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Abstract

Realistic modeling of the human body in 3D has many applications ranging from fashion to the pro-

duction of movies and video games. However, leveraging data coming from state-of-the-art 3D acquisition

systems poses a set of problems. A 3D scan of a person contains holes and thousands of unordered points.

In addition, a 3D scan is a single snapshot of the human body in time, while the shape of the human body

changes with motion, breathing, aging, etc. We pose that modeling the 3D human shape in a data-driven,

surface-based way using multiple instances of captured geometry can lead to (a) accurate estimation of human

attributes, e.g. anthropometric measurements and (b) realistic representation of human body deformations.

In this thesis, we tackle parts of the whole process of modeling the human body in 3D. First, we describe

a method for finding sparse pairwise correspondences between 3D triangular meshes of articulated objects,

such as humans, in various shapes and poses. We propose a search framework that effectively explores the

space of possible correspondences and is more robust to local optima than previous work. Central to this

framework are features based on mesh surface paths that are invariant to shape, pose, and resolution.

Second, we present an approach for extracting standard anthropometric measurements from 3D human

scans. Our approach relies on fitting a deformable 3D body model to scan data; this model-based fitting

is robust to scan noise. In addition, it brings a query scan into registration with a database of registered

body scans, which facilitates statistical analysis. We show that combining multiple poses yields optimal

measurement prediction. For the first time, we perform an extensive evaluation of existing commercial and

research systems using the CAESAR dataset.

Third, we propose a flexible optimization framework to describe variation in 3D human body shape

using orthogonal shape subspaces related to different linear or non-linear constraints. In particular, we find

directions of body shape variation that are directly related to human measurements. We also define a “null

space” that captures how body shape varies in ways that are orthogonal to the measurements. The null space

reveals interesting properties of body shape that are not captured by standard anthropometric measurements

such as inter- and intra-person posture variation, “bow legs”, and body shape asymmetries.

Fourth, we propose a method for capturing and modeling the non-rigid intrinsic shape variation of the

human body during breathing. We learn a detailed model of body shape deformations due to breathing for

different breathing types and provide simple animation controls to render lifelike breathing regardless of

body shape. We also develop a novel interface for breathing animation using a spirometer, which measures

the breathing volume of a “breath actor.” Our approach generates fine-scale body shape deformations due to

breathing with greater ease and realism than previously achieved.

In this thesis, we introduce application-dependent 3D shape representations that describe realistically the

details of the human shape, capture variation in shape and are tied to the anthropometry of the human body.

xiv



CHAPTER 1

Introduction

1. Problem and Thesis Statement

In this thesis, we address the problem of modeling the human body in three dimensions (3D). We focus

mainly on modeling the shape of the human body. Sometimes that refers to the observed shape of the human,

other times we consider the intrinsic human shape after factoring out any deformations that depend on the

human pose. We find that the representation of 3D human shape is application-dependent. For instance, for

predicting tailoring measurements from 3D scans, local features such as circumferences on the human body

across various poses are quite informative. On the other hand, modeling body deformations due to breathing

requires features that account for shape change of the same individual. Thus, we take into account multiple

scans of a person in a single pose and focus mainly on the torso area. As a common theme, we aspire to

model the human body in 3D in such a way that the proposed shape representation

• describes realistically the details of the human body shape

• is able to capture variation in human body shape

• is accurate in the sense that it is tied to the anthropometry of the human body.

We pose that data-driven, surface-based modeling of 3D human shape using multiple high-resolution 3D

scans can lead to (a) accurate estimation of human attributes, e.g. anthropometric measurements and (b)

realistic representation of human body deformations.

We take four steps towards modeling accurately the human body in 3D:

(1) We propose a method for sparse pointwise correspondences between 3D meshes. Methods for

finding sparse correspondences can be used to automate 3D scan registration.

(2) We describe a framework for measuring the human body in 3D. We extract anthropometric mea-

surements using a new method of model-based anthropometry that leverages multiple poses and

shape statistics.

(3) We associate semantics with shape variation. Here we go beyond previous work to explore the

idea of the “null space” of body shape variations not captured by standard anthropometric mea-

surements.

(4) We present a method to capture and model how body shape varies during breathing. Previously,

body shape due to breathing has not been modeled in detail.

1



2. Motivation

Studying humans has always been a big focus in the fields of Computer Vision and Graphics. Earlier

attempts focused on detecting people in images or videos [28, 95, 100]. Subsequent research efforts ranged

from estimating the pose and shape [11, 40, 64] of people to modeling hair [38, 60] and clothing [36, 37].

Arguably, modeling the human body is essential for making applications about and for humans. However, the

human body shape offers unique research challenges compared to other 3D objects in our world. Although

the human body consists of many parts that move in a rigid way, there are also many ways in which the human

shape deforms non-rigidly; e.g. different muscles are flexed when a person is standing compared to when the

same pesron is sitting, deformations due to breathing lead to a constantly changing body shape even when the

person remains seated, etc. Additionally, the human body shape is a rich source of information about human

attributes, ranging from age, gender to the emotional state of a person.

Several graphics approaches for modeling and generating human characters have taken an inside-out

approach and relied on complex anatomically inspired, physically based models of the human body [57, 61].

However, humans are surprisingly good at deriving conclusions based on what they observe; e.g. even by

looking once at a stranger we can tell whether he is happy, tired, how old he is, if he exercises regularly

etc. All we observe is surfaces embedded in a 3D space! One of the first attempts to model full-body skin

deformations using surface data employed a marker-based capture system with a large number of markers

distributed over the body of the subject [70]. The results were promising, but the approach suffered from

time consuming instrumentation of the subject and could not capture deformations of the whole surface

of the human body. Nowadays, we are presented with a set of alternatives. High-resolution 3D scanners,

image-based 3D reconstruction systems, low-resolution 3D capture systems offer us the ability to capture the

whole surface of the body, potentially across time, and generalize easily to capturing different human shapes.

Examples of the abovementioned approaches and systems are shown in Figure 1.1. Modeling the human

body in 3D using data can lead to realistic animation of virtual humans in movies, video games, medical

simulation environments, etc.

With the large amount of 3D data of humans that is being gathered lately and the increasing popularity of

3D virtual world environments, there is a motivation to establish a connection between a person and the 3D

representation of that person. For instance, in a virtual try-on scenario (Figure 1.2), users could potentially

upload their 3D avatar and get personalized prediction of their size as well as personalized suggestions on

how different products may fit them. In the fashion industry, each human body is identified by its size in

a coarse scale and its tailor measurements in a finer scale. Although tailoring measurements convey less

1http://123kinect.com/first-kinect-2-depth-map-image-2/36985/
2http://www.enmalayalam.com/site/english/topic/entertainment/category/variety/2011/10/

3307-article
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(a)

(b)

(c)

(d) (e)

FIGURE 1.1. Graphics techniques for generating moving human bodies: (a) anatomically

inspired, physically based model [108], (b) marker-based capture of skin deformations [70]

(left: animated body, right: subject instrumentation). 3D Reconstruction of humans from

(c) a high-resolution laser scanner (CAESAR dataset [4, 78]), (d) an image-based recon-

struction system [33] (left to right: captured image, reconstructed surface, estimated skele-

ton), (e) Microsoft Kinect [55] 1

3



FIGURE 1.2. Virtual try-on scenario 2: Current online dresssing rooms can be enhanced

with realistic 3D avatars of actual users and personalized size recommendations.

information than the whole body surface of a human, measurement prediction from a 3D mesh representing

a person would facilitate greatly applications such as virtual try-on.

3. Modeling the Human Body in 3D

Although there are many systems for capturing bodies in 3D, the acquired data cannot be readily used as

a human body model. There are two main problems. The first problem is that a scan of a person may contain

holes and thousands of unordered points. In addition, different scans of the same or of different people have

different numbers of points. The second problem is that the shape of the human body is a time-varying

quantity. A 3D scan is essentially a single snapshot of the human body in time (Figure 1.3) while the shape

of the human body changes with motion, breathing, aging, etc.

In this work, we focus on three key problems of modeling the human body in 3D. We start with describing

an approach for finding sparse correspondences between 3D models of humans (or, in general, non-rigid

articulated objects) varying in pose, shape and resolution. This approach can be used in applications, such as

object recognition and retrieval, etc. We proceed by making the connection between 3D models of the human

body and standard anthropometric measurements. This could be useful for applications, such as on-line

shopping and virtual try-on described above. Finally, we describe our approach on capturing and modeling

intra-person variation in human shape from involuntary activities such as breathing. Capturing these shape

deformations offers the potential to enhance the realism of animated human characters.

4



FIGURE 1.3. A 3D scan is only a snapshot of the human body shape in time.

3.1. 3D Articulated Deformable Object Representation. A common way to represent an articulated

3D deformable object is using a 3D triangular mesh (Figure 1.4). The observed shape of the articulated 3D

deformable object is determined mainly by three factors: pose, intrinsic shape, resolution. Although we are

not limited to 3D human bodies, we will focus mainly on 3D meshes of humans.

• Resolution refers to the number of vertices in the 3D mesh representing an articulated 3D object. Figure

1.4 shows two triangular 3D meshes with different resolution.

• Even when not explicitly modeled, it is often assumed that there is a skeleton associated with the 3D

mesh. Pose refers to the relative joint rotations in the underlying skeleton or the rotation and translation

of groups of triangles (i.e. parts). Figure 1.5a shows an example of parts in a 3D human mesh displayed

using different colors. Figure 1.5b shows an example of two 3D bodies that differ only in pose. Notice

that apart from change in observed shape due to the rigid rotation of the body parts, pose induces non-

rigid change in shape because of muscle contraction, body fat, etc. For instance, our stomach is more

flat when we are standing than when we are squating or sitting.

• Intrinsic shape typically refers to the pose-independent shape, such as shape related to height, weight,

waist size etc. For instance, as we see in Figure 1.6a, a fat and a thin person will have different intrinsic

shape. People that look very similar but are scaled versions of each other will have different intrinsic

shape as well (Figure 1.6b). The intrinsic shape is some sort of identity for the specific person.

5



FIGURE 1.4. Triangular 3D meshes that differ in mesh topology.

(a) (b)

FIGURE 1.5. (a) Human body pose refers to the relative rotation of body parts (displayed

with different colors). (b) Example of changing the pose of a 3D mesh.

However, this definition of the observed 3D shape is just an approximation. In reality, the observed 3D shape

of a human depends also on the motion of the body, involuntary activities such as breathing, etc. In the last

part of the thesis, we will introduce an additional component of the observed 3D shape that corresponds to

shape due to breathing. For simplicity, from now on we will refer to the intrinsic shape using the term shape.

3.2. Shape-, Pose- and Resolution- Invariant Correspondences between 3D Non-rigid Articulated

Objects. Finding correspondences between 3D articulated non-rigidly deformable objects is a critical task

6



(a) (b)

FIGURE 1.6. (a) Example of 3D meshes with different intrinsic shape. (b) 3D meshes that

look very similar but are scaled versions of each other have different intrinsic shape as well.

FIGURE 1.7. Pairwise Correspondences between 3D meshes: Example of correspon-

dences obtained with our method (PGSE) for two 3D meshes of humans varying in pose

and shape. Corresponding areas are denoted with the same color.

for many applications, such as object recognition and retrieval, shape deformation and morphing, 3D surface

registration, etc [90, 92]. The term correspondences refers to pairs of points between the surfaces of two 3D

meshes that are “similar” based on some notion of similarity; e.g. the nose tips in two 3D meshes of humans.

Our work is based on the common assumption that deformations due to pose are isometric, which means that

all geodesic distances between surface points P in one mesh are similar to the geodesic distances between

all the corresponding points of P in another mesh. In addition to preserving geodesic distances, we use local

7



FIGURE 1.8. Model-based extraction of anthropometric measurements in 3D. Regis-

tered meshes of a person in 2 poses after fitting a human body model [6, 45] (the dots

correspond to mesh vertices). Measurement prediction is based on local and global shape

features. Local shape features comprise circumferences on the mesh surface (shown as

curves) and limb lengths (shown as straight lines). Global shape features (not shown here)

describe statistics of shape in a database of registered 3D meshes.

surface descriptors that are invariant to intrinsic shape, pose, and resolution variations. An example outcome

of our method is shown in Figure 1.7.

3.3. Measuring the Human Body in 3D: Correlation of the 3D Human Body Shape with Anthro-

pometric Measurements. Studying how human shape varies across the population is useful for many appli-

cations, ranging from designing clothes and furniture to coming up with ways to assess obesity. The standard

way to quantify human body shape has been anthropometric measurements. What is the optimal way for mea-

suring our 3D human body? Here, we make the connection between 3D human shape and a set of standard

anthropometric measurements. We propose a set of local and global features representing human shape in

3D and learn the optimal features for predicting each anthropometric measurement (Figure 1.8). We envision

using this work for personalized sizing and measurement extracting in on-line shopping applications.

Although anthropometry is a well establised means for measuring the human body, the dimensions corre-

spond to a limited set of lengths and paths on the human body surface. Are they able to capture the rich shape

information that human bodies in 3D convey? In a novel application, we extend Principal Component Anal-

ysis (PCA) to constrain the main directions of shape variation to be predictive of standard anthropometric

measurements. The remaining shape variation provides insights into what standard anthropometric measure-

ments do not capture (Figure 1.9). This “nullspace” of human body shapes is a new intriguing concept with

implications for human factors and engineering anthropometry.

8



FIGURE 1.9. Correlating human body shape variation with measurements: We factor

human body shape variation into a measurement space that is constrained to predict anthro-

pometric measurements like height and hip girth and a null space of body shape variation

that are unrelated to these measurements such as bow-legs and pose/posture variations.

3.4. Data-driven Modeling and Animation of Breathing. Modeling how the human body deforms

during breathing is important for life-like animation of 3D avatars. Most procedural animation lacks the

nuance of real breathing while physical simulation remains too complex to apply to a wide range of bodies and

breathing types. In contrast, we learn a detailed model of body shape deformations due to breathing across

different breathing types (Figure 1.10) and provide simple animation controls to render lifelike breathing.

We capture and align high-resolution 3D scans of 58 human subjects. We compute deviations from each

subject’s mean shape during breathing, enabling us, for the first time, to study the statistics of such shape

changes for different genders, body shapes, and breathing types. We use the volume of the registered scans

as a proxy for lung volume and learn a novel non-linear model relating this volume and breathing type to

3D shape deformations and pose changes. We then augment a SCAPE body model [6] so that body shape is

determined by identity, pose, and the parameters of the breathing model.

4. Challenges

In this section, we describe in more detail the challenges involved in modeling the human body in 3D.

4.1. Correspondences between 3D non-rigid articulated objects varying in pose, shape, and res-

olution. Although the problem of establishing correspondences among rigid objects has been addressed in

the literature adequately [89], finding correspondences between non-rigid deformable articulated objects is

9



FIGURE 1.10. Animating breathing types. Respiration induces changes in torso shape

and posture. We learn a model of how 3D breathing deformations relate to lung volume

and breathing type and use it to animate bodies of varying shape and pose. Here we show

the maximal inhale and exhale shapes overlaid for three different bodies breathing mainly

with the stomach (left), mainly with the chest (right), or using a combination of chest and

stomach (middle).

still a challenge. Variations in pose and intrinsic shape change the local geometry of the objects surface,

increasing the likelihood of a false match. In addition, matching two objects entails solving a combinatorial

problem in the exponential space of possible pairwise correspondences. Such an optimization may get stuck

in local optima resulting in non-meaningful correspondences. More specifically, the difficulties in finding

correspondences between 3D meshes arise from the following:

• Pose-dependent geometry. The geometry of the human body changes with the pose of the human; e.g.

the area around the knee deforms in a different way when someone is standing compared to when he is

jumping.

• Shape-dependent geometry. Shape variation across the human population is not a product of scaling

a “canonical body shape” along three dimensions. There are many subtle variations of human body

shape; e.g. two people with mostly the same body shape, but one of them having a bigger belly than the

other.

• Mesh resolution. Mesh resolution refers to the number and distribution of vertices along the surface of

an object represented by a mesh. In that sense, a mesh is an approximation of the object’s surface. Due

to this subsampling of the object’s surface, operations on meshes with different resolution may yield

different results; e.g. shortest-paths on the surface may be slightly different than shortest paths on a

graph formed by the vertices/edges of the mesh.
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• Exponential number of correspondences. Given two meshes with M and N vertices respectively,

the number of possible vertex correspondences from the first to the second mesh is NM . Assumptions

about deformations help to restrict the number of candidate correspondences. For instance, the common

assumption of isometric deformations states that shortest path distances on a 3D mesh of an articulated

object are nearly invariant relative to pose (e.g. human standing vs. human sitting) [19].

4.2. Anthropometric measurement prediction from 3D human bodies. A main challenge in predict-

ing measurements from 3D data of human bodies is to accomodate data that are noisy or incomplete. More

specifically, measurement prediction inevitably contains a set of errors in the following order: real bodies

are captured (acquisition error), the captured data are potentially registered to a template mesh (registration

error) and the resulting meshes are used to predict measurements on the initial real bodies (computational

measurement prediction error).

• Data acquisition. Apart from the acquisition error of the capturing device (e.g. holes and noise in a

scan), capturing the intrinsic shape of a human is a hard task. The observed shape of a human is a time

varying quantity; i.e. it changes with pose as well as during involuntary activities, such as breathing. In

that sense, a single scan per person contains only partial information about his intrinsic shape. In order

to model the human body realistically we need to take a set of representative samples of an individual’s

shape variation.

• Registration. The data that we get from high-resolution scanners usually contain a large number of

points (∼80K), holes and noise. In order to make use of this data, it is common practice to fit an

existing mesh with desired properties (e.g. symmetric mesh with varying resolution based on mesh

curvature) to the captured data. During the registration procedure there is a tradeoff between explaining

every detail of the captured geometry and producing a locally smooth fit of the captured data.

• Shape Descriptors. Generic 3D shape descriptors have proved useful for classification tasks, e.g. ob-

ject retrieval, but they are not very discriminative between shapes within a single class. Given objects of

a specific category, a common way to characterize variation in shape is using dimensionality reduction

techniques. However, for the case of anthropometric measurement prediction, the resulting compo-

nents of global shape variation correlate poorly with measurements on the human body. For instance,

measurements that do not dramatically impact the whole body (e.g. wrist circumference) will be only

slightly correlated with the major directions of shape variation found from the abovementioned tech-

niques. Local shape descriptors can potentially enhance the performance of global shape descriptors,

but it is not obvious what type of local descriptors should be used and how local they should be.

11



4.3. Modeling human shape and pose change due to breathing. Although body deformations due to

breathing are subtle, they are essential for perceiving “life” in an animated 3D character. Yet they are so com-

plex that hand-tuned animation of breathing is laborious and limited in realism [1, 2]. Previously proposed

anatomy-based models of breathing are more realistic than hand-tuned animation, but are computationally

expensive and do not generalize easily to new shapes and styles. Data-driven approaches are very promising

for overcoming the limitations of previous work using data captured from real humans. Nevertheless, there

are still many challenges to overcome.

• Data acquisition. In order to model the fine deformations of the human body due to breathing, we

need high-resolution data. At the same time, breathing is a temporal process which means that multiple

scans per subject need to be captured at a relatively high frame rate. However, state-of-art systems for

3D acquisition (Figure 1.1) capture data in either high temporal and low spatial resolution or vice versa.

That explains the limited previous work on data-driven approaches for modeling breathing. In addition

to capturing detailed data in terms of spatial and temporal resolution, registering the data in order to

perform statistical analysis needs to be performed in an accurate way.

• Extraction of breathing deformations. Breathing is an effect that cannot be directly observed in a

single time instance. Given a single 3D human scan, it is ambiguous which part of the observed shape

is due to breathing and which part corresponds to the intrinsic shape of the human. It is even ambiguous

which part of the observed shape is due to the intrinsic shape or pose of the subject. How can we factor

out all the causes of observed shape apart from breathing? Extracting breathing deformations inevitably

means that multiple scans of the same subject need to be examined. In each scan we need to at least

discern between deformations due to pose, shape, breathing. Breathing itself induces both pose and

shape change.

• Breathing type. Deformations of the human body due to breathing vary across people and contexts [98].

Different people breath in a different way. Different activities induce different patterns of breathing. At

rest breathing seems to be an almost periodic function of time, in other scenarios it is just a timeseries

depending on other factors, such as activity, pose, etc.

• Animation controls. To make animation of breathing practical a compact set of intuitive, but expres-

sive, controls needs to be derived.

5. Contributions of the Thesis

In this thesis, we present different aspects of modeling the human body in 3D ranging from low-level

processing of 3D data representing humans, such as finding correspondences, to higher-level processing, such

as estimating anthropometric measurements. Our main contributions can be summarized as follows:
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(1) We describe a method for finding surface vertex correspondences of a non-rigid object represented as a

3D mesh undergoing significant deformation due to pose and shape variation. The presented method is

also suitable for finding surface point correspondences between objects differing in global/local resolu-

tion and triangulation, containing up to a small proportion of holes. It incorporates a search procedure

that explores effectively the space of possible correspondences and is more robust to local optima than

previous work. It relies on a discriminative probabilistic model that preserves properties related to geo-

desic distances and uses Loopy Belief propagation (LBP) [103] for inference.

(2) We present a model-based approach for predicting anthropometric measurements from registered high-

resolution 3D human scans. Based on point-to-point correspondences among the registered scans, we

propose a set of features that describe global and local human shape variation and are, additionally, pre-

dictive of measurements. We select the optimal features per measurement automatically using regularized

linear regression. In most of the cases, the optimal local features per measurement are indicative of the

corresponding measurement; e.g. circumference features near the desired “circumference measurement”

or limb length features related with the desired “height measurement”. Finally, we show that using 3D

scans of the same person in multiple poses increases the accuracy of predicting measurements for the

specific person.

(3) We propose a constraint optimization framework with a flexible objective function that yields human

shape representations that correlate variation in human shape with different factors. These factors are

used to constrain directions of shape variation coming from common dimensionality reduction tech-

niques. The proposed objective function is general enough to be used with different constraints, such

as anthropometric measurements, age, gender, income etc. Here, we correlate human shape variation

with standard anthropometric measurements and find a subspace of shape variation that is predictive of

measurements. The remaining shape variation, that we term “nullspace”, sheds light onto what kind of

shape variation standard anthropometric measurements do not capture.

(4) We introduce a non-linear model for synthesizing breathing deformations for animated 3D human charac-

ters. Our model is parameterized by the breathing volume and type (% of chest breathing). We augment

a SCAPE body model so that body shape is determined by identity, pose, and the parameters of the

breathing model. These parameters provide an intuitive interface with which animators can synthesize

3D human avatars and their breathing motion. We show results of interactive animation from arbitrary

sequences of breathing volumes coming from real humans, such as sequences captured by a spirome-

ter. Our approach generates fine-scale body shape deformations due to breathing with greater ease and

realism than previously achieved. Furthermore, we give insights on how human shape and pose during

breathing correlates with gender and intrinsic human shape.
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CHAPTER 2

Shape- and Pose-Invariant 3D Correspondences

Finding correspondences between non-rigid 3D deformable objects is a critical task for many applica-

tions. Examples include object recognition and retrieval, shape deformation and morphing, 3D surface reg-

istration, etc. [90, 92]. By defining correspondences using a structure preservation criterion, we can assess

the similarity between two objects based on the amount of structure distortion. For applications involving

search for similar 3D object models, it may be critical to have a measure of similarity that is invariant to

common variations within a class (e.g. body pose and identity variation). Additionally, mesh alignment, for

example of laser scans of human bodies, typically employs surface registration methods like ICP [13], [81]

which require an initial set of correspondences. Here we describe a fully automated method for obtaining

such correspondences between meshes that vary in shape, pose, and resolution.

Although the problem of establishing correspondences among rigid objects has been addressed in the

literature adequately, finding correspondences between non-rigid deformable objects is still a challenge [89].

Variations in pose and shape change the local geometry of the object’s surface increasing the likelihood of

a false match. In addition, matching two objects entails solving a combinatorial problem in the exponential

space of possible pairwise correspondences. Such an optimization may get stuck in local optima resulting

in non-meaningful correspondences. Figure 2.1 shows an example of non-meaningful correspondences pro-

duced by related work, Generalized Multi-Dimensional Scaling (GMDS) [19], where the chest is mapped

to the back of the human model and vice versa. This effect is significantly diminished using our method,

Probabilistic Geodesic Surface Embedding (PGSE).

The main contributions of this work can be summarized as follows:

• A method for finding surface point correspondences of a non-rigid object undergoing significant

deformation due to pose and shape variation.

• A method for finding surface point correspondences between objects differing in global/local reso-

lution and triangulation, containing up to a small proportion of holes.

• Correspondence search that effectively explores the space of possible correspondences and is more

robust to local optima than previous work. It relies on a discriminative probabilistic model that

preserves properties related to geodesic distances and uses loopy belief propagation (LBP) for in-

ference.
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FIGURE 2.1. Local optima in a combinatorial optimization problem for matching ob-

jects varying in pose and shape. Previous work, Generalized Multi-Dimensional Scaling

(GMDS) [19], relies only on the preservation of geodesic distances and can yield non-

meaningful correspondences; e.g. the chest of the body in the left pose is mapped to the

back of the body in the right pose (corresponding regions are shown with the same color).

Our method, Probabilistic Geodesic Surface Embedding (PGSE), achieves more intuitive

results by combining geodesic distances with local surface descriptors in a coarse-to-fine

probabilistic optimization framework.

1. Related Work

Surface registration is often used as a necessary step in various applications, such as content-based shape

retrieval, deformation transfer, model training from data in correspondence, pose estimation etc. [6, 73, 92].

There is a plethora of methods and descriptors for rigid registration [67, 80, 89]; we will focus on non-rigid

registration of articulated deformable objects. Previous methods for matching nonrigid deformable objects

with significant variation in pose aim at providing global consistency of correspondences by preserving in-

trinsic properties of the objects. Usually these methods find deformation-invariant representations of the

objects and match the objects in the representation domain. Examples include the use of geodesic distances

[19], diffusion distances [20] or representations in the Möbius domain [59].

Although preservation of the intrinsic properties of the objects may be sufficient to assess their similar-

ity, intrinsic-only matching criteria are oblivious to object self-symmetries and may yield non-meaningful

correspondences. To overcome this weakness, previous work has explored the use of local surface properties

and/or costs of surface deformation. Previous local surfaces properties are either geometric or based on the

intrinsic characteristics of the shape or both. For instance, the work in [7] uses oriented histograms describing

the distribution of points in local neighborhoods along the object surface (spin images [50]). Dubrovina et al.

[29] use a local surface descriptor based on the eigenvalues of the Laplace-Beltrami operator which is related

to the flow in the mesh representation of the object. Aubry et al. [8] derived a descriptor considering the

15



Schrödinger equation governing the temporal evolution of quantum mechanical particles. Wang et al. [96]

use descriptors based on curvature and surface normals targeted towards a specific class of surfaces (brain

surfaces). Efforts that also take into account object deformation include [47], [107].

Most previous work considers pose variations of the same object. To the best of our knowledge, only the

work in [107] considers variations in shape, but the objects to be matched do not have significant differences

in pose. We are concerned with finding correspondences among objects of the same category varying in shape,

pose, and resolution. Extending previous approaches for global matching, we rely on preserving normalized

geodesic distances to account for the additional variation in shape. We also employ a probabilistic framework

for optimization similar to the one in [7]. We enforce stricter geodesic preservation constraints and use

alternative local surface descriptors that are invariant to shape, pose, and resolution variations.

2. Probabilistic Geodesic Surface Embedding

We consider the problem of finding correspondences between two triangular meshes, a model mesh X

and a data mesh Z. The model mesh X = (V X , EX) is a complete surface consisting of a set of vertices

V X = (x1, . . . , xNX ) and a set of edges EX . The data mesh Z = (V Z , EZ) may contain a modest number

of holes (missing data); the vertices and edges are V Z = (z1, . . . , zNZ ) and EZ respectively. Typically the

data and model meshes differ in shape, pose, and resolution. Each data mesh vertex zk, k = 1, . . . , NZ is

associated with a correspondence variable ck ∈ {1, . . . , NX} that specifies the model mesh vertex it corre-

sponds to. The task of finding correspondences is one of estimating the most likely set of all correspondence

variables C = (c1, . . . , cNZ ) given a specific pair of model and data meshes X , Z.

2.1. Probabilistic Model. We cast the problem of finding correspondences as one of finding the most

likely embedding of the data mesh Z into the model mesh X encoded as an assignment to all correspondence

variables C = (c1, . . . , cNZ ). More specifically we take a discriminative approach where our goal is to find a

configuration of C that maximizes the distribution p(C|X,Z) over all correspondence variables conditioned

on a pair of mesh instances X , Z. Writing this distribution as an undirected graphical model, we get the

Conditional Random Field (CRF) model [56] depicted in Figure 2.2. Each latent variable node in the model

denotes the correspondence variable ck of vertex zk, k = 1, . . . , NZ , in the data mesh. The observed variable

is a pair of model and data meshes X , Z.

We approximate the conditional distribution of the correspondence variables using potential functions, ψ,

linking all pairs of latent variables and unary potentials, φ, linking each latent variable with the data. Formally

we approximate the conditional distribution as: p(C|X,Z) ∝
∏

k φ(ck, X, Z)
∏

k,l ψ(ck, cl, X, Z).

The main idea behind our approach is that the geodesic distances between points in the data mesh Z

should be the same as the geodesic distances between the corresponding points in the model mesh X . Our

method searches for correspondences that satisfy this property. At the same time we want to preserve in the
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FIGURE 2.2. Conditional Random Field (CRF) model for finding correspondences. The

observed variable in the model is a pair of a model mesh X = (V X , EX) and a data mesh

Z = (V Z , EZ). The latent variables are the correspondence variables C = (c1, . . . , cNZ )

of all data mesh vertices. Edges in the model between latent and observed variables favor

correspondences that preserve the intrinsic properties of the data mesh vertices. Geodesic

constraints between all possible pairs of correspondence variables are enforced through the

edges between latent variables.

embedding the intrinsic geodesic properties (geodesic signature) of the data mesh vertices. All the above-

mentioned constraints are enforced using the potentials described below.

Pairwise geodesic potential ψ(ck, cl, X, Z): We consider normalized geodesic distances as the invariant

used to match meshes that deform non-rigidly due to changes in shape and pose. We calculate exact geodesic

distances using the the Fast Marching method described in [54]. For each pair of data mesh vertices zk, zl,

we define a potential function ψ(ck, cl, X, Z) that constrains the pair of correspondences ck, cl in the model

meshX to be geodesically consistent with vertices zk, zl in the data mesh Z (Figure 2.3). LetM = (V,E) be

a mesh with vertices V and edges E and h : V × V → < be a geodesic distance function. Then h(j,m;M)

represents the normalized geodesic distance between two vertices j and m in mesh M . The normalization

is done by dividing the geodesic distance by the maximum geodesic distance over all pairs of vertices in M.

The geodesic potential between a pair of data mesh vertices zk, zl is defined as

(1) ψ(ck, cl, X, Z) = N(h(ck, cl;X);h(k, l;Z), σ2
kl)

where σkl is a user defined parameter; here σkl = 0.1 · h(k, l;Z).

Geodesic signature potential φ(ck, X, Z): We encode a potential that enforces that corresponding vertices

ck in the model mesh have similar intrinsic properties as those in the data mesh zk (Figure 2.4). Our goal

is to distinguish spatially different areas in the model and data meshes as much as possible. The intrinsic

property we use is the mean normalized geodesic distance of vertex zk over all possible vertices in the data

mesh (geodesic signature). The resulting potential can be written as

(2) φ(ck, X, Z) = N(g(ck;X); g(k;Z), σ2
k)
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FIGURE 2.3. The pairwise geodesic potential enforces preservation of geodesic distances

between pairs of vertices (zk, zl) and their correspondences (ck, cl).

FIGURE 2.4. The geodesic signature potential matches vertices in the data and model

meshes with similar average geodesic distances to the rest of the mesh vertices. Only a

subset of geodesic paths is displayed.
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where g(j;M = (V,E)) = 1
|V |
∑

m∈V h(j,m;M) is the mean normalized geodesic distance from j to

all other vertices m in the mesh M and σk is a user defined parameter. The use of geodesic signatures is

important because it biases the embedding of the data mesh to the model mesh to match spatially similar

areas between the meshes. In practice we observe that this also improves convergence of the optimization

procedure described below.

2.2. Inference. Our goal is to find an assignment of the correspondence variables that maximizes the

probability p(C|X,Z) as represented by the graphical model. Exact inference is computationally infeasible

due to the large number of variables and loops in the graph. Instead we use max-product loopy belief propa-

gation (LBP) [103] for approximate inference. Running LBP until convergence yields a set of probabilities

over model mesh vertices for each correspondence variable ck. We compute the optimal correspondence

for each data mesh vertex zk as the model mesh vertex that maximizes the probability distribution of the

correspondence variable ck.

Our inference scheme is performed in two rounds as shown in Figure 2.5. In the first round, the data

mesh is sampled at a coarse level (Figure 2.5 (c)) using the farthest point sampling method [32]. In a similar

way, the model mesh is sampled at a coarse level (Figure 2.5 (d)) and an initial set of correspondences is

obtained using LBP. In the second round, the initial correspondences are refined by restricting the domain for

each correspondence variable to be geodesically close to the solution of the first round of inference (Figure

2.5 (f)). Here we restrict the search to vertices with a geodesic distance up to 1/2 the average geodesic

distance between nearby samples in the model mesh. The complexity of each round is O(K2L2) where K

is the number of samples in the data mesh and L the number of corresponding samples in the model mesh.

To speed up convergence we start the message passing procedure from data mesh samples having maximum

geodesic signature and then move to samples that are more and more geodesically further. Scan samples with

maximum geodesic signatures are the most discriminative in terms of their potential correspondences in the

model mesh. A few more iterations of random message passing follow.

2.3. Sampling. Samples in the data and model meshes were obtained using the Farthest Point Sampling

([32]) method. It’s a greedy algorithm very good at selecting samples containing the extremities of the object.

Although our samples space is not limited to the extremities of the object, extremities are stable under bending

and stretching which makes them suitable to use for finding correspondences.

2.4. Geodesic Distance calculation. The approach we use for calculating the geodesic distances on the

meshes is the Fast Marching method described in [54]. Contrary to graph-based shortest path algorithms (e.g.

Dijkstra’s) the shortest path in our case is not restricted to the graph edges. Shortest paths can pass through

the triangular faces of the mesh yielding much more accurate calculations of geodesic distances.
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FIGURE 2.5. Illustration of the sampling process during the inference procedure. In the

first round, a data mesh (a) and a model mesh (b) are sampled at a coarse level. A coarse

sampling of the data mesh to e.g. 75 markers (c) and a coarse sampling of the model mesh

to e.g. 150 samples (d) produce an initial set of correspondences. In the second round,

for each individual marker in the data mesh (e), the domain of possible correspondences is

obtained from finer sampling around the solution found in the first round (f).
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3. Results

3.1. Data. We evaluate our algorithm on triangular meshes from the TOSCA nonrigid world database

[18] and human bodies generated using the SCAPE model [6]. All the objects are represented as closed

triangular meshes and they are simplified to have 2000-4000 vertices to aid comparison with related work.

For each pair of meshes we find correspondences of 75-100 surface points. For the following experiments

our method requires around 5GB of RAM per pair of meshes. The running time is approximately 1h on a

2.66GHz Intel Xeon processor.

3.2. Evaluation. The meshes we use do not come with any ground truth information about correspon-

dences between their vertices. Typical error metrics in this case measure the degree that geodesic distances

are preserved between the data mesh and the model mesh. Let us consider markers i, j in the data mesh

and their optimal correspondences c∗i , c
∗
j in the model mesh. The following error metric, Tg , represents the

average change in geodesic distances between all pairs of markers and their correspondences.

(3) Tg =
2

|U |(|U | − 1)

∑
i,j∈U

|h(i, j)− h(c∗i , c∗j )|

where U is the set of markers in the data mesh.

However, preservation of geodesic distances does not ensure that the correspondences are qualitatively

meaningful. The smaller the number of markers used and the larger the number of self-symmetries in the ob-

ject, the larger the number of possible correspondence configurations with geodesic distances similar to the

geodesic distances between data mesh markers. We find that comparing Voronoi regions around the markers

and their optimal correspondences provides a more intuitive measure than comparing the degree in which

geodesic distances have been preserved (Figure 2.6). Similar Voronoi regions between the data and model

meshes also lead to similar geodesic distances among markers and their optimal correspondences. The oppo-

site is not necessarily true. Comparing Voronoi regions does not only include how well the geodesic distances

are preserved, but also how similar the neighborhoods around markers and their optimal correspondences are.

Let vs(i) be the area of the Voronoi region around marker i and vm(c∗i ) the area of the Voronoi region

around the optimal correspondence c∗i of marker i in the model. We define the following error metric, Te,

representing the average change in the Voronoi area over all markers and their correspondences.

(4) Te =
1

|U |
∑
i∈U

∣∣∣vs(i)− vm(c∗i )

vs(i)

∣∣∣
where U is the set of markers in the data mesh. In order to deal with shape variation, Voronoi areas are

calculated as a percentage of the whole area of each object.

3.2.1. Correspondences in meshes with same topology. We compare our method, PGSE, to the GMDS

method presented in [19] using triangular meshes of the same topology. For each object in the TOSCA

nonrigid world database, we find correspondences to the canonical object of the category it belongs to. For
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FIGURE 2.6. Comparison of error metrics in a case of non-meaningful correspondences.

In the case of GMDS, vertices in the back are mapped to vertices in the chest and vice versa.

Although correspondences from PGSE are more meaningful anatomically, they result in a

higher geodesics-based error Tg . The Voronoi-based error Te is more consistent with how

a human would assess the quality of correspondences.

the SCAPE bodies, we find correspondences between the mean SCAPE body in the canonical pose as defined

in the CAESAR dataset [78] and SCAPE bodies varying in pose, shape, and pose and shape together.

Figure 2.7 illustrates the correspondences found with GMDS and PGSE. Evaluating the correspondences

using the error metric defined above, we get the error plots shown in Figures 2.8(a, b, c). For the parameterized

bodies generated using the SCAPE model, we sort the results based on pose or shape variation. Pose variation

is measured as the average joint angle deviation from the joint angle configuration in the canonical pose. It

is weighted by the percentage of mesh vertices each joint controls and it is measured in radians. Shape

variation is measured based on the L2-norm of the shape coefficients in the SCAPE model. Given the variety

of categories in the TOSCA nonrigid world database, we present only summary statistics of the error over

the database. For the case of PGSE, the average Te error is 0.1410 with standard deviation 0.1059. For

the case of GMDS, the average Te error is 0.2799 with standard deviation 0.1564. Statistical significance

was assessed using the Wilcoxon signed rank test [76]. The Wilcoxon signed rank test does not make any

assumptions about the underlying distribution of the data, e.g. normal distribution. This attribute makes the

test a reasonable choice given the great variation in the error as we change the pose, shape and resolution

parameters.

In all cases we see that the error increases as we vary the pose or the shape. Although not reported

with error metrics, GMDS performs better on average at preserving geodesic distances; this is not surprising
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FIGURE 2.7. Visual correspondences between meshes in the TOSCA nonrigid world data-

base and SCAPE bodies varying in pose and/or shape. Corresponding areas are shown with

the same color. Areas where our method, PGSE, performs better than GMDS are circled.

Note that correspondences are defined up to intrinsic symmetries (left-right) in the meshes.

as the GMDS method minimizes exactly this error. In contrast, our method combines the preservation of

geodesic distances with local shape matching constraints. Our approach, PGSE, performs better in terms

of the maximum discrepancy in geodesic distances between pairs of markers and their correspondences.

Evaluating the correspondences using the Te error (Figure 2.8), we see that PGSE performs better in all

cases. Statistical significance values for the errors per dataset are shown in Table 2.8(d). Changing the pose

yields a bigger increase in the mean error than changing the shape. Changing both shape and pose yields the

biggest increase in error as expected. Note that our approach is still sensitive to local minima in the space

of possible correspondences (outliers in Figure 2.8), but, overall, it yields more meaningful correspondences

than GMDS.
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(a) (b)

(c)

TOSCA SCAPE SCAPE SCAPE

nonrigid 3D world pose shape shape/pose

Te 3 · 10−16 0.013 3 · 10−4 3.15 · 10−4

(d)

FIGURE 2.8. Mean Voronoi error plot for correspondences between SCAPE bodies vary-

ing in (a) pose, (b) shape, and (c) pose and shape. The data points in figures (b,c) are ordered

based on shape variation. Table (d) shows the results of the Wilcoxon signed rank test on

the errors induced by the GMDS, PGSE correspondences. GMDS, PGSE are evaluated

using data synthesized with the SCAPE model and the TOSCA dataset. All the p-values

displayed in the table are below the default significance level of 5%.

3.2.2. Correspondences in meshes with different topology. Next we evaluate the effects of changing

the global and local resolution of the triangulated meshes used above. We use QSLIM [34] to change the

global resolution of the meshes generated based on the SCAPE model and we observe an almost uniform
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(a)

(b)

FIGURE 2.9. (a) An example pair of meshes with significant differences in local resolution

and mesh topology: a SCAPE body and our template mesh. (b) Mean Voronoi-based error

for correspondences between the SCAPE bodies varying in shape & pose and the template.

To simplify visualization the SCAPE bodies are ordered only based on shape variation. A

Voronoi-based error cannot be defined for the case of GMDS due to markers collapsing at

the same vertex.

reduction in resolution across the surface of the SCAPE bodies. In this case, we find no significant difference

in performance between GMDS and PGSE as a function of mesh resolution.
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Often one wants to align an artist-generated template mesh with higher-resolution meshes created by

a laser scanner or other structured light system. In this case the meshes have very different topology and

resolution. Consequently we find correspondences between the SCAPE bodies varying in shape and pose

as above and a custom made template mesh shown as the right mesh in Figure 2.9 (a). This template mesh

exhibits significant differences in local resolution and topology compared with the SCAPE bodies. We are

unable to quantitatively evaluate GMDS because in most cases the markers collapse to the same vertex on

the data mesh surface resulting in Voronoi regions with zero area. In contrast, we observe that even large

differences in local resolution between the surface of the data and model meshes does not influence the

performance of our algorithm (the error in Figure 2.9 (b) is similar to the error in Figure 2.8 (c)).

4. Conclusions

We presented a method that finds correspondences between non-rigid articulated objects varying in pose,

shape, and global or local resolution. Our method preserves pairwise normalized geodesic distances between

a pair of objects as well as local surface properties also based on geodesic distances. We showed improved

correspondence over previous work on widely varying mesh models. Additionally using the SCAPE model

we were able to separately evaluate accuracy as a function of pose, shape, and resolution variation. We also

defined a Voronoi-based error measure that better measures correspondences that are intuitively “good.” Fu-

ture work involves making our method robust to noisy surfaces as well as surfaces with missing information.

Learning the parameters of our CRF model from training data is another direction for future work.
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CHAPTER 3

Constraint-based Human Body Shape Analysis

Modeling the human body can be useful in many domains ranging from fashion to health. Realistic hu-

man body models aid garment design and facilitate garment visualization for personalized on-line shopping.

Virtual 3D human characters are central in the media industry, such as in the production of movies or com-

puter games as well as in virtual environments. Digital human bodies are used in ergonomics to design both

equipment and work environments to meet the needs of human operators. Correlating variation in human

body shape to certain diseases might provide new methods for disease diagnosis and prevention. However,

there is neither a definition of human body shape nor a 3D human body shape representation that is widely

accepted.

Historically, body shape is measured with a tape measure and calipers [35]. Today 3D scanners are in-

creasingly used to capture detailed point clouds or meshes; analyzing such meshes however is still limited.

Some methods focus on detecting landmarks on the scans and then simulating a tailor’s measurement pro-

cess using geodesic distances on the surface. Several recent approaches take the scans, perform Principal

Component Analysis (PCA) and then relate the principal components to quantities of interest.

Yet still, “body shape” is not well defined. There are many causes of body shape variation such as age,

weight, or fitness. Some variance may be related to body pose or posture. Still others are transitory such

as changes due to respiration. Standard anthropometric (or tailoring) measurements are well established, but

provide a limited view of body shape (Figure 5.20). It would be useful to know what variations in shape are

captured by such measurements and what variations are not.

We put forward a principled formulation of this question as an objective function (or a family of related

functions). Our constraint-based optimization framework for modeling 3D human body shape factors shape

into a set of orthogonal shape subspaces related to different constraints (Figure 5.20). Our goal is to capture

overall human body shape variation, while at the same time produce shape subspaces that are tied to specific

constraints that relate shape to specific applications. Such an approach can produce more compact shape

representations, improve performance on regression problems, aid visualization and regularize solutions with

limited data. It also provides insight for engineers or designers to visualize what body shapes might be

excluded by focusing on a given set of measurements.
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FIGURE 3.1. We factor human body shape variation into a measurement space that is

constrained to predict anthropometric measurements like height and hip girth and a null

space of body shape variation that are unrelated to measurements such as bow-legs and

pose/posture variations.

Specifically, we start with the standard formulation of PCA as a least squares optimization problem. We

then modify this objective function in several ways: 1) we relate the PCA coefficients linearly to anthro-

pometric measurements such as height, inseam, thigh circumference, etc.; 2) we split body shape into two

orthogonal subspaces: one related to measurements and a null space of body shape variations that illustrates

aspects of body shape that standard tailoring measurements fail to capture; 3) we add sparseness priors on

the shape coefficients in both the measurement and null space and find that the resulting model is better able

to predict body measurements from 3D scans.

We quantitatively compare our different objective functions with each other and with previous ap-

proaches including a standard PCA approach and the method of Hasler et al. [44]. We find that our ap-

proach produces more accurate predictions of body shape and results in basis vectors that reveal interesting

properties of body shape.

1. Previous work

Three-dimensional shape modeling has a long history which we will not review here. Many recent

approaches have focused on developing effective descriptors of 3D shapes for assessing similarity or matching

3D shapes in applications such as content-based 3D shape retrieval. Examples include spin images, spherical
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harmonics, mesh HoG, heat kernel signatures; these are summarised in the following overview papers [21, 48,

90]. These generic 3D shape descriptors are useful for classification, but are less useful for detailed analysis

of shape within a class. Analysis of 3D human shape is a relatively young but growing field spurred by the

accessibility of 3D body scanners. A common way to characterize human body variation in shape is to use

dimensionality reduction techniques. We analyze 3D human body shape by extending PCA [51].

Principal component analysis is a well-established technique for dimensionality reduction with various

applications including data compression, visualization, and exploratory data analysis. PCA was initially

formulated as an unsupervised dimensionality reduction technique. However, there have been numerous ex-

tensions of PCA that constrain the principal components to increase their discriminative power or aid under-

standing of the data. Previous efforts to constrain PCA have focused on two types of constraints: constraints

that are related to labels on the data and constraints that are related only to the structure of the resulting princi-

pal components. Methods that belong in the first category are supervised dimensionality reduction techniques

such as Partial Least Squares (PLS) [99] and Canonical Correlation Analysis (CCA) [42]. Previous work for

the second type has used constraints such as sparseness, nonnegativity, priors with different assumptions

about the data. Examples of such methods include sparse PCA [110], Sparse Probabilistic Principal Compo-

nent Analysis [41], nonnegative sparse PCA [105], and constrained subspace modelling [94]. We propose a

framework for constrained PCA where both types of constraints can be applied to the principal components.

Additionally, we divide the principal components into multiple orthogonal subspaces, each of them capturing

a different set of constraints. The formulation in terms of objective functions is similar in spirit to that in [26].

The analysis of 3D body shape can be divided into two paradigms. The first analyzes the statistics of

vertices [4, 85, 102] (or similarly voxels [12]) while the second analyzes deformations of triangles [6]. While

the former is far simpler, previous methods have been limited because scans of the human body contain

pose variations, posture, breathing, etc. which vary the body shape in ways that are unrelated to things like

measurements. The latter approach, particularly [6], makes it possible to factor out some variations, e.g. due

to pose, but involves additional complexity (e.g. SCAPE requires a least squares optimization to construct

a valid mesh). We work directly in the space of vertices here but get the benefits normally found with

deformations. Specifically by constraining shape variations to be related to anthropometric measurements,

we find body shape variations that factor out pose. Thus our method extends the value of vertex-based

methods for anthropometric applications.

Application of PCA to describe 3D human body shape has shown encouraging results on generating

and describing 3D human bodies [6]. Weiss et al. [97] used PCA coefficients to predict anthropometric

measurements of 3D human models from Kinect data by combining information from multiple poses. We

pose that exploring the structure of 3D human body shapes using dimensionality reduction in conjunction

with alternative descriptions of the human body (anthropometry) will give more realistic compact descriptors
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of the human body as well as enhance the accuracy of the resulting descriptor with respect to predicting

measurements. Early work on this problem [4, 14, 75] performed PCA on body scans and related the PCA

coefficients linearly to standard tailoring measurements. More recent work took standard PCA basis vectors

and rotated these to better predict body measurements [44]. Alternatively Guan et al. [39] constrained

body shape variations related to a particular measurement and excluded these from the orthogonal subspace.

Our approach is different in that our objective function formulation provides a simple and intuitive way of

exploring body shape by varying the terms in the optimization. It is more expressive in that it can model

non-linear constraints on the resulting subspace(s).

2. Methodology

Our data consists of 3D meshes representing human bodies. We assume that these meshes are watertight

and their vertices are in correspondence. Let D = [d1,d2, . . . ,dP ] ∈ RD×P represent the meshes in the

training set where P is the total number of meshes and D is 3× the number of vertices in a mesh.

In the case of the standard PCA model, we can represent the training data using a set of K basis vectors

where K � P . In order to do that we want to minimize the following energy function:

EPCA(µ,B,C) =

P∑
p=1

‖ dp − µ−Bcp ‖22(5)

where dp ∈ RD represents the coordinates of the vertices of the p-th mesh and µ ∈ RD is the mean over all

aligned meshes. B ∈ RD×K is the matrix with the shape principal components and C = [c1, c2, . . . , cP ] ∈

RK×P is the matrix with the shape coefficients for each body in the training set. To enforce orthonormality

of the basis vectors, we optimize subject to the constraint that BTB = I .

Measurement-constrained PCA (MPCA).. In the first case, our goal is to extract a compact represen-

tation of human body shape that is predictive of anthropometric measurements by minimizing the following

energy function:

EMPCA(B,C,M) =

P∑
p=1

(
‖ dp − µ−Bcp ‖22 +λ1 ‖ zp −Mcp ‖22

)
(6)

where zp ∈ RM is a vector of M body measurements for the p-th body in the training set and M ∈ RM×P

is a linear transformation matrix from shape coefficients to measurements. λ1 controls the relative weight of

the two terms. Note that, again, we optimize subject to the constraint that the B are orthonormal.

This formulation has the effect of focusing the basis vectors on shape variations that are linearly related

to measurements. There is a problem, however, as there is a tension (balanced by λ1) between faithfully

reconstructing body shape data dp and fitting the measurements.
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Null space of body shape. To address this trade off, we introduce a second set of basis vectors, G, that

represents shape variation that is not captured by anthropometric measurements; this is what we call the null

space of body shapes. The energy function we minimize is the following:

(7) Enull(B,C,M,G,V,µ) =

P∑
p=1

(
‖ dp − µ−Bcp −Gvp ‖2 +λ1 ‖ zp −Mcp ‖22

)
where we have introduced a new basis, G ∈ RD×G, where G is the number of null-space basis vectors used,

and V = [v1,v2, . . . ,vP ] ∈ RG×P is the matrix of shape coefficients that are not constrained to be related

to body measurements. Here the optimization is performed as before but with the additional constraints that

GTG = I and BTG = 0.

The idea is that G can capture body shape not captured by B.

Sparseness. In the third case, we impose sparsity on both the basis vectors related to measurements as

well as to the basis vectors in the null space to aid interpretation of the data and increase robustness:

Esparse(B,C,M,G,V,µ) =

P∑
p=1

(
‖ dp − µ−Bcp −Gvp ‖22 +λ1 ‖ zp −Mcp ‖22

)
+ λ2 ‖ B ‖1 +λ3 ‖ G ‖1(8)

where we add an L1 norm on the elements of the two bases to penalize non-zero elements in the basis vectors.

This can be thought of as a regularization while also focusing the basis vectors on what is most important

to capture shape and measurements. As above, we maintain orthonormality of the two spaces which are

mutually orthogonal; i.e. BTB = I,GTG = I,BTG = 0

3. Experiments

The data we used for training and testing were aligned 3D scans of a subject in a standing pose and

anthropometric measurements from the CAESAR dataset [78]. The scans were registered using a procedure

similar to [45]. Optimization was performed using the Interior Point algorithm in the constrained optimization

toolbox of Matlab.

3.1. Compact shape representation for anthropometric measurement prediction. We used the ob-

jective functions in Eq. 6, 7, 8 to generate a compact representation of human body shape for accurate

prediction of anthropometric measurements. We have estimated basis vectors that are related to 44 measure-

ments of 800 female bodies from the CAESAR dataset and predicted measurements on a different set of 271

female bodies. We projected the test data into the optimized principal components B and used linear regres-

sion to predict measurements from the low-dimensional shape coefficients of the test data. The Root Mean

Squared Error between hand measurements (in mm) and predicted measurements for different configurations

of our objective function relative to previous work is shown in Figures 3.2, 3.3, 3.4.
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FIGURE 3.2. Root Mean Squared Error (RMSE) on measurement prediction for PCA,

Hasler et al. [44] and our method using the objective functions in Equations 6, 7, 8. The

error is calculated for k = 3 basis vectors.

We can observe that our formulation leads to a more compact representation of human body shape with

regards to measurements giving smaller error on predicting measurements. Measurement prediction improves

for all the methods as the number of basis vectors considered is increased. In most of the cases, our improved

measurement prediction is statistically significant (p-values smaller than 0.05 using the Wilcoxon signed rank

test) as shown in Figure 3.4. A comparative visualization of the resulting principal components using PCA,

Hasler et al. [44] and the MPCA formulation using Equation 8 is shown in 3.5.
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(a)

(b)

FIGURE 3.3. Root Mean Squared Error (RMSE) on measurement prediction for PCA,

Hasler et al. [44] and our method using the objective functions in Equations 6, 7, 8. The

error is calculated for (a) k = 6, and (b) k = 9 basis vectors.
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k = 3 k = 6 k = 9

PCA 27.1 19.20 18.79

Hasler et al. [44] 24.09 19.02 18.05

MPCA, eq. 6 19.99 18.78 17.88

MPCA, eq. 7 22.60 19.01 18.65

MPCA, eq. 8 22.53 18.74 17.41

(a) Root Mean Squared Error averaged over all

measurements (mm)

k = 3 k = 6 k = 9

MPCA, eq. 6 2.9 · 10−6 10−7 10−7

MPCA, eq. 7 0.17 8 · 10−7 7.5 · 10−3

MPCA, eq. 8 0.12 0.88 1.7 · 10−6

(b) Statistical significance p-values with respect to Hasler

et al. [44]

FIGURE 3.4. (a) Root Mean Squared Error (RMSE) for different MPCA formulations rel-

ative to previous work. The RMSE is additionally averaged over all measurements in the

CAESAR dataset [78]. (b) Statistical significance p-values with respect to Hasler et al. [44]

3.2. Qualitative analysis of the nullspace. We used the objective function in Eq. 8 to generate 9 basis

vectors B predictive of anthropometric measurements and 11 shape basis vectors G, orthogonal to B, that

are not constrained by the anthropometric measurements. The resulting B and G basis vectors are shown

in Figure 3.6. We observe qualitatively that the subspace G includes shape variation such as inter- and

intra-person posture variation, “bow legs”, body shape asymmetries.
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PCA basis vectors (1-9): top/bottom = -/+ 3 std

Hasler et al. [44]: top/bottom -/+ 3 std

MPCA: top/bottom +/- 3 std

FIGURE 3.5. Human body shape variation captured by PCA, Hasler et al. [1], MPCA. The

i − th column represents the i-th principal component. Principal components are ordered

in terms of significance. No ordering for the case of MPCA. Each component has a big

effect on vertices in red areas and small effect on vertices in blue areas.
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Null space components (MPCA): top/bottom +/- 3 std

FIGURE 3.6. Null space of body shape: The first nine components of human body

shape variation not captured by anthropometric measurements. These are orthogonal to

the MPCA measurement vectors. Interesting effects: pose variation, body asymmetries,

bow-legs, etc.

4. Conclusions

We have shown that simple modifications of the PCA objective function can lead to new ways of ana-

lyzing 3D body shape that 1) improve the prediction of anthropometric measurements and 2) shed light on

how these traditional measurements constrain body shape and how they do not. This approach is more gen-

eral than the previous methods such as Hasler et al. [44] and achieves statistically significant improvements

in measurement prediction. Since the objective function approach is very flexible, it is straightforward to

modify our formulation to add additional constraints, including non-linear constraints relating body shape

and measurements. This would likely lead to even larger differences between traditional methods and the

MPCA approach. Note that our approach leads to a factoring of body shape into pose-dependent and pose-

independent shape variation. If we had access to pose information, we could further add a pose-dependent

shape space that could be linearly (or non-linearly) related to pose. While we have applied our method to

vertices here, it can also be applied to triangle deformations. While we plan to explore this in future work,

one advantage of our method is that we get the benefits of a factored model while working with vertices

which are simpler than deformations. Additionally, we plan to use this framework to study other properties

of body shape variation due, for example, to respiration.
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CHAPTER 4

Anthropometric Measurement Prediction from 3D Human Scans in

Multiple Poses

Measuring the human body from 3D data is gaining increasing importance in applications such as vir-

tual try-on and online shopping. Extracting tailoring measurements directly from 3D scans of people could

accelerate the tedious and time consuming process of custom tailoring. That, in turn, offers the potential of

personalized sizing in online shopping and a decreased return-rate for web purchases. These applications are

currently of interest due to the emergence of low-cost scanning devices such as the Microsoft Kinect [55].

The promise of such methods is that they will be even more accurate than humans at measuring the body.

Here we revisit the problem of predicting measurements from 3D scans introduced in Chapter 3. We

develop a method for model-based anthropometry that accurately predicts measurements; the approach is

summarized in Fig. 4.1. Model-based anthropometry has several components: 1) a statistical model of body

shape variation across a population; 2) a deformable 3D body model and a method to fit it reliably to a scan;

3) a method to extract a variety of local and global features from the model; and 4) a method to predict

1D measurements from the features. A significant novelty of our approach is that it allows us to integrate

information from multiple scans of a person in different poses. Contrary to the method in Chapter 3, here we

propose a discriminative framework for measurement prediction. It provides greater flexibility on the shape

features that are used and incorporates information from scans in multiple poses. We show that this approach

is more accurate than existing methods.

Exactly how accurate are current methods and are they accurate enough for custom tailoring applica-

tions? While there have been large studies of the accuracy of anthropometrists [35], there have been no large

published studies of automatic methods for deriving measurements from scans of real humans. This is de-

spite the fact that there are relatively large collections of laser body scans with associated hand measurement

data [16, 77, 91]. For the first time, we perform an extensive evaluation of existing commercial and research

systems using the CAESAR dataset [77].

Previous work on extracting anthropometric measurements from 3D human scans is based on either

measuring directly on the raw scan or using a database of registered scans to correlate human shape varia-

tion with measurements. In the first case, measurements are extracted by locating anthropometric landmarks

on the scan’s surface; this simulates and automates the process of acquiring measurements as performed by
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FIGURE 4.1. Registered meshes of a person in two poses after fitting a human body model

[6, 45]. Measurement prediction is based on local and global shape features. Local shape

features comprise circumferences on the mesh surface (shown as curves) and limb lengths

(shown as straight lines). Global shape features (not shown here) describe statistics of

shape in a database of registered 3D meshes. For visualization clarity, the 3D meshes are

displayed as point clouds.

an anthropometrist. Measurements typically correspond to straight lines (heights) starting and/or ending on

landmarks as well as circumferences along planar slices of the scan based on landmark locations. These

approaches are sensitive to acquisition noise and missing data on the scan’s surface that distort the shape of

the captured body. They also require high-resolution (e.g. laser scans), making such approaches impractical

with today’s low-resolution home scanning systems based on Kinect. Additionally, this need for accurate

localization of anthropometric landmarks in 3D typically limits such systems to scans captured in a single

canonical pose. We show that different poses are optimal for different measurements and our model-based

approach is able to integrate information from multiple poses. Finally, existing commercial solutions are lim-

ited in the kinds of measurements they make (linear and circumferential), whereas our model-based approach

can regress body shape to any measurement (e.g. weight or even age).

Our model-based approach addresses the problems of previous methods. First, given a database of

registered 3D scans of humans, together with their measurements, we build a statistical model of shape

variation in the population. Features corresponding to 3D shape variation between individuals in the database

are correlated with their measurements. Then, given a 3D scan of a new subject, we register the model

with the scan by deforming the model to match the scan data. Shape features are easily computed from

the model and measurements are then predicted from these shape features. A model-based approach could

also be used to predict measurements from low-resolution scans [97]. Most previous efforts on correlating
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measurements with human shape variation assume the human body shape is represented by a single pose

([97] is an exception in that they use several poses). Moreover, previous evaluations are limited either in the

set of measurements considered [44] or the number of subjects used [97, 102].

Our contributions are the following: 1) We introduce a set of surface-based shape features that are pre-

dictive of standard anthropometric measurements. 2) We optimize over a wide range of features to find the

ones most predictive of measurements. 3) We introduce model-based anthropometry for predicting anthro-

pometric measurements from various poses and demonstrate more accurate measurement prediction than the

state-of-the-art. 4) We present a comprehensive comparative study between our model-based approach and

state-of-the-art commercial and research efforts for measurement prediction. We consider a wide range of

standard anthropometric measurements and a large number of subjects using the CAESAR dataset. This

evaluation provides a solid foundation for evaluation of commercial and research work in this area.

1. Related Work

There are several studies comparing the performance of commercial 3D scanning systems relative to

measurements obtained using standard manual anthropometry [17, 62, 68]. In particular, [62, 68] provide an

evaluation of commercial 3D scanning systems in terms of predicting anthropometric measurements on or

around the torso. The measurements were extracted from rigid torso dressforms. Rigid mannequins, however,

do not exhibit the things that make real bodies a challenge to measure: pose/posture variation, breathing, soft

tissue deformation, body fat obscuring anatomical structures, and general ambiguity about where to measure.

Rather than evaluate automated systems, previous work has focused on the accuracy of humans at mea-

suring the body. Standard anthropometry remains the gold standard for measurement but there is variability

between measurers and by the same measurer over time. The ANSUR study was designed to measure the

accuracy of such human measurements [35]. Without ground truth, ANSUR focused on the variability of

measurement and used this variability to define a allowed error for each measurement.

A main study of automated scan measurement analysis is that of Bradtmiller and Gross [17]. Compared

to the abovementioned studies, they report a broader set of automatically extracted measurements from real

human subjects. They found that these measurements were generally sufficient for garment fitting, but the

prediction error was larger than the ANSUR allowable error.

To evaluate measurement prediction, we use the CAESAR dataset [77], which represents the largest

publicly available dataset of 3D body scans with associated measurements; here we use the US dataset of

approximately 1000 men and 1000 women in both seated and standing poses. While in wide use, to our

knowledge the accuracy of measurement prediction from CAESAR scans has not been evaluated, and nobody

has attempted to predict measurements from seated poses. Robinette and Daanen [79] measured the variance
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of estimates extracted semi-automatically from CAESAR but did not evaluate the error with respect to manual

measurements.

The model-based anthropometry approach we introduce relies on human shape features extracted from

a database of registered 3D human bodies. There are a wide range of 3D shape descriptors for assessing

similarity or matching 3D shapes in applications such as content-based 3D shape retrieval. Examples include

spin images, spherical harmonics, mesh HoG, heat kernel signatures; these are summarized in the following

overview papers [21, 48, 90]. These generic 3D shape descriptors are useful for classification but are less

useful for detailed analysis of shape within a class. Given objects of a specific category, a common way to

characterize variation in shape is using dimensionality reduction techniques. Employing Principal Compo-

nent Analysis (PCA) [51] to describe 3D human body shape has shown encouraging results on generating and

describing 3D human bodies [6]. Weiss et al. [97] use PCA coefficients to predict anthropometric measure-

ments of 3D human models from Kinect data by combining information from multiple poses. More recent

work takes standard PCA basis vectors and rotates these to better predict body measurements [44]. Alter-

natively Guan et al. [39] constrain body shape variations related to a particular measurement and exclude

these from the orthogonal subspace. The work in [9] correlates body shape variation with measurements by

performing PCA on the joint space of bodies and measurements. We derive global features of shape vari-

ation using PCA and augment them with features such as circumferences around limbs and limb lengths to

represent local shape details.

Although we are interested in extracting measurements from 3D scans of humans, there has also been

work on measuring synthetically generated 3D human bodies. Wuhrer et al. [102] present a hybrid of the

above mentioned paradigms by measuring, in a consistent way, paths along the surface of 3D human meshes

with the same topology. However, the goal of the authors was mainly to synthesize 3D human bodies that

conform to a set of input measurements. In addition, [24] reports measurement prediction on 3D bodies

generated from photos of real humans and measurements on these photos; they evaluate, however, a very

limited set of four measurements.

2. Measurements from 3D scans

Our approach for measurement prediction consists of a training and a testing stage. In the training stage,

we register a set of high-resolution 3D human scans to a common 3D template mesh, learn a statistical model

of shape deformations in the training set, extract shape features for each registered scan, and learn the optimal

shape features for measurement prediction. Figure 4.2 provides an illustration of the training stage. In the

testing stage, given a new high-resolution 3D scan, we register it with a common template mesh using the

learned statistical shape model, derive shape features and use them for predicting standard anthropometric

measurements.
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FIGURE 4.2. The training stage of our method. We start with a database of 3D scans in

multiple poses (standing, seated) with corresponding anthropometric measurements [77].

Initially, we register the scans using prior knowledge about human body shape. Then,

we extract shape features. We consider local features, such as body circumferences and

limb lengths, as well as global features, such as statistics on edge lengths and triangle

deformations of the registered meshes. Finally, we learn optimal features for predicting

each measurement.

2.1. Registration. Registration refers to the fitting of a template body mesh to a scan. This brings the

scan into alignment with a database of pre-aligned meshes and our statistical body shape model. We only

briefly summarize the mesh registration process as it is not the main contribution and has been described

elsewhere [45]. The registration procedure serves two goals: (a) it provides a hole-free mesh that accurately

captures the shape in the scan; and (b) it provides correspondences between 3D meshes, which facilitates

statistical analysis.

Figure 4.3 shows an example of holes in the armpit area of a 3D scan. In this scenario, a generic surface

reconstruction approach, such as [52], creates an unrealistic human shape by lowering the height of the

reconstructed armpit. Our approach, which takes into account prior knowledge about the human shape and

articulation gets much closer to the true shape of the scanned human subject.

Our registration energy and procedures are similar to those in [45]; as in that work, a BlendSCAPE body

model is used (whose form was heavily influenced by SCAPE [6]). As in [45], the data term encourages

the template to match the scan and the prior term encourages deformations that are consistent with a learned
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(a) Scan (b) [52] (c) Our registration (d) Registration and Scan

FIGURE 4.3. Model-based alignment effectively deals with holes. (a) A 3D scan showing

a hole in the armpit area. Generic surface reconstruction approaches, such as (b) [52], create

“webbing” effects and unrealistic human shapes. Our model-based approach (c) is robust

to holes and captures the body shape. Subfigure (d) shows on overlay of our registration

outcome on the initial 3D scan. Scan and registered mesh interleave with high frequency

which indicates that the two surfaces are very close to each other.

statistical body shape model. The shape space of our model was trained from approximately 800 aligned

CAESAR scans. While the registration process used 73 landmarks (part of CAESAR) for initialization, we

observed that a Gaussian prior on body pose parameters worked equally well.

While not necessary, here we assume the subject is scanned in both standing and seated poses, which

means that the registration procedure produces two registered meshes per subject. Registered meshes across

subjects are in correspondence by construction.

2.2. Feature Extraction. We extract global and local features of shape variation from a set of registered

3D scans. Let Mia = (Via, Eia), i = 1, . . . , N , a = 1, 2 denote the registered scan of the i-th human subject

in pose a where N is the total number of human subjects in our dataset. a = 1 corresponds to the standing

pose and a = 2 to the seated pose. Each registered 3D scan is represented as a mesh with vertices Via and

edges Eia.

Triangle deformations from a template mesh provide a common representation of 3D shape [6, 88].

Previous authors have shown the triangle deformations carry information about measurements [44, 97]. In

particular, the coefficients of a low-dimensional PCA representation can be used to predict linear measure-

ments. An illustration of the first 3 PCA principal components related to shape in the standing pose expressed

using triangle deformations is shown in Figure 4.4. Here we go further and consider deformations from three

scenarios: 1) from a standing pose only; 2) from a seated pose only; and 3) using deformations from both

poses.
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FIGURE 4.4. Low-dimensional PCA representation of human shape. For training, we used

around 2000 bodies in the standing pose from the CAESAR dataset [77] represented as a

set of triangle deformations with respect to a reference mesh. As show in the photo, the

first three principal components are roughly related to body mass, height, and waist shape

respectively. c© Eric Rachlin.

Triangle deformations, however, are non-linearly related to geodesic distances on the body, and geodesics

are similar to many standard tailoring measurements. Consequently we also consider the length of mesh

edges, which are directly related to 3D lengths, as the foundation for additional shape features.

Given triangle deformations and edge lengths of template meshes registered with the training dataset,

we compute low dimensional representations for each using PCA. Given a new registered test mesh, it is

projected onto these low-D spaces, yielding a set of coefficients that characterize the shape; in both bases we

use 300 principal components. Let tia, a = 1, . . . , 3 and dia, a = 1, 2 denote respectively the coefficients of

the triangle deformations and the edge lengths for the meshes of the i-th test mesh across different poses. Here

we have extended our notation of a to account for standing and seated poses together (a = 3). Considering

both poses together is possible because the triangle deformations are taken with respect to the intrinsic shape

of the human subject. According to [6], the intrinsic shape is abstracted from effects due to pose, such as

muscle bulging, etc.

Low-dimensional representations of the body necessarily remove fine shape details. Additionally these

global linear shape models capture correlations in the population and an individual may differ from this.
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We address this by adding extra local features that we observe on the surface of the registered bodies. We

hypothesize that these features may be more directly related to tailoring measurements. More specifically,

we consider circumferences around limbs and the trunk as well as limb lengths. A circumference feature

is calculated as a piecewise linear path over the edges of the mesh. Limb lengths are defined as Euclidean

distances between neighboring joint locations, where joint locations are defined as a linear combination of

pre-defined mesh vertices. Let cia, lia respectively be the features corresponding to circumferences and limb

lengths associated with the i-th mesh in pose a, a = 1, 2.

Summarizing, we consider nine types of features, global and local, per body with

oi = {ti1, ti2, ti3,di1,di2, ci1, ci2, li1, li2} being the features of the i-th body in the dataset.

2.3. Feature Type Selection per Measurement. To find the most predictive feature types for each

measurement, we learn the relationship between shape features and each measurement using Elastic Net

linear regression [109]. For computational efficiency, we examine only unary and pairwise combinations of

feature types.

Let S denote the set of unary and pairwise combinations of the feature types described above. Let also

z = {zqi}, q = 1, . . . , Q, i = 1, . . . , N be the set of anthropometric measurements for all subjects in the

dataset where Q is the total number of measurements. We select the optimal combination of feature types sq

for the q-th measurement as

(9) sq = argmin
s∈S

N∑
i=1

|fs(os
i )− zqi|

where fs is an Elastic Net regression function for predicting measurements trained on the subset of features

s. os
i denotes the feature values of the i-th human subject from the subset of features s.

2.4. Measurement Prediction. Measurement prediction is performed independently for each mea-

surement. Let osq be the values of the optimal features for predicting the q-th measurement (Sec. 2.3)

extracted after registering the input scan. The predicted measurements for the human subject is the set

{fsq (osq )}, q = 1, . . . , Q.

An alternative approach for predicting measurements would be to predefine manually (i.e. by an an-

thropometer) curves or lines on the reference template mesh for each measurement. Measuring their length

directly after the registration procedure would yield an estimate of the corresponding measurement. How-

ever, given a reference mesh with a predefined topology, it is not certain that there is a sequence of edges or

vertices that match exactly the measurement we are interested in. We believe that using a learning framework

that correlates shape features with measurements will introduce to some degree invariance to the topology of

the registered meshes. As a by-product, we are able to predict attributes of human shape, such as weight, that

cannot be measured directly from a 3D scan, but could potentially be useful in virtual try-on applications.
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(a) Circumferences, standing pose (b) Circumferences, seated pose

(c) Limb lengths, standing pose
(d) Limb lengths, seated pose

FIGURE 4.5. Local features. (a, b) Circumferences in the standing and seated pose. (c, d)

Limb lengths in the standing and seated pose.
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(a) Chest Circumference under Bust (b) Hip Circumference, Maximum

(c) Ankle Circumference (d) Buttock Knee Length

FIGURE 4.6. Examples of feature selection in females and males for the following mea-

surements: (a) Chest Circumference under Bust, (b) Hip Circumference, Maximum, (c)

Ankle Circumference, (d) Buttock Knee Length. The higher the importance of each fea-

ture, the darker its color. Features are displayed on the average female or male shape from

our database posed in the T-pose. Optimal local features usually correspond to circumfer-

ences near the desired circumference measurement or to a set of limb lengths related with

the desired height measurement.
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3. Results

3.1. Method Evaluation. We compare our method with the commercial software Anthroscan [3] as

well as with [44]. Anthroscan predicts measurements directly from a 3D scan in the standing pose (only).

Hasler et al. [44] performs registration-based measurement prediction. The data we use for training and

testing are registered high-resolution 3D scans and the 40 anthropometric measurements from the CAESAR

dataset. Example measurements in CAESAR are shown in Figure 4.7. We use approximately 800 subjects

per gender for training and 200 for testing. The error metrics that we use are the Mean Absolute Difference

(MAD) between extracted measurements and direct measurements in CAESAR, eqMAD, for each measure-

ment q as well as the Average Mean Absolute Difference (AMAD), eAMAD, over all measurements:

(10) eqMAD =
1

Ns

Ns∑
i=1

|fsq (os
i )− zqi|

(11) eAMAD =
1

Q

Q∑
i=1

eqMAD

where Ns is the number of subjects in the test set.

Optimal groups of features per measurement are derived using 20-fold cross validation in the training

set of 800 subjects. For the 11 common anthropometric measurements between Anthroscan and CAESAR,

we compute a linear correction for each Anthroscan measurement using leave-one-out cross validation. This

effectively adapts the Anthroscan measurements to the CAESAR measurements. We compare with [44] by

using their proposed features and Elastic Net regression. Elastic Net regression compares favorably to the

linear prediction framework presented in [44]. We additionally compare our performance with the ANSUR

inter-observer error [35]. Recall that ANSUR reports the median absolute deviation between measurements

made by experts rather than measurement error from the survey data.

Figure 4.8a shows aggregate statistics of the performance of our method relative to [3] and [44]. More

specifically, we report the eAMAD both in terms of absolute values (millimeters) as well as expressed relative

to the ANSUR allowable error (AE). Our eAMAD is around 1 cm, which translates to 1.2 to 1.3 times the AE.

The error using the features from [44] is around 10% higher than our error. In 50% to 65% of the cases our

improved prediction accuracy is also statistically significant. Statistical significance was assessed per mea-

surement using a paired t-test. Comparing our method with the Anthroscan software for the measurements

that are common between CAESAR and Anthroscan, we see that the eAMAD error for Anthroscan is 10-15%

higher than the error in our case. For the measurements that are common between CAESAR and Anthroscan

we come very close to the allowable error. In 65% to 80% of the cases our improved prediction accuracy is

also statistically significant.
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(a) Hip Circumference, Maximum (b) Ankle Circumference

(c) Waist Front Length (d) Shoulder-to-elbow length

(e) Height (f) Bizygomatic Breadth

FIGURE 4.7. Example anthropometric measurements in the CAESAR dataset reproduced

from [77]. We could roughly categorize them into circumferences, such as (a) maximum

hip circumference and (b) ankle circumference, surface lengths on the body, such as (c)

waist front length and (d) shoulder-to-elbow length, Euclidean lengths, such as (e) height

and (f) bizygomatic breadth.

Figure 4.8b shows the performance of the above mentioned approaches for the subset of CAESAR mea-

surements that is common between CAESAR and Anthroscan for the female test set. A detailed overview of

performance for females and males is shown in Appendix A. We observe that for most of the measurements,
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Standing Seated Stand+Sit

Male
10.21 mm 10.8 mm 10.09 mm

(1.3 x AE) (1.38 x AE) (1.28 x AE)

Female
10.24 mm 11.44 mm 10.02 mm

(1.27 x AE) (1.37 x AE) (1.23 x AE)

TABLE 1. Effect of pose on measurement prediction. We report the Average Mean Ab-

solute Difference (AMAD) error over the 40 anthropometric measurements in CAESAR

[77]. AE denotes the allowable error based on ANSUR [35]. The error using the standing

pose is lower than the error using the seated pose. Best results are obtained combining both

poses.

our approach performs better than previous work and the errors are close to the allowable error for each mea-

surement. Most of the differences between our measurement predictions and predictions from previous work

are statistically significant. Measurement predictions with no statistical significance between our method and

at least one of the other approaches are denoted with small font size in Figure 4.8b.

3.2. Prediction from Multiple Poses. Most of previous work has focused on predicting measurements

from a single standing pose. However, it is unclear which scanning pose is the optimal one or whether

different poses would give different prediction results. Muscles bulge, soft tissue deforms, and joints vary in

different ways depending on the pose, which is why anthropometric or tailoring measurements are typically

acquired using multiple poses. Table 1 shows a comparison of measurement predictions from two poses

that were available in CAESAR. The AMAD error over the 40 anthropometric measurements that come

with CAESAR is around 1 cm for each single pose which translates to around 1.3 or 1.4 times the variance

of the measurements that expert measurers would report based on ANSUR. The measurement prediction

error using the standing pose is lower than the error using the seated pose; this is expected given that most

of the CAESAR measurements were taken in the standing pose. Combining the two poses by selecting

automatically the pose that gives the best prediction, using cross-validation on the MAD error, results in

lower measurement prediction error. This confirms our hypothesis that combining information from multiple

poses is beneficial.

3.3. Features for Measurement Prediction. In Sec. 2.2 we proposed a set of global and local features

for measurement prediction. On one hand, we proposed generative global features, coefficients of PCA com-

ponents that can be used to generate new bodies. On the other hand, we proposed local features that resemble

49



[44] Our Method

Male
11.11 mm

0%
10.09 mm

51%
(1.41 x AE) (1.28 x AE)

Female
11.25 mm

0%
10.02 mm

65%
(1.42 x AE) (1.23 x AE)

[3] Our Method

Male
12.65 mm

9%
10.78 mm

64%
(1.51 x AE) (1.15 x AE)

Female
11.11 mm

9%
10.28 mm

82%
(1.24 x AE) (1.06 x AE)

(a) Average Mean Absolute Difference (AMAD) Error

Measurement [3] [44] Our method AE [35]

Ankle Circumference 7.55 6.59 6.19 deformations, stand edges, stand 4

Arm Length Shoulder - Elbow 11.26 8.42 6.65 limbs, stand edges, stand 6

Arm Length Shoulder - Wrist 11.67 10.42 10.05 limbs, stand edges, stand

Arm Length Spine - Wrist 13.19 13.40 11.87 girths, stand limbs, stand

Chest Circumference 12.43 13.02 12.73 girths, stand edges, stand 15

Crotch Height 7.45 7.53 5.50 limbs, stand deformations, stand 10

Head Circumference 7.44 7.45 5.87 girths, sit limbs, stand 5

Hip Circ Max Height 17.05 18.96 18.59 girths, stand limbs, stand

Hip Circumference, Maximum 7.47 16.15 12.35 girths, stand edges, stand 12

Neck Base Circumference 21.13 16.96 15.79 limbs, sit 11

Stature 5.60 10.21 7.51 girths, stand limbs, stand 10

(b) Mean Absolute Difference (MAD) Error per Measurement in Females

FIGURE 4.8. Comparative evaluation. (a-left) Comparison with [44] on 40 CAESAR mea-

surements for 200 test of each gender. (a-right) Comparison with Anthroscan on the mea-

surements that Anthroscan and CAESAR have in common. In both cases we report Average

Mean Absolute Difference (AMAD) error between extracted and direct measurements. AE

denotes the allowable error based on the ANSUR study [35]. Percentages represent the

fraction of measurements where the predictions of the best performing method are statisti-

cally significant. (b) Mean Absolute Difference (MAD) between extracted and direct mea-

surements on females for the common measurements between CAESAR and Anthroscan

(in mm). Bold is best. Results that are not statistically significant are denoted with smaller

font size. For our method, we additionally show the optimal types of features (deforma-

tions, edges, girths, limbs) and pose (stand, sit) selected for each measurement.
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Global Local Global+Local

Male
10.29 mm 11.47 mm 10.09 mm

(1.3 x AE) (1.46 x AE) (1.28 x AE)

Female
10.34 mm 10.98 mm 10.02 mm

(1.27 x AE) (1.40 x AE) (1.23 x AE)

TABLE 2. Effect of our global and local features on measurement prediction. We report

the Average Mean Absolute Difference (AMAD) error over the 40 anthropometric mea-

surements in CAESAR [77]. The error using only local features is almost 10% higher than

using global features. AE denotes the allowable error based on ANSUR [35].

measurements. Do we really need both and which set of features is more influential? To answer these ques-

tions we predicted measurements only from global and only from local features. The results are summarized

in Table 2. The AMAD error using only local features is almost 10% higher than using global features. This

is interesting because it shows that global shape features are good for predicting linear measurements. But,

as with multiple poses, we find that the combination of global and local features yields the best results.

Figure 4.6 shows the most influential local features for a representative sample of measurements. It is

interesting to see that the most influential local features for each measurement are in areas of the body close

to where a tailor would choose to take the specific measurement. Importantly, these features are automati-

cally discovered. In Fig. 4.8b, we see the features selected by our approach for a subset of measurements.

More detailed results are presented in the supplemental material. For most of the measurements, optimal

measurement prediction is achieved through a combination of global and local features.

4. Conclusions

In this chapter, we presented an alignment-based approach for extracting anthropometric measurements

from high-resolution 3D human body scans. Representing the 3D scan using a reference mesh deformed

based on a human body model allowed us to capture effectively the shape of the scanned subject. Additionally,

it provided correspondences to a database of 3D humans scans (already in correspondence) varying in intrinsic

shape and pose. Shape features derived consistently across the registered scan and all the bodies in the

database were fused using a regularized linear learning framework that led to more accurate measurement

prediction than state-of-art approaches. Our approach generalizes easily to scans in arbitrary poses (as long

as registration with a reference mesh can be performed). We performed an extensive evaluation and found

that our method significantly outperforms the state-of-the-art.
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This work, for the first time, establishes baseline accuracy on a widely used dataset (CAESAR). This

makes it possible for anyone using CAESAR to compare with the results here and this should encourage new

approaches. The accuracy numbers reported here are critical for industrial applications in which clothing

manufacturers must know how accurate automated methods can be. Our accuracy was significantly better

than existing methods, including commercial solutions. The accuracy of current commercial methods has

never before been demonstrated. While our errors were above the inter-observer errors in ANSUR, this does

not mean they are insufficient for real applications. Inter-observer variance ignores observer bias and does

not directly quantify measurement accuracy.

Future work includes experimenting with 3D human scans of lower resolution or partial 3D scans of

humans. Because our method can provide correspondences between 3D scans, it facilitates the use of a great

variety of 3D shape descriptors and learning methods. With that in mind, we are interested in extending our

approach to predict more intrinsic attributes of the human body, such as age, muscularity, etc.
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CHAPTER 5

Breathing Life into Shape: Capturing, Modeling and Animating 3D

Human Breathing

In this work, we describe a method to animate realistic breathing in virtual humans with a simple intuitive

interface. Realistic human models and avatars are common in movies and video games. While 3D body

scanning technology produces realistic looking 3D body meshes, making them look “alive” requires that they

breathe. Moreover, breathing is part of body language and is essential in order to convey specific emotions.

Apart from visually pleasing animations in the film or video game industry, realistic animation of breathing is

also essential in the medical domain (e.g. for planning radiation therapy). Given the importance of breathing,

there are surprisingly few techniques that produce realistic breathing motions, across a range of body shapes,

without extensive animation by hand.

Modeling breathing in a realistic, lifelike, way is challenging. First, it entails modeling subtle, yet

complex, deformations of the human body that vary across time and context. Second, breathing has a time-

varying global effect on the human body; it induces shape change mainly in the torso, but also posture changes

over the whole body. Previous work on animating breathing 3D avatars has been either limited in realism or

does not generalize easily to new shapes and breathing types [70, 71, 74, 82, 93, 108].

We propose a new approach for modeling body deformations due to breathing using high-resolution 3D

human scans, a statistical model of the human body, and physiological parameters related to respiration. An

example of animating the breathing of a running character is shown in Figure 1. To capture the subtle and

complex deformations of the human body shape due to breathing, we scan 58 human subjects at multiple time

instants during their breathing activity. High resolution triangulated meshes are captured using 22 pairs of

stereo cameras and a random projected texture pattern together with 22 color cameras and a white-light flash

system; this gives high quality 3D meshes with registered texture. To elicit a range of deformations, subjects

were asked to breathe naturally, with the chest, and with the stomach. To separate breathing-induced shape

change in our data from pose-induced shape change, we register all scans to a statistical model of body shape

and pose variation. We compute a mean shape for each subject and the deviations from this due primarily to

breathing.

We perform principal component analysis (PCA) on the estimated breathing deformations to produce a

low-dimensional model of breathing variation. The PCA space has distinct components for “chest breathing”
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FIGURE 5.1. Animating breathing types. Respiration induces changes in torso shape and

posture. We learn a model of how 3D breathing deformations relate to lung volume and

breathing type and use it to animate bodies of varying shape and pose. Here we show

the maximal inhale and exhale shapes overlaid for three different bodies breathing mainly

with the stomach (left), mainly with the chest (right), or using a combination of chest and

stomach (middle).

and “stomach breathing”. For instance, the shape change during chest breathing is as much up and down as in

and out; this is quite different from the shape changes used in simple animations. We found postural changes

that were significantly correlated with breathing and that differed between men and women. We also found

that the dominant breathing deformations were independent of body shape but that body shape is correlated

with fine-scale differences of shape change due to breathing.

To animate breathing we need natural controls that are related to the statistics of pose and shape defor-

mations. To that end, we compute the difference in volume between each 3D body and the mean shape of

the subject. We take this change in volume as a proxy for change in lung volume. This allows us to model

breathing deformations as a function of volume and to use volume as a simple, and physiologically relevant,

control for animation. We also define different types of breathing as illustrated in Figure 5.1. For a given

breathing type, we find that body shape varies linearly with volume. This linear relationship, however varies

non-linearly with breathing type. We learn a novel mathematical model of body shape deformation and pose

change as a function of volume and type. We also extend the SCAPE body model [6] to include body shape

deformations predicted by our breathing model. These deformations are combined with identity and pose

deformations to produce realistic breathing for bodies of any shape and any pose (Figs. 1 and 5.1).

We describe an intuitive interface for creating breathing cycles and for changing breathing types. To

more easily capture realistic lung volume sequences for animation we use a device called a spirometer. This
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makes it possible to “act out” a particular breathing sequence to correspond with the desired action or emo-

tional content. The recorded changes in lung volume drive the animated character using the learned shape

deformation model. This provides an easy and novel way to achieve realistic breathing animation.

While our shape model is built from subjects in a static standing pose, we show that the learned model

applies to other poses. We animate a 3D body model and use breath acting to recover the correspond-

ing breathing sequence. The animated sequences with breathing look more natural than sequences without

breathing.

1. Related Work

In feature films, characters may have sophisticated controls to hand animate breathing while in lower-

quality animations and games, characters may have very simple controls or not breathe at all. In contrast, we

learn a detailed and realistic model of how body shape changes with breathing and provide simple controls

to make animation easy.

Hand animation. Breathing is a strong indication of life and realistic characters in feature films often

have many parameters for hand animation of breathing; the animation is labor intensive. For simpler char-

acters (e.g. in video games) fairly primitive models may be used that capture the gist of breathing through

changes in posture (rocking back and forth) or simple cyclic expansion of the chest. Basic breathing controls

like these are sometimes used for idle motion generation [30, 31]. In this case breathing is seen as a cause of

idling motion, rather than something to model on its own. What is missing is a realistic model of breathing,

with simple animation controls, that can be applied to many body shapes in motion.

Anatomy- and physics-based modeling. There is extensive work on anatomy- and physics-based mod-

eling of the human body; see [57, 61] for reviews. For breathing, prior work focuses on modeling the torso

[74, 93, 108]. Zordan et al. [108] propose an anatomically motivated model of the human torso that consists

of rigid parts (bones) and deformable parts (muscles). Animation requires physical simulation. Veltkamp

et al. [93] introduce a similar model that combines better control over abdominal and chest breathing using

two independent breathing systems. Lee et al. [58] present a comprehensive biomechanical model of the

upper human body with a proof-of-concept demonstration of synthesized breathing motions. In the medical

domain, breathing models focus primarily on representing lung shape [22, 65, 84].

Although anatomy- and physics-based body models offer the potential for high detail, they do not gen-

eralize easily to new subjects. Synthesizing new human bodies as well as tuning the parameters to generate

specific types of breathing is not straightforward. Since these breathing models focus on the torso, they do not

model whole-body posture variation during breathing. These issues, combined with the computational ex-

pense of physics simulation, mean that such methods are difficult to use in practice. In contrast, our model is

learned from data, generalizes easily to new subjects, models whole-body posture variation during breathing,
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and provides intuitive controls for synthesizing breathing animations. In previous anatomy-based models,

volume change over time is the observed outcome that is used to evaluate whether an animation is realistic.

In our case, breathing volume is the input that drives the animation and we can animate arbitrary breathing

sequences using volume.

Statistical human body models. Previous work on synthesizing breathing in a data-driven way is limited

to replaying recorded breathing motions for 3D shapes similar to the shape of the recorded subjects [71, 82].

However, statistical body models have been used successfully in the past to model the observed body shape

across the human population [5, 6, 23, 44]. In these models the observed shape is conceptually decomposed

to the intrinsic shape of the subject and deformations that change based on the pose of the subject, such as

muscle bulging etc. They do not model breathing deformations or, in fact, other deformations not due to

identity or pose. In this work we extend the SCAPE model [6] to include breathing deformations and define

controls to easily animate these deformations.

Dynamic shape capture and modeling. The modeling of breathing shape deformations has been limited

by a lack of data. High-resolution 3D body scanners typically require several seconds between consecutive

scans meaning that fine temporal resolution is lost. Depth maps with high temporal resolution are available

from range sensors [72] but these are noisy and have low spatial resolution. Despite progress on tracking

complex surfaces such as human clothing in video sequences [87], capturing accurate subtle deformations of

the human body remains a challenge. Low spatial resolution and high temporal resolution is available from

tracked markers but, with standard marker sets, breathing is not readily visible [70]. Larger marker sets can

capture breathing motions of individuals [70] but not populations. To analyze breathing across the population,

we need breathing deformations that are in correspondence across people; high-resolution meshes facilitate

this. Computer vision methods, with texture painted on the skin provide a possible solution [66] but have

not been used to model breathing. In contrast to previous approaches, we acquire a dense reconstruction of

the human subject’s shape using a high-resolution 3D scanner. We acquire multiple scans of each subject at

unknown time instants in the breathing cycle and register them by taking into account both the geometry and

appearance of the 3D scans.

Animation of breathing motions from marker data has been limited to transferring sparse pre-recorded

deformations of subjects breathing intensely to subjects of similar shape [70]. Here we go further to learn a

model of breathing deformations from examples that can be applied to any body shape and different poses.

The model is parameterized by lung volume and breathing type using concepts from the physiology of respi-

ration [63, 98].

Controls for animation. The motion of markers on the chest has been used to drive an anatomy-

inspired model [82]. Other controls for breathing animation include audio [25, 27] and parameters related

to human physiology. Animation from physiology-related input (including a stretch sensor on the chest,
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FIGURE 5.2. Example scans. 58 subjects were scanned in an “A” pose while breathing.

Subjects wore tight fitting clothing so that shape changes during breathing were evident.

They were asked perform different “types” of breathing: normal, breathing with the chest,

and breathing with the stomach. The full dataset consists of 2807 3D meshes with associ-

ated texture.

EKG, pulse, skin temperature) has been limited to the anatomically-based models described above and lacks

visual realism. Our approach is more similar in concept to [53], where human body surface deformations

are correlated with recorded physiology data related to the level of fatigue. In our case, we link the observed

surface deformations with the lung volume during breathing. In addition, we animate 3D human characters

using spirometer data (lung volume measurements) recorded by “breath actors.”

2. Breath Taking (Data Capture)

To model deformations of the human body due to breathing as realistically as possible we capture high-

resolution 3D full-body scans of 58 subjects (28 men and 30 women); Figure 5.2 shows a few representative

scans. These scans were captured with a custom multi-camera stereo-based system (3dMD LLC, Atlanta,

GA) using flashed texture patterns (for stereo) and white light flashes (for texture capture). Shape capture

happens in about 34ms and, since it is flash-based, there is no motion blur. There is a recovery time between

captures meaning that we can only capture discrete instants during breathing. Subjects wore minimal tight-

fitting clothing (bike-shorts style bottoms for both men and women and a sports-bra style top for women) as

shown in Figure 5.2; this made shape changes during respiration readily apparent. To make later registration
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of scans with a common template more accurate, some of the subjects were painted in a multi-colored pattern

using a water-based paint [15]. Subjects were a mix of professional models (with a modeling contract) and

volunteers. Scanning involves standard cameras and lighting, posing no risk to the participants. Before a

capture session, each subject gave their informed, written, consent for the analysis and publication of their

3D scan data including images and scans of their faces.

We focus on normal breathing of the upright body in an “A pose” (Figure 5.2); that is, we do not consider

different activities or pose-dependent changes in breathing. Subjects were informed that the study was about

breathing and were instructed to breathe at what they considered a normal pace. The physiology of respiration

[98] leads to two main types of breathing: chest and abdominal breathing which correspond to different

motions of the diaphragm. We initially asked the subjects to breathe normally. Then we explicitly asked

them to focus on breathing with the chest or with the stomach. Additionally, to be able to represent the

extremes of the breathing deformation, we recorded the subject shape during complete inhale and complete

exhale. We also captured a small set of scans where the subjects were instructed to breathe strongly/intensely.

In total we captured and analyzed 2807 full body scans.

Although breathing is naturally a time evolving process, current high-resolution 3D body scanning sys-

tems can give us only sparse samples of this temporal process. Thus, our data consist of static 3D scans that

were taken at unknown time instances of the subject’s breathing activity. We address this limitation below.

2.1. Data processing. Our first step is to bring all the 3D scans into correspondence by registering

(aligning) them to a 3D body template represented as a triangulated mesh (10,777 vertices, 21,550 triangles)

as illustrated in Figure 5.3. The detailed process is described elsewhere [15]; the result is that all 2807 meshes

are in correspondence with the template. Shapes are represented as triangle deformations from a template

shape. Behind this process is a 3D parametric shape model similar to SCAPE [6] in that it factors body shape

changes due to identity from those due to pose. We normalize all registered scans to a common pose and save

the pose parameters. For each subject we compute the mean shape and, for each scan, we then compute the

residual shape deformation from the mean. This constitutes our shape training data. Additionally we have

the pose of each aligned scan and this is used as pose training data.

The shape and pose change during respiration is directly related to the volume of air in the lungs and the

motion of the diaphragm. Consequently lung volume and diaphragm motion would provide natural controls

for breathing animation. Unfortunately, neither is directly observable from the scans. What is observable,

however, is mesh volume, which is easily computed from the aligned meshes using signed volumes of tetra-

hedra as described in [83]. We assume that mesh volume changes result exclusively from changes in lung

volume and consequently take mesh volume (and change in volume) as a proxy for actual lung volume.

According to the physiology of respiration [63, 98], there are two main types of breathing: chest and

abdominal breathing. In practice, however, people breathe in a variety of ways with varying amounts of chest
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FIGURE 5.3. Example of 3D scan registration. A template mesh is warped to match a high-

resolution 3D scan (a). The warped template mesh at the end of the registration procedure

is shown in (b). Overlaying the warped template on the scan (c), we see that the two

surfaces are very close to each other (they interleave with high frequency). We followed

the registration procedure described in [Anonymous 2014]. No landmarks have been used

for initialization.

and stomach deformation. While we cannot observe the diaphragm’s motion, we can observe its affect on

body shape. To define the type of breathing we segment the torso into an upper and lower segment of roughly

equal volume. At maximal inhale we compute the difference in volume of each segment from that of the

mean segment volume. The ratio of chest volume change over the total volume change defines the percentage

of “chest breathing”, which we refer to as the “type” of breathing.

3. Breathing Space (Shape Model)

Given a single 3D scan of a subject it is not well defined what part of the observed shape is due to

breathing and what is due to the intrinsic shape of the person; e.g. do they have a large chest or are they

inhaling deeply? However, given multiple scans of the same subject at different time instants in the breathing

cycle, we can extract the shape and pose variations due to breathing. After registering the initial 3D scans

(above), our data consist of aligned 3D meshes of multiple subjects at unknown time instants in their breathing

cycle. Given a set of K 3D meshes in correspondence, Xij , i = 1, . . . ,K, for a subject j, we extract their

intrinsic shape, Dj , as well as the shape deformations due to breathing Bij for each Xij by extending a

SCAPE body model [6].
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FIGURE 5.4. SCAPE+Breathing. The standard SCAPE [6] factors body shape into in-

trinsic shape and pose-dependent shape. We add a new shape deformation for breathing

and combine all three into a model with separate controls for breathing.

SCAPE represents body shape as a deformation from a template mesh to an instance mesh using defor-

mation gradients [88]; the basic idea is summarized in Figure 5.4. The deformation gradients in SCAPE are

linear transformations that align corresponding triangles t between a template mesh T and an instance mesh

Xij . Since we have aligned the template with all the scans, T andXij have the same topology. To reconstruct

mesh Xij using the SCAPE model, three types of deformation gradients are applied to the triangles t of a

template mesh T : pose-dependent transformations, Qij
t , identity-dependent transformations, Sij

t , and rigid

part rotations Rij
l[t]. More specifically, given the edges v̂t,e, e = 0, 1 of each triangle t on the template, we

compute the edges vijt,e, e = 0, 1 of triangle t belonging to the i-th mesh of subject j as

(12) vijt,e = Rij
l[t]S

ij
t Q

ij
t v̂t,e

where l[t] denotes the body part to which triangle t belongs. The template mesh is segmented into distinct

parts and all the triangles of the part undergo the same rotation Rl[t]; the part segmentation is illustrated in

Figure 5.5.
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There is one extra step to SCAPE. The above equation acts on every triangle in the mesh independently,

resulting in a collection of triangles that do not necessarily form a valid mesh. SCAPE adds an extra step of

solving for the valid mesh with triangle deformations that best match those above.

Additionally, the identity dependent deformations for a population of people can be approximated as

a linear combination of basis deformations learned using principal component analysis (PCA). We do not

discuss here the details of how to learn a SCAPE model in detail. We have trained our SCAPE model using

approximately 4000 laser scans of men and women in roughly the same pose [77] and our own dataset of

approximately 1800 scans of people in a wide variety of poses. This later dataset is used to learn the non-rigid

deformations, Qij
t , which are a function of the part rotations (see [6]).

3.1. Adding Breathing. The deformation matrices R,S,Q mentioned above are functions of either

pose parameters, r, or shape parameters, u, corresponding to linear coefficients in the PCA space; that is,

(13) vijt,e = Rl[t](r
ij)St(u

ij)Qt(r
ij)v̂t,e.

These parameters provide the animator controls to create a body shape u in pose r.

One of our key contributions is to extend SCAPE by separating the identity-dependent deformations S

into two parts: one due to the intrinsic shape of the person, D, and one due to breathing, B (Figure 5.4). The

functionsD andB depend on intrinsic shape parameters, d, and the shape parameters related to breathing, b.

Additionally, we separate the pose into static pose, a, and, optionally, pose due to breathing, c. Our proposed

model, B-SCAPE, takes the following form:

(14) vijt,e = Rl[t](a
ij + cij)(Dt(d

j) +Bt(b
ij))Qt(a

ij + cij)v̂t,e.

To describe pose we use an axis-angle representation. In this representation it is meaningful to add pose

parameters as long as self-intersection contraints and joint limits are not violated. Previous SCAPE models

(and related models) ignore breathing deformations. Here we make them explicit. Below we show how to

learn and then parameterize these by breathing type s, volume v and gender g. We end up with a model of

the following form:

(15) vt,e = Rl[t](a+ E(g, v))(Dt(d) +Bt(F(s, v)))Qt(a+ E(g, v))v̂t,e.

3.2. Extracting the Breathing Deformations and Pose. Given multiple scans from the subjects in our

training set, our goal is to extract the intrinsic shape, Dj , of each subject as well as the shape deformations

due to breathing, Bij . Recall that all scans are in correspondence with the template (and hence the SCAPE

model).
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FIGURE 5.5. Pose change during breathing. Left: Mean pose of a subject. Right: Posture

variation of this subject while breathing in the standing A-pose. Each part is color coded to

show the body segmentation.

Consider one subject j withK aligned meshesXij ; we seek to extract the breathing-related deformations

Bij . This means we want to effectively factor out pose, pose-dependent deformations, and identity to focus

on what is left. This remainder should be due to breathing.

To recover the deformations forXij , we first solve for the shape deformations Sij by minimizing (see [6])

(16) argmin
Sij

∑
t

∑
e=0,1

‖Rij
l[t]S

ijQij
t v̂t,e − v

ij
t,e‖2F + β

∑
t1,t2adj

‖Sij
t1 − S

ij
t2‖

2
F .

The first term minimizes the reconstruction error between the vertices of the captured meshes and their mesh

representation based on deformations gradients. The second term enforces smooth deformations between

adjacent triangles that represent the shape component of the mesh.

Given that our meshes are in correspondence and segmented, it is easy to estimate the rigid rotation

matricesRij
l[t] between corresponding body parts in the aligned mesh. We convert the rotation matrix per body

part to an axis-angle representation of pose relative to the template mesh consisting of 3 parameters. That

amounts to a vector, rij , of 57 pose parameters per mesh (3 parameters, 19 body parts). We approximate the

static pose with the average pose parameters over all meshes per subject, aj =
1

K

∑
i

rij , and the dynamic

pose with the residual pose parameters cij = rij −aj . Figure 5.5 shows the mean and breathing-related pose

for one subject.

Each subject was scanned multiple times at unknown time instants in their breathing cycle. After we

estimate Sij , i = 1, . . . ,K, we approximate the intrinsic shape (average) of the subject as the average of
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FIGURE 5.6. Shape change during breathing. Several examples of fitted meshes and how

they deviate from the mean shape of the subject. Hot colors indicate greater distance.

the deformations, Dj =
1

K

∑
i

Sij . Figure 5.6 shows example meshes and how they deviate from the mean.

We found that as few as K = 20 scans were sufficient to extract a reasonable representation of a subject’s

intrinsic shape. The residual shape deformation due to breathing then simply is Bij = Sij −Dj . We do this

for all subjects in our dataset and use this below to learn a model of breathing.

4. Statistics of Breathing

Respiration induces change in body shape and pose. In this section, we study the statistics of body

deformations and posture variation due to breathing. In addition, we examine correlations with intrinsic

attributes of humans, such as gender and identity shape.
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PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7

FIGURE 5.7. Principal components of breathing. (Gray) Mean female body. (Color)

Ordered principal components shown at +5 standard deviations. Each body is color coded

based on the Euclidean distance (in cm) between corresponding vertices in the visualized

body and the mean shape. Top row corresponds to front view, bottom row to back view.

4.1. Breathing Shape Statistics. After estimating Sij over all subjects, we end up with a very high-

dimensional representation of the shape of each mesh. The dimensionality of Sij is 9 × F , where F is

the number of mesh triangles and 9 is the number of parameters of the 3 × 3 deformation gradient per

triangle. Intuitively, the shape deformations due to breathing can be expressed with a much smaller number of

parameters. Similar in concept to SCAPE, we learn a low-dimensional representation of shape change during

breathing expressed as a linear combination of basis vectors, Gm ∈ R9F ,m = 1, . . . ,M,M � F . We learn

the basis vectors of breathing by computing the principal components (PCs) of the breathing deformationsBij

of all subjects. We then represent a breathing shape deformation using a small number of linear coefficients,

bij ; these are our breathing animation controls. Breathing deformations can be approximated using the basis

vectors and the linear coefficients as

(17) B̂ij =
∑
m

bijmG
m.

Figure 5.7 illustrates the principal components of breathing. Conceptually, the first two components

correspond mostly to motion of the chest and the stomach, respectively. The remaining components represent

higher-frequency variation of shape in the torso area. In our experiments, we have used N = 20 PCs which

account for 76% of the variance in the data. The number of components was selected empirically; using more

components does not noticeably improve the realism of the synthesized breathing animations.
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We evaluated whether breathing deformations were correlated with body shape. In general the correlation

is quite weak (correlation coefficients are below 0.5). In particular the first few principal components of body

shape are not strongly correlated with breathing shape deformations. For higher-order shape components,

capturing finer details of the body (e.g. rolls of fat), we did find some correlation with breathing deformations.

To examine the dependence of the shape change due to breathing to the intrinsic shape of a human, we

trained a SCAPE model using 4000 human scans of various shapes from the CAESAR dataset [77]. Figure

5.8 shows the correlation coefficients matrix for the first 5 PCs related to body shape variation and the 10

PCs of breathing shape. We observe that coarse breathing shape, described by the first few PCs of breathing

deformations, is not very correlated with coarse body shape. The coarse human shape is described using

the first 5 PCs of a SCAPE model trained from CAESAR. However, we do observe correlation between

higher-order components of breathing and intrinsic shape with maximum correlation coefficient around 0.5.

Intuitively, we would expect dependence between intrinsic shape and breathing shape in areas of the body

where there are prominent skin folds and muscles. Since the effect is weak, we ignore this in our model.

FIGURE 5.8. Linear correlation coefficients (unsigned) between coarse human body shape

and shape change due to breathing. The coarse human shape is described using the first 5

PCs of a SCAPE model trained from CAESAR. 10 PCs from breathing shape.

4.2. Breathing Pose Statistics. As with breathing shape, we extract a low-dimensional representation

of breathing pose variation, cij , using PCA. The low-dimensional pose representation can be expressed as

pijn = PnT cij , n = 1, . . . , N where Pn ∈ R57 are the principal components; here we use N = 4 compo-

nents. This results in a low-dimensional description of breathing pose, pij . We found, however, that not all

components were correlated with breathing. The subjects were allowed to “relax” between consecutive scans

(20 sec) and adjusted their pose and moved their feet slightly. Consequently we discarded pose components
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that were not strongly correlated with breathing (i.e. volume). Figure 5.9 shows the 3 most informative prin-

cipal components of pose change during breathing. As expected, they are related to spine and shoulder/neck

motion during breathing. Examining the low-dimensional pose space, we did not find strong correlations

with the intrinsic shape of the subject, but we did find correlation with gender. In particular, women show a

more pronounced forward/backward rocking of the upper body during breathing. Consequently, we build a

separate model of pose variation for men and women.

(a) mean pose (b) PC 1

(c) PC 2 (d) PC 3

FIGURE 5.9. Pose change during breathing. (a) Mean female body in the “A pose”. (b,c,d)

The 3 pose principal components most correlated with breathing (volume) displayed at +/-6

standard deviations.
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FIGURE 5.10. Volume change versus shape change. For a specific subject, with a partic-

ular type of breathing, we find there is a linear relationship between the breathing shape

coefficients and changes in mesh volume. Here we see this for the first principal compo-

nent.

5. Breathing Model

The statistics of breathing shape and pose change do not provide a model for animation. What we need

is a model that relates these changes in pose and shape to physiological parameters like lung volume over

time. We develop our model in stages.

5.1. Shape change during breathing. Subjects were instructed to breath in three different ways: nor-

mally, with the chest, and with the stomach. Scans from each of these conditions were treated as separate

trials. Using mesh volume as a proxy for lung volume, we express shape change of a subject within a trial

as a function of changes in mesh volume from the mean subject mesh. We find a largely linear relationship

between the coefficients of breathing shape and mesh volume change (Figure 5.10 ). Let Zj ∈ RK×2 be a

matrix containing a column with ones and a column with the volume differences, vij , between the ith mesh

of subject j and the mesh corresponding to their mean shape; K is the number of meshes in the trial. Let

Yj ∈ RK×M be a matrix containing the low-dimensional breathing shape coefficients, bij , representing the

breathing shape deformations of the training meshes (Sec. 4.1). For each trial, we learn a subject-specific

linear model, Wj , relating changes in breathing volume to shape deformation coefficients

(18) argmin
Wj∈R2×M

‖ZjWj −Yj‖2F .

5.2. Breathing types. In the linear model above we assumed that the subject performed the same type

of breathing throughout each of his 3 scanning sessions (normal, chest, stomach breathing). The type of
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FIGURE 5.11. Shape as a function of volume and type of breathing. Linear models of

shape change during breathing for various breathing types (percent chest breathing) con-

sidering only the 1st PC. Color coding is based on breathing type.

breathing plays an important role in animation. However, the trial classification above provides only a crude

classification of the type of breathing. To more precisely classify the type of breathing performed in a trial

we used the linear function and the maximum inhale volume to predict the shape of the body at maximum

volume. Using the segmentation of the torso into chest and stomach regions (Sec. ), we computed the ratio

of chest volume change of this mesh from the mean to total volume change of chest and stomach. This gives

a value sj for each trial, indicating the percentage of chest breathing present in that trial.

5.3. Breathing model. Finally, we have what we need to learn a function, F(s, v), that takes as input

the breathing type s and volume difference v and returns the corresponding linear shape deformation and

pose coefficients. Given the classification of breathing type above, we divide the trials into 10 categories

corresponding to 0%-10%, 10%-20%, . . ., and 90%-100% chest breathing. Within each category we combine

all the individual linear models into an aggregate linear model relating each shape coefficient to change in

volume. This aggregate model can be thought of as the average linear relationship predicting shape change

from volume change.

Figure 5.11 shows what this looks like for the first principal component. Each colored line is an aggregate

linear model for a specific value of breathing type, s. Note that the slope of each line is different. Recall that

the first principal component captures mostly chest deformation (Figure 5.7). The higher the value of s, the

more the chest is involved, and the greater the correlation of the first component with changes in volume.

Note further that this results in a function that is non-linear in s and v.

68



FIGURE 5.12. Shape change during breathing as a function of breathing type and volume.

The breathing type is expressed as the percentage of chest relative to stomach breathing.

The first two PCA coefficients of shape change (first two plots from the left) are corre-

lated with ”chest-breathing” and ”abdominal-breathing” types respectively. The third and

fourth PCA coefficients (two rightmost plots) are generated from higher frequency func-

tions. Color coding is based on breathing type (% of chest breathing).

We want a model of breathing that is continuous in s and v and we achieve this by fitting a surface to the

changing regression functions using cubic interpolation. Figure 5.12 shows some examples of the resulting

functions wm(s, v). As we saw before, the first two principal components are very correlated with chest and

stomach breathing respectively. This is evident in the corresponding weight functions (top two subplots in

Figure 5.12).

In the final breathing shape model then, we weight the principal components, Gm, by a non-linear

functions wm(s, v)

(19) F(s, v) =
∑
m

wm(s, v)Gm.

69



(a) “abdominal-breathing”

(b) “chest-breathing”

FIGURE 5.13. Examples of (a) “abdominal-breathing” and (b) “chest-breathing”. The

gray bodies represent the mean shape of the depicted humans. Shape change due to breath-

ing is color coded based on the Euclidean distance (in cm) between every mesh vertex and

the corresponding vertex of the mean shape.

Figure 5.13 shows two example meshes at maximum inhale: a female breathing with the stomach and a male

breathing with the chest.

70



(a) Female (b) Male

FIGURE 5.14. Pose model evaluated at “breathing in” and “breathing out” for (a) females,

and (b) males considering the first 3 principal components.

5.4. Pose model. Based on the insights from Sec. 4.2, we derive a generic model of pose change per

gender g, E(g, v), parameterized additionally by the breathing volume v. Let Og ∈ RKg×2 be a matrix

containing a column with ones and a column with the volume differences, vij , over all subjects j of gender g

= {male, female}. Let Hg ∈ RKg×N be a matrix containing the PCA projections of pose, pij , corresponding

to the training meshes as described in Sec. 4.2. For each gender, we define a linear model for predicting

breathing induced pose deformations using linear least squares regression:

(20) argmin
Lg∈R2×N

‖OgLg −Hg‖2F .

The pose model per gender is shown in Figure 5.14. The upper body of females moves more than the

upper body of males. Interestingly, shape deformations were the same for men and women. The pose model

is not parameterized by the breathing type. Note also that the pose model does not need to be used for

animation; for example, when animating the breathing of a moving character, we do not use the pose model.

5.5. Influence of shape and pose on animation realism. Previous work on fine-tuning animations

of 3D avatars to create the effect of breathing has focused on varying either the shape or the pose of the

animated character. Given our proposed breathing model describing both shape and pose change, we want to

find out which of the two is more influential at conveying the feeling of breathing. We conducted a perceptual

study where users were asked to select the most realistic animation out of three: breathing animation by

changing only the pose, only the shape, pose and shape together. The animations were synthesized using the

personalized shape model described in Section 5.1 and personalized pose models derived in a similar way as

in Section 5.4, but considering the data of each subject separately. The three animations were displayed at
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the user simultaneously (side to side) and in a randomized order. Each animation was rated by 9 users using

Amazon Mechanical Turk. For evaluation, we used 53 subjects that were captured after being instructed to

breath “naturally”. We excluded subjects that were explicitly instructed to breathe with the chest or stomach

because focusing on breathing with a specific type led many participants to keep their arms stiff and still.

To ensure that the users did not select an animation randomly, they were asked to justify their choice. After

gathering the votes of the users, we count how many times each configuration is selected as the configuration

that yields the most realistic animation. In case there is a tie among the votes for a subject, we split the credits

among the first place configurations. In 47% of the cases, the Mechanical Turk users selected the animations

synthesized by combining pose and shape change as the most realistic ones. The animations synthesized

by varying only the shape were ranked first 48% of the times and pose-only breathing deformations were

selected as the most realistic ones in only 5% of the cases. We can see that the users favored shape change

as the element that yields greatest realism in animating breathing. Adding pose change on top of breathing

shape change did not create a noticeable difference in the perceived realism.

To reinforce this statement, we conducted a follow-up perceptual experiment in order to investigate

whether the users are able to distinguish the difference between the animations generated by varying shape

and varying pose and shape together. The users were presented with a pair of animations using the same

subjects as in the previous experiment. Each animation was synthesized by changing either only the shape

of the 3D character or both the pose and shape (the two animations could also be the same). The users were

asked whether they thought the animations were the same or different. In 85% of the cases, they were able to

give the correct answer which denotes that they do not have a strong preference over adding pose change for

animating breathing.

6. Breathing Animation

Respiration is time varying. In particular, as air moves in and out of the lungs, their volume changes. To

animate breathing using the model defined above, we need a way to vary lung volume over time.

6.1. Trajectory editing. We developed a Maya tool to create and edit realistic 3D body shapes; that is

similar to previous work on body shape modeling [4, 6, 44, 49]. We do not describe it further here. The tool

also allows an animator to edit the temporal pattern of breathing.

Our breathing model takes two inputs: the breathing type and volume difference. Our interface includes

a slider with which the animator selects the percentage of chest breathing enabling them to achieve different

“styles.” A common assumption in the physiology of respiration [63, 98] is that air flow in lungs during

breathing at rest pose is a sinusoidal function of time. Thus we provide an interface for controlling the

parameters of a sinusoid function of volume over time. The intensity of the pose change can be adjusted

separately from shape deformation. The amplitude and frequency of the sinusoid can be varied using sliders.
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FIGURE 5.15. Visualization of breathing animation using a Moiré-like effect. We show

the same three bodies and breathing types as in Figure 5.1, but here the maximum inhale

and exhale shapes are overlaid with a transparent checkerboard that shows deformations

of the surface (due to shape deformation only). When there is shape change, the checker

pattern is misaligned and looks blurry. For example, focusing on the stomach of the middle

character, one may have the sense of an expanding stomach.

FIGURE 5.16. Breath acting. An actor breathes into a spirometer to convey the action and

emotional content of a character. The changing volume of the lungs is recorded and used

to animate breathing.

Figures 5.15, 5.21, 5.22, 5.23, 5.24 show examples of breathing animations based on the abovementioned

assumption at full inhale and exhale.

73



6.2. Breath acting. Breathing in real life does not always follow a pure sinusoidal function. It varies

with activity and emotion and plays a role in telling a story. We use a device call a spirometer (NDD MEDI-

CAL, Zurich, Switzerland), which measures change in air flow, to capture the breathing pattern of a “breath

actor” (Figure 5.16). Like a voice actor, the breath actor observes an animation and acts out the breathing

that fits the action. We then use the recorded changes in volume to produce deformations (and possibly pose

changes) and to animate a 3D avatar. We manually adjust the breathing type (chest or stomach) based on

the action and emotions in a scene. This provides a simple and intuitive interface to produce realistic and

compelling breathing animations. Figure 5.17 shows an example of synthesized breathing that matches the

“surprise” emotion.

7. Results

To evaluate the realism of our model, we capture reference video material of a subject breathing. We then

had a breath actor (different from the subject) watch the video and imitate the breathing using the spirometer.

We used a 3D scan of the subject to create an avatar for their body shape, selected the amount of chest

breathing manually, and then animated the body in the style of the subject. Note the we did not capture

the pose of the actor during breathing and did not attempt to match the pose. Focusing on the breathing

deformations, however, we find a good qualitative match between reference and animation (Figure 5.18).

7.1. Breathing in Action: Poses and Motion. Our model of respiration is trained using body scans

of people in a standing “A” pose. While the pose variation model may be quite specific to this pose, the

shape deformation model can be easily applied to other poses with realistic results. Figure 5.19 shows a

body in a seated pose and a standing pose with the same breathing model applied. Notice that the breathing

deformations are, in fact, different because the mesh is in a different pose.

We also animate the breathing of characters in motion. Figure 5.20 shows frames from a running se-

quence. Here again, the breathing deformation is color coded in terms of distance from the average shape.

In this case a breath actor observed the animated body without breathing and simulated the breathing to go

with it. While the running motion makes it harder to see the breathing animation, one can readily tell the

difference between sequences animated with and without breathing.
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FIGURE 5.17. Spirometer-driven animation. Example snapshots of an animation where

the “breath actor” was instructed to breathe while acting surprised.

8. The Last Breath (Conclusions)

We describe a model for realistic breathing animation. A key novelty of our approach is the use of

high-resolution 3D scans in combination with a human body model to capture pose and shape change during
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FIGURE 5.18. Reference video. Example frames from a reference video of a subject

breathing with different types. On the left of each image pair we see the recorded mo-

tion. On the right, we show a roughly corresponding frame from our animation.

FIGURE 5.19. Pose and motion. Applying the breathing model with 40% chest breathing

to a standing and seated pose. Color coding corresponds to the distance (in cm) between

the vertices of the meshes at full inhale and the mean shape of the human.

breathing. We use mesh volume as a proxy for lung volume, which allows us relate breathing shape changes

to a simple, physiological, control parameter.
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FIGURE 5.20. Simulated breathing while running. We took a 3D model of a person run-

ning and added realistic breathing shape deformations. The Euclidean distances between

vertices of the breathing and non-breathing model are color coded (red is more distant while

dark blue means no difference). Here the runner is breathing mostly with the chest and the

temporal pattern of breathing was created by a “breath actor.”

By analyzing the statistics of breathing shape changes we found that: 1) there are statistically significant

changes in whole-body posture and shape during breathing, 2) the differences in breathing shape between

men and women are statistically insignificant but that there are some significant postural differences; 3) the

dominant breathing shape changes are independent of body shape but more detailed changes are correlated

with body shape; 4) people can perform different types of breathing (chest and stomach) and these are clearly

reflected in the principal components of breathing shape; 5) for a particular type, lung volume is linearly

related to these principal components; 6) this linear relationship varies with type, resulting in a non-linear

model.

Based on this statistical analysis, we learn a model of breathing shape from 3D scan data. The param-

eters of the model are the lung volume and breathing type. We extend the SCAPE body model to include

deformations due to breathing. This enables easy animation of arbitrary body shapes in any pose. Finally,

we provide animators with a new breathing animation tool that uses a spirometer to capture changes in lung

volume. By acting out a the respiration of a character by breathing into the spirometer, one can create novel

and realistic animations that convey action and emotional content.

While usable today by an animator, there are ways to improve and extend our method. We capture

breathing in a fixed pose but clearly shape changes will be influenced by posture (e.g. lying down). Future

work should study how pose affects breathing deformations. Breathing shape is likely also correlated with

activity and it would be good to build a temporal model of breathing dynamics as it relates to pose changes

during activity. We used mesh volume to measure lung volume but it would be interesting to synchronize

the output of a spirometer directly with the 3D scanning process. We focused on the two dominant types of
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breathing described in the literature but we would like to capture a much wider range of scenarios including

other actions like puff, pant, blow, gasp, wheeze, sigh, huff. Our methods could be use to give an animator the

ability to select among these styles. We have focused on the body but it would be interesting to simultaneously

analyze facial motions, which are also influenced by breathing. Finally, it would be interesting to explore

example-based methods that could reconstruct coherent breathing from our scans; such methods are popular

with motion capture data [46, 69] but have not been applied to 3D breathing shape.
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(a) same shape, different breathing type

(b) different shape, same breathing type

FIGURE 5.21. Special for the electronic edition (switch back and forth with the next

page to see the animation). (a) Different types of breathing applied to the same human.

(b) Same breathing type applied to humans of different shape. Bodies are displayed at full

inhale. 79



(a) same shape, different breathing type

(b) different shape, same breathing type

FIGURE 5.22. Special for the electronic edition (switch back and forth with the next

page to see the animation). (a) Different types of breathing applied to the same human.

(b) Same breathing type applied to humans of different shape. Bodies are displayed at full

exhale. 80



(a) front view

(b) back view

FIGURE 5.23. Special for the electronic edition (switch back and forth with the next

page to see the animation). Bodies of different shape and gender at full inhale.
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(a) front view

(b) back view

FIGURE 5.24. Special for the electronic edition (switch back and forth with the previ-

ous page to see the animation). Bodies of different shape and gender at full exhale.
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CHAPTER 6

Conclusions and Future Work

This thesis has focused on several aspects of modeling the shape of the human body in 3D. In this chapter,

we summarize our contributions and discuss limitations and directions for future work.

1. Shape Matching between 3D meshes

Registering two arbitrary 3D meshes, no matter if they belong to the same object class, is a difficult task.

Even for a human the smoother the meshes, the harder it is to define meaningful correspondences. In Chapter

2, we presented a method, PGSE, that yields reasonable sparse correspondences between 3D meshes. More

specifically, we showed how geodesic distances can be used in a pairwise probabilistic graph framework to

provide correspondences that are invariant to the pose, shape and resolution of two meshes. First, we proposed

a local shape descriptor relying on geodesic distances that is invariant to pose, shape and mesh resolution.

Geodesic distances, shortest paths on the mesh, are almost pose invariant. Avoiding protruding areas of the

human body, such as belly, they are also almost shape invariant when normalized. Shortest paths that traverse

the triangles of a 3D mesh are also to some degree independent to the mesh topology (as long as there

are enough triangles to represent the underlying geometry). The proposed descriptor has high discriminative

power on limbs of the body, but lower discriminative power in the rest of the body. To overcome this limitation

it was used in a probabilistic framework in conjunction with pairwise geodesic constraints among possible

correspondences. The problem of finding sparse correspondences was formulated as an inference problem

on a Conditional Random Field (CRF) model. A CRF provides a plug-and-play framework for introducing

constraints and there are also well established methods for approximate inference that work well in practice.

In the absence of ground truth correspondences between two meshes, we proposed an error metric that is

more consistent with how humans evaluate correspondences than previous metrics.

We have described a method that can be used for finding only sparse (up to ∼ 200) correspondences

between 3D meshes. An extension to finding dense correspondences could be achieved by rerunning our

method selectively in areas spanned by a subset of the sparse correspondences found and joining the resulting

new correspondences. In its current form, our method is oblivious of the class of the input 3D meshes.

We expect the use of prior knowledge to enhance its performance. For instance, it could potentially be

combined with anthropometric landmark detectors, e.g. nose detector. Such an approach could also eliminate

false front-to-back matches (e.g. the back of a man with a hunch is mapped to the chest of a woman). An
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alternative for incorporating prior knowledge is to learn the types of deformations for meshes of a specific

class. Geodesic distances assume that deformations caused by different poses of articulated objects (or face

expressions) are isometric; i.e. they do not change as the pose changes. However, this is not true for all

parts of the body. Recent work [106] dealt with learning the expression deformations among faces and

pose deformations between synthetic 3D human meshes varying in pose. To model richer deformations

high-order constraints between corresponding points needed to be specified. However, learning the types of

deformations is a chicken-and-egg problem. Deformation models lead to more accurate correspondences,

but these models are learnt using a set of data already in correspondence! Interestingly enough there is very

little work done on generating benchmarks with ground truth correspondences coming from real data, such

as 3D scans. We expect such benchmarks to play an important role at building more accurate algorithms

for finding correspondences as well as evaluating their performance. Matching articulated objects, such as

humans, in arbitrary poses may inevitably lead to left-to-right mirroring of the correspondences due to the

high degree of symmetry in the human body. This issue will be eliminated if there is temporal information

among the 3D scans, such as in a human tracking scenario. In this work we have taken into account only

the geometry of the 3D scans. However, we believe that appearance information can be used to refine the

resulting correspondences.

Correspondences are at the core of many applications. Sparse correspondences can be used as an initial-

ization to full registration techniques, 3D content-based retrieval applications, even pose estimation. Previous

work has focused mainly on finding correspondences when the pose of articulated objects changes. We ex-

pect future work to deal more with shape and resolution changes. In this work, we have focused on finding

correspondences among articulated objects of the same class. However, correspondences can be defined be-

tween objects of different classes as well; e.g. for the case of deformation transfer in 3D animation. In such

scenarios, it may be useful to focus on making the connection between surface correspondences and percep-

tual correspondences. Most of the approaches so far for finding correspondences rely on relatively clean,

watertight 3D meshes. We expect that as 3D data become more and more common, there will be an increased

interest in finding correspondences between real, noisy 3D scans with missing data as well as matching data

with self-intersections; e.g. a 3D scan of a human with his legs in contact.

2. 1D Measurements and Attributes from 3D Scans

In Chapter 4, we described a method for predicting 1D measurements from 3D scans. The key insight

in this work is that we can get increased accuracy in predicting measurements, if instead of working with

noisy 3D scans containing holes, we register the 3D scans with a template mesh by taking into account prior

knowledge about the shape of the human body. The registration procedure fills in the holes in a meaningful

way as well as brings all the captured 3D scans into correspondence. That in turn allows the use of machine
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learning techniques for measurement prediction. We expect that this learning framework can reveal correla-

tions of body shape with non-surface attributes of the human body, such as age, muscularity, etc. In addition,

contrary to existing commercial systems, this combination of registration and learning allows measurement

prediction from arbitrary poses (as long as the registration can be performed and the specific pose is in our

training set). For the first time, we take into account features from multiple poses for measurement predic-

tion. As expected, masurements are predicted better using a 3D scan in the pose where the measurement was

taken. Moreover, we perform an extensive evaluation against state-of-art. We expect this study to serve as a

baseline for measurement prediction from 3D data, particularly relevant nowadays that 3D acquistion devices

become cheaper to acquire.

The main limitation of our method is that we rely heavily on the registration procedure mentioned above.

Aiming at setting a form of a baseline when it comes to measurement prediction from 3D scans, we have used

only high-resolution 3D scans and landmarks provided by the CAESAR dataset. However, further studies

on measurement prediction using low-resolution noisy data coming from e.g. Microsoft Kinect [55], or

commodity webcameras, should be performed. We have, additionally, introduced a set of shape features that

work well enough for predicting measurements. These shape features were initially defined manually based

on our intuition and we only perform feature selection. We do not claim that they are the best shape features

to use. We could potentially have used as an input to the feature selection framework generic features, such

as mesh HOG [104], etc. Alternatively, we could have learnt the shape features to use for prediction, but that

would have required a large quantity of training data. Finally, we assumed standard anthropometry to be our

ground truth. Although direct measurements in CAEASAR were consistent among different measurers, the

measurers may have also been consistently biased in the way they measure.

What is a good representation of human body shape and what can the body shape in 3D tell us about the

human? Body shape is a temporally evolving quantity, thus, measurements also change over time; e.g. during

breathing, as we age, etc. We believe that new representations of human shape will need to be employed in

the future. Potentially these shape representations should be parameterized by factors such as activity, etc.

The first attempt to describe human shape as a temporally evolving quantity is described in Chapter 5. In the

present work, we provide some form of backward compatibility of 3D representations of human body shape

with conventional 1D measurements. We additionally regard our work as a small step towards predicting

human attributes from 3D scans. Previous work has tried to infer human attributes from photos or human

motion data [86]. A 3D scan or a sequence of 3D scans, with both the geometry and appearance taken into

account, should be an even richer source of information about the emotional state, health and individual

characteristics of a human. So far, the human bodies that we used for predicting measurements were in

tight fitting clothing. Future work should address predicting measurements and attributes in scenarios that

resemble more the real life; i.e. prediction directly from dressed human bodies [10, 43].
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3. Data-driven animation of subtle body deformations

In Chapter 5, we described a data-driven approach for modeling subtle deformations of the human body

due to breathing. Key elements of the presented approach are the use of high-resolution 3D scans in combi-

nation with a human body model to model pose and shape change during breathing. The human body model

additionally facilitates synthesis of new human shapes, which is hard for anatomically inspired, physics-

based models. Although previous work has reproduced breathing motions that involve posture change, we

are the first ones to explicitly model posture change during breathing. The high-resolution 3D scans are

essential for modeling the shape of the human body in detail. Because breathing is a temporally evolving

process, we capture multiple 3D scans of each subject at various unknown instances of their breathing cycle.

We show that supplementing these scans with concepts from the physiology of respiration about the timing

of breathing yields reasonable animations of breathing 3D avatars. Expressing the timing of breathing as a

function of lung volume allows us to reproduce arbitrary breathing patterns captured from real humans us-

ing a spirometer. Finally, we provide animators with compact and intuitive controls for generating various

breathing types as a combination of chest and abdominal breathing, varying the speed and the intensity of the

breathing cycle. Our user interface for animation allows, additionally, animation from arbitrary sequences of

lung volumes applied on new 3D human bodies synthesized in real-time.

In this work we have undertaken the difficult task of modeling the temporal aspect of human body shape

without having any temporal data! We expect that modeling the human body over time using data from a 4D

whole body scanner will give more accurate shape representations. Our method relies heavily on the use of

the SCAPE model. We have assumed that SCAPE models the human body accurately enough and that the

residual shape deformations come only from breathing. That is a reasonable assumption for a person standing

in the “A pose” with small posture variation during breathing. We have shown breathing animations driven

from arbitrary changes in lung volume. However, we have implicitly made an assumption that breathing is

symmetric, i.e. for the same volume inside the human body, the breathing deformations while breathing in

are the same as the deformation while breathing out. Our goal was to model subtleties of the human body.

Breathing is by definition a subtle deformation, but there are even more subtle ones; e.g. the deformation of

the veins during heartbeats, swallowing, etc. In terms of geometry, we cannot capture that degree of detail.

This effect might be achieved through apperance cues (texture). In this work, we focus mainly an modeling

how the human shape changes over time in terms of geometry. Change in appearance; e.g. change in face

color during breathing just after running [53, 101], is part of future work.

Modeling shape deformations that bring 3D avatars into life, such as breathing, sneezing, motion of

veins while talking etc, is still in its infancy. We focused on modeling the shape change of the torso as well

as the whole body posture change in the standing pose. However, breathing is a much more complex motion.

Breathing should be synchronized with human body motion; e.g running. In addition, breathing involves
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changes on the face as well. Not only the facial expression changes while breathing, but also the timing of

breathing should be synchronized with the speech of the animated character. Our current breathing model

assumes human bodies in tight fitting clothing. For increased realism, future work should additionally model

breathing under clothing. Apart from modeling temporal shape change due to vital deformations, another

interesting direction of future work is modeling temporal shape changes such as aging, shape change during

a weight loss diet, etc.

4. The Challenge: Data-driven whole human body modeling in 3D

Data-driven modeling of the human body in 3D promises to convert lifeless 3D human scans to lively

and expressive digital avatars. Admittedly, a lot of progress has been made in the last few decades. Initial

human body models were coarse, consisting of 3D geometric shape primitives. Early data-driven approaches

for modeling the human body could only leverage 2D images and motion capture data. Nowadays, it is much

easier to acquire 3D data, even using our personal mobile devices, or find systhetic 3D data online. The

focus has shifted to modeling in detail subtle deformations in specific areas of the body as well as real-time

user-driven animation. In addition, modeling is performed in terms of both 3D geometry and appearance.

However, modeling the human body in 3D is still a big endeavour. Despite the large amount of available

data, we are limited to what aspects of human shape can be captured. Given current state-of-art technologies,

whole body real-time range data acquisition is not option. However, it is through that type of acquisition

that we can capture shape deformations that bring 3D scans into life, such as sneezing, coughing, laughing.

Additionally, data capture remains challenging in real life scenarios, such as capturing dressed people in

natural environments. In terms of modeling, we envision that future work will take a holistic approach in

modeling the human body. Realistic modeling of humans should take into account interaction with the objects

in the scene; e.g. body deformations when a person is sitting, as well as interaction with other humans.
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APPENDIX A

Detailed Performance of Measurement Prediction from 3D Scans

Allowable

Measurement [3] [44] Our method Error [35]

Acromial Height, Sit 8.99 7.75 edges, sit limbs, stand 9

Ankle Circumference 7.55 6.59 6.19 deformations, stand edges, stand 4

Arm Length Shoulder - Elbow 11.26 8.42 6.65 limbs, stand edges, stand 6

Arm Length Shoulder - Wrist 11.67 10.42 10.05 limbs, stand edges, stand

Arm Length Spine - Wrist 13.19 13.40 11.87 girths, stand limbs, stand

Armscye Circumference 12.57 12.64 girths, sit girths, stand 13

Bizygomatic Breadth 3.18 2.75 limbs, stand deformations, stand 2

Chest Circumference under Bust 17.49 15.40 girths, stand limbs, stand 16

Buttock-Knee Length 7.17 7.04 girths, sit limbs, sit 6

Chest Circumference 12.43 13.02 12.73 girths, stand edges, stand 15

Chest Girth at Scye 27.19 25.65 girths, stand deformations, both 15

Crotch Height 7.45 7.53 5.50 limbs, stand deformations, stand 10

Elbow Height, Sit 9.80 8.21 deformations, both limbs, stand 10

Eye Height, Sit 9.81 8.52 limbs, sit deformations, both 8

Face Length 3.37 3.20 deformations, both deformations, stand

Foot Length 4.74 4.05 limbs, stand edges, stand 3

Hand Circumference 5.22 4.95 deformations, stand edges, stand 4

Hand Length 4.23 4.17 limbs, stand edges, stand 3

FIGURE A.1. Measurement prediction on females (part I). Mean Absolute Difference

(MAD) between extracted and direct measurements evaluated on a test set of 200 bod-

ies from CAESAR [77] respectively. We compare Anthroscan [3], Hasler et al. [44] and

our method against the allowable inter-observer error per measurement as reported in the

ANSUR study [35]. For our method, we additionally show the optimal groups of features

per measurement. The reported values are in mm. Measurement prediction with no statis-

tical significance between our method and at least one of the other approaches is denoted

with smaller font size. The best performance per measurement is shown in bold.
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Allowable

Measurement [3] [44] Our method Error [35]

Head Breadth 3.80 3.05 girths, stand deformations, stand 2

Head Circumference 7.44 7.45 5.87 girths, sit limbs, stand 5

Head Length 4.66 3.87 edges, sit girths, sit 3

Hip Breadth, Sit 11.42 10.22 edges, sit girths, sit 6

Hip Circ Max Height 17.05 18.96 18.59 girths, stand limbs, stand

Hip Circumference, Maximum 7.47 16.15 12.35 girths, stand edges, stand 12

Knee Height 7.42 7.01 girths, stand limbs, stand 6

Neck Base Circumference 21.03 16.96 15.79 limbs, sit 11

Shoulder Breadth 16.57 17.37 girths, stand limbs, stand

Height, Sit 8.87 6.75 deformations, both limbs, stand 6

Spine-to-Elbow 8.41 8.10 girths, stand limbs, stand

Spine-to-Shoulder 7.60 6.59 edges, sit edges, stand

Stature 5.60 10.21 7.51 girths, stand limbs, stand 10

Subscapular Skinfold 4.30 4.06 girths, stand deformations, stand

Thigh Circumference 10.63 8.17 girths, stand edges, stand 6

Thigh Circumference Max, Sit 14.19 12.27 girths, stand limbs, stand

Thumb Tip Reach 18.18 16.70 deformations, both limbs, stand 20

Total Crotch Length 24.14 19.34 girths, stand edges, stand

Triceps Skinfold 4.61 4.37 edges, sit girths, stand

Vertical Trunk Circumference 17.34 15.12 limbs, stand edges, stand 23

Waist Circumference, Preferred 24.73 22.79 girths, stand edges, stand

Waist Front Length 19.41 17.24 limbs, stand edges, stand 5

Waist Height, Preferred 12.28 10.71 limbs, stand edges, stand

Weight 1.24 1.08 edges, sit girths, stand 0.3

FIGURE A.2. Measurement prediction on females (part II). Mean Absolute Difference

(MAD) between extracted and direct measurements evaluated on a test set of 200 bod-

ies from CAESAR [77] respectively. We compare Anthroscan [3], Hasler et al. [44] and

our method against the allowable inter-observer error per measurement as reported in the

ANSUR study [35]. For our method, we additionally show the optimal groups of features

per measurement. The reported values are in mm. Measurement prediction with no statis-

tical significance between our method and at least one of the other approaches is denoted

with smaller font size. The best performance per measurement is shown in bold.
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Allowable

Measurement [3] [44] Our method Error [35]

Acromial Height, Sit 9.93 10.45 limbs, sit limbs, stand 9

Ankle Circumference 13.66 5.72 5.56 edges, stand girths, stand 4

Arm Length Shoulder - Elbow 13.99 12.66 13.32 edges, stand limbs, stand 6

Arm Length Shoulder - Wrist 14.49 13.76 12.66 edges, stand limbs, stand

Arm Length Spine - Wrist 14.71 11.81 10.40 edges, stand limbs, stand

Armscye Circumference 9.86 8.88 edges, stand girths, stand 13

Bizygomatic Breadth 3.25 3.02 girths, stand deformations, both 2

Buttock-Knee Length 8.66 8.17 limbs, stand deformations, both 6

Chest Circumference 13.96 15.21 13.19 girths, stand deformations, both 15

Chest Girth at Scye 17.57 16.92 girths, stand deformations, both 15

Crotch Height 11.01 9.77 8.36 deformations, stand limbs, stand 10

Elbow Height, Sit 14.50 12.33 girths, sit limbs, stand 10

Eye Height, Sit 11.86 11.31 limbs, sit deformations, both 8

Face Length 3.72 3.63 deformations, stand girths, sit

Foot Length 4.60 4.64 edges, stand edges, sit 3

Hand Circumference 4.76 4.51 girths, stand deformations, stand 4

Hand Length 3.98 3.55 edges, stand limbs, stand 3

Head Breadth 3.73 3.25 edges, sit deformations, stand 2

Head Circumference 5.51 6.51 5.42 girths, sit 5

Head Length 3.68 3.36 edges, stand girths, stand 3

Hip Breadth, Sit 8.54 6.82 edges, sit limbs, stand 6

Hip Circ Max Height 16.50 18.89 19.05 edges, stand limbs, stand

Hip Circumference, Maximum 7.90 12.57 10.66 edges, stand girths, stand 12

FIGURE A.3. Measurement prediction on males (part I). Mean Absolute Difference

(MAD) between extracted and direct measurements evaluated on a test set of 200 bod-

ies from CAESAR [77] respectively. We compare Anthroscan [3], Hasler et al. [44] and

our method against the allowable inter-observer error per measurement as reported in the

ANSUR study [35]. For our method, we additionally show the optimal groups of features

per measurement. The reported values are in mm. Measurement prediction with no statis-

tical significance between our method and at least one of the other approaches is denoted

with smaller font size. The best performance per measurement is shown in bold.

90



Allowable

Measurement [3] [44] Our method Error [35]

Knee Height 5.79 4.42 edges, stand limbs, stand 6

Neck Base Circumference 21.57 13.33 13.47 deformations, stand limbs, stand 11

Shoulder Breadth 9.76 8.94 edges, stand girths, stand

Height, Sit 10.34 8.37 limbs, stand deformations, both 6

Spine-to-Elbow 12.22 10.35 edges, stand limbs, stand

Spine-to-Shoulder 8.24 7.72 edges, stand girths, stand

Stature 5.86 7.98 6.53 edges, stand limbs, stand 10

Subscapular Skinfold 5.89 5.65 deformations, stand girths, stand

Thigh Circumference 11.72 8.61 edges, stand girths, stand 6

Thigh Circumference Max, Sit 11.56 9.57 edges, stand girths, stand

Thumb Tip Reach 18.63 17.99 girths, stand limbs, stand 20

Total Crotch Length 26.79 24.13 edges, stand girths, stand

Triceps Skinfold 3.78 3.59 deformations, stand deformations, both

Vertical Trunk Circumference 25.46 23.18 girths, stand limbs, stand 23

Waist Circumference, Preferred 22.90 21.92 girths, stand deformations, both

Waist Front Length 20.63 18.97 edges, stand limbs, stand 5

Waist Height, Preferred 13.72 10.73 edges, stand limbs, stand

Weight 1.87 1.91 girths, stand limbs, stand 0.3

FIGURE A.4. Measurement prediction on males (part II). Mean Absolute Difference

(MAD) between extracted and direct measurements evaluated on a test set of 200 bod-

ies from CAESAR [77] respectively. We compare Anthroscan [3], Hasler et al. [44] and

our method against the allowable inter-observer error per measurement as reported in the

ANSUR study [35]. For our method, we additionally show the optimal groups of features

per measurement. The reported values are in mm. Measurement prediction with no statis-

tical significance between our method and at least one of the other approaches is denoted

with smaller font size. The best performance per measurement is shown in bold.
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1. Measurement prediction from the standing pose

Allowable

Measurement [3] [44] Our method Error [35]

Acromial Height, Sit 10.29 10.04 girths, stand limbs, stand 9

Ankle Circumference 7.55 6.59 6.19 deformations, stand edges, stand 4

Arm Length Shoulder - Elbow 11.26 8.42 6.65 limbs, stand edges, stand 6

Arm Length Shoulder - Wrist 11.67 10.42 10.05 limbs, stand edges, stand

Arm Length Spine - Wrist 13.19 13.40 11.87 girths, stand limbs, stand

Armscye Circumference 12.57 12.22 girths, stand 13

Bizygomatic Breadth 3.18 2.75 limbs, stand deformations, stand 2

Chest Circumference under Bust 17.49 15.40 girths, stand limbs, stand 16

Buttock-Knee Length 9.02 8.52 girths, stand limbs, stand 6

Chest Circumference 12.43 13.02 12.73 girths, stand edges, stand 15

Chest Girth at Scye 27.19 27.31 girths, stand edges, stand 15

Crotch Height 7.45 7.53 5.50 limbs, stand deformations, stand 10

Elbow Height, Sit 10.29 10.06 girths, stand limbs, stand 10

Eye Height, Sit 9.81 9.96 girths, stand limbs, stand 8

Face Length 3.37 2.97 girths, stand deformations, stand

Foot Length 4.74 4.05 limbs, stand edges, stand 3

Hand Circumference 5.22 4.95 deformations, stand edges, stand 4

Hand Length 4.23 4.17 limbs, stand edges, stand 3

FIGURE A.5. Measurement prediction on females using only data in the standing pose

(part I). Mean Absolute Difference (MAD) between extracted and direct measurements

evaluated on a test set of 200 bodies from CAESAR [77] respectively. We compare An-

throscan [3], Hasler et al. [44] and our method against the allowable inter-observer error

per measurement as reported in the ANSUR study [35]. For our method, we additionally

show the optimal groups of features per measurement. The reported values are in mm.

Measurement prediction with no statistical significance between our method and at least

one of the other approaches is denoted with smaller font size. The best performance per

measurement is shown in bold.
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Allowable

Measurement [3] [44] Our method Error [35]

Head Breadth 3.80 3.05 girths, stand deformations, stand 2

Head Circumference 7.44 7.45 5.91 girths, stand edges, stand 5

Head Length 4.23 4.17 deformations, stand edges, stand 3

Hip Breadth, Sit 14.07 12.28 edges, stand girths, stand 6

Hip Circ Max Height 17.05 18.96 18.59 girths, stand limbs, stand

Hip Circumference, Maximum 7.47 16.15 12.35 girths, stand edges, stand 12

Knee Height 7.42 7.01 girths, stand limbs, stand 6

Neck Base Circumference 21.03 16.35 15.43 limbs, stand 11

Shoulder Breadth 16.57 17.37 girths, stand limbs, stand

Height, Sit 8.87 8.52 girths, stand limbs, stand 6

Spine-to-Elbow 8.41 8.10 girths, stand limbs, stand

Spine-to-Shoulder 7.60 6.60 limbs, stand edges, stand

Stature 5.60 10.21 7.51 girths, stand limbs, stand 10

Subscapular Skinfold 4.30 4.06 girths, stand deformations, stand

Thigh Circumference 10.63 8.17 girths, stand edges, stand 6

Thigh Circumference Max, Sit 14.19 12.27 girths, stand limbs, stand

Thumb Tip Reach 18.18 15.56 deformations, stand limbs, stand 20

Total Crotch Length 24.14 19.34 girths, stand edges, stand

Triceps Skinfold 4.61 4.58 limbs, stand girths, stand

Vertical Trunk Circumference 17.34 15.12 limbs, stand edges, stand 23

Waist Circumference, Preferred 24.73 22.79 girths, stand edges, stand

Waist Front Length 19.41 17.24 limbs, stand edges, stand 5

Waist Height, Preferred 12.28 10.71 limbs, stand edges, stand

Weight 1.24 1.15 edges, stand girths, stand 0.3

FIGURE A.6. Measurement prediction on females using only data in the standing pose

(part II). Mean Absolute Difference (MAD) between extracted and direct measurements

evaluated on a test set of 200 bodies from CAESAR [77] respectively. We compare An-

throscan [3], Hasler et al. [44] and our method against the allowable inter-observer error

per measurement as reported in the ANSUR study [35]. For our method, we additionally

show the optimal groups of features per measurement. The reported values are in mm.

Measurement prediction with no statistical significance between our method and at least

one of the other approaches is denoted with smaller font size. The best performance per

measurement is shown in bold.
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Allowable

Measurement [3] [44] Our method Error [35]

Acromial Height, Sit 11.63 11.25 edges, stand limbs, stand 9

Ankle Circumference 13.66 5.72 5.56 edges, stand girths, stand 4

Arm Length Shoulder - Elbow 13.99 12.66 13.32 edges, stand limbs, stand 6

Arm Length Shoulder - Wrist 14.49 13.76 12.66 edges, stand limbs, stand

Arm Length Spine - Wrist 14.71 11.81 10.40 edges, stand limbs, stand

Armscye Circumference 9.86 8.88 edges, stand girths, stand 13

Bizygomatic Breadth 3.75 3.02 girths, stand deformations, stand 2

Buttock-Knee Length 8.91 9.25 limbs, stand girths, stand 6

Chest Circumference 13.96 15.21 13.02 girths, stand deformations, stand 15

Chest Girth at Scye 17.57 16.92 girths, stand deformations, both 15

Crotch Height 11.01 9.77 8.36 deformations, stand limbs, stand 10

Elbow Height, Sit 14.50 13.82 girths, stand limbs, stand 10

Eye Height, Sit 12.51 11.88 limbs, stand deformations, stand 8

Face Length 3.72 3.72 deformations, stand girths, stand

Foot Length 4.60 4.57 edges, stand limbs, stand 3

Hand Circumference 4.76 4.51 girths, stand deformations, stand 4

Hand Length 3.98 3.55 edges, stand limbs, stand 3

Head Breadth 3.73 3.30 edges, stand deformations, stand 2

Head Circumference 5.51 7.46 5.59 girths, stand edges, stand 5

Head Length 3.68 3.36 edges, stand girths, stand 3

Hip Breadth, Sit 8.68 7.11 edges, stand girths, stand 6

Hip Circ Max Height 16.50 18.89 19.05 edges, stand limbs, stand

Hip Circumference, Maximum 7.90 12.57 10.66 edges, stand girths, stand 12

FIGURE A.7. Measurement prediction on males using only data in the standing pose (part

I). Mean Absolute Difference (MAD) between extracted and direct measurements evalu-

ated on a test set of 200 bodies from CAESAR [77] respectively. We compare Anthroscan

[3], Hasler et al. [44] and our method against the allowable inter-observer error per mea-

surement as reported in the ANSUR study [35]. For our method, we additionally show the

optimal groups of features per measurement. The reported values are in mm. Measurement

prediction with no statistical significance between our method and at least one of the other

approaches is denoted with smaller font size. The best performance per measurement is

shown in bold.
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Allowable

Measurement [3] [44] Our method Error [35]

Knee Height 5.79 4.42 edges, stand limbs, stand 6

Neck Base Circumference 21.57 13.33 13.47 deformations, stand limbs, stand 11

Shoulder Breadth 9.76 8.94 edges, stand girths, stand

Height, Sit 10.34 9.18 limbs, stand deformations, stand 6

Spine-to-Elbow 12.22 10.35 edges, stand limbs, stand

Spine-to-Shoulder 8.24 7.72 edges, stand girths, stand

Stature 5.86 7.98 6.53 edges, stand limbs, stand 10

Subscapular Skinfold 5.89 5.65 deformations, stand girths, stand

Thigh Circumference 11.72 8.61 edges, stand girths, stand 6

Thigh Circumference Max, Sit 11.56 9.57 edges, stand girths, stand

Thumb Tip Reach 18.63 17.99 girths, stand limbs, stand 20

Total Crotch Length 26.79 24.13 edges, stand girths, stand

Triceps Skinfold 3.78 3.60 deformations, stand girths, stand

Vertical Trunk Circumference 25.46 23.18 girths, stand limbs, stand 23

Waist Circumference, Preferred 22.90 23.33 girths, stand edges, stand

Waist Front Length 20.63 18.97 edges, stand limbs, stand 5

Waist Height, Preferred 13.72 10.73 edges, stand limbs, stand

Weight 1.87 1.91 girths, stand limbs, stand 0.3

FIGURE A.8. Measurement prediction on males using only data in the standing pose (part

II). Mean Absolute Difference (MAD) between extracted and direct measurements evalu-

ated on a test set of 200 bodies from CAESAR [77] respectively. We compare Anthroscan

[3], Hasler et al. [44] and our method against the allowable inter-observer error per mea-

surement as reported in the ANSUR study [35]. For our method, we additionally show the

optimal groups of features per measurement. The reported values are in mm. Measurement

prediction with no statistical significance between our method and at least one of the other

approaches is denoted with smaller font size. The best performance per measurement is

shown in bold.
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2. Measurement prediction from the seated pose

Allowable

Measurement [44] Our method Error [35]

Acromial Height, Sit 8.99 8.03 edges, sit limbs, sit 9

Ankle Circumference 7.00 6.36 edges, sit limbs, sit 4

Arm Length Shoulder - Elbow 8.09 6.66 edges, sit limbs, sit 6

Arm Length Shoulder - Wrist 10.89 10.49 edges, sit limbs, sit

Arm Length Spine - Wrist 13.16 12.34 edges, sit limbs, sit

Armscye Circumference 13.12 13.30 girths, sit 13

Bizygomatic Breadth 3.18 2.79 edges, sit limbs, sit 2

Chest Circumference under Bust 19.64 18.22 girths, sit limbs, sit 16

Buttock-Knee Length 7.17 7.04 girths, sit limbs, sit 6

Chest Circumference 13.48 13.05 girths, sit edges, sit 15

Chest Girth at Scye 28.45 28.39 girths, sit edges, sit 15

Crotch Height 11.03 9.66 edges, sit limbs, sit 10

Elbow Height, Sit 9.80 8.76 edges, sit limbs, sit 10

Eye Height, Sit 8.87 8.77 edges, sit girths, sit 8

Face Length 3.74 3.54 edges, sit limbs, sit

Foot Length 5.55 5.35 edges, sit 3

Hand Circumference 5.91 5.84 edges, sit limbs, sit 4

Hand Length 5.33 5.05 edges, sit limbs, sit 3

FIGURE A.9. Measurement prediction on females using only data in the seated pose (part

I). Mean Absolute Difference (MAD) between extracted and direct measurements evalu-

ated on a test set of 200 bodies from CAESAR [77] respectively. We compare Anthroscan

[3], Hasler et al. [44] and our method against the allowable inter-observer error per mea-

surement as reported in the ANSUR study [35]. For our method, we additionally show the

optimal groups of features per measurement. The reported values are in mm. Measurement

prediction with no statistical significance between our method and at least one of the other

approaches is denoted with smaller font size. The best performance per measurement is

shown in bold. Anthroscan [3] cannot predict measurements from scans in the seated pose.
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Allowable

Measurement [44] Our method Error [35]

Head Breadth 3.76 3.08 edges, sit limbs, sit 2

Head Circumference 7.45 5.67 girths, sit limbs, sit 5

Head Length 4.66 3.87 edges, sit girths, sit 3

Hip Breadth, Sit 11.42 10.22 edges, sit girths, sit 6

Hip Circ Max Height 23.72 22.26 girths, sit limbs, sit

Hip Circumference, Maximum 17.34 15.48 girths, sit edges, sit 12

Knee Height 7.47 6.25 edges, sit limbs, sit 6

Neck Base Circumference 16.96 15.79 limbs, sit 11

Shoulder Breadth 17.60 17.52 edges, sit girths, sit

Height, Sit 7.70 6.17 edges, sit limbs, sit 6

Spine-to-Elbow 8.41 7.80 girths, sit limbs, sit

Spine-to-Shoulder 7.65 6.56 limbs, sit edges, sit

Stature 11.40 10.28 edges, sit limbs, sit 10

Subscapular Skinfold 4.30 3.90 edges, sit girths, sit

Thigh Circumference 12.56 12.28 girths, sit edges, sit 6

Thigh Circumference Max, Sit 15.23 14.58 girths, sit edges, sit

Thumb Tip Reach 17.57 17.21 edges, sit limbs, sit 20

Total Crotch Length 30.87 30.63 limbs, sit edges, sit

Triceps Skinfold 4.49 4.40 edges, sit girths, sit

Vertical Trunk Circumference 19.16 17.44 limbs, sit edges, sit 23

Waist Circumference, Preferred 29.59 27.36 girths, sit edges, sit

Waist Front Length 21.13 20.49 limbs, sit edges, sit 5

Waist Height, Preferred 16.27 15.82 limbs, sit edges, sit

Weight 1.40 1.14 edges, sit girths, sit 0.3

FIGURE A.10. Measurement prediction on females using only data in the seated pose (part

II). Mean Absolute Difference (MAD) between extracted and direct measurements evalu-

ated on a test set of 200 bodies from CAESAR [77] respectively. We compare Anthroscan

[3], Hasler et al. [44] and our method against the allowable inter-observer error per mea-

surement as reported in the ANSUR study [35]. For our method, we additionally show the

optimal groups of features per measurement. The reported values are in mm. Measurement

prediction with no statistical significance between our method and at least one of the other

approaches is denoted with smaller font size. The best performance per measurement is

shown in bold. Anthroscan [3] cannot predict measurements from scans in the seated pose.
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Allowable

Measurement [44] Our method Error [35]

Acromial Height, Sit 9.93 9.82 edges, sit limbs, sit 9

Ankle Circumference 5.79 5.22 edges, sit girths, sit 4

Arm Length Shoulder - Elbow 13.83 13.07 edges, sit limbs, sit 6

Arm Length Shoulder - Wrist 12.75 12.29 edges, sit limbs, sit

Arm Length Spine - Wrist 11.61 11.26 edges, sit limbs, sit

Armscye Circumference 10.58 9.25 edges, sit girths, sit 13

Bizygomatic Breadth 3.25 3.14 edges, sit girths, sit 2

Buttock-Knee Length 8.66 8.42 girths, sit limbs, sit 6

Chest Circumference 15.40 13.86 edges, sit girths, sit 15

Chest Girth at Scye 17.34 16.49 edges, sit girths, sit 15

Crotch Height 14.19 14.54 edges, sit limbs, sit 10

Elbow Height, Sit 11.60 11.48 edges, sit limbs, sit 10

Eye Height, Sit 11.86 11.11 edges, sit limbs, sit 8

Face Length 4.28 4.55 edges, sit girths, sit

Foot Length 4.66 4.28 edges, sit limbs, sit 3

Hand Circumference 5.48 5.34 girths, sit limbs, sit 4

Hand Length 4.86 4.60 edges, sit limbs, sit 3

Head Breadth 3.95 3.16 edges, sit girths, sit 2

Head Circumference 6.51 5.42 girths, sit 5

Head Length 3.68 3.17 edges, sit 3

Hip Breadth, Sit 8.54 6.74 edges, sit girths, sit 6

Hip Circ Max Height 21.41 20.84 edges, sit limbs, sit

Hip Circumference, Maximum 13.84 13.68 edges, sit girths, sit 12

FIGURE A.11. Measurement prediction on males using only data in the seated pose (part

I). Mean Absolute Difference (MAD) between extracted and direct measurements evalu-

ated on a test set of 200 bodies from CAESAR [77] respectively. We compare Anthroscan

[3], Hasler et al. [44] and our method against the allowable inter-observer error per mea-

surement as reported in the ANSUR study [35]. For our method, we additionally show the

optimal groups of features per measurement. The reported values are in mm. Measurement

prediction with no statistical significance between our method and at least one of the other

approaches is denoted with smaller font size. The best performance per measurement is

shown in bold. Anthroscan [3] cannot predict measurements from scans in the seated pose.
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Allowable

Measurement [44] Our method Error [35]

Knee Height 5.41 5.11 edges, sit girths, sit 6

Neck Base Circumference 13.33 13.47 girths, sit limbs, sit 11

Shoulder Breadth 13.33 12.14 girths, sit limbs, sit

Height, Sit 9.27 8.50 edges, sit limbs, sit 6

Spine-to-Elbow 12.22 11.04 edges, sit limbs, sit

Spine-to-Shoulder 7.78 7.24 girths, sit limbs, sit

Stature 10.59 8.99 edges, sit limbs, sit 10

Subscapular Skinfold 5.81 5.52 edges, sit girths, sit

Thigh Circumference 15.41 13.36 edges, sit girths, sit 6

Thigh Circumference Max, Sit 13.10 12.34 edges, sit girths, sit

Thumb Tip Reach 18.63 19.35 girths, sit limbs, sit 20

Total Crotch Length 35.28 31.80 edges, sit girths, sit

Triceps Skinfold 3.72 3.45 girths, sit

Vertical Trunk Circumference 26.18 27.86 edges, sit girths, sit 23

Waist Circumference, Preferred 24.96 24.20 edges, sit girths, sit

Waist Front Length 24.09 20.79 edges, sit limbs, sit 5

Waist Height, Preferred 17.38 15.69 edges, sit limbs, sit

Weight 1.72 1.72 edges, sit girths, sit 0.3

FIGURE A.12. Measurement prediction on males using only data in the seated pose (part

II). Mean Absolute Difference (MAD) between extracted and direct measurements evalu-

ated on a test set of 200 bodies from CAESAR [77] respectively. We compare Hasler et

al. [44] and our method against the allowable inter-observer error per measurement as re-

ported in the ANSUR study [35]. For our method, we additionally show the optimal groups

of features per measurement. The reported values are in mm. Measurement prediction with

no statistical significance between our method and at least one of the other approaches is

denoted with smaller font size. The best performance per measurement is shown in bold.

Anthroscan [3] cannot predict measurements from scans in the seated pose.
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