that should

be approached and the low-level motion control process computes the actuation forces that do so. We use the

control loop to draw samples from the temporal prior in order to make predictions for next model states in

pose tracking. We illustrate this loop, integrated with the trajectory tracking controller, in Figure 4.3.

From the point of view of a kinematic tracker, predictions of new model states using the control loop can

be explained as a filtering process that attempts to clean up pose predictions from the kinematic motion model

(see Section 4.1.2). This filtering process takes next pose proposals from the kinematic prior as an input.

The proposed poses are corrected through simulation of the character model in the environment towards

the proposals, using the pose outputs by the simulation as new pose predictions. The corrected poses are,

by definition, physically plausible and transitions between them feasible. We abstract kinematic priors by

control policy functions. Control policy functions map current poses to next intended (desired) poses and

implicitly encode control intentions (or objectives) of the model. We permit a collection of (possibly motion-

specific) control policies over a variety of objectives and allow inference over which policy to use at any given

time. For example, the system can incorporate two different policies for actuated motions, one for walking

and another one for jogging, or, it can provide one policy to account for voluntary motions and another for

involuntary (passive) body responses. We switch control policies probabilistically, (optionally) conditioned

on contact feedback, e.

Pose inference in our framework takes the form of a Particle Filter implemented by Algorithm 1 with the

motion (lines 3−9, Section 4.2.2), likelihood (line 12, Section 4.2.3) and noise (lines 5 and 10, Section 4.2.4)

models explained next.

4.2.1 Model State Space

Model state x encodes the information we wish to track over time and that we need to estimate from the video

for every frame in the sequence. It consists of the parameterization of the dynamic pose of the character

and the state of the controller. We use a controller model that can switch between control policies and so,

consequently, the state of the controller keeps track of which policy is currently in effect. Formally, the model

state is represented by a vector x = [q, q̇,υ ], where q ∈R31 is the kinematic pose of the character, q̇ ∈R31 is

the time derivative of the kinematic pose (pose velocity), and υ is a discrete identifier designating the control
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Algorithm 1 Update particle set for the next frame

Input: Weighted particle set {x(i)t ,w(i)
t }N

i=1 for frame t and geometry of the scene G (note x(i)t =

[q(i)
t , q̇(i)

t ,υ
(i)
t ])

Output: Weighted particle set {x(i)t+1,w
(i)
t+1}N

i=1 for frame t +1

1: {x̃(i)t , 1
N }

N
i=1 := resample({x(i)t ,w(i)

t }N
i=1) // resample particle set

2: for i := 1 to N do
3: if υ̃

(i)
t = A then

4: qd := πA([q̃(i)
t , ˜̇q(i)

t ]) // predict desired pose
5: qd += ηd // add noise: ηd ∼N (0,Σd)
6: else
7: qd := /0
8: end if
9: [q(i)

t+1, q̇
(i)
t+1,e] := simulate([q̃(i)

t , ˜̇q(i)
t ],qd ,G )

10: [q(i)
t+1, q̇

(i)
t+1]+= ηs // add noise: ηs ∼N (0,Σs)

11: υ
(i)
t+1 ∼ p(υ(i)

t+1|υ̃
(i)
t ,e) // sample next policy

12: w(i)
t+1 := p(yt+1|[q(i)

t+1, q̇
(i)
t+1]) // apply image likelihood

13: end for

Figure 4.4: Body and Shape Model. 31 degree-of-freedom (DOF) character model with simulation shapes
of the parts (left), the joints and skeletal structure (middle) and the image shapes in an image projection
(right). Most joints have 3 DOFs, except for the knee and elbow joints (1 DOF), spine joint and the clavicle
joints (2 DOFs) and the root joint (6 DOFs).

policy in use.

We use a body model for the simulated character that consists of 13 rigid parts and that has a total of 31

degrees of freedom (DOFs), as illustrated in Figure 4.4. Parts have associated mass properties and shapes that

are used for simulation and evaluation of pose likelihoods, as discussed later. We set this model up manually,

as described in Chapter 3. According to Section 3.5.1, we collect joint DOF values encoding the kinematic

configuration of the body into q in order to describe the kinematic pose of the character. We also define the
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dynamic pose [q, q̇] to describe the dynamic state of the character, consisting of the kinematic configuration

of the body and the speeds with which the body parts translate and rotate. We consider a given pose invalid

if it causes self-penetration of body parts and/or penetration with the environment (detected by the collision

detection library within the simulator), or if the joint DOF values are outside of the valid ranges. These

constraints on the kinematic pose allow us to reject invalid model states early in the filtering process.

Control policy identifier υ identifies the policy function to be used for generating next pose proposals

for control. The policy function πυ : [q, q̇] 7→ qd determines the next desired (intended) kinematic pose qd

that the character attempts to reach from [q, q̇] during simulation and is typically obtained by sampling from

a kinematic motion prior associated with the policy function. We implement two control policies, an active

motion policy (A) for actuated motions, where qd is obtained from kernel regression on training motion

capture data, and a passive motion policy (P) for unactuated motions, where no particular desired pose is

proposed and, consequently, no actuation forces are applied during simulation. Consequently, υ ∈ {A,P} is

binary (see Section 4.2.2.1 and Figure 4.5 for an illustration).

4.2.2 Motion Model and Control Loop

In order to realize pose tracking, we need to encode how model states evolve between frames. Motion models

characterize this evolution probabilistically (see Section 2.1.5.2).

We describe state evolution in a generative way by prescribing a computational procedure for drawing

samples for new model states given a current state. Sampling from our physics-based motion model is

realized by executing the control loop. For every state hypothesis x = [q, q̇,υ ] at one frame1, one loop

iteration is taken to produce a hypothesis at the next frame, as illustrated in Figure 4.3 and Algorithm 1.

Control Loop. The sampling procedure uses the current control policy function πυ to propose a next desired

kinematic pose qd = πυ([q, q̇]) for the character to approach (decision-making process, see Section 4.2.2.1).

Physical dynamics (see Section 4.2.2.3) moves the character towards the desired pose and outputs the result-

ing dynamic pose as the next pose for the character at the next frame. During simulation, the current dynamic

pose [q, q̇] is guided towards qd , considering biomechanical and environment constraints, dictated by the

scene geometry G . The guidance is realized through application of appropriate actuation forces Factuation on

the body of the character, generated by the low-level motion control process (see Section 4.2.2.2) from [q, q̇]
and qd using inverse dynamics. In case no desired kinematic pose was proposed by the policy, Factuation = 0,

no actuation forces are generated and the character is let move passively during simulation. As a simpler

alternative to inverse dynamics, the low-level motion control process could generate actuation forces directly

by e.g., a proportional-derivative servo [206].

Feedback. In order to optionally allow the control process to react to “external events” that took place during

simulation, we record contact event feedback information, e, from the simulator and use it in the decision

process to help choose the control policy for the next frame (see Section 4.2.2.1). We currently restrict

ourselves to modeling reactions to unanticipated heavy impacts (e.g., as in Figure 4.18) that are unlikely to

be represented well in the training motion capture set. Hence, our feedback information consists of only
1Where unnecessary, for clarity of notation, we omit subscripts for frame identity and superscripts for hypothesis identity.
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p(υ f+1 = A|υ f ,e = 0)
0.95 0.9 0.75 0.5 0.25 0.0

Error (in mm) 32.1 30.2 35.0 37.1 38.3 70.8

Table 4.1: Tracking Errors As A Function Of p(υt+1 = A|υt ,e = 0) (L1 Walking). For details on the error
metric see Section 4.3.

a binary indicator variable recording whether the body has collided with the environment, detected when

a relative velocity at a body contact exceeds a threshold of 1 m/s. This information is extracted from the

contact information provided by the simulator (see Section 3.4 and Section 3.4.2).

Randomness. Our control policy functions are fully deterministic such that the desired poses they output

depend only on the current pose of the character. In order to model many possible evolutions of the motion

from the current pose (e.g., the character may want to step forward from a neutral pose with either a right

foot or a left foot), we add the noise Σd to desired poses before they are followed by the low-level motion

control process (see Section 4.2.4). Note that all pose sequences produced by sampling from the control loop

satisfy the equations of motion of the underlying physical model and are thus physically plausible. However,

different sampling passes produce different pose sequences. This randomness comes from two facts: (1)

control policies are selected by a stochastic process and (2) we add noise to desired poses generated by our

policy functions.

4.2.2.1 Decision-making Process In Control

The decision-making component in the control loop implements a process that selects actions for the low-level

motion control. The process consists of (1) applying the current control policy to propose a next intended

kinematic pose qd to be corrected by simulation and (2) determining which policy the current policy should

switch to after the simulation completes, utilizing the contact event feedback information from the simulation.

We switch policies by a stochastic process in which the new policy υt+1 is sampled from simple p(υt+1|υt ,e)

distributions that do not take pose or velocity information into account. In practice, we assume that p(υt+1 =

A|υt = A,e = 0) = p(υt+1 = A|υt = P,e = 0) and estimate the value of p(υt+1 = A|υt ,e = 0) = 1−p(υt+1 =

P|υt ,e = 0) = 0.9 using cross validation. The behavior of the tracker as a function of p(υt+1 = A|υt = A,e =

0) is illustrated in Table 4.1. The value of p(υt+1 = A|υt = A,e = 1) = p(υt+1 = A|υt = P,e = 1) is set by

hand as in our data impacts of desired magnitude happen very infrequently and hence learning (even using

cross-validation) is inconclusive. Motivated by [215], we let p(υt+1 = A|υt ,e = 1) = 0.

Passive Motion (P). This policy applies no actuation forces, as if the character was unconscious. As a result,

no qd is generated and no actuation takes place when the policy is in effect. The purpose of passive motion

policy is to account for unmodeled dynamics in the active motion policy and it should typically be activated

for short periods of time or when the body is in the free fall.

Active Motion (A). Our active motion-capture based policy generates desired kinematic poses so that the pro-

posed motion would look similar to training motion capture. We take an exemplar based approach resembling

[75, 155, 215] and extend it to work with dynamic poses. To that end, we first form a database of observed
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Figure 4.5: Control Policies. Predictions made by the control loop from a given initial dynamic pose (top
and bottom left) for the time duration of 2 seconds. The top row shows poses generated by control with the
active motion policy, the bottom row shows the poses generated by the passive policy.

input-output pairs (from training motion capture data) between a dynamic pose at frame t and a kinematic

pose at frame t + 1, {[q∗t , q̇∗t ],q∗t+1}n
t=1. For pose invariance to global position and heading, corresponding

degrees of freedom are removed from q∗t and q̇∗t .

Given this database, that can span training data from multiple subjects and activities, and a new query

dynamic pose [q, q̇], our objective is to determine the next intended kinematic pose qd . We formulate this

objective as in [155] using a k nearest neighbors (k-NN) kernel regression method, where a set of simi-

lar prototypes/exemplars to the query point [q, q̇] is first found in the database and then qd is obtained by

weighted averaging over their corresponding outputs; the weights are set proportional to the similarity of the

prototype/exemplar to the query point. This inference can be formally written as,

qd =
1

ZK
∑

[q∗t ,q̇∗t ]∈neighborhood[q,q̇]
K(dt([q∗t , q̇

∗
t ], [q, q̇])) ·q∗t+1, (4.4)

where ZK is a normalizing constant, dt([q∗t , q̇∗t ], [q, q̇]) is the similarity measure and K is the kernel function

that determines the weight falloff as a function of distance from the query point.
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Hybrid Controller
Proposed hybrid controller (zoom)

DOF controller (zoom)

DOF Controller

Figure 4.6: Locomotion. Comparisons of motions generated by a joint DOF tracking controller based on
Kokkevis et al.[87] (right) and our hybrid controller (left) when the controllers follow the same trajectories
specified by the motion capture data. Differences in simulated dynamics from the captured dynamics result in
impacts between the right foot and the ground plane (see the middle frame of the zoomed bottom animation).
The impacts prevent the joint DOF tracking controller from performing the motion correctly, resulting in the
undesired step backwards, making the character stay to the right of the camera view. Our hybrid controller on
the other hand (see the zoomed top animation) is more robust to such artifacts, allowing the body to faithfully
follow the desired motion.

We use a similarity measure that is a linear combination of positional and velocity information,

dt([q∗t , q̇
∗
t ], [q, q̇]) = w ·dM(q,q∗t )+(1−w) ·dM(q̇, q̇∗t ), (4.5)

where dM(·) denotes a Mahalanobis distance between q and q∗t , and q̇ and q̇∗t , respectively with covariance

matrices learned from the training data, {q∗t }n
t=1 and {q̇∗t }n

t=1; the value of w = 0.9 accounts for the relative

weighting of the two terms and is determined empirically using cross-validation. For the kernel function, we

use a simple Gaussian, K = N (0,σ), with empirically determined variance σ2.

The method discussed above can be interpreted as a form of a more traditional kinematic prior learned

from a database of motion-capture exemplars. While we opted for a simple and robust approach with kernel

regression, other regression methods can be used in this context; for example, Gaussian Processes Regression

[143] or Conditional Mixture of Experts [23, 167]. The former is closely related to kernel regression, but in

addition produces the measure of uncertainty for the prediction; the latter allows for multi-modal predictions.

Because we are conditioning on both the kinematics and velocity information, the multi-modality does not

seem to be as abundant as with pure kinematic models [23, 167]. Furthermore, as with traditional kinematic

motion priors, it is reasonable to assume that the underlying degrees of freedom are much lower than those

encoded by the full kinematic state. With that in mind, low-dimensional motion priors (e.g., Latent Variable

Gaussian Process Latent Variable Models [185, 183, 186] or Mixture of Factor Analyzers [105]) are likely

to facilitate more efficient inference methods. The use of such latent variable models in this context remains

future work.

4.2.2.2 Low-level Motion Control

The low-level motion control component computes actuation forces for the character to move it from the

current dynamic pose [q, q̇] towards the desired kinematic pose qd in simulation. Because qd is generated

using a statistical model, kernel regression, the pose is not guaranteed to be free of self and world penetrations.

Consequently, if used as a prediction for tracking, the motion reconstruction may suffer from artifacts. In our
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model, low-level motion control together with physical simulation is responsible for fixing such predictions

so that the penetrations will not occur. Low-level motion control and simulation essentially correct qd , by

finding a new next pose for the character that is close to qd , can be physically reached from the current pose

and use that pose as a prediction for the pose tracking in the next frame.

Overview. Following Section 3.6, we formulate low-level motion control as solving for actuation forces

Factuation that satisfy control/actuation laws. We define these laws as Lagrange multiplier-based constraints

on q (see Section 3.2.4) and q̇ (see Section 3.2.3) from Section 3.6 and Section 3.5, considering the desired

pose qd to be approached. Each constraint in this set is defined as an equality or inequality equation with a

softness constant determining the tradeoff between the amount of the constraint force that is allowed to act at

the constraint and the exact satisfaction of the constraint (see Section 3.2.2.6). Magnitudes of the constraint

forces are bounded to account for limits of the true human body.

Control Laws. We set up the control laws similarly to the method of Kokkevis et al.[87] and to the general

actuation approach explained in Section 3.6. We use the desired pose as the encoding of the action from

Equation (3.189), where ϑ = /0 and the values for α and s are set manually and are shared by all actions and

use the constraints from Section 3.6.1 to actuate the body. Our control in this chapter differs from the general

method and the method of Kokkevis et al.in a few aspects:

• With respect to the method of Kokkevis et al., we only actuate angular DOFs of the character so that

the trajectory traced by the root part results from interactions of the feet with the environment. As such,

we do not apply forces on the root part directly.

We still actuate the orientation of the root part, by applying “magic” torques on the root. This strategy

facilitates balance of the body but is not physically correct because the applied torques are not generated

by the joints in the body and the orientation of the root can change regardless of the support from

the rest of the body. We use this strategy to enable longer-time predictions required by some of our

experiments2.

• With respect to our general actuation method from Section 3.6, we dynamically adjust targets for

control based on the geometry of the environment and dynamics of the character so that the body is not

forced to move “against” the ground.

The control from Section 3.6 assumes the desired poses in actions are compliant with the character

model and the environment such that the simple joint DOF tracking method from Equation (3.178)

produces intended behavior of the character. However, because our desired poses come from the kine-

matic prior, the desired poses may not only match the simulated dynamics but can also violate geomet-

ric constraints, by e.g., requesting the feet to be actuated down through the ground, causing problems.

We illustrate one such a problem in Figure 4.6 (right) and (bottom). Consider the case where the

desired kinematic pose qd is infeasible (e.g., causing penetration with the environment). Actuation

towards the pose causes undesired impacts during simulation, which affects the motion adversely. For

2Maintaining balance exactly is not critical, given we use the hybrid motion estimation approach from Section 4.2.4.2 that does not
guarantee exact physical plausibility.
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example, impacts at the end of the walking cycle (see the impact of the right foot in the middle frame

of Figure 4.6 (bottom)) forces the character to step back instead of forward.

To address this problem, we adjust the targets for low-level motion control so that the impacts are

avoided. Rather than using inverse kinematics and the knowledge of the environment to correct the

representation of the desired pose, we use inverse dynamics to solve for desired velocity of the character

that will avoid the impact and track this velocity using motors in simulation.

Formulation. We propose a hybrid constraint-based control method (see Figure 4.7) that can track both de-

sired joint angle trajectories as well as trajectories of selected points on the surface geometry of the body that

we generally refer to as markers. We use this controller for tracking the desired positions of toes (computed

with respect to the desired kinematic pose qd using forward kinematics) that we adjust in order to avoid

penetrations with the environment. Consequently, our markers are attached to the locations of the toes.

Following the approach from Section 3.6, our aim is to stabilize the current positions of markers and the

values of joint angles toward the control targets. Similarly to the method from Section 3.2.4, we formalize

these tracking objectives as constraints on the velocities

ż j =−αmarker · (z j− z j
d) (4.6)

q̇k =−αdo f · (qk−qk
d), (4.7)

where z j are the locations of the tracked toe markers j attached to the body, z j
d are their corresponding

corrected desired locations, k are the tracked angular DOFs and αmarker > 0,αdo f > 0 are parameters3 that

determine how fast the controller should approach the desired values. These parameters are equivalent to the

position stabilization constants from Section 3.2.4.

Implementation. Ideally, we would like to submit the tracking objectives from Equation (4.6) and Equa-

tion (4.7) as constraints for inverse dynamics and use them to compute Factuation. However, in our constraint

model, these objectives can not be satisfied directly. The marker tracking objectives prescribe desired values

for the marker velocities ż j in the global frame and, consequently, could be satisfied by changing the velocity

of the root segment through “magic” forces, resulting in an undesired motion.

To avoid this problem, we satisfy these objectives using two inverse dynamics passes. We use the first

inverse dynamics pass to reformulate the objectives as constraints over velocities, where we compute desired

velocities for the character that realize the tracking of both the desired joint angle values as well as the desired

marker positions. In the second inverse dynamics pass, we solve for actuation forces to track the computed

desired velocities in simulation. When related to the actuation method from Section 3.6.1, the purpose of

the first inverse dynamics pass is to produce velocity constraints for low-level motion control that are more

informed than the constraints due to Equation (3.178). The second inverse dynamics pass just solves for the

actuation forces to satisfy the velocity constraints from the first pass.

Implementation: First Pass. We first compute desired velocities q̇d for the character that satisfy the original

3We manually set αmarker = 0.5 and αdo f = 0.2 so that the controller can replay training motions in simulation.
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tracking objectives. Towards that end, we first augment our objective set by

q̇root = (q̇root)t (4.8)

qi ≥ qi
min,q

i ≤ qi
max, (4.9)

where root refers to the linear and angular DOFs of the root part, (q̇root)t are the current DOF values at the

root, i iterates over the remaining angular DOFs in the body and qi
min and qi

max are joint angle limits. The

objective in Equation (4.8) fixes the velocity of the root part such that the actuation of the body due to the

tracking objectives in Equation (4.6) and Equation (4.7) can not be realized by directly actuating the root. We

then use the augmented objectives as constraints for first-order inverse dynamics from Section 3.7 to solve

for angular velocities q̇d of the character that satisfy the objectives.

Implementation: Second Pass. We use the computed desired velocities q̇d as targets for the actuation of the

character. The desired velocities produce the velocity constraints

q̇ = q̇d (4.10)

that can be encoded for inverse dynamics similarly to the constraints from Section 3.6.1. We use the second

inverse dynamics pass to compute the actuation forces Factuation to stabilize the above velocity constraints in

simulation. We summarize our low-level motion control algorithm in Algorithm 2.

Algorithm 2 Compute actuation forces
Input: Current dynamic pose [q, q̇], desired pose qd and geometry of the scene G
Output: Actuation forces Factuation

1: Formulate control laws from Equation (4.6), Equation (4.7), Equation (4.8) and Equation (4.9)
2: Use inverse dynamics to solve for the desired pose velocity q̇d that satisfies the control laws
3: Use inverse dynamics to solve for actuation forces Factuation to track q̇d

4.2.2.3 Physical Dynamics

Physical dynamics updates the dynamic pose [q, q̇] forward in time for the time duration of one frame, ∆t

seconds, following Newtonian equations of motion with actuation forces Factuation. We approximate the

dynamics using simulation with the simulation model from Chapter 3. The collision detection from the

simulator is used to check for body penetrations.

4.2.3 Likelihood Model

The likelihood function measures how well a particular model state hypothesis explains image observations

(see Figure 4.8). We first define likelihoods for kinematic poses and then extend the approach to handle

dynamic poses by considering velocity information.

Kinematic Poses. For a kinematic pose qt , we employ a relatively generic likelihood model p(It |qt) from

[14] that tries to maximize the similarity between the projection of the hypothesized model and the observed

silhouette extracted from the image It (see Figure 1.12 and Figure 4.8).
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Figure 4.7: Low-level Motion Control. The input kinematic pose q determines the positions z j of markers
on the feet (1), the desired kinematic pose qd defines their desired positions z j

d (2). The desired positions are
adjusted to prevent penetration with the ground (3) and constraints on the marker world space velocities ż j and
relative joint DOF velocities q̇k are formed. Constraints are solved for desired velocities q̇d , to be followed by
the character during simulation, using inverse dynamics. The velocities are followed by applying actuation
forces Factuation, computed by another inverse dynamics pass.

Assuming that M(x,y) is the binary image foreground silhouette at the frame t (obtained from the image

It through background subtraction), and M̂t(x,y) is the binary silhouette obtained by projecting our model

under the pose qt , we are interested in maximizing the overlap between the two binary silhouette images,

Ct = ∑
(x,y)∈|It |

M(x,y)M̂ f (x,y), (4.11)

while at the same time minimizing the non-overlapping regions:

At = ∑
(x,y)∈|It |

Mt(x,y)(1−M̂t(x,y)), (4.12)

Bt = ∑
(x,y)∈|It |

M̂t(x,y)(1−Mt(x,y)). (4.13)

The likelihood that can achieve this objective can be formulated as follows,

p(It |qt) ∝ ∏
views

exp
(
− At

At +Ct
− Bt

Bt +Ct

)
. (4.14)

A slightly more general form of this likelihood was defined in [14]. Alternatively, a very similar likelihood

can be defined using an XOR operator as in [15].

Dynamic Pose. For a dynamic pose [qt , q̇t ], we need to consider information extracted from both the current

and the next frame so that velocity information could be implicitly measured and compared against q̇t . To-

wards this end, we set up the coupled observation yt = [It ,It+1] and define the likelihood of the dynamic pose
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Figure 4.8: Image Likelihood. The coupled observation yt , consisting of two consecutive frames It (upper
left) and It+1 (lower left), explains the dynamic pose [qt , q̇t ] well (see Equation (4.15)) if silhouettes at the
frame t fit the kinematic pose qt (red pose) and silhouettes at the frame t + 1 fit the kinematic pose q̂t+1
(green pose), where q̂t+1 = qt +∆t · q̇t is predicted from the kinematic pose qt and the velocities q̇t using
the constant velocity model. For the definition of At , Bt and Ct see Equation (4.12), Equation (4.13) and
Equation (4.11) respectively.

with respect to the coupled observation as a weighted product of two kinematic likelihoods

p(yt |[qt , q̇t ]) ∝ p(It |qt)p(It+1|q̂t+1), (4.15)

where q̂t+1 = qt +∆t · q̇t is the estimate of the kinematic state/pose at the next frame. Alternatively, one

can formulate a likelihood measure that explicitly computes the velocity information [27] (e.g., using optical

flow) and compares it to the corresponding velocity components of the state vector.

The remaining portions of our state xt , such as the control policy, are inherently unobservable and are

assumed to have uniform probability with respect to the likelihood function4. Hence, we define our likelihood

function p(yt |xt) as p(yt |xt) = p(yt |[qt , q̇t ]).

4.2.4 Motion Reconstruction

We reconstruct the motion in the video as a sequence of poses of the simulated character that match image

observations. We use a Particle Filter implementation with the motion and likelihood models from above as

an inference mechanism (see Algorithm 1). This PF implementation, discussed in Section 4.1.3, produces

the distributions p(xt |y1:t) for the individual frames t = 1, . . . ,T and we need to choose a representative pose

from each such a distribution to provide an interpretation of the entire sequence. Our goal is to choose

representative poses such that the resulting pose sequence is physically plausible.

4The resulting dual-counting of observations, only makes the unnormalized likelihood more peaked, and can formally be handled as
in [27].
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Finding such a sequence is difficult, because Particle Filter, as any other Bayesian filtering method, re-

quires noise (or a diffusion process) to be present in the motion model to account for disturbances and sub-

tleties of a particular activity being tracked (see Figure 4.2). As such, the control loop from Section 4.2.2

needs to incorporate noise.

In kinematic pose trackers, such as [13, 15, 46, 33, 112, 157], it is customary to employ motion models

that perform deterministic prediction of the pose and then directly add noise to the predicted state (see (a) in

Figure 4.2). Most often, the deterministic motion model is an identity function qt = qt−1 and state diffusion is

implemented by replacing the predicted qt with a sample from N (qt ,Σ), where the covariance Σ controls the

amount of noise added. Adding noise to the state, in our case, results in the loss of physical plausibility (see

(b) in Figure 4.2), because the recovered pose trajectory, in general, cannot be simulated by the physical model

exactly. Consequently, to output poses that are physically plausible, we need to take a different approach that

only adds noise to the desired pose (see (c) in Figure 4.2).
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Figure 4.9: Raw Simulation Results (Image Projections, Multi-view L1 Walking). Illustration of motion
reconstruction results on the multi-view L1 walking sequence obtained with our two physics-based motion
estimation methods. The odd rows (white character) show a motion reconstruction using raw physical simu-
lation. The method produces a physically plausible motion interpretation that does not feature artifacts, but
fails to fit images accurately due to the high-dimensionality of the optimization space and the parameteriza-
tion of desired motion. Results produced by the hybrid physics-based method are visualized in the even rows
(red character). The hybrid method can achieve a better fit to the observations (by e.g., translating the torso
in a non-physical way), but can not guarantee the estimated pose sequence can be simulated by the physical
model. As such, it may include artifacts. In both cases, we use an extended body model with extra parts for
the feet so that the character can properly push off the ground while walking, as required by the first method
that produces raw simulation results. See text in Section 4.2.4 for additional information on the two methods.

Next, we discuss general options for modeling of the noise in tracking and the corresponding conse-

quences on the motion reconstruction and physical plausibility. We study two possible methods for motion

reconstruction: a method that is guaranteed to output physically plausible interpretations (see Section 4.2.4.1

and (c) in Figure 4.2) and a method that biases interpretations towards the plausible results (see Section 4.2.4.2
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and (b) in Figure 4.2). For each method, we illustrate what noise model we use, how we integrate the noise

model with the control loop and how we select the representative poses from the posteriors. We also discuss

implications on the ability of the method to generalize the estimated motion to new situations.

4.2.4.1 Physically Plausible Estimation by Raw Simulation

We first consider a motion estimation strategy that outputs physically plausible pose sequences (see (c) in

Figure 4.2). These sequences are defined as raw results of physical simulations of the character model from

an initial state x1. Consequently, the poses q1, . . . ,qT in the reconstructed sequences must be generated from

a single particle, as a history of poses that this particle represented as it was being updated from the initial

frame until the last frame by the Particle Filter. In other words, the pose sequence must correspond to a

trajectory of a single particle in the pose space, where poses are produced by simulation.

Noise Model. In order to produce particle trajectories in the Particle Filter that are entirely generated by

simulation and control in the control loop (see Section 4.2.2), noise can only be added to the desired kinematic

pose, qd , before the body actuation and dynamic simulation takes place (see Algorithm 1, line 5, and (c) in

Figure 4.2).

Towards that end, we use a noise model, where we add N (0,Σd) to the desired pose generated by

deterministic control policy functions and we add no noise to the predicted state. We choose Σd to be

proportional to the maximum expected difference in kinematic pose between the prediction by simulation

and the true observation as in [13, 46]. Because we do not wish any noise to be added to the pose generated

by the simulation, we let Σs = 0 for Algorithm 1 in this case.

Representative Poses. In order to obtain an interpretation of the entire motion, we consider full state histories

of the particles from the last frame and report the pose sequence produced by the most likely (MAP) history,

such that the cumulative likelihood value for the poses in the sequence is maximized. The returned pose

sequence is physically plausible, because it records an evolution of a single particle (single simulation) from

an initial state (see Figure 4.9 (top) and Figure 4.10). See Section 4.1.3 on how we represent state histories

in particles.

Adaptation to New Environments. Because we are able to reconstruct a trajectory-tracking controller using

this method, we can apply the estimated controller to simulated characters in new situations. Abilities of

these generalizations are, however, limited because the control feedback is restricted to only responses to

impacts. Furthermore, because desired poses for control are prescribed for every frame in the sequence, the

produced motion is not able to deviate from the desired motion in simulation much (a well known fact for

trajectory-tracking controllers).

4.2.4.2 Hybrid Estimation

While, in principle, physically plausible motion estimation is a desired alternative, it assumes that (1) our

physical simulation is rich enough to generate the motion we are observing exactly and (2) that the likelihood

model is strong enough to ensure that the physical state of the system can be inferred accurately at all times

using the PF.



159

H
yb

ri
d

R
aw

H
yb

ri
d

R
aw

H
yb

ri
d

R
aw

H
yb

ri
d

R
aw

Figure 4.10: Raw Simulation Results (Pose Renderings from A Different View, Multi-view L1 Walking).
Visualization of motion reconstruction results on the multi-view L1 walking sequence obtained with our
physics-based motion estimation methods, rendered from a view not used for the estimation. Motion of the
white character was produced using raw physical simulation. Motion of the red character was reconstructed
using the hybrid physics-based method. In both the cases, we used an extended body model with extra parts
to represent feet. See text in Section 4.2.4 for additional information on the methods.

In practice, neither of the two assumptions holds exactly, which causes problems when we use PF as an

inference mechanism. In particular, often, because of the noise in the image observations, the moment when

the foot hits the ground cannot be detected well using the implemented likelihood model and, consequently,
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Raw Simulation − 143.9 ± 56.0
Hybrid − 28.1 ± 5.5

Figure 4.11: Raw Simulation Results (Tracking Errors, Multi-view L1 Walking). Pose reconstruction
errors for results on the multi-view L1 walking sequence obtained with our physics-based motion estimation
methods and an extended body model with extra parts to represent feet. See text in Section 4.2.4 for additional
information on the methods.

PF can easily overfit the desired pose to the observations in the current frame (see Figure 4.9, top). Specif-

ically, because the PF proceeds strictly incrementally and never reoptimizes particles from previous frames

given future observations, it is not able to correct mistakes it has made earlier. As a result, foot sometimes

hits the ground too early (or too late) requiring the model to either take a longer or shorter step later to com-

pensate and keep up with subsequent image observations, or to lag behind for the duration of the walk cycle

(until the foot support transfers). Both options result in suboptimal performance and require using too many

particles to circumvent (each particle provides one potential motion interpretation for the entire sequence

and there are only as many possible interpretations as particles in the last frame). On the other hand, these

errors could often be fixed by either translating the whole model or the toe(s) in the model by a small amount

along the floor. Such moves fix the tracking errors locally, but they are physically invalid and are explicitly

disallowed by the physical model. If allowed, artifacts emerge and e.g., foot will start sliding on the floor in

the reconstruction. As a practical compromise, we propose to take a hybrid approach, where we add noise to

both desired poses and the poses produced by the simulation (see (b) in Figure 4.2).

Noise Model. In this approach, we add a fraction Σd of the required total noise Σ to the desired pose (see

Algorithm 1, line 5) and a fraction Σs to the predicted state (see Algorithm 1, line 10), where the standard

deviation in Σ is set to be proportional to the maximum expected difference in state between the prediction

by simulation and the true observation and Σ = ρΣd +(1−ρ)Σs for a factor ρ .

Representative Poses. Because the addition of noise to the simulated pose loses physical plausibility, we

are no longer constrained to report motion interpretations that are generated as histories of single particles.

Instead, for each frame t in the sequence, we output the expected pose, defined as the mean of the distribution

p(xt |y1:t) estimated by the PF.

Because each such a reported pose is obtained by averaging poses from the particle distribution (i.e., poses

from different simulations) and the poses in the posterior themselves are corrupted with noise, proportional

to Σs, the reported poses are not guaranteed to honor kinematic constraints exactly and may be temporally
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25 % : 75 % − 32.1 ± 6.5
50 % : 50 % − 30.0 ± 7.2
75 % : 50 % − 32.8 ± 8.6
100 % : 0 % − 40.6 ± 12.2

Figure 4.12: Tracking Errors For Different Noise Distributions (Multi-view L1 Walking). Effects of
different ratios of noise added to desired poses vs to predicted poses on tracking errors. All cases produce
similar tracking results, except for the case 100 % - 0 %, when all noise is added only to the desired poses
and the tracker can not fix global translation errors until the end of the stride.

incoherent. However, they can provide a good fit to the image observations locally and explain individual

images well.

As illustrated in Figure 4.9 (bottom), Figure 4.11 and Figure 4.12 (see experiments for the description

of the dataset and error metric), this hybrid strategy results in a plausible compromise between physical

plausibility and the ability to subdue the confusion that arises from the lack of good image observations and

the incremental nature of the inference. It is worth noting that even though the resulting motion obtained by

this strategy cannot be guaranteed to be physical simulation from our model, it is very strongly biased by the

model towards physically plausible solutions, because the amount of noise Σs added to the pose is relatively

small with respect to Σd . We assume this motion estimation strategy for the rest of our experiments.

Adaptation to New Environments. The hybrid method is not able to produce generalizations of the motion

reconstructions for new environments directly. The result of the reconstruction is a sequence of poses, not a

controller, in this case, and the pose sequence is not necessarily simulated.

4.3 Experiments

We evaluate our method both in terms of its ability to track common human activities from monocular and

multi-view video (see Table 4.2) as well as to predict human motion alone.

4.3.1 Data Sets and Performance Metrics

Datasets. In our experiments, we make use of two publicly available datasets [13] and [161], containing

synchronized motion capture (Mocap) and video data from multiple cameras. We also collected our own

custom monocular sequences that contain no associated motion capture. The use of the synchronized data, in

the former datasets, allows us to (1) perform baseline experiments that quantitatively analyze performance,
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(2) obtain data for training the motion and noise models and to (3) get reasonable initial poses for the first

frame of the sequence from which tracking is initiated. Each public dataset contains disjoint training and

testing data, that we use accordingly.

L1. The first public dataset, used in [13], contains a single subject (L1) performing a walking motion with

stopping, imaged with 4 grayscale cameras.

S1 - S3. The second public dataset, HUMANEVA-I[161], contains three subjects (S1 to S3) performing a

variety of motions (e.g., walking, jogging, boxing) imaged with 7 cameras (we, however, make use of the

data from at most 3 color and 1 grayscale cameras for our experiments).

M. The custom sequences contain monocular footage of a subject (M) exhibiting more complex dynamical

interactions with the environment like walking up the stairs and jumping of a ledge. The footage was taken

by a low-quality stock digital camera for which no ground truth Mocap information is available. The images

were captured at 640×480 resolution at 30 frames per second. Due to the low quality of the camera some of

the frames were dropped, resulting in a variable frame rates as low as 15 frames per second. Rough camera

calibration was extracted directly from sequences. Geometry of the environment (e.g., ground plane, stairs)

was built by hand based on the recovered calibration. For each sequence, initial poses and parameters of the

body and shape model (limb lengths) were tuned manually. In all cases, the Mocap for training L1 sequence

was used to train motion priors for the M sequences.

Motion Reconstruction. For all our tracking experiments in this section, we use the hybrid strategy from

Section 4.2.4.2 to estimate distributions over model states for frames in the sequence and select representative

poses. For each frame, we report the expected pose of such a distribution.

Performance Metrics. To quantitatively evaluate the performance on standard datasets we make use of the

metric employed in [13] and [161], where pose error is computed as an average distance between a set of 15

markers defined at the key joints and end points of the limbs. In 3D, this error has an intuitive interpretation

of the average joint distance, in (mm), between the ground truth and a recovered pose (absolute error). In

our monocular experiments and specific motion model experiments, we use an adaptation of this error that

measures the average joint distance with respect to the position of the pelvis (relative error) to avoid biases

that may arise due to depth ambiguities and to avoid penalizing of other competing motion priors that do not

model changes in 3D position and orientation of the body. For tracking experiments, we report the error of

the expected pose.

Method Comparison. For comparison with our Physics-based method (Physics), we implemented two

alternative standard Bayesian filtering approaches, Particle Filter5 (PF) and Annealed Particle Filter5 with 5

levels of annealing (APF 5), each with two priors: a smooth prior (Smooth) and a kinematic motion capture

exemplar prior (Mocap). The kinematic motion capture prior takes the form of

p(qt |qt−1, q̇t−1) = N (qd ,Σ)

= N (πA([qt−1, q̇t−1]),Σ). (4.16)

5We make use of the public implementation by Balan et al.[13] available from http://www.cs.brown.edu/people/alb/.

http://www.cs.brown.edu/people/alb/
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Subject Activity Source # Cameras # Frames Section
L1 Walking [13] 4 200 4.3.3
S3 Jogging [161] 4 200 4.3.4
L1 Walking [13] 1 200 4.3.5
S3 Jogging [161] 1 200 4.3.6
M Stairs Custom 1 150 4.3.7
M Jumping Custom 1 35 4.3.8

Table 4.2: Sequences And Data Sets Used In Tracking Experiments.

For uniformity with the implementation of our body actuation, the kinematic motion capture prior does not

predict the motion of the root; rather it relies on the sampling covariance of the noise model for the positional

degrees of freedom of the root segment. To make the comparison as fair as possible we always use the

same number of particles, 250 for multi-view sequences, 1000 for monocular sequences6, same likelihoods,

same noise model and same interpenetration and joint limit constraints in all cases; joint limit constraints are

learned from training data.

4.3.2 Motion Prediction with Ground Interaction

We first evaluate the proposed motion model (see Section 4.2.2) alone. The key aspect of our model is the

ability to perform accurate physically-plausible predictions of the future state based on the current state esti-

mates. We demonstrate this ability through quantitative comparisons with predictions made by the standard

temporal prior models based on stationary linear dynamics (described in Section 4.1.3) and exemplar-based

predictions.

Figure 4.14 (right) shows performance of the smooth prior (No Prediction, see Equation (4.2)), constant

velocity prior (see Equation (4.3)), kinematic motion capture prior (see Equation (4.16)) and individual pre-

dictions based on the two control policies implemented within our physics-based prediction module. For all

5 methods we use 200 frames of motion capture data from the L1 sequence to predict poses from 0.05 to

0.5 seconds ahead. To make sure the experiment results are not biased by the effects of noise in the control

loop (see Section 4.2.4), we only use deterministic priors with Σ = 0 and a single control policy function for

the whole sequence in one experiment. We then compare our predictions to the poses observed by motion

capture data at corresponding times and report prediction errors using the metric from above.

For short temporal predictions all methods perform well; however, once the predictions are made further

into the future, our active motion control policy, that filters predictions from the exemplar-based Mocap

method, significantly outperforms the competitors. Overall, the active control policy achieves 29 % lower

error over the constant velocity prior (averaged over the range of prediction times from 0.05 to 0.5 seconds).

Figure 4.14 (left) shows the effect of noise on the predictions. For a fixed prediction time of 0.25 seconds,

a zero mean Gaussian noise is added to each of the initial ground truth dynamic poses before the prediction

is made. The performance is then measured as a function of the noise variance. While performance of the

6In APF, we use 250 particles for each annealing layer in multi-view sequences and 1000 particles for each layer in monocular
sequences.
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Figure 4.13: Prediction Error. Errors in predictions (0.5 seconds ahead) are analyzed as a function of one
walking cycle. Vertical bars illustrate different phases of walking motion: light blue – foot pushes on the
ground, light orange – change in the direction of the arm swing.

constant velocity prior and passive motion prior degrade with noise, the performance of our active motion

prediction stays low and flat.

Notice that in both plots in Figure 4.14 (right) the constant velocity prior performs similarly to the passive

motion; intuitively, this performance makes sense because the constant velocity prior is an approximation to

the passive motion dynamics that does not account for environment interactions. Because such interactions

happen infrequently and we are averaging over 200 frames, the differences between the two methods are

not readily observed, but are important at the key instants when they occur (see Figure 4.13). For example,

predictions of passive motion model tend to be more accurate when a foot strikes the ground. Consequently,

when change in the direction in the arm swing occurs, inertia tends to allow the motion to continue in the

initial direction, making passive motion model predictions less accurate.

4.3.3 Tracking with Multiple Views (L1 Walking)

As our first tracking experiment, we analyze the tracking of the multi-view sequence of L1 (see supplemental

video from the project website for qualitative analysis). The quantitative results are illustrated in Figure 4.15

(top left). Our method has 63 % lower error than PF and 27 % lower error than APF with smooth prior; 59 %

lower error than PF and 18 % lower error than APF with the kinematic motion capture prior. In all cases, our
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No Prediction − 229.0 ± 114.3
Motion Capture − 235.7 ± 101.0
Constant Velocity − 122.8 ± 80.6
Passive Physics − 130.1 ± 83.2
Active Physics − 88.7 ± 36.6

Figure 4.14: Average Prediction Error. Illustrated, on the right, is the quantitative evaluation of the 5
different dynamical priors for human motion: smooth prior (No Prediction), motion capture based prior
without physics (Motion Capture), constant velocity prior and (separately) the active and passive physics-
based priors implemented here. On the left, the performance in the presence of noise added to the initial
ground truth poses is explored. For completeness, top row shows the relative error and the bottom illustrates
absolute error measure. See text for further details.

Test: L1 Test: L1
Train: L1 Train: S1-S3

Our method 30.3 (mm) 47.2 (mm)
Our method ([207] likelihood) 33.9 (mm) 52.4 (mm)
Xu and Li [207] 49.0 (mm) 55.3 (mm)
PF (smooth prior, [207] likelihood) 120.7 (mm)
PF (smooth prior) 80.0 (mm)
APF 5 (smooth prior, [207] likelihood) 63.5 (mm)
APF 5 (smooth prior) 42.8 (mm)

Table 4.3: Comparison With Other Methods (Multi-view L1 Walk).
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Mean (std.) in (mm)
Our method 71.5 (19.7)
APF 5 (250 particles/layer) 132.5 (35.5)
APF 5 (500 particles/layer) [104] 111.82 (47.91)
APF 5 GPLVM (500 particles/layer) [104] 99.05 (21.90)
MHT GCMFA [104] 70.13 (21.34)

Table 4.4: Comparison With Other Methods (Multi-view S3 Jog).

method also resulted in a considerably lower variance.

We have also tested how the performance of our method degrades with larger training sets that come from

other subjects performing similar (walking) motions (see Physics S1-S3 L1). It can be seen that additional

training data does not noticeably degrade the performance of our method (only by 0.6 mm on an average),

which suggests that our approach is able to scale to larger datasets with multiple subjects. We also test whether

or not our approach can generalize, by training on data of subjects from the HUMANEVA-Idataset and running

on a different subject, L1, from the dataset of [13] (Physics S1-S3). The results are encouraging in that we

can still achieve reasonable performance that has lower error than PF with either of the two alternative priors,

but performs marginally worse than APF with smooth prior. Comparison with APF using kinematic motion

capture prior is not meaningful in this case, because it is trained using subject specific motion data of L1.

Our experiments tend to indicate that our approach can generalize within observed classes of motions given

sufficient amount of training data (for generalizations to execution in different environments see Section 4.3.7

and Section 4.3.8).

We also compare the performance of our Bayesian tracking method with the physics-based prior to that of

[207]. In [207], a more informative kinematic prior model was proposed (as compared to the smooth prior),

that explicitly learns correlations between the parts of the body in a coordinated motion (e.g., walking).

This prior is then used in the context of a more efficient Rao-Blackwellised Particle Filter (RBPF). In [207],

however, a weaker likelihood model was used (which we employed in an earlier variant of this work [193]), so

we report the performance with both the types of likelihoods (see Table 4.3). It is also worth mentioning that

in [207], 1000 particles were used, instead of 250 here; yet, our method still performs favorably. Furthermore,

from the table one can see that while the models that utilize smooth priors tend to be very sensitive to the

quality of the likelihoods (gaining over 30 % performance increase with the better likelihoods utilized here),

our model is much less sensitive to those aspects.

4.3.4 Tracking with Multiple Views (S3 Jogging)

To illustrate that our method is not limited to motions of any particular type (e.g., walking), we conducted a

similar experiment to above but on the jogging sequence of subject S3 from the HUMANEVA-Idataset. All

the parameters of the tracker are set as before, except that the prior was trained on jogging sequences of the

subject S3 (disjoint of the test set). Performance on sample frames is illustrated in the supplemental video

and quantitatively analyzed in Figure 4.15 (bottom left). The proposed model once again achieves the lowest

error against all competing methods.
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Figure 4.15: Quantitative Tracking Performance. Illustration of the performance of the proposed physics-
based prior method (Physics) with different testing and training datasets versus standard Particle Filter (PF)
and Annealed Particle Filter (APF 5) with 5 layers of annealing. Multi-view tracking performance with 4
cameras and 250 particles is shown on the left, monocular tracking performance with 1000 particles on the
right.

We also compare our performance on this sequence to other methods published in the literature (see

Table 4.4). In particular we compare the performance, to the results reported in [104], where a Multiple

Hypothesis Tracker with a kinematic Globally Coordinated Mixture of Factor Analyzers (MHT GCMFA)

prior was presented and compared to an independent implementation of Annealed Particle Filter with 5 layers

of annealing with (1) a smooth prior (APF 5) and (2) a kinematic Gaussian Processes Latent Variable Model

prior (APF 5 GPLVM). In this case, the comparison may not be direct because we are not certain as to the

exact form of the likelihood used in [104]; in addition, [104] uses 500 particles per layer of APF (as opposed

to 250 in our implementation). The difference in the number of particles/samples may explain slightly lower

performance of our APF implementation (132.5 versus 111.82 (mm)). Quantitatively, performance of our

method is on par with that of [104] and is more accurate than that of APF 5 GPLVM, despite the fact that
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we are using half as many samples/particles and a relatively simple kinematic proposal process for qd . In

addition, we expect our method to produce more physically plausible motions.

4.3.5 Monocular Tracking (L1 Walking)

The most significant benefit of our approach is that it can deal with monocular observations. Physical con-

straints encoded in our prior help to properly place hypotheses and avoid overfitting of monocular image

evidence that lacks 3D information (see Figure 4.16 (Physics) and supplemental video); the results from PF

and APF on the other hand suffer from these problems, resulting in physically implausible 3D hypotheses

(see Figure 4.16 (APF 5) bottom) and lead to more severe problems with local optima (see Figure 4.16 (APF

5) top). Figure 4.16 (Physics) bottom, illustrates the physical plausibility of the recovered 3D poses using

our approach. Quantitatively, our model has 74 % lower error than PF and 76 % lower error than APF with

smooth prior; 76 % lower error than both PF and APF with kinematic motion capture prior, with a consider-

ably lower (roughly 1
6 ) variance (see Figure 4.15 at top right).

4.3.6 Monocular Tracking (S3 Jogging)

Similar results can be seen for the jogging sequence of the subject S3 from the HUMANEVA-Idataset. The

results are quantitatively analyzed in Figure 4.15 (bottom right). See supplemental video for the qualitative

results. While it may seem that the tracking with a single view performs better than with multiple views, this

is not the case. In the monocular case, we only report marker errors with respect to the position of the pelvis,

thereby ignoring errors in the global translation of the body.

To be fair, we would like to also acknowledge that the lowest error of 18.9 (mm), with the standard

deviation of 7.5 (mm), on this sequence was reported by Urtasun et al. in [182]. The method of [182],

however, utilizes a very different class of discriminative models. Discriminative models tend to produce

quantitatively accurate performance, but result in poses that are extremely noisy over time (no temporal

continuity); these models are also difficult to generalize to new motions and/or poses that, in part, result from

environment interactions (something we address with our model in the next two experiments).

4.3.7 Monocular Tracking (M Stairs)

A key benefit of the proposed model is its ability to generalize to complex interactions with the environment.

In Figure 4.17 and supplemental video, we illustrate the performance of our tracker, trained using level-

ground walking of L1, on a new subject walking up a set of stairs. Despite the fact that the prior is trained with

clearly very different motion from the one observed, our method is able to successfully track the lower body as

it interacts with the stairs in order to support the motion of the person. To our knowledge, no other kinematic

prior method is able to illustrate such generalization. Clearly, the knowledge of the environment together

with the ability to reason about interactions of the feet with the stairs through physics-based predictions are

responsible for the resulting performance.
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Figure 4.16: Monocular Tracking (Walking). Visualization of performance on a monocular walking se-
quence of subject L1. Illustrated is the performance of the proposed method (Physics) versus the Annealed
Particle Filter (APF 5) with the smooth and kinematic motion capture prior; in all cases with 1000 particles.
The top row shows projections (into the view used for inference) of the resulting 3D poses at 20-frame incre-
ments; the bottom row shows the corresponding rendering of the model in 3D, from a different view, along
with the ground contacts. Our method, unlike APF with either prior, does not suffer from out-of-plane rota-
tions, has consistent ground contact pattern and can estimate correct heading of the person that is consistent
with the direction of motion. APF, on the other hand, produces poses that tend to drift along the ground plane
and face in an opposite direction (APF 5 Mocap). For quantitative evaluation see Figure 4.15 (top right).
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Figure 4.17: Monocular Tracking (Stairs). An ability of the proposed model to generalize to complex
interactions with the environment is tested. Despite the fact that the prior is trained only using level-ground
walking, the tracker still performs well on this more challenging terrain and is able to track the person as they
walk up the stairs. Annealed particle filter with the kinematic motion capture prior (APF 5 Mocap), on the
other hand, fails to track this sequence completely. As soon as the person approaches the stairs, the kinematic
motion capture prior starts producing state hypotheses that penetrate the stairs, which prevents the tracker
from further tracking. See text for additional details and discussion.

4.3.8 Monocular Tracking (M Jumping)

In the final experiment (Figure 4.18), we illustrate the performance of the tracker on the fast motion of a

person jumping off a ledge. Because we know that this motion is mostly ballistic, we tuned the parameters

of the decision process in the control loop to always select the passive motion control policy (for more

efficient inference). The physics-based model is able to track the person reasonably well, even though the
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Figure 4.18: Monocular Tracking (Jump). We illustrate an ability of the proposed model to generalize
to new activities in new environments. The set up for this experiment is similar to Figure 4.17, except no
motion capture data is used for training and the model relies on passive motion control policy for predictions.
Because the physical effects of the environment are computationally accounted for in our model, the proposed
tracker is able to properly predict the motion of the person as the body hits the ground.

footage is of poor quality and the motion is extremely fast, producing large changes in the body pose between

frames and motion blur (see supplemental video). Of particular interest is the natural way body crouches

as it hits the ground (unlike what happens with more traditional kinematic priors, e.g., Figure 4.18 bottom

right). Consequently, the pose changes cannot be predicted by simpler smooth (e.g., a constant-velocity or

no-motion) motion prior models, because the noise required to account for the fast motion is simply too large

to allow efficient inference. Because this motion was not part of the motion capture training set, comparison

with the motion capture based prior is not possible (or meaningful).

4.4 Conclusions

Summary. In this chapter, we have presented a method for incorporating full-body physical simulation with

control into a temporal prior within a Particle Filter for video-based pose tracking. Using the simulation and
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control, we are able to account for non-linear non-stationary dynamics of the human motion and interactions

of the body with the environment (e.g., ground contact). To allow tractable inference, we introduce two

control policies: an active motion policy, which uses motion-capture data as targets for body actuation using

a hybrid controller, and a passive motion policy, which does not compute any actuation forces. Our method

can be easily integrated with existing kinematic pose trackers. Our approach can be interpreted as a filter built

on top of any statistical motion model within the pose tracker (kernel regression, in this case) that corrects

pose predictions from the kinematic model to make them physically plausible. The corrections are realized

by actuating the character model from the current pose towards the proposed pose from the kinematic model

using simulation and control within the control loop. Using these tools, we illustrate that our approach can

better model the dynamical process that underlies human motion. We show that the resulting performance

of the tracker is more accurate than the results obtained using standard Bayesian filtering methods such

as a Particle Filter (PF) or Annealed Particle Filter (APF) with kinematic priors and the tracker can better

generalize for different environments. In order to promote the use of physical models for tracking, we have

made the source code of our controllers and the simulation-based prior available on our website.

Discussion. Using physical simulation for correcting predictions in the Particle Filter is effective for pose

tracking but has its limitations. The nice properties are the ability of the physical model to generalize and

make physically plausible predictions for the character under interactions with the environment. On the other

hand, we have to infer a desired pose for the character in every frame of the sequence, which is difficult to

do accurately given the observation model and the inference mechanism we use. Consequently, we can not

reconstruct motions that are fully physically plausible and we can only bias the pose interpretations to those

produced by the simulation.

We conjecture this deficiency comes from the modeling choice of the inference method that is prone to

overfitting and the controller model that requires inference over the entire desired pose trajectory. We discuss

these aspects in more detail next.

Incremental Inference and Overfitting. First, because the inference by PF proceeds strictly incrementally

from one frame to the next frame by one frame increments and never reoptimizes, using only the observations

from the current frame to estimate the model state for the frame, the inference is essentially driven by local

image observations. As such, the estimation process can easily overfit and estimation errors made earlier in

the process can not be fixed later. That is, once a distribution over model states is computed for a particular

frame by the PF, it remains fixed, regardless of the information that becomes available in the future. These

properties have important implications on pose tracking.

If we restrict pose tracking by PF to the tracking of only the desired pose, so we can obtain a physically

plausible motion interpretation of the entire sequence, our method fails to provide a good overall fit to the

images and requires too many particles to converge. Consequently, as a practical compromise, we resort to

using a hybrid estimation strategy that adds noise to the poses predicted by simulation. The addition of noise

breaks physical plausibility in both predictions and motion reconstructions but allows for a better fit to the

data (the noise allows to shift the simulated pose in the world arbitrarily in order to better fit the particular

observed silhouette). The motion estimation results that we demonstrate in our experiments in this chapter

are all produced using this hybrid approach, where the reconstructed pose trajectories result from simulated
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trajectories and noise.

High-dimensional Representation of Controller. Second, because we use a trajectory tracking controller

model, parameterized by an unstructured sequence of desired poses, a desired pose for the simulated character

has to be estimated for every frame in the sequence. In this implementation, we represent desired poses in

a high-dimensional full-body space. Consequently, the number of variables to be estimated in each frame

is proportional to the number of kinematic DOFs in the body model and the inference over the desired pose

trajectory results in a difficult, high-dimensional optimization problem. We rely on training motion capture

data to make this inference possible.

Towards Next Chapter. In the next chapter, we introduce a new method that addresses the challenges from

above and always produces motion interpretations that are raw results of physical simulations. The new

method differs from the PF-based pose tracking in the following key aspects:

• An inference mechanism:

The new method employs an inference mechanism that is based on direct optimization. The mecha-

nism is still incremental, but reoptimizes estimation results from past frames to reduce the chance of

overfitting.

• A controller model:

The new method replaces the trajectory tracking controller with a state-space controller model that

encodes the desired pose trajectory for the character in a sparse way, utilizing an underlying structure

of the motion. As a result, there is much fewer variables to be estimated per frame during the optimiza-

tion. In addition, the assumption of structured motion better constrains the optimization problem (see

Section 1.3.2 and Section 1.5.1) and each optimization pass in the incremental process is reinforced by

information from many frames.

• A character model:

The new method makes use of an improved model for the simulated character. The model uses a more

elaborate body structure, can generate a wide variety of self-balanced motions in simulation (e.g.,

walking, jumping, running, gymnastics), employs a proper balancing strategy and does not rely on

training motion capture data for simulation.



Chapter 5

Controller Capture

In this chapter, we address shortcomings of our previous method for motion estimation from Chapter 4.

Our goal is to improve upon the previous method such that (1) we can provide physically plausible motion

interpretations of the observed motions that are raw results of physical simulations of the character model

and (2) represent the observed motions in such a way so that they can be directly adapted to new situations.

In order to realize this goal, we employ a state-space controller model that parameterizes the desired motion

for the character sparsely. Consequently, we can integrate information from many frames when recovering

targets for control, which results in improved robustness of estimation, brings the guarantee of physical

plausibility and lets the control deviate from the captured poses in simulation in response to perturbations of

the environment and character.

We implement our method by following the controller estimation approach outlined in Section 1.5.1.

We apply this approach to the state-space controller model from Section 1.4.3.1 that we equip with a bal-

ance feedback mechanism. The control is encoded as a sequence of actions. Transitions among actions are

triggered on time and on proprioceptive events (e.g., contact). Inference takes the form of optimal control

where we optimize (incrementally and/or in a batch) a high-dimensional vector of control parameters and

the structure of the controller based on an objective function that compares the resulting simulated motion

with input observations. We use a gradient-free genetic optimizer, Covariance Matrix Adaptation (CMA), to

estimate the control parameters. We make use of the character model from Chapter 3 for simulation and body

actuation.

We illustrate our approach by automatically estimating controllers for a variety of motions directly from

monocular video. To decouple errors introduced from tracking in video from errors introduced by the con-

trollers, we also test on reference motion capture data. We show that estimation of controller structure through

incremental optimization and refinement leads to controllers that are more stable and that better approximate

the reference motion. We demonstrate the power of this approach by capturing sequences of walking, jump-

ing, and gymnastics. We evaluate the results through qualitative and quantitative comparisons to video and

motion capture data.

174
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Figure 5.1: Controller Reconstruction from Video. We estimate biped controllers from monocular video
sequences (top) together with a physics-based responsive character (bottom left) that we can simulate in new
environments (bottom right).

5.1 Introduction

We formulate motion estimation as a capture of control mechanisms for a simulated physics-based character

model. Our approach consists of a model for an actuated character and an inference mechanism that uses

simulation of the character to optimize for the control.

Controller capture can be seen as a generalization of the physics-based particle filtering from Chapter 4,

where we replace the trajectory tracking controller within the Particle Filter with a sparse state-space con-

troller from this chapter. In doing so, we are motivated by the fact that the desired pose trajectory for the

tracking controller can only be reliably estimated in presence of strong likelihoods. Rather than focusing on

employing stronger observation models, we approximate the desired pose trajectory as a sequence of longer-

term actions selected by a state machine. We illustrate controller capture by showing how it relates to the

previous particle filtering method.

5.1.1 Relation to Physics-based Particle Filtering

Controller capture differs from physics-based particle filtering in the control method, inference and character

model.

Control. The method from Chapter 4 uses a controller that can be encoded as a chain of short actions,
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Figure 5.2: Comparison of Controllers in Controller Capture and Physics-based Particle Filtering.
Physics-based particle filtering (a) uses a trajectory tracking controller that switches actions with every frame
and uses the same parameters for “actuation programs” in every frame. Controller capture, on the other
hand, uses longer-term actions with own parameters for the actions (b). The parameters encode control and
balance laws for the character, as appropriate for the given action. Switching of actions in the machine can
be conditioned on distinct physical events that happen in the simulated world, such as a change of left foot
contact.

where actions lasts for the time duration of one frame and switch regularly at the end of each frame (see (a)

in Figure 5.2). Each of the actions was parameterized as a desired pose that the low-level motion control

process attempted to reach and all actions shared the same control parameters to set up the control laws.

In contrast, the controller model that we use in this chapter uses actions that last for many frames (see

(b) in Figure 5.2) and the actions can switch either based on time or contact events. The switching process

is explicitly encoded by a state machine with states corresponding to actions and transitions encoding the

switching rules. Compared to the previous model, control tasks associated with the actions are also more

complex. Each action uses its own set of parameters to set up the tasks, in terms of Equation (3.189), and the

control tasks also employ an active balancing strategy for the body.

State-space controllers allow concise representation of motion dynamics through a sparse set of desired

poses and control parameters, in essence allowing a key-frame-like representation of the original motion.

Because the controller structure is sparse, we are able to integrate information locally from multiple (tens of)

image frames which induces smoothness in the resulting motion and resolves some of the ambiguities that

arise in monocular video-based capture, without requiring a user-in-the-loop.

Inference. The method from Chapter 4 uses a Particle Filter implementation to incrementally recover desired

poses for the trajectory controller. The inference proceeds strictly incrementally, is prone to ambiguities and

noise in likelihoods and often overfits. We had to resort to adding noise to the poses generated by simulation

in order to facilitate tracking (see Section 4.2.4.2).

In controller capture, on the other hand, we recover a controller for the input motion and generate poses

in the sequence implicitly, by computing actuation forces for the simulated character using the controller and

integrating them over time in simulation. The use of a controller eliminates unrealistic behaviors such as



177

ground or body-part penetrations which are often found in results obtained by typical video-based motion

capture approaches and guarantees physically plausible motion reconstructions. We argue that by restricting

kinematic motion to instances generated by a control structure (parameters of which we optimize), we can

approximate general principles of motion, such as balance and contact, allowing response behaviors to emerge

automatically.

In order to estimate a controller for the input motion, we need to recover the structure of the motion

(as a state machine) and parameters of the actions and transitions within the machine. We formulate this

estimation as an optimization over actions in the controller. This optimization is difficult because the number

of actions in the motion can be high for many behaviors and the number of parameters to optimize large.

The optimization is realized over both discrete variables, that encode the structure of the controller, in terms

of the number of states and types of transitions in the state machine, as well as continuous. The continuous

parameters encode the behavior of the controller given its structure. The parameters encode actions within

the controller, in terms of Equation (3.189), and encode desired poses in actions, parameters of constraints

that realize low-level motion control and parameters of balance laws and the initial pose.

Character Model. Compared to Chapter 4, the controller capture method employs a more elaborate model

for the simulated character that can actively balance based on simulation feedback.

5.1.2 Contributions

To our knowledge, ours is the first method to propose a method for recovery of full-body bipedal controllers

directly from single-view video. Our method is capable of automatically recovering controllers for a variety

of complex, three-dimensional, full-body human motions, including walking, jumping, kicking and gym-

nastics. The inference is cast as a problem of optimal control, where the goal is to maximize the reward

function measuring consistency of the simulated 3D motion with image observations (or motion capture).

The sparse nature of our controller is specifically designed to allow estimation of parameters from noisy

image observations without overfitting. As a result our method not only addresses the traditional 3D pose

tracking problem, but also allows estimation of responsive bipedal characters directly and automatically from

video without requiring user intervention or intermediate kinematic motion representation. Recovered con-

trollers also contain a feedback balancing mechanism that allows replay in different environments and under

physical perturbations. With respect to prior work in character bipedal control, we make three key contri-

butions: (1) we optimize the structure of the controller along with the control parameters, (2) we propose

a new low-dimensional control within the state-space controller paradigm that we argue is more robust and

efficient, and (3) we optimize the controllers based on single-view video.

5.2 Overview

The goal of our method is to estimate motion and controller from monocular video (or reference motion

capture data). We optimize the controller structure and parameters such that the resulting motion produces a

good match to image observations. Our approach has three important components:
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Body Model and Motion. We model the human body, its actuation and interactions with the environment

using the character model from Chapter 3. According to the formalisms in Section 3.5.1, we represent the

3D kinematic pose of an articulated human skeleton at the time t by a state vector qt = [qpos
t ,qrot

t ,qang
t ],

comprising the root position (qpos
t ), the root orientation (qrot

t ) and joint angles (qang
t ). Articulated rigid-body

dynamics and integration from Section 3.7 provide a function for mapping the dynamic pose, [qt , q̇t ], at the

time t to the pose at the next time instant, [qt+1, q̇t+1] (where q̇t is the time derivative of qt ),

[qt+1, q̇t+1] = f ([qt , q̇t ],τt). (5.1)

This function is a numerical approximation of the continuous integration of internal joint torques in the

humanoid body model, τt , with respect to the current dynamic pose, [qt , q̇t ]. Joint torques approximate body

actuation by muscles.

Actuation. We make use of a state-space controller from Section 1.4.3.1 for the actuation of the body

that divides the control into a sequence of simple actions, transitions among which occur based on time or

contact (see Section 5.4.1). We generate the motion of the character using the simulation and control loop

from Section 1.4.3.2 where actuation forces for actions are produced by the low-level motion control process

within the controller. We formulate the control process based on constraints, where the constraints drive

the simulated character towards a pre-defined posture encoded within the current action. We implement the

low-level motion control using the method from Section 3.6.

We produce the joint torques, τt , in Equation (5.1) using a controller g,

τt = g([qt , q̇t ];SM,Θ), (5.2)

where SM is the structure of the controller, M is the number of states in the control structure (see Sec-

tion 5.4.1) and Θ is a vector of controller parameters. A particular controller structure SM induces a family

of controllers, where the parameters Θ define the behavior of the controller. The simulation and control pro-

ceeds by iteratively applying Equation (5.1) and Equation (5.2), resulting in a sequence of kinematic poses,

q1:T . Because this formulation is recursive, initial kinematic pose q0 and velocities q̇0 are needed to bootstrap

integration.

Estimating Controllers. The key aspect of our method is optimization of the controller structure (S ∗
M),

the parameters of the controller (Θ∗), the initial pose (q∗0) and the velocities (q̇∗0) in order to find a motion

interpretation that best explains the observed behavior. This optimization can be written as a minimization of

the energy function,

[Θ∗,S ∗
M,q∗0, q̇

∗
0] = argminΘ,SM ,q0,q̇0

E(y1:T), (5.3)

that measures the inconsistency between the poses produced by the dynamic simulation (integration) with

the controller within simulation and control loop and the image (or reference motion capture) observations,

y1:T . In order to produce controllers that can generalize, the energy function also measures the quality of the

controller itself in terms of its robustness and stability.

Because optimizing both controller structure and parameters is difficult, we first formulate a batch opti-

mization over the controller parameters assuming a known and fixed controller structure and then introduce
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(a) (b) (c)

Figure 5.3: Body Model and Likelihoods. Illustration of the body model and the collision geometry used
for simulation is shown in (a) (see Section 5.3 for details); (b) and (c) illustrate the motion capture and image
based likelihoods respectively (see Section 5.5 for more details).

an incremental optimization procedure over the structure itself by utilizing the batch optimization as a sub-

routine. We further refine the structure of the resulting controllers, by applying structural transformations and

re-optimizing the parameters.

The exact formulation of our objective function is given in Section 5.5.

5.3 Body Model and Motion

We use a generic model of the human body from Chapter 3 that represents an average person. We encode

the human body using 18 rigid body parts (with upper and lower body parts for arms and legs, hands, two

part feet, three part torso, and head). The center of mass and inertial properties of the parts are taken from

population averages and biomechanical statistics [45]. For the purposes of simulation, each body part is

parameterized by position and orientation in 3D space and has an associated collision geometry composed

of geometric primitives (see (a) in Figure 5.3). Physical and environment restrictions are encoded using

constraints. In particular, we impose (i) joint articulation constraints (see Section 3.3.2) that ensure that

body parts stay attached at the joints and have only certain relative degrees of freedom (e.g., we model the

knee and elbow as 1 DOF hinge joints), (ii) joint angle limit constraints (see Section 3.5) that ensure that

degrees of freedom are only allowed to articulate within allowable ranges (e.g., to prevent hyperextension at

elbows and knee joints), (iii) contact constraints (see Section 3.4.4) that model contact and friction between

parts of the body, and parts and the environment. All three types of constraints are automatically generated by

the simulator. The pose qt = [qpos
t ,qrot

t ,qang
t ] ∈ R40 of the model encodes the root position, root orientation

and joint angles, respectively.
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Figure 5.4: State-space Controller. Walking motion as an iterative progression of simple control tasks with
tasks illustrated as circles, transitions as arrows and the initial pose as a box. The shown controller structure
and controller parameters were obtained by Algorithm 6 applied on the fast walk motion from our dataset.

These constraints result in a large system of equations that can be expressed as a lo-hi linear comple-

mentarity problem (Mixed LCP), see Section 3.2.2.7 and [134, 181]. LCP solvers can be used to solve this

problem efficiently, yielding a set of forces (and torques) required to satisfy all of the above mentioned con-

straints; we use a publicly available implementation [190].

5.4 Actuation

We formulate our controller using constraints and directly integrate these constraints with the body and

simulator-level constraints discussed above. As a result, the augmented lo-hi LCP solution takes the ac-

tuation torques into account to ensure that the constraint forces anticipate the impact of actuation on the

system.

We assume a SIMBICON [213] style controller, where a motion can be expressed as a progression of

simple control tasks. Such paradigms have also been proposed in biomechanics (e.g., [154]) and amount to a

hypothesis that the control consists of higher level primitives that compose to create the desired motion.

5.4.1 State-space Controller

State-space controllers abstract desired motion dynamics through a sparse set of target poses and parameters;

in essence allowing a key-frame-like representation [201] of the original motion. The use of this sparse repre-

sentation allows more robust inference that is not as heavily biased by the noise in the individual video frames.

Despite the fact that this is a sparse representation, however, it still allows the expressiveness necessary to

model variations in style and speed [199] that we may observe in video.

An action-based (state-space) controller can be expressed as a finite state machine (see Figure 5.4) with M
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states, where states correspond to actions and transitions encode the rules under which the actions switch. Ac-

tions switch based on timing or contact events (e.g., foot-ground contact). For example, a walking controller

that can be expressed in this way (and estimated by our method) is shown in Figure 5.4.

Controller Structure. We denote the structure of the controller by SM . The structure describes which

actions need to be executed and how the actions switch in order to produce a desired motion for the character.

We characterize the structure using a schematic representation that consists of (1) actions, denoted by �i, (2)

the types of transitions among those actions, which are denoted by arrows with associated discrete variables

κi, i ∈ [1,M], indicating when the transition can be taken (e.g., κi = T for a transition on time, κi = L for a

transition on left foot contact, and κi = R for a transition on right foot contact), and (3) a symbol ⊕ −→ to

indicate the initial pose and velocity at the simulation start. A chain controller for one single walk cycle in

our representation may look something like this,

S4 = {⊕ −→�1
κ1=L−→ �2

κ2=T−→ �3
κ3=R−→ �4}. (5.4)

Controller Parameters. Given the structure SM , the behavior of the controller is determined by controller

parameters Θ describing the actions and transitions within the controller structure.

We make use of parameterized actions from Equation (3.189) defined in Section 3.6.1. Assuming the ai

parameterizes the action in the state �i and φi denotes the time of the transition
κi=T−→ , when the transition

happens based on time (κi = T ), we encode the controller behavior using the parameter vector Θ,

Θ = [a1,a2, . . . ,aM,φ1,φ2, . . .]. (5.5)

According to Equation (3.189), we characterize the action in �i by the target pose qd
i that the controller tries

to achieve when executing the state �i and the parameters θi, ϑi of the corresponding control and balance

laws, respectively, used to do so. We encode the target pose qd
i in a potentially low-dimensional space

using ti such that qd
i = g(ti). The simplest case is where the encoding of the target pose is the same as ti,

qd
i = g(ti) = ti; a more effective representation is discussed in Section 5.4.1.21. Consequently,

ai = [ti,θi,ϑi]. (5.6)

As such, ai corresponds to the parameters of �i in SM and φi to the parameters of the transitions
κi=T−→ . Note,

typically, it is not necessary to hit qd
i to achieve the desired motion.

5.4.1.1 Low-level Motion Control

Assuming the state machine is in the state �i, the function of low-level motion control is to compute torques

necessary to drive the pose of the character towards the target pose g(ti) while keeping the body balanced.

We extended the low-level motion control approach from Section 3.6 and the approach of Yin and colleagues

[212] for control and balance to set up the control laws.

As in [213], we maintain balance of the body by (1) using an active feedback mechanism to adjust the

target pose and (2) applying torques on the body in order to follow the prescribed target orientation for the root
1We only encode desired angular configuration of the body in qd

i .
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part. To make the method more robust, we replace Yin’s Proportional Derivative (PD)-servo with actuation

based on inverse dynamics. The behavior of the actuation process is determined by the values of the control

parameters θi and balance parameters ϑi. Intuitively, these parameters encode how the target pose should be

adjusted by the balance feedback mechanism and define the speed with which the adjusted pose should be

reached. We use the control principles from Section 3.6.1 to realize the body actuation.

Actuation. We formulate our low-level motion control based on soft constraints (similar to [181]) from Sec-

tion 3.2.3. Assuming that the body is currently in a pose qt , and the state machine is executing an action from

the finite state �i, we realize low-level motion control for the action using pose difference stabilization. A

stabilization mechanism imposes constraints on the angular velocity of the root, q̇rot
t , and joint angles, q̇angles

t ,

[36] in order to reduce the difference between the current pose and the adjusted target pose [qrot
d ,qangles

d ],

where [qrot
d ,qangles

d ] is obtained by modifying the target pose g(ti) from the machine state by the balance

feedback. As a result, the low-level motion control defines these soft constraints,

{q̇rot
t =−α

root
i · (qrot

t −qrot
d ) with softness sroot

i } (5.7)

{q̇angles
t =−α

angles
i · (qang

t −qangles
d ) with softness sangles

i }, (5.8)

parameterized by αi and si, where θi = {αi,si} according to Equation (3.190). The parameters αi encode

the speed of the stabilization mechanism and si control the softness of the constraints. Semantics of the

stabilization mechanism is explained in Section 3.2.4.1 and Section 3.6.1. To reduce the number of control

parameters that are optimized, the left side and the right side of the body share the same parameter values.

Note, these constraints are obtained by applying the constraint stabilization mechanism from Section 3.2.4.1

on the position constraints from Equation (3.178) and applying the same constraints on the root.

Underactuation. The formulation above directly controls the global orientation of the root, which is essential

for balance. As in Yin and colleagues [213], it does so by directly applying forces on the root part. However,

actuation forces should only be produced by joints in the body model and the root should be unactuated.

Consequently, this control is only valid if the net torque on the root part is equal and opposite to the sum of

torques of all connected parts,

{τroot
t =− ∑

k∈Neighbor(root)
τ

k
t }. (5.9)

Because we cannot express Equation (5.9) directly as a constraint with Equation (5.7) and Equation (5.8), we

employ a prioritized approach. This approach satisfies Equation (5.9) exactly and uses a “best effort” strategy

to satisfy the other two constraints (Equation (5.7) and Equation (5.8)). Towards that end, we use the method

from Yin and colleagues [213] to decompose extra torques applied at the root to additional reaction torques

applied at the thighs (see Algorithm 3).

We first solve for the torques τt that satisfy Equation (5.7) and Equation (5.8) using inverse dynamics

(ignoring Equation (5.9)) and apply the torques to the character. We then compute τroot
error — the amount of

violation in Equation (5.9). The value of τroot
error equals exactly the “extra” torque received by the root part that

is not “explained” by any of the joints attached to the root. To alleviate this error, we apply the corresponding

reaction torque −τroot
error to the swing upper leg part (to ensure that Equation (5.9) holds, see Figure 5.5).

This approach is similar to Yin and colleagues [213]. As a result of this correction, Equation (5.9) and
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Algorithm 3 : Application of control forces
1: Solve for τt using inverse dynamics to satisfy Equation (5.7) and Equation (5.8) and apply τt
2: Determine by how much Equation (5.9)) is violated:

τroot
error = τroot

t + ∑
k∈Neighbor(root)

τk
t

3: Apply −τroot
error to the swing upper leg

4: Solve for τt using inverse dynamics to satisfy Equation (5.8)) and apply τt

d 

COP 

Desired pose for 

swing leg from state 

COM Ground-plane projection 

d┴ of d 

Adjusted desired 

pose for swing leg 

Desired pose for 

stance leg from state 

Figure 5.5: Balance Feedback. Target orientation of the swing upper leg (yellow) is the result of blending
between the target orientation stored in the state (green) and an orientation where the leg points along the
ground-plane projection d⊥ of d (red), produced by the feedback mechanism.

Equation (5.7) hold exactly and Equation (5.8) may slightly be violated due to the −τroot
error torque applied at

the swing upper leg.

Balance Feedback. The constraints on the root part attempt to maintain the world orientation of the character.

Active feedback mechanisms, however, may be necessary to prevent falling when the environment changes

or perturbations are applied. We generalize the balance feedback mechanism of Yin and colleagues [213] to

dynamically adjust the target orientation of the swing upper leg from g(ti). The feedback mechanism uses

three additional control parameters encoded into a vector ϑi ∈ R3.

Intuitively, the purpose of the balance control law is to affect the motion of the swing foot in order to

move the character toward a balanced pose where the center of mass (COM) is above the center of pressure

(COP). The feedback is implemented by synthesizing a new target orientation for the swing upper leg and

using it as a target (see Figure 5.5). The controller will then track an adjusted target pose [qrot
d ,qangles

d ], where

the target orientation qangles,SUL
d for the swing upper leg is set as

qangles,SUL
d = slerp(g(ti)

k,SUL,orientation(d⊥),ϑi,3), (5.10)

where slerp is a spherical linear interpolation function, SUL refers to the DOFs representing the orientation
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of the swing upper leg in the pose,

d = ϑi,1(COM−COP)+ϑi,2( ˙COM− ˙COP), (5.11)

d⊥ is d projected to the ground plane and orientation(d⊥) produces a leg orientation such that the leg’s medial

axis points along d⊥. The remaining DOFs within [qrot
d ,qangles

d ] are copied from g(ti).

Force Limits. To ensure that the controller does not apply super-human forces, we limit the joint torques via

limits on the solution to the lo-hi LCP problem using Equation (3.188) with γ = 120.

Discussion. When we solve for control torques, control constraints are automatically combined with all

other constraints in our simulator to anticipate effects of body articulation and contact. Our constraint-based

control is different from a PD-servo. A PD-servo assumes that the control torques are linear functions of the

differences between the current and the target poses of the body. It also assumes that each degree of freedom

can be controlled independently and relies on a feedback mechanism to resolve the resulting interactions

within the system. In contrast, our control mechanism solves for the torques necessary to approach the target

pose, by explicitly taking into consideration constraints present among rigid body parts and the environment.

Because we may not want to reach the target pose immediately, parameters αi modulate the fraction of

the pose difference to be reduced in one simulation step. As such, the difference in pose is reduces with an

exponential decay (see Section 3.2.4.1). More exact control and less reliance on feedback allow us to simulate

at much lower frequencies (e.g., 120Hz). We use support from Section 3.7 to realize inverse dynamics.

5.4.1.2 Parameterization for Target Pose

Encoding of Target Pose, PCA Space. The vector ti encodes the representation of the target pose qd
i = g(ti)

for the machine state �i, where the function g(ti) maps ti into the angle representation of [qrot ,qang]. For a

given class of motions, it is reasonable to assume that g(ti) should lie within a manifold of poses likely for

that motion. Hence, we propose a PCA prior for g(ti) and represent target poses in a PCA space. In doing

so, we are motivated by the fact that the PCA representation lets us reduce the dimensionality of the control

parameter space for optimization and also implicitly accounts for important correlations between poses of

body parts that we can not observe in silhouettes.

Training PCA Spaces. We train activity-specific PCA priors from marker-based motion capture obtained

off-line. We use motion capture from a single subject performing walk, jump, twist jump, spin kick and back

handspring. For each activity, we learn a linear basis U from the corresponding training motion capture data2

using SVD and let,

g(ti) = U · ti +b. (5.12)

We then only need to store PCA coefficients ti in the parameter vector Θ. We keep enough principal com-

ponents to account for 95% of the variance in the data. The PCA representation of target poses significantly

reduces the dimensionality of our pose search space from 40 ·M (where M is the number of states in the

state-space controller) to roughly 8M for most motions. We also found this method to lead to faster and more
2We encode each angle as [sin(·),cos(·)] to avoid wrap around.
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robust convergence. We add a uniform prior on ti such that the coefficients are within ±4σ . Similarly, we

assume that the initial kinematic pose can be encoded in the same PCA space, so that q0 = U · t0 +b, and

optimize t0 instead of q0.

PCA Spaces at Testing. Using the procedure from above, we obtain a family of models {Ui,bi} where i

is over the set of activities considered as well as an activity-independent model {U0 = E40×40,b0 = 040}.
Because, in practice, we do not know the type of activity being performed at test time, we run our frame-

work with each prior and choose the resulting controller that best fits observations according to the objective

function E(y1:T). We used data from disjoint trials for training and testing.

Unlike traditional kinematic prior models, we use PCA priors in a very limited way — to parameterize

target poses in the controller so that we can capture important correlations between joint angles that otherwise

may not be observable, or well constrained, by the image observations. In doing so, we do not make use of

any temporal information present in the data and allow targets to significantly exaggerate training poses. We

found PCA priors unnecessary when optimizing from less ambiguous data (e.g., reference motion capture or

favorable videos).

5.4.1.3 Transitions

In our framework, state transitions within a state-space controller can happen based on timing (κi = T ) or

contact events (κi ∈ {L ,R}). Transitions on timing happen once the simulation time spent in the state is

≥ φi for the current state �i. Transitions on contact events happen when the associated body part becomes

supported by a contact force, as determined by the simulator.

5.5 Estimating Controllers

In order to obtain a controller that approximates the motion in the video (or in the reference motion capture),

we need to estimate both the structure of the controller appropriate for the given motion, SM (including

the number of states M and the types of transitions κi) and parameters, Θ, of the controller optimized to

fit the observations and the priors. We also need to optimize the initial pose, q0, and velocities, q̇0. This

optimization amounts to minimizing the objective function, in Equation (5.3) with respect to SM , Θ, q0 and

q̇0. Our objective function,

E(y1:T) = λlElike +λsEstability +λpEprior +λcEcontact +λtEtorque, (5.13)

contains five terms measuring the inconsistency of the simulated motion produced by the controller with the

image-based (or reference motion capture) observations and the quality of the controller itself; where λi are

weighting factors designating the overall importance of the different terms. We now describe the five error

terms.

Image-based Likelihood. The key component of the objective function is the likelihood term, Elike. In the

image case, it measures the inconsistency of the simulated motion, q1:T , with the foreground silhouettes, y1:T ,

q1:T is obtained using the simulation and control loop. Assuming that the likelihood is independent at each
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frame, given the motion of the character, we can measure the inconsistency by adding up contributions from

each frame. We determine this contribution by projecting a simulated character into the image (assuming a

known camera projection matrix) and computing the difference from image features at each pixel. We adopt

a simple silhouette likelihood [161] and define a symmetric distance between the estimated binary silhouette

mask, M̂s (see Figure 5.3 (c), green blob), at the time s, and the image binary silhouette mask, Mt (see

Figure 5.3 (c), red blob), at the time t. This approach results in the following formulation for the energy term

that we optimize as part of the overall objective:

Elike =
T

∑
t=1

Bt,t

Bt,t +Ct,t
+

At,t

At,t +Ct,t
, (5.14)

where the Ct,s, At,s and Bt,s terms count pixels in the Mt ∧M̂s, Mt ∧¬M̂s and ¬Mt ∧M̂s masks, that is,

Ct,s = ∑
(x,y)

Mt(x,y)M̂s(x,y) (5.15)

At,s = ∑
(x,y)

Mt(x,y)
[
1−M̂s(x,y)

]
(5.16)

Bt,s = ∑
(x,y)

[1−Mt(x,y)]M̂s(x,y). (5.17)

We estimate silhouettes in video using a standard background subtraction algorithm [47]. The background

model comprised the mean color image and an intensity gradient, along with a single 5D covariance matrix

(estimated over the entire image).

Motion-capture-based Likelihood. To use reference motion capture data instead of video data to estimate

controllers, we define a motion capture likelihood as a sum of squared differences between the markers

attached to the observed skeleton and the simulated motion. In particular, we attach three markers to every

body part and let

Elike =
T

∑
t=1

18

∑
j=1

3

∑
k=1
||mt, j,k− m̂t, j,k||2 (5.18)

where mt, j,k ∈ R3 is the location of the k-th marker attached to the j-th body part at the time t (computed

using forward kinematics) from the reference motion capture and m̂t, j,k ∈R3 is the location of the k-th marker

attached to the j-th part at time t of the simulated character.

Stability. The likelihood defined above will result in controllers that may fail near the end of the sequence

because the optimization has a short horizon. We make an assumption that subjects in our video sequence

end up in a stable posture. To ensure that the controller ends up in a similar, statically stable pose, we add an

additional term that measures inconsistency of the simulation for the time ∆T past the time T , where T is the

time of the last observation. We reuse the formulation of Elike in Equation (5.14) and define this term as

Estability =
T+∆T

∑
t=T+1

BT,t

BT,t +CT,t
+

AT,t

AT,t +CT,t
. (5.19)

Prior. To bias the solution towards more likely interpretations, we propose a prior over the state-space control

parameters. Generally, there are four types of parameters that we optimize:
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• representation of the target poses for the low-level motion control process, ti,

• parameters of control laws, consisting of the constraint stabilization parameters, αi, and constraint

softness parameters, si,

• balance feedback parameters, ϑi, and

• transition times, φi,.

In addition, we optimize the initial pose q0 and velocities q̇0.

For αi,si,φi,ϑi, we use uninformative uniform priors over the range of possible values. These priors are

(αi) j ∼U (0.001,0.2) (5.20)

(si) j ∼U (0.00001,0.05) (5.21)

φi ∼U (0.05,1.0) (5.22)

ϑi,1 ∼U (−1,1) (5.23)

ϑi,2 ∼U (−1,1) (5.24)

ϑi,3 ∼U (0,1), (5.25)

where j indexes DOFs within vectors. We also impose a uniform prior on ti,

(ti) j ∼U (−4σ ,4σ). (5.26)

The uniform priors over parameters are encoded using a linear penalty on the values of the parameters that

are outside the valid range. In particular, for every variable, v, with a uniform prior v∼U (a,b), we add the

following term to the prior, Eprior(Θ)

|max(0,v−b)|+ |min(0,v−a)|. (5.27)

Contact. In our experience, controllers optimized with these objectives often result in frequent contact

changes. This issue is particularly problematic for low clearance motions like walking. For example, a

walking controller may stumble slightly (see (a) in Figure 5.8) if that helps to produce a motion that is more

similar to what is observed in video or reference motion capture. This behavior hinders the ability of the

controller to be robust to perturbations in the environment. To address this issue, we assume that there is no

more than one contact state change between any two consecutive actions in the state-space controller. This

policy is motivated by the observation that contact state change yields discontinuity in the dynamics and

hence must be accompanied by a state transition. State transitions, however, may happen for other reasons

(e.g., performance style). To encode this knowledge in our objective, we define a contact state change penalty

term (see (b) in Figure 5.8 for the illustration of the effects of the term):

Econtact =
M−1

∑
i=i

c(i), (5.28)
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where

c(i) =

{
0 0 or 1 contact change between �i and �i+1

10,000 > 1 contact change between �i and �i+1

We define a contact state change as one or more body parts changing their contact state with respect to

the environment (environment ceasing to apply forces, or vice versa).

Energy Expenditure. In order to produce motions that appear smoother and do not always utilize the max-

imum power that the joint torque bounds allow, we add an additional term to the objective function that

penalizes the energy expenditure and encourages the motion to use less power,

Etorque =

√
T

∑
t=1
||τt ||2, (5.29)

where ||τt ||2 approximates the energy expenditure at the time t and τt is the joint torque. Smoothness of the

produced motion can be further encouraged by incorporating additional terms in the objective function that

attempt to minimize e.g., the sum of squared joint accelerations [151] or jerk (rate of change of acceleration)

[54].

5.5.1 Optimization

Now that we have defined our objective function, we need to optimize it with respect to SM , Θ, q0, q̇0 to

obtain the controller of interest. The parameters Θ are in general closely tied to the structure of the controller

SM . We first formulate a batch optimization over the controller parameters assuming a known and fixed

controller structure SM and then introduce an iterative optimization over the structure itself by utilizing the

batch optimization as a sub-routine.

Two-phase Optimization Process. Our incremental optimization over the structure and the parameters of

the controller is done in two phases (see Figure 5.6).

In the first phase (see Figure 5.6, (a)), we use incremental optimization from Section 5.5.1.2 to construct

a state chain with all transitions based on time. In this phase, we optimize in stages over an expanding motion

window and greedily add states to the end of the chain as long as the addition improves fit to the observations.

The obtained chain controller provides an initial interpretation of the motion, but is limited to the environment

where the capture took place, because it does not react to contact events that happen in simulation.

In the second phase (see Figure 5.6, (b)), we refine the structure of the controller using the method from

Section 5.5.1.3. We either replace transitions on time, happening close to actual contact events (as encouraged

by Equation (5.28)), with the corresponding transitions on contact, or remove states and add a loop if we find

a close-enough duplicate state that produces the same low-level motion control. These changes make the

controller more robust to external perturbances and more compact. By forcing the transitions to happen on

contact events, we are able to improve the ability of the controller to generalize, because it is able to react to

these physical events in simulation, even if they happen at different (unexpected) time instants. Adding loops

allows us to recover cyclic controllers for motions that are inherently cyclic (e.g., walking), such that they

can be simulated beyond the optimization horizon.



189

0.3 s 0.3 s 0.2 s 0.3 s 0.2 s 

contact 

 
left foot 

contact 

 
right foot 

contact 

 
right foot 

0.3 s 0.2 s 

(a) 

(b) 

Figure 5.6: Optimization in Two Phases. Illustration of the optimization of fast walk in two phases. In the
first phase (a), greedy incremental optimization produces a state chain with all transition based on time such
that the input video (top) is reproduced. This controller provides a motion reconstruction of the observed
video in the original environment. In the second phase (b), the structure of the state chain is refined and the
controller re-optimized, forcing transitions to happen on contact and to recover cyclicity, where appropriate.

Covariance Matrix Adaptation. For optimizations of parameters with respect to a particular structure,

we use gradient-free Covariance Matrix Adaptation (CMA) [67]. CMA is an iterative genetic optimization

algorithm that maintains a Gaussian distribution over parameter vectors. The Gaussian is initialized with

a mean, µ , encoding initial parameters, and diagonal spherical covariance matrix with variance along each

dimension equal to σ2. CMA proceeds by: (1) sampling a set of random samples from this Gaussian, (2)

evaluating the objective E(q1:T) for each of those samples (this step involves simulation), and (3) producing a

new Gaussian based on the most promising samples and the mean. The number of samples to be evaluated and

to be used for the new mean is chosen automatically by the algorithm based on the problem dimensionality.

5.5.1.1 Batch Optimization of Controller Parameters

Given a state-space controller structure, SM , batch optimization infers the controller parameters Θ

Θ = [(t1,α1,s1,ϑ1),(t2,α2,s2,ϑ2), . . . ,(tM,αM,sM,ϑM),φ1,φ2, . . .] (5.30)

and the initial pose q0 and velocity q̇0 of the character by minimizing the objective function E(y1:T). The

optimization procedure (integrated with CMA) is illustrated in Algorithm 4.
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Algorithm 4 : Controller batch optimization using CMA [Θ,q0, q̇0,E] = BatchOp (SM,q0,Y,U,b,Θ, q̇0)

Input: State-space controller structure (SM); initial pose (q0); PCA prior (U, b); observations / image fea-
tures (Y = {y0,y1, . . . ,yT})

Optional Input: Controller parameters (Θ); initial velocity (q̇0);
Output: Controller parameters (Θ); initial pose (q0); initial velocity (q̇0) objective value (E)

1: Project initial pose onto PCA space: t0 := U−1 · (q0−b)
2: if q̇0 = /0, Θ = /0 then
3: Initialize initial velocity: q̇0 := 0
4: Initialize controller parameters (Θ):

ti := t0,αi := replicate(0.1),si := replicate(0.0001),ϑi := [0,0,0],φi := 0.25 ∀i ∈ [1,M]
5: end if
6: Initialize variance: Σ := Eσ

7: Initialize mean: µ := [Θ, t0, q̇0]
T

8: for i := 1→ NIT ERAT IONS do
9: for j := 1→ NPOPULAT ION do

10: Sample controller parameters and initial pose:
[Θ( j), t( j)

0 , q̇( j)
0 ]∼N (µ,Σ)

11: Reconstruct initial pose:
q( j)

0 := Ut( j)
0 +b

12: for t := 1→ T +∆T do
13: Control and simulation:[

q( j)
t

q̇( j)
t

]
:= f

([
q( j)

t−1

q̇( j)
t−1

]
,g

([
q( j)

t−1

q̇( j)
t−1

]
,Θ( j)

))
14: end for
15: Compute objective:

E( j) := λlElike +λsEstability +λpEprior +λcEcontact +λtEtorque
16: end for
17: [µ,Σ] := CMA update (µ,Σ,{Θ( j), t( j)

0 , q̇( j)
0 ,E( j)})

18: end for
19: Let j∗ := argmin jE

( j)

20: return Θ( j∗), q( j∗)
0 , q̇( j∗)

0 , E( j∗)

Batch optimization is useful when we have a reasonable guess for the controller structure. Batch opti-

mization of cyclic controllers is particularly beneficial because weak observations for one motion cycle can

be reinforced by evidence from other cycles, making the optimizations less sensitive to observation noise and

less prone to overfitting to local observations. We make use of this fact during controller structure refinement

in Section 5.5.1.3.

Reliance of Θ on the controller structure SM suggests an approach where we enumerate the controller

structures, estimate parameters in a batch, as above, and choose the best structure based on the overall ob-

jective value. Unfortunately, such an enumeration strategy is impractical because the number of possible

controllers is exponential in M and each structure may yield many controller parameters (approximately

50 · (M+1) continuous variables).

For example, see Figure 5.13 for an illustration of a complicated gymnastics motion that we estimate to

require M = 20 states. In addition, without a good initialization, in our experience, optimization of the high-

dimensional parameter vector is difficult and often gets stuck in local optima. To alleviate these problems,
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Algorithm 5 : Incremental optimization of chain controller with transitions based on time
[SM,Θ,q0, q̇0,E] = IncremOp (q0,Y,U,b)
Input: Initial pose (q0); PCA prior (U, b); observations / image features (Y = {y0,y1, . . . ,yT})
Output: State-space controller structure (SM); controller parameters (Θ); initial pose (q0); initial velocity

(q̇0); objective value (E)
1: Number of observations to add per stage:

NSTAGES := T/Ts
2: Initialize controller structure:

M := 1 S1 := {⊕ −→�1}
3: Optimize parameters:

[Θ,q0, q̇0,E] := BatchOp (S1,q0,y1:Ts ,U,b)
4: for i := 2→ NSTAGES do
5: Re-optimize parameters:

[Θ,q0, q̇0,E] := BatchOp (SM,q0,y1:i·Ts ,U,b,Θ, q̇0)
6: Try to add a state:

S +
M := {SM

κM=T−→ �M+1}
[Θ+,q+

0 , q̇
+
0 ,E

+] := BatchOp (S +
M ,q0,y1:i·Ts ,U,b,Θ, q̇0)

7: if E+ < E then
8: SM+1 := S +

M M = M+1
9: [Θ,q0, q̇0,E] := [Θ+,q+

0 , q̇
+
0 ,E

+]
10: end if
11: end for

we propose an approach for estimating the controller structure incrementally that also gives us an ability to

have better initializations for optimization of control parameters.

5.5.1.2 Incremental Optimization of Controller Structure

Our key observation is that we can optimize controllers incrementally, such that the controller structure

can be estimated locally and simultaneously with the estimation of control parameters. Our approach greedily

selects the structure and the parameters of the controller as new observations are added (see Figure 5.7).

The basic idea is to divide the hard high-dimensional batch optimization over the entire sequence into a

number of easier lower-dimensional optimization problems over an expanding motion window. In doing

so, we are motivated by the fact that (1) when the optimization window is short, we can assume a fixed

controller structure and optimize only control parameters, and (2) we can optimize longer windows by reusing

optimization results from shorter windows. In particular, optimization results over a current window can

provide a good initialization for optimizations over the expanded window.

To this end, we start with a simple generic initial controller with one state and incrementally update this

initial controller in order to construct a state chain that eventually explains the entire motion observed in the

video. We realize this optimization in stages. At each stage, we expand the current window by Ts frames and

re-optimize the current controller to fit the frames in the expanded window, adding new states to the chain as

is necessary (see Algorithm 5).

Optimization in Stages. The incremental optimization proceeds in stages. At the first stage, the first

Ts frames of the video sequence (the initial motion window) are optimized using the batch optimization
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algorithm (see Algorithm 5, lines 2-3), assuming a fixed initial controller structure with only one state,

S1 = {⊕ −→ �1} to produce an initial controller. At all later stages, the current motion window is ex-

panded by the subsequent Ts frames from the video sequence (or reference motion capture) and the current

controller is re-optimized to fit this new window until the entire motion is processed.

In fitting the controller to the expanded window at a stage, we have two main options for the update

of the controller. We can either attempt to explain the new frames with a controller that has an unchanged

structure, assuming the new frames are a continuation of the last action in the chain, or we can change the

controller structure. For example, the new frames may constitute a new action and so a new state may need to

be added to the end of the chain. Because we do not know which hypothesis is correct, we try them all. More

generally, we re-optimize the current controller using a number of local optimizations. The purpose of the

local optimizations is to propose possible updates to the current controller structure (mainly the addition of a

state to the current chain), test the validity of the updates by re-optimizing the current controller with the new

structures and choose the new controller for the next stage based on its objective value after re-optimization.

In particular, we select the controller that produces the lowest value for E. See Figure 5.7 for an illustration

of the process.

Re-optimizations, Multiple Seeds. To avoid the optimization of longer and longer chains and to make the

optimizations efficient, each of the local optimizations only optimizes the last one or two states in the con-

troller (this approximation gives us a fixed compute time regardless of the number of states in the controller

structure). Note, this approximation is not illustrated in Algorithm 5 due to the complexity of notation it

would entail (but it is illustrated in Figure 5.7).

The ability of the local optimizations to re-optimize past states in the chain is critical. A process that

proceeds strictly incrementally and only optimizes the last state can easily overfit to images in one stage,

get stuck and fail to explain future images in later stages. To alleviate this problem, we re-optimize previous

states in the chain given images in the expanded window. In addition, we found it effective to run multiple

BatchOp optimizations with different seeds for stochastic sampling in CMA when executing Algorithm 5,

because optimizations by CMA, in our case, do not find a global optimum.

As such, for every instance of BatchOp in Algorithm 5, we run six BatchOp optimizations: optimizing

the last one or two states, each with three different seeds, and choose the best. Note, the number of recovered

states in the state chain and the performance of the incremental optimization depends on the number of frames

added in the optimization window in one optimization stage. We analyze this dependency in Section 5.6.3.

5.5.1.3 Controller Structure Refinement

The incremental optimization described in the previous section allows us to fit control to video or refer-

ence motion capture. The chain structure of the controller and transitions based on timing make the controller

well behaved and easier to optimize. However, this control structure may not be optimal in terms of stability

or compactness. It may also hinder the ability of the controller to generalize because the controller is not able

to respond to physical events that happen in simulation. Therefore, we propose an additional refinement on

the controller structure.
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Figure 5.7: Incremental Optimization. Illustration of the incremental construction of the state chain. At
the first stage, an initial controller consisting of a single state is defined. Parameters of this controller are
optimized to explain the initial optimization window at the first stage with the first Ts frames of the input
sequence. At all later stages, the optimization window is expanded by Ts frames, local changes are proposed
to the structure of the current controller and parameters of the new controller structures are re-optimized.
With our current implementation, the structure can only change in one way: we either add a new state to the
end of the chain at this stage or we do not. Independently of whether we add the state, we also choose how
many past states in the chain we are going to re-optimize during the update: either one or two. The new
controller with the lowest objective value (denoted with the green check mark) is chosen to be current for the
next stage. Each new controller structure is re-optimized three times to decrease the risk of getting stuck in a
local minima.

We make the following observation: there exists an equivalence class of controllers all of which can sim-

ulate the same motion. For example, a one-and-a-half cycle walking controller can be represented in at least

three different ways:

(1) using a chain controller with transitions base on timing:

S6 = {⊕ −→�1
κ1=T−→ �2

κ2=T−→ �3
κ3=T−→ �4

κ4=T−→ �5
κ5=T−→ �6}

(2) using a chain controller with some transitions on contact:

S
′

6 = {⊕ −→�1
κ1=L−→ �2

κ2=T−→ �3
κ3=R−→ �4

κ4=T−→ �5
κ5=L−→ �6} , or
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Algorithm 6 : Complete optimization with structure refinement [SM,Θ,q0, q̇0,E] = IncremPlusRefinement
(q0,Y,U,b)
Input: Initial pose (q0); PCA prior (U, b); observations / image features (Y = {y0,y1, . . . ,yT})
Output: State-space controller structure (SM); controller parameters (Θ); initial pose (q0); initial velocity

(q̇0); objective value (E)
1: Incremental optimization:

[SM,Θ,q0, q̇0,E] := IncremOp (q0,Y,U,b)
2: Structure transformation (for contact transitions):

S
′

M := T⊥(SM)

[Θ
′
,q′0, q̇

′
0,E

′
] := BatchOp (S

′
M,q0,Y,U,b,Θ, q̇0)

3: if E
′
< E · (1+δ ) then

4: [SM,Θ,q0, q̇0,E] := [S
′

M,Θ
′
,q′0, q̇

′
0,E

′
]

5: end if
6: Structure transformation (for cyclicity):

S
′

M := T∞(SM)

[Θ
′
,q′0, q̇

′
0,E

′
] := BatchOp (S

′
M,q0,Y,U,b,Θ, q̇0)

7: if E
′
< E · (1+δ ) then

8: [SM,Θ,q0, q̇0,E] := [S
′

M,Θ
′
,q′0, q̇

′
0,E

′
]

9: end if
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Figure 5.8: Foot Contact Pattern. Illustration of foot contact patterns for different optimizations of fast
walk in our data set. The first row (a) shows contact pattern for optimizations from reference motion capture
with the Econtact term disabled. Blue bars indicate when the character is supported by the left foot. Red bars
indicate support by the right foot. Transitions between states are highlighted by purple bars. The second row
(b) illustrates a pattern for an optimization with the Econtact term enabled before the refinement of the structure
takes place. During the refinement, contact events that happen within 0.2 seconds of the transition (windows
highlighted in yellow) are forced to happen on the corresponding contact event. The contact pattern for the
refined structure and the reoptimized controller is illustrated in the bottom row (c).
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Figure 5.9: Refinement of Controller Structure. Illustration of the refinement of the controller structure for
fast walk. The initial chain structure SM in (a) is first transformed in order to replace transitions based on
time with those on contact, if an actual contact event happens close to the time of the transition. The obtained
controller with the structure T⊥(SM) in (b) is more robust to external disturbances because the controller can
react to explicitly to change of foot contact. This controller is further transformed in order to add a loop and
remove duplicate states. The cyclic controller with the structure T∞(T⊥(SM)) in (c) is now able to produce
longer cyclic motions. See Figure 5.10 for the illustration of reconstruction results for the fast walk sequence
with the cyclic controller obtained by the refinement.

(3) using a cyclic controller:

S4 = {⊕ −→�1
κ1=L−→ �2

κ2=T−→ �3
κ3=R−→ �4

κ4=T−→ �1} .

All of these controllers produce exactly the same simulation results with the same low-level motion con-

trol for actions (assuming stable gait and that transitions based on time in S6 are chosen coincident with

contact events in S
′

6 and S4). However, S
′

6 and S4 are more robust and S4 is more compact in terms of

representation; so in practice we would likely prefer S4 over the alternatives.

In the chain controllers obtained in the previous section, we often see that transitions based on time

encoded in the control structure coincide with contact events (within a few frames). In fact, the contact term

in our objective function from Equation (5.28) implicitly helps to enforce such transitions. We take advantage

of this observation and propose two transformation functions that can take the chain controllers and transform

their structures to make them more robust and compact as above (see Algorithm 6 and Figure 5.9).

Transitions on Contact. We define a transformation S
′

M =T⊥(SM) that replaces transitions based on timing

with appropriate transitions on contact in SM if the timing transition is within 0.2 s of the contact (and there

is only one contact change within the 0.2 s window). Because timing events often do not happen exactly on

contact, but close to it (hence, the time threshold), we also re-optimize parameters using Algorithm 4 with

using the Θ obtained in Section 5.5.1.2 as the initial guess. See Figure 5.9 (b) and Figure 5.8 (b) and (c) for

illustrations.

Adding a Loop. Similarly, we define a transformation that greedily looks for cyclicity S
′

M = T∞(SM) by

comparing the type of transition, target pose and control and balance parameters to previous states. We allow

to add a loop from �i to a previous state � j, if the states encode almost identical actions, such that ai ≈ a j.

Again, after the transformation is applied, the parameters are re-optimized with a good initial guess to account

for minor misalignment. See Figure 5.9 (c).
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The new transformed controllers are chosen instead of the simple chain controller if the resulting objective

value is within δ = 15% of the original. This use of δ approximates the minimum description length criterion

that allows us to trade off fit to the data for the compactness of representation. The full algorithm is outlined

in Algorithm 6.

Figure 5.10: Fast Walk from Video. Fast walk input video and likelihoods of the reconstructed motion
simulated by the cyclic controller estimated from the video.
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5.6 Experiments

We have collected a dataset consisting of motions with synchronized video and motion capture data. Motion

capture data was recorded at 120Hz and video at 60Hz using a progressive scan 1080P camera. To speed up

the likelihood computations, we sub-sample observed silhouette images to 160×903. Motions in this dataset

include: jump, twist jump, spin kick, back handspring, cartwheel and fast walk. To enable comparison with

previous work, we also make use of the 30Hz jump sequence from VideoMocap [201] in our experiments.

For sequences where calibration is unavailable, we solve for calibration using an annotation of joint locations

in the first frame, assuming a fixed skeleton for the character. While the appearance of the subject in all

these sequences is relatively simple, we want to stress that we make no use of this aspect in our likelihood

or optimization and only use generic foreground silhouettes as observations. All PCA models were learned

from a single adult male subject4, but are applied to other subjects in our test set (e.g., jump from [201]).

We have estimated controllers from motion capture and video. We test performance of the recovered

controllers in their ability to reproduce observed motions as well as to synthesize new motions in novel en-

vironments and under the effect of external disturbances. In all our experiments, we only rely on manual

specification of a rough estimate of the initial pose for the character and, for the video sequences, corre-

sponding camera calibration information. We use the same generic model of the human body with the same

mass properties in all cases. We employ a marker-based error metric from [161] to evaluate accuracy of our

pose reconstructions against the ground truth, and report Euclidean joint position distance averaged across

joints and frames in cm. We first show results using reference motion capture as an input and then illustrate

our algorithm on monocular videos.

5.6.1 Controller Optimization from Reference Motion Capture

We compare performance of the batch (Batch) method, that optimizes parameters given a known controller

structure SM (but no initialization except for the initial pose), to the incremental (Inc) method and the incre-

mental method with refinement (Refined) that recover the structure automatically (see Figure 5.11). Despite

the fact that the batch method contains more information (controller structure), our incremental method is

substantially more accurate and the refinement step further improves the performance. Notice that for the

back handspring, we were unable to run the batch method, as it required optimization over a prohibitive num-

ber of states and never converged. Furthermore, for a complicated motion, knowing or guessing the controller

structure a priori is difficult. Our incremental method can estimate this structure automatically. The structure

of the resulting controllers, after refinement, are illustrated in Figure 5.11 (the last column). As a result of

our optimization, we automatically build controllers with varying numbers of states (from 4 to 20) and the

controllers can be both linear or cyclic (as in fast walk).

3Subsampling does not degrade accuracy of the reconstructions given we use a simplistic shape model for the character, where we
model hypothesized silhouettes as compositions of rigid boxes. We obtain as good results for optimizations from full resolution
images, except that such optimizations are slower. We expect that high resolution observations would be useful, and improve
reconstruction accuracy substantially, if we replaced the box model with a more faithful deformable model of the human shape.

4We took motion capture from the subject performing fast walk, jump, twist jump and spin kick to train our PCA models. For those
sequences, we used data from disjoint trials for training and testing.
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We obtain controllers that represent the motion well, even in the case of a long and complex gymnastic

sequence in Figure 5.13 (top and middle). In some cases, the quantitative errors are higher; in our experi-

ence these errors are due to the sparse nature of our controller (that inadvertently approximates the motion)

and timing. Despite quantitative differences, in all cases the results are dynamically and visually similar

(see accompanying video at our project website at http://brown-robotics.org/wp/projects/

current/video-based-3d-motion-capture-through-biped-control/). We are able to

get a more accurate performance by reducing the length of our stages, where the solution in the limit approx-

imates inverse dynamics. However, controllers obtained this way are less responsive and are unusable for

video because they severely overfit.

Robustness to Changes in Environment. We test robustness of the recovered controllers by altering the

environment, as shown in Figure 5.13 (bottom). Note that despite the dynamic environment and different

geometry, the character is able to adapt and perform the desired motion. Further environment alteration tests

are illustrated in the next section, where we recover controllers from video.

Robustness to Pushes. We quantify robustness of our controllers to external disturbances with push experi-

ments; after [198, 98]. Because we have a different model for actuation and dynamics, it is difficult to match

conditions to [198, 98] exactly. For this experiment, we choose a cyclic walking controller that results from

optimization with reference motion capture as an input. Despite the fact that we only optimize the controller

to match roughly 1.5 cycles of the motion, the controller is able to produce a mostly stable gait (it some-

times stumbles after 7 to 10 walk cycles, but always recovers afterwards). We perform a test where we apply

a push force to the center of mass of the torso for 0.4seconds once every 4seconds. The controller passes

the test if the character still walks after 40seconds. Our controller can resists pushes of up to 210N, 294N,

273N and 294N from front, rear, right and left sides respectively when we use relatively large joint torque

bounds. When the controller has 75% of the joint torque limits (just enough for the controller to walk without

substantially altering the gait), the character survives pushes of up to 42N, 67N, 33N and 42N respectively.

5.6.2 Controller Optimization from Single-view Video

Qualitative Performance. We have evaluated the ability of our method to reconstruct observed motions

from single-view video in Figure 5.10, Figure 5.16, Figure 5.18, Figure 5.14. See the accompanying video

for additional visualizations.

Quantitative Performance. We report quantitative performance for controller optimization from single-

view video in Figure 5.12. The reconstruction error is on average only 80% higher than that of optimizations

from motion capture, despite a substantially more complex problem and optimization. We see this result as

very encouraging. We also see a similar trend between batch optimizations and incremental optimizations,

where the batch optimizations perform considerably worse. For the batch optimizations, we report the best

results out of 15 independent optimization runs. In many cases, other runs produced much inferior results.

Our incremental method is much more repeatable. Unlike optimizations from reference motion capture, we

see less of a benefit for structure refinement in reducing quantitative error when optimizing from video. The

http://brown-robotics.org/wp/projects/current/video-based-3d-motion-capture-through-biped-control/
http://brown-robotics.org/wp/projects/current/video-based-3d-motion-capture-through-biped-control/
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Motion (mocap) Frames Batch Inc Refined Structure

Fast walk 207 4.8 cm 2.1 cm 2.1 cm ⊕−→�1
κ1=R−→ �2

κ2=T−→ �3
κ3=L−→ �4

κ4=T−→ �5
κ5=R−→ �2

Jump 241 9.2 cm 5.6 cm 5.0 cm ⊕−→�1
κ1=T−→ �2

κ2=T−→ �3
κ3=T−→ �4

κ4=T−→ �5

Twist jump 226 7.9 cm 5.1 cm 5.1 cm ⊕−→�1
κ1=T−→ �2

κ2=T−→ �3
κ3=T−→ �4

κ4=L−→ �5
κ5=T−→ �6

Spin kick 131 13.5 cm 8.9 cm 8.1 cm ⊕−→�1
κ1=T−→ �2

κ2=T−→ �3
κ3=T−→ �4

Cartwheel 175 25.4 cm 10.7 cm 10.7 cm ⊕−→�1
κ1=T−→ �2

κ2=T−→ �3
κ3=R−→ �4

κ4=T−→ �5
κ5=L−→ �6

κ6=T−→ �7

Back handspring 775 — 4.9 cm 4.9 cm ⊕−→�1
κ1=T−→ �2

κ2=T−→ . . .
κ18=T−→ �19

κ19=T−→ �20

Figure 5.11: Controller Optimization from Reference Motion Capture. Incremental optimization per-
forms considerably better than batch optimization, and refinement step further improves the fit as well as
results in a more robust controller structure.

objective function is multimodal in this case, with the modes far apart (a well known issue in the marker-less

motion capture literature). While the incremental optimization is very effective in finding good local optima,

escaping those optima is difficult through refinement.

Robustness to Changes in Environment. To illustrate the robustness of our controllers, we made a number

of alterations to the environment.

Jump: For a jump (see Figure 5.16, top), we changed the geometry of the ground plane, attached 3.5kg

skis to the feet and dialed down the coefficient of friction by a factor of 2,000; these alterations emulate a

very slippery skiing slope. The results of such alterations can be seen in Figure 5.1, Figure 5.17 (top) and the

accompanying video. Notice that the character is able to perform the desired motion while dynamically ad-

justing to the changed environment and maintaining balance at the end. Similarly, we can make the character

jump from a tilted plane and have it land on the level plane (see (bottom) in Figure 5.17). Despite the initial

perturbation, the character is still able to land and counteract the impact.

Twist jump: In this case, we give the character a 13kg mass to carry with its right arm as it performs the

jump. This modification alters the upper body motion throughout the sequence. At the end of the simulation

the character leans forward to counter-balance the weight in the hand, which needs to be held behind the torso

according to the last controller state. These results can be seen in the video.

Comparison to Wei and Chai [201]. We also compare the performance of our method to the one described

in [201]. The two methods have a similar goal, but estimate the motion in very different ways. In [201] six

keyframe annotations, specification of the contact states and four additional 2D refinement constraints have to

be manually specified for the tested jump sequence. In contrast, our approach is fully automatic and requires

only specification of a rough initial pose at the first frame; the contact states are recovered implicitly through

optimization (see Figure 5.15). While we are not able to recover the hand motion (in part because the jumps

in our PCA model are quite different from the one in video), we are able to generate a controller capable

of replaying the motion with all the intricacies of the dynamics. Furthermore, because we are recovering a

controller, we are able to put the character in a different environment (on a trampoline) and see the motion

under physical and, in this case, dynamic perturbations (Figure 5.14). Our fully automatic method achieves

average reconstruction errors as low as 4.2cm which is comparable to the average error of 4.5cm reported in

[201].
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Motion (video) Frames Batch Inc Refined
Jump 241 9.5 cm 6.8 cm 6.8 cm
Twist jump 226 11.9 cm 9.6 cm 9.6 cm
Back handspring 154 33.3 cm 17.6 cm 17.5 cm
Fast walk 207 6.7 cm 4.2 cm 4.2 cm
VideoMocap jump 91 N/A N/A N/A

Figure 5.12: Controller Optimization from Monocular Video. Incremental optimization performs con-
siderably better than batch optimization.

Figure 5.13: Motion Capture Result. Input reference motion capture (top), reconstructed motion simulated
with our controller (middle), simulated motion in a new environment (bottom).

5.6.3 Number of Stages and States

The performance of the controller and the incremental optimization in Section 5.5.1.2 depend on the number

of stages NSTAGES in the optimization. In this section, we analyze the behavior of the optimization as a

function of NSTAGES = T/Ts and Ts. Note, at each stage of the optimization, at most one new state is added

to the end of the current state chain and the state is added greedily as long as the addition improves the fit.

Consequently, the length of the chain can vary between 1 and NSTAGES, where NSTAGES refers to the number

of stages in the optimization. Besides this theoretical bound, we demonstrate the actual numbers of recovered

states as well as the reconstruction errors that we obtain with our optimization algorithm for optimizations

with different values of Ts. We perform these experiments on fast walking from our data set, because walking

is sensitive to the variation of Ts due to frequent changes of contact. We show our results in Figure 5.19.

Optimizations from Single-view Video. When performing optimizations from video, we found shorter

stages improve reconstruction accuracy. However, very short stages tend to produce controllers that overfit,

such that only a few frames from the video contribute to the optimization of a single state in the chain.

Optimizing states in this case is difficult, because our image observations are noisy and only a few frames

can be used to constrain the estimation. Furthermore, we also can not perceive the contact state of the

body reliably and detect when contact events happen. Consequently, a character performing a walk may

end up stumbling and skipping instead of locomoting properly. This behavior of optimizations matches our

initial expectations, because controller capture approaches the method from Chapter 4 when stages are very
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Figure 5.14: Video Result: Jump from VideoMocap. Input jump sequence from VideoMocap (top), recon-
structed motion simulated by the controller estimated from the video (middle), new motion simulated in a
modified environment (bottom).

short, replacing the sparse parameterization of the desired motion with a high-dimensional dense sequence of

desired poses with a desired pose specified for every frame in the video. With that said, our key motivation

for controller capture is to exploit longer stages and sparse motion parameterizations so that information from

many frames can reinforce optimizations of states. Note that too long stages, on the other hand, hinder the

ability of the controller and optimizer to fit the motion. The representation of the desired motion for control

is either unable to represent the motion at a sufficient level of detail, in that case, or the optimizer fails to find

a control strategy to reproduce motion in such a long window.

Based on our experience, we set the number of stages to NSTAGES = T/Ts such that we add Ts = 40 new

frames to the optimization window at each stage. This decision corresponds to expanding the optimization

window by roughly 0.3s of video data. We summarize this discussion and analyze the performance of the

optimization process as a function of T in Figure 5.19 (left).

Optimizations from Reference Motion Capture. Optimizations from reference motion capture data are

slightly different (see Figure 5.19, right). With the full observability of the state and no observation ambi-

guities, which the reference data ensures, optimizations with shorter stages do not have problems with local

optima and in the limit approach inverse dynamics. However, short stages may produce controllers that are

less responsive such that they can not much deviate from the desired motion. This aspect may limit the ability

of the controllers to generalize. Note that motion capture optimizations self-regularize the numbers of used

states, keeping the numbers low. We hypothesize that this behavior is caused by the fact that each state in the

chain induces a change of body actuation, which introduces discontinuity in control, generated joint torques

and the body momentum. However, our energy term from Equation (5.29) in the optimization objective

penalizes motions that are not smooth, suggesting new states should only be added when necessary. Note

that while we could use the minimum description length criterion to explicitly request a tradeoff between the

compactness of the representation of the controller and the accuracy of the fit, our current implementation

does not employ this technique and rather relies on the smoothness property. We use T = 20 for motion

capture optimizations. See Figure 5.19 (right) for an illustration.
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Figure 5.15: Video Result: Recovered Motion and Contact Forces for Jump from VideoMocap. Illus-
tration of the recovered motion and contact forces on the jump sequence from VideoMocap. Note that our
method, unlike VideoMocap [201], recovers the poses, contact forces and foot contact automatically without
user supervision and requires only specification of a rough estimate of the initial pose. See Figure 5.14 for
the input video.

5.6.4 Computation Time

Incremental optimization for 200 frames of motion capture data takes about 2.75 hours; the refinement pro-

cedure takes 15 minutes (single eight-core machine with a 2.8GHz Core i7 CPU and 4GB of RAM) —

approximately 3 hours total. Video optimizations take 40% longer due to use of more expensive likelihoods.

5.7 Discussion

We present a novel approach for capturing bipedal controllers directly from single-view video and in the

process of reconstructing the human motion from a single video stream. In doing so we simultaneously

tackle two very challenging problems: bipedal control from noisy data and marker-less motion capture. We

believe that by formulating the problem in such a way as to solve the two problems simultaneously, we are

better leveraging the information present in the video of human motion and thereby simplifying the marker-

less tracking problem. We are able to estimate controllers for a variety of complex and highly dynamic

motions. Controllers from both sources of data are robust and can be used in new environments with novel

terrain and dynamic objects.

While we are able to estimate controllers that are capable of generating motion, for a variety of human
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Figure 5.16: Video Result: Jump (Pose Reconstruction). Input jump sequence (top), reconstructed motion
simulated by the controller estimated from the video as rendered from the camera view (middle), recon-
structed motion rendered from a different view (bottom). See Figure 5.17 for the adaptations of the recovered
motion to new environments.

Figure 5.17: Video Result: Jump (Adaptation). Adaptations of the recovered jump motion from Figure 5.16
to two new environments: a jump on a tilted slippery surface (top), and a jump from a tilted ground (bottom).
Notice the difference in the time durations of the adapted motions.

behaviors, some of the subtleties in the motion are not accurately reconstructed; the motions tend to look

robotic and overpowered. We believe there are three main sources of errors that are contributing to these

artifacts. First, the end effectors (feet and hands) are hard to observe in video and are not well constrained

by the image likelihood model. From a sagittal view, it is also difficult to disambiguate single stance from

double stance. Second, parameters found by CMA are not guaranteed to be optimal, because we are solving a

very difficult high-dimensional optimization problem. Third, we believe the overpowered balancing behavior

observed is due to relatively high joint torque bounds — our character by design has very strong joints,

including ankles and knees. Higher bounds make the optimization easier. Improvements could probably be

achieved for locomotion and other highly dynamic behaviors by having more sophisticated objectives that

include biomechanical constraints, as in [199]; we plan to explore these objectives in the future.

At present, we loosely limit joint torques. Consequently, some of the strategies adopted by the character

to accomplish a task require unnaturally strong muscles at, for example, the ankle joint. And finally, our
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Figure 5.18: Video Result: Back Handspring. Input sequence (top), reconstructed motion simulated by
the controller estimated from the video (bottom). Despite this reconstruction is obtained from only a single
camera view and the image observations are low-quality and blurry, we are able to capture the essence of the
motion.
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Figure 5.19: Performance of Incremental Optimization. Illustrated is the performance of incremental op-
timization on fast walk when optimized using the incremental approach without refinement. Reconstruction
errors and the numbers of states in the chains are reported for optimizations from single-view video on the left
and from reference motion capture on the right as a function of number of frames added in the optimization
window in one stage.
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simple model of a block character may be hindering the quality of the motion that we can obtain from the

video. For example, foot contacts with the ground may happen at slightly misplaced locations because the

model’s feet do not match the much smaller feet of the subject.

While we took a puristic approach of only using single-view video, in practice multiple views (or Xbox’s

Kinect data) will undoubtedly simplify the problem and lead to an improved ability to capture 3D motion.

While we do not utilize user-in-the-loop constraints, as we opted for a completely automatic method, those

can easily be added to further refine the motions as was done by Wei and Chai [201]. Preliminary experiments

show that we can indeed achieve better performance by having the user click on the joint locations in the

image. Our experiments with motion capture data (perfect 3D data) further demonstrate this point.

The PCA priors that we introduced for representing the target poses for the state proved to be quite useful.

However, they are limited to the motions we trained them on and not all stylistic variations can be captured

by a discrete set of such learned models. In the future, we hope to explore refinement schemes where we can

estimate controllers with the motion prior and then perhaps refine them by removing the prior term from the

objective.



Chapter 6

Summary and Discussion

In this chapter, we summarize our formulation for vision-based motion capture and highlight the most im-

portant contributions. We also discuss the current challenges and provide more broad future directions for

general research that can be based on this work.

6.1 Summary

In this thesis, we have proposed a new paradigm for vision-based human motion capture. This paradigm

goes beyond traditional capture of kinematic poses and extends pose capture in a couple of aspects. First, it

provides guarantees of physical plausibility for the motion reconstructions, where physical plausibility means

that the reconstructions can be directly reproduced in simulations by applying actuation forces on the model

of the person. In practical terms, physical plausibility implies that the estimated motions are smooth and can

be realized by a humanoid character without falling, sliding or having to fly. Second, the paradigm provides

mechanisms for adaptation of the captured motions to new environments. Adaptability allows to ask “what

if” questions and hypothesize how the estimated motions could look like if they were captured in different

environments or with different actors. We achieve these benefits by estimating controllers for simulated

physics-based characters from (potentially monocular) images.

Controllers encode motions implicitly, based on their “underlying physical principles” and reconstruct the

observed motions through simulation. On one hand, simulations with controllers in the original environments

provide physically plausible interpretations of the original motions. On the other, contact feedback within

the controllers allows application of the captured principles in modified environments, providing an ability

to adapt the motions to external events, perturbations, and different characters. Both these benefits improve

current applications for vision-based motion capture (e.g., more accurate reconstruction without artifacts)

as well as open possibilities for future applications (e.g., direct control of physics-based characters in video

games, building of motion libraries for character skills, etc.).

Formulation. We have formulated motion estimation as an optimization over controllers such that motions

in the video are reproduced. In following our approach, we simultaneously address two difficult problems:

206
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controller estimation from noisy image data and marker-less motion capture. We believe that by integrating

these problems together, we are better leveraging the information present in the video of human motion and

thereby simplifying the marker-less motion capture problem. We are able to estimate controllers for a variety

of complex and highly dynamic motions using this approach.

In our formulation, we assume the observed motion is structured and can be generated by physical simu-

lation of a character model with actuation forces produced by a controller. Our approach to motion estimation

takes as an input a sequence of images from one or more calibrated cameras and estimates a controller for

the observed motion. This controller implicitly encodes the underlying structure of the motion and is esti-

mated such that the motion synthesized by the controller explains pose evidence in the images. We currently

use rigid body approximations of human dynamics and methods for humanoid control to make our approach

tractable.

We have applied this approach to simulated physics-based characters with two kinds of controller, trajec-

tory tracking controllers and state-space controllers. These controllers differ in the ways they parameterize

desired motion for control, which results in different controller optimization problems, different challenges

and different abilities of the obtained controllers to generalize.

Dense Motion Parameterization: Trajectory-tracking Control. We first explored the trajectory tracking

controller model that parameterizes the desired motion as a sequence of desired poses specified for every

frame in the video. We use a Particle Filter implementation to recover the desired poses in this sequence

incrementally from image observations and then simulate the character model towards them. We can recover

the desired pose sequence incrementally and produce pose estimates that do not suffer from common artifacts

such as excessive jitter, out-of-plane rotations or foot skate. With that said, the process is prone to overfitting

and results in a high-dimensional dense representation of the desired motion for control that requires strong

image likelihoods for inference.

Because a desired pose for the character has to be estimated for every frame, we employ an exemplar-

based pose prior that biases desired pose trajectories to motions observed during training in order to make

the inference easier. The method can be seen as a filter built on top of any statistical motion model (kernel

regression, in our case) that corrects pose predictions from the statistical model using simulation so that the

predictions are physically plausible. Despite this prior, our likelihoods and inference are not able to estimate

desired poses accurately enough such that we could generate the motion interpretation by raw simulation with

the estimated controller. Although the individual predictions made by simulation in the incremental Particle

Filter (PF) are guaranteed to be physically plausible in our method, we still need to add noise to the poses

generated by simulation in order to achieve a better fit to observations and avoid overfitting by the PF. These

adjustments translate and rotate the body and introduce visual artifacts. By adding the noise, we also lose the

ability to generalize the captured motion to new situations.

Sparse Motion Parameterization: State-space Control. In order to allow motion reconstructions that are

raw results of physical simulations, we next replace our dense trajectory-tracking controller model with a

sparse state-space controller and use direct optimization for inference. The sparse controller model repre-

sents desired pose trajectory for the character as a piece-wise constant function, where constant segments
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correspond to different constituent phases in the motion selected by an associated state machine. This ab-

straction is not only more compact and captures the underlying structure of the motion intrinsically, but is

also easier to estimate from images and enables robust incremental inference.

Specifically, the assumption of a structured motion makes the inference better constrained. Because

the controller structure is sparse, we are able to integrate information locally from multiple (tens of) image

frames which induces smoothness in the resulting motion and resolves some of the ambiguities that arise in

monocular video-based capture, without requiring a user-in-the-loop. The use of this sparse representation

also allows inference that is not as heavily biased by the noise in the individual video frames. Despite the fact

that this is a sparse representation, however, it still allows the expressiveness necessary to model variations

in style and speed that we may observe in video. Lastly, the direct inference mechanism allows to correct

earlier misestimations (for already processed frames) when later image observations are available through re-

optimization, unlike the previous motion estimation method with a Particle Filter. Consequently, the process

is less suspectible to overfitting and we do not need to add noise to the poses produced by the simulation.

The sparse controllers that our approach estimates can be applied on characters under perturbations to

generate motion adaptations. The adaptations are enabled by the structure of the controllers that allows the

motion to deviate from the desired pose trajectory and by the feedback within control that can respond to

certain physical events that happen in the simulation (e.g., foot contact).

Relation between Control Models. The estimation of controller with the trajectory-tracking control model

can be interpreted as a special case of the state-space method, both in terms of implementation and its proper-

ties, where actions in the trajectory control switch regularly with every frame and recovery of the controller is

implemented using incremental optimization over an expanding window with one frame increments between

optimization stages. According to our experiments, using short optimization stages for state-space controllers

degrades estimation accuracy and re-introduces the problems from trajectory tracking.

Results. We illustrate in our results that by computationally accounting for the physical properties of the

human body, environment and control, our approach improves quality of recovered poses and results in

physically plausible performance (e.g., interaction forces explicitly prevent physically impossible hypotheses

and enable more appropriate reactions to the environment). We also evaluate our approach quantitatively. We

illustrate the tracking performance of our methods on a number of standard sequences, such as HumanEva,

using standard error metrics, as well as on custom sequences involving highly dynamic floor gymnastics and

jumping and compare the attained accuracy to the state-of-the-art. Our methods attain better or comparable

results, but achieve more plausible motion interpretations.

6.2 Open Problems

While we are able to estimate controllers that are capable of generating the motion in video, some of the

subtleties in motions are not accurately reconstructed and our results contain certain artifacts, such as the lack

of detailed arm movement or stiff/robotic appearance. We believe there are two main sources of errors that

are contributing to these artifacts: observation models and high-dimensionality of the optimization problem.

We discuss these two sources next.
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Observations. For the most part, the abovementioned subtleties that are not captured pertain to the end

effectors and to the smaller body parts (head, hands or feet). This limitation is the result of the simple image

observation models that we use. These parts are hard to observe in video and their motion is not easily

distinguishable in the silhouette observations. Consequently, our image features do not provide sufficient

constraints for the motion reconstruction process and physical laws and force bounds constraints alone are

not rich enough to capture the need for their movement.

Improvements could probably be achieved by using more sophisticated objectives that include biome-

chanical objectives, as in [199], or by using stronger observation models [6] that model appearance of body

parts more faithfully. We could also supplement/estimate the information missing from the observations by

using stronger priors over valid poses that can be reconstructed, such as those previously used in computer

vision literature to restrict direct search for poses during tracking. To support these hypotheses, we note that

optimizations from reference motion capture data produce substantially better results, both quantitatively and

qualitatively. In the case of motion capture data, we have the courtesy to work with clean unambiguous motion

capture observations. This fact lets us further penalize joint torque expenditure in the optimization objective

and estimate controllers that use less power and generate smoother motions. By using better observation

models and/or additional constraints, we hypothesize we should be able to produce as good reconstructions

directly from video.

High Dimensionality. Second, because we are solving a very difficult high-dimensional optimization prob-

lem, controller structures and their parameters found by either PF or CMA are not guaranteed to be optimal.

Consequently, the motions we recover may appear robotic, overpowered and stiff. To address the high-

dimensionality of the general inference problem, we employed a sparse controller model that uses compact

piecewise-constant representations of desired pose trajectories and a PCA space model to represent the de-

sired poses. However, the resulting space might still be too high-dimensional for the current optimization

model. To further reduce dimensionality of the problem, we may need to impose stronger priors over the mo-

tion that can be reconstructed. For example, we may penalize individual poses in the reconstructed sequence

if the poses deviate substantially from training motion capture data.

Furthermore, in order to not restrict controller optimizer much in finding feasible strategies for executing

the observed motion (because the optimization is performed in a high-dimensional space), we define looser

bounds for actuation forces. Consequently, some of the strategies adopted by the character to accomplish

a task may require unnaturally strong muscles at, for example, ankles and knees and may produce motions

that appear unrealistic. That said, such high force bounds make the optimization possible and are required in

our current implementation so that the optimizer can find a feasible strategy for the task. We plan to include

an iterative re-optimization that would gradually reduce the force bounds and re-optimize the controller with

smaller and smaller force bounds.

6.3 Future Directions

We envision a few potential research directions for extending the “motion capture through controller capture”

paradigm and its implementation that we have demonstrated. We think of two general directions. One, that
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attempts to improve motion capture and focuses on the vision aspect of the paradigm, and another, that further

develops the idea of controller capture and goes beyond motion capture even further.

In order to improve the motion capture aspect of the paradigm and build a motion capture system that

can rival the performance of current commercial solutions in estimation accuracy, it may be necessary to

model appearance of the person in images more faithfully as well as to use a more faithful physical model of

the person and a more advanced control model. For the same reason, we may also need to model dynamic

objects in the environment in order to enable motion estimation in dynamic environments. Furthermore, in

order to achieve specific goals beyond pose capture, we may want to integrate additional constraints with the

controller estimation.

Shape and Appearance. For example, rather than using boxes to represent the shape, we may need to adopt

a deformable shape model that is capable of capturing fine details in the deformation of the flesh in the human

body as well as clothes. Such detailed models [14, 57, 110], based on statistical principles, have been used

in computer vision literature before and have been demonstrated to be important for the improvement of the

pose and motion estimation. For better modeling of the appearance, it may be necessary to combine shape

estimation, pose estimation and foreground silhouette segmentation [65, 110]. We can also use additional

image features that are more robust to changes in illumination and appearance of the person, and that allow

operation in cluttered environments [142, 6].

Character Model. With respect to the simulated model of the body, we may want to model feet and hands

with a greater detail (and perhaps as soft bodies) so that contact with environment (or objects within the

environment) can be modeled in a more biomechanically faithful way. We may also want to simulate clothing

in order to feed the shape and appearance models, as well as motion blur in the appearance of the body in

images due to fast moving motions.

Furthermore, we can extend the repertoir of simulation events that the controller can react to. Ideally, all

state transitions within a controller should be conditioned on certain physical events, and not just based on

the time, so that the controller can better generalize and respond to those events exactly when they happen.

Modeling of better contact and/or ability to grip may be necessary for capturing people manipulating objects

in the environment (e.g., picking up a mug) or just performing actions in environments that require the use of

hands (e.g., bar exercises in gymnastics, climbing a ladder). In order to better approximate desired motion for

control, we can also refine parameterization of the desired motion, where we integrate both sparse and dense

parameterization. For example, we can first fit a sparse state-space controller to obtain a base approximation

of the motion and then layer a dense “style” controller on top of the base controller to encode the fine details

of the pose trajectory. We can also combine reactive control with more deliberate motion planning and body

actuation for better balance, such as [123]. We can also employ more realistic balancing strategies [113, 43]

that do not implement balance by adjusting target poses but explicitly control the momentum of the body.

Environment Model. Our current implementation of controller capture is limited to static environments

with known geometry observed by static calibrated cameras. Another research direction can focus on joint

estimation of the motion, physical properties of the environment (e.g., gravity, friction, as was proposed in

[28]) and the geometry of the environment. We may also want to explore appearance models that do not
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require explicit camera calibration and permit non-stationary cameras [6].

In our approach, we have demonstrated the importance of modeling the effects of the environment on the

motion of the body. We can bring this concept further and model dynamic objects in the environment. Such

modeling would enable physically plausible motion estimation of subjects manipulating objects in an envi-

ronment or subjects navigating dynamic environments (e.g., walking on a trampoline or jumping of a diving

board). In considering these cases, we are motivated by an example of a person carrying a heavy suitcase. The

motion of the person, in this case, is largely determined by the weight and shape of the suitcase. An ability

to model these factors directly would not only provide precise constraints for the motion reconstruction, of

both the person and the suitcase, but also allow, e.g.estimation of the weight of the suitcase. This feature can

be important for applications in surveillance.

Input Modalities. In our current implementation, we have only considered two input modalities: images (in

the form of pre-segmented foreground silhouettes) and reference motion capture markers/poses. In principle,

there is nothing that limits this method to these modalities and we can employ the same approach to e.g.,

estimate controllers from depth maps (e.g., Kinect data) and other sources.

User in the Loop. While estimating controllers, we may want to incorporate additional constraints specified

by an user in order to constrain the estimation process. For example, we may want to realize a specific

motion that can not be demonstrated by an actor directly, because it is too dangerous, costly or not technically

feasible. To address this problem, the actor may demonstrate a different motion that is “close enough” and

use constraints to directly edit the demonstrated motion as appropriate, as a part of the controller estimation

process, such that the intended motion is achieved. As such, controller capture could be used as a motion

editing tool.

Generalization of Control. Motion adaptions generated by our methods are obtained through application of

the captured control mechanisms to new situations. In many cases (and as demonstrated in our experiments),

these mechanisms produce motions that do not appear human-like. Such unplausible behaviors can be, at

least in part, attributed to the fact that our control mechanisms do not adapt to the new situations and make

use of full actuation power to recover from disturbances, unlike humans. Consequently, when giving answers

to “what-if” questions, we are not showing what a human would do in the particular situation, but rather what

our control strategy would do. Both can be different. Often, the control strategy does not know how to react

appropriately on the situation. Depending on the disturbances and how big they are, the generated reactions

may either look good or bad.

We believe these aspects can probably be addressed in a few possible ways. Because our controllers are

reactive, and operate by reacting on certain events and based on balance feedback, we may try to expose the

controller to typical disturbances and events in training (during the controller estimation) that can happen later

during testing (during motion adaptation) so that the controller would learn how to react to these situations.

For example, we may perturb the simulated character with random forces applied at the various parts of the

body at random times and use the perturbations as a base for learning of the balancing mechanism, as in

[199]. In order to make this strategy effective, we may need to introduce additional types for events and

transitions in the state machine so that the controller can respond to various features of the motion.
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We may also use more biomechanically accurate methods for body actuation, such that the employed

low-level motion control strategies would directly correspond to the activations of real muscles in the human

body. Specifically, rather than applying joint torques for the actuation of the humanoid character model

with motors at joints, we may use e.g., biologically-inspired muscle actuators [200]. These actuators can

better approximate muscles in the human body, and, consequently, force the controllers to explore actuation

strategies that are similar to those of humans [200].

In a more general way, and as a grand goal, we may attempt to take the observed motion as a single

demonstration of a desired behavior and use techniques from learning from demonstration in order to re-

cover the objective of the motion. We can then use this objective for motion generation. Given the current

progress in the techniques in learning from demonstration though, as of now, this goal is, however, very far.

Nevertheless, it may provide a good motivation for future research.

6.4 Conclusions

The core objective of this thesis was to demonstrate that it is technically feasible to realize marker-less motion

capture from a single camera view, as defined in our problem statement, and with the ability to produce

physically plausible motion interpretations that can generalize beyond the estimated motion. We achieved

this objective by learning controllers for the observed motions and we have proven our thesis statement,

which we re-state here again for clarity:

Physical models of human dynamics and methods for humanoid control can be used to estimate phys-

ically plausible human motions from image sequences, where physically plausible refers to motion

reconstructions produced by physical simulations of a character model from an initial pose.

Possible directions for future research include improving the features of the current method towards

building a fully functional general vision-based motion capture system as well as focusing on controller

estimation aspect of the method in order to provide new applications.
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