
Abstract of “ Toward Practical Planar Graph Algorithms ” by David Elliot Eisenstat,
Ph.D., Brown University, May 2014

Many optimization problems involving graphs naturally feature road networks, grids,

or other large planar graphs. By exploiting the special structure of planar graphs,

it is often possible to design algorithms that are faster or give better results than

their counterparts for general graphs. We present an efficient polynomial-time ap-

proximation scheme for the Steiner forest problem in planar graphs, a bicriteria

polynomial-time approximation scheme for the ball cover problem in planar graphs,

a linear-time algorithm for multiple-source shortest paths problem (MSSP) in pla-

nar graphs with integer weights that are small on average, and algorithms that use

MSSP to compute closeness and betweenness centrality in planar graphs. We report

on our implementation of the latter.

Toward Practical Planar Graph Algorithms

by

David Elliot Eisenstat

BS, University of Rochester; Rochester, NY, 2006

BA, University of Rochester; Rochester, NY, 2006

ScM, Brown University; Providence, RI, 2011

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

in The Department of Computer Science at Brown University

PROVIDENCE, RHODE ISLAND

May 2014

c© Copyright 2014 by David Elliot Eisenstat

This dissertation by David Elliot Eisenstat is accepted in its present form

by The Department of Computer Science as satisfying the

dissertation requirement for the degree of Doctor of Philosophy.

Date

Claire Mathieu, PhD, Coadvisor

Date

Philip N. Klein, PhD, Coadvisor

Recommended to the Graduate Council

Date

Renato F. Werneck, PhD, Reader

Approved by the Graduate Council

Date

Peter M. Weber, Dean of the Graduate School

iii

Curriculum Vitae

The latest version of this document is available at http://www.davideisenstat.

com/cv/.

David Eisenstat was born on November 12, 1983 in New Haven, CT.

Publications

• Dana Angluin, James Aspnes, Rida A. Bazzi, Jiang Chen, David Eisenstat, and

Goran Konjevod. Effective storage capacity of labeled graphs. Information

and Computation, 234:44–56, February 2014.

• David Eisenstat, Philip N. Klein, and Claire Mathieu. Approximating k-center

in planar graphs. In Proceedings of the Twenty-Fifth Symposium on Discrete

Algorithms (SODA), pages 617–627, January 2014.

• David Eisenstat and Philip N. Klein. Linear-time algorithms for max flow and

multiple-source shortest paths in unit-weight planar graphs. In Proceedings of

the Forty-Fifth Symposium on Theory of Computing (STOC), pages 735–744,

June 2013.

• James Aspnes, David Eisenstat, and Yitong Yin. Low-contention data struc-

tures. Journal of Parallel and Distributed Computing, 72(5):705–715, May

2012.

iv

http://www.davideisenstat.com/cv/
http://www.davideisenstat.com/cv/
http://www.davideisenstat.com/cv/AngluinABCEK14.pdf
http://www.davideisenstat.com/cv/EisenstatKM14.pdf
http://www.davideisenstat.com/cv/EisenstatKM14.pdf
http://www.davideisenstat.com/cv/EisenstatK13.pdf
http://www.davideisenstat.com/cv/EisenstatK13.pdf
http://www.davideisenstat.com/cv/AspnesEY12.pdf
http://www.davideisenstat.com/cv/AspnesEY12.pdf

• David Eisenstat, Philip N. Klein, and Claire Mathieu. An effi-

cient polynomial-time approximation scheme for Steiner forest in planar

graphs. arXiv:1110.1320v2 [cs.DS], October 2011.

• David Eisenstat, Philip N. Klein, and Claire Mathieu. An efficient polynomial-

time approximation scheme for Steiner forest in planar graphs. In Proceedings

of the Twenty-Third Symposium on Discrete Algorithms (SODA), pages 626–

638, January 2012.

• David Eisenstat. Random road networks: the quadtree model. In Pro-

ceedings of the Eighth Workshop on Analytic Algorithmics and Combinatorics

(ANALCO), pages 76–84, January 2011.

• Dana Angluin, David Eisenstat, Leonid (Aryeh) Kontorovich, and Lev

Reyzin. Lower bounds on learning random structures with statistical

queries. In Proceedings of the Twenty-First International Conference on Al-

gorithmic Learning Theory (ALT), pages 194–208, October 2010.

• Dana Angluin, James Aspnes, Rida A. Bazzi, Jiang Chen, David Eisenstat,

and Goran Konjevod. Storage capacity of labeled graphs. In Proceedings of

the Twelfth International Symposium on Stabilization, Safety, and Security of

Distributed Systems (SSS), pages 573–587, September 2010. Journal article:

Effective storage capacity of labeled graphs.

• James Aspnes, David Eisenstat, and Yitong Yin. Low-contention data struc-

tures. In Proceedings of the Twenty-Second Symposium on Parallelism in

Algorithms and Architectures (SPAA), pages 345–354, June 2010.

• David Eisenstat. k-fold unions of low-dimensional concept classes. Informa-

tion Processing Letters, 109(23-24):1232–1234, November 2009.

v

http://www.davideisenstat.com/cv/EisenstatKM11.pdf
http://www.davideisenstat.com/cv/EisenstatKM11.pdf
http://www.davideisenstat.com/cv/EisenstatKM11.pdf
http://www.davideisenstat.com/cv/Eisenstat11.pdf
http://www.davideisenstat.com/cv/AngluinEKR10.pdf
http://www.davideisenstat.com/cv/AngluinEKR10.pdf
http://www.davideisenstat.com/cv/Eisenstat09union.pdf

• Dana Angluin, James Aspnes, Jiang Chen, David Eisenstat, and Lev

Reyzin. Learning acyclic probabilistic circuits using test paths. Journal

of Machine Learning Research, 10(Aug):1881–1911, August 2009.

• David Eisenstat. Two-enqueuer queue in Common2. arXiv:0805.0444v2

[cs.DC], April 2009.

• Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by

population protocols with a leader. Distributed Computing, 21(3):183–199,

September 2008.

• Dana Angluin, James Aspnes, Jiang Chen, David Eisenstat, and Lev

Reyzin. Learning acyclic probabilistic circuits using test paths. In Pro-

ceedings of the Twenty-First Conference on Learning Theory (COLT), pages

169–180, July 2008.

• Dana Angluin, James Aspnes, and David Eisenstat. A simple population pro-

tocol for fast robust approximate majority. Distributed Computing, 21(2):87–

102, July 2008.

• David Eisenstat, Jennifer Feder, Greg Francos, Gary Gordon, and Amanda

Redlich. Expected rank and randomness in rooted graphs. Discrete Applied

Mathematics, 156(5):746–756, March 2008.

• David Eisenstat, Gary Gordon, and Amanda Redlich. Combinatorial proper-

ties of a rooted graph polynomial. SIAM Journal on Discrete Mathematics,

22(2):776–785, March 2008.

• Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The compu-

tational power of population protocols. Distributed Computing, 20(4):279–304,

November 2007.

vi

http://www.davideisenstat.com/cv/AngluinACER09.pdf
http://www.davideisenstat.com/cv/Eisenstat09queue.pdf
http://www.davideisenstat.com/cv/AngluinAE08computation.pdf
http://www.davideisenstat.com/cv/AngluinAE08computation.pdf
http://www.davideisenstat.com/cv/AngluinAE08majority.pdf
http://www.davideisenstat.com/cv/AngluinAE08majority.pdf
http://www.davideisenstat.com/cv/EisenstatFFGR08.pdf
http://www.davideisenstat.com/cv/EisenstatGR08.pdf
http://www.davideisenstat.com/cv/EisenstatGR08.pdf
http://www.davideisenstat.com/cv/AngluinAER07.pdf
http://www.davideisenstat.com/cv/AngluinAER07.pdf

• Dana Angluin, James Aspnes, and David Eisenstat. A simple population

protocol for fast robust approximate majority. In Proceedings of the Twenty-

First International Symposium on Distributed Computing (DISC), pages 20–32,

September 2007.

• Stephen Soltesz, Soner Sevinc, David Eisenstat, Marc Fiuczynski, and Larry

Peterson. On the design and evolution of an architecture for federation. In

Proceedings of the Second International Workshop on Real Overlays and Dis-

tributed Systems (ROADS), July 2007.

• David Eisenstat and Dana Angluin. The VC dimension of k-fold union. In-

formation Processing Letters, 101(5):181–184, March 2007.

• Dana Angluin, James Aspnes, and David Eisenstat. Fast computation by pop-

ulation protocols with a leader. In Proceedings of the Twentieth International

Symposium on Distributed Computing (DISC), pages 61–75, September 2006.

• Dana Angluin, James Aspnes, and David Eisenstat. Stably computable pred-

icates are semilinear. In Proceedings of the Twenty-Fifth Symposium on Prin-

ciples of Distributed Computing (PODC), pages 292–299, July 2006. Journal

article: The computational power of population protocols.

• Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya,

David Eisenstat, William N. Scherer III, and Michael L. Scott. Lowering

the overhead of nonblocking software transactional memory. In Proceedings

of the First Workshop on Languages, Compilers, and Hardware Support for

Transactional Computing (TRANSACT), June 2006.

• Arrvindh Shriraman, Virendra J. Marathe, Sandhya Dwarkadas, Michael L.

Scott, David Eisenstat, Christopher Heriot, William N. Scherer III, and

vii

http://www.davideisenstat.com/cv/SolteszSEFP07.pdf
http://www.davideisenstat.com/cv/EisenstatA07.pdf
http://www.davideisenstat.com/cv/MaratheSHAESS06.pdf
http://www.davideisenstat.com/cv/MaratheSHAESS06.pdf

Michael F. Spear. Hardware acceleration of software transactional mem-

ory. In Proceedings of the First Workshop on Languages, Compilers, and

Hardware Support for Transactional Computing (TRANSACT), June 2006.

• Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya,

David Eisenstat, William N. Scherer III, and Michael L. Scott. Lowering the

overhead of nonblocking software transactional memory. Technical Report

893, Computer Science Department, University of Rochester, May 2006.

• David Eisenstat and Gary Gordon. Non-isomorphic caterpillars with identical

subtree data. Discrete Mathematics, 306(8-9):827–830, May 2006.

• Arrvindh Shriraman, Virendra J. Marathe, Sandhya Dwarkadas, Michael L.

Scott, David Eisenstat, Christopher Heriot, William N. Scherer III, and

Michael F. Spear. Hardware acceleration of software transactional mem-

ory. Technical Report 887, Computer Science Department, University of

Rochester, March 2006.

• Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. On the

power of anonymous one-way communication. In Proceedings of the Ninth In-

ternational Conference on Principles of Distributed Systems (OPODIS), pages

396–411, December 2005. Journal article: The computational power of popu-

lation protocols.

• David Eisenstat. Simpler proofs of the power of one query to a p-selective

set. Technical Report 883, Computer Science Department, University of

Rochester, October 2005.

viii

http://www.davideisenstat.com/cv/ShriramanMDSEHSS06.pdf
http://www.davideisenstat.com/cv/ShriramanMDSEHSS06.pdf
http://www.davideisenstat.com/cv/EisenstatG06.pdf
http://www.davideisenstat.com/cv/EisenstatG06.pdf
http://www.davideisenstat.com/cv/Eisenstat05.pdf
http://www.davideisenstat.com/cv/Eisenstat05.pdf

Education

• PhD 2014 (expected), Computer Science, Brown University. Dissertation:

Toward practical planar graph algorithms. Advisors: Philip N. Klein and

Claire Mathieu.

• ScM 2011, Computer Science, Brown University.

• Graduate studies 2006–2007, Computer Science, Princeton University.

• BS 2006, Computer Science, University of Rochester (summa cum laude, high-

est distinction and highest honors in research in Computer Science).

• BA 2006, Mathematics, University of Rochester (summa cum laude, highest

distinction in Mathematics).

Awards and honors

• van Dam Fellow, Computer Science Department, Brown University, Summer

2011.

• Best Student Paper, SSS 2010.

• Honorable Mention, National Science Foundation (NSF) Graduate Research

Fellowship Program (GRFP), 2006 and 2010.

• Best Student Paper, DISC 2007.

• National Defense Science and Engineering Graduate (NDSEG) Fellow, 2006–

2007.

• Gordon Y.S. Wu Fellow, School of Engineering and Applied Science (SEAS),

Princeton University, 2006–2007.

• Outstanding Undergraduate Award, Computing Research Association (CRA),

2006.

ix

• Phi Beta Kappa (ΦBK), University of Rochester, 2005 (junior year).

• Stoddard Prize, Mathematics Department, University of Rochester, 2004.

Teaching experience

• TA, Coding the Matrix: Linear Algebra through Computer Science Applica-

tions, Brown University, Fall 2012.

• TA, Approximation Algorithms (CSCI2510), Brown University, Fall 2011.

• TA, Introduction to Computational Geometry (CSCI1950J), Brown University,

Spring 2011.

• TA, Operating Systems (COS 318), Princeton University, Fall 2007.

x

https://www.coursera.org/course/matrix
https://www.coursera.org/course/matrix

Acknowledgments

Much of the work described in this dissertation was done jointly with my advisors,

Philip N. Klein and Claire Mathieu, and supported in part by their NSF grant, CCF-

0964037. I would also like to thank my reader, Renato F. Werneck, for his suggestion

of using MSSP to compute centrality measures; my friends, for moral support as

well as many enjoyable hours of board games; Lauren Clarke, for minimizing the

accidental complexity of being a PhD student; and my parents, for everything.

xi

CONTENTS

Curriculum Vitae iv

Acknowledgments xi

1 Introduction 1

2 Preliminaries 4
2.1 Notation . 4
2.2 Embedded graphs . 5
2.3 Paths . 7
2.4 Connectivity . 9
2.5 Interiors, exteriors, and frontiers . 10
2.6 Arborescences . 11
2.7 Topological order . 14
2.8 Paths that avoid an arborescence . 15
2.9 Chains, cycles, and boundaries . 17
2.10 Fundamental cycles . 20
2.11 Planarity . 21
2.12 Edge deletion . 23
2.13 Shortest paths . 24
2.14 Epsilon nets . 26
2.15 Multitriangulations . 27

3 Steiner forest 30
3.1 Branch decompositions . 32
3.2 An exact dynamic program . 33

3.2.1 Compatibility . 35
3.2.2 A structure lemma . 37

3.3 An approximating dynamic program 39
3.4 An efficient approximating dynamic program 42

xii

4 Ball cover 47
4.1 Facial carving decompositions . 50
4.2 An exact dynamic program . 53

4.2.1 Interfaces and conformance 54
4.2.2 Compatibility . 54
4.2.3 Total conformance . 55
4.2.4 A structure lemma . 57

4.3 An approximating dynamic program 59
4.3.1 Shifting . 59
4.3.2 Quantization . 61
4.3.3 Portals . 61
4.3.4 A relaxed Lipschitz condition 62
4.3.5 An approximate structure lemma 64

5 Multiple-source shortest paths 66
5.1 Implicit representation of multiple arborescences 68
5.2 Algorithmic framework . 70
5.3 Use of the interdigitating arborescence 71
5.4 Algorithm . 72
5.5 Analysis of the running time . 75
5.6 Necessity of a rule for breaking ties 79
5.7 Implementation notes . 81

6 Centrality measures 83
6.1 Sleator–Tarjan trees . 84
6.2 Sleator–Tarjan trees with generalized updates 86

6.2.1 Groups . 86
6.2.2 Generalized updates . 87
6.2.3 Operational underpinning . 87

6.3 Algorithms . 88
6.3.1 Computing closeness centrality 90
6.3.2 Computing betweenness centrality 93

6.4 Experimental results . 94
6.4.1 Comparison of dynamic trees 95
6.4.2 Scalability . 96
6.4.3 Comparison with Dijkstra, PHAST, and GPHAST 98

xiii

LIST OF TABLES

6.1 Elapsed time in milliseconds per vertex when computing all short-
est path trees on graphs derived from the U.S. road network. Our
algorithm additionally computes betweenness centrality. 99

xiv

LIST OF FIGURES

5.1 The embedded graph Ĝ. 69
5.2 Pseudocode for the linear-time multiple-source shortest paths algorithm. 73
5.3 The construction of φvj . 77
5.4 Members for k ∈ {5, 6, 7} of a family of planar embedded graphs

with k edges incident to the infinite face, on which MSSP without the
leafmost pivot rule can pivot the red edge k times. The maximum
with the leafmost pivot rule is twice. (The length of every dart is 0.) 79

5.5 A complete execution of MSSP without the leafmost pivot rule on the
k = 5 member of the family depicted in Figure 5.4. The red edge is
pivoted 5 times. 80

6.1 Maintenance of the ∆val field after topological changes to the actual
tree. Nodes with a tailless solid incoming arc have a solid parent, a
dashed parent, or no parent. Nodes with a tailless dashed incoming
arc have a dashed parent or no parent. Nodes with no incoming arc
have no parent. 89

6.2 Comparison of the performance of dynamic trees based on splay trees
and singly linked lists for all-roots multiple-source shortest paths on
graphs derived from the road networks of U.S. states and territories. . 96

6.3 Elapsed time in microseconds per pivot when computing betweenness
centrality with multiple-source shortest paths on graphs derived from
the road networks of U.S. states and territories. 97

6.4 Pivots per edge when computing betweenness centrality with multiple-
source shortest paths on graphs derived from the road networks of U.S.
states and territories. 98

xv

CHAPTER One

Introduction

Consider two problems of the sort that a city planner might face. First, given some

service requirements for a new streetcar system, which road segments should receive

tracks? Let’s suppose that the requirements are a list of pairs of stops that must be

connected to one another. Second, where should fire stations be built so that, for

every inflammable structure, some fire engine can drive to it in ten minutes or less?

In both cases, the planner would like to conserve limited city resources.

The first problem is an example of the Steiner forest problem, and the second

problem is an example of the ball cover problem. Both problems are well studied,

and it is known that, under plausible assumptions, there exists a constant c > 1

such that neither Steiner forest [Bern and Plassmann, 1989] nor ball cover [Feder

and Greene, 1988] has a polynomial-time approximation algorithm whose ratio is

better than c. Fortunately, these hardness results pertain to general graphs only.

1

2

Road networks are embedded on or near the Earth’s surface, and we model them

as undirected embedded planar graphs where each edge has a nonnegative length.

This model, as models often are, is a compromise; while we do not account for

one-way roads and overpasses, we can assume the rich structure of a graph metric

derived from a planar graph. Another abundant source of planar graphs is grids,

often arising from optimization problems in computer vision.

By exploiting this structure, we obtain an efficient polynomial-time approxima-

tion scheme for Steiner forest and an inefficient polynomial-time bicriteria approxi-

mation scheme for ball cover. Our scheme for Steiner forest improves on an inefficient

scheme due to Bateni, Hajiaghayi, and Marx [2011].

Like many algorithms for planar graphs, these schemes compute a lot of shortest

paths. In particular, computing all-pairs distances between O(
√
n) vertices incident

to the infinite face of a planar graph is a staple of planar graph algorithm design

dating back to the work of Lipton, Rose, and Tarjan [1979]. The current fastest

algorithm for this task uses the multiple-source shortest path (MSSP) algorithm

of Klein [2005], who showed that the changes between two shortest path trees rooted

at adjacent vertices can be computed in time O(c log n), where c is the number

of changes, and that the total number of changes around the boundary is O(n).

Cabello, Chambers, and Erickson [2013] simplified Klein’s algorithm and extended

it to graphs of genus g, obtaining bounds of O
(
(g+c) log n

)
time to compute changes

and O(gn) changes in total.

We refine Klein’s bound on the number of changes and replace the core data

structure of the algorithm of Cabello et al. to obtain a linear-time algorithm for

MSSP in planar graphs with unit-length edges. This refinement additionally allows

us to use a practically faster data structure to implement the original algorithm of

3

Cabello et al.

Finally, we present algorithms and experimental results for using MSSP to com-

pute centrality measures in planar graphs. By avoiding the substantial memory

traffic associated with computing the full shortest path tree for each root vertex, we

improve significantly on the previously fastest method, PHAST [Delling, Goldberg,

Nowatzyk, and Werneck, 2013], which retains the advantage of handling nonplanar

graphs.

CHAPTER Two

Preliminaries

In this chapter, we review, with proofs, some well known results about planar em-

bedded graphs. We don’t claim novelty on anything herein.

2.1 Notation

The integers comprise the set

Z , {. . . ,−1, 0, 1, . . .}.

The nonnegative integers comprise the set

N , {0, 1, 2, . . .}.

4

5

The positive integers comprise the set

Z+ , {1, 2, 3, . . .}.

Let X and Y be sets. The Cartesian product of X and Y is

X × Y ,
{

(x, y) : x ∈ X, y ∈ Y
}
.

The relative complement of Y in X is

X \ Y , {x : x ∈ X, x /∈ Y }.

The collection of maps from X to Y is Y X .

2.2 Embedded graphs

Let E be a finite set of edges. A dart is formally a member of the set

DartsE , E × {1,−1}.

Intuitively, given an edge e ∈ E, the darts (e, 1) and (e,−1) are interpreted as its

two possible orientations. We define two maps on DartsE.

edge (e, σ) , e rev (e, σ) , (e,−σ).

An embedded graph G = (E, π) specifies in addition to E an embedding

permutation π on DartsE. We say that G is nonempty if and only if E 6= ∅.

6

With respect to G, every dart has a head and a tail.

headG a ,
{
πk(a) : k ∈ Z

}
tailG , headG ◦ rev.

We sometimes omit the subscripts when the choice of G is clear. Intuitively, π

maps each dart to the next dart in counterclockwise order with the same head. The

vertices of G comprise the collection of sets

VerticesG , {headG a : a ∈ DartsE}.

This collection is a partition by the following argument. Suppose that b ∈ headG a1∩

headG a2. There exist k1, k2 ∈ Z such that πk1(a1) = b = πk2(a2). For every k ∈ Z,

πk(a1) = πk
(
π−k1(b)

)
= πk

(
π−k1

(
πk2(a2)

))
= πk−k1+k2(a2),

so headG a1 ⊆ headG a2 and thus headG a1 = headG a2.

With respect to G, every dart has a right and a left.

rightG a ,
{

(rev ◦ π)k(a) : k ∈ Z
}

leftG , rightG ◦ rev.

We sometimes omit the subscripts when the choice of G is clear. Intuitively, rev ◦ π

maps each dart to the next dart in clockwise order with the same right. The faces

of G comprise the partition

FacesG , {rightG a : a ∈ DartsE}.

A vertex v is incident to a face f if and only if v∩f 6= ∅. A vertex v is incident

7

to an edge e if and only if v ∩ Darts {e} 6= ∅. A face f is incident to an edge e if

and only if f ∩ Darts {e} 6= ∅. A dart is incident to a vertex or face if and only if

its edge is.

The dual of G is the embedded graph G∗ = (E, π∗), where π∗ = rev ◦ π. When

studying G∗, we refer to G as the primal. Since rev ◦ rev ◦ π = π, the dual of the

dual of G is, as expected, G itself. Observe the following correspondences between

primal and dual.

VerticesG = FacesG∗ FacesG = VerticesG∗

headG = rightG∗ rightG = headG∗

tailG = leftG∗ leftG = tailG∗

2.3 Paths

Let G = (E, π) be an embedded graph. A v0v`-path is a sequence

P = 〈v0, a1, v1, a2, v2, . . . , v`−1, a`, v`〉

of alternating vertices and darts such that, for every i ∈ {1, 2, . . . , `}, we have

tailG ai = vi−1 and headG ai = vi. The tail of P is v0, and the head of P is v`.

We define

EdgesP , {edge a1, edge a2, . . . , edge a`}.

A subpath of P is a subsequence of P that is also a path.

8

We define the reversal revP , a v`v0-path, as follows.

revP , 〈vm, rev am, vm−1, rev am−1, vm−2, . . . , v1, rev a1, v0〉

Given a v`vm-path

Q = 〈v`, a`+1, v`+1, a`+2, v`+2, . . . , vm−1, am, vm〉,

we define the concatenation P ∗Q, a v0vm-path, as follows.

P ∗Q , 〈v0, a1, v1, . . . , v`−1, a`, v`, a`+1, v`+1, . . . , vm−1, am, vm〉

The path P is simple if and only if v0, v1, . . . , v` are pairwise distinct. The path

revP is simple if and only if P is simple. The following lemma implies that, if there

exists an v0v`-path, then there exists a simple v0v`-path.

Lemma 1. Every v0v`-path P has a simple v0v`-subpath.

Proof. We induct on `, the number of darts in P . If P is not simple, then there exist

i, j ∈ {0, 1, . . . , `} such that i < j and vi = vj. We define a proper v0v`-subpath P ′

of P .

P ′ = 〈v0, . . . , ai, vi〉 ∗ 〈vj, aj+1, . . . , v`〉

By the inductive hypothesis, P ′ has a simple v0v`-subpath, which is a subpath of P

also.

9

2.4 Connectivity

An embedded graph G = (E, π) is connected if and only if, for every pair of vertices

s, t, there exists an st-path. The following lemma implies that G is connected if and

only if its dual is connected.

Lemma 2. Let G = (E, π) be an embedded graph. For every pair of darts b, c, if

there exists a (headG b)(headG c)-path P , then there exists a (rightG b)(rightG c)-path

Q in the dual of G such that, for every face f or dart a in Q, there exists a vertex

v in P incident to f or a respectively.

Proof. Let s = rightG b and t = rightG c. We prove first the special case where

headG b = headG c = v. Let k ∈ Z satisfy πk(b) = c. If k ≥ 0, then

〈
rightG b, π(b), rightG π(b), π2(b), rightG π

2(b), . . . , rightG π
k(b)

〉
is a suitable st-path. If k < 0, then

〈
rightG b, rev b, rightG π

−1(b), rev π−1(b), rightG π
−2(b), . . . , rightG π

k(b)
〉

is a suitable st-path.

For every vertex v, let

F (v) = {rightG a : a ∈ v}

be the set of faces incident to v. We show next for every dart a that rightG a ∈

10

F (tailG a) ∩ F (headG a).

rightG a = rightG π
−1(rev a) ∈ F

(
headG π

−1(rev a)
)

= F (headG rev a) = F (tailG a)

That rightG a ∈ F (headG a) is clear.

Finally, we consider arbitrary b, c. Let

〈v0, a1, v1, . . . , v`−1, a`, v`〉

be a (headG b)(headG c)-path. We construct the st-path Q by concatenating suitable

paths between each adjacent pair of faces in the sequence

〈s, rightG a1, rightG a2, . . . , rightG a`, t〉.

These paths exist because s ∈ F (v0) and t ∈ F (v`) and, for every i ∈ {1, 2, . . . , `},

we have rightG ai ∈ F (vi−1) ∩ F (vi).

2.5 Interiors, exteriors, and frontiers

Let G = (E, π) be an embedded graph. For every set of faces F , define

DartInteriorF ,
{
a : a ∈

⋃
f∈F

f, rev a ∈
⋃
f∈F

f
}

InteriorG F , {v : v ∈ VerticesG, v ⊆ DartInteriorF}

ExteriorG F , Interior (FacesG \ F)

FrontierG F , VerticesG \ (InteriorG F ∪ ExteriorG F).

11

The vertices comprising InteriorG F are those whose incident darts have left face and

right face belonging to F , i.e., the vertices incident only to faces in F . Observe that

InteriorG F ∩ ExteriorG F = ∅, and hence interior, exterior, and frontier comprise a

partition. Every interior-exterior path crosses the frontier.

Lemma 3. Let G = (E, π) be an embedded graph and F be a set of faces. Let

P = 〈v0, a1, v1, . . . , v`〉 be a path such that v0 ∈ InteriorG F and v` ∈ ExteriorG F .

There exists i ∈ {1, 2, . . . , `− 1} such that vi ∈ FrontierG F .

Proof. Let s = leftG a1 and t = rightG a`. Observe that s ∈ F and t /∈ F . By

Lemma 2, there exists an st-path in the dual of G, every one of whose darts is

incident to some vertex in P . This path contains a dart b such that leftG b ∈ F and

rightG b /∈ F . We conclude that b /∈ DartInteriorF ∪ DartInterior (FacesG \ F), so

{headG b, tailG b} ⊆ FrontierG F , and P contains one of these vertices.

The following proposition describes the frontier of Boolean combinations of sets.

Proposition 4. Let G = (E, π) be an embedded graph and F1, F2 be sets of faces.

Then

FrontierG (FacesG \ F1) = FrontierG F1

FrontierG (F1 ∪ F2) ⊆ FrontierG F1 ∪ FrontierG F2.

2.6 Arborescences

Let G = (E, π) be an embedded graph. An arborescence with root vertex r is a

map p ∈ (DartsG)VerticesG\{r} having the following properties.

12

• For every vertex v 6= r, we have headG p(v) = v.

• There exists a map depthp ∈ NVerticesG such that, for every vertex v, we have

(tailG ◦ p)depthp v(v) = r.

The map depthp is unique. We define

Edges p ,
{
edge p(v) : v ∈ VerticesG \ {r}

}
Descendantsp v ,

{
w : k ∈ N, (tailG ◦ p)k(w) = v

}
.

Observe that v ∈ Descendantsp v and that Descendantsp r = VerticesG.

Arborescences encode families of simple paths. For every vertex v and arbores-

cence p with root r, define the simple rv-path

pathp v ,
〈
r, . . . , (p ◦ tailG ◦ p)(v), (tailg ◦ p)(v), p(v), v

〉
.

If G has an arborescence p, then G is nonempty, with the root as a witness, and

connected because, for every pair of vertices s, t, the concatenation rev pathp s∗pathp t

is an st-path. The following lemma implies the converse.

Lemma 5. Let G = (E, π) be an embedded graph and r be a vertex. Let P be a

collection of paths having the following properties.

• For every vertex v, there exists an rv-path belonging to P.

• Every subpath of a path belonging to P itself belongs to P.

• For every pair of rv-paths P1, P
′
1 and every vw-path P2, if {P1 ∗ P2, P

′
1} ⊆ P,

then P ′1 ∗ P2 ∈ P.

13

There exists an arborescence p with root r such that, for every vertex v, we have

pathp v ∈ P.

Proof. Define depthp r = 0. We construct p and the rest of depthp incrementally,

maintaining several invariants that hold for every vertex v where depthp is defined.

• If v 6= r, then headG p(v) = v.

• (tailG ◦ p)depthp v(v) = r.

• pathp v ∈ P .

When depthp is defined for every vertex, p is an arborescence with the desired prop-

erty.

Initially, P contains some rr-path, of which 〈r〉 is a subpath, so pathp r = 〈r〉 ∈ P ,

and all of the invariants hold. While there exists a vertex v for which depthp v is

undefined, let P ′ ∈ P be an rv-path with simple rv-subpath

P = 〈v0, a1, v1, a2, v2, . . . , v`〉,

whose existence follows from Lemma 1. Since P is a subpath of P ′ ∈ P , we have

P ∈ P . Let i ∈ {0, 1, . . . , `} have its maximum value such that depthp vi is defined

and, for every j ∈ {i+ 1, i+ 2, . . . , `}, define

p(vj) = aj depthp vj = depthp vi + j − i.

By the simplicity of the path and the maximality of i, the new definitions are well

founded. We have pathp vj ∈ P because that path is obtained by replacing a prefix

14

of a prefix of P with pathp vi, so all three invariants are maintained.

For some well behaved choices of P , there exist O
(
|E|
)
- or O

(
|E| log |E|

)
-time

algorithms that instantiate the framework described in the proof. We mostly take

for granted these standard graph algorithms (e.g., depth-first search and the shortest

paths algorithm of Dijkstra [1959]).

2.7 Topological order

Let X be a finite set of cardinality n. An enumeration of X is a sequence

〈x1, x2, . . . , xn〉 that satisfies {x1, x2, . . . , xn} = X. Let G = (E, π) be an embedded

graph and p be an arborescence with root r. A topological order is an enumeration

〈v1, v2, . . . , vn〉 of VerticesG that satisfies the following requirements.

• v1 = r.

• For every j ∈ {2, 3, . . . , n}, we have tailG p(vj) ∈ {v1, v2, . . . , vj−1}.

Observe that headG p(vj) = vj and thus

vj /∈
{
tailG p(v2), . . . , tailG p(vj), headG p(v2), . . . , headG p(vj−1)

}
.

In other words, none of the edges edge p(v1), edge p(v2), . . . , edge p(vj−1) is incident

to vj, and tailG p(vj) 6= vj.

Lemma 6. Let G = (E, π) be an embedded graph and p be an arborescence with root

r. There exists a topological order.

15

Proof. Let 〈v1, v2, . . . , vn〉 be an enumeration of VerticesG such that, for every pair

i, j ∈ {1, 2, . . . , n}, if depthp vi < depthp vj, then i < j. Since w = r is the unique

solution to the equation depthpw = 0, we have v1 = r. For every j ∈ {2, 3, . . . , n},

depthp tailG p(vj) = depthp vj − 1 < depthp vj,

so tailG p(vj) ∈ {v1, v2, . . . , vj−1}, as required.

2.8 Paths that avoid an arborescence

Let G = (E, π) be an embedded graph and p be an arborescence. In conjunction

with Lemma 5, the following lemma implies that, in the dual of G, there exists an

arborescence q having no edges in common with p.

Lemma 7. Let G = (E, π) be an embedded graph and let p be an arborescence with

root r. For every pair of faces s, t, there exists an st-path Q in the dual of G such

that EdgesQ ∩ Edges p = ∅.

Proof. Let 〈v1, v2, . . . , vn〉 be a topological order, which exists by Lemma 6. For

every k ∈ {1, 2, . . . , n}, define

Fk =
{
edge p(vi) : i ∈ {2, 3, . . . , k}

}
.

Observe that F1 = ∅ and Fn = Edges p. We prove by induction on k that there

exists an st-path Q such that EdgesQ ∩ Fk = ∅.

The claim for k = 1 is just that there exists an st-path. The existence of p implies

that G is connected and hence, by Lemma 2, that the dual of G is connected,

16

which suffices to prove the claim. For k > 1, we are given an st-path Q′ with

EdgesQ′ ∩ Fk−1 = ∅ and must find an st-path Q such that EdgesQ ∩ Fk = ∅. Let

a = p(vk), so that Tk = Tk−1∪{a}. It suffices to find a (rightG a)(leftG a)-path Q′′ such

that EdgesQ′′∩Fk = ∅, because then we derive Q by replacing in Q′ each occurrence

of 〈rightG a, rev a, leftG a〉 by Q′′, and each occurrence of 〈leftG a, a, rightG a〉 by revQ′′.

Intuitively, Q′′ is the path around vk that avoids a. As there are only finitely

many darts with head vk, let j be the minimum nonnegative integer for which there

exists a nonnegative integer i < j satisfying πi(a) = πj(a). Since π is a permutation,

πj−i(a) = a, and i = 0. Observe that rightG π
j−1(a) = rightG rev πj(a) = leftG a and

define the (rightG a)(leftG a)-path

Q′′ =
〈
rightG a, π(a), rightG π(a), π2(a), . . . , rightG π

j−1(a)
〉
.

Every dart in Q′′ has head vk. By the minimality of j, the path Q′′ does not contain

the dart a, and it follows from the properties of the topological order that EdgesQ′′∩

Fk = ∅.

17

2.9 Chains, cycles, and boundaries

Let X be a set. For every y ∈ X and n ∈ Z and φ, φ′ ∈ ZX , we define, abusing

notation,

[y](x) ,

1 if x = y

0 if x 6= y

n(x) , n

(φ+ φ′)(x) , φ(x) + φ′(x)

(−φ)(x) , −φ(x)

φ− φ′ , φ+ (−φ′)

(nφ)(x) , nφ(x).

The map φ is carried by a set Y ⊆ X if and only if, for every x ∈ X \ Y , we have

φ(x) = 0. We write φ ≤ φ′ in case φ′−φ ∈ NX , and φ ≥ φ′ in case φ′ ≤ φ. We write

φ < φ′ in case φ ≤ φ′ and φ 6= φ′, and φ > φ′ in case φ′ < φ. The relation ≤ is a

partial order.

Reflexive φ ≤ φ.

Antisymmetric If φ ≤ φ′ and φ′ ≤ φ, then φ = φ′.

Transitive If φ ≤ φ′ and φ′ ≤ φ′′, then φ ≤ φ′′.

18

Let G = (E, π) be an embedded graph. We define face chains (2-chains), edge

chains (1-chains), and vertex chains (0-chains).

FaceChainsG , ZFacesG EdgeChainsE , ZE

VertexChainsG , ZVerticesG

We extend the domain of every edge chain ψ to include DartsE.

ψ
(
(e, σ)

)
, σψ(e).

We extend the domain of [·] to include darts and paths.

[
(e, σ)

]
, σ[e]

[
〈v0, a1, v1, . . . , v`〉

]
,
∑̀
i=1

[ai]

We define two boundary operators. The first, ∂G2 , maps face chains to edge

chains.

∂G2 φ ,
∑

f∈FacesG

φ(f)
∑
a∈f

[a]

The second, ∂G1 , maps edge chains to vertex chains.

∂G1 ψ ,
∑

a∈DartsE

ψ(a)[headG a].

We sometimes omit the superscripts when the choice of G is clear. Observe that,

when P is an st-path, we have ∂G1 [P] = [t]− [s]. The boundary operators are linear.

∂G2 (φ+ φ′) = ∂G2 φ+ ∂G2 φ
′ ∂G1 (ψ + ψ′) = ∂G1 ψ + ∂G1 ψ

′

∂G2 (nφ) = n(∂G2 φ) ∂G1 (nψ) = n(∂G1 ψ)

19

We define two sets of edge chains. The first, the kernel of ∂G1 , is the set of all cycles.

The second, the image of ∂G2 , is the set of all boundaries.

CyclesG , {ψ : ψ ∈ EdgeChainsG, ∂G1 ψ = 0}

BoundariesG , {∂G2 φ : φ ∈ FaceChainsG}

The following lemma implies that every boundary is a cycle.

Lemma 8. Let G = (E, π) be an embedded graph. For every φ ∈ FaceChainsG, we

have ∂G1 ∂
G
2 φ = 0.

Proof. By the linearity of ∂G1 ,

∂G1 ∂
G
2 φ =

∑
f∈FacesG

φ(f)
∑
a∈f

∂G1 [a],

so it suffices to show that, for every face f ,

∑
a∈f

∂G1 [a] =
∑
a∈f

(
[headG a]− [tailG a]

)
=
∑
a∈f

[headG a]−
∑
a∈f

[
tailG rev π(a)

]
since

{
(rev ◦ π)−1(a) : a ∈ f

}
= f

= 0 since tailG rev π(a) = headG a.

The following lemma relates the notion of frontier to the boundary operator.

Lemma 9. Let G = (E, π) be an embedded graph and F be a set of faces. Defining

φ =
∑

f∈F [f],

FrontierG F =
{
headG a : a ∈ DartsE, (∂G2 φ)(a) 6= 0

}
.

20

Proof. A vertex v belongs to FrontierG F if and only if there exists a dart a ∈ v such

that either rightG a or leftG a belongs to F but not both, which in turn holds if and

only if (∂G2 φ)(a) = φ(rightG a)− φ(leftG a) 6= 0.

2.10 Fundamental cycles

Let G = (E, π) be an embedded graph and p be an arborescence with root r. For

every dart a, we define the fundamental cycle

fundamentalCyclep a ,
[
pathp tailG a ∗ 〈tailG a, a, headG a〉 ∗ rev pathp headG a

]
,

which is carried by the set Edges p ∪ {a}. We check quickly that pathp tailG a ∗

〈tailG a, a, headG a〉 ∗ pathp headG a is an rr-path and thus that

∂G1 fundamentalCyclep a = [r]− [r] = 0,

from which we conclude that fundamentalCyclep a is indeed a cycle.

Observe that (fundamentalCyclep a)(a) = 1. The following lemma has the useful

corollary that, for every cycle ψ,

ψ =
∑

e∈E\Edges p

ψ(e) fundamentalCyclep (e, 1).

Lemma 10. Let G = (E, π) be an embedded graph and p be an arborescence. If

ψ ∈ CyclesG is carried by Edges p, then ψ = 0.

Proof. By Lemma 6, let v1, v2, . . . , vn be a topological order. We show inductively

21

for every k ∈ {0, 1, . . . , n− 2} that ψ
(
p(vn−k)

)
= 0. Since (∂G1 ψ)(vn−k) = 0,

∑
a∈vn−k

ψ(a) = 0.

This sum contains the term ψ
(
p(vn−k)

)
, so it suffices to show that every other term is

zero. For every dart a /∈ Edges p, we have ψ(a) = 0. Every dart a ∈ vn−k \
{
p(vn−k)

}
satisfies edge a ∈ Edges p only if p(tailG a) = rev a. In this case, depthp tailG a =

depthp vn−k + 1 > depthp vn−k, so by the definition of topological order, the index

of tailG a is greater than n − k. We conclude by the inductive hypothesis that

ψ(a) = 0.

2.11 Planarity

A connected nonempty embedded graph G = (E, π) is planar if and only if the

following equation is satisfied.

|E| =
(
|VerticesG| − 1

)
+
(
|FacesG| − 1

)
Observe that this definition is invariant under duality. Planarity has many important

consequences. We prove first the existence of interdigitating arborescences.

Lemma 11. Let G = (E, π) be a planar embedded graph. For every arborescence

p and face o, there exists an arborescence q with root o in the dual of G such that

Edges p ∩ Edges q = ∅ and Edges p ∪ Edges q = E.

Proof. The existence of q such that Edges p ∩ Edges q = ∅ follows from Lemmas 7

and 5. Since |Edges p| = |VerticesG| − 1 and |Edges q| = |FacesG| − 1, we conclude

22

by planarity that Edges p ∪ Edges q = E.

Next, we show that, in planar embedded graphs, the notions of cycle and bound-

ary coincide. By Lemmas 8 and 10 and the linearity of ∂G2 , it suffices to show that

every nonzero fundamental cycle is a boundary. The face chain that bears witness

to this fact is given in the following lemma.

Lemma 12. Let G = (E, π) be a planar embedded graph and p, q be interdigitating

arborescences. Let e ∈ E \ Edges p = Edges q be arbitrary and let f be the face such

that edge q(f) = e.

fundamentalCyclep q(f) = ∂G2
∑

g∈Descendantsq f

[g]

Proof. Let

φ =
∑

g∈Descendantsq f

[g].

For every dart a, we have (∂G2 φ)(a) = φ(rightG a)−φ(leftG a). For every face g other

than the root of q,

φ(g)− φ
(
leftG q(g)

)
=

1 if g = f

0 if g 6= f,

since there exists no face g with g /∈ Descendantsq f but leftG q(g) ∈ Descendantsq f ,

and the unique face g such that g ∈ Descendantsq f but leftG q(g) /∈ Descendantsq f

is f . The conclusion follows from Lemmas 8 and 10.

23

2.12 Edge deletion

Let G = (E, π) be an embedded graph and let e ∈ E be an edge. We define the

embedded graph G− e , (E ′, π′) as follows.

E ′ , E \ {e}

π′(a) ,

π(a) if edgeπ(a) 6= e

π
(
π(a)

)
if edgeπ(a) = e and edgeπ

(
π(a)

)
6= e

π
(
π
(
π(a)

))
if edgeπ(a) = e and edgeπ

(
π(a)

)
= e.

Let g1 = rightG (e, 1) and g−1 = rightG (e,−1). We say that e is a bridge if and only

if g1 = g−1. We prove some properties about edge deletion that we use later.

Lemma 13. Suppose that e is not a bridge. There exists a map h from FacesG to

Faces (G− e) that, for every a ∈ Darts
(
E \ {e}

)
, satisfies h(rightG a) = rightG−e a.

For every path from f1 to f2 in the dual of G, there exists a path from h(f1) to h(f2)

in the dual of G− e obtained by deleting every dart in Darts {e}. If G is connected,

then G − e is connected. If G additionally is planar and E 6= {e}, then G − e is

planar.

For every ψ ∈ CyclesG carried by E\{e}, we have ψ′ = ψ|E\{e} ∈ Cycles (G− e).

If, moreover, there exists φ′ ∈ FaceChains (G− e) such that ∂G−e2 φ′ = ψ′, then

∂G2 (φ′ ◦ h) = ψ. Conversely, if there exists φ ∈ FaceChainsG such that ∂G2 φ = ψ,

then there exists φ′ ∈ FaceChains (G− e) such that φ′ ◦ h = φ and ∂G−e2 φ′ = ψ′.

Proof. The property required of h immediately suggests a definition, which we verify

to be well founded. If π
(
(e, 1)

)
= (e,−1) and π

(
(e,−1)

)
= (e, 1), then e is the sole

edge of a connected component that simply is deleted without affecting the rest of

24

G. Otherwise, the remaining darts of g1 and g−1 are spliced into a single face of

G− e, which we call g′. The other faces are preserved exactly.

The transfer of paths from dual to dual is valid because there is a common face

corresponding to g1 and g−1. Connectivity follows by Lemma 2. Observe that, if

there exists a vertex {a} ∈ VerticesG, then rev π(a) = rev a, so rightG a = leftG a, and

edge a 6= e. There exists, then, a one-to-one correspondence between Vertices (G− e)

and VerticesG where each vertex in G− e is a subset of its image. Planarity follows

from the fact that, in the circumstances specified, G−e has, compared to G, one fewer

edge, as many vertices, and one fewer face. The transfer of cycles and boundaries

between G and G− e is a tedious exercise in algebra.

2.13 Shortest paths

Let G = (E, π) be a connected embedded graph. Let λ ∈ NDartsE map each dart to

its length. The length of a path P = 〈v0, a1, v1, . . . , v`〉 is

lengthλ P ,
∑̀
i=1

λ(ai).

We sometimes omit the subscript when the choice of λ is clear. The distance from

a vertex s to a vertex t is

dG,λ(s, t) , min {lengthλ P : P is an st-path}.

The minimum is well founded because the length of a path is a nonnegative integer

and, by the assumption of connectivity, there exists at least one st-path. A shortest

st-path is an st-path whose length is dG,λ(s, t). The following lemma is the triangle

25

inequality.

Lemma 14. For every triple of vertices s, t, u, we have d(s, u) ≤ d(s, t) + d(t, u).

Proof. The concatenation of a shortest st-path and a shortest tu-path is an su-path

of length d(s, t) + d(t, u).

We often consider symmetric λ, that is, λ satisfying λ = λ ◦ rev. Under this

hypothesis, distances are symmetric as well.

Lemma 15. Suppose that λ is symmetric. For every pair of vertices s, t, we have

d(s, t) = d(t, s).

Proof. The reverse of a shortest st-path is a ts-path of length d(s, t). The reverse of

a shortest ts-path is an st-path of length d(t, s).

A shortest path arborescence is an arborescence p with root r such that, for

every vertex v, the path pathp v is a shortest rv-path.

Lemma 16. For every vertex r, there exists a shortest path arborescence with root

r.

Proof. It suffices to verify the three hypotheses of Lemma 5 when P is the collection

of all shortest paths. The first, that, for every vertex v, there exists an rv-shortest

path, is clear. The second is that every subpath of a shortest path is a shortest

path. Let P be a shortest st-path and Q be a uv-subpath of P . There exists a

decomposition P1 ∗ P2 ∗ P3 = P such that Q is a uv-subpath of P2. Let R be a

26

shortest uv-path. Since P1 ∗R ∗ P3 is an st-path,

lengthP = length (P1 ∗ P2 ∗ P3) ≤ length (P1 ∗R ∗ P3)

lengthQ ≤ lengthP2 ≤ lengthR,

which implies that Q is a shortest uv-path. The third hypothesis is that, for every

pair of rv-paths P1, P
′
1 and every vw-path P2, if P1 ∗ P2 and P ′1 are shortest paths,

then P ′1∗P2 is a shortest path. Since lengthP ′1 ≤ lengthP1, we have length (P ′1 ∗ P2) ≤

length (P1 ∗ P2).

Lemma 17 (Henzinger, Klein, Rao, and Subramanian [1997]). There exists a linear-

time algorithm that, given a planar embedded graph, computes a shortest path arbores-

cence.

2.14 Epsilon nets

Let G = (E, π) be a connected embedded graph with lengths λ ∈ NDartsE. With

respect to a real parameter ε > 0 and a set of vertices K, an ε-net is a set of vertices

C such that, for every k ∈ K, there exists c ∈ C with d(c, k) < ε.

Lemma 18. There exists a linear-time algorithm that, given ε > 0 and a path

P = 〈v0, a1, v1, . . . , v`〉, computes an ε-net C for K = {v0, v1, . . . , v`} such that |K| ≤

1 + ε−1 lengthP .

Proof. The algorithm is the obvious greedy one.

L← 0
C ← {v0}
i← 0

27

for j ← 1 to ` by 1
loop invariant: C is an ε-net for {v0, v1, . . . , vj−1}
loop invariant: |C| ≤ 1 + ε−1

∑i
h=1 length ah

loop invariant: L =
∑j−1

h=i+1 length ah
loop invariant: vi ∈ C
L← L+ length aj
if L ≥ ε then

L← 0
C ← C ∪ {vj}
i← j

end if
end for

This algorithm is clearly linear-time. Given the invariants, whose proofs are straight-

forward, the correctness of this algorithm is clear as well.

2.15 Multitriangulations

A multitriangulation (by analogy with “multigraph”) is an embedded graph in

which each face is comprised of at most three darts. The following lemma implies

that, for problems concerning distances between vertices of a connected embedded

graph with lengths, we may assume without loss of generality that we are dealing

with a multitriangulation.

Lemma 19. Let G = (E, π) be a connected embedded graph with lengths λ ∈ NDartsE.

There exists a linear-time algorithm to compute a connected multitriangulation G′ =

(E ′, π′) and lengths λ′ ∈ NDartsE′ having the following properties.

• E ⊆ E ′.

• For every v′ ∈ VerticesG′, there exists v ∈ VerticesG such that v ⊆ v′. (This

28

implies the existence of a natural one-to-one correspondence between VerticesG

and VerticesG′.)

• For every pair a, b ∈ DartsE,

dG,λ(headG a, headG b) = dG′,λ′(headG′ a, headG′ b).

• If G is planar, then G′ is planar as well.

Proof. We induct the quantity

ΦG =
∑

f∈FacesG

max
(
|f | − 3, 0

)
.

We use Φ also as a potential function for analyzing the running time of the obvious

algorithm that applies greedily and repeatedly the subdivision operation described

below. Observe that 0 ≤ ΦG ≤ 2|E| − 3. We have ΦG = 0 if and only if G is a

multitriangulation, in which case we take G′ = G and λ′ = λ.

If ΦG > 0, then let a1 ∈ DartsE satisfy |rightG a1| > 3. Let e′ /∈ E be a new

edge and define

E ′ = E ∪ {e′} a′ = (e, 1)

a2 = rev π(a1) a3 = rev π(a2).

29

Observe that a1 6= a2 6= a3 6= a1. We define π′ so as to subdivide right a1.

π′(a) =

a′ if a = a1

π(a1) if a = a′

rev a′ if a = a3

π(a3) if a = rev a′

π(a) if a /∈ {a1, a′, a3, rev a′}

The lengths of a′ and rev a′ are defined to be the lengths of paths that can replace

them. Distances do not increase because every dart in G exists in G′ and has the

same length. Distances do not decrease because both a and a′ can be avoided by

using two other darts having the same total length.

λ′(a) =

λ(rev a3) + λ(rev a2) if a = a′

λ(a2) + λ(a3) if a = rev a′

λ(a) if a /∈ {a′, rev a′}

Compared to G, the embedded graph G′ has one fewer face of cardinality |rightG a1|,

one more face of cardinality |rightG a1| − 1, and one more face of cardinality 3. We

conclude that ΦG′ = ΦG−1. Compared to G, the embedded graph G′ has the same

number of vertices, one more edge, and one more face, so if G is planar, then G′ is

planar as well.

CHAPTER Three

Steiner forest

Given an undirected graph G, lengths λ ∈ ZE(G)
+ , and a list of pairs of terminals

s1, t1, s2, t2, . . . , sm, tm ∈ V (G), the Steiner forest problem is to find a set of

edges F ⊆ E(G) minimizing costλ F ,
∑

e∈F λe subject to the condition that, in the

subgraph
(
V (G), F

)
, for every i ∈ {1, 2, . . . ,m}, the vertices si and ti are connected.

In this chapter, we present an approximation algorithm for graphs G of bounded

branchwidth, which is the bottleneck of the first polynomial-time approximation

scheme for planar G, due to Bateni et al. [2011].

Theorem 20 (Eisenstat, Klein, and Mathieu [2012]). There exists a polynomial-

time approximation scheme for the Steiner forest problem in planar graphs, which

uses the reduction of Bateni et al. [2011] to the problem of approximating Steiner

forest in graphs of bounded branchwidth. This scheme is efficient in the sense that its

running time is bounded by a fixed polynomial times a function of the approximation

parameter ε.

30

31

The original write-up makes a number of other improvements to the running

time, resulting in a near linear-time scheme.

The Steiner forest problem generalizes the Steiner tree problem, also NP-hard,

which involves connecting each of a given set of terminals to each other terminal.

In turn, Steiner tree generalizes the polynomial-time solvable minimum spanning

tree problem, and in fact, there is a simple 2-approximation for Steiner tree that

involves computing the minimum spanning tree in a complete graph on the termi-

nals, where the edge lengths are distances in the original graph. Better approxi-

mations are known: at the end of a long sequence of combinatorial approximation

algorithms by several authors, Robins and Zelikovsky [2005] gave a polynomial-

time 1.55-approximation, which was followed by a 1.39-approximation based on lin-

ear programming and a new technique for randomized rounding [Byrka, Grandoni,

Rothvoss, and Sanità, 2013]. Conversely, Bern and Plassmann [1989] showed that,

unless P = NP, there exists a constant c > 1 such that no polynomial-time c-

approximation exists. This lower bound applies to the special case of Steiner tree

where the length of every edge is either 1 or 2. Bern and Plassmann also gave a

4/3-approximation for this case, followed much later by a 1.25-approximation due

to Berman, Karpinski, and Zelikovsky [2009].

On Steiner forest in general graphs, there has been much less progress. Agrawal,

Klein, and Ravi [1991] gave a 2-approximation, which is still the best ratio known.

Goemans and Williamson [1995] later gave another 2-approximation, via a technique

that generalizes to other connectivity problems. For the special case with edge

lengths 1 and 2, Berman, Karpinski, and Zelikovsky [2010] gave a 3/2-approximation.

For Steiner forest in planar graphs, the aforementioned polynomial-time approx-

imation scheme due to Bateni et al. was the first. The new ingredients were a

32

partitioning method and an approximation scheme for Steiner forest in graphs of

bounded branchwidth, which they combined with a spanner construction introduced

by Borradaile, Klein, and Mathieu [2009] in their approximation scheme for Steiner

tree in planar graphs. Both schemes as well as ours are examples of a paradigm pi-

oneered by Klein [2008] in approximation schemes for the planar traveling salesman

problem and later the subset traveling salesman problem [Klein, 2006]. The steps

are to find a short subgraph that approximately preserves the objective, called a

spanner ; partition the spanner, often via Baker’s technique; solve each part (approx-

imately) optimally, often using a dynamic program; and then assemble the partial

solutions.

Steiner tree was studied originally in a Euclidean setting, where the terminals

are points in a Euclidean space, and the tree consists of line segments between

arbitrary points. Arora [1998] gave a polynomial-time approximation scheme for

low-dimensional Euclidean spaces (e.g., the plane), upon which Borradaile, Klein,

and Mathieu [2008] built their scheme for Euclidean Steiner forest. Independently,

Mitchell [1999] gave another polynomial-time approximation scheme for Steiner tree

in the Euclidean plane.

3.1 Branch decompositions

A cluster C = (V,E, ∂C) consists of an undirected graph (V,E) together with a

set of boundary vertices ∂C ⊆ V . A branch subdecomposition is a set of

related clusters specified recursively as follows. The base case of the recursion is

that every one-edge cluster C gives rise to a branch subdecomposition B = {C},

with root cluster C. The inductive case is, given two branch subdecompositions

33

B1,B2 with root clusters C1 = (V1, E1, ∂C1) and C2 = (V2, E2, ∂C2) respectively

satisfying V1 ∩ V2 ⊆ ∂C1 ∩ ∂C2 and E1 ∩ E2 = ∅, for every ∂C ⊆ ∂C1 ∪ ∂C2

satisfying (∂C1 ∪ ∂C2) \ (∂C1 ∩ ∂C2) ⊆ ∂C, the set B = B1 ∪ B2 ∪ {C} is a branch

subdecomposition, where the root cluster C is defined by C = (V1∪V2, E1∪E2, ∂C).

The width of a branch subdecomposition B is max
{
|∂C| : C ∈ B

}
. A branch

decomposition is a branch subdecomposition whose root cluster C satisfies ∂C =

∅. The notion of branch decomposition is due to Robertson and Seymour [1991].

3.2 An exact dynamic program

In this section, we present a dynamic program for Steiner forest on a branch decom-

position. While this program does not run in polynomial time, it is a useful step in

presenting our efficient approximation. Like many previous algorithms that operate

on a branch decomposition, this algorithm is a straightforward bottom-up dynamic

program. The interesting parts are how the subproblems are specified (conformance)

and how they can be combined (compatibility).

An equivalence relation is a binary relation that is reflexive, symmetric, and

transitive. We make use of three definitions involving equivalence relations. The

first is, given an equivalence relation ≡ on a set X and an element x ∈ X, we have

x/≡ , {y : y ≡ x}, the equivalence class to which x belongs. The second is, given an

equivalence relation ≡ on a set X and a subset Y ⊆ X, we have Y/≡ , {x/≡ : x ∈

Y }, the set of equivalence classes generated by Y . The third is, given two equivalence

relations ≡1,≡2 on sets X1, X2 respectively, the notation ≡1 ∨ ≡2 means the finest

equivalence relation ≡ on X1 ∪X2 such that, for j ∈ {1, 2} and every x, y ∈ Xj, if

x ≡j y, then x ≡ y.

34

We first generalize the Steiner forest problem to the following subproblem.

The inputs are a cluster C = (V,E, ∂C), lengths λ ∈ ZE+, pairs of terminals

s1, t1, s2, t2, . . . , sm, tm not necessarily belonging to V , equivalence relations ≡ext,≡int

on ∂C, and a map α : A→ ∂C/(≡ext ∨ ≡int), where

A ,
(
{si : ti /∈ V \ ∂C} ∪ {ti : si /∈ V \ ∂C}

)
∩ (V \ ∂C)

is the set of active terminals. The goal is to find a subsolution F ⊆ E minimizing

costλ F subject to several connectivity conditions.

Inactive terminals For every j ∈ {1, 2, . . . ,m} with si, ti ∈ V \ ∂C, at least one

of two possibilities holds. The first possibility is that there exists a path in the

graph (V, F) from si to ti. The second possibility is that there exist vertices

s′, t′ ∈ ∂C with s′ (≡ext ∨ ≡int) t′ and paths in the graph (V, F) from s to s′

and from t to t′.

Boundary vertices For every pair of vertices u, v ∈ ∂C with u ≡int v, there exists

a path in the graph (V, F) from u to v.

Active terminals For every active terminal u ∈ A, there exists a path in the graph

(V, F) from u to some boundary vertex in the equivalence class α(u).

For clusters C with ∂C = ∅, it can be seen that this subproblem simplifies to the

Steiner forest problem. For later use, we make two definitions.

Â , A ∪ ∂C α̂(u) ,

α(u) if u ∈ A

u/(≡ext ∨ ≡int) if u ∈ ∂C.

Observe that the “Active terminals” condition extends readily to the analogous state-

35

ment involving Â and α̂.

3.2.1 Compatibility

The dynamic program works by joining repeatedly two subsolutions into one. With

respect to an instance of the Steiner forest problem on a branch decomposition B,

and a particular cluster C ∈ B, a configuration is a triple (≡ext,≡int, α) of inputs

needed to specify a subproblem for C. Compatibility is a sufficient condition for a

successful join. With respect to three clusters C0, C1, C2 ∈ B where C0 is the parent

of C1 and C2, three configurations (≡ext
j ,≡int

j , αj) for j ∈ {0, 1, 2} are compatible if

and only if the following conditions are met.

Parent’s internal For every u, v ∈ ∂C0 with u ≡int
0 v, the relation u (≡int

1 ∨ ≡int
2) v

holds.

Parent’s connectivity For every u, v ∈ ∂C0, the relation u (≡ext
0 ∨ ≡int

0) v holds if

and only if u (≡ext
0 ∨ ≡int

1 ∨ ≡int
2) v.

Children’s external For j ∈ {1, 2} and every u, v ∈ ∂Cj with u ≡ext
j v, the relation

u (≡ext
0 ∨ ≡int

3−j) v holds.

Parent’s assignment For every u ∈ A0, there exist j ∈ {1, 2} and v ∈ α̂j(u) and

w ∈ α0(u) such that v (≡int
1 ∨ ≡int

2) w.

Deactivated terminals For every terminal pair si, ti satisfying {si, ti} ⊆ Vj \ ∂Cj

for j = 0 but neither j = 1 nor j = 2, there exist k ∈ {1, 2} and s′ ∈ α̂k(si)

and t′ ∈ α̂3−k(ti) such that s′ (≡ext
0 ∨ ≡int

1 ∨ ≡int
2) t′.

36

Following a technical proposition, we prove the sufficiency of compatibility in

joining subsolutions.

Proposition 21. Let ≡1,≡2 be equivalence relations on sets X1, X2 respectively. For

every x ∈ X1 and y ∈ X2 with x (≡1 ∨ ≡2) y, there exists z ∈ X1 ∩ X2 such that

x ≡1 z and z (≡1 ∨ ≡2) y.

Lemma 22. Fix an instance of Steiner forest on a branch decomposition B. Let

C0, C1, C2 ∈ B be arbitrary clusters such that C0 is the parent of C1 and C2 and let

(≡ext
j ,≡int

j , αj) for j ∈ {0, 1, 2} be compatible configurations. For every subsolution

F1 ⊆ E1 with respect to C1 and F2 ⊆ E2 with respect to C2, the set F0 = F1 ∪ F2 is

a subsolution with respect to C0.

Proof. We first prove the “Boundary vertices” property for F0. Fix arbitrary u, v ∈

∂C0 with u ≡int
0 v. By compatibility (“Parent’s internal”), we have u (≡int

1 ∨ ≡int
2) v.

It follows that there exists a path from u to v with subpaths belonging alternately

to F1 and F2, which path is in F0.

Now we prove the “Active terminals” property for F0. Fix an arbitrary termi-

nal u ∈ A0. By compatibility (“Parent’s assignment”), there exist j ∈ {1, 2} and

v ∈ α̂j(u) and w ∈ α0(u) such that v (≡int
1 ∨ ≡int

2) w. By the “Active terminals”

property for Cj, there exists a path in Fj from u to some v′ ∈ α̂j(u), which by def-

inition satisfies v′ (≡ext
j ∨ ≡int

j) v. Again by compatibility (“Children’s external”),

we have v′ (≡ext
0 ∨ ≡int

1 ∨ ≡int
2) w, which implies by Proposition 21 and “Parent’s

connectivity” that there exists w′ ∈ α0(u) such that v′ (≡int
1 ∨ ≡int

2) w′. We conclude

that there exists a path in F0 from u to w′, via v′.

Finally, we prove the “Inactive terminals” property for F0. For every terminal

pair si, ti not connected by F1 or F2, there exist vertices s′, t′ ∈ ∂C1 ∪ ∂C2 with

37

s′ (≡ext
0 ∨ ≡int

1 ∨ ≡int
2) t′ and paths in F0 from s to s′ and from t to t′. This statement

follows in one of two ways. The first is that there exists j ∈ {1, 2} such that si, ti are

subject to the “Inactive terminals” condition for Fj. The second is by compatibility

(“Deactivated terminals”) and the “Active terminals” conditions for F1 and F2. In

both cases, we invoke compatibility again (“Children’s external”) to replace ≡ext
j

by ≡ext
0 ∨ ≡int

3−j. If s′ (≡int
1 ∨ ≡int

2) t′, then there exists a path in F0 from s to t.

Otherwise, there exists a vertex u ∈ ∂C0 belonging to the same equivalence class of

≡ext
0 ∨ ≡int

1 ∨ ≡int
2 as s′ and t′. We apply Proposition 21 twice as before to obtain

s′′, t′′ ∈ ∂C0 with s′′ (≡ext
0 ∨ ≡int

0) t′′ and paths from s to s′′ and from t to t′′, as

required.

3.2.2 A structure lemma

Of course, the definition of compatibility would be useless if it excluded valid solu-

tions. We address this concern with the following lemma.

Lemma 23. Let G = (V,E) and λ and s1, t1, s2, t2, . . . , sm, tm be an instance of

Steiner forest. Let B be a branch decomposition having root cluster (V,E,∅). For

every solution F ⊆ E, there exists a collection of compatible configurations (≡ext
C

,≡int
C , αC) indexed by clusters C ∈ B such that, for every C ∈ B, the set F ∩ EC is

a subsolution with respect to C, where EC ⊆ E is the set of edges in C.

In particular, we choose ≡ext
C to be the connectivity relation on ∂C induced by

the edges F \EC and ≡int
C to be the connectivity relation on ∂C induced by the edges

F ∩EC. For every active terminal u ∈ AC, we define αC(u) = v/(≡ext
C ∨ ≡int

C), where

v ∈ ∂C is some vertex to which u is connected by edges in F ∩ EC.

38

Proof. There are eight different conditions that need to be proved: three for being a

subsolution and five for compatibility. We fix an arbitrary cluster C ∈ B and start

with the “Inactive terminals” condition. Let i satisfy si, ti ∈ VC \ ∂C and consider

a path in F from si to ti. Unless this path uses only edges in EC , there exist initial

and final subpaths in F ∩ EC from si to some s′ ∈ ∂C and from some t′ ∈ ∂C

to ti respectively. Since s′ and t′ are connected by ∂C-to-∂C subpaths alternately

contained by F \ EC and F ∩ EC , implying that s′ (≡ext
C ∨ ≡int

C) t′, as required.

After the “Boundary vertices” condition, which follows immediately from the

definition of ≡int
C , the only condition remaining for being a subsolution is “Active

terminals”. In fact, “Active terminals” is satisfied almost by definition as well; we

just need to show that some suitable path exists. Every (active) terminal u ∈ AC ⊆

VC \ ∂C has a mate v /∈ VC \ ∂C, which implies the existence of a path from u to

v in F . Clearly, some prefix of this path using only edges in F ∩ EC touches some

vertex in ∂C.

To finish, we prove compatibility. Let Cj = (Vj, Ej, ∂Cj) ∈ B indexed by j ∈

{0, 1, 2} be clusters such that C0 is a join of C1 and C2. Let (≡ext
j ,≡int

j , αj) indexed

by j ∈ {0, 1, 2} be the configurations associated with those clusters (abbreviating

the subscript Cj to j). Of the five conditions to be checked, the first is “Parent’s

internal”. Let u, v ∈ ∂C0 satisfy u ≡int
0 v. By the definition of ≡int

0 , there exists a

path in F ∩ E0 from u to v. This path alternates ∂C0-to-∂C0 subpaths in F ∩ E1

and F ∩ E2, which implies that u (≡int
1 ∨ ≡int

2) v. The second and third conditions

are “Parent’s connectivity” and “Children’s external”, which are proved by similar

arguments about subpaths.

The fourth condition is “Parent’s assignment”. Let u ∈ A0 be an arbitrary

terminal. Since A0 ⊆ V0 = V1 ∪ V2, there exists j ∈ {1, 2} such that u ∈ Vj, which

39

implies that u ∈ Âj = Aj ∪ ∂Cj. We now apply the “Active vertices” condition

twice. In F ∩ Ej, there exists a path from u to some vertex v ∈ α̂j(u). In F ∩ E0,

there exists a path from u to some vertex w ∈ α0(u). It follows that there exists a

path from v to w in F ∩ E0 and hence that v (≡int
1 ∨ ≡int

2) w.

The fifth and final condition is “Deactivated terminals”. Fix an arbitrary termi-

nal pair si, ti that satisfies {si, ti} ⊆ Vj \ ∂Cj for j = 0 but neither j = 1 nor j = 2.

There exists k ∈ {1, 2} such that si ∈ Âk and ti ∈ Â3−k. Since si, ti are mates,

there exists a path in F from one to the other. Combining this path with the paths

existing by “Active terminals” from si to some vertex s′ ∈ α̂k(si) and from some

vertex t′ ∈ α̂k(ti) to ti, we conclude that there exists a path from s′ to t′ in F and

hence that s′ (≡ext
0 ∨ ≡int

1 ∨ ≡int
2) t′.

3.3 An approximating dynamic program

The number of configurations dictates up to fixed polynomial factors the running

time of the previous algorithm. The main contributor to this number is α, since

the number of possibilities for ≡ext and ≡int is independent of |V |. In this section,

we define a polynomial-size set of representative possibilities for α, giving rise to

a polynomial number of representative configurations that choose α to be one of

these possibilities. We prove an approximate structure lemma to the effect that, for

every solution, there exists a relatively small patch such that a dynamic program

considering only representative configurations can find a solution at least as good as

the patched one. This dynamic program runs in polynomial time.

Let ε > 0 be the approximation parameter and k be the width of the branch

40

decomposition. Without loss of generality, we assume that there exists a positive

integer n such that ε−1 = n. With respect to a cluster C and arbitrary choices for

≡ext,≡int, the representative choices of α are those that can be constructed in the

following manner. We choose an enumeration 〈u1, u2, . . . , uk′〉 of a subset of ∂C. For

each boundary vertex ui, we choose a radius ri > 0. For convenience, we let ri be

arbitrary, but for the purpose of the dynamic program, it suffices to try ∞ and the

at most |V |
(
|V | + 1

)
/2 distinct positive distances in C. Finally, for each boundary

vertex ui, we choose a set of centers Zi ⊆ V with |Zi| < 2kε−1+1. We define pairwise

disjoint sets Ai as follows.

A′i = A ∩
⋃
z∈Zi

{
v : v ∈ V, d(z, v) < ri

}
Ai = A′i \

i−1⋃
j=1

A′j

Whenever these sets have union A, we define α by stipulating, for every v ∈ Ai, that

α(v) = ui/(≡ext ∨ ≡int). It is clear that, for every choice of ε and k, there exists an

exponent p such that the number of representative α is at most |V |p.

Lemma 24. Let ε > 0 be the approximation parameter. Let G = (V,E) and λ and

s1, t1, s2, t2, . . . , sm, tm be an instance of Steiner forest. Let B be a branch decomposi-

tion having root cluster (V,E,∅). For every solution F ⊆ E, there exists a solution

F ′ ⊇ F with costλ F
′ ≤ (1 + ε) costλ F and a collection of compatible representative

configurations (≡ext
C ,≡int

C , αC) indexed by clusters C ∈ B such that, for every C ∈ B,

the set F ′ ∩EC is a subsolution with respect to C, where EC ⊆ E is the set of edges

in C.

In particular, we choose ≡ext
C to be the connectivity relation on ∂C induced by the

edges F ′ \ EC and ≡int
C to be the connectivity relation on ∂C induced by the edges

F ′ ∩ EC. For every active terminal u ∈ AC, we define αC(u) = v/(≡ext
C ∨ ≡int

C),

where v ∈ ∂C is some vertex to which u is connected by edges in F ′ ∩ EC.

41

Proof. We construct F ′ and show that the resulting configurations are representative.

The rest of the proof follows Lemma 23.

A component is a maximal nonempty set of edges T ⊆ F such that the graph

(V, T) is connected. For every component T , the index of T is the maximum depth

of a cluster C ∈ B such that T is a subset of the edges of C but is not incident to

∂C. To construct F ′, we first determine the witnesses for α being representative.

Consider a particular cluster C ∈ B and let 〈T1, T2, . . . , Tk′〉 be an enumeration

with nonincreasing index of the components in (V, F) that contain an edge incident

to ∂C. Observe that, by maximality of each Ti, we have k′ ≤ |∂C| ≤ k. Let

〈u1, u2, . . . , uk′〉 be a corresponding enumeration of a subset of ∂C such that every

connected component Ti contains an edge incident to ui. Let ri = (2k)−1ε costλ Ti.

There exists a path of length less than 2 costλ Ti that visits every edge in Ti at least

once and no other edges, so by Lemma 18, there exists a set of centers Zi with

|Zi| < 2kε−1 + 1 such that every center in Zi is incident to Ti and such that A′i

contains every active terminal incident to Ti.

In general, we have Ai 6= A′i, and the assignment α determined by our witnesses

does not comport with the assignment dictated by F . After initializing F ′ ← F ,

we take the following action for every cluster C. For every pair i, j with i < j and

A′i ∩A′j 6= ∅, we update F ′ ← F ′ ∪ P , where P is a shortest path from some vertex

incident to Ti to some vertex incident to Tj, unless Ti and Tj already have been joined

in this way. The cumulative effect of these updates is to rectify every disagreement

between the assignments, by connecting the offending boundary vertices.

The only remaining issue is bounding costλ (F ′ \ F). We “charge” the cost of each

P to Ti and show that each component T is charged at most 2k times in the amount

of at most (2k)−1ε costλ T each time, which, by the fact that distinct components

42

are disjoint, proves the stated bound, ε costλ F .

Each time Ti is charged for P , there exist j > i, an active terminal v ∈ A′j, and

a center z ∈ Zi such that costλ P ≤ d(z, v) < ri = (2k)−1ε costλ Ti. To bound the

number of charges, let T be an arbitrary component and C0 ∈ B be the deepest

cluster such that T is a subset of the edges of C0 but is not incident to ∂C0. In

other words, C0 is the cluster whose depth determines the index of T . Let T ′ be a

component that causes T to be charged. There exists a cluster C ′ ∈ B such that

both T and T ′ are incident to ∂C ′. Since C ′ is hence a proper descendant of C0, the

latter has two children, which we call C1 and C2.

We consider three cases. The first case is that T ′ is not a subset of the edges

of C0. In this case, T ′, being connected, is incident to ∂C0. The second case is

that, for every i ∈ {1, 2}, we have that T ′ is not a subset of the edges of Ti. Being

connected, T ′ is incident to ∂C1 ∩ ∂C2. The third case is that there exists i ∈ {1, 2}

such that T ′ is a subset of the edges of Ti. Since the index of T ′ is not greater than

the index of T , we conclude that T ′ is incident to ∂Ci. In all cases, T ′ is incident

to ∂C1 ∪ ∂C2 ⊇ ∂C0, and |∂C1 ∪ ∂C2| ≤ 2k. With more work, this bound can be

improved to b3
2
kc − 1.

3.4 An efficient approximating dynamic program

While the approximation scheme of the previous section is polynomial-time, the

exponent of the polynomial depends on ε and k. In this section, we present a scheme

that runs in time bounded by a fixed polynomial times a constant depending on ε and

k, that is, an efficient scheme. This scheme is not strictly better than previous one

43

because it makes a weaker guarantee about the quality of the solution. Specifically,

given an instance of Steiner forest G = (V,E) and λ and s1, t1, s2, t2, . . . , sm, tm,

the quality of the output solution F ′ satisfies for every solution F the inequality

costλ F
′ ≤ costλ F + ε costλE. The approximation term ε costλE in general may be

quite a lot larger than ε costλ F , but in the context of the approximation scheme for

planar graphs, this is not a problem.

Our main goal is to reduce the number of representative configurations to poly-

logarithmic and prove a new structure lemma. (With more work, this number can

be reduced to polyloglog [Eisenstat et al., 2012].) The low-hanging fruit is to reduce

the number of possibilities for ri and Zi by tolerating some imprecision in the former

and adjusting each element of the latter to the nearest element of a fixed ri-net.

There still may be too many possibilities, but in that case, part of the graph is very

dense in the sense of there being edges with large total cost within a short distance

of one another. We contract that part and charge to it the cost of patching over it.

We massage the input graph to make it easier to handle. First, at the expense

of doubling the width, balance the branch decomposition to have depth at most

O
(
log2 |E|

)
[Eisenstat et al., 2012]. Second, subdivide each edge e into

⌈ λ(e)
1
4
ε|E|−1 costλE

⌉

edges of length 1, which, relatively speaking with respect to the scaling factor in the

denominator, increases the cost of each solution by less than 1
4
ε costλE. No solution

cost is strictly decreased. The number of edges in the new graph is O
(
ε−1|E|

)
. The

new branchwidth is at most max {2k, 2}. The depth of the branch decomposition is

defined to be h−1 = O
(
log2 ε

−1|E|
)
, so that each edge belongs to at most h clusters.

44

We redefine the notion of a representative configuration with respect to a cluster

C = (V,E, ∂C). We start out by contracting the edges belonging to a dense region

near the boundary. Let dC,λ denote distances in the metric graph specified by C and

λ and define

VertexMarginλ z =
{
v : u ∈ ∂C, dC,λ(u, v) ≤ z

}
EdgeMarginλ z =

{
{v, w} : {v, w} ∈ E, {v, w} ⊆ VertexMarginλ z

}
.

Let θ ∈ N be maximal such that

costλ EdgeMarginλ θ ≥ 8hk2ε−1θ.

This definition is well founded because θ = 0 is a solution, the left-hand side is

bounded in θ, and the right-hand side is not. Recalling that λ has been massaged

to be the constant function 1, define

λ′(e) =

0 if e ∈ EdgeMarginλ θ

1 if e /∈ EdgeMarginλ θ.

Observe that EdgeMarginλ′ z = EdgeMarginλ (θ + z), from which we conclude by

the maximality of θ that, for every z > 0,

costλ EdgeMarginλ′ z < 8hk2ε−1z.

We use this bound to control the number of possibilities for Zi.

As before, α is computed from ri and Zi. Each radius ri now belongs to the set

{2q−3 : q ∈ N, 2q < 2 costλE}, which, by the fact that costλE = |E|, has logarithmic

size. Each set of centers Zi is a subset of a fixed ri-net chosen at the outset that covers

45

VertexMarginλ 16kε−1ri. The set Zi has cardinality at most 16kε−1 + 1, and, by k

invocations of Lemma 18, the ri-net has cardinality less than 256hk3ε−2 + k, which

is logarithmic. We conclude that the total number of representative configurations

now is polylogarithmic. The seemingly arbitrary quantities are justified by the proof

of the following lemma.

Lemma 25. Let ε > 0 be the approximation parameter. Let G = (V,E) and λ and

s1, t1, s2, t2, . . . , sm, tm be an instance of Steiner forest. Let B be a branch decomposi-

tion having root cluster (V,E,∅). For every solution F ⊆ E, there exists a solution

F ′ ⊇ F with costλ F
′ ≤ costλ F + ε costλE and a collection of compatible represen-

tative configurations (≡ext
C ,≡int

C , αC) indexed by clusters C ∈ B such that, for every

C ∈ B, the set F ′ ∩ EC is a subsolution with respect to C, where EC ⊆ E is the set

of edges in C.

In particular, we choose ≡ext
C to be the connectivity relation on ∂C induced by the

edges F ′ \ EC and ≡int
C to be the connectivity relation on ∂C induced by the edges

F ′ ∩ EC. For every active terminal u ∈ AC, we define αC(u) = v/(≡ext
C ∨ ≡int

C),

where v ∈ ∂C is some vertex to which u is connected by edges in F ′ ∩ EC.

Proof. We present only the arguments not present in the proof of Lemma 24. Given a

component Ti, we make the unique choice of ri satisfying 1
8
ri ≤ (2k)−1ε costλ Ti <

1
4
ri.

Accordingly, Ti ⊆ EdgeMarginλ 16kε−1ri. We construct an ri-net Z ′i covering Ti as

before and then obtain Zi by replacing each vertex in Z ′i with the closest vertex in

the fixed ri-net of which Zi must be a subset. This Zi is a 2ri-net covering Ti, and

the total patching cost relative to λ′ is at most 1
2
ε costλE. This patch, however,

might use edges of zero cost. For every cluster C ∈ B, for each of k − 1 patches, we

need at most 2k paths of length θ. By our choice of θ, the total cost of these paths

is at most 1
4
h−1ε costλEC . Each edge belongs to at most h clusters, so the total over

46

all clusters is 1
4
ε costλE. Together with the term 1

4
ε costλE incurred at the outset,

the total cost of the patch is ε costλE.

CHAPTER Four

Ball cover

Given an embedded graph G = (E, π), symmetric lengths λ ∈ NDartsE, clients

K ⊆ VerticesG, and a radius r > 0, the ball cover problem is to find a set of

centers C ⊆ VerticesG minimizing |C| subject to the condition that, for every

client k, there exists a center c such that dG,λ(c, k) < r. In other words, the ball

cover problem is to find a minimum-cardinality r-net C with respect to K.

A straightforward objective-preserving reduction from set cover via dominating

set establishes that, for general graphs, we should not hope to achieve a sublogarith-

mic approximation ratio with a polynomial-time algorithm [Feige, 1998, Dinur and

Steurer, 2013]. In this chapter, we prove the following theorem.

Theorem 26 (Eisenstat, Klein, and Mathieu [2014]). There exists a polynomial-

time bicriteria approximation scheme for the ball cover problem in planar embedded

graphs that, for every parameter ε > 0, gives a radius-(1 + ε)r solution with at most

1 + ε times as many centers as the smallest radius-r solution.

47

48

The original write-up of this work includes extensions to the k-center problem,

bounded-genus graphs, center costs, and penalties for leaving clients uncovered.

Prior to this result, there was an approximation scheme known for unit-length

edges and a class of graphs that includes planar graphs, due to Demaine, Fomin,

Hajiaghayi, and Thilikos [2005]. At the time of writing, it is not known for the ball

cover problem whether it is necessary to let the approximation scheme use a radius

larger than its benchmark or whether there exists an efficient approximation scheme

(exponent of the polynomial running time independent of ε). Our scheme uses tech-

niques from the inefficient approximation scheme for the planar traveling salesman

due to Arora, Grigni, Karger, Klein, and Woloszyn [1998a], and we attempted with-

out success to emulate the approach of Klein [2008], who gave an efficient scheme.

(This approach is described in the previous chapter, on Steiner forest.)

Our approximation scheme uses the algorithm of Lemma 19 to obtain a multi-

triangulation with distances equivalent to the given embedded graph, decomposes

that multitriangulation recursively, and applies a dynamic program to the decompo-

sition. The decomposition technique is based on a divide-and-conquer algorithm due

to Arora et al. [1998a]. We present two versions of the dynamic program. The first

solves the problem exactly, but in exponential time. The second runs in polynomial

time and uses the tolerances allowed by the approximation to reduce greatly the

number of subproblems. We use an encoding technique due to Arora, Raghavan,

and Rao [1998b] to control the number of configurations.

The problem of covering by balls of a uniform radius is closely related to the

k-center problem, which asks for the minimum radius necessary to find a cover

consisting of k balls. In turn, the k-center problem is related to the k-medians

problem, where the objective is the sum rather than the maximum of the radii, and

49

the facility location problem, where the hard limit k is replaced with a linear cost

for each chosen center (facility). There are approximation schemes for instances of

the latter two problems in low-dimensional Euclidean spaces [Arora, Raghavan, and

Rao, 1998b, Kolliopoulos and Rao, 2007], and it is surprising that counterparts for

planar graphs are not known to exist. It is more typical that, when a scheme for the

Euclidean plane is devised, a counterpart for planar graphs appears relatively soon

afterward (see, e.g., the previous chapter).

For general graphs, polynomial-time 2-approximations to the k-center problem

were discovered independently by Gonzalez [1985] and by Hochbaum and Shmoys

[1985]. This ratio is the best possible under plausible complexity-theoretic assump-

tions, due to the aforementioned reduction from dominating set: when all of the

edges are unit-length, the difference between radius 1 and radii in the interval (1, 2)

is moot. Since dominating set is hard even in planar graphs [Garey and Johnson,

1979], we must allow the approximation scheme more centers if we are to hope for

a ratio less than 2. Note, though, that not many more centers are required, as evi-

denced by the polynomial-time approximation scheme for dominating set in planar

graphs due to Baker [1994].

In the Euclidean setting, Feder and Greene [1988] gave a 1.822 hardness of approx-

imation result for k-center and an efficient implementation of the previously proposed

2-approximations. In contrast, Hochbaum and Maass [1985] gave a polynomial-time

approximation scheme for covering by fixed-radius balls. The discrepancy, again, is

because of the flexibility in the number of balls. They used an independently devel-

oped shifting technique similar to that of Baker. Geometric covering by other shapes

has been much studied since; see, for example, the polynomial-time approximation

scheme due to Gonzalez [1991] for fixed-size Cartesian products of intervals. We note

some other work on geometric covering that has turned to bicriteria approximation

50

as a way to avoid impossibility results: Agarwal and Procopiuc [2003], Feldman,

Fiat, Sharir, and Segev [2007], Har-Peled and Lee [2012].

4.1 Facial carving decompositions

A facial carving decomposition of an embedded graph G = (E, π) is a complete

rooted unordered binary tree whose leaves are in one-to-one correspondence with

FacesG. We identify each node of this tree with the set of faces whose corresponding

leaves are descendants of that node. Each leaf, then, is identified with the singleton

set containing its corresponding face, and the root is identified with FacesG.

Assume now that G is a planar multitriangulation with symmetric lengths λ ∈

NDartsE. Let p be a shortest path arborescence with root s (Lemma 16). We give an

algorithm due to Arora et al. [1998a] to construct, for some absolute constant b, a

facial carving decomposition of depth at most logb |FacesG| such that, for every node

F , there exist 8 shortest paths with tail s such that, for every vertex v ∈ FrontierG F ,

at least one of those paths contains v.

With respect to p, let q be an interdigitating arborescence with root o (Lemma 7).

Define a relation � on FacesG where f � g if and only if f ∈ Descendantsq g. This

relation is a partial order.

Reflexive We have f ∈ Descendantsq f .

Antisymmetric If f ∈ Descendantsq g and g ∈ Descendantsq f , then f = g.

Transitive If f ∈ Descendantsq g and g ∈ Descendantsq h, then f ∈ Descendantsq h.

51

Suppose that f � g1 and f � g2. Then there exists a pair of nonnegative integers

k1, k2 such that (leftG ◦ q)k1(f) = g1 and (leftG ◦ q)k2(f) = g2. If k1 ≤ k2, then

g1 � g2. If k2 ≤ k1, then g2 � g1. We conclude that the set {g : g ∈ FacesG, f � g}

is totally ordered. By f1 ∨ f2, we denote the unique �-minimum element of the set

{g : g ∈ Faces, f1 � g, f2 � g}. This element is the leafmost common ancestor.

We now construct the facial carving decomposition recursively. Let F be the

node whose subtree we currently are constructing. We ensure that F is expressed

as the intersection of four or fewer sets of the form Descendantsq f or FacesG \

Descendantsq f . (The empty intersection is taken to be FacesG.) By Proposition 4

and Lemmas 9 and 12, we ensure in this way that, for every node F , there exist 8

shortest paths with tail s such that, for every vertex v ∈ FrontierG F , at least one of

those paths contains v.

In tandem, the following properties, which apply to every triple of nodes F0, F1, F2

such that F1, F2 are the children of F0, imply that logb |FacesG| is an upper bound

on the depth of the decomposition.

• If F0 cannot be expressed as the intersection of three or fewer sets, then both

F1, F2 can.

• If F0 can be expressed as the intersection of three or fewer sets, then for every

i ∈ {1, 2}, we have |Fi| < 2
3

(
|F0| − 1

)
+ 1.

For every node F with grandchild F ′, we have |F ′| + 1
5
≤ 2

3

(
|F | + 1

5

)
, so the depth

of the decomposition is at most

2 log 3
2

|FacesG|+ 1
5

1 + 1
5

,

52

from which bound we prove the existence of the absolute constant b.

Consider those sets of the form Descendantsq f or FacesG\Descendantsq f whose

intersection equals F . Without loss of generality, at most one of these sets is

of the form Descendantsq f , since for every pair of faces f1, f2, if there exists a

face f3 ∈ Descendantsq f1 ∩ Descendantsq f2, then f1 � f2 or f2 � f1, and either

Descendantsq f1 or Descendantsq f2 can be omitted from the intersection.

Suppose that the intersection contains a set Descendantsq f1. There exists a triple

of faces f2, f3, f4 such that

F = Descendantsq f1 \ (Descendantsq f2 ∪Descendantsq f3 ∪Descendantsq f4).

Assume without loss of generality that, for every i ∈ {2, 3, 4}, we have fi ≺ f1;

otherwise, omit the corresponding set and follow the case to be presented shortly.

Assume by similar logic that f1 ≺ o and that f2 6� f3 6� f4 6� f2. Consider the

set {f2 ∨ f3, f2 ∨ f4, f3 ∨ f4}. Assume to the contrary that it is a singleton set

{g}. Since g � f1 ≺ o, we have g 6= o. There exist three distinct faces h such that

leftG q(h) = g, which is impossible because g is comprised of q(g) and at most two

other darts. Assume without loss of generality that g = f2 ∨ f3 is the minimum

element. Then f4 6� f2 ∨ f3, so we choose child nodes

F ∩Descendantsq g = Descendantsq g \ (Descendantsq f2 ∪Descendantsq f3)

F \Descendantsq g = Descendantsq f1 \ (Descendantsq g ∪Descendantsq f4).

We argue similarly when there exist f1, f2, f3, f4 ∈ FacesG such that

F =
⋃

i∈{1,2,3,4}

(FacesG \Descendantsq fi).

53

Now suppose that F is the intersection of at most three approved sets. We show

that there exists a face g ∈ FacesG such that

|F ∩Descendantsq g| < 2
3

(
|F | − 1

)
+ 1

|F \Descendantsq g| < 2
3

(
|F | − 1

)
+ 1.

We find g by walking leafward in the arborescence q, maintaining the invariant that

|F ∩ Descendantsq g| ≥ 1
3

(
|F | − 1

)
. By an averaging argument and the fact that

|o| ≤ 3, there exists an initial choice for g satisfying leftG q(g) = o and the invariant.

While possible, we update g ← g′, where g′ satisfies leftG q(g
′) = g and the invariant.

At the end, by another averaging argument, |F ∩Descendantsq g| < 2
3

(
|F | − 1

)
+ 1.

4.2 An exact dynamic program

Let G = (E, π) be a planar multitriangulation with symmetric lengths λ ∈ NDartsE.

Fix a facial carving decomposition with the properties described in the previous sec-

tion. In this section, we give an algorithm to solve the ball cover problem. The core

of this algorithm is a straightforward bottom-up dynamic program on a facial carving

decomposition. The interesting aspect is the interplay between which solutions for

a node are allowed (conformance) and which ones can be combined (compatibility).

54

4.2.1 Interfaces and conformance

For a decomposition node F , an interface ι is a map ι ∈
(
N ∪ {∞}

)FrontierF
. We

stipulate that, for every nonnegative integer n,

n <∞ ∞ ≤∞

∞+ n =∞ ∞+∞ =∞

and limit our algebraic manipulations to the facts that addition is still commutative

and associative and that≤ is still a total order that respects addition. A set of centers

C conforms to ι if and only if, for every w ∈ FrontierF satisfying ι(w) <∞, there

exists some v ∈ C with d(v, w) ≤ ι(w). The subproblems in the dynamic program

are defined with respect to an internal interface ιint and an external interface ιext

that specify the coverage produced and consumed by the subsolution.

4.2.2 Compatibility

Compatibility is defined with respect to three pairs of interfaces ιint0 , ιext0 and ιint1 , ιext1

and ιint2 , ιext2 with respect to a parent-children triple of nodes F0, F1, F2, i.e., F0 =

F1 ∪ F2 and F1 ∩ F2 = ∅. These interfaces are compatible if and only if both of

two conditions hold.

Parent’s internal For every w ∈ FrontierF0 satisfying ιint0 (w) < ∞, there exist

i ∈ {1, 2} and v ∈ FrontierFi such that ιinti (v) + d(v, w) ≤ ιint0 (w).

Children’s external For every i ∈ {1, 2} and w ∈ FrontierFi satisfying ιexti (w) <

∞, at least one of two possibilities holds. The first possibility is that there exists

55

v ∈ FrontierF3−i such that ιint3−i(v) + d(v, w) ≤ ιexti (w). The second possibility

is that there exists v ∈ FrontierF0 such that ιext0 (v) + d(v, w) ≤ ιexti (w).

4.2.3 Total conformance

Before we define total conformance, we need an additional definition. Fix an arbi-

trary map ϕ ∈ (DartsE)VerticesG such that, for every vertex v, we have ϕ(v) ∈ v.

For every node F , define

ContentF ,
{
v : v ∈ VerticesG, rightG ϕ(v) ∈ F

}
.

Observe that ContentF ⊆ InteriorF ∪ FrontierF .

Total conformance is a property of a subsolution C ⊆ VerticesG with respect to

a node F . The subsolution C is totally conforming if and only if there exists a

family of interface pairs ιintF ′ , ι
ext
F ′ indexed by nodes F ′ ⊆ F such that the following

properties hold.

Conformance For every node F ′ ⊆ F , the subsolution C ∩ContentF ′ conforms to

the interface ιintF ′ .

Compatibility Every parent-children triple of nodes F0, F1, F2 ⊆ F has compatible

interface pairs.

Coverage For every node F ′ ⊆ F and every client w ∈ K ∩ ContentF ′, at least

one of two possibilities holds. The first possibility is that there exists v ∈

C ∩ ContentF ′ with d(v, w) < r. The second possibility is that there exists

w ∈ FrontierF ′ with ιextF ′ (v) + d(v, w) < r.

56

The following proposition is an easy consequence of the coverage property and

the fact that Content FacesG = VerticesG.

Proposition 27. A totally conforming subsolution C with respect to the root node

FacesG is feasible.

The following lemma shows that compatible totally conforming subsolutions com-

pose under union.

Lemma 28. Let F0, F1, F2 be a parent-children triple of nodes. Let ιint0 , ιext0 and

ιint1 , ιext1 and ιint2 , ιext2 be three pairs of interfaces that are compatible. If for every

i ∈ {1, 2} the subsolution Ci is totally conforming via a family of interfaces with

ιinti , ι
ext
i for Fi, then C0 = C1 ∪ C2 is totally conforming via a family of interfaces

with ιint0 , ιext0 for F0.

Proof. We need to check conformance and coverage at F0. The other requirements

are hypotheses. For conformance, let w ∈ FrontierF0 satisfy ιint0 (w) < ∞. By

compatibility (parent’s internal), there exist i ∈ {1, 2} and v ∈ FrontierFi such that

ιinti (v) + d(v, w) ≤ ιint0 (w). By conformance for Fi, there exists a center u ∈ Ci ⊆ C0

with d(u, v) ≤ ιinti (u). In consequence,

d(u,w) ≤ d(u, v) + d(v, w) ≤ ιinti (v) + d(v, w) ≤ ιint0 (w).

As for coverage, let x ∈ K ∩ ContentF0. Either x ∈ K ∩ ContentF1 or x ∈ K ∩

ContentF2; let i ∈ {1, 2} satisfy x ∈ K ∩ ContentFi. If there exists w ∈ Ci ∩

ContentFi with d(w, x) < r, then w ∈ C0 ∩ ContentF0, and we’re done. If not,

then there exists w ∈ FrontierFi with ιexti (w) + d(w, x) < r. By compatibility

(children’s external), at least one of two possibilities holds. The first possibility is

that there exists v ∈ FrontierF3−i such that ιint3−i(v) + d(v, w) ≤ ιexti (w). In this case,

57

by conformance, there exists u ∈ C3−i ∩ ContentF3−i ⊆ C0 ∩ ContentF0 such that

d(u, v) ≤ ιint3−i(v), and

d(u, x) ≤ d(u, v) + d(v, w) + d(w, x)

≤ ιint3−i(v) + d(v, w) + d(w, x)

≤ ιexti (w) + d(w, x)

< r.

The second possibility is that there exists v ∈ FrontierF0 such that ιext0 (v)+d(v, w) ≤

ιexti (w). Then

ιext0 (v) + d(v, x) ≤ ιext0 (v) + d(v, w) + d(w, x)

≤ ιexti (w) + d(w, x)

< r.

The following proposition is a partial converse for Lemma 28.

Proposition 29. Let C be an totally conforming subsolution with respect to some

node F . Then C is totally conforming with respect to every node F ′ ⊆ F .

4.2.4 A structure lemma

Having proved that the output of the dynamic program will be feasible, we now

prove that it will be optimal.

Lemma 30. Let C be a set of centers covering every client. Then C is totally

conforming.

58

Proof. We stipulate that min∅ =∞. For every node F , we set

ιintF (w) , min
{
d(v, w) : v ∈ C ∩ ContentF

}
ιextF (w) , min

{
d(v, w) : v ∈ C \ ContentF

}
,

and conformance is immediate. To check compatibility, let F0, F1, F2 be a parent-

children triple with associated interfaces ιinti = ιintFi
and ιexti = ιextFi

. The property

“parent’s internal” requires that, for every w ∈ FrontierF0 satisfying ιint0 (w) < ∞,

there exist i ∈ {1, 2} and v ∈ FrontierFi such that ιinti (v) + d(v, w) ≤ ιint0 (w). Fix

w; by the definition of ιint0 (w), there exists u ∈ C ∩ ContentF0 such that d(u,w) =

ιint0 (w). Since ContentF0 = ContentF1 ∪ ContentF2, let i ∈ {1, 2} satisfy u ∈

ContentFi and consider a particular shortest path from u to w. The fact that

w ∈ FrontierF0 implies that w /∈ InteriorFi, so there exists by Lemma 3 a vertex

v ∈ FrontierFi such that

ιint0 (w) = d(u,w) = d(u, v) + d(v, w) ≥ ιinti (v) + d(v, w).

The property “children’s external” requires that, for every i ∈ {1, 2} and w ∈

FrontierFi satisfying ιexti (w) < ∞, at least one of two possibilities holds. Fix i

and w and let u ∈ C \ContentFi satisfy d(u,w) = ιexti (w). In case u ∈ ContentF3−i,

there exists a vertex v ∈ FrontierF3−i with d(u,w) = d(u, v)+d(v, w), which implies

that

ιint3−i(v) + d(v, w) ≤ d(u, v) + d(v, w) = d(u,w) = ιexti (w),

which is the first acceptable possibility. In case u /∈ ContentF0, there exists a vertex

v ∈ FrontierF0 with d(u,w) = d(u, v) + d(v, w), and

ιext0 (v) + d(v, w) ≤ d(u, v) + d(v, w) = d(u,w) = ιexti (w),

59

which is the second acceptable possibility.

The final property in need of verification is “coverage”: for every node F and

every client w ∈ K ∩ ContentF , at least one of two possibilities holds. Let u ∈

C satisfy d(u,w) < r. If u ∈ ContentF , then the first acceptable possibility is

immediate. Otherwise, u ∈ C \ ContentF , and there exists a vertex v ∈ FrontierF

with d(u, v) + d(v, w) = d(u,w). In this case,

ιextF (v) + d(v, w) ≤ d(u, v) + d(v, w) = d(u,w) < r,

which implies the second acceptable possibility.

4.3 An approximating dynamic program

In this section, we show how to modify and extend the dynamic program presented in

the previous section to trade precision for a polynomial running time. The first step

is a partitioning technique due to Baker [1994] called shifting that has been used

in many approximation schemes for planar graphs. The second step is to reduce the

number of configurations that the dynamic program needs to consider, via techniques

of Arora et al. [1998b].

4.3.1 Shifting

Assume without loss of generality that there exists a positive integer n such that

ε = n−1. Choose uniformly at random a shift σ ∈
{

0, 2r, . . . , 2(ε−1 − 1)r
}

and

60

partition the client set C into sets

Ci =
{
x : x ∈ C, 2iε−1r ≤ d(s, x) + σ < 2(i+ 1)ε−1r

}
for i ∈ N, where s is the root of the shortest path arborescence used to construct

the decomposition. Observe that almost all of these sets are empty.

The algorithm covers each Ci independently and takes the output to be the

union of these covers. The purpose of this partition is to limit the length of the

frontier under consideration to O(ε−1r), which we exploit in the next subsection.

The drawback is that, even if each individual cover is optimal, the union of covers

in general is not. We show that expected fraction of extra centers is at most ε of the

optimal solution and derandomize by minimizing over ε−1 outcomes for σ.

Let K be a feasible cover for C. For each i, let

Ki =
{
u : u ∈ K, 2iε−1r − r ≤ d(s, u) + σ < 2(i+ 1)ε−1r + r

}
.

First we verify that Ki is a cover for Ci. Let x ∈ Ci be arbitrary and let u ∈ K

satisfy d(x, u) = d(u, x) < r. Then, by two applications of the triangle inequality,

d(s, x)− r < d(s, x)− d(u, x) ≤ d(s, u) ≤ d(s, x) + d(x, u) < d(s, x) + r,

which implies that u ∈ Ki. Second, we compute the expected number of sets Ki to

which a particular u ∈ K belongs. Let Z =
(
d(s, u) + σ

)
mod 2ε−1r. The vertex

u belongs to exactly two sets if Z < r or Z ≥ 2ε−1r − r; otherwise, it belongs to

exactly one set. For σ, exactly one outcome out of ε−1 causes the above condition

to hold. We conclude that the probability that u belongs to two sets is ε.

61

4.3.2 Quantization

If the dynamic program is to run in polynomial time, then we need to effect a drastic

reduction in the number of interfaces that it considers. We call the interfaces that

satisfy the conditions set out in the following subsections representative inter-

faces.

Several techniques are required. We exploit the relaxation of the covering radius

from r to (1 + ε)r by reducing the precision of the set of representative interfaces.

Every distance not less than (1+ε)r can be replaced by∞ without affecting compat-

ibility or total conformance. Recall that, by our construction of the decomposition,

for each node, the frontier vertices lie on the union of at most 8 shortest paths from

s. Moreover, the depth of the decomposition is at most logb |FacesG|. Define

δ = max

{⌊ εr

6 logb |FacesG|

⌋
, 1

}
>

εr

12 logb |FacesG|
.

We consider to be representative only those interfaces in DFrontierF , where D =
{
nδ :

n ∈ N, nδ < (1 + ε)r
}
∪ {∞}.

4.3.3 Portals

Observe that, after applying Baker’s technique, the distance from the root vertex s

to each client to be covered belongs to the interval {x, x+1, . . . , x+2ε−1r−1}. Ac-

cordingly, all of the centers and frontier vertices that could participate meaningfully

in the dynamic program have distances belonging to the interval
{
x− r+ 1, x− r+

2, . . . , x+ (2ε−1 + 1)r − 1
}

. It is not necessary to track the others.

62

By exploiting again, moreover, the relaxed covering radius, it is also not necessary

to track every frontier vertex. For each node F , apply the algorithm of Lemma 18

on each of at most 8 shortest paths to compute, with respect to the subset of frontier

vertices {
v : v ∈ FrontierF, x− r < d(s, v) < x+ (2ε−1 + 1)r

}
,

a δ-net PortalsF of cardinality at most

8
(
1 + δ−1(2ε−1 + 2)r

)
< 192(ε−2 + ε−1) logb |FacesG|+ 8.

A portal is an element of PortalsF . The portal analog of Lemma 3 is that, for

every st-path P where s belongs to the interior and t does not, there exists another

st-path P ′ that satisfies lengthP ′ < lengthP + 2δ and contains a portal. We change

the definitions used by the exact dynamic program by replacing globally FrontierF

with PortalsF .

4.3.4 A relaxed Lipschitz condition

Let m =
⌈
(1 + ε)rδ−1

⌉
δ be the least multiple of δ satisfying m ≥ (1 + ε)r. Given an

interface ι, we define, for every portal v,

ι′(v) = min
{
ι(v),m

}
.

In other words, we derive ι′ by treating ∞ as m, a radius slightly too large to be

covering. The final step in controlling the number of representative interfaces is that

they are required to satisfy the following relaxed Lipschitz condition, which is,

63

for every pair of portals v, w,

ι′(v) + d(v, w) > ι′(w)− δ.

We bound the number of representative interfaces examining each of the 8 short-

est paths separately and hence bounding a Cartesian product. Fix a particular

shortest path and let

〈v1, v2, . . . , v`〉

be the subsequence of vertices selected from the path in constructing the correspond-

ing δ-net. Letting D = 2(ε−1 + 2)r − 2,

∑̀
i=2

d(vi−1, vi) ≤ D.

We now show that there exist a polynomial number of possibilities for the sequence

〈
ι′(v1), ι

′(v2)− ι′(v1), ι′(v3)− ι′(v2), . . . , ι′(v`)− ι′(v`−1)
〉
,

given which it is possible to reconstruct, for every i, the value of ι(vi). Using the

relaxed Lipschitz condition and the fact that ι′(vi) is a multiple of δ, the number of

sequences is bounded by the number of possibilities for ι(v1), a logarithmic quantity,

times ∏̀
i=2

(
2
⌈
δ−1d(vi−1, vi)

⌉
+ 1
)
≤ 5`−1

∏̀
i=2

max
{
δ−1d(vi−1, vi), 1

}
.

The inequality is derived by considering separately the cases d(vi−1, vi) ≤ δ and

d(vi−1, vi) > δ. Since ` is logarithmic, the factor 5`−1 is polynomial. Via the inequal-

ity of arithmetic and geometric means, the other factor can be bounded above by(
Dδ−1/(`− 1)

)`−1
, which, because Dδ−1 and ` are both logarithmic, is polynomial.

64

4.3.5 An approximate structure lemma

Lemma 31. Let C be a set of centers covering every client. Then C is totally

conforming with radius (1 + ε)r via representative interfaces.

Proof. For every node F , let ιintF , ι
ext
F be the interfaces from the construction of the

original structure lemma, Lemma 30. Let h =
⌊
logb |FacesG|

⌋
and define

ι̂intF (v) = µ
(
ιintF (v) + (h− depthF)3δ

)
ι̂extF (v) = µ

(
ιextF (v) + (h− 1 + depthF)3δ

)
µ(z) =

dzδ−1eδ if z ≤ m− δ

∞ if z > m− δ.

The effect of µ is to round its argument up to the nearest multiple of δ less than

(1 + ε)r, or ∞.

First, we verify that the newly defined interfaces are representative interfaces.

This is tedious but straightforward. By the triangle inequality, an original interface

ι satisfies, for every pair of frontier vertices v, w with ι(w) <∞,

ι(v) + d(v, w) ≥ ι(w).

Its counterpart ι̂ is defined as

ι̂(v) = µ
(
ι(v) + γ

)
,

65

where γ is constant. Now we derive the inequality

ι̂′(v) + d(v, w) > ι̂′(w)− δ,

where ι̂′(x) = min
{
ι̂(x),m

}
. Observe that ι(x)+γ+δ > ι̂′(x) and that, if ι(x)+γ ≤

m, then ι(x) + γ ≤ ι̂′(x). The first case of the inequality to be proved is when

ι(v) + γ ≤ m; combine the previous two inequalities with the triangle inequality.

The second is when ι(v) + γ > m, in which case we observe that the left-hand side

is at least m, and the right-hand side is at most m− δ.

Second, we verify total conformance. Since the revised interfaces have values no

less than their originals, conformance carries over. Coverage with radius (1 + ε)r

holds because the error term (h − 1 + depthF)3δ + δ, which is an upper bound on

ι̂extF (v)− ιextF (v), is less than ε. Finally, for compatibility, the error term adds 2δ slack

to each of the relevant inequalities after rounding up, which pays for a detour of

one-way distance at most δ to a portal (observe that the root cluster has no frontier

vertices).

CHAPTER Five

Multiple-source shortest paths

Let G = (E, π) be a connected embedded graph with lengths λ ∈ NDartsE and

let f∞ ∈ FacesG. Multiple-source shortest paths (MSSP) is the problem of

computing a shortest path arborescence for each root vertex incident to f∞, that is,

each vertex headG a where a ∈ f∞. In this chapter, we prove the following theorem.

Theorem 32 (Eisenstat and Klein [2013]). There exists an algorithm that solves

the multiple-source shortest paths problem for planar G that runs in time O
(
|E| +∑

a∈DartsE λ(a)
)
.

Our algorithm is based on the work of Cabello et al. [2013], who simplified a previ-

ous O
(
|E| log |E|

)
-time algorithm for real lengths due to Klein [2005] and generalized

it to bounded-genus graphs. With slightly different techniques, Eisenstat and Klein

[2013] also obtained a linear-time algorithm for single-source sink-single maximum

flow in unit-capacity planar graphs. Substantially simpler than a previous algorithm

66

67

with the same, optimal running time due to Brandes and Wagner [2000], this algo-

rithm is based on the O
(
|E| log |E|

)
-time algorithm for real capacities of Borradaile

and Klein [2009]. The proof of correctness borrows liberally from Erickson [2010],

who first pointed out the similarity of the latter algorithm to that of Cabello et al.

and who summarized some of the long, intertwined history of shortest paths and

maximum flow in planar graphs. One hint of this similarity is that both algorithms

can be viewed as implementations of the simplex method, supported by the same

collection of data structures.

Since its introduction by Klein, the multiple-source shortest paths problem has

appeared as a primitive in many planar graph algorithms; see Eisenstat and Klein

[2013] for details. Somewhat surprisingly, however, the only public experimental

work to date involving multiple-source shortest paths, at least of which we are aware,

is presented in the next chapter of this dissertation, on centrality measures. Tazari

and Müller-Hannemann [2008] declined to implement an efficient multiple-source

shortest paths subroutine for their algorithms engineering work on the Steiner tree

approximation algorithm of Borradaile et al. [2009] and found that, while their im-

plementation was faster than some existing heuristics at producing solutions with

comparable quality, almost all of the running time was spent computing shortest

paths. The maximum flow algorithm of Borradaile and Klein was implemented

by Schmidt, Toppe, and Cremers [2009], who found it to be faster on instances aris-

ing in computer vision than algorithms designed specifically for computer vision. The

latter remain heavily used, though, because they handle multiple sources, multiple

sinks, and three-dimensional grids, which aren’t planar.

The special case of multiple-source shortest paths in weighted rectilinear grids

with diagonals has been investigated in connection with string alignment problems.

Schmidt [1998] and Tiskin [2007, 2008] have given efficient algorithms for such prob-

68

lems, for which multiple-source shortest paths is, as of this work, an equally asymp-

totically efficient alternative. Their proofs of correctness use the same noncrossing

property of shortest paths.

5.1 Implicit representation of multiple arbores-

cences

Let {b0, b1, . . . , b`−1} = f∞ be an enumeration such that, for every i, we have bi+1 =

rev π(bi), where we define b` = b0. We specify an embedded graph Ĝ = (Ê, π̂),

obtained by subdividing the cycle f∞ into a wheel with a double spoke to headG b0.

If G is planar, then so is Ĝ. Formally, let {e0, e1, . . . , e`} be a set of edges disjoint

from E.

Ê = E ∪ {e0, e1, . . . , e`}

π̂(a) =

(e`, 1) if a = b0

(e0, 1) if a = (e`, 1)

rev b1 if a = (e0, 1)

(ei, 1) if ∃i ∈ {1, 2, . . . , `− 1}, a = bi

rev bi+1 if ∃i ∈ {1, 2, . . . , `− 1}, a = (ei, 1)

(e`,−1) if a = (e0,−1)

(ei−1,−1) if ∃i ∈ {1, 2, . . . , `}, a = (ei,−1)

π(a) otherwise.

69

b3

b4
b0 = b5

b1
b2 (e0, 1)

(e5, 1)

(e1, 1)

(e4, 1)

(e2, 1)

(e3, 1)

G f̂∞ ô

f̂4

f̂5

f̂1

f̂2

f̂3

Figure 5.1: The embedded graph Ĝ.

For each vertex v = headG a of G, the corresponding vertex of Ĝ is denoted v̂ =

headĜ a. In Ĝ, there is one additional vertex, which we call ô = headĜ (e0,−1). For

each face f = rightG a 6= f∞ of G, the corresponding face of Ĝ is denoted f̂ = rightĜ a.

Let f̂∞ = rightĜ (e0,−1) and, for each i ∈ {1, 2, . . . , `}, let f̂i = rightĜ bi. See

Figure 5.1.

The output of the MSSP algorithms that we describe is an arborescence p̂0 rooted

at ô, a sequence of pivot darts a1, a2, . . . , an ∈ Darts Ê, and indices 0 = j(0) <

j(1) < · · · < j(`) = n. The pivots define a sequence of arborescences inductively as

follows.

p̂j+1(v̂) =

aj+1 if headĜ aj+1 = v̂

p̂j(v̂) if headĜ aj+1 6= v̂

Each of these arborescences necessarily is rooted at ô. Define a map pj with respect

to G by taking pj(v) = p̂j(v̂) whenever the latter belongs to DartsE. For each i, the

map pj(i) is a shortest path arborescence rooted at headG bi.

70

5.2 Algorithmic framework

The framework that we are about to describe is due to Cabello et al. [2013]. It is

equivalent to running the dual simplex method on the linear program for shortest

paths. We start by computing an initial shortest path arborescence p0 rooted at

headG b0 and defining the arborescence

p̂0(v̂) =

(e0, 1) if v = headĜ (e0, 1)

p0(v) if v 6= headĜ (e0, 1).

For efficient updates, we compute also reduced lengths λ′0, where

λ′0(a) = dG,λ(headG b0, tailG a) + λ(a)− dG,λ(headG b0, headG a).

For every dart a in the image of p0, we have λ′0(a) = 0. Observe also that λ′0 − λ ∈

BoundariesG∗, where G∗ is the dual of G. It is well known that, for every alternative

length map λ′ ∈ NDartsE satisfying λ′−λ ∈ BoundariesG∗, every pair of vertices s, t,

and every pair of st-paths P1, P2,

lengthλ(P1)− lengthλ(P2) = lengthλ′(P1)− lengthλ′(P2).

In consequence, both length maps give rise to the same shortest paths. We maintain

over time an arborescence pj and reduced lengths λ′j that satisfy the invariant that

every dart a in the image of the map pj satisfies λ′j(a) = 0. Whenever pj is an

arborescence, each of its paths has length 0, so pj is a shortest path arborescence.

Each round consists of one or more pivots. In round i, counting from 0, the first

dart that enters the primal arborescence is aj(i)+1 = (ei+1, 1); we set λ′j(i)+1 = λ′j(i).

71

In subsequent pivots, the dart aj+1 that enters is chosen in conjunction with λ′j+1 so

that λ′j+1(aj+1) = 0 and λ′j+1 − λ′j ∈ BoundariesG∗. Since BoundariesG∗ is closed

under addition, this guarantees inductively that λ′j+1−λ ∈ BoundariesG∗. The last

pivot of round i is the one that displaces the dart (ei, 1).

For each i and each j(i) < j < j(i+1), we define a vertex chain χj ∈ {0, 1}VerticesG

as follows. For each vertex v, if pathp̂j v̂ contains (ei, 1), then we set χj(v) = 0. If

pathp̂j v̂ contains (ei+1, 1), then we set χj(v) = 1. We observe that χj is total and

well defined. Since
∑

v∈VerticesG χj(v) is nonnegative; bounded above by |VerticesG|;

and, as we will ensure within each round, increasing in j; each round terminates

after at most |VerticesG| pivots.

Let ωj = ∂G
∗

2 χj ∈ BoundariesG∗ ∩ {0, 1,−1}E. Since χj(headG bi) = 0 and

χj(headG bi+1) = 1, there exists, by the connectivity ofG, a dart a such that ω(a) = 1.

Let z = min
{
λ′j(a) : ωj(a) = 1

}
and define λ′j+1 = λ′j − zωj. By our choice of z,

we have λ′j+1 ≥ 0. There exists, moreover, a dart aj+1 such that ωj(aj+1) = 1 and

λ′j+1(aj+1) = 0. The head of this dart and its descendants have their paths switched

from (ei, 1) to (ei+1, 1).

5.3 Use of the interdigitating arborescence

Starting with this section, we assume that G and thus Ĝ are planar. For each i and

each j(i) < j < j(i + 1), define as follows an arborescence p′j, consisting of rev bi+1

72

together with the darts in pj.

p′j(v) =

bi+1 if v = headG bi+1

pj(v) if v 6= headG bi+1

For each i, define p′j(i) = pj(i). For each j, let rev ◦ q′j be the interdigitating arbores-

cence (in G) rooted at f∞. For each i and each j(i) < j < j(i+ 1), let

qj(f) =

rev bi+1 if f = f∞

q′j(f) if f 6= f∞

Observe that leftG ◦ qj is the identity map on FacesG. For each i, define qj(i) = q′j(i).

For each i and each j(i) < j < j(i+ 1), the vertex chain χj is the indicator function

for Descendantsp′j headG bi+1. It follows by the planarity of G and Lemma 12 that the

darts a satisfying (∂G
∗

2 χj)(a) = 1 are rev bi+1 and the darts in pathrev◦q′j rightG rev bi+1.

Put another way, these darts comprise the image under qj of the unique cycle of the

map rightG ◦ qj from FacesG to FacesG.

The algorithm of Cabello et al. [2013] uses a top tree [Alstrup, Holm, Lichtenberg,

and Thorup, 2005] to manage λ′j and q′j and the task of finding aj+1, with each pivot

requiring logarithmic time. The algorithm that we describe in the next section works

directly with qj.

5.4 Algorithm

In this section, we present our MSSP algorithm (Figure 5.2) and sketch the difficult

parts of a proof that it is a correct instance of the framework. This algorithm,

73

initialize Ĝ, λ′, p̂, q

procedure Evert(c′, f ′) # change the root of q to f ′

loop # and insert the cycle dart c′ from f ′

c′′ ← q(f ′)
q(f ′)← c′

exit when f ′ = f
c′ ← rev c′′

f ′ ← leftG c
′

end loop
end procedure

j ← 0
f ← f∞

L1 for i← 0 to `− 1 by 1
j(i)← j
a← (ei+1, 1)

L2 loop
j ← j + 1 # pivot the dart a in and the dart c out
aj ← a
c← p̂(headĜ a)
p̂(headĜ a)← a
exit when c = (ei, 1)

S3 Evert(rev c, leftG rev c)
L4 loop # find the cycle dart with minimum λ′

a← q(f) # by counting down
exit when λ′(a) = 0
λ′(a), λ′(rev a)← λ′(a)− 1, λ′(rev a) + 1
f ← rightG a

end loop
end loop

S5 Evert(⊥, f∞)
L6 loop # fix up λ′

exit when f = f∞
a← q(f)
λ′(a), λ′(rev a)← λ′(a)− 1, λ′(rev a) + 1
f ← rightG a

end loop
end for
j(`)← j

Figure 5.2: Pseudocode for the linear-time multiple-source shortest paths algorithm.

74

moreover, uses the leafmost pivot rule to break ties. The analysis of the running

time is subtle and deferred to the next section. We omit the subscript j on λ′ and

p̂ and q to emphasize that these maps are updated in place. We use ⊥ to make

undefined values first-class.

Loop L1 iterates through ` new roots. Loop L2 effects one root change but leaves

λ′ in an inconsistent state; statement S5 and loop L6 clean up. Statements S3 and

S5 maintain q. The effect of S3 is to remove a from q and insert rev c; some darts

in q must be reversed if leftG rev c is not already the root face. The effect of S5 is to

restore the root to be f∞.

Loops L4 and L6 are the most interesting because they update the reduced lengths

λ′. The key new idea of this algorithm is not to update λ′ all at once. In this way,

we avoid reviewing the leafmost darts every time a dart with reduced length zero

is found. To show, however, that our algorithm pivots in a correct manner that

is consistent with the leafmost rule, we need a correspondence between λ′ and the

framework’s λ′j. We thus stipulate the invariant that there exists z′ ∈ N such that

λ′ = λ′j − z′ωj + [rev pathrev◦q′j f].

Intuitively, rev pathrev◦q′j f excludes those darts that have had their reduced lengths

successfully but tentatively decreased by 1.

This invariant is straightforward to verify for loops L4 and L6. In L4, the only

complication is that, whenever f changes from f∞ to some other value, we need to

increment z′. Let z = z′ − 1 if f 6= f∞, or z = z′ if f = f∞. Just before a pivot, we

75

have λ′j+1 = λ′j − zωj. Since the edge chain

(z − z′)ωj + [rev pathrev◦q′j f]− [rev pathrev◦q′j+1
f]

belongs to CyclesG∗ and is carried by Edges (rev ◦ q′j+1), by Lemma 10, there exists

z′′ ∈ {0, 1} such that

(z − z′)ωj + [rev pathrev◦q′j f] = −z′′ωj+1 + [rev pathrev◦q′j+1
f],

and the invariant is preserved across pivots.

Finally, we must verify that the pivoted dart aj+1 is eligible and leafward of other

eligible darts, where “leafward” means appearing beforehand in the sequence

q(f∞), (q ◦ rightG ◦ q)(f∞), (q ◦ rightG ◦ q ◦ rightG ◦ q)(f∞),

If ωj(a) 6= 1, then f 6= f∞, and it follows that λ′(a) ≥ 1, so a is not pivoted.

Otherwise, the fact that λ′(a) = 0 implies, in concert with the inequality λ′(a) ≥ 0,

that a is eligible. Every dart a′ leafward of a satisfies λ′j(a
′) > λ′j(a) and so is not

eligible.

5.5 Analysis of the running time

Every step of the algorithm in Figure 5.2 can be charged to one of two types of

operations: inserting a dart into q, the interdigitating arborescence for the dual of

G, and decreasing by 1 the reduced length of a dart in that arborescence. To prove

that the running time is O
(
|E|+

∑
a∈DartsE λ(a)

)
, it suffices to show that each dart

76

is inserted into q at most once. Our analysis generalizes that of Cabello et al. by

handling degeneracy and counting insertions made by Evert.

For every vertex v ∈ Vertices Ĝ and every time j, we define

ψvj , [pathp̂j v].

Observe that ∂Ĝ1 (ψv0−ψvj) = 0. For every v and j, there exists by Lemmas 10 and 12

a unique solution φvj ∈ FaceChains Ĝ to the equations

φvj (f̂∞) = 0 ∂Ĝ2 φ
v
j = ψv0 − ψvj .

See Figure 5.3. Clearly, φv0 = 0. By Lemma 12 again and some tedious work on

the correspondence between G and Ĝ, we can prove also that φvj′ ≥ φvj for every

time j′ ≥ j. (Intuitively, every path is no less counterclockwise than the last.) As

a special case, φvj ≥ φv0 = 0. This much does not require leafmost pivots, but the

following lemmas do.

Lemma 33. Assume leafmost pivots. For every v and j, we have φvj ≤ 1.

Proof. Assume to the contrary that there exist v and j and f̂ such that φvj (f̂) > 1.

Without loss of generality, let k = φvj (f̂) and assume that φvj ≤ k. From Ĝ, construct

an embedded graph H by iteratively deleting every edge e that is not a bridge

in the current iterate of H but that satisfies φvj
(
rightĜ (e, 1)

)
= φvj

(
rightĜ (e,−1)

)
.

Let 〈c1, c2, . . . , cm〉 enumerate in clockwise order (the boundary of) the face in H

corresponding to f̂ . By Lemma 13 and the maximality of k (to rule out the reverse

orientations), it holds for every dart ci that ci appears in pathp̂0 v or ci appears in

rev pathp̂j v or edge ci is a bridge in H. Moreover, edge ci ∈ E (i.e., edge ci appears

in the unmodified input, G), since φvf maps to 0 or 1 every face incident to at least

77

b1 b2 b3

(e2, 1)

1

1

1 0

0

1 2

φvj (f)

(e0, 1)

pathp̂0 v

ô

v

(e3, 1)

pathp̂j v

f

Figure 5.3: The construction of φvj .

78

one edge e ∈ Ê \E. Every path in the dual of Ĝ from f̂ to f̂∞ includes one of these

darts whose edge is not a bridge. Since f̂ and f̂∞ have corresponding faces f and

f∞ respectively in G, the same statement holds for paths in the dual of G.

Let j′ < j be the last time at which at least one dart rev ci appearing in pathp̂j v

is not present in p̂j′ . By the maximality of j′, the next pivot, aj′+1, is rev ci. The

search path rev pathrev◦qj leftG rev ci necessarily includes a dart in pathp̂0 v, since all of

the other boundary darts are in p̂j. As we show, this dart necessarily has reduced

length zero, violating the leafmost pivot rule.

Assume without loss of generality that no edge ci is a bridge. (If edge ci is a

bridge and ci appears before rev ci, then we apply this argument inductively to the

subsequence from ci exclusive to rev ci exclusive, and to the subsequence from rev ci

exclusive to the end followed by the subsequence from the beginning to ci exclusive.)

The relevant property of the sequence now is that it is a path from some vertex

to itself (a cycle), obtained by concatenating subpaths alternately of pathp̂0 v and

pathp̂j v, with all darts appearing in the unmodified input, G. Let w1, w2, . . . , wr be

consecutive vertices from rootmost to leafmost in pathp̂0 v, where w1 is the rootmost

vertex that pathp̂0 v has in common with the cycle, and wr is the leafmost. There

exists a sequence of pairs
(
α(1), β(1)

)
,
(
α(2), β(2)

)
, . . . ,

(
α(z), β(z)

)
such that α(1) =

r and β(z) = 1 and, for every i, we have β(i) < α(i+ 1), and the cycle contains the

subpath of rev pathp̂j v from wα(i) to wβ(i) and the subpath of pathp̂0 v from wβ(i) to

wα(i+1). We conclude that, since all of these subpaths are shortest, every dart on the

subpath of pathp̂0 v from wβ(i) to wα(i) has reduced length zero, and the union of the

intervals
[
β(i), α(i)

]
is [1, r].

Lemma 34. Assuming leafmost pivots, each dart is inserted into the dual arbores-

cence q at most once.

79

Figure 5.4: Members for k ∈ {5, 6, 7} of a family of planar embedded graphs with k edges incident
to the infinite face, on which MSSP without the leafmost pivot rule can pivot the red edge k times.
The maximum with the leafmost pivot rule is twice. (The length of every dart is 0.)

Proof. Fix a dart c. For every j, let ρj ∈ FaceChains Ĝ satisfy the equations

ρj(f̂∞) = 0 ∂G2 ρj = fundamentalCyclep̂j c.

Observe that, for every j,

ρj = ρ0 − φ
tailĜ c

j + φ
headĜ c

j .

The dart c is present in qj if and only if ρj(leftĜ c) = −1. The times j at which c is

inserted satisfy

φ
tailĜ c

j−1 (leftĜ c) < φ
tailĜ c

j (leftĜ c),

and by Lemma 33, there can be only one.

5.6 Necessity of a rule for breaking ties

When multiple darts are eligible to be pivoted, the correctness of MSSP does not

require a specific choice. Nevertheless, if this choice is made in an adversarial manner

80

Figure 5.5: A complete execution of MSSP without the leafmost pivot rule on the k = 5 member
of the family depicted in Figure 5.4. The red edge is pivoted 5 times.

81

without regard to the leafmost pivot rule, then the running time may be significantly

more than linear. Figure 5.4 depicts a family of problematic inputs, where one

distinguished edge can be pivoted an unbounded number of times (see Figure 5.5).

By subdividing that distinguished edge and adjusting the executions accordingly, we

find that the worst-case number of pivots is Ω(m3/2), where m is the number of edges

in the embedded graph.

5.7 Implementation notes

MSSP can be implemented with a dynamic tree that is either edge-weighted or node-

weighted. An edge-weighted tree can provide an efficient general-purpose Evert

operation but practically is half as fast as a node-weighted tree and requires the

reduced length of one of the edges of the cycle separating the old root from the new

to be maintained out of band. The cost of Evert for node-weighted trees results

from the fact that we need to simulate edge weights. When a path is reversed, the

weights of the edges on the path must be moved from one node corresponding to an

endpoint to the other. A happy consequence of Lemma 34, however, is that the Evert

operations issued require only linear time over the course of the entire algorithm.

It is possible to generalize MSSP to change between roots that are not adjacent.

Unfortunately, this generalization seems to be mutually exclusive with the leafmost

pivot rule, as there is no longer a common face with respect to which “leafmost” can

be defined. The most natural faces from which to start the search are those incident

to the edge most recently cut.

MSSP can be implemented comfortably with fixed-width integers and without

82

the possibility of integer overflow. Assuming that the combined length of the two

darts of each edge can be represented, every derived vector of reduced lengths can

be represented as well, even if some distances cannot.

CHAPTER Six

Centrality measures

Let G be a graph with edge lengths and let d be the associated metric on the set of

vertices V . The farness of a vertex v is
∑

w∈V d(v, w), and the closeness of v is the

reciprocal of that quantity. Under the simplifying assumption that, for every pair of

vertices s, t, there exists a unique shortest st-path, the betweenness of a vertex v

is ∣∣∣{(s, t) : {s, t} ⊆ V \ {v}, d(s, v) + d(v, t) = d(s, t)
}∣∣∣(

|V | − 1
)(
|V | − 2

) .

Both definitions are due to Freeman [1978–1979]. The condition d(s, v) + d(v, t) =

d(s, t) coincides with the proposition that v lies on the shortest st-path. Nondegen-

eracy assumptions like these are commonly made in the computational geometry

literature (see, for example, the work of Cabello et al. [2013]).

In this chapter, we give algorithms to compute these centrality measures in planar

graphs from the output of multiple-source shortest paths. Our algorithms are based

83

84

on the node-weighted dynamic tree data structure of Sleator and Tarjan [1985]. We

do not prove a worst-case time bound better than the trivial bound O
(
|E|2 log |E|

)
but instead present evidence that these algorithms are significantly more efficient in

practice than previous exact algorithms.

For betweenness centrality in general graphs, the O
(
|V |
(
|E|+ |V | log |V |

))
-time

algorithm due to Brandes [2001], which computes shortest path trees from each

vertex, is still asymptotically fastest among known exact algorithms. This running

time is not good enough for large graphs, so a variety of approximate approaches

have been developed; see, e.g., the paper of Riondato and Kornaropoulos [2014] for

the newest and a summary of the others. The situation with closeness centrality is

similar.

On the problem of betweenness centrality in road networks specifically, the sys-

tem PHAST of Delling et al. [2013] is the only work known to us, and we use it

as a point of reference in our experimental evaluation. PHAST computes all-pairs

shortest paths but creates opportunities for data parallelism via the contraction hier-

archies technique of Geisberger, Sanders, Schultes, and Delling [2008], one of several

techniques for shortest paths found by [Abraham, Fiat, Goldberg, and Werneck,

2010] to exploit the low highway dimension of typical road networks, a measure that

they introduced.

6.1 Sleator–Tarjan trees

Sleator and Tarjan [1985] present a data structure that represents a rooted forest

where each node has a real value. This data structure supports the following oper-

85

ations, each of which runs in amortized time O(log n). Note that we have altered

some of the operation names and omitted, among others, the operations for ancestor

minimum, eversion, and leafmost common ancestor.

New() Returns a new node, different from all nodes returned previously by New().

This node has value 0 and is the only node in the tree to which it belongs.

Root(v) Returns the root node of the tree to which node v belongs.

Parent(v) Returns the parent node of node v. Precondition: Root(v) 6= v.

Link(v, w) Inserts an arc to node v from node w, which becomes v’s parent. Pre-

conditions: Root(v) = v and Root(w) 6= v.

Cut(v, w) Deletes the arc to node v from node w. Preconditions: Root(v) 6= v and

Parent(v) = w.

Value(v) Returns the value of node v.

Update(v, x) Adds x to the value of each of the nodes

v, Parent(v), Parent
(
Parent(v)

)
, . . . , Root(v),

the ancestors of v.

The term “dynamic tree” refers to the data structure of Sleator and Tarjan as well as

data structures with similar interfaces developed subsequently, such as top trees [Al-

strup et al., 2005].

86

6.2 Sleator–Tarjan trees with generalized updates

In this section, we show how to generalize the values in a Sleator–Tarjan tree from real

numbers under addition to arbitrary groups with computable products and inverses.

The resulting data structure supports noncommutative updates with both ancestor

and descendant scope. We prefer Sleator–Tarjan trees as a base on account of their

superior practical performance [Tarjan and Werneck, 2010].

6.2.1 Groups

A group consists of a set G and a binary operation G × G → G denoted by con-

catenation that together satisfy several axioms.

Associativity For every x, y, z ∈ G, we have (xy)z = x(yz).

Identity There exists an element e ∈ G such that, for every x ∈ G, we have

ex = x = xe. It follows that e is unique.

Inverse For every x ∈ G, there exists an element x−1 ∈ G such that x−1x = e =

xx−1. It follows that x−1 is unique and that (x−1)−1 = x.

An endomorphism is a map h : G→ G such that, for every x, y ∈ G, we have

h(xy) = h(x)h(y). It follows that h(e) = e and that, for every x ∈ G, we have

h(x−1) = h(x)−1. The map h is idempotent if and only if, for every x ∈ G, we have

h
(
h(x)

)
= h(x).

87

6.2.2 Generalized updates

Given a group G and an idempotent endomorphism h, we specify a generalized

update operation.

New() The initial value of a new node is still the identity element, now denoted e.

Update(v, x) For each node w in the tree to which v belongs: if w is an ancestor

of v, then update w’s value from y to yx; otherwise, update w’s value from y

to yh(x).

When G is the real numbers under addition and h(x) = e, we recover the old

specification.

6.2.3 Operational underpinning

Sleator–Tarjan trees perform operations on the virtual tree by manipulating an

internal linked collection of binary trees called the actual tree. Both trees have the

same set of nodes, but their parent relationships are in general different. Every node

in the actual tree has at most one left child, at most one right child, and any

number of middle children. We refer to left and right children as solid children

and to middle children as dashed children. A solid descendant of a node is the

node itself, or a solid child, or a solid child of a solid child, etc. A solid ancestor

of a node v is a node of which v is a solid descendant. A solid root is a node that

is not a solid child. The key internal operation Expose(v) rearranges the actual tree

so that v is the actual root and the solid descendants of v are the ancestors of v.

In turn, Expose(v) depends on two other internal operations, Rotate(u, v, w, x) and

88

Splice(v, w, x).

Sleator–Tarjan trees support Update(v, x) by not storing each value directly.

Instead, each node has an associated quantity ∆val, and the value of a node v is

the sum δ0 + δ1 + · · ·+ δ` where δi is the ∆val of the solid ancestor i parents above

v. Note that this sum ends just after the first solid root encountered while moving

rootward from v. Updates to the values of the virtual ancestors of v are effected

by calling Expose(v) and then adding to v’s ∆val. Value(v) can call Expose(v) and

then return v’s ∆val.

To support generalized updates, we redefine the value of a node v to be the

group product δ0δ1 · · · δ`h(δ`+1δ`+2 · · · δ`′) where δ0, . . . , δ` are the ∆values of the

solid ancestors of v and δ`+1, . . . , δ`′ are the ∆values of the other actual ancestors, all

in rootward order. Update(v, x) is carried out as before, by calling Expose(v) and

multiplying v’s ∆val on the right by x. All we have to do is to show that each of

four topological operations on the actual tree can be made to preserve values. See

Figure 6.1.

6.3 Algorithms

In this section, we describe our algorithms to compute closeness and betweenness

centrality. Both algorithms use multiple-source shortest paths to compute all shortest

path trees. Both involve a dynamic tree with generalized updates over the group of

3×3 unit upper triangular matrices with integer entries, under matrix multiplication.

89

u

v

w

x

u

w

v

x

Rotate

On Rotate(u, v, w, x) :
v.∆val← v.∆val w.∆val
u.∆val← u.∆val v.∆val
u.∆val← u.∆val (w.∆val)−1

w.∆val← w.∆val (v.∆val)−1

v w

x

vw

x

Splice

On Splice(v, w, x) :
v.∆val← v.∆val x.∆val
v.∆val← v.∆val

(
h(x.∆val)

)−1
w.∆val← w.∆val h(x.∆val)
w.∆val← w.∆val (x.∆val)−1

v

w

v

w

Link

Cut

On Link(v, w) :
v.∆val← v.∆val (w.∆val)−1

On Cut(v, w) :
v.∆val← v.∆val w.∆val

Figure 6.1: Maintenance of the ∆val field after topological changes to the actual tree. Nodes
with a tailless solid incoming arc have a solid parent, a dashed parent, or no parent. Nodes with a
tailless dashed incoming arc have a dashed parent or no parent. Nodes with no incoming arc have
no parent.

90

Rational entries are not required because

1 a c

0 1 b

0 0 1

−1

=

1 −a ab− c

0 1 −b

0 0 1

 .

For implementations of these algorithms, it suffices to store only the three entries

above the diagonal.

6.3.1 Computing closeness centrality

Since closeness and farness are reciprocally related, we focus on computing farness.

We pipe the output of multiple-source shortest paths to a dynamic tree that main-

tains, for each node, the sum of distances to its descendants, i.e., the farness of that

node with respect to the nodes in its subtree of the shortest path tree. After each

root change, we trivially query the farness of the new root.

In order to maintain farness (f), we maintain two other quantities for each node.

The first is the distance to that node from the root of its tree (d). The second is its

descendant count (n). We pack these into a 3× 3 matrix as follows.

1 −d f

0 1 n

0 0 1

91

The reason for storing −d and not d will become clear shortly. We let

h

(
1 −d f

0 1 n

0 0 1

)

=

1 −d 0

0 1 0

0 0 1

and verify that h is an idempotent endomorphism. Intuitively, updates to d affect

descendants, and updates to n and f affect ancestors.

We initialize the value of each node to
1 0 0

0 1 1

0 0 1

 .

Before linking an arc to v from w of length `, we make the following updates. After

each cut, we do the inverse. First, we retrieve the matrix entries for v and w.

1 −dv fv

0 1 nv

0 0 1

← Value(v)

1 −dw fw

0 1 nw

0 0 1

← Value(w).

Second, we increase by `+ dw the distance of each node in v’s subtree from the root,

which is changing from v to Root(w).

Update

(
v,

1 −(`+ dw) 0

0 1 0

0 0 1

)

92

Third, we update the descendant count and farness of each of w’s ancestors.

Update

(
w,

1 0 fv + nv(`+ dw)

0 1 nv

0 0 1

)

This final update bears some explanation. Let’s work through an example for some

ancestor x.
1 −dx fx

0 1 nx

0 0 1

1 0 fv + nv(`+ dw)

0 1 nv

0 0 1

 =

1 −dx fv + nv(`+ dw − dx) + fx

0 1 nv + nx

0 0 1

The descendant count is incremented by nv. The farness is incremented by fv +

nv(` + dw − dx). The quantity ` + dw − dx is the distance from x to v. Letting u

range over the descendants of v, which are nv in number, the difference between x’s

new and old farness is

∑
u

d(x, u) =
∑
u

(
d(v, u) + d(x, v)

)
=
∑
u

d(v, u) + nvd(x, v)

= fv + nv(`+ dw − dx),

as desired.

93

6.3.2 Computing betweenness centrality

Recall our nondegeneracy assumption that, for every pair of vertices s, t, there exists

a unique shortest st-path. As before, we pipe the output of multiple-source shortest

paths to a dynamic tree. The value of each node v is comprised of three quantities.

The first, nv, is the number of proper descendants. The second, bv, is

∣∣∣{(s, t) : s ∈ R \ {v}, t ∈ V \ {v}, d(s, v) + d(v, t) = d(s, t)
}∣∣∣,

where R is the set of roots that have been considered so far. At the end, when

R = V , the betweenness centrality of v is

bv(
|V | − 1

)(
|V | − 2

) .
The third quantity is kv, the number of times that bv has been updated. It’s needed

to make the algebra work out. We define

h

(
1 n b

0 1 k

0 0 1

)

=

1 0 0

0 1 k

0 0 1

 ,

which ensures ancestor scope on updates to n and b.

Before linking an arc to node v from node w, we update the descendant count of

each of w’s ancestors as follows. After each cut, we do the inverse.

1 nv bv

0 1 kv

0 0 1

← Value(v) Update

(
w,

1 nv + 1 0

0 1 0

0 0 1

)

94

For each vertex v, when we have built the shortest path tree with root v, we apply

the following update.

1 nv bv

0 1 kv

0 0 1

← Value(v) Update

(
w,

1 0 −nv

0 1 1

0 0 1

)

The effect of this update on v is to increment kv.
1 nv bv

0 1 kv

0 0 1

1 0 −nv

0 1 1

0 0 1

 =

1 nv bv

0 1 1 + kv

0 0 1

The effect on v’s proper descendants u is to increment bu by nu, the number of

shortest paths from v that pass through u on the way to another vertex.

1 nu bu

0 1 ku

0 0 1

h
(

1 0 −nv

0 1 1

0 0 1

)

=

1 nu bu

0 1 ku

0 0 1

1 0 0

0 1 1

0 0 1

 =

1 nu nu + bu

0 1 1 + ku

0 0 1

6.4 Experimental results

We implemented our algorithm for betweenness centrality in C. The source code

and scripts to replicate the results in this section are available at http://www.

davideisenstat.com/mississippi/.

The machine that we used for our benchmarks was a commodity workstation

running Linux 3.2, with 16 GiB of DDR3-1066 RAM and a quad-core AMD Phenom

II X4 955 processor clocked at 3.2 GHz. We used Clang 3.2 with the optimization

http://www.davideisenstat.com/mississippi/
http://www.davideisenstat.com/mississippi/

95

flag -O3 to compile our C source code with POSIX Threads for parallelization. Our

test graphs were derived from the U.S. Census Bureau’s 2012 TIGER/Line data for

the road networks of the United States and its territories. The whole graph has

28.1 million vertices and 35.7 million edges. The edge lengths were approximately

proportional to physical distances.

We compare our implementation against PHAST and GPHAST [Delling et al.,

2013], which also compute shortest path trees for each possible root. The benchmarks

reported for PHAST in that paper were performed on a workstation comparable to

ours, with 12 GiB of DDR3-1066 RAM and a quad-core Intel Core i7-920 proces-

sor clocked at 2.66 GHz (with greater throughput per clock cycle than the 3.2-GHz

AMD). This workstation was running Windows 7 Enterprise, and the authors used

Microsoft Visual C++ 2010 to compile their C++ source code with OpenMP for

parallelization. Their test graph is from the Ninth DIMACS Implementation Chal-

lenge and was derived from 2000 TIGER/Line data on the U.S. road network, with

edge lengths proportional to distance. It has only 23.9 million vertices. GPHAST

used additionally an NVIDIA GeForce GTX 580 graphics processing unit.

6.4.1 Comparison of dynamic trees

Tarjan and Werneck [2010] compared several implementations of dynamic trees and

found that, with one exception, Sleator–Tarjan trees (ST-V) dominate the competi-

tion on change-heavy workloads like multiple-source shortest paths. The exception

is a naive tree where each node has just a singly linked parent and an explicit value

(LIN-V). LIN-V is faster on small trees but slower on large ones and not amenable

to updates with descendant scope.

96

0

1

2

3

4

5

6

7

1000 10000 100000 1e+06 1e+07

R
el

at
iv

e
ti

m
e

(l
ow

er
is

b
et

te
r)

Edges

LIN-V
ST-V

Figure 6.2: Comparison of the performance of dynamic trees based on splay trees and singly
linked lists for all-roots multiple-source shortest paths on graphs derived from the road networks
of U.S. states and territories.

In Figure 6.2, we plot the relative performance of ST-V and LIN-V for all-roots

multiple-shortest paths on the states and territories of the U.S. We measure single-

threaded performance without the betweenness calculation. ST-V is competitive

with LIN-V on the smaller graphs and significantly outperforms it on the larger

ones.

6.4.2 Scalability

Like PHAST and GPHAST, our algorithm for betweenness centrality is embarrass-

ingly parallel. We store the traveling salesman tour in a work queue and let each

thread dequeue a fixed fraction of its share of the remaining work as needed. From

one core to four, we observe a speedup factor of 3.7 in computing betweenness cen-

trality for the entire U.S. road network.

97

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

1000 10000 100000 1e+06 1e+07

E
la

p
se

d
ti

m
e

(m
ic

ro
se

co
n
d
s)

p
er

p
iv

ot

Edges

Figure 6.3: Elapsed time in microseconds per pivot when computing betweenness centrality
with multiple-source shortest paths on graphs derived from the road networks of U.S. states and
territories.

An all-roots MSSP computation makes a number of pivots, each of which in

theory requires logarithmic time. In Figure 6.3, we plot the elapsed time per pivot

with semi-log axes. The datum for the whole U.S. is not plotted; the time per pivot is

0.40 microseconds. The inflection point seems plausibly explained by caching effects,

and we find nothing else to disprove the theory of logarithmic costs.

In Figure 6.4, we plot the number of pivots per edge. The datum for the whole

U.S. again is not plotted, on which input there are 574 pivots per edge. This quantity

depends mainly on the order in which roots are visited. On the theory that shorter

distances between roots means fewer pivots, we use a 2-approximate traveling sales-

man path derived from a minimum spanning tree. This is considerably better than a

random order, whose estimated expected pivot count is several orders of magnitude

higher, but comparable to depth-first search on the initial shortest path tree. We

have not devoted any significant effort to investigating alternative approaches.

98

0

50

100

150

200

250

1000 10000 100000 1e+06 1e+07

P
iv

ot
s

p
er

ed
ge

Edges

Figure 6.4: Pivots per edge when computing betweenness centrality with multiple-source shortest
paths on graphs derived from the road networks of U.S. states and territories.

As the number of edges increases, the number of pivots per edge tends to increase

as well, but much less than linearly. This is crucial to the excellent performance of

our algorithm demonstrated in the next subsection.

6.4.3 Comparison with Dijkstra, PHAST, and GPHAST

Table 6.1 presents our results alongside those reported by Delling et al. [2013]. The

total running time of our implementation is 137 minutes. Our speedup is attributable

largely to algorithms that avoid the need to do linear work for each vertex, however

good the constant may be. Note, however, that PHAST and GPHAST handle graphs

that are not planar, while our algorithm does not.

99

Algorithm Time (ms) per vertex
Dijkstra 947.75
PHAST 28.81
GPHAST 4.65
Our algorithm 0.29

Table 6.1: Elapsed time in milliseconds per vertex when computing all shortest path trees on
graphs derived from the U.S. road network. Our algorithm additionally computes betweenness
centrality.

BIBLIOGRAPHY

Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck. High-
way Dimension, Shortest Paths, and Provably Efficient Algorithms. In Pro-
ceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’10, pages 782–793, Philadelphia, PA, USA, 2010. Society for
Industrial and Applied Mathematics. ISBN 978-0-898716-98-6. URL http:
//dl.acm.org/citation.cfm?id=1873601.1873665.

Pankaj K Agarwal and Cecilia M Procopiuc. Approximation algorithms for pro-
jective clustering. Journal of Algorithms, 46(2):115–139, 2003. ISSN 0196-
6774. doi: http://dx.doi.org/10.1016/S0196-6774(02)00295-X. URL http://www.
sciencedirect.com/science/article/pii/S019667740200295X.

Ajit Agrawal, Philip Klein, and R. Ravi. When Trees Collide: An Approximation
Algorithm for the Generalized Steiner Problem on Networks. In Proceedings of
the Twenty-third Annual ACM Symposium on Theory of Computing, STOC ’91,
pages 134–144, New York, NY, USA, 1991. ACM. ISBN 0-89791-397-3. doi:
10.1145/103418.103437. URL http://doi.acm.org/10.1145/103418.103437.

Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Main-
taining Information in Fully Dynamic Trees with Top Trees. ACM Trans. Al-
gorithms, 1(2):243–264, October 2005. ISSN 1549-6325. doi: 10.1145/1103963.
1103966. URL http://doi.acm.org/10.1145/1103963.1103966.

Sanjeev Arora. Polynomial Time Approximation Schemes for Euclidean Traveling
Salesman and Other Geometric Problems. J. ACM, 45(5):753–782, September
1998. ISSN 0004-5411. doi: 10.1145/290179.290180. URL http://doi.acm.org/
10.1145/290179.290180.

Sanjeev Arora, Michelangelo Grigni, David Karger, Philip Klein, and Andrzej
Woloszyn. A Polynomial-time Approximation Scheme for Weighted Planar Graph
TSP. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’98, pages 33–41, Philadelphia, PA, USA, 1998a. Soci-
ety for Industrial and Applied Mathematics. ISBN 0-89871-410-9. URL http:
//dl.acm.org/citation.cfm?id=314613.314632.

Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation Schemes for
Euclidean K-medians and Related Problems. In Proceedings of the Thirtieth An-
nual ACM Symposium on Theory of Computing, STOC ’98, pages 106–113, New

100

http://dl.acm.org/citation.cfm?id=1873601.1873665
http://dl.acm.org/citation.cfm?id=1873601.1873665
http://www.sciencedirect.com/science/article/pii/S019667740200295X
http://www.sciencedirect.com/science/article/pii/S019667740200295X
http://doi.acm.org/10.1145/103418.103437
http://doi.acm.org/10.1145/1103963.1103966
http://doi.acm.org/10.1145/290179.290180
http://doi.acm.org/10.1145/290179.290180
http://dl.acm.org/citation.cfm?id=314613.314632
http://dl.acm.org/citation.cfm?id=314613.314632

101

York, NY, USA, 1998b. ACM. ISBN 0-89791-962-9. doi: 10.1145/276698.276718.
URL http://doi.acm.org/10.1145/276698.276718.

Brenda S. Baker. Approximation Algorithms for NP-complete Problems on Planar
Graphs. J. ACM, 41(1):153–180, January 1994. ISSN 0004-5411. doi: 10.1145/
174644.174650. URL http://doi.acm.org/10.1145/174644.174650.

Mohammadhossein Bateni, Mohammadtaghi Hajiaghayi, and Dániel Marx. Ap-
proximation Schemes for Steiner Forest on Planar Graphs and Graphs of Bounded
Treewidth. J. ACM, 58(5):1–37, October 2011. ISSN 0004-5411. doi: 10.1145/
2027216.2027219. URL http://doi.acm.org/10.1145/2027216.2027219.

Piotr Berman, Marek Karpinski, and Alexander Zelikovsky. 1.25-Approximation
Algorithm for Steiner Tree Problem with Distances 1 and 2. In Frank Dehne,
Marina Gavrilova, Jörg-Rüdiger Sack, and Csaba D. Tóth, editors, Algorithms
and Data Structures, volume 5664 of Lecture Notes in Computer Science, pages
86–97. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-03366-7. doi: 10.1007/
978-3-642-03367-4 8. URL http://dx.doi.org/10.1007/978-3-642-03367-4_
8.

Piotr Berman, Marek Karpinski, and Alexander Zelikovsky. A 3/2-Approximation
Algorithm for Generalized Steiner Trees in Complete Graphs with Edge Lengths
1 and 2. In Otfried Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors,
Algorithms and Computation, volume 6506 of Lecture Notes in Computer Sci-
ence, pages 15–24. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-17516-
9. doi: 10.1007/978-3-642-17517-6 4. URL http://dx.doi.org/10.1007/
978-3-642-17517-6_4.

Marshall Bern and Paul Plassmann. The Steiner problem with edge lengths 1 and 2.
Information Processing Letters, 32(4):171–176, 1989. ISSN 0020-0190. doi: http:
//dx.doi.org/10.1016/0020-0190(89)90039-2. URL http://www.sciencedirect.
com/science/article/pii/0020019089900392.

G. Borradaile, P.N. Klein, and C. Mathieu. A Polynomial-Time Approximation
Scheme for Euclidean Steiner Forest. In Foundations of Computer Science, 2008.
FOCS ’08. IEEE 49th Annual IEEE Symposium on, pages 115–124, Oct 2008. doi:
10.1109/FOCS.2008.59.

Glencora Borradaile and Philip Klein. An O(N Log N) Algorithm for Maximum St-
flow in a Directed Planar Graph. J. ACM, 56(2):1–30, April 2009. ISSN 0004-5411.
doi: 10.1145/1502793.1502798. URL http://doi.acm.org/10.1145/1502793.
1502798.

Glencora Borradaile, Philip Klein, and Claire Mathieu. An O(N Log N) Approx-
imation Scheme for Steiner Tree in Planar Graphs. ACM Trans. Algorithms,
5(3):1–31, July 2009. ISSN 1549-6325. doi: 10.1145/1541885.1541892. URL
http://doi.acm.org/10.1145/1541885.1541892.

Ulrik Brandes. A faster algorithm for betweenness centrality*. The Journal of Math-
ematical Sociology, 25(2):163–177, 2001. doi: 10.1080/0022250X.2001.9990249.
URL http://dx.doi.org/10.1080/0022250X.2001.9990249.

http://doi.acm.org/10.1145/276698.276718
http://doi.acm.org/10.1145/174644.174650
http://doi.acm.org/10.1145/2027216.2027219
http://dx.doi.org/10.1007/978-3-642-03367-4_8
http://dx.doi.org/10.1007/978-3-642-03367-4_8
http://dx.doi.org/10.1007/978-3-642-17517-6_4
http://dx.doi.org/10.1007/978-3-642-17517-6_4
http://www.sciencedirect.com/science/article/pii/0020019089900392
http://www.sciencedirect.com/science/article/pii/0020019089900392
http://doi.acm.org/10.1145/1502793.1502798
http://doi.acm.org/10.1145/1502793.1502798
http://doi.acm.org/10.1145/1541885.1541892
http://dx.doi.org/10.1080/0022250X.2001.9990249

102

Ulrik Brandes and Dorothea Wagner. A Linear Time Algorithm for the Arc Disjoint
Menger Problem in Planar Directed Graphs. Algorithmica, 28(1):16–36, 2000.

Jaros law Byrka, Fabrizio Grandoni, Thomas Rothvoss, and Laura Sanità. Steiner
Tree Approximation via Iterative Randomized Rounding. J. ACM, 60(1):1–33,
February 2013. ISSN 0004-5411. doi: 10.1145/2432622.2432628. URL http:
//doi.acm.org/10.1145/2432622.2432628.

S. Cabello, E. Chambers, and J. Erickson. Multiple-Source Shortest Paths in Em-
bedded Graphs. SIAM Journal on Computing, 42(4):1542–1571, 2013. doi: 10.
1137/120864271. URL http://epubs.siam.org/doi/abs/10.1137/120864271.

Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Wer-
neck. PHAST: Hardware-accelerated shortest path trees. Journal of Parallel
and Distributed Computing, 73(7):940–952, 2013. ISSN 0743-7315. doi: http://
dx.doi.org/10.1016/j.jpdc.2012.02.007. URL http://www.sciencedirect.com/
science/article/pii/S074373151200041X. Best Papers: International Paral-
lel and Distributed Processing Symposium (IPDPS) 2010, 2011 and 2012.

Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M.
Thilikos. Fixed-parameter Algorithms for (K, R)-center in Planar Graphs and Map
Graphs. ACM Trans. Algorithms, 1(1):33–47, July 2005. ISSN 1549-6325. doi: 10.
1145/1077464.1077468. URL http://doi.acm.org/10.1145/1077464.1077468.

E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959. ISSN 0029-599X. doi: 10.1007/BF01386390.
URL http://dx.doi.org/10.1007/BF01386390.

Irit Dinur and David Steurer. Analytical Approach to Parallel Repetition. CoRR,
abs/1305.1979, 2013.

David Eisenstat and Philip N. Klein. Linear-time Algorithms for Max Flow and
Multiple-source Shortest Paths in Unit-weight Planar Graphs. In Proceedings of
the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pages
735–744, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2029-0. doi: 10.1145/
2488608.2488702. URL http://doi.acm.org/10.1145/2488608.2488702.

David Eisenstat, Philip Klein, and Claire Mathieu. An Efficient Polynomial-time
Approximation Scheme for Steiner Forest in Planar Graphs. In Proceedings of
the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’12, pages 626–638. SIAM, 2012. URL http://dl.acm.org/citation.cfm?id=
2095116.2095169.

David Eisenstat, Philip N. Klein, and Claire Mathieu. Approximating k-center in
planar graphs. In Chandra Chekuri, editor, SODA, pages 617–627. SIAM, 2014.
ISBN 978-1-61197-338-9, 978-1-61197-340-2.

Jeff Erickson. Maximum Flows and Parametric Shortest Paths in Planar Graphs.
In Proceedings of the Twenty-first Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’10, pages 794–804, Philadelphia, PA, USA, 2010. Society for
Industrial and Applied Mathematics. ISBN 978-0-898716-98-6. URL http://dl.
acm.org/citation.cfm?id=1873601.1873666.

http://doi.acm.org/10.1145/2432622.2432628
http://doi.acm.org/10.1145/2432622.2432628
http://epubs.siam.org/doi/abs/10.1137/120864271
http://www.sciencedirect.com/science/article/pii/S074373151200041X
http://www.sciencedirect.com/science/article/pii/S074373151200041X
http://doi.acm.org/10.1145/1077464.1077468
http://dx.doi.org/10.1007/BF01386390
http://doi.acm.org/10.1145/2488608.2488702
http://dl.acm.org/citation.cfm?id=2095116.2095169
http://dl.acm.org/citation.cfm?id=2095116.2095169
http://dl.acm.org/citation.cfm?id=1873601.1873666
http://dl.acm.org/citation.cfm?id=1873601.1873666

103

Tomás Feder and Daniel Greene. Optimal Algorithms for Approximate Clustering. In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC ’88, pages 434–444, New York, NY, USA, 1988. ACM. ISBN 0-89791-264-0.
doi: 10.1145/62212.62255. URL http://doi.acm.org/10.1145/62212.62255.

Uriel Feige. A Threshold of Ln N for Approximating Set Cover. J. ACM, 45(4):
634–652, July 1998. ISSN 0004-5411. doi: 10.1145/285055.285059. URL http:
//doi.acm.org/10.1145/285055.285059.

Dan Feldman, Amos Fiat, Micha Sharir, and Danny Segev. Bi-criteria Linear-time
Approximations for Generalized K-mean/Median/Center. In Proceedings of the
Twenty-third Annual Symposium on Computational Geometry, SCG ’07, pages
19–26, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-705-6. doi: 10.1145/
1247069.1247073. URL http://doi.acm.org/10.1145/1247069.1247073.

Linton C. Freeman. Centrality in social networks conceptual clarification. Social
Networks, 1(3):215–239, 1978–1979. ISSN 0378-8733. doi: http://dx.doi.org/10.
1016/0378-8733(78)90021-7. URL http://www.sciencedirect.com/science/
article/pii/0378873378900217.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1979. ISBN 0716710447.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Con-
traction Hierarchies: Faster and Simpler Hierarchical Routing in Road Net-
works. In Catherine C. McGeoch, editor, Experimental Algorithms, volume 5038
of Lecture Notes in Computer Science, pages 319–333. Springer Berlin Heidel-
berg, 2008. ISBN 978-3-540-68548-7. doi: 10.1007/978-3-540-68552-4 24. URL
http://dx.doi.org/10.1007/978-3-540-68552-4_24.

M. Goemans and D. Williamson. A General Approximation Technique for Con-
strained Forest Problems. SIAM Journal on Computing, 24(2):296–317, 1995. doi:
10.1137/S0097539793242618. URL http://epubs.siam.org/doi/abs/10.1137/
S0097539793242618.

Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38(0):293–306, 1985. ISSN 0304-3975. doi: http:
//dx.doi.org/10.1016/0304-3975(85)90224-5. URL http://www.sciencedirect.
com/science/article/pii/0304397585902245.

Teofilo F. Gonzalez. Covering a set of points in multidimensional space. Infor-
mation Processing Letters, 40(4):181–188, 1991. ISSN 0020-0190. doi: http:
//dx.doi.org/10.1016/0020-0190(91)90075-S. URL http://www.sciencedirect.
com/science/article/pii/002001909190075S.

Sariel Har-Peled and Mira Lee. Weighted geometric set cover problems revisited.
JoCG, 3(1):65–85, 2012.

Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian. Faster
Shortest-Path Algorithms for Planar Graphs. Journal of Computer and System
Sciences, 55(1):3–23, 1997. ISSN 0022-0000. doi: http://dx.doi.org/10.1006/

http://doi.acm.org/10.1145/62212.62255
http://doi.acm.org/10.1145/285055.285059
http://doi.acm.org/10.1145/285055.285059
http://doi.acm.org/10.1145/1247069.1247073
http://www.sciencedirect.com/science/article/pii/0378873378900217
http://www.sciencedirect.com/science/article/pii/0378873378900217
http://dx.doi.org/10.1007/978-3-540-68552-4_24
http://epubs.siam.org/doi/abs/10.1137/S0097539793242618
http://epubs.siam.org/doi/abs/10.1137/S0097539793242618
http://www.sciencedirect.com/science/article/pii/0304397585902245
http://www.sciencedirect.com/science/article/pii/0304397585902245
http://www.sciencedirect.com/science/article/pii/002001909190075S
http://www.sciencedirect.com/science/article/pii/002001909190075S

104

jcss.1997.1493. URL http://www.sciencedirect.com/science/article/pii/
S0022000097914938.

Dorit S. Hochbaum and Wolfgang Maass. Approximation Schemes for Covering and
Packing Problems in Image Processing and VLSI. J. ACM, 32(1):130–136, January
1985. ISSN 0004-5411. doi: 10.1145/2455.214106. URL http://doi.acm.org/
10.1145/2455.214106.

Dorit S. Hochbaum and David B. Shmoys. A Best Possible Heuristic for the
k-Center Problem. Mathematics of Operations Research, 10(2):180–184, 1985.
doi: 10.1287/moor.10.2.180. URL http://pubsonline.informs.org/doi/abs/
10.1287/moor.10.2.180.

P. Klein. A Linear-Time Approximation Scheme for TSP in Undirected Planar
Graphs with Edge-Weights. SIAM Journal on Computing, 37(6):1926–1952,
2008. doi: 10.1137/060649562. URL http://epubs.siam.org/doi/abs/10.
1137/060649562.

Philip N. Klein. Multiple-source Shortest Paths in Planar Graphs. In Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05,
pages 146–155, Philadelphia, PA, USA, 2005. Society for Industrial and Applied
Mathematics. ISBN 0-89871-585-7. URL http://dl.acm.org/citation.cfm?
id=1070432.1070454.

Philip N. Klein. A Subset Spanner for Planar Graphs,: With Application to Subset
TSP. In Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of
Computing, STOC ’06, pages 749–756, New York, NY, USA, 2006. ACM. ISBN
1-59593-134-1. doi: 10.1145/1132516.1132620. URL http://doi.acm.org/10.
1145/1132516.1132620.

S. Kolliopoulos and S. Rao. A Nearly Linear-Time Approximation Scheme for the
Euclidean k-Median Problem. SIAM Journal on Computing, 37(3):757–782, 2007.
doi: 10.1137/S0097539702404055. URL http://epubs.siam.org/doi/abs/10.
1137/S0097539702404055.

Richard J. Lipton, Donald J. Rose, and Robert Endre Tarjan. Generalized Nested
Dissection. SIAM Journal on Numerical Analysis, 16(2):346–358, 1979. ISSN
00361429. URL http://www.jstor.org/stable/2156840.

J. Mitchell. Guillotine Subdivisions Approximate Polygonal Subdivisions: A Sim-
ple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and
Related Problems. SIAM Journal on Computing, 28(4):1298–1309, 1999. doi:
10.1137/S0097539796309764. URL http://epubs.siam.org/doi/abs/10.1137/
S0097539796309764.

Matteo Riondato and Evgenios M. Kornaropoulos. Fast Approximation of Between-
ness Centrality Through Sampling. In Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, WSDM ’14, pages 413–422, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2351-2. doi: 10.1145/2556195.
2556224. URL http://doi.acm.org/10.1145/2556195.2556224.

http://www.sciencedirect.com/science/article/pii/S0022000097914938
http://www.sciencedirect.com/science/article/pii/S0022000097914938
http://doi.acm.org/10.1145/2455.214106
http://doi.acm.org/10.1145/2455.214106
http://pubsonline.informs.org/doi/abs/10.1287/moor.10.2.180
http://pubsonline.informs.org/doi/abs/10.1287/moor.10.2.180
http://epubs.siam.org/doi/abs/10.1137/060649562
http://epubs.siam.org/doi/abs/10.1137/060649562
http://dl.acm.org/citation.cfm?id=1070432.1070454
http://dl.acm.org/citation.cfm?id=1070432.1070454
http://doi.acm.org/10.1145/1132516.1132620
http://doi.acm.org/10.1145/1132516.1132620
http://epubs.siam.org/doi/abs/10.1137/S0097539702404055
http://epubs.siam.org/doi/abs/10.1137/S0097539702404055
http://www.jstor.org/stable/2156840
http://epubs.siam.org/doi/abs/10.1137/S0097539796309764
http://epubs.siam.org/doi/abs/10.1137/S0097539796309764
http://doi.acm.org/10.1145/2556195.2556224

105

Neil Robertson and P.D Seymour. Graph minors. X. Obstructions to tree-
decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.
ISSN 0095-8956. doi: http://dx.doi.org/10.1016/0095-8956(91)90061-N. URL
http://www.sciencedirect.com/science/article/pii/009589569190061N.

G. Robins and A. Zelikovsky. Tighter Bounds for Graph Steiner Tree Approx-
imation. SIAM Journal on Discrete Mathematics, 19(1):122–134, 2005. doi:
10.1137/S0895480101393155. URL http://epubs.siam.org/doi/abs/10.1137/
S0895480101393155.

F.R. Schmidt, E. Toppe, and D. Cremers. Efficient planar graph cuts with
applications in Computer Vision. In Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pages 351–356, June 2009. doi:
10.1109/CVPR.2009.5206863.

J. Schmidt. All Highest Scoring Paths in Weighted Grid Graphs and Their Ap-
plication to Finding All Approximate Repeats in Strings. SIAM Journal on
Computing, 27(4):972–992, 1998. doi: 10.1137/S0097539795288489. URL http:
//epubs.siam.org/doi/abs/10.1137/S0097539795288489.

Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting Binary Search
Trees. J. ACM, 32(3):652–686, July 1985. ISSN 0004-5411. doi: 10.1145/3828.
3835. URL http://doi.acm.org/10.1145/3828.3835.

Robert E. Tarjan and Renato F. Werneck. Dynamic Trees in Practice. J. Exp.
Algorithmics, 14:5–23, January 2010. ISSN 1084-6654. doi: 10.1145/1498698.
1594231. URL http://doi.acm.org/10.1145/1498698.1594231.

Siamak Tazari and Matthias Müller-Hannemann. Dealing with Large Hidden Con-
stants: Engineering a Planar Steiner Tree PTAS. J. Exp. Algorithmics, 16:
1–33, November 2008. ISSN 1084-6654. doi: 10.1145/1963190.2025382. URL
http://doi.acm.org/10.1145/1963190.2025382.

Alexander Tiskin. Semi-local longest common subsequences in subquadratic time.
Journal of Discrete Algorithms, 6(4):570–581, 2008. ISSN 1570-8667. doi:
http://dx.doi.org/10.1016/j.jda.2008.07.001. URL http://www.sciencedirect.
com/science/article/pii/S157086670800049X. Selected papers from the 1st
Algorithms and Complexity in Durham Workshop (ACiD 2005) 1st Algorithms
and Complexity in Durham Workshop (ACiD 2005).

Alexandre Tiskin. Semi-local string comparison: algorithmic techniques and appli-
cations. CoRR, abs/0707.3619, 2007.

http://www.sciencedirect.com/science/article/pii/009589569190061N
http://epubs.siam.org/doi/abs/10.1137/S0895480101393155
http://epubs.siam.org/doi/abs/10.1137/S0895480101393155
http://epubs.siam.org/doi/abs/10.1137/S0097539795288489
http://epubs.siam.org/doi/abs/10.1137/S0097539795288489
http://doi.acm.org/10.1145/3828.3835
http://doi.acm.org/10.1145/1498698.1594231
http://doi.acm.org/10.1145/1963190.2025382
http://www.sciencedirect.com/science/article/pii/S157086670800049X
http://www.sciencedirect.com/science/article/pii/S157086670800049X

	Curriculum Vitae
	Acknowledgments
	Introduction
	Preliminaries
	Notation
	Embedded graphs
	Paths
	Connectivity
	Interiors, exteriors, and frontiers
	Arborescences
	Topological order
	Paths that avoid an arborescence
	Chains, cycles, and boundaries
	Fundamental cycles
	Planarity
	Edge deletion
	Shortest paths
	Epsilon nets
	Multitriangulations

	Steiner forest
	Branch decompositions
	An exact dynamic program
	Compatibility
	A structure lemma

	An approximating dynamic program
	An efficient approximating dynamic program

	Ball cover
	Facial carving decompositions
	An exact dynamic program
	Interfaces and conformance
	Compatibility
	Total conformance
	A structure lemma

	An approximating dynamic program
	Shifting
	Quantization
	Portals
	A relaxed Lipschitz condition
	An approximate structure lemma

	Multiple-source shortest paths
	Implicit representation of multiple arborescences
	Algorithmic framework
	Use of the interdigitating arborescence
	Algorithm
	Analysis of the running time
	Necessity of a rule for breaking ties
	Implementation notes

	Centrality measures
	Sleator–Tarjan trees
	Sleator–Tarjan trees with generalized updates
	Groups
	Generalized updates
	Operational underpinning

	Algorithms
	Computing closeness centrality
	Computing betweenness centrality

	Experimental results
	Comparison of dynamic trees
	Scalability
	Comparison with Dijkstra, PHAST, and GPHAST

