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This dissertation presents new computational approaches toward the virtual histology

of white-matter microstructures and new visualization and interaction techniques for iden-

tifying and segmenting white-matter anatomy. Together, our new techniques, which are

based on diffusion magnetic resonance imaging (diffusion MRI), enhance the microstruc-

tural and anatomical analysis of brain white matter to localize neurological changes resulting

from disease and degeneration in two ways. First, clinically feasible acquisition is sufficient

for accurate reconstruction of quantitative measurements of microstructural properties in

brain tissue of unknown orientation. Second, qualitative visualization using 3D interaction

combined with anatomical landmarks can enhance user performance in isolating tracts for

pathological analysis.

The first part of the dissertation presents new computational approaches toward the

virtual histology of brain tissue that reveal quantitative local measures of their microstruc-

ture and attempt to provide reliable and sensitive biomarkers for neurological changes. We

develop analytical models of water diffusion and incorporate them into a computational

algorithm in order to extract the underlying microstructural properties that are other-

wise unattainable in vivo. We go beyond current experimental limitations, which require

high gradients (not achievable in clinical scanners) and known tissue orientation, by using

double-pulsed field gradient (double-PFG) diffusion MRI. We demonstrate that clinically

feasible acquisition is sufficient to reconstruct these microstructural properties accurately in

brain tissue of unknown orientation. The feasibility and reliability of these computational

approaches were first quantitatively validated using simulations, which let us go beyond pre-

vious work to provide a complete study that aggregates a set of characteristics not previously

combined. To validate our methods further, we then apply our computational approaches

to live human subjects using clinical 3T MRI scanners for microstructure quantification

and cross-subject comparisons. The results demonstrate the sensitivity of our approach to

human microstructural properties, and also verify microstructural variations known from

histology along the corpus callosum across different subjects.

The second part of the dissertation presents new qualitative visualization and interaction

techniques that help neuroscientists isolate neural tracts of interest (TOI) for quantitative

local pathological analysis. First, we develop two new visualization techniques and demon-

strate their benefits in disentangling complex neural tracts and in helping neuroscientists



2

identify the underlying neuroanatomy and its connectivity. Second, we study the design

principles related to the TOI selection techniques to analyze their utility, usability, accuracy

and reliability. We develop taxonomy and design guidelines for these TOI selection tasks as

a framework for categorizing the design space of the techniques. Using these design guide-

lines, we implement two selection techniques to enhance user performance in TOI selection

tasks that use two or more of the following features: (1) anatomical landmarks matching

experts’ training, (2) free-form lasso drawing for flexible selection, (3) a 3D stereo virtual

reality environment to avoid visual flattening of brain structures, (4) haptics-assisted 3D

lasso drawing for direct 3D interaction, and (5) a higher-input-bandwidth device to reduce

navigation time.
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Chapter 1

Introduction

1.1 Motivation

The human brain is the center of the human nervous system, which is a very important

structure in our body. Many neurological diseases are associated with changes in brain

microstructure and composition. Alzheimer’s disease, for example, which causes the irre-

versible degeneration of the brain, is now the sixth leading killer in the United States. Ap-

proximately every 69 seconds, one person in the United States is diagnosed with Alzheimer’s

disease, and it now affects 5.1 million Americans. However, we still we still do not know the

cause, nor do we have an effective cure. Our best defense at the moment is preventive care

and early diagnosis. My dissertation suggests a road towards early diagnosis of neurological

diseases such as Alzheimer’s.

In order to diagnose the microstructural changes associated with various neurological

diseases, neuroscientists have relied on histological examination of the brain tissue. Histol-

ogy is an invasive and very tedious process (Figure 1.1) that usually involves cutting the

brain in half, then peeling away some of the tissue structure in the front so as to reveal the

fibrous structure called the white matter. To look more closely at the white-matter struc-

ture, we would need carefully to go through the process of extracting certain anatomically

meaningful fibrous white-matter structures such as the temporo-parieto-occipital pathway

shown in Figure 1.1(1). To go another step further, we can take a slice of the white-matter

structure and obtain electron microscopy (EM) images to reveal the axons that make up

the white-matter structure like bundles of cables. With these EM images, we can directly

measure detailed microstructure information such as axon diameter distribution. These mi-

crostructural measurements are crucially correlated with a number of neurological diseases.

1
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Figure 1.1: Traditional histological process in neuroanatomy: 1. Peel away tissue struc-
tures to reveal fibrous white-matter structure. 2. Extract anatomically meaningful white-
matter structures such as the temporo-parieto-occipital pathway here. 3. Obtain electron
microscopy images from slices of white-matter structure. 4. Measure microstructural prop-
erties such as axon diameter distribution directly from EM images.
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Figure 1.2: Histology image of a multiple sclerosis (MS) spinal cord. The axon diameter
distribution plot shows the large decrease in the number of axons observed in the plaque
due to MS on the left, while normal white matter is on the right. Image from [62] (with
edits).

The questions we want to ask here are: Where and how do diseases impact the structure of

the brain?

For example, the EM image from a multiple sclerosis (MS) patient in Figure 1.2 shows

significant degeneration in axon composition between the diseased and healthy area that

can be detected from an axon-diameter distribution plot. Most importantly, this sort of

axon degeneration can remain undetected in a MS patient until disabling symptoms appear.

Since axons rarely regenerate, early diagnosis of these changes is important for preventive

care.

Although extremely useful, all the microstructural analyses described above involve the

invasive histology process. There’s no way we could do histology to obtain this microstruc-

tural analysis while the brain disease is progressing. The big question this dissertation tries

to address is, “How can we do this microstructural analysis noninvasively?”

We have developed computational solutions and interactive visualization tools to replace

the histology process in measuring disease-related microstructural changes with a noninva-

sive “virtual histology” (Figure 1.3). Our tools use diffusion MRI, to measure the Brownian

motion of water molecules, which is influenced by brain-tissue geometry, and thus offer the

potential to probe the brain’s underlying anatomical and microstructural properties.



4

Figure 1.3: Our computational solutions and interactive tools can replace the traditional
process of histology for measuring the microstructural changes due to disease with a non-
invasive virtual histology using diffusion MRI.

1.2 Thesis Statement

This dissertation explores the following thesis:

Computational techniques based on diffusion MRI can enhance the microstruc-

tural and anatomical analysis of brain white matter in two ways. First, clini-

cally feasible acquisition is sufficient for accurate reconstruction of quantitative

measurements of microstructural properties in brain tissue of unknown orien-

tation. Second, qualitative visualization using 3D interactions combined with

anatomical landmarks can enhance user performance in isolating tracts for

pathological analysis.

1.3 Contributions Overview

This dissertation contributes to the field of data modeling, model fitting, visualization, and

human-computer interaction. The work is driven by real-world neuroscience problems and
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makes significant contributions to the field of neuroscience. It contributes to the scien-

tific understanding of white-matter anatomy and to the virtual histology of brain-tissue

structure for microstructural and pathological analysis. The methods presented here have

potential for significant long-term impact by providing insights into and making possible

earlier detection of various neurological diseases. The contributions listed below are the

result of completed and published work.

1.3.1 Part I: In-vivo microstructural analysis of brain white matter

Part I presents new computational approaches to the virtual histology of brain tissue and

demonstrates that clinically feasible acquisition is sufficient for accurate reconstruction of

quantitative measurements of microstructural properties in brain tissue of unknown orien-

tation [112, 113, 111, 114].

The major contributions of Part I may be summarized as:

• A two-compartment analytical model of water diffusion that takes axon orientation

into account and models axon-radius variation using gamma distribution

• A water-exchange model to take demyelination due to neurological diseases into ac-

count

• Computational algorithms for extracting underlying microstructural properties of

white matter in the human brain range and improved sensitivity to distinguish small

axon radii less than 3 µm

• A complete simulation study aggregating a set of characteristics not previously com-

bined

• A clinical study demonstrating the sensitivity of our approach to human microstruc-

tural properties, and also verifying across different subjects microstructural variations

along the corpus callosum known from histology

1.3.2 Part II: In-vivo anatomical analysis of brain white matter

Part II demonstrates that qualitative visualization using 3D interaction combined with

anatomical landmarks can enhance user performance in isolating tracts for pathological

analysis [115, 49, 109, 110, 50, 97].

The major contributions of Part II may be summarized as:
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• Visualizing white-matter spatial relations to disentangle neural-tract connectivity:

– Visualizing white-matter pathways with perceptual coloring to provide a smooth

coloring scheme that is more compatible with the uncertainty of the tractography

– Visualizing white-matter pathways with textural patterns to show subtle differ-

ences within large structures

• White matter tracts-of-interest (TOI) selection techniques to isolate tracts for patho-

logical analysis:

– Taxonomy and evaluation of design features in interactive 3D TOI selection tools

in DTI

– A 2D sketching TOI-selection approach combined with anatomical landmarks for

segmentation of neural pathways

– A 3D haptics-assisted lasso-drawing TOI-selection approach in virtual reality

environment to enhance user performance and confidence in isolating tracts for

pathological analysis

1.4 Overview of Dissertation

Part I of this dissertation presents our new computational approaches toward the virtual

histology of brain tissue that reveal quantitative local measures of their microstructure and

attempt to provide reliable and sensitive biomarkers for neurological changes (Chapter 4 -

Chapter 3). Here, we develop analytical models of water diffusion and incorporate them into

a computational algorithm in order to extract the underlying microstructural properties that

are otherwise unattainable in vivo. We go beyond current experimental limitations, which

require high gradients (not achievable in clinical scanners) and known tissue orientation, by

using double-pulsed gradient spin-echo (double-PFG) diffusion MRI. We demonstrate that

clinically feasible acquisition is sufficient accurately to reconstruct these microstructural

properties in brain tissue of unknown orientation. The feasibility and reliability of these

computational approaches were first quantitatively validated in simulations. Simulation

data lets us go beyond previous work to provide a complete study combining a set of

characteristics that other work has used but never unified. For further validation of our

methods, we then apply our computational approaches to human subjects using clinical 3T

MRI scanners for microstructure quantification and cross-subject comparisons. Our results

demonstrate our approach’s sensitivity to human microstructural properties and also verify
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microstructural variations known from histology across different subjects along the corpus

callosum.

Part II of the dissertation presents new qualitative visualization and interaction tech-

niques that help brain scientists identify and segment neural tracts of interest (TOI) for

quantitative local pathological analysis. First, we develop two new visualization techniques

to demonstrate their benefits in disentangling complex neural tracts and in helping neuro-

scientists identify the underlying neuroanatomy and its connectivity (chapter 5). Second,

we study the design principles related to the TOI selection techniques to analyze their

utility, usability, accuracy and reliability (Chapter 6). Tracts-of-interest (TOI) analysis is

an important interaction technique on which most published clinical research studies using

DTI tractography have relied [18, 73, 79]. TOI interaction tools provide the flexibility of

clustering in the model and allow brain scientists to apply and verify their knowledge of

the various functionalities of different neural tract bundles. We develop a taxonomy and

a set of design guidelines for these TOI selection tasks as a framework for exploring and

categorizing the design space of the techniques. Using these design guidelines, we imple-

ment two selection techniques to enhance user performance in TOI selection tasks. The

2D sketching selection tool gives the user a flexible interface for selecting and grouping

TOI into bundles by drawing free-form lassos on 2D anatomical planes of the brain model,

rather than rigid boxes as in traditional methods. This approach exploits neurologists’

extensive training in identifying anatomical structures from these planes. Our 3D haptics-

assisted lasso-drawing TOI-selection approach gives users more confidence in identifying

neural tract bundles, and avoids the problem of visual flattening of fiber structures. The

navigation time, a key challenge in TOI selection tools, is greatly reduced in the VR envi-

ronment with this higher-input-bandwidth device. We discuss our conclusions in Chapter 7

with a summary of primary contributions in this dissertation and a discussion of future

directions and applications.



Chapter 2

Background

This chapter gives the background for the research in the remainder of the dissertation.

Section 2.1 describes the background knowledge related to diffusion imaging techniques

used in this dissertation. Section 2.2 provides the mathematical background for this re-

search. Section 2.3 describes the biological origins of diffusion imaging in neuroanatomy

and microstructural changes due to neurological diseases.

2.1 Diffusion Magnetic Resonance Imaging

Diffusion magnetic resonance imaging (diffusion MRI) of the brain is based on the random

Brownian motion of water molecules within brain tissue [99]. Brownian motion occurs when

water molecules in the brain tissue randomly collide with one another. The result of this

process, diffusion [13], is comparable to the evolution in the shape of a stain after inkdrop

lands on a piece of paper [70].

Diffusion MRI is made up of individual pixels of different intensities that correspond to

voxels in the brain-tissue model. The spatial resolution of diffusion MRI is on the order of

1−3 mm, and thus can reveal the anatomical properties of brain tissue in great detail. The

contrast in diffusion MRI reflects biological differences among different brain tissues.

2.1.1 Magnetic Moment

Any classical charged particle with angular momentum processes a magnetic moment ~µ:

~µ =
q

2m
~L (2.1)

where ~L is angular momentum and q/m is charge-mass ratio.

8
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Magnetic resonance images primarily reflect the signal from water, based on the hydro-

gen nucleus. The hydrogen nucleus possesses a magnetic dipole, which is also called spin. In

quantum mechanics, the component of angular momentum can take on only a few discrete

values. The spin angular momentum ~MI of any physical system is quantized by:

MI =
√

I(I + 1)~ (2.2)

MIz = mI~ (2.3)

where I = n/2 is the spin quantum number (n can be any non-negative integer) and mI

is between −I to I and thus has (2I + 1) possible values. For the nucleus 1H, I = 1
2 ,

MI =
√
3
2 ~, MIz =

{

−1
2 ,

1
2

}

~.

Particles with spin can possess a magnetic moment ~µ that is proportional to the spin

angular momentum ~MI , just like a rotating electrically-charged body in classical electrody-

namics:

~µ = γ ~MI (2.4)

where γ = gN
e

2mp
= gN

µN
~

is gyromagnetic ratio, gN is nuclear Landé g-factor, and µN =
1
2

e
mp

~ = 5.051× 10−27J · T−1 is the Bohr magneton. For 1H, γ = 2.6751× 108s−1T−1; for

13C, γ = 6.7262× 108s−1T−1; and for 15N, γ = −2.7116× 107s−1T−1.

2.1.2 Magnetic Moment in a Magnetic Field

2.1.2.1 Larmor Precession

The magnetic moment in a magnetic field will experience a torque τ and start to precess

around the external magnetic field ~B at a Larmor frequency ~ωL (this is called Larmor

precession):

~τ = ~µ× ~B =
d~L

dt

⇒
( q

2m
~L
)

× ~B = ~ωL × ~L

(2.5)

~ωL = − q

2m
~B (2.6)

In general, the Larmor frequency ~ωL of the nucleus is:

~ωL = γ ~B (2.7)
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Figure 2.1: The two energy states of nucleus 1H

2.1.2.2 Spin Energy in Magnetic Field

The energy of the spin in the magnetic field is given by:

E = −~µ · ~B = −γmIB~ (2.8)

The energy level of the nucleus 1H, I = 1
2 , mI =

{

1
2 ,−1

2

}

has two states:

E = ±1

2
γB~ (2.9)

The energy difference between these two states is:

∆E = γB~ (2.10)

2.1.3 Principle of Nuclear Magnetic Resonance (NMR)

The principle of NMR usually involves two sequential steps:
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1. The alignment of the nuclear spins in constant magnetic field ~B0, also referred to as

the first magnetic field generated in MRI.

2. The perturbation of this alignment of the nuclear spins by employing an electro-

magnetic wave called RF pulse, usually oscillating at radio frequencies (RF). We call

this RF pulse, which is usually applied very briefly, the second magnetic field generated

by an MRI scanner.

Magnetic resonance absorption occurs only when the electro-magnetic wave has energy

E = γB0~ = ω~ matching the energy difference between the nuclear spin levels in the

constant magnetic field ~B0. This occurs when the frequency is:

ν =
ωL

2π
=

1

2π

∆E

~
=

1

2π
γB0 (2.11)

The two fields are usually chosen to be perpendicular to each other, since this alignment

maximizes NMR signal strength. In a 3T MRI scanner, for example B0 = 3T , such a

configuration results in an absorption frequency of 1H: ν = 1
2π (2.6751×108rads−1T−1×3T =

127.7310MHz.

The RF pulses are used in MRI for two main purposes: excitation and refocusing. An

MRI experiment typically starts with a θ = 90 degree excitation RF pulse. The pulse

frequency is applied at the Larmor frequency of the spins ( ~ωL = γB0) to induce resonance

so that the magnetization vector is tilted into the plane whose normal is along the main

magnetic field. The RF pulse is applied along the X ′ axis of the rotating frame around ~B0.

The sequence is then followed by a refocusing of nuclei with θ = 180 degree RF pulse. If the

RF pulse duration δ is much smaller than spin relaxation time, the flip angle of the nuclear

spin is θ = ωδ = γBδ. We adjust the pulse duration δ to adjust for the flip angle θ. After

the 90 degree excitation pulse, the excited spins immediately do three things:

1. Precess about ~B0 at Larmor frequency ωL = γB0

2. Realign themselves exponentially in the direction of ~B0, with time constant T1, which

is also called the longitudinal relaxation time.

3. The precessing part of this magnetization (i.e., the part perpendicular to the direc-

tion of ~B0) decays exponentially with a time constant T2, also called the transverse

relaxation time.



12

2.1.4 Magnetic field gradients

The third set of magnetic fields generated by an MRI scanner is called magnetic field

gradients and often referred to as Gx, Gy, and Gz. They create linear magnetic fields that

change in three orthogonal directions:

B = B0 + x
∂B

∂x
+ y

∂B

∂y
+ z

∂B

∂z
(2.12)

= B0 + xGx + yGy + zGz (2.13)

2.1.4.1 Slice selection: Gz

A slice selection gradient Gz is used with a selective excitation to select a region for imag-

ing. The linear gradient Gz is applied along the z-direction so that the Larmor frequency

changes linearly along the direction of the gradient. A RF pulse matching a specific Larmor

frequency along the z-axis will excite only spins at that particular slice perpendicular to

the applied Gz gradient. We can change the location of slice selection by changing the

frequency of the RF pulse, and can adjust the slice thickness by modifying the frequency

bandwidth of the RF pulse and the strength of the gradient Gz.

2.1.4.2 Image Encoding: Gx and Gy

Image encoding gradients Gx and Gy are used to encode the location of MR signals received

from the object being imaged. In the excited x-y slice, image-encoding gradients Gx and Gy

are applied to generate linear changes in precessional frequency. By convention, Gy is called

the phase-encoding gradient and Gx is called the frequency-encoding gradient. Different

pulse sequences determine the image-encoding process. The exact image-sampling process

is determined by the pulse sequence designs discussed in [51], which are beyond the scope

of this thesis.

2.1.5 Diffusion Tensor Imaging (DTI)

Diffusion tensor imaging is a technique in which the diffusion of water is measured in a series

of different spatial directions [12]. As water undergoes diffusion, it encounters barriers that

reflect underlying tissue properties and environments. The challenge in diffusion MRI is

to infer these complex tissue structures from MR displacement measurements. Imagine

injecting ink inside brain white matter: its distribution will elongate along axonal fibers by

anisotropic diffusion. Inside the gray matter, the diffusion process is more random because
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Figure 2.2: Dephase-rephase process in diffusion tensor imaging. Image from [71, 51] with
edits.
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of the absence of restricted fiber structures, a process called isotropic diffusion. DTI then

fits diffusion ellipsoids from each pixel in the image to describe the shape and orientation

of the local tissue. Thus, by using DTI, three-dimensional neural tracts representing the

axonal fibers in the white matter can be reconstructed.

The diffusion-encoding gradient in DTI is a bipolar gradient typically applied after the

90◦ excitation pulse and before image signal sampling. Figure 2.2 illustrates the effect

on the spins of applying the diffusion gradient. This diffusion gradient can be applied in

any direction G(x, y, z). To illustrate this point, we show diffusion weighting in only one

direction, along the z-axis Gz. At time I, all spins under the homogeneous ~B0 field are

in-phase. They have the same signal frequency and are in the same phase. At time II, the

positive diffusion gradient is applied. Spins start to dephase and will experience different

frequencies along the z-axis (protons at higher Gz experience higher frequency). At time

III, when the positive gradient is turned off, all spins return to the same frequency but

they are now in different phases. At time IV, we apply a 180◦ RF pulse in order to induce

a reversed (negative) linear gradient Gz. Due to the reversed gradient strength along z-

axis, protons can be rephased exactly back to their original phase, if they have not moved

between the two gradient applications (between times II and IV). If the spins have moved

due to diffusion during the diffusion gradient application, the second gradient (at time IV)

cannot perfectly refocus the phases leading to signal loss.

2.2 Mathematical Background

This section reviews the mathematical background on which this dissertation builds.

2.2.1 Hilbert Space

Hilbert space is an extension of Euclidean space to spaces with any finite or infinite number

of dimensions. A Hilbert space is an abstract vector space possessing the structure of an

inner product that allows length and angle to be measured.

2.2.1.1 Abstract linear vector space

A pair of vectors x and y of a Hilbert space H satisfies the following properties:

• < x|x > ≥ 0, where the case of equality holds if and only if x = 0.

• < y|x >= < x|y >
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• < cx|y >= c < x|y >

• < (x1 + x2)|y >=< x1|y > + < x2|y >

• < x|y > = 0, if and only if x and y are orthogonal vectors

2.2.1.2 Function Space

A sequence of functions ϕn = ϕ1, ϕ2, ..., ϕn, ..., for example 1, cos(x), cos(2x), ..., sin(x), sin(2x), ...

or eikx, forms the basis function of a Hilbert space if they define a scalar product and satisfy

the following completeness, orthogonality, and normalization conditions:

< ϕ1|ϕ2 >=

∫

ϕ∗
1ϕ2dτ (2.14)

∑

|n >< n| = 1 (2.15)

< ϕi|ϕj >= δij =







1 if i = j

0 if i 6= j
(2.16)

If the eigenvalues are continuous in equation (2.16), we rewrite it as:

< ϕ(~k)|ϕ(~k′) >= δ(~k − ~k′) (2.17)

where |n >= ϕn, < n| = ϕ∗
n, and δ(~k − ~k′) is the delta function discussed in sec-

tion 2.2.1.3.

In Hilbert space, we can obtain the following:

• For an eigenequation L̂ϕn = λnϕn, the eigenfunction of a hermitian operator is or-

thogonal and complete, and its eigenvalues are real numbers.

• We can define the Fourier expansion of any function Ψ on the same domain by using

a basis eigenfunction ϕn:

Ψ =
∑

cnϕn (2.18)

cn =< ϕn|Ψ >=

∫

ϕ∗
nΨdτ (2.19)



16

• Any eigen-differential equation L̂Ψ = λΨ can be written as a matrix algebra equation

by using the equation (2.15): We perform left multiply < n| and insert equation (2.15)

|m >< m| on both sides of the differential equation:

L̂Ψ = λΨ (2.20)
∑

m

< n|L̂|m >< m|Ψ > =
∑

m

λ < n|m >< m|Ψ > (2.21)

Since we have < m|Ψ >= cm, < n|m >= δmn and we can define a matrix

Lnm = < n|L̂|m > to derive a matrix equation:

∑

(Lnm − λδnm)cm = 0 (2.22)

2.2.1.3 Dirac Delta Function

The charge density distribution function in the space of a unit point charge is a δ function.

The charge density ρ is infinite at its origin and zero everywhere else. The total charge in

the entire space is:
∫

ρdτ = 1.

The δ function has the following characteristics:

δ(x− x0) =







0 if x 6= x0

∞ if x = x0

(2.23)

∫ ∞

−∞
δ(x− x0)dx = 1 (2.24)

∫ ∞

−∞
f(x)δ(x− x0)dx = f(x0) (2.25)

2.2.2 Fourier Expansion and Fourier Transform

When we use 1, cos(nx), sin(nx) or exp(iwt), exp(ikx) as basis function, equations (2.14)-

(2.15) are the Fourier Expansion and Fourier Transform.

2.2.2.1 Fourier Expansion and Fourier Transformation

Theorem 1: Any periodic function can be superimposed by an infinite sum of sine and

cosine functions:

f(x) =
a0
2

+
∞
∑

n=1

(an cos(nx) + bn sin(nx)) (2.26)
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When the variable represents time t, the coefficient sequence is called a frequency domain

representation and can be written as:

f(t) =
a0
2

+

∞
∑

n=1

(an cos(nωt) + bn sin(nωt)) (2.27)

The frequencies here are discrete and form a non-continuous spectrum.

Theorem 2: Any non-periodic function can be formed by a series of exponential functions.

f(t) =
1√
2π

∫ ∞

0
F (ω)exp(−iωt)dω (2.28)

f(t) =
1√
2π

∫

F (k)exp(ikx)dk (2.29)

f(~r) =
1

(2π)3/2

∫

F (~k)exp(i~k~r)d~k (2.30)

where ωt and kx are called phases, and the frequencies here are continuous spectrum.

2.2.2.2 Fourier Transform

To solve for the coefficient F (ω) or F (k) in equations (2.28)-(2.30) involves what is called

a Fourier transform, namely finding the spectrum. The Fourier transform is very useful in

that it can transform differential equations into algebraic ones.

F (ω) =
1√
2π

∫ ∞

∞
f(t)exp(iωt)dt (2.31)

F (k) =
1√
2π

∫ ∞

∞
f(x)exp(−ikx)dx (2.32)

2.2.2.3 X space and K space

A function formed by f(x) above is called x-representation or a function in the x-space. A

function formed by F (k) is called k-representation or a function in k-space. The x-space is

usually considered the coordinate space and the K space the momentum space.



18

2.2.3 Partial Differential Equations

The study of a physical problem is often transformed into a pure mathematical model in

order to find a solution. These mathematical models usually have three main components:

• Partial differential equations

• Boundary condition

• Initial condition

2.2.3.1 Helmholtz Equation

The Helmholtz equation is the partial differential equation (PDE) that groups the three

types of common PDEs using the steady-state solution (i.e. separation of space and time):

(∇2 + k2)Ψ = 0 (2.33)

where ∇ is the Laplacian operator and k is the wave vector. This equation results from ap-

plying the technique of separation of variables (i.e. space and time)to reduce the complexity

of the analysis.

For example, consider the wave equation:

∇2Ψ− 1

c2
∂2Ψ

∂t2
= 0 (2.34)

Letting Ψ(~r, t) = eiωtΨ(~r), ∂
∂t = iω, ∂2

∂t2
= −ω2, we obtain:

∇2Ψ(~r) +
ω2

c2
Ψ~r = 0 (2.35)

k2=ω2

c2−−−−→ ∇2Ψ(~r) + k2Ψ~r = 0 (2.36)

Also, consider the diffusion equation:

∇2Ψ− 1

D

∂Ψ

∂t
= 0 (2.37)

Leting Ψ(~r, t) = e−λtΨ(~r), ∂
∂t = −λ, we obtain:

∇2Ψ(~r)− λ

D
Ψ(~r) = 0 (2.38)

k2= λ
D−−−−→ ∇2Ψ(~r)− k2Ψ(~r) = 0 (2.39)
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2.2.3.2 Boundary Conditions

There are three types of boundary conditions:

1. Dirichlet boundary condition: function value on the boundary u|σ

2. Neumann boundary condition: first-order derivative value on the boundary ∂u
∂n |σ

3. Cauchy boundary condition: function value of the linear combination on the boundary

u+ ∂u
∂n |σ

Theorem: The Helmholtz differential equation has a unique solution if it satisfies any one

of the three boundary conditions.

2.2.3.3 Solving the Helmholtz Equation

Separation of Variables

1. The Helmholtz Operator Is a Hermitian Operator

The Helmholtz operator ∇2 + k2 in a Helmholtz equation is a Hermitian operator.

Hermitian operators have real eigenvalues, orthogonal eigenfunctions, and corresponding

eigenfunctions, that form a complete bi-orthogonal system when it is second-order and

linear.

The complete solution of a Helmholtz differential equation is a superposition state by

all intrinsic states (that is, eigenfunctions):

Ψ =
∑

cnϕn (2.40)

where coefficient cn expresses eigenstate ϕn in the superposition state Ψ of size |cn|2∑
n |cn|2 .

2. Homogeneous Condition

The condition making it possible to use separation of variables for solving a partial dif-

ferential equation is that the partial differential equation and its boundary condition must

be homogeneous. For non-homogeneous equations, we must utilize the Fourier expansion

solution of its corresponding homogeneous equation, using the eigenfunction of the bound-

ary conditions. If the boundary condition is also non-homogeneous, the boundary condition

must be transform into a homogeneous condition using variable transformation.

3. Selection of Eigenfunctions and Eigenvalues
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The key to solving a Helmholtz equation using separation of variables is to determine the

eigenfunctions, and eigenvalues and adopt the principle of superposition. Eigenfunctions

are determined by the choice of coordinate system. The eigenvalues are determined by the

boundary conditions: (1) bounded eigenvalues are discrete and (2) unbounded eigenvalues

are continuous.

• General Solution in the Cartesian Coordinate System

Ψ(x, y, z) =
∑

k

Ckexp(i~k · ~r) (2.41)

k2 = k2x + k2y + k2z (2.42)

• General Solution in the Cylindrical Coordinate System

Ψ(ρ, ϕ, z) =
∑

n

CnZn(kρρ)exp(i(nϕ+ kzz)) (2.43)

k2 = k2ρ + k2z , n = 0, 1, 2, ... (2.44)

where the cylindrical function Zn(kρρ) is:

Zn =



















In Kn if k < 0

Jn Nn if k > 0

ρn ρ−n if k = 0

(2.45)

1. If ∂
∂ϕ = 0, then n = 0:

Ψ(ρ, z) = Z0(kρρ)exp(ikzz) (2.46)

2. If ∂
∂z = 0, then kz = 0:

Ψ(ρ, ϕ) = a+bln(ρ)+
∞
∑

n=1

(An cos(nϕ)+Bn sin(nϕ))ρ
n+

∞
∑

n=1

(Cn cos(nϕ)+Dn sin(nϕ))ρ
−n

(2.47)

• General Solution in the Spherical Coordinate System
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Ψ(r, θ, φ) =
∑

nlm

CnlmRn(r)Ylm(θ, φ) (2.48)

k2 = k2r + k2θ + k2φ (2.49)

where,

1

r2
d

dr
(r2

dRl

dr
) + (k2 − l(l + 1)

r2
)Rl = 0 (2.50)

R(r)r|r=0 = 0 (2.51)

4. Fourier Transform for Differential Equation

The differential equation after the Fourier transform is a dispersion relation F (k, ω), i.e.

the equation in K space. We can obtain a generalized transformation of the differential

equation by using orthogonal normalized bases and Dirac notation in Heisenberg’s matrix

equation (Equation (2.22)).

5. Power Series Solution

The separation of variables reduces the second-order partial differential equation to a

few second-order ordinary differential equations. Any second-order ordinary differential

equation can be transformed into a SL equation (Sturm - Liouville equation). The majority

of such equations start with a power series solution that can later be defined as a special

function.

Integral Transform

There are two ways to solve the Helmholtz Equation using the integral transform

method:

1. Narrow Fourier transform: Transform a differential equation into an algebraic

dispersion equation F (ω,~k) = 0, by ∂
∂t = −jω and ∇ = j~k, which is called K space

or momentum space.

2. Generalized Hilbert space expansion: Transform a differential equation into a

Heisenberg’s matrix equation.

The integral transform method of solving equations has three main steps:
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1. Fourier transform on both sides of the equation for some variable x

2. Solve the equation of the image function

3. Inverse Fourier transform

The integral transform method is particularly suitable for the solution of unbounded equa-

tions.

Green’s Function

Considering any field E(~r, t) generated by a source ρ(~r, t), we can solve for the complete

field by superimposing the field generated by a point source of δ type, according to the

principle of superposition. The field generated by the point source of δ type is called

Green’s function. Therefore, the Green’s function method is an integral kernel that can be

used to solve an inhomogeneous differential equations subject to specific initial conditions

or boundary conditions.

Suppose we have the following differential equation, for any arbitrary linear differential

operator L̂:

L̂y = f(x) (2.52)

Define the Green’s function G(x, x′) by:

L̂G(x, x′) = δ(x− x′) (2.53)

Then the solution to Equation 2.52is:

y =

∫

G(x, x′)f(x′)dx′ (2.54)

Approximation Method

Physical problems are often too complicated to obtain an analytical solution, so that we

must then use an approximation method. The most common approximation methods are:

(1) variation method and (2) perturbation method. Details on this approximation method

are beyond the scope of this thesis and readers are encouraged to refer to [37].

2.3 Neuroanatomy Background

One of the crucial goals of diffusion MRI-based neurological investigations is to identify

biomarkers that are reliable identifiers and predictors of neurological disorders. An ideal
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Figure 2.3: Axon scheme. The axon is the core fiber extending out of the neuronal cell
body that facilitates communication between gray matter and the rest of the body.

biomarker should (1) evaluate the severity of the disorder, (2) predict future clinical disease

progression; in addition, (3) changes in the biomarker should correlate with clinical changes.

2.3.1 Microstructural Components of the CNS White Matter

The white matter of the central nervous system (CNS) consists mainly of axons and their

surrounding fatty tissue, myelin sheaths. The myelin sheath is a layer around the axon

that keep it insulated in order to increase the speed at which impulses propagate along

the myelinated fiber. Myelinated axons are white in appearance, hence the term ”white

matter” of the brain (Figure 2.4). Not all axons are myelinated, some axons of smaller

diameters (< 1µm) have a thin myelin membrane or none at all (non-myelinated axons).

The axon is the core fiber extending from the neuronal cell body that facilitates com-

munication between gray matter and the rest of the body. Most axons lie parallel to one

another within a white-matter tract [51]. A schematic representation of the axon is shown

in Figure 2.3 and a detailed description of the axonal cytoskeloton is given in Nixon [72].

The axon has a small diameter, ranging from less than 0.3 µm up to 10 µm in humans.

Examples of the diameter ranges in humans and rhesus monkeys are given in Table 2.1.

Since a single voxel in diffusion MRI is on the order of 1 − 3 mm, it contains hundreds of

thousands of individual axons. Axons can extend over long distances: the longest axon in

human (corticospinal tract) extends all the way from the cerebral cortex in the brain to

the base of the spinal cord (with a length of almost 2/3 of a body’s height, about a meter

or more). The diameter of the axon remains relatively constant throughout its length [40].

The axon diameter directly affects nerve function in the brain. The conduction velocity
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Figure 2.4: The myelin sheath around the nerve fibers (axons) renders the tracts white. In
the area in white matter that lacks myelin, as in this dysmyelinated dog brain, white matter
may appear semi-translucent (indicated by the arrows at upper left). Image from [51].

of the axon increases linearly with increasing diameters in myelinated axons [86, 104] and

is maximal when the ratio of axonal diameter to that of the fiber (axon + myelin sheath)

is around 0.6 [51] (this ratio is also called the g-ratio), as illustrated in Figure 2.5. For

example, the corticospinal tracts predominantly contain axons with larger diameters, which

enable fast communication and reaction times. Smaller-radius axons generally arise in neu-

ronal pathways that permit slower communication and favor duality of information, as in

the optic nerve and pain control pathways.

Although the corpus callosum (CC) is considered one of the most highly ordered white-

matter structures, its microstructural heterogeneity is evident. Different fiber tracts project

through the CC to reach and communicate with different cortical areas. Due to the different

functions of these tracts, the microstructures of these segments shows obvious differences in

axon density, axon size and unmyelinated axon quantities. Based on axon properties and

the fibertracts’ projection areas, the CC consists of characteristic subregions of axons and

contains different proportions of myelinated and unmyelinated fibers [60, 2].

Figure 2.6 is a summary diagram of five brain subregions. Figure 2.6.A shows the differ-

ent axon compositions as based on microstructural-sector analysis of the CC from electron

microscopic study of eight adult rhesus monkeys [60]. The anterior portions (prefrontal)

of the CC contained the greatest proportion of unmyelinated axons and myelinated axons

with the smallest diameters (< 0.5 µm). The middle and posterior portions contained the
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Figure 2.5: g-ratio, the ratio of the axonal diameter to that of the fiber (axon + myelin
sheath). Conduction velocity is maximal when the g-ratio is around 0.6. Image from [51].

fewest unmyelinated axons, which also consisted mostly of myelinated axons > 2.5µm in

diameter.

Both axon diameters and the proportion of axons that are myelinated influence axonal

packing densities. The axonal packing density can vary greatly from one fiber tract to

another. The microstructural differences found in [60] (Figure 2.6), correlate with the

differences in axonal packing densities across the tract. The highest densities are found in

the anterior portion, where the smallest axons are found, and the lowest densities are found

in the middle and posterior portions, where large axons are observed. The overall average

was 76.62 axons per 100 µm2 and the total number of axons in the CC was calculated to

be 56 million. A similar variation in axonal packing densities is found in human corpus

callosum [60] and the rat spinal cord [89] (Figure 2.8).

Figure 2.6.B shows the topographic organization of projections through the tract from

different cortical area in the rhesus monkey [78] scaled to the same size as in A. Note that the

correspondence of these two independently established maps is remarkable. As mentioned

Species White-matter tract Range of diame-
ters of myelinated
axons

Range of diame-
ters of unmyeli-
nated axons

Reference

Human (adult) pyramidal tract in
medullary pyramid

< 0.3 to 10 µm Not quantified [43]

Rhesus monkey corpus callosum
(CC)

0.08 to 2.5 µm 0.08 to 0.5 µm [59, 60, 96]

Table 2.1: Axon diameter range for human pyramidal tract in medullary pyramid and the
Rhesus monkey in CC.
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Figure 2.6: Five typical subregions of the rhesus monkey CC. A. The relationship among
regional variation in axon composition (axon size, density, amount of unmyelinated axons)
based on a microstructural-sector analysis by Lamantia et al. [60]. B. Topographic organi-
zation of projections through tracts from different cortical areas in the rhesus monkey [78]
scaled to the same size as in A. Note that the organization of the CC correlates remarkably
well in the two independent studies.

earlier, the axon diameter directly affects nerve function in the brain. This correlation

explains the correspondence between the higher-order association regions of the frontal

lobes and the high concentration of small, medium myelinated, and unmyelinated axons,

as well as the coincidence of the giant axons, lowest axon density, and lowest percentage of

unmyelinated axons within the primary somatosensory and primary visual regions of the

corpus callosum.

Figure 2.7 shows an electron micrograph of axons in two different sections of the corpus

callosum in an adult rhesus monkey [60]. Figure 2.7.A shows the axons from section 2 (see

Figure 2.6 for definitions). This region mostly contains small and medium axons with the

highest density. Figure 2.7.B shows the axons from section 6 of the same corpus callosum

shown in A. This region consists of large axons with the lowest axon density. In the center
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Figure 2.7: A. Electron micrograph of axons in section 2 of the corpus callosum in an adult
rhesus monkey. Notice the small unmyelinated axons (red stars). B. Electron micrograph
of axons in section 6 of the corpus callosum shown in A. In the center of this micrograph is
an example of the very large axons encountered only in section 6, 7, and 10 of the corpus
callosum. Both micrographs are 1x10− 4 mm2. Image from [60].

of the micrograph is an example of a gigantic axon encountered only in sections 6, 7, and

10 of the corpus callosum.

2.3.2 Neurological Changes in Diseases

Various neurological changes, including axon diameter and densities, have been observed in

a number of invasive histological studies of disease-affected tissue [16, 20, 57]. Loss of myelin

results in a reduction in tissue viscosity and elasticity, and an increase in permeability [58].

The increased water content of a tissue causes changes in tissue density and viscosity [67].

These studies indicate that axon properties (such as axon radius and density) are important

quantities to measure as direct biomarkers for neurological diseases.

Two of the most common effects of disease on white-matter structure are demyelina-

tion and axonal degeneration. Demyelination and axonal degeneration in white matter are

critical since both myelinated and unmyelinated axons of the mammalian central nervous

system do not regenerate. For instance, axonal degeneration has been identified as the

dominant cause of the irreversible neurological disability seen in MS [15]. Studies suggest

that axonal degeneration in MS is location specific, axon size selective, and correlates with

gender [41, 62, 34, 100]. The average axon loss in the cortical spinal tract ranged from 15
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Figure 2.8: 1 µm thick histologic section of rat spinal cord. A. axons from vestibulospinal
tract containing largest axons in this section of the spinal cord. B. axons from rubrospinal
tract in the spinal cord where axon size appear to be much smaller and axons are more
densely packed. (black bar=50 µm) Images from [89].

to 33% in a post mortem MS tissue analysis from adult humans [33]. Axonal loss ranged

from 45 to 84% in demyelinated lesions of the spinal cord in a separate study [14]. It

has been shown that small-axon fibers (≤ 3 µm in diameter) are particularly affected and

tend to be more vulnerable to axonal loss in MS. Large-axon fibers remain relatively pre-

served [41, 34]. Significant differences between healthy and diseases regions of the spinal

cord may be localized and can be clearly identified in histology images (Figure 2.9)

In addition, various microstructural changes have been observed in a number of diseases.

Changes in axon diameter distribution have been observed in autism [81, 47], amyotrophic

lateral sclerosis (ALS) [30, 46], and schizophrenia [83, 85]. A water exchange mechanism

between different compartments of white matter has been observed in stroke patients [61].

2.3.3 Histological Methods: Microscopic Examination

Despite the importance of the axonal properties discussed in the previous section, they

have not been reliably measurable in vivo. Microscopic histology examination is considered

fundamental in the investigation of central nervous system structure. However, the two

primary microscopic methods, light microscopy and electron microscopy, are both invasive

procedures and the implications for the quantification of cell size and densities of the tissue

elements must be considered.

First, tissue preparation procedure is difficult and tedious. It entails chemical fixation,

dehydration, and embedding the tissue in a chemical medium for fixation. The results of the

procedure are subject to many artifacts, including tissue shrinkage and cracking (shrinkage

values between 0.71 and 0.65 have been estimated [2, 33])). Therefore, the cellular and axon
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Figure 2.9: Histology images of a multiple sclerosis spinal cord sample. Completely de-
myelinated plaque with changes in axon diameter can be observed on the left, while normal
white matter is on right (thick bar=2mm, thin bar=10 µm). Image from [62]

densities obtained from these histology procedures are probably higher than those existing

in fresh tissue. Also, cell density values vary depending on the thickness of the section in

which they are contained. It has also been observed that light microscopic methods may

not be sensitive enough to detect all small white-matter elements. In addition, about 20%

of axons observed in electron microscopy cannot be discerned by light microscopy [2]. These

factors should be considered when (1) comparing histology results obtained using different

microscopic techniques and (2) comparing ex-vivo histology results with in-vivo live tissue

axonal property estimations.
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Chapter 3

Microstructural Analysis Using

Double-Pulsed Field Gradient MR

Here we present a computational technique (DoubleAx) for inferring axonal properties

using angular double-pulsed field gradient (double-PFG) MRI. Our method uses a two-

compartment analytical diffusion model taking into account finite gradient pulses. We

demonstrate the feasibility of estimating axonal properties from three sets of Monte Carlo

simulation data and four sets of live human data. The Monte Carlo data is simulated in the

human brain range: one set with uniform axon radius and two sets with distributed axon

radii.

Our simulation results are the first to use clinically feasible low-q angular double-PFG

experiments without prior knowledge of axon orientation to demonstrate the feasibility

of estimating specific axonal properties including axon radii, distribution, orientation and

volume fraction. This makes it possible to estimate axonal properties for the whole brain.

Simulation data lets us go beyond previous work to provide a complete study combining

a set of characteristics that other work has used but never unified. We (1) study the full

range of axon sizes in the human brain including small axons (< 3 µm) that are particularly

challenging with improved sensitivity, (2) model both intra- and extra-axonal space with a

two-compartment model, (3) account for variation in axon radii with a gamma distribution,

and (4) restrict our experimental parameters to clinically feasible gradients utilizing the

angular dependency of the signal decay in double-PFG. These estimation results agree well

with the simulation ground truth and demonstrate that double-PFG MRI can accurately

reveal these underlying axonal properties.

The computational approaches were then applied to four datasets from two live human

31
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subjects to validate their feasibility in extracting microstructural properties accurately in

brain tissue using a clinical 3T MRI scanner. Our results demonstrate sensitivity to human

microstructural properties and verify microstructural variation along the corpus callosum

(CC) known from histology.

3.1 Introduction and Related Work

Diffusion MRI, which measures the diffusion of spins in tissues, is a popular technique for as-

sessing a number of neurological disorders because of its sensitivity to the micro-geometry of

the underlying tissue. Current diffusion MRI brain studies rely on indirect diffusivity-based

measures such as fractional anisotropy (FA) as biomarkers of major axonal changes [80, 105].

The fact that FA is a nonspecific summation index of the observed diffusion signal over the

entire voxel means that it is unable to distinguish among different changes in axon radius,

orientation, packing density, and myelin permeability [8]. Studies have shown that neuronal

changes in these axonal properties occur in early stages of brain diseases [62] and have been

observed to be location specific and axon-size selective [39, 41]. Measuring and analyz-

ing these specific pathological axonal changes in vivo may provide early indications of such

brain diseases as multiple sclerosis (MS); indeed, recent experiments have found that axonal

degeneration is the dominant cause of irreversible neurological disability in MS [15, 95].

Axonal properties can be inferred by constructing a geometric model of the underlying

tissue in which water molecules are diffusing and analyzing the diffusion MRI signals [4].

Various models of diffusion MR signal in white matter of the brain have been proposed;

the details are beyond the scope of this chapter, but an extensive comparison is given

in [77]. More specific axonal properties can be identified using the geometric model, in-

cluding axon sizes, packing density, and orientation. Assaf et al.[9] constructed a two-

compartment CHARMED model for single-pulsed gradient field (single-PGF) experiments.

Later, they extended the CHARMED approach to design AxCaliber [7] to measure the axon

diameter distribution of excised nerve tissues [7] and in vivo rat CC [11]. In AxCaliber,

the gradient direction is fixed to be perpendicular to axon orientation and a multi-diffusion

protocol is applied to allow multiple combinations of diffusion time and gradient strength

for axon diameter estimation. Using AxCaliber, however, requires prior knowledge of axon

orientation, lengthy data acquisition and high q-values (11 hr and qmax = 511.08 cm−1

in [7]), which can be difficult to achieve with current clinical scanners. Barazany [10] ex-

tended AxCaliber to allow arbitrary axon orientation by projecting data perpendicular to

the predicted axon orientation from the CHARMED model. The high q-values required in
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the single-PFG experiments, however, are not feasible on clinical scanners. In contrast, our

low-q double-PFG sequence utilizes the angular dependency of signal decay instead of q-

value dependency and restricts our experimental parameters to clinically feasible gradients.

It has recently become possible to estimate orientationally invariant fibers with clini-

cally achievable parameters [4, 28, 29, 5]. These approaches optimize imaging protocols

on a combination of HARDI shells in order to maximize sensitivity to axon parameters.

Optimization requires good approximation of the axon size, which can be a problem in dis-

ease studies where the underlying axonal change is hard to predict. A simulation study [4]

has shown that, when a single protocol is optimized for the typical constraints of a human

scanner, axon radius is recovered with low variance for larger axons (3− 10 µm radius) but

small axons (1− 2 µm) became indistinguishable. This could be a problem for whole-brain

mapping since the human brain axon radius is typically less than 5 µm [38]. Studies have

shown that small-axon fibers (< 3 µm) tend to be vulnerable to axonal loss in MS while

large-axon fibers remain relatively preserved [41, 62]. Later work [5] recovered a low-high-

low trend in axon size along the human and macaque CC, consistent with recorded histology,

but overestimation (in comparison to histology) of about 3 − 4 µm in axon diameter was

reported there. Zhang [106] later improved the estimation results using a new tissue model

to take into account the dispersion in tissue orientation that may have led to this axon size

overestimation. Both studies [5, 106], however, provided only a single summary statistic

as the axon size measure. Although this index is weighted by volume, it is still difficult to

take into the distribution of axon radii in brain tissue. Unlike earlier work, our approach

(1) accounts for the variation in axon radii and estimate this variation with a gamma dis-

tribution, (2) does not require optimization of the acquisition protocol, and (3) estimates

axon orientation as part of the model and does not require prior knowledge of the axonal

properties.

The double-PFG MR sequence (Fig. 3.1a) is the simplest form of multi-PFG MR first

proposed by Cory [32]. It contains two pairs of diffusion gradients, G1 and G2, separated

by an angle ψ. Özarslan [74] showed that when two diffusion gradient pulse pairs are used

(as in double-PFG), the wavenumber q-value necessary for non-monotonicity is exactly half

that in single-PFG experiments [25]. This sensitivity of double-PFG makes it possible to

probe small compartments using relatively low q-values. Mitra [68] predicted theoretically

the angular dependence of signal intensity on the angle ψ in limiting cases of double-PFG ex-

periments, not taking into account the finite duration of the diffusion time or mixing time.

Violating these conditions generally leads to underestimation of pore size and eccentric-

ity [54, 55]. Later, Özarslan [75] provided a theoretical solution for the angular dependence



34

of signal intensity in restricted geometries for arbitrary timing parameters. Shemesh [90]

verified this angular dependence of the signal decay [75] in well-controlled experiments using

water-filled microcapillaries of known diameters (5− 20 µm). Kosh [56] applied both Mitra

and Özarslan’s theory to human brain tissue. The compartment size estimates from the

two theories, although reasonable, did not agree and were not validated. Özarslan’s theory

has also been applied to yeast cells of about 5 µm [91] and glass capillary phantoms around

5 µm, with results agreeing well with optical microscopy. The common brain tissue range

of less than 5 µm, however, is hard to achieve in these phantoms. Furthermore, most of

these studies considered only a single axon radius per voxel, ignored extra-cellular space in

the model, and used a high gradient range that is hard to achieve on clinical scanners (up

to G = 800mT/m in [91], for instance). Simulation data lets us go beyond previous work

to provide a complete study combining a set of characteristics that other work has used but

never unified. Our work differs from previous double-PFG work in five ways: we (1) study

the full axon radius range of the human brain, from 1 to 5 µm, (2)take into account the vari-

ation in axon radii and estimate this variation with a gamma distribution, (3) model both

intra- and extra-axonal space of the microstructure, (4) estimate axon orientation as part

of the model, and (5) restrict our experimental parameters to clinically feasible gradients.

Here, we propose a computational technique (DoubleAx) for inferring specific axonal

properties with low-q angular double-PFG MRI using an analytical diffusion model based

on Özarslan’s theory [75]. Our model is uses a two-compartment geometric assumption

for the underlying microstructure and takes into account finite pulses in the double-PFG

experiments. We demonstrate the feasibility of estimating axon radii and their distributions

in the typical human brain tissue range (1 to 5 µm), along with axon orientation and intra-

axonal volume fraction using both Monte Carlo simulation data and live human data.

Our preliminary work studied axon models under higher gradients [113, 111, 114]. In this

chapter, we extend this work to provide a complete study of uniform and distributed axon

models unifying a set of modeling and experimental characteristics at lower clinically feasible

gradients tested on live human datasets.

3.2 Imaging Protocol

The double-PFG sequence (Figure 3.1a) first proposed by Cory [32] is the simplest form of

multi-PFG and has been shown to reduce eddy current distortions [84]. Double-PFG offers

many degrees of freedom; details are beyond our scope here but are reviewed in [92]. For

our modeling, we focus on the angular double-PFG experiment illustrated in Figure 3.1.
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(a) double-PFG acquisition sequence (b) Experimental setup

Figure 3.1: (a) double-PFG acquisition sequence with two encoding intervals of gradient
G1 and G2. (b) Experimental setup: u = (1, θ, φ) defines the arbitrary axon orientation;
G1 is fixed on the x-axis and the angle of G2 is varied linearly on the xy-plane; β1 and β2
denote the angle between u and G1, G2 respectively.

In angular double-PFG experiments, two pairs of diffusion gradients, G1 and G2, are

applied at any angle. The two encoding intervals are separated by a mixing time tm with

diffusion time ∆1 and ∆2 and pulse duration δ1 and δ2. During each acquisition sequence,

the diffusion time, pulse duration, and mixing time are fixed and the angle ψ between G1

and G2 is varied (Figure 3.1b). This sequence can be repeated for different diffusion times,

pulse durations, and mixing times.

Double-PFG experimental parameters must satisfy two conditions: first, the long-

diffusion wavelength condition: Λ2 ≫ a2 (where diffusion wavelength Λ = 1
γδG), and second,

the diffusion-time condition: ∆ > a2

2Di
: diffusion periods must be long enough for spins to

probe the boundary and experience restricted diffusion.

3.3 Geometric Tissue Model

We first construct a geometric model of axons within which water molecules are diffusing

in order to analyze the MR signal attenuation in double-PFG experiments. Each voxel

(1−3 mm) in the MRI contains signal from hundreds of thousands of individual axons (1−
5 µm). Since axons size remain relatively constant throughout their length [40] and appear

circular in electron microscopy images (Figure 3.2a- 3.2b), we model axons as cylinders to

best capture the geometric properties of the structure.

We include two classes of axon models: (1) axons with uniform radius within a voxel

(Figure 3.2c) and (2) axons with gamma distributed radii within a voxel (Figure 3.2d). For

both classes, the geometric model has two compartments, similarly to CHARMED [9]: (1)
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the intra-axonal compartment i - the space inside axons of radius a represented by parallel

non-abutting cylinders; here water molecules trapped inside the cylinders exhibit restricted

diffusion, and (2) the extra-axonal compartment e - the homogeneous substrate space outside

axons; here water molecules exhibit hindered diffusion. Axon boundaries are assumed to

be impermeable and there is no exchange between the two compartments.

3.4 Analytical Diffusion Model

We present an analytical water-diffusion model aimed at estimating axonal properties with-

out prior knowledge of axon orientation using angular double-PFG experiments based

on [75]. The model analyzes the MR signal obtained in double-PFG experiments given

the two-compartment geometric model described in Sec. 3.3. We aim to extract the follow-

ing axon parameters from the diffusion model:

• Axon radius:

– Uniform model: axon radius a

– Distributed model: mean axon radius a = αβ, where α and β are shape and

scale parameter of the gamma distribution respectively.

• u= (1, θ, φ), the axon orientation

• f ∈ (0, 1), the volume fraction of the intra-axonal compartment

• D, the diffusivities of the axonal compartments

3.4.1 NMR Signal Attenuation in Double-PFG MR

The gradient profile of a general NMR gradient waveform can be approximated by a train

of impulses [26]. We divide the time axis into M intervals of duration τ as suggested in [74].

The magnitude of the wavenumber q in the ith interval (1 ≤ i ≤M) is:

~qi =
γ

2π

∫ ti+τ/2

ti−τ/2

~G(t)dt (3.1)

The motion of molecules undergoing diffusion can be described by the conditional prop-

agator, Ps(r0|r, t), an ensemble-averaged probability density for spin displacement from r0

to r over time t. Ps(r0|r, t) obeys the Fick’s Law differential equation governing Ps(r0|r, t):

∂P
(1)
s

∂t
= D1∇2P (1)

s (3.2)



37

(a) 2D TEM of axons (b) 3D SEM of axons

(c) Uniform axon radius model

(d) Distributed axon radii model

Figure 3.2: Geometric tissue model: (a) 2D cross-sectional view of axons in the CC of
an adult rhesus monkey from transmission electron micrograph (TEM), image reproduced
from [60]. (b) 3D view of axons from scanning electron micrograph (SEM), image repro-
duced from [22]. (c-d) 2D and 3D schematic views of a non-abutting rectangular arrange-
ment of cylinders representing: (c) axons with uniform radius and (d) axons with distributed
radii.



38

The diffusion problem posed in Eq. (3.2) above may be solved using the standard eigen-

mode expansion [23]:

P (1)
s (r0|r, t)) =

∞
∑

n=0

Cne
−λntun(r0)u

∗
n(r) (3.3)

where the un(r) are orthonormal sets of solutions to the Helmholtz equation param-

eterized by the eigenvalue λn. Using the discretization scheme in Eq. (3.1), we can then

approximate the NMR signal attenuation by a train of impulses using a series of propagators

as a matrix product [24]:

E(~q) = ST (~q1)R(τ)A(~q2)...A( ~qn−1)R(τ)S
∗( ~−qn) (3.4)

where:

• S is an M-dimensional vector whose kth component is given by the following integral

over the pore volume V:

Sk(q) =
1√
V

∫

uk(~r)exp(i2π~q · ~r)dτ (3.5)

• R is an M ×M diagonal matrix:

R(τ) = exp(−λkτ) (3.6)

• A is an M ×M matrix with components:

Akm(~q) =< k|exp(i2π~q · ~r)|m >=

∫

u∗k(~r)um(~r)exp(i2π~q · ~r)dτ (3.7)

Based on Eq. (3.4), we can model free and restricted diffusion as:

Efree = exp

(

−γ2De

∫ T

0
dt

∣

∣

∣

∣

∫ t

0
G(t′)dt′

∣

∣

∣

∣

)

(3.8)

Erst = 1− 2γ2a2
∞
∑

n=1

SDn

∫ T

0
dteωDn t ~G(t) ~FDn(t) (3.9)

where,

• FDn =
∫ T
0

~G(t′)exp(−ωDnt
′)dt′

• ~SDn = 1
α2

Dn
(α2

Dn
−D+1)

• ~ωDn = α2D
a2

• αDn are the roots of the derivatives of the first-order Bessel functions satisfying the

boundary condition.
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3.4.2 Uniform Axon Radius Model

Here, we model the diffusion signal for a single fiber population with uniform axon radius

based on Eq. (3.4). We model the combined normalized MR signal attenuation E from these

two compartments as a linear combination of each since we assumed no water exchange

between them:

E = (1− f)Ee + fEi (3.10)

where Ee and Ei are the normalized MR signal attenuation from the extra- and intra-axonal

compartments respectively and f is the volume fraction of the intra-axonal compartment,

reflecting axon packing density. Axon packing density varies in different tissues and in

different locations of the same tissue structure.

We model the normalized MR signal attenuation in the extra-axonal compartment e as

free diffusion derived based on Eq. (3.8):

Ee = exp(−γ2δ2De(∆− δ

3
)(G2

1 +G2
2)) (3.11)

In our experiment, the two encoding intervals of gradients G1 and G2 have the same pulse

duration (δ1 = δ2 = δ) and diffusion time (∆1 = ∆2 = ∆).

We further decompose the normalized MR signal attenuation in the intra-axonal com-

partment i inside axons into two components that are parallel (Ei//) and perpendicu-

lar (Ei⊥) to the axon orientation. Thus the combined MR signal attenuation in the intra-

axonal compartment Ei is:

Ei = Ei// × Ei⊥ (3.12)

We model Ei// again as free diffusion:

Ei// = exp

(

−γ2δ2Di(G
2
1 cos

2 β1 +G2
2 cos

2 β2)(∆− δ

3
)

)

(3.13)

The signal component perpendicular to the axon orientation Ei⊥ is modeled by restricted

diffusion in cylinders derived from Eq. (3.9):

Ei⊥ = C +A(G2
1 cos

2 β1 +G2
2 cos

2 β2) +B(G1G2 cosβ1 cosβ2) (3.14)

where,
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C = 1−A(G2
1 +G2

2)−B(G1G2 cosψ) (3.15)

A = 2γ2a2
∞
∑

n=1

Sn

[

2δ

ωn
− 1

ω2
n

(2− 2e−ωnδ + e−ωn(∆−δ) − 2e−ωn∆ + e−ωn(∆+δ)

]

(3.16)

B = 2γ2a2
∞
∑

n=1

Sn
ω2
n

[

e−ωn(tm−δ) − 2e−ωntm + e−ωn(tm+δ) − 2e−ωn(∆+tm−δ) + 4e−ωn(∆+tm)

−2e−ωn(∆+tm+δ) + e−ωn(2∆+tm−δ) − 2e−ωn(2∆+tm) + e−wn(2∆+tm+δ)

]

(3.17)

We define Dn = 2 in Eq. (3.9) for cylinder compartments in axon model and derive:

• sn = 1
α4
n−α2

n
; wn = α2

nDi

a2
; αn are the roots of the derivatives of the first-order Bessel

functions satisfying the boundary condition: J ′
1(αn) = 0

• cosβ1 =u ·G1= sin θ cosφ and cosβ2 =u ·G2= sin θ cos(φ − ψ), where the unit vector

u=(1, θ, φ) denotes the arbitrary orientation of the axon in polar coordinates and

β1 and β2 denote the angles between u and G1, G2 respectively, as illustrated in

Figure 3.1b.

3.4.3 Distributed Axon Radii Model

We expand our model to incorporate axon-radius variation including contributions from a

distribution of fiber sizes. We adopt a two-parameter gamma distribution, fitted to electron

microscopy sections of optic and sciatic nerves [8], to model our axon radius distribution.

Equation 3.10 is expanded to:

E = (1− f)Ee + f
∑

n

wn(α, β)Ei(an) (3.18)

where the weights wn of different axon radii are defined by a normalized two-parameter

gamma distribution:

wn(α, β) =
P (an;α, β)

∑

n P (an;α, β)
(3.19)

P (an;α, β) =
1

βαΓ(α)
aα−1
n e−an/β (3.20)
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where, α is the shape parameter, β is the scale parameter, and the mean axon radius ā = αβ .

3.5 Model Fitting

In the model fitting procedure, the goal is to extract the microstructural parameters: axon

radius a, intra-axonal compartment volume fraction f , axon orientation (u = (1, θ, φ))

and diffusivity (Di and De) of the intra- and extra-axonal compartments. We based our

parameter estimation on the analytical model in Section 3.4. We used two modeling fit-

ting algorithms for the two classes of axon geometric models described in Section 3.3: (1)

Bayesian inference using Markov Chain Monte Carlo for axons with uniform distribution,

and (2) the Levenberg Marquardt fitting algorithm for axons with gamma distribution.

3.5.1 Bayesian Inference using Markov Chain Monte Carlo

We performed Bayesian inference to estimate the microstructural parameters from our an-

alytical model of axons with uniform radius (Section 3.4). Based on Bayes’ theorem, we

can derive the posterior distribution P (θ|D) as follows:

P (θ|D) =
P (θ)P (D|θ)

∫

P (θ)P (D|θ)dθ (3.21)

where,

• D is our observed experimental data, which is the measured diffusion signal attenua-

tion E from double-PFG experiments.

• θ are our model parameters, which are the unknown microstructural parameters

(a, f, θ, φ,Di, De) we wish to extract.

• P (θ) is the prior for the model parameters.

• P (D|θ) is the likelihood of the model.

Since the denominator of equation 3.21 is not a function of θ, we can write the posterior

distribution as:

P (θ|D) ∝ P (θ)P (D|θ) (3.22)

Therefore, the posterior expectation of the model parameters θ is:
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E[f(θ)] =

∫

f(θ)P (θ|D)d(θ) (3.23)

We used a Markov Chain Monte Carlo (MCMC) procedure [42] to generate samples from

this posterior distribution of the microstructural parameters given the experimental data

and parameters. Monte Carlo integration estimates the integral E[f(θ)] in equation 3.23

by obtaining samples θt, t = 1, ..., n from the posterior distribution P (θ|D):

E[f(θ)] ≈ 1

n

n
∑

t=1

f(θt) (3.24)

We run the Markov chain for n iterations, and discard the samples from the first m

iterations (called burn-in) to use the remaining samples along with equation 3.24 to estimate

of the model parameter expectation as follows:

E[f(θ)] ≈ 1

n−m

n
∑

t=m+1

f(θt) (3.25)

We used a Gaussian distribution N(θ|µ, σ) based on [103] with standard deviations σ

chosen with respect to the difference between our predicted signal Emodel from the ana-

lytical model (Section 3.4) and observed experimental data (diffusion signal attenuation

Eexp from double-PFG experiments) as our likelihood P (D|θ). We used a uninformative

gamma prior for axon radius a, a beta prior for volume fraction f , and broad uniform pri-

ors for axon orientation parameters (θ and φ) and diffusivity (Di and De). We ran MCMC

with 10 sets of initial values for various parameters to ensure convergence. The burn-in

period is 10,000 iterations. We gathered 1,000 independent samples from the marginal

posterior distribution of the model parameters as our estimates for the microstructural pa-

rameters (a, f, θ, φ,Di, De). The estimation procedure was implemented in MATLAB R©
(R2009a, MathWorks, Natick, MA) and openBUGS [63] on a Linux operating system. The

procedure takes about 4-6 hours for each diffusion image voxel.

3.5.2 Levenberg-Marquardt Fitting

To improve the running time of our method on axon models of distributed radii, we used

a Levenberg-Marquardt fitting algorithm [64] to estimate the microstructural parameters.

The Levenberg-Marquardt algorithm is a standard method for determining the parame-

ters of nonlinear functions in least-squares problems. The analytical model to be fitted

from double-PFG experiments for diffusion signal attenuation is Y = Y (x|θ), where x

is the known experimental parameters in MRI experiments and θ is the unknown axon
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parameters we wish to estimate. Therefore, we can compute a χ2 merit function as:

χ2(θ) =
∑N−1

i=0

[

Yi−Y (xi|θ)
σi

]2
, where Yi denotes the diffusion signal attenuation from double-

PFG experiments with experimental parameter set xi and σi denoting the standard devi-

ation. The Levenberg-Marquardt estimation procedure was implemented in MATLAB R©

(R2009a, MathWorks, Natick, MA) on the Linux and Windows operating systems.

3.6 Simulation-based Validation

3.6.1 Data Synthesis

We performed several simulation experiments in order to estimate the underlying axonal

properties and validate our analytical model. The benefit of using simulation data is that the

ground truth about the axonal properties is known and controllable. Our simulation data

for double-PFG experiments was derived from the Monte Carlo simulation for 160,000 spins

in the restrictive geometric model described above using Camino [31, 44]. The double-PFG

sequence is simulated directly over the diffusive dynamics using the generalized gradient

waveform simulation method with a variety of scan parameters [36]. The geometric en-

vironment in the simulation was the same as in the tissue geometric model discussed in

Section 3.3.

(a) Uniform axon model (b) Distributed axon model

Figure 3.3: Signal attenuation from experimental simulation data (without noise) vs. angle
ψ between gradient pairs G1 and G2 that varied linearly by 15 degrees. We illustrate
the angular dependency difference and signal separation between different axon size and
distribution from two geometric models: (a) axons modeled with uniform radius 1− 5 µm
and (b) axons modeled with five gamma distributions (narrow and broad) centered at mean
radius 1− 5 µm.
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3.6.2 MRI Experiment Design

We define an unknown arbitrarily oriented unit vector in polar coordinates u = (1, θ, φ) for

the coherent axon orientation. We keep the first gradient pair, G1, aligned on the x-axis

and vary the second gradient pair, G2, in the xy-plane by changing the angle ψ between

G1 and G2 while keeping their magnitude constant. β1 and β2 denote the angles between

the axon orientation u and G1, G2 respectively. Experiments were performed with the

following parameters: q = 178.88 cm−1, diffusion gradients G1max = G2max = 0.07 T/m,

pulse duration δ1 = δ2 = 6 ms, diffusion time ∆1 = ∆2 = 25 ms, mixing time tm = 8 ms;

ψ was varied in 15◦ increments.

These experiments were repeated for three sets of data, (1) uniform axon radius in

the human brain range a = (1, 2, 3, 4, 5) µm [38], (2) distributed axon radii matching his-

tograms from five regions along the CC [2], and (3) distributed axon radii centered at the

human brain range ā = (1− 5) µm, in order to demonstrate the estimation of various axon

distribution (narrow and broad) populations.

The signal attenuation from simulation data (without noise) vs. ψ angle between G1

and G2 gradient pairs demonstrates the separate angular dependency of signal attenuation

between various axon size and distributions. Figure 3.3a shows the signal from axons

modeled with uniform radii ranging from 1 to 5 µm. The smaller signal difference (t-test

p-value = 0.440) between axons of 1 and 2 µm versus larger axons (p-value = 0.012 for

signal between axons of 3 and 4 µm) demonstrates the challenge in estimating small axons

as discussed earlier. Figure 3.3b shows the signal from axons modeled with five gamma

distribution (narrow and broad) centered at mean radius of 1− 5 µm. We again observe a

consistent difference in the signal attenuation. This confirms that the signals from angular

double-PFG experiments set apart the different distributions and sizes of axon radii.

3.6.3 Axons with Uniform Radius

Table 3.1 and Figure 3.4 show our main results from simulation data for axons with uniform

radius in the human brain range a = (1, 2, 3, 4, 5) µm [38]. The data was simulated using the

following axon parameters (which we later try to recover): axon orientation u= (1, 30◦, 60◦);

intra-axonal volume fraction f = 0.7; the diffusivity of the intra- and extra-axonal com-

partments is D = 2e−9 m2/s; Rician noise was added to reach a signal-to-noise (SNR) ratio

of 30 with no diffusion weighting.

Table 3.1 summarizes our estimated mean and standard deviation (std) values for axon

radius a, orientation θ and φ, intra-axonal volume fraction f , and diffusivity D. The mean
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Axon Radius (µm) Axon Orientation (rad) Volume Fraction Diffusivity 1e−9(m2/s)
Ground truth Estimate θ = 0.5236 = 30◦ φ = 1.0472 = 60◦ f = 0.7 D = 2

1 0.754±0.084 0.507±0.005 1.068±0.005 0.716±0.004 2.170±0.013
2 1.757±0.082 0.512±0.005 1.037±0.013 0.724±0.007 2.074±0.027
3 2.943±0.107 0.519±0.004 1.087±0.013 0.705±0.002 2.115±0.037
4 3.983±0.067 0.493±0.003 1.039±0.005 0.838±0.007 2.071±0.049
5 5.004±0.049 0.490±0.002 1.013±0.003 0.741±0.008 1.945±0.019

Table 3.1: Summary of estimated mean values of axon parameters from the model with
uniform axon radius. Ground truth from simulation is: (a) Axon radii a = (1, 2, 3, 4, 5) µm;
(b) Axon orientation; u = (1, 30◦, 60◦) = (1, π6 ,

π
3 ); (c) Intra-axonal volume fraction f = 0.7;

(d) Diffusivity D = 2e−9 m2/s.

and std were calculated by averaging 100,000 samples drawn from the marginal posterior

distribution of the MCMC (Section 3.5.1). Figure 3.4 shows the histogram of axon param-

eter estimate packing density: a, θ, φ, f,D for each of the various true a = (1, 2, 3, 4, 5) µm

using MCMC. For comparison, the orange vertical lines in Figure 3.4b-3.4e show the true

values of the corresponding axon parameters from simulation data.

We observed a slight underestimation for axons with radius less than 3 µm, a =

(1, 2) µm; this was also observed in [54, 55] when th SGP limits were not met using Mitra’s

theory [68]. It is important, however, to note that these two small axon radii recovered

could still be distinguished regardless of the underestimation. We were able to recover axon

radii a = (3, 4, 5) µm with high accuracy and averaged std = 0.0747. As shown in Table 3.1,

the estimated values for θ, φ, f and D were in close agreement with their true values with

std = (0.0039, 0.0081, 0.0059, 0.0293) respectively. Overall, our estimation results demon-

strated the feasibility of recovering axon radii in the range of typical human brain tissue

without prior knowledge of axon orientation.

3.6.4 Axons with Distributed Radii

The microstructural parameters of our analytical axon model with distributed radii were

recovered using the Levenberg-Marquardt fitting algorithm discussed in Section 3.5.2. Our

method was tested with two different datasets: (1) axon distribution matching human CC

from histology; and (2) axon distribution representing more complete variation over the

entire human brain range (1 − 5 µm). The two sets of data were simulated using the

following axon parameters: axon orientation u= (1, 30◦, 60◦); intra-axonal volume fraction

f = 0.7; diffusivities of the intra- and extra-axonal compartments are Di = 1.7e−9 m2/s and

De = 3e−9 m2/s respectively; Rician noise was added to reach a signal-to-noise (SNR) ratio

of 30 with no diffusion weighting. Throughout the fitting process, we kept the extra-axonal
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(a) Axon radius a = (1, 2, 3, 4, 5) µm

(b) Axon polar angle θ = 0.5236rad (c) Axon azimuth angle φ = 1.0472rad

(d) Intra-axonal volume fraction f = 0.7 (e) Diffusivity D = 2e−9 m2/s

Figure 3.4: Histograms of 10,000 samples drawn from posterior distributions on (a) axon
radius a; (b-c) axon orientation (θ and φ); (d) intra-axonal volume fraction f = 0.7; and (e)
diffusivity D for each of the various true a values using MCMC. Orange vertical lines show
the true values in simulation: a = (1, 2, 3, 4, 5) µm, θ = π

6 rad = 30◦, φ = π
3 rad = 60◦,

f = 0.7, D = 2e−9 m2/s. The mean and std values of parameter estimates are shown in
Table 3.1. Note that some overlapping bars may not be visible in the figure.
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Figure 3.5: Mean axon radius from five regions of the CC: (1) Genu, (2) Anterior body, (3)
Midbody, (4) Posterior body, (5) Splenium. The green line shows the ground-truth values
computed from histology after a suggested shrinkage correction [2]; the orange line shows
our estimated values.

diffusivity constant at De = 3e−9 m2/s.

3.6.4.1 Distribution in Human CC

Figures 3.5-3.7 and Table 3.2 show the main results from simulation data for distributed ax-

ons based on the histograms measured in five regions along the human CC from histology [2]

and fitted to gamma distribution [5]. We multiply each radius in the histology data by a 1.5

shrinkage factor [2] to correct for the substantial tissue shrinkage produced by fixing and

embedding in paraffin. The five regions along the human CC used in the this dataset are

(1) Genu, (2) Anterior body, (3) Midbody, (4) Posterior body, and (5) Splenium. Figure 3.6

illustrates the cross sections of the simulated axonal environment at these five regions.

Figure 3.7 shows the axon radius distribution estimation results for each simulation

experiment. The green histogram shows the ground-truth distribution of axon radii for each
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(a) Genu (b) Anterior body

(c) Midbody (d) Posterior body

(e) Splenium

Figure 3.6: Cross sections of the simulated axonal environment at five regions along the
human CC from histology [2].
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(a) (b)

(c) (d)

(e)

Figure 3.7: Gamma distribution of axon radii in human CC: measured at five sites
along the CC from histology [2]. The green histogram shows the ground-truth distribution
of axon radii with mean radius a-grd. The orange curve shows our fitting results for the
estimated gamma distribution of the underlying axon radius distribution with mean radius
a-est. The estimated and ground-truth axon radius distributions were highly correlated
for all regions along the CC (with correlation coefficients r > 0.96). Table 3.2 gives more
detailed values of additional estimated axon parameters.
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Mean axon radius (µm) Axon orientation (degree) Volume fraction Diffusivity
Ground truth Estimate (θ, φ) = (30◦, 60◦) Error f = 0.7 Di = 1.7e−9m2/s

0.82 0.90 (24.69◦, 59.30◦) 5.33◦ 0.68 1.67
0.86 0.84 (18.45◦, 60.85◦) 11.57◦ 0.66 1.65
1.08 1.07 (19.26◦, 68.69◦) 13.31◦ 0.65 1.55
1.21 0.99 (21.79◦, 67.92◦) 10.86◦ 0.67 1.60
0.94 0.81 (22.94◦, 62.77◦) 7.48◦ 0.69 1.67

Table 3.2: Distribution in human CC : summary of estimated values of axon pa-
rameters. Ground truth from simulation is: (a) mean axon radius ā = αβ =
(0.82, 0.86, 1.08, 1.21, 0.94) µm; (b) axon orientation; u= (1, 30◦, 60◦); (c) intra-axonal vol-
ume fraction f = 0.7; (d) Intra-axonal diffusivity Di = 1.7e−9m2/s; data SNR = 30.

site, and the orange curve shows our fitting results using DoubleAx for estimated gamma-

distribution parameters (α and β) describing the underlying axon radius distribution. Each

distribution is centered at the estimated mean axon radius ā = αβ, noted at the upper right

corner. As the graph shows, the estimated and ground-truth axon radius distributions were

highly correlated for all regions along the CC (correlation coefficients r > 0.96) and provide

a compelling prediction of the underlying axon radius distribution. Although small axons

are dominant in the CC (all mean radii < 1.1 µm), our method gives an accurate estimate

of the mean axon radius that differs from the ground truth by no more than 0.22 µm. We

plot and compare these axon mean radii in Figure 3.5 along the five regions of the CC. Note

that axon size is smaller in the genu (region 1 and 2) and the splenium (region 5) than in

the midbody (region 3 and 4), also known as a low-high-low trend [5]. As Figure 3.5 shows,

this low-high-low trend is well preserved in our estimation results.

Table 3.2 summarizes and provides details of the estimated axon parameters including

mean axon radius ā = αβ from gamma distribution, axon orientation (θ, φ) and intra-axonal

volume fraction f . Here we also observe a consistent small deviation in estimated axon

orientation (< 14◦) and a slight underestimation of intra-axonal volume fraction (< 5%),

similiar to observations in the uniform radius model datasets.

3.6.4.2 Distribution in Human Brain Range

Figure 3.9 shows our estimation results from gamma distributions centered at mean radius

1− 5 µm in the human brain range with DoubleAx. Since the distributions and the size of

the axons ( 0.8−1.2 µm) along the entire CC do not vary greatly, we use this set of data to

demonstrates our accuracy in estimating axons from various gamma distributions (narrow

and broad) and a broader spectrum of sizes, including a narrow distribution with a large
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Mean axon radius (µm) Axon orientation (degree) Volume fraction Diffusivity
Ground truth Estimate (θ, φ) = (30◦, 60◦) Error f = 0.7 Di = 1.7e−9m2/s

1 0.77 (22.86◦, 63.25◦) 7.70◦ 0.67 1.63
2 2.02 (22.14◦, 59.09◦) 7.89◦ 0.67 1.65
3 3.01 (23.48◦, 57.38◦) 6.91◦ 0.68 1.68
4 3.75 (21.72◦, 57.25◦) 8.63◦ 0.67 1.68
5 4.66 (21.98◦, 60.68◦) 8.04◦ 0.66 1.60

Table 3.3: Distribution in human brain range : Summary of estimated values of axon
parameters. Ground-truth values from simulation are: (a) Mean axon radius ā = αβ =
(1, 2, 3, 4, 5) µm; (b) Axon orientation; u= (1, 30◦, 60◦); (c) Intra-axonal volume fraction
f = 0.7; (d) Intra-axonal diffusivity Di = 1.7e−9m2/s; data SNR = 30.

population of small-radius axons centered at 1 µm (Figure 3.9a) and a broader distribution

of larger axon radii centered at 5 µm (Figure 3.9e). These axon distributions represent very

different axon populations, i.e. small axons in the sensory fibers and large axons in the

motor fibers. Figure 3.8 illustrates the cross sections of the simulated axonal environment

in the human brain range centered at 1− 5 µm.

The distribution estimation plot in Figure 3.9 is similar to Figure 3.7 for axons in the

CC. The estimated and ground-truth axon radius distributions were again well correlated

for all five distributions and sizes (correlation coefficients r > 0.85). Our estimated mean

axon radius differed from the ground truth by no more than 0.34 µm. As Table 3.3 shows,

the axon orientation and intra-axonal volume fraction were also recovered close to the true

values: the estimated axon orientation differed from the ground truth by no more than 9◦

and the volume fraction was under-estimated by less than 4%. It is worth noting that a

very similar bias in axon orientation estimation was observed in all three datasets studied.

This could have caused the consistent underestimation in intra-axonal volume fraction.

3.6.5 Discussion

Our results show improved accuracy for small axons (radius < 3 µm), which tend to be more

vulnerable to axonal loss in disease, while large-axon fibers remain relatively preserved [41,

62]. Small axons less than 3 µm are typically more challenging to recover. In previous

work using single-PFG sequences, axon radii of 1 and 2 µm were indistinguishable [4]: that

is, while these estimation techniques could say that the axon radii are in the small range

(< 3 µm), they could not differentiate axons of radius about 1 µm from those of radius

about 2 µm. Previous work in double-PFG has not attempted to recover and validate any

structure of radius < 5 µm. The present work clearly distinguishs axons with radius 1 and
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(a) mean radius = 1 µm (b) mean radius = 2 µm

(c) mean radius = 3 µm (d) mean radius = 4 µm

(e) mean radius = 5 µm

Figure 3.8: Cross sections of the simulated axonal environment in the human brain range
centered at 1 − 5 µm. These axon distributions represent various gamma distributions
(narrow and broad) and a broader spectrum of sizes in the human brain, including a narrow
distribution with a large population of small-radius axons centered at 1 µm in (a) and a
broader distribution of larger axon radii centered at 5 µm in (e).
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(a) (b)

(c) (d)

(e)

Figure 3.9: Gamma distribution of axon radii in human brain range . The green
histogram shows the ground-truth distribution of axon radii with mean radius a-grd. The
orange curve shows our fitting results for estimated gamma distribution of the underlying
axon radius distribution with mean radius a-est. The estimated and ground-truth axon
radius distributions again correlated well for all five distributions and sizes (correlation
coefficients r > 0.85). Table 3.3 gives more detailed values of additional estimated axon
parameters.
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2 µm using a clinically feasible low gradient.

The experimental parameters used here are all feasible for clinical human scanners with

live subjects. These parameters also satisfy the two conditions of double-PFG experiments:

the long-diffusion wavelength condition and the diffusion-time condition discussed in Sec-

tion 3.2. In this chapter, we added synthetic Rician noise to obtain simulation data with

SNR of 30 without diffusion weighting in this chapter. We have also tested simulation data

with SNR of 40 and 20, obtaining similar results (data not shown). Overall, higher SNR

provided greater accuracy in our estimation, similarly to observations in [29].

The intra-axonal volume fraction we estimate from the model is an important parameter

relative to axon packing density. It may not, however, directly reflect the density of axons

since only relative fractions of the axon compartment are weighted by MRI T1 and T2

relaxation [11]. The volume fraction was the most stable parameter estimated in the model;

it was slightly underestimated (by less than 5% in all cases).

The estimation approach presented here requires no prior knowledge of axon orientation.

This offers possibilities for mapping of axonal properties in whole-brain tissue. The axon

orientation in our model is assumed to be arbitrarily unknown but uniform within a MRI

voxel, on the basis of the parallel fibers observed in the midsection of the CC. Our estimated

axon orientation deviated from the ground-truth by no more than 14◦ in all simulated

cases. An extension to double-PFG protocol, bipolar double-PFG has been shown to reveal

signatures of pore size in randomly oriented cylindrical compartments and provides the

potential to overcome this limitation of uniform orientation. It would also be interesting to

look into cases of fiber crossing and kissing using a spherical harmonics decomposition of

the complex fiber architecture in some regions of the brain. Although simple models like the

diffusion tensor can describe the general axon orientation, they cannot be used to estimate

important axonal properties such as axon radius and intra-axonal volume fraction because

they do not encode restricted diffusion information. In future work, we plan to utilize the

general orientation information obtained from the diffusion tensor model as initial condition

and bounding constraints in fitting for more accurate parameter estimation in DoubleAx.

Here we adopted a two-parameter gamma distribution to model our axon radius distri-

bution. A gamma distribution has been observed in measurements in electron microscopy

sections of optic and sciatic nerves [8]. A non-parametric approach [6], however, might be

more appropriate to take into account white matter whose axons are affected by disease

such as trauma and ALS.
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3.7 Healthy Human Subject Validation

3.7.1 Human Subjects

Two healthy female subjects with no major disease history participated in this study. Sub-

ject 1 is age 29 and weighs 118 lb. Subject 2 is age 23 and weighs 110 lb. Both subjects

were scanned with informed consent and approval. Two scan sessions were acquired for

each subject on two separate days.

3.7.2 MRI Experiment Design

The double-PFG sequence for live human brain imaging was implemented on a Siemens 3T

clinical scanner. For each scan session, we acquired 11 sagittal slices covering the entire CC,

centered at the midsagittal slice. The slice thickness was 1.8mm with no gap between slices.

The in-plane resolution was 128× 128 with 1.8× 1.8 mm2 voxels. For each sagittal scan,

the first gradient pair G1 was kept constant in the head-to-toe direction, and the second

gradient pair G2 varied in the sagittal plane in N = 25 evenly distributed gradient directions

by changing the angle ψ between G1 and G2 while keeping their magnitude constant. The

protocol includes two b = 0 images with each dataset. Together with the 25 diffusion

encoded images, we obtained 27 images per slice. Since the sequence was implemented

with the basic spin echo sequence rather than the echo-planar sequence, we expect imaging

acquisition to take longer than standard MRI scans. It took about 2 minutes to scan each

gradient direction and the entire dataset for each scan session took about 55 minutes to

acquire . Experiments were performed with the following parameters: diffusion gradients

G1 = G2 = 0.035 T/m, pulse duration δ1 = δ2 = 4 ms, diffusion time ∆1 = ∆2 = 19 ms,

mixing time tm = 18 ms. White matter signal-to-noise ratio (SNR) at b = 0 is about 20.

The repetition time TR = 950 ms and echo time TE = 95 ms.

3.7.3 Parameter Estimates

The voxels in the CC were first manually segmented using Osirix [87] as illustrated in Fig-

ure 3.10. The CC spans approximately 250 to 300 voxels (1.8 × 1.8 mm2) in each dataset

depending on the subject. For each voxel, we perform our computational analysis using

the Levenberg-Marquardt fitting algorithm described in Section 3.5.2 to estimate the mi-

crostructural properties, including: mean axon radius a = αβ, volume fraction f , axon

orientation u= (1, θ, φ), and intra-axonal diffusivity Di. Throughout, we kept the extra-

axonal diffusivity De constant at 1.7 × 10−9 m2/s, its expected value for in-vivo human
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Figure 3.10: Manually segmented CC area from double-PFG data collected from Subject 1
scan 1 using Osirix [87].

data [106].

Estimation Results

Figure 3.11 shows the estimation results in the CC over the midsagittal slice of scan

1 from human subject 1. In the axon radius estimation plot (Figure 3.11a), we can eas-

ily observe the bigger axons recovered in the middle (body) versus the smaller axons at

the two ends (genu and splenium) of the CC. This matches the expected “low-high-low”

anterior-posterior trend in axon radius observed in histology [2] along the CC. Also notice

that the extracted axon radius is within the recorded human range 1 to 5 µm [51]. The

volume fraction f is in the reasonable range 0.6−0.8 observed in humans [5] (Figure 3.11b).

Higher volume fractions, i.e. axons taking up more space within a certain voxel, are mostly

found at the two ends of the CC where axon radius is small and axons are densely packed,

matching observations in histology [2], as discussed in Section 2.3.1. Since axon fibers are

expected to run perpendicularly through the midsagittal slice of the CC, the axon orienta-

tion parameter θ is expected to be around 0 − 10 degrees. The extracted θ is well within

the 0−20 degree range. Also, we recover a reasonable estimate of intra-axonal diffusivity in

the approximate range 1×10−9 m2/s−2×10−9 m2/s, as expected in human in-vivo data [5].
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(a) Estimation map of axon radius a

(b) Estimation map of volume fraction f

(c) Estimation map of axon orientation θ

(d) Estimation map of intra-axonal diffusivity Di

Figure 3.11: Estimation results in the CC from the midsagittal slice of scan 1 from human
subject 1, including axon parameters: mean axon radius a = αβ, volume fraction f , axon
orientation u= (1, θ, φ), and intra-axonal diffusivity Di.



58

Figure 3.12: Six anatomical segments along the CC used in our histology validation study:
(1) genu, (2) anterior body (B1), (3) midbody (B2), (4) posterior body (B3), (5) isthmus,
and (6) splenium. Image from [2] (with edits).

Validation with Histology

For further validation, we compare our estimation results with known axon-radius vari-

ation and trends along the CC from histology. First, we divide the CC for each subject into

six segments based on anatomical geometry: (1) genu, (2-4) body, (5) isthmus, and (6) sple-

nium. The body section is generally segmented further into three regions, anterior body

(B1), midbody (B2), and posterior body (B3). Figure 3.12 illustrates the segmentation

scheme we used, matching the six segments along the CC defined in histology [2].

Second, we calculate the average axon radius for each segment along the CC. We plot

these average values per segment for the midsagittal slice in Figure 3.13 to illustrate axon-

radius variation along the CC for each subject. Figure 3.13a shows results from two scans

of Subject 1 and Figure 3.13b shows the results from two scans of Subject 2. We compare

these trends with the recorded axon-radius of the same segments from histology [2]. We

multiply the axon radius from histology by 1.5 to account for tissue shrinkage during the

histology process, as suggested in [2]. Our results demonstrate the consistent “low-high-low”

axon-radius trend from anterior to posterior observed in histology data of 20 subjects in the

normal population [2]. This pattern is also observed in slices surrounding the midsagittal

slice. The estimates from each subject show great consistency across two separate scans

and demonstrate the robustness and sensitivity of our method in recovering the axon ra-

dius. This consistency within subject is promising for longitudinal study following the same

subject for predicting disease progression. Our estimates recovered small axons ≈ 1 µm

mostly in the genu and splenium, and large axons ≈ 3 − 5 µm in the body of the corpus

callosum matching histological measures [1] from 10 female subjects.
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(a) Axon radius estimates from Subject 1

(b) Axon radius estimates from Subject 2

Figure 3.13: Comparison of trends in mean axon radius a along six anatomical segments of
the midsagittal slice of CC for each subject with histological measures from [2]. There are
two separate datasets for each subject. We multiply the axon radius from histology by 1.5
to take into account tissue shrinkage during histology.
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(a) CC segments

(b) Genu (c) Anterior Body

(d) Midbody (e) Posterior Body

(f) Isthmus (g) Splenium

Figure 3.14: Comparison of trends in axon-radius distribution along six anatomical seg-
ments of the midsagittal slice of CC from subject 1, scan 1. Our axon-radius distributions
show good agreement with histological measures [2, 11]: a narrow distribution in the genu,
isthmus, and splenium; and a broader distribution in the body.
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As shown in Figure 3.13, the axon radius is consistently larger than histological mea-

sures [2] shown by the red line. However, this over-estimation of the axon radius in the body

of the corpus callosum was not observed in simulation study discussed in Section 3.6.4.1.

The histological measures in Figure 3.13 come from one male individual of age 41 and re-

quire caution in interpretation as a gold standard. This single-subject study was chosen for

comparison because it provides the most complete histological axon size and distribution

information in the literature to date. From the statistics from 20 normal subjects stud-

ied in [2], our observed “low-high-low” axon-radius trend is consistently observed in all 20

subjects. Also, our overestimate is consistent with an earlier in-vivo human study [5] and

with a rat study [11]. Therefore, we hypothesize four main factors in this difference: (1)

significant tissue shrinkage resulting from the histology process, (2) difference in ages (our

two subjects are age 23 and 29), (3) sex difference (our two subjects are female), and (4)

inter-subject variation in axon radius [2]. It is important to note that, although the axon

radii were overestimated compared to histology, we show smaller axon radius estimates and

better agreement with histology than previous methods, which estimated axon radius well

above the largest size observed in humans (5 µm) [5]. We also observe better consistency

in recovered axon radius between scans for each subject (Figure 3.13) than in previous

work [5].

Third, we visualize the difference in computed axon-radius distribution for each segment

in Figure 3.14. Our axon-radius distribution demonstrates good agreement with histological

measures [2, 11]: a narrow distribution in the genu, isthmus, and splenium, and a broader

distribution in the body. Earlier in-vivo human studies [5, 107] use only a single summary

statistic for axon radius which limits the microstructural variation reflected within each

brain region. This study provides a more complete model of the whole distribution.

3.7.4 Discussion

The gradient strength used in the experiments G1 = G2 = 0.035 T/m was chosen to

conform to the clinical limitations for gradient strength used in live human scans. All other

experimental parameters (pulse duration δ, diffusion time ∆, mixing time tm) were chosen

to satisfy the two double-PFG experimental parameter conditions discussed in Section 3.2:

(1) the long-diffusion-wavelength condition and (2) the diffusion-time condition.

One limitation in the current clinical application is scan time. Due to our current

scanner’s software constraints, only the spin-echo sequence was implemented for the double-

PFG experiments. The spin-echo sequence significantly prolongs scan time over the more
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commonly used echo-planar sequence. However, this timing issue is not intrinsically related

to the double-PFG method itself. The imaging time per dataset should be dramatically

reduced to about 10 − 15 minutes if the double-PFG is implemented as an echo-planar

sequence.

The parameter estimation procedure fixes the extra-axonal diffusivityDe to the expected

value for in-vivo human data, which stabilizes the fitting procedure and reduces the number

of combinations physically plausible. Our simulations show that fixing the extra-axonal

diffusivity does not affect the rest of the parameters recovered. Previous studies fixed intra-

axonal diffusivity as well as extra-axonal diffusivity [5, 11]. However, our simulations suggest

that fixing intra-axonal diffusivity Di will affect the accuracy of axon radius estimates.

Last, our validations depend heavily on existing histology information in the literature,

which may suffer from differences between subjects. A full same-subject validation would be

ideal in order to collect gold-standard measurements of the microstructural properties in real

tissue samples. Such a validation study would include the following steps performed on the

same subject: (1) live brain scan, (2) postmortem brain scan, and (3) histology on the brain

tissue sample (EM images). The computationally obtained microstructural parameters in

step (1) and (2) would be validated with the histological measurements obtained in step (3)

to achieve a study that is as reliable and complete as possible.

Brain-tissue structure is extremely complex and a geometric model is usually only an ap-

proximation of that structure. Panagiotaki [77] provided an extended study identifying the

minimum requirements for an accurate model of diffusion MR signal in white matter. Here

we used a simple two-compartment impermeable model, one compartment representing the

intra-axonal compartment (space within axons) and the other extra-axonal compartment

(space outside axons). The current assumption of impermeable axon walls is reasonable for

well myelinated axons over the time scale of our measurements [94]. Demyelination and

unmyelinated axons, however, do exist in brain diseases like MS and some smaller sensory

fiber tracts. We have made some progress in modeling the water exchange at permeable

axon walls between compartments in single-PFG [112] (Chapter 4).

3.8 Conclusion

We have demonstrated for the first time that clinically feasible angular double-PFG exper-

iments is sufficient for accurate reconstruction of quantitative measurements of microstruc-

tural properties in brain tissue of unknown orientation using DoubleAx. Simulation data lets
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us go beyond previous work to provide a reliable approach that aggregates a set of character-

istics not previously combined. Our results show improved accuracy for small axons (radius

< 3 µm), which tend to be more vulnerable to axonal loss in disease. Although many angles

are required to achieve high-angular double-PFG resolution, these can be collected in con-

siderably less time than multiple high-q single-PFG experiments using current hardware.

Our further validation on live human subjects using clinical MRI scanners demonstrates

the sensitivity of our approach to human microstructural properties, and also verifies mi-

crostructural variations known from histology along the CC across different subjects. Our

human study uses a more complete model of the axon-radius distribution than the single

summary statistic for axon radius in previous work, which limits the microstructural varia-

tion reflected within each brain region. We conclude that inferring axonal properties using

double-PFG acquisition may be advantageous in extracting underlying axonal properties to

provide reliable and sensitive biomarkers for neurological changes, especially in small axons,

as it requires lower q-values.



Chapter 4

Water Exchange Analysis Using

Single-Pulsed Field Gradient MR

4.1 Introduction and Related Work

Various brain microstructural changes due to neurological diseases, including axon diameter

and myelination, have been observed in a number of invasive histological studies [16, 20,

57]. Loss of myelin reduces reduction in tissue viscosity and elasticity, and increases in

permeability [58]. These studies indicate an increased rate of water exchange in disease-

affected brain tissue that may occur over the timescale of diffusion MRI experiments [61].

Therefore, in these demyelinated cases (i.e. lesions), microstructure permeability is an

important quantity to take into account in a diffusion model for neurological diseases.

Stanisz et al. [94] modeled bovine optic nerve tissue as a three-compartment system

with partially permeable membranes including ellipsoidal axons, spherical glial cells, and

extracellular space. Fitting such a complex model required very high quality measure-

ments, using 800 nuclear magnetic resonance (NMR) spectroscopy measurements rather

than MRI. In this chapter, we present a new analytical model of water diffusion and ex-

change in white matter for estimating axon radii using diffusion MRI. Estimates of direct

microstructural features such as axon radii, density, and permeability are important for

early disease detection. Our model for white matter has two compartments between which

there is an exchange of water molecules. Our analytical formulas examine the derivation

of microstructural parameters that affect signal attenuation in diffusion-weighted MR ex-

periments in white matter. The model is fitted to six constant-gradient diffusion-MRI

experiments based on Monte-Carlo simulation with gradient strength 200 − 700 (mT/m).

64
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Figure 4.1: Modeling of water diffusion in white matter by two processes: restricted water
diffusion within the cylindrical intra-axonal space and hindered water diffusion outside the
cylinders in the extra-axonal space.

Our results, based on Monte-Carlo simulation data, demonstrate the feasibility of recovering

underlying axon radii of [1, 1.9, 3, 5, 7] µm using the model. Axon radii are typically in the

range [0.25−10] µm in brain tissue. Our work is a first attempt at noninvasively recovering

microstructural features using a geometric model that incorporates water exchange.

4.2 Tissue Model

4.2.1 Geometric Model

Our model for white matter has two compartments between which there is an exchange

of water molecules. The model assumes parallel non-abutting cylindrical axon cells with

equal radii and partially permeable membranes embedded in an extra-cellular medium. MR

signal attenuation reflects water diffusion in white matter by two processes: restricted water

diffusion within the cylindrical intra-axonal space and hindered water diffusion outside the

cylinders, in the extra-axonal space (Figure 4.1). We use subscript and superscript 1 and 2

to denote the intra-axonal and extra-axonal compartments, respectively.
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4.2.2 Analytical Model

Our model for white matter has two compartments between which there is an exchange

of water molecules. The model assumes parallel non-abutting cylindrical axon cells with

equal radii and partially permeable membranes embedded in an extra-cellular medium. MR

signal attenuation reflects water diffusion in white matter by two processes: restricted water

diffusion within the cylindrical intra-axonal space and hindered water diffusion outside the

cylinders, in the extra-axonal space (Figure 4.1). We use subscript and superscript 1 and 2

to denote the intra-axonal and extra-axonal compartments, respectively.

The normalized MRI signal is then

E(q,∆) = fE1(q,∆) + (1− f)E2(q,∆) (4.1)

where

• E(q,∆) is the total observed diffusion signal decay

– wavenumber q = γδG, γ is the gyromagnetic ratio, δ is the pulse duration, and

G is the applied gradient

– ∆ is the diffusion time between pulses in MRI experiments

• E1 and E2 represent the signal decay of water molecules in the intra- and extra-axonal

compartments, respectively

• f ∈ [0, 1] is the volume fraction of the intra-axonal compartments

Sections 4.2.2.1 and 4.2.2.2 below demonstrate how we derive the signal decay of water

molecules in the intra- and extra-axonal compartments (E1 and E2 respectively). Sec-

tion 4.2.2.3 summarizes our composite model.

4.2.2.1 Water Diffusion in the Intra-axonal Space

In order to determine how water diffusion affects signal attenuation in diffusion-weighted

MR experiments in white matter, we examine the conditional propagator and the conditions

in the intra-axonal space that govern the motion of the water molecules.

Propagator for water diffusion

The motion of molecules undergoing diffusion can be described by the conditional propa-

gator, Ps(r0|r, t), an ensemble-averaged probability density for spin displacement from r0

to r over time t. Ps(r0|r, t) obeys:
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• The Fick’s Law differential equation governing Ps(r0|r, t):

∂P
(1)
s

∂t
= D1∇2P (1)

s (4.2)

• The initial condition Ps(r0|r, t) for spin displacement from r0 to r over time t:

P (1)
s (r0|r, 0) = δ(r − r0) (4.3)

• The boundary condition for partially permeable membranes:

D1
∂P

(1)
s

∂ρ
|ρ=a +MP (1)

s |ρ=a = 0 (4.4)

• The boundary relationship of the intra- and extra-cellular compartments:

D1
∂P

(1)
s

∂ρ
|ρ=a = D2

∂P
(2)
s

∂ρ
|ρ=a (4.5)

where D1 and D2 are free diffusion coefficients and a is axon radius.

Boundary condition for partially permeable membranes (Equation (4.4))

The boundary condition describes the displacement probability at the membrane. In

the partially permeable membrane condition [19], we may confine our consideration to the

molecules that do not leave the cylinder [82]. Once they have left, their contribution to

the echo signal with increasing field gradient intensities drops to zero as a function of q.

Thus, we derive the corresponding boundary condition Equation (4.4), whereM(m/s) is the

permeability coefficient. Below we shall see that it is convenient to relate the microscopic

reduced permeability h of an axon of radius a to the permeability coefficient as:

h =
aM

D1
(4.6)

Boundary relationship of the intra and extra-cellular compartments (Equa-

tion (4.5))

The boundary relationship describes the diffusion flux density at two sides of the mem-

brane. The diffusion equation must satisfy both the above boundary condition and the

boundary relationship. The Fick’s Law diffusion equation (4.2) can be rewritten as:

∂Ps

∂t
= ∇ · (D · ∇Ps) (4.7)
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If we define diffusion flux density as

j = −D · ∇Ps (4.8)

Equation (4.7) is then:
∂Ps

∂t
+∇ ·~j = 0 (4.9)

Equation (4.9) is equivalent to the continuity equation in electrodynamics, which implies

that the normal component of j on the boundary should be continuous:

n · (j1 − j2) = j1n − j2n = 0 (4.10)

where j1 and j2 indicate j on two sides of the boundary, respectively.

We denote the normal component of j, jn. By definition of j,

jn = −D∂Ps

∂n
|s (4.11)

In the cylindrical coordinate system, the outward surface normal n direction is in the di-

rection along the polar axis direction (i.e. across a diameter). Therefore, we derive our

boundary relationship Equation (4.5) from Equations (4.10) and (4.11):

D1
∂P

(1)
s

∂ρ
|ρ=a = D2

∂P
(2)
s

∂ρ
|ρ=a

MRI signal attenuation in the intra-axonal compartment

The diffusion problem posed in Equations (4.2)-(4.5) above may be solved using the standard

eigenmode expansion [23]:

P (1)
s (r0|r, t)) =

∞
∑

n=0

Cne
−λntun(r0)u

∗
n(r) (4.12)

where the un(r) are orthonormal sets of solutions to the Helmholtz equation parameterized

by the eigenvalue λn. Based on our Cauchy boundary condition in Equation (4.4), which

specifies a linear combination of the values that a solution of a differential equation can take

on the boundary of the domain and the normal derivative at the boundary, the problem

is well posed. Given the input and the cylindrical boundary limits to the problem, there

exists a unique discrete eigenvalue solution.

We solve the problem in a cylindrical coordinate system in which the longitudinal z axis

is a symmetry axis for the system. The relevant coordinates are (ρ, ϕ) and the gradient is



69

applied along the polar axis direction (i.e. across a diameter). Equation (4.12) becomes:

P (1)
s (r0|r, t) =

∞
∑

n=0

Cne
−λntJn(kρρ0)Jn(kρρ)e

in(ϕ−ϕ0) (4.13)

The permeable membrane boundary is at a radial distance r = a from the cylinder center.

For notational convenience, we define the roots kρ of the Bessel function Jn as kρ = αnm
a .

Considering our boundary condition Equation (4.4), the eigenfunction expansion for the

propagator is then given by:

P (1)
s (r0|r, t) =

∞
∑

n=0

∞
∑

m=1

A2
nme

−α2
nmD1∆

a2 Jn(
αnm

a
ρ0)Jn(

αnm

a
ρ)

× cos(nϕ0) cos(nϕ)

(4.14)

where Jn are the standard (cylindrical) Bessel functions, while the eigenvalues αnm are

determined by the boundary condition Equation (4.4), which is:

αnmJ
′
n(αnm)

Jn(αnm)
= −h (4.15)

Anm are normalizing constants:

A2
0m =

1

πa2
α2
0m

J2
0 (α0m)(h2 + α2

0m)
(4.16)

A2
nm =

2

πa2
α2
nm

J2
n(αnm)(h2 + α2

nm − n2)
, n 6= 0 (4.17)

The derivation of Equation (4.15)-(17) is developed in detail in Appendices A and B.

Finally, we can derive the echo attenuation in Q-space by applying Fourier transforma-

tion on the propagator function in X-space Equation (4.14):

E1(q,∆) =

∫ ∫

ρ(r, 0)P (1)
s (r0|r,∆)ei2π~q·(r−(r0))d~r0d~r

=

∞
∑

m=1

4e
−α2

0mD1∆

a2
α2
0m

h2 + α2
0m

[2πqaJ ′
0(2πqa) + hJ0(2πqa)]

2

[(2πqa)2 − α2
0m]2

+

∞
∑

n=1

∞
∑

m=1

8e
−α2

nmD1∆

a2
α2
nm

h2 + α2
nm − n2

× [2πqaJ ′
n(2πqa) + hJn(2πqa)]

2

[(2πqa)2 − α2
nm]2

(4.18)

In a typical experiment, only the lowest eigenvalue α = α01 is important [82]. Thus, for the

purpose of measuring the axon radii, we can simplify the echo attenuation equation, (4.18),

and Equation (4.15) becomes:
α01J

′
0(α01)

J0(α01)
= −h (4.19)
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According to the Bessel function, J ′
n(x) = (nx )Jn(x) − Jn+1(x), we can derive J ′

0(x) =

−J1(x). Therefore, our final derivation of the boundary condition is:

α01J1(α01)

J0(α01)
= h (4.20)

We can approximate
α2
01

h2+α2
01

= 1 similarly. Our final simplified MRI signal attenuation in

the intra-axonal compartment is:

E1(q,∆) = 4e
−α2

01
D1∆

a2
[hJ0(2πqa)− 2πqaJ1(2πqa)]

2

[(2πqa)2 − α2
01]

2
(4.21)

where a is axon radius and all other parameters have the meanings above.

4.2.2.2 Water Diffusion in the Extra-axonal Space

By applying a Fourier transformation on the Fick’s Law differential equation (4.2) governing

Ps(r0|r, t) in X-space, we can derive differential equations describing echo signal intensities

in Q-space:
∂E(q, t)

∂t
= −q2DE(q, t) (4.22)

Figure 4.2: Histogram of 100 samples drawn from posterior distribution on radii a =
[1, 1.9, 3, 5, 7] µm using MCMC; orange lines indicate the true value of various radii; black
lines indicate the mean value of each estimate with error bars showing standard deviation.
The model was fitted to six constant-gradient diffusion-MRI experiments based on Monte-
Carlo simulation with gradient strength 200 − 700 (mT/m). The results demonstrate the
feasibility of recovering underlying axon radii using the model.
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The solution to the equation has the form E(q, t) = E0e
−q2Dt. Therefore, we model the

hindered diffusion surrounding the axons with a Gaussian distribution. By assuming a

large exchange time τ , q2τD2 ≫ 1, the apparent diffusion coefficient of the extra-axonal

compartment can be approximated as D2app = D2 +
1

q2τ
[66]. The MRI signal attenuation

in the extra-axonal compartment is then:

E2(q,∆) = e−q2D2∆+∆

τ (4.23)

4.2.2.3 Composite Model for Water Diffusion in Axonal Space

In summary, referring to Equations (4.1), (4.21), and (4.23), our composite model for

normalized MRI signals from water diffusion in axonal space is:

E(q,∆) = fE1(q,∆) + (1− f)E2(q,∆)

= f(4e
−α2

01
D1∆

a2
[hJ0(2πqa)− 2πqaJ1(2πqa)]

2

[(2πqa)2 − α2
01]

2
)

+(1− f)(e−q2D2∆+∆

τ )

(4.24)

with boundary condition
α01J1(α01)

J0(α01)
= h (4.25)

where

• Jn are the standard (cylindrical) Bessel functions and the eigenvalues αnm are deter-

mined by the boundary condition Equation (4.15)

• the experimental parameters are:

– The wavenumber q = γδG, γ is the gyromagnetic ratio, δ is the pulse duration,

and G is the applied gradient

– The time between pulses in MRI experiments is ∆

• The microstructural parameters are:

– The axon radius, a

– The volume fraction of the intra-axonal compartment, f ∈ [0, 1]

– The free diffusion coefficients of the intra- and extra-axonal compartments re-

spectively, D1 and D2

– The permeability h =
Ma

D
in the intra-axonal compartment; M is the perme-

ability coefficient

– The exchange time in the extra-axonal compartments,τ
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4.3 Datasets

In order to estimate the underlying microstructural parameters and validate our model, we

performed several experiments using simulation data. The benefit of using simulation data

is that the ground truth about the microstructural parameters is known and controllable.

Our diffusion MRI simulation data were derived from Monte Carlo simulation of the ge-

ometric model with rectangular arrangement of cylinders using CAMINO [45]. Our model

was fitted to six constant-gradient experiments with the following microstructural param-

eters: various cylindrical radii: a = [1, 1.9, 3, 5, 7] µm; exchange rate τ = 0.6 (s); the free

diffusion coefficients of the intra-axonal and extra-axonal water were assumed to be the

same, D = 2e−9 m2/s; and the intra-axonal volume fraction f = 0.708. We set our experi-

mental parameters to be: δ = 2 (ms); diffusion time was chosen from 20 to 1060 (ms) with

14 linear increments; diffusion gradients were applied only perpendicular to the axon axis

(i.e. across a diameter) and each simulation was repeated for six linear gradient amplitudes

of 200− 700 (mT/m) with SNR = 16.

4.4 Results

We used a Markov Chain Monte Carlo (MCMC) procedure (see Section 3.5.1 for details) to

get samples of the posterior distribution of the model parameters given the data. We used

broad uniform priors for all the scalar model parameters. Our proposed distributions were

Gaussian with standard deviations chosen manually to give suitable acceptance rates. We

initialized parameters to the true value to speed up convergence. The MCMC was run for

10,000 iterations, which yields approximately 100 independent samples from the marginal

posterior distribution of model parameters.

Figures 4.2 and 4.3 show our main results. Each histogram combines a total number of

100 samples from MCMC runs. Figure 4.2 shows the histogram of the marginal posterior

distribution on radii a for each of the various true a = [1, 1.9, 3, 5, 7] µm. As mentioned

earlier, previous work [4] had much lower accuracy in recovery of smaller radii (≈ 2 µm)

than larger radii. Our study was able to recover radii at about the same variance for both

small and large radii (a = 1e−7−7e−7 µm). Figure 4.3 shows the histogram of the marginal

posterior distribution of the other microstructural parameters f (volume fraction), D (free

diffusion coefficient) and τ (exchange rate). In previous work [4], there was a downward

bias in estimating the free diffusion coefficient D. We were able to recover the diffusion

coefficient quite close to the true value. For comparison, the orange lines on the graph
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Figure 4.3: Histogram of 100 samples drawn from posterior distributions on volume fraction
f , free diffusion coefficient D, and exchange rate τ at various radii: a = [1, 1.9, 3, 5, 7] µm
with color coding as in Figure 4.2. The orange lines indicate the true value of f = 0.708,
D = 2e−9 m2/s and τ = 0.6 (s). The black lines indicate the mean value of each estimate
with error bars showing standard deviation. Note that overlapping bars may not show on
the figure.
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indicate the true value of the corresponding parameters from simulation data. The black

vertical lines indicate the mean value of each estimation and their error bar corresponds

to standard deviation. Overall, the estimate of the microstructural parameters is accurate

and demonstrates the feasibility of recovering underlying axon radii.

4.5 Discussion

We show here that we can recover axon radii and other microstructural features such as

volume fraction and diffusion coefficient using our model through a MCMC procedure. This

lets us measure anatomical and microstructural features of tissue noninvasively with a more

realistic model that integrates water exchange. Direct measurement of axon radii could have

a significant impact on our understanding of white matter architecture and connectivity and

could improve detection of abnormal development and changes.

Our model is based on two assumptions: (1) water diffusion within axon is restricted,

and (2) water molecules exhibit a slow exchange rate. The first assumption, while not

proven, is supported by much experimental evidence. It is reasonable to model the intra-

axonal compartment of axons as a pack of cylinders containing water. The second condition

is also supported by studies that show the exchange rate may be as high as 700ms [65].

Currently, a single value per voxel for the axon radius has been assumed for simplicity.

This can easily be extended to integrate over a model distribution of axon radii using

Gamma distribution as in Section 3.4.3. Also, in the current model, we are assuming a

single axon direction per voxel. Again, this could be extended to model the distribution for

axon orientation using spherical harmonic decomposition to detect fiber crossing and fiber

kissing.

4.6 Conclusion

We present a new composite analytical model of diffusion and exchange of water in white

matter using data from diffusion MRI. Our work is a first attempt to estimate microstruc-

tural features through diffusion MRI model incorporating water exchange. Our results

demonstrate the feasibility of recovering underlying axon radii and other microstructural fea-

tures such as volume fraction and diffusion coefficient using the model through the MCMC

procedure from Monte Carlo simulation data. We were able to achieve higher accuracy in

recovering small axon radii (≈ 2 µm) and diffusion coefficient than in previous work.
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Appendix A

Solution of the Torrey-Bloch

Equation for double-PFG

A.1 Torrey-Bloch Equation with Boundary Condition

Any sample placed under a magnetic field will be magnetized, its magnetization ~M(~r, t) is

followed by decay due to relaxation. In 1956, H.C. Torrey mathematically showed how the

Bloch equations for magnetization would change with the addition of diffusion terms and

the application of a spatially varying gradient.

• The Torrey-Bloch equation neglecting relaxation is (To unify symbols used in math-

ematics background Section 2.2, let Ψ(~r, t) ≡M(~r, t):

∂Ψ

∂t
= D∇2Ψ− iγ ~G · ~rΨ (A.1)

• The boundary condition is:

∂Ψ

∂n
= 0 (A.2)

• The corresponding signal is

E =

∫

Ψ(~r, t)dτ (A.3)

where D is the diffusion coefficient, γ is the gyromagnetic ratio, and ~G(t) is the linear

magnetic field gradient waveform.
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A.2 Solution of the Torrey-Bloch Equation using Green’s

Function

Since the term iγ ~Ġ~rΨ in equation (A.1) contains variable Ψ, we must use an iteration

method to solve the Torrey-Bloch equation (A.1).

Let

Ψ(~r, t) = eλtϕ(~r) (A.4)

where ϕm(~r) is the eigenfunctions of the eigenequation:

D∇2ϕm(~r) = −λmϕm(~r) (A.5)

We can expand Ψ using eigenfunctions ϕm

Ψ(~r, t) =
∑

m

Am(t)ϕm(~r) (A.6)

Insert equation (A.6) above into equation (A.1), we get:

∑

m

(

−λmAm(t)− iγ ~G · ~rAm(t)− ∂Am(t)

∂t

)

ϕm(~r) = 0 (A.7)

and since

∂Am(t)

∂t
= −(λm + iγ ~G · ~r)Am(t) (A.8)

we derive:

Am(t) = Am(0)exp
(

−(λm + iγ ~G · ~r)t
)

(A.9)

Insert equation (A.9) above into equation (A.6), we derive:

Ψ(~r, t) =
∑

m

Am(0)exp
(

(−λm + iγ ~G · ~r)t
)

ϕm(~r) (A.10)

From equation (A.6) we can derive:

Am(0) =< ϕm(~r|Ψ(~r, 0) >=

∫

ϕ∗
m(~rΨ(~r, 0)dτ (A.11)

Finally, we insert equation (A.11) into equation (A.10), we obtain:
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Ψ(~r, t) =
∑

m

∫

Ψ(~r′, 0)ϕ∗
m(~r′)ϕm(~r)exp

(

−(λm + iγ ~G · ~r)t
)

dτ ′ (A.12)

We define a Green’s function:

< ~r′|G(t)|~r >=
∑

m

ϕ∗
m(~r′)ϕm(~r)exp(−(λm + iγ ~G · ~r)t) (A.13)

We can rewrite our magnetization equation (A.12) as:

Ψ(~r, t) =

∫

< ~r′|G(t)|~r > Ψ(~r′, 0)dτ ′ (A.14)

Therefore, the signal attenuation from this magnetization is:

E =

∫

Ψ(~r, t)dτ =

∫ ∫

< ~r′|G(t)|~r > Ψ(~r′, 0)dτ ′dτ (A.15)

General Solution for double-PFG

According to equation (A.12), in order to solve the Torrey-Bloch equation under certain

MRI sequence, we need to know two things:

1. The eigenfunction and eigenvalues of equation (A.5) in certain coordinate system. For

example, the coordinate system used in axon analysis is cylindrical coordinate.

2. The magnetic field gradient The magnetic field gradient is the source of Torrey-Bloch

equation. The pulse gradients are intermittent, not continuous. We could divide the

time intervals into multiple sections, such as 0, t1, t2, ..., tn−1, tn, ..., t. In time interval

(tn−1, tn), we can rewrite equation (A.9) as:

Am(tn) = Am(tn−1)exp
(

−(λm + iγ ~G · ~r)(tn − tn−1)
)

(A.16)

Let tn−1 − tn ≡ δn, the wave number qn = 1
2πγGδn, we have:

Am(tn) = exp (−(λmδn + i2π ~qn · ~r))Am(tn−1) (A.17)

Equation (A.17) is a recurrence equation, it can be rewritten as:

Am(t) = Am(0)

N
∏

n=1

exp(−(λmδn + i2π ~qn · ~r)) (A.18)

and

E =< 0|
N
∏

n=1

exp(−(λmδn + i2π ~qn · ~r))|0 >∗ (A.19)
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where |0 > is basis state of equation (A.9). The magnetic pulse gradients in the

double-PFG have seven intervals, with pulse duration δ, diffusion time ∆, mixing

time tm and gradient magnitude G, we derive:

E =< 0|e−λm(2δ+2∆+tm)e8π~q·~r|0 >∗ (A.20)



Appendix B

Derivation of Boundary Condition

This derivation shows how we formulate the boundary condition, Eq. (15). Based on our

general solution to P
(1)
s (r0|r, t) in Eq. (13):

P
(1)
s (r0|r, t) =

∑∞
n=0Cne

−λntJn(kρρ0)Jn(kρρ)e
in(ϕ−ϕ0)

we can derive:

D1
∂P

(1)
s

∂ρ
|ρ=a =

∞
∑

n=0

CnD1e
−λntJn(kρρ0)J

′
n(kρa)kρe

in(ϕ−ϕ0) (B.1)

MP (1)
s |ρ=a =

∞
∑

n=0

CnMe−λntJn(kρρ0)Jn(kρa)e
in(ϕ−ϕ0) (B.2)

Incorporating Eq. (B.1)-(B.2) into our initial boundary condition for the permeable mem-

brane, Eq. (4):

D1
∂P

(1)
s

∂ρ
|ρ=a +MP

(1)
s |ρ=a = 0

gives us:
∞
∑

n=0

Cne
−λntJn(kρρ0)[D1J

′
n(kρa)kρ +MJn(kρa)]e

in(ϕ−ϕ0) = 0 (B.3)

which is equivalent to:

D1J
′
n(kρa)kρ +MJn(kρa) = 0 (B.4)

The parameters we defined earlier, kρ =
αnm

a
and h =

aM

D1
, have been integrated into

Eq. (B.4). We derive our boundary condition in Eq. (15):

αnmJ
′
n(αnm) + hJn(αnm) = 0
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Appendix C

Derivation of Normalizing

Constants

Here we demonstrate how we derive the normalizing constants Anm in Eqs. (16)-(17). Based

on the orthogonality of Bessel functions, we have:
∫ a

0
ρJn(kiρ)Jn(kjρ)dρ = 0(i 6= j)

= Ni(i = j)

(C.1)

where

Ni =
a2

2
{[J ′

n(kia)]
2 + (1− n2

a2k2i
)J2

n(kia)} (C.2)

We define ki =
αnm

a
as before and can rewrite Eq. (C.2) as:

Nnm =
a2

2
[J ′

n(αnm)]2 + (1− n2

α2
nm

)J2
n(αnm) (C.3)

Given our boundary condition Eq. (15): αnmJ
′
n(αnm) + hJn(αnm) = 0, we can derive:

Nnm =
a2

2
(
h2 + α2

nm − n2

α2
nm

)J2
n(αnm) (C.4)

In order to derive our normalizing constant Anm in Eqs. (16)-(17), we integrate Eq. (14),

the propagator, on the cylindrical cross section at time t = 0, ρ = ρ0, ϕ = ϕ0 and P
(1)
s =

δ(r − r0):
∫ ∫

P (1)
s ds = 1 (C.5)

Therefore, we have:

A2
nm

∫ ρ=a

ρ=0

∫ ϕ=2π

ϕ=0
ρJ2

n(
αnm

a
ρ) cos2(nϕ)dρdϕ = 1 (C.6)
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Given that:

∫ 2π

0
cos2(nϕ)d(ϕ) = π(n 6= 0)

= 2π(n = 0)

(C.7)

we can derive A2
nm based on Eq. (C.4) and Eq. (C.7),

A2
nm =

1

2π

1

Nn
(n = 0)

=
1

π

1

Nn
(n 6= 0)

(C.8)

which is equivalent to the following in Eqs. (16)-(17):

A2
0m =

1

πa2
α2
0m

J2
0 (α0m)(h2 + α2

0m)
(C.9)

A2
nm =

2

πa2
α2
nm

J2
n(αnm)(h2 + α2

nm − n2)
, n 6= 0 (C.10)
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Brain White Matter Anatomical
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Chapter 5

Brain White Matter Visualization:

Spatial Relations

5.1 Introduction

Understanding white-matter structures within the human brain is crucial for studying var-

ious neurological disorders such as Alzheimer’s disease (AD) and HIV. Diffusion-Tensor

Magnetic Resonance Imaging (DTI) estimates the Brownian motion of water in tissues en-

abling the in-vivo exploration of fibrous structures such as white matter in the brain. DTI

tractography methods calculate a set of integral curves estimating neural fibers in the brain.

These curves are generated by tracking the principal eigenvector of the underlying diffusion

tensor field in both directions. They are often visualized with streamlines or variations of

streamlines (streamtubes and hyperstreamlines) in 3D.

Densely sampled integral curves tend to be visually cluttered and hinder the exploration

of the underlying structures. This limitation highlights the need for better data mining

and visualization techniques. In the following chapter, we present two new methods for

visualizing integral curves obtained from DTI volumes that encode spatial relations between

curves with texture patterns.

5.2 Related Work

A vast amount of work has been done on visualization of DTI data (for a complete review

see [101]). Here we only discuss examples of previous work incorporating the spatial relations

of DTI integral curves into their visualization. The standard method used for coloring

84



85

streamtubes according to spatial relations is to map the normalized absolute values of the

x, y, and z components of the vector defined by the end points of the streamtubes, to R,

G, and B color values. This method obviously suffers from mirror symmetries [76]. More

recently, Brun et al [21] apply the Laplacian eigenmaps algorithm, a spectral embedding

method, to embed the end-point distances of integral curves in RGB space.

We build on the body of previous work and present two new visualization techniques:

(1) Perceptual coloring - we used a spectral method [27] to embed “anatomically-motivated

dissimiliarites” between the curves into the L*a*b* color space, which is approximately

perceptually uniform, such that each difference between the colors of the curves corresponds

to the distance (or dissimilarity) between the curves. (2) Texture Patterns - using non-linear

dimensionality reduction techniques, we encode the relations in the low-dimension (i.e., in

the embedding plane) with a flexible coloring scheme and texture patterns.

5.3 Visualization Approach A: Perceptual Coloring

5.3.1 Method

We visualize distances between white-matter tracts using the metric in [108]. Our white-

matter tract processing is illustrated in the flow chart in Figure 5.1: first, streamtubes that

represent white-matter pathways are computed from DT-MRI data. Second, we compute an

adjacency matrix of distances between every pair of streamtubes in the brain. Third, using

a spectral embedding method, we assign colors to every streamtube such that differences

in colors correspond to the distances in the matrix. Finally these colors are converted from

a perceptually uniform color space to RGB for display. On a 2K streamtube dataset, the

relative error of the embedding measured with the Frobenius norm of the tube embedded

distance matrix and the original distance matrix is 13%. We suspect that using a more so-

phisticated method would yield embeddings with less error. After we’ve assigned a coloring

of streamtubes we view them in BrainApp [88], an interactive tool for visualizing DT-MRI

data.

5.3.2 Results

We performed two informal evaluations with an neuropsychologist visualizing a normal and

an HIV-positive brain data-set shown in figure 5.2. Our expert reported high anatomic

specificity, and he reported being able to easily pick out meaningful neural tract bundles

even though the colors varied smoothly. He noted that the hemispheric color differences
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Figure 5.1: White-matter tract processing flow chart.
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Figure 5.2: Visualizing a normal and an HIV-positive brain dataset using perceptually
uniform color space.

easily gave context when navigating in 3D views. He found the subtle color variations

were easier to process visually, and felt that he was the one making the model (instead of

viewing a predefined cluster of tracts). We asked the expert how our approach of smooth

color variation approach fared against displaying hard segmentation, in which whole bundles

are colored with one color. The expert felt the smooth coloring was more compatible with

the uncertainty of tractography.

5.3.3 Conclusion

Our evaluation suggests this is a promising approach. Our visualization method shows

relevant anatomic structures without imposing a segmentation. The smooth subtle color

variation between white-matter tracts in uniform perceptual color space helped the user

visually identify meaningful anatomical structures.

5.4 Visualization Approach B: Texture Patterns

We present a new method for visually differentiating integral curves obtained from DTI

volumes. The goal of our method is to reflect the spatial relations between visualized integral

curves. This will enable the user to group similar curves together while differentiating

dissimilar curves that may lie near one another. To this end, we first define a similarity

measure and compute the similarities between the curves according to that measure. Then

we encode this similarity information onto the streamtube representations of the curves as

stripe texture patterns. We present examples of visualizations using four different pattern

styles. We have evaluated our method with help of neuropsychologists; initial feedback
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(a) (b) (c)

Figure 5.3: Textures: (a) horizontal, (b) vertical (c) diagonal; when applied on the tubes, in
different positions, give four types of patterns(horizontal, vertical, diagonal and diamond).

suggests that our method can be useful in understanding the underlying connectivity of

integral curves.

5.4.1 Method

We create our visualizations in three steps (Figure. 5.4): First, we generate integral curves

from a DTI volume using a fiber-tracking algorithm [108]. Second, we adopt the flat-torus

coloring scheme proposed by Demiralp et al. [35] to obtain pairs of colors for all the integral

curves. We, however, modify the proposed method in two ways: In one, we initialize the

“distance fitting” algorithm described by the authors with 2D points obtained by applying

a spectral dimensionality reduction on the curves [27]. In the other, we get pairs of colors

(instead of a single color) for each point by mapping the u, v and s, t components of the

(u, v, s, t) flat-torus coordinates to two different isoluminant planes of the L*a*b* color

space. Third, we apply the obtained color pairs, as textures with four different styles, onto

streamtube representations of the curves. Using the obtained color pairs we generate three

texture patterns: horizontal, vertical and diagonal. Figure. 5.3 shows the resulting textures

if the color pair is orange and purple. In each texture, the two colors are separated by a

dark line, as shown, intended to help the viewer distinguish the two colors when they are

perceptually similar. Using different combinations of the texture and coordinate mapping,

we apply four different styles: horizontal, vertical, diagonal and diamond, on the integral

curves (see Figure. 5.5). Finally, we apply each of the four texture patterns to the integral

curve model obtained from a volunteer’s brain DTI dataset.

5.4.2 Results

We apply our method to visualization of integral curves generated from a normal volunteer’s

brain DTI dataset. Figure 5.6 shows the result of brain white-matter integral curve models
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Figure 5.4: Workflow for visualizing white-matter tract using texture pattern.
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by applying horizontal, vertical, diagonal and diamond texture pattern styles. In order to

assess the utility of our visualization technique, we conducted a small anecdotal study with

two neuropsychologists who routinely use visualizations of integral curves in their research.

For comparison, we also generated a visualization of the same set of the integral using the

RGB method. We asked our experts to evaluate both methods according to their effec-

tiveness in understanding and exploration of the underlying neural tracts estimated. The

experts’ comments show that while the RGB method is good at capturing large structures,

our visualization contains more information and has high sensitivity, allowing it to capture

subtle differences within large structures.

Our experts noted that the ability to identify subtle changes within regions-of-interest is

critical to diagnosing neurological abnormalities or disorders affecting the length and shape

of neural tracts. They therefore pointed out that a useful application of our method would be

to identify and compare ROIs across subjects. While one of the experts preferred the vertical

texture pattern, the other preferred the diamond pattern. Both of the experts, however, gave

a similar justification for their preferences, namely the ability to detect sharper boundaries

between the curves and find the edges. This is not surprising because the overall perceived

orientation of the dark bands in both texture patterns is orthogonal to the principal direction

of the streamtubes, which helps to see boundaries of the streamtubes easily. The work

presented here is preliminary and focuses on demonstrating the advantages of our method

on DTI integral curves.

5.4.3 Conclusion

We present a new method for visualizing DTI integral curves. Our method applies texture

patterns on streamtube representations of integral curves, encoding spatial relations between

the curves. We demonstrate our method on integral curves obtained from a whole DTI brain

dataset. Expert feedback shows that our visualization can complement existing standard

methods by showing subtle differences within large structures of integral curves.
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(a) (b)

(c) (d)

Figure 5.5: Four different patterns applied on corpus callosum streamtube model: (a)
Diamond Pattern, (b) Diagonal Pattern (c) Vertical Pattern (d) Horizontal Pattern
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Figure 5.6: Applying RGB coloring vs. diamond pattern on whole brain model (a) RGB
coloring applied. Notice that the two singular bundles in the middle are colored in red with
nearly no noticeable subgroup color distinction. (b) Diamond pattern applied. Notice that
smaller subgroups can be visually grouped within the bigger singular bundle



Chapter 6

Brain White Matter

Tracts-of-Interest (TOI) Selection

Tool

6.1 Introduction

Diffusion tensor imaging (DTI) makes possible the non-invasive exploration of fibrous white-

matter structures within the human brain. Current DTI visualization and analysis has fo-

cused on rendering neural tracts and segmentation of white-matter trajectories into anatom-

ically meaningful bundles [101]. The densely sampled neural tracts representing white-

matter structures tend to be visually cluttered, making it difficult for brain scientists to

understand the data. Automatic segmentation methods impose a rigid, possibly inaccurate,

model of which white-matter pathways belong to which bundles. Instead, enabling brain

scientists to interact with the visualization models and manually perform segmentation by

selecting TOI is an important interaction which many published clinical research studies

using DTI tractography [18] have relied on.

6.2 Related Work

Segmentation and clustering of white-matter pathways by interactive selection TOI has

become a popular way for brain scientists to test their hypotheses of white-matter con-

nectivity and functionality, and a number of tools have been developed for interactively

assembling TOI into anatomically meaningful neural tract bundles. Sherbondy et al. [93]

93
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defined volumes-of-interest to let users interactively group white-matter pathways going

through these regions. Blaas, et al., [17] presented a real-time neural tract bundle selection

system based on multiple convex selection objects. However, in these methods, the shape

of the volume the user can define is rather limited, making selection cumbersome due to

the curved and complex nature of white-matter pathways. CINCH, a 2D marking interface

for selecting 3D TOI, has been developed recently [3] to alleviate the difficulties involved in

selecting complex 3D structures using only commodity input devices, which offer only two

degrees of freedom. However, CINCH users still find navigating and locating the desired

white-matter structures undesirably time-consuming. It is also reported that selection using

2D plane intersection, as in CINCH, requires extensive neuroanatomical knowledge because

the user loses the 3D context while working in the 2D space.

6.3 Taxonomy and Design Guidelines of TOI Selection

We present a set of findings from our user evaluation of state of the art TOI selection

techniques. Tractography is a standard approach for visualizing the brain’s white-matter

structure that is based on diffusion tensor imaging (DTI), and brain scientists need very

efficient tools to select tracts-of-interest (TOI) for their research. We performed two evalu-

ations aimed at better understanding these tools: a subjective study of three standard TOI

selection tools looking at the utility, usability and user satisfaction with the design features,

and a user performance evaluation to measure the speed and subjective reliability of two of

the three standard TOI selection tools.

6.3.1 Introduction

The most popular approach to extracting the underlying neural tract structure from DTI

data is tractography: reconstructing trajectories from DTI using streamtubes/streamlines.

Selecting TOI for segmentation is the most frequent task in most clinical research studies

using DTI tractography, such as [18]. Several TOI selection techniques have been proposed

to let expert users obtain clustering interactively [93, 3, 17, 98]. Different TOI selection

methods give users different levels of flexibility and efficiency in clustering the neural tracts.

It is unclear which TOI selection method and combination of interaction techniques gives

the expert user the best tools for the clustering task, and to the best of our knowledge,

no studies have compared TOI selection techniques. We present the results from our user

study evaluating the design features in three different TOI selection tools. We hope that
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this study will improve the design of TOI selection tools and thus help brain scientists in

brain diagnoses.

6.3.2 Methods for Evaluating TOI Selection Tools

We performed two user evaluations to gain insights into the nature of TOI selection tools for

DTI. Four domain experts took part in both experiments. All TOI selection tools evaluated

in the experiments ran on the same desktop hardware setup, and the dataset used was DTI

scans from a normal subject.

6.3.2.1 TOI Selection Tools Studied

A number of tools have been developed for interactively selecting TOI for neural tracts;

we look here at the TOI selection technique component of each interface. We evaluate

and discuss three standard TOI selection tools: Brainapp, an interactive TOI selection

application adapted from [93], CINCH [3], and MedINRIA [98]. Other tools such as DTI

Studio [48] were not included in the study because their TOI selection techniques do not

differ significantly from the three above.

6.3.2.2 Task

• Experiment 1: Subjective User Evaluation

Our goal here was a qualitative evaluation of the utility, usability and user satisfaction

with different features of three TOI selection tools: Brainapp, CINCH, and MedINRIA.

Participants were first trained on the techniques provided by each tool until they were

reasonably proficient. They were then asked to select the corpus callosum, one of the most

important white-matter structures in the brain. After the experiment, participants were

asked to provide a subjective rating of the utility, usability and user satisfaction with its

features; the ratings ranged from 1 to 7, 7 being the best. Our questionnaire considered

the action space (features affecting how users interact with the model) and outside factors

(features that assist in the selection process such as visual enhancement).

• Experiment 2: User Performance Evaluation

Our goal here was to obtain performance data on TOI selection techniques, using controlled

tasks in a simplified environment. We compared user performance in selecting four differ-

ent neural bundles defined in [102] using two standard tools: Brainapp and CINCH. (We
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Figure 6.1: Subjective user evaluation results. Top: action space, bottom two: outside
factors
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omitted MedINRIA because its TOI selection interaction overlaps with those of Brainapp

and CINCH.) The four white-matter structures – corpus callosum (CC), cingulum bundle,

superior longitudinal fasciculus (SLF), and uncinate fasciculus (UF) – were chosen to rep-

resent the complexity and variation in neural bundles (Figure 6.2). The time participants

took to make satisfactory selections of each assigned structure using each tool was recorded,

and they were then asked to provide a confidence score for their final result on the basis of

two criteria: correctness and completeness [69].

6.3.3 Results

6.3.3.1 Subjective User Evaluation Results

Figure 6.1 shows the result of our subjective user evaluation. Below we highlight some of

the most interesting findings.

Action Space:

• The touch tool was rated highest in all three rating categories

Our analysis suggests two main reasons for its high performance. First, much of the se-

lection process involves refining the selection results by removing outliers on the basis of

anatomy; second, the marking operation is intuitively easy to understand, so that users

gained confidence in using the tool. The disadvantage, however, is that some of those out-

liers may be the result of disease. Note that the box-shape volume of interest (VOI) method

in Brainapp usually avoids this problem since regions of interest (ROI) are placed strictly

on the basis of the standard starting and ending positions of the structure in the brain.

• The shape match and grow/shrink had a high average score of 6 in terms

of usefulness. However, the confidence score was rather low; in particular,

grow/shrink had an average rating of only 2.7 out of 7.

Outside Factors:

• The scores for the usefulness of anatomical viewpoint control had the

biggest variance range, 2-7.

This suggests that the usefulness of this feature depends strongly on user preference. Pro-

viding brain scientists with an anatomical viewpoint could be an essential component of

TOI selection tools that target those users who experience relatively higher difficulty in

model navigation.



98

• Users had high confidence in the reproducibility of their TOI selection

result in Brainapp and MedINRIA, but much lower confidence in the re-

producibility in CINCH.

The box-shaped ROI method in Brainapp and MedINRIA has the advantage of sys-

tematically placing ROIs based on standard selection protocols [102]. Selection in CINCH

depends strongly on drawing arbitrary marks, and brain scientists would find it hard to

come up with a recipe for making their TOI selection reproducible.

6.3.3.2 User Performance Evaluation Results and Discussion

Figure 6.3 shows the time and confidence scores in picking out the four assigned white-matter

structures. CINCH outperformed Brainapp in all three structures except the UF. This is

an unexpected result, since the UF is a curving arc-shaped structure in the frontal lobe

and we would expect the box-shaped regions to perform poorly in capturing this structure.

We conjecture that this result occurred because: (1) The UF is at the outermost part of

the frontal lobe of the brain, and a box can be placed at this location without too much

occlusion, and (2) Most participants chose to use the shape-match operation in CINCH due

to the special curving shape of the structure. Unfortunately, the algorithm performed very

poorly in locating this shape, frustrating the users and delaying the whole selection process.

6.3.4 Conclusion

Evaluating and comparing the relative merits of different TOI selection methods for neural

tract selection lead toward a formal understanding of the state of the art in TOI selection

tools. Giving users relatively simple fixing/erasing mechanisms such as the touch mark in

CINCH is very useful. The reproducibility of the selection methods should be carefully

considered in the implementation so that users can reliably reproduce scientific analysis.

Semi-automatic selection algorithms based on embedded data has a high potential to provide

users with more efficient tools.

6.4 TOI Selection Approach A: 2D Sketching

6.4.1 Method

We provide the user with a flexible user interface to select TOI on the 2D cutting plane of

the anatomical slices. We visualize distances between white-matter tracts using the metric
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(a) Brainapp

(b) CINCH

Figure 6.2: Snapshot of a user’s selection for the four assigned white-matter fiber bundles
in experiment 2.
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Figure 6.3: User performance evaluation results: time and confidence
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in [108] and assign a coloring of streamtubes (see Section 5.3). We then view them in

BrainApp [88] an interactive tool for visualizing DT-MRI data. We extended this software

with a new selection interaction. The user selects axis-aligned planes in 3D (Fiigure 6.4b)

and then views, as a 2D view (Figure 6.4c), the colors of streamtubes intersecting that slice.

Next the user makes a free-form closed curve to select. The streamtubes that pass through

the this region are selected (see Figure 6.4d). This axis-aligned view and selection method

exploits the training neuro-scientists have received in viewing aligned 2D images (sectional

anatomy) of the brain.

6.4.2 Results

We performed two informal evaluations with an expert visualizing a normal and an HIV-

positive brain data-set. Our expert reported high anatomic specificity, and said he was

easily able to pick out meaningful neural tract bundles even though colors varied smoothly.

He noted that the 2D cutting plane view is friendly to use as it matches his training in neu-

roanatomy for identifying anatomical structures on 2D histology slices. He also commented

that drawing a freeform lasso in the 2D image is straight forward to understand and easy

to adopt as selection mechanism.

6.4.3 Conclusion

Our evaluation suggests this is a promising approach. Our visualization method shows

relevant anatomic structures without imposing a segmentation. The tool provided a simpler

2D drawing TOI selection method, which is an important interaction in brain diagnosis for

experts familiar with sectional anatomy.

6.5 TOI Selection Approach B: 3D Haptics-assisted Lasso

Drawing

We present a new haptics-assisted 3D lasso drawing interface for selecting TOI in diffusion

tensor imaging (DTI) in fishtank virtual reality (VR). This interface brings TOI selection

tasks into 3D stereo VR with higher-input bandwidth devices. In the system, the 6D input

Phantom device lets the user make selections by drawing a smooth 3D lasso with haptics

constraint assistance directly in the 3D space. The hand tracker lets the user use hand

gestures to rotate and zoom the model. Users also reported that making selections by

drawing 3D lassos is easy, as it resembles pointing out structures to a collaborator with
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(a) (b)

(c) (d)

Figure 6.4: Our ROI selection application: sketching selection and interaction with data
from the brain of a normal subject. (a) Color differences indicate differences between
pathways shown with 4K tubes. (b) User selects an axis aligned plane corresponding to
the midsaggital slice of the corpus callosum, displayed with a semi-transparent red plane.
(c) Selected slice is shown as 2D image in which the user selects a freeform region (yellow
curve). (d) All tracts passing through this region are displayed.
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their fingers but has higher precision. Users also remarked that VR helped them appreciate

the three-dimensional structure of the neural tracts more easily, and they gained more

confidence in identifying the structures and the area they project in the brain. Working in

the VR environment reduces the navigation time for the TOI selection task, a key challenge

in TOI selection tools. Users were able to segment out tortuous structures that are often

time-consuming to select using traditional rigidly shaped VOI neural pathway selection

tools.

Most interfaces for selecting TOI interactively depend on devices such as mice and

pens, which offer only two degrees of freedom for manipulation of 3D VOI, and they also

use standard 2D monitor screens to display the 3D structure of the brain. Brain scientists

have noted that they must constantly rotate the brain model in order to retain their mental

picture of the 3D structure presented on the 2D screen. The extensive navigation time is

also a key drawback in current TOI selection tools. Here we present a new haptics-assisted

interface that uses a 3D lasso for selecting TOI in 3D stereo VR.

6.5.1 Method

To relieve some of the navigation challenges present in current TOI tools, we asked brain

scientists to work in a nontraditional environment using a stereo VR environment with a

head tracker to reduce visual clutter (Figure 6.5a) and a higher-degree-of-freedom input

device (Figures 6.5b and 6.5c) to improve manipulation and selection.

The user wears head-tracked stereo glasses that support active stereo viewing. A 3D

hand tracker is attached to the user’s finger so that rotation and zooming are controlled

by hand gestures. The user draws 3D lassos for TOI using the Phantom force feedback

device, which serves as a tangential guiding filter and makes it possible to draw a smooth

lasso directly in the 3D space. We address the challenges involved in drawing the 3D lasso

by integrating a dynamic dragging haptics constraint [52] [53] inspired by the dense and

narrow nature of the neural tracts.

In our interface, selection is done using the Phantom device to draw a freeform 3D

lasso around the neural tract bundle directly in the 3D space (Figure 6.5c). Figure 6.6

demonstrates making a TOI selection using the tool. First, the user selects a group of neural

tracts by drawing a lasso in the space. This creates a 3D surface based on triangulation

of the lasso and any neural tracts intersecting this surface are selected. The user can then

perform multiple lasso operations with logical combinations of AND and OR, as illustrated

in Figure 6.7, to obtain the desired neural tract bundle based on the characteristic trajectory.



104

Figure 6.5: Users collaborating on hypotheses about white-matter connectivity using 3D
lasso drawing selection interface in 3D stereo VR. (a) Fishtank VR setup. (b) 3D hand
tracker. (c) Phantom force feedback device.

Figure 6.6 shows a user placing two lassos around the uncinate fasciculus (UF) and singling

out the structure with an AND operation.

To evaluate our system, informal evaluations with 4 expert users visualizing two normal

brain datasets were performed. The results are reported below.

6.5.2 Results

In our informal user evaluation with four expert users visualizing two normal brain datasets,

users reported that:

• The 3D stereo environment let them identify 3D structures much more easily, since

it avoids the visual flattening of the 3D white-matter structures found in traditional

TOI selection tools.

• Navigation time was greatly reduced by the visual aid of 3D stereo combined with

simple hand gestures for brain model manipulation. The users located and identified

white-matter structures and the area they project in the brain quickly and with high

confidence.
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(a) (b)

(c) (d)

Figure 6.6: Our interface selecting the uncinate fasciculus (UF) using the 3D lasso: the user
places two lassos around the UF and singles out the structure with an AND operation. The
final result is shown in purple.
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Figure 6.7: The two logical operations
“AND” and “OR”. Two lassos delin-
eate ROIs placed on anatomic land-
marks. (1) AND operation: neural
tracts that go through both ROIs are
selected. (2) OR operation: neural
tracts that go through either one of the
ROIs are selected. The neural tracts
resulting from the corresponding logi-
cal operations are shown in blue.

• Selection by lasso drawing is easy to learn. The users found that the ability to di-

rectly place the simple 3D lasso in 3D space let them easily segment tortuous brain

structures, such as the uncinate fasciculus (UF), that with traditional VOI tools often

require careful placement of multiple VOI with specific dimensions and locations.

• Users were often highly engaged in the process and noticed a reduction in the eye

fatigue common in stereo interfaces.

The four brain scientists involved in this preliminary study expressed strong interest in

adopting the system for their scientific analysis in the near future.

6.5.3 Conclusion

We have presented a new haptics-assisted 3D lasso-drawing interface for selecting TOI

in DTI. Our system brings TOI selection tasks into 3D fishtank VR with higher-input-

bandwidth devices. The brain scientists who worked with the 3D lasso tool in the stereo

VR environment found that visual clutter was reduced and that they gained confidence in

identifying the structures; they also noted that manipulating a brain model using a higher-

order input device such as the hand tracker in the stereo environment greatly reduced

navigation time. With white-matter structures vividly apparent, users could easily lasso

out tortuous structures that are often time-consuming to specify using traditional rigid VOI

selection tools.



Chapter 7

Conclusion

Although the application of diffusion MRI in brain imaging has been studied extensively over

the past few decades, the computational solutions and the interactive visualization interfaces

for localizing and extracting microstructural information at the axonal level in clinical

settings have remained relatively unexplored. We have discussed in detail the benefits

and sensitivity of reconstructing quantitative measurements of microstructural properties in

brain-tissue regions of interest and improved qualitative interactive visualizations to enhance

user performance in isolating those regions. This chapter concludes this dissertation work by

summarizing our primary contributions and discussing future directions and applications.

7.1 Summary of Primary Contributions

We have addressed the creation of tools and methodologies for non-invasive microstructural

and anatomical analysis of the brain white matter using diffusion MRI. Creating and refining

these methodologies addresses important problems in neuroanatomy and in pathological

studies of the brain.

The combination of visualizations, interactive interfaces, and computational techniques

provides powerful tools for scientific data analysis and hypothesis testing. The visualizations

developed here disentangle the complex white-matter structure from high-dimensional dif-

fusion MRI data and provide additional visual cues such as tract spatial relationships. The

interactive TOI selection interfaces using our 3D VR environment combined with anatomi-

cal landmarks let the user isolate specific regions of interest from their data for quantitative

analysis within or across subjects more confidently and efficiently than current tools. The

computational techniques accurately reveal important “hidden” microstructural information
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in the specific regions extracted from the selection interfaces using clinically feasible acqui-

sition in live human subjects. Together, these tools allow us to analyze data non-invasively

and qualitatively on a global scale, as well as quantitatively in local brain regions.

7.2 Recommendations for Future Research and Practical Ap-

plications

The three main components presented in this dissertation, as outlined in Figure 7.1, demon-

strate our computer science contributions by solving problems of immediate impact in brain

science. These computational approaches can be generalized across different scientific dis-

ciplines. The first is the computational solutions for extracting “hidden” information and

physical properties in medical imaging data in various scientific disciplines through math-

ematical modeling and analysis. The second area explores powerful visualization tools for

combining multidimensional information obtained from various imaging modalities. The

third area attacks the design of efficient interactive user interfaces for understanding and

exploring scientific data at multiple scales. Below, we present recommendations for fu-

ture research and practical applications of this dissertation work that combine these three

research areas to expand our knowledge in computer science, neuroscience, and life sciences.

1. Disease state assessment and prediction

Histological studies have shown microstructural changes in a number of neurological disor-

ders including multiple sclerosis, Alzheimer’s disease, and human immunodeficiency virus.

However, the micorstructural changes over time in these diseases remain largely unstud-

ied. It is crucial to evaluate computationally the progressive changes in the microstructure

due to neurological disorders in vivo. These changes cannot be tracked using histological

methods. We hypothesize that using our computational techniques to reveal the specific

microstructural changes will: (1) enable earlier detection of neurological disorders, (2) pro-

vide direct assessment of the disorder’s severity, and (3) provide sensitive measurement to

predict clinical disease progression.

2. Computational modeling and image analysis for information extraction

Computational information extraction problems similar to those brain-tissue problems dis-

cussed in this dissertation exist in many other areas of life sciences such as biology, DNA

sequencing and cancer genomics. Numerous types of data and images are obtained by
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Figure 7.1: The general application of this dissertation’s three main components.

scientists in order to understand the exceedingly complex structure and functions of var-

ious biological tissues. Although the data we obtain in these domains encode important

brain-structure information, they are only relative quantities measured in the physical en-

vironment of the imaging process. More direct measurements of the biological tissue prop-

erties remain “hidden” in those data. This information extraction process usually requires

physical analysis of the underlying environment, mathematical modeling, and robust com-

putational algorithms similar to what is described in Part I of this dissertation.

3. Powerful visualizations for combining multidimensional scientific informa-

tion

The massive datasets obtained across all scientific disciplines present huge technological

challenges. More information is being produced from various imaging modalities than the

human eye and brain can begin to make sense of. Mapping these huge data sets into

comprehensive visualizations that also make connections among different imaging modal-

ities will greatly facilitate data integration. Powerful visualization tools can significantly

enhance scientific understanding in brain function, molecular interactions, and protein net-

works. In brain science, for example, we obtain different kinds of information from various
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imaging modalities such as diffusion MRI, spectral MRI, and microCT. Visualizations that

integrate computationally extracted microstructural properties of white matter (e.g., axon

radius and volume fraction) as well as diffusivity measures from diffusion MRI (e.g., frac-

tional anisotropy and mean diffusivity) will greatly enhance the understanding of brain

structure and its disease-introduced changes.

4. Interactive user interfaces for understanding and connecting data at multiple

scales

Much scientific information and data are multidimensional and viewing them at different

scales can drive significantly different discoveries. It is crucial to provide friendly user inter-

faces that can transition easily among different information scales embedded in the data. A

promising approach is to provide a multi-touch tabletop interface for the multiscale analysis

of brain connectivity. In brain data, the white-matter tracts constructed from diffusion MRI

provide macro-scale information on brain connectivity. At the micro-scale level, we want to

examine the properties of axons, estimated using computational techniques (Part I), that

make up these white-matter tracts at the macro level (Part II). The changes observed over

the course of brain diseases can differ significantly depending on the level of scale at which

we work. A multi-touch interface will let users transition easily between micro and macro

data scales, navigating at the touch of a fingertip from axons to tensors, to white-matter

tracts, and to their terminations in the cortical gray matter. A tabletop implementation

of the interface should encourage interdisciplinary and collaborative research – something

that such data strongly demand.

7.3 Summary

Our work on computational techniques for enhancing the microstructural and anatomical

analysis of brain white matter has demonstrated the accurate reconstruction of quantitative

microstructural measurements and shown enhanced user performance in isolating tracts for

pathological analysis. It also indicates many potential directions for future research and

practical applications.



Appendix A

Neuroanatomy Terminology

• Axon: The core nerve fiber extending from a neuronal cell body. It conveys signal

from one nerve cell to another nerve cell or to muscle or gland.

• Central Nervous System (CNS): The brain and the spinal cord. The part of the

nervous system that functions to coordinate the activity of all parts of the bodies of

multicellular organisms.

• Corpus Callosum (CC): A structure of the mammalian brain in the longitudinal

fissure that connects the left and right cerebral hemispheres.

• Demyelination: The loss of myelin wrapped around axon that has previously formed.

• Fractional Anisotropy (FA): A scalar value between zero and one that describes

the degree of anisotropy of a diffusion process.

• Gray Matter (GM): The part of the central nervous system, such as cerebral cortex,

that contains nerve cell bodies and appears gray.

• Myelin: The coating around nerve fibers (axons) that acts to insulate the fibers and

promote efficient electrical conduction.

• White Matter: The part of the central nervous system that contains myelinated

nerve fibers and appears white.
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