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Chapter 1

Introduction

In the field of graph drawing [1], one of the paramount problems is to draw graphs that satisfy

a number of aesthetic criteria including graph area, number of crossings, number of bends, vertex

resolution, angular resolution, and edge separation. Drawings which satisfy these criteria are often

not only the most attractive, but also the most practical. Orthogonal graphs with few bends, few

crossings and small area often represent an efficient design for a computer chip. And graphs with

good vertex resolution, angular resolution, and edge separation might represent an effective design

for a map.

A particularly unique and successful strategy for drawing graphs which meet many of these

aesthetic criteria is the force directed method [8]. Unlike most algorithms rooted in theory, the force

directed simulates a system of natural forces to find a graph layout.

Curvilinear drawings adds a significant amount of flexibility to a graph drawing, creating the

potential for improved aesthetics. Many applications of graph drawing–paths, maps, charts–are

designed for curved-line drawings. However, there are few curved-line drawing algorithms that

benefit from the success of force directed methods.

The goal of this paper is to present a methodology for incorporating curved-line drawing into

the force directed method, and to prove that, in general, it improves the overall aesthetic appeal of

a graph.
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Chapter 2

Previous Work

The principle of the force directed method is to use physical simulations to lay out a graph. Forces

are calculated, applied to vertices, and recalculated over many iterations. The ”spring-embedder” is

the original force directed method, where all the edges are modeled as stretchable springs of different

length which oscillate until the system reaches equilibrium [6]. Other force-directed methods make

physical models from subatomic forces of attraction and repulsion [8] and energy minimization using

simulated annealing [5]. A survey of force directed methods can be found in [3].

Drawing graphs with curved edges has been previously researched. Brandes and Wagner explore

the idea of using Bezier curves in graph drawing to display train interconnection data [4]. They use

the Bezier control vertices as dummy vertices which are moved by repulsive and attractive forces, as

done in this paper. However, they develop a specific algorithm where the vertex locations are fixed

and forces operate only in local neighborhoods. They also provide no analytical data which can

measure the improvements of the curved lines. This paper will generalize curvilinear graph drawing

to work with any force directed layout algorithm, develop new heuristic improvements, and give

experimental data to quantify its effect.
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Chapter 3

Motivating Example

3.1 Force Directed Method’s Limitations

The fundamental function of force directed methods is to find a layout for the vertices. They are

the only objects with forces, directions, or ultimately something equivalent to mass. Edges merely

act as forces between vertices which will affect their final position. For many circumstances, this is

acceptable. However, one could imagine a situation in which the layout of the edges is also important

and should be considered by the algorithm.

3.2 The Sculpture Garden

Imagine an architect who is using graph drawing software to design a new outdoor sculpture garden.

In the graph, vertices are equated with sculptures and edges are equated with paths. Using a

standard force directed algorithm, the architect would probably get a drawing with a good spread

of sculptures, but a mediocre layout of paths. The architect might want the paths themselves to

be more separated, and to arrive at the sculptures at more distinct angles. These properties are

equated with edge separation and angular resolution, which can be simply quantified and will be

discussed in more details in Chapter 4.

It seems plausible that by introducing curved paths the architect could improve the aesthetic

layout with respect to these two qualities. The architect might also prefer smooth, curved lines to the

rigid lines connecting the sculptures in the layout generated by the standard force directed algorithm.

Perhaps a new algorithm could take in the same input–which sculptures should be connected–and

produce a more pleasing drawing which satisfied this architect.
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4

Figure 3.1: Left graph laid out with KK algorithm, right with the curvilinear method using KK

3.3 An Example

Figures 3.1 and 3.2 show how drawing made by the KK [11] and GEM [7] algorithms can be smoothed

and aesthetically improved using the method set forth in this paper.

3.4 The Principle of Moving Edges

The theory behind the method is to give edges a mass-like quality so they can also be pushed and

pulled and acted upon by forces. In most regular graphs, the vast majority of the visual content is

in the edges. Thus, it is logical to use an algorithm that lays out both vertices and edges.

Figure 3.2: Left graph laid out with GEM algorithm, right with the curvilinear method using GEM



Chapter 4

Method for Curvilinear Drawings

Using the Force Directed Method

4.1 Measuring a Graph’s Aesthetic Properties

There are many measures for the aesthetic qualities of a graph. With an orthogonal drawing, one

might be concerned with the number of bends, or with a drawing on a grid one might want to

minimize the area of a graph. For the curvilinear graphs used in this paper, we will look at three

relevant measures: angular resolution, edge separation, and number of crossings.

Angular resolution measures the angles made by incident edges of a vertex. In general, acute

angles are not desirable features. In this paper, angular resolution will be calculated by taking the

difference between the smallest actual angle and the optimal angle (360/degree) at a vertex, averaged

over each vertex in a graph. Lower numbers equate layouts which are closer to the optimal, and

thus, better.

Edge separation is measured by finding the smallest distance between each edge and another

non-incident, non-intersecting edge. The sum of this distance for all edges is then normalized by the

size of the graph. Greater edge separation means the edges of a graph are more spread out and the

graph is more readable.

Number of crossings is very straight forward. We simply measure the number of edge intersections

in the graph. In general, crossings are undesirable and should be minimized.

4.2 Reusing the Wheel

There are two basic strategies when attempting to draw a general graph with curved lines and

pleasing qualities as previously described: make a new algorithm, or adapt the graph to use a

preexisting algorithm. While both methods are viable, the second method is preferable because it

can modularly plug into a wide variety of known algorithms, each with its own advantages.
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6

Figure 4.1: On the left, a straight edge; on the right, edge split, and curve drawn with control point

However, an algorithm independent solution cannot use any particular features of an algorithm,

so our solution modifies only the vertices and edges of the graph itself, and then appends a different

drawing technique.

4.3 Methodology

The methodology for curvilinear graph drawing using force directed layout is actually quite simple.

For each edge connecting A and B, create a new vertex at the edge’s midpoint, delete the edge, and

create two new edges, from A to C and from C to B. Now, every time drawing the edge from A to

B (which no longer exists), use C as a control point for a curved line from A to B. Omit edges AC

and BC, and vertex C from the drawing. Note the algorithm will not differentiate between A, B, or

C, even though we are considering them as different types of vertices.

The effect of this process is to embed a hidden vertex in an edge, thus giving the edge the

”weight” that we desired. We can embed more dummy vertices (control points) into an edge to

magnify the curving effect. In practice, either one or two vertices will produce good results without

bloating the graph.

4.4 Fixing Extra Crossings Through Binding

The danger of adding edges and vertices to a graph is that it will also increase the number of

crossings. In theory, one could prevent the addition of any new crossings by imposing boundaries on

the control vertices. However, most practical force directed algorithms, while evaluating a modified

graph, will sometimes generate new crossings. Luckily, many of these crossings occur in incident

edges and can be easily detected.

This is a particular feature of using curved lines drawing; obviously with straight line drawings

we can have no incident edges intersecting except at the vertex.

Any number of algorithmic heuristics could be used to unwind these crossings, but binding was

designed to be simple and algorithm independent: its only mechanism is adding hidden edges.
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Figure 4.2: Incident edge crossing

To bind a vertex, connect the closest control vertices around that vertex in the order the ”real”

(non-control) endpoints. The points are sorted based on polar coordinates, similar to a Graham

Scan. The vertices are connected with edges that won’t be drawn, but will pull the control points

into place. Convex angles are also excluded, so as to preserve good angular resolution.

Binding a vertex will generally fix these added local intersections. It should be noted, however,

that binding is specific to each embedding of the graph. Thus, it can be done only after the algorithm

has run and then it requires the algorithm to be repeated from the current position with the new

hidden edges. It this way, the bindings can be done in several passes, or all at once, yielding different

results.

It should also be noted that if using a more sophisticated layout algorithm, specifically one that

minimizes the number of crossings, these local intersections can be avoided, and there should be no

need for binding. However, these algorithms are significantly more complex and time intensive, and

can be too inefficient for larger graphs.
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Figure 4.3: A curvilinear graph before and after binding



Chapter 5

Implementation

An implementation of curvilinear graph drawing with the forced directed method was made in Java

using the JDSL library from Brown University. It was tested on a series of Linux machines with

1.5 GHz AMD Athlon CPUs and 512MB RAM. The graphs tested were the Rome Graphs from

obtained from graphdrawing.org.

The algorithms that were chosen were GEM [7], and KK [11], based on their effectiveness, speed

and simplicity . GEM and KK are good choices because they are all around performers [3] and will

be an accurate measure of the success of the method. Implementations were adapted from the JDSL

library (GEM) and Auburn University (KK).

When drawing the curves, their are any number of splines that could be used. Of course, different

situations have different requirements, but in general we want to pick a spline which is smooth and

simple. The choice of Bezier curve was made because of its attractive curves and its geometric

properties. Its stays within the convex hull of the polygon made by its control points, and its slope

starts directly towards the control point. Edges with single and double control points use quadratic

and cubic Beziers, respectively. For binding crossed vertices, there are two successive passes. We

also test the effect of binding all vertices.
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Figure 5.1: An example of the curvilinear method using quadratic Beziers and the ”bind all” heuristic



Chapter 6

Experimental Results

The experiments were performed as follows. Each Rome Graph was initially laid out with random

locations. Then the algorithm would execute on the graph without the curvilinear method, for com-

parison. Once completed, the graph’s angular resolution, edge separation, and number of crossings

were measured as described in Section 4.1.

After the measuring the graph without the curvilinear method, the process was repeated. The

layout started with the same random initial placement as before, with the addition of the dummy

control vertices evenly spaced on the edges. This process was then done identically with three

different binding heuristic options. First with no binding, simply executing the algorithm on the

modified graph and measuring the aesthetics. Second, with the binding heuristic on only vertices

with local intersections. In this case we ran the algorithm on the graph as before, then bound

vertices with local intersections, executed, bound again, and executed a final time before making

the measurements. Finally, a test was done where the algorithm was executed on the graph, then

all vertices were bound, and then algorithm ran again and the graph was measured.

edge type, type of binding angular resolution edge separation number of crossings
straight edges (without method) 45.78 .04447 28.14
quadratic Bezier, none 34.28 .04473 30.74
quadratic Bezier, crossed 34.00 .04446 31.08
quadratic Bezier, all 31.58 .04547 30.93
cubic Bezier, none 31.11 .04510 30.26
cubic Bezier, crossed 28.93 .04537 29.47
cubic Bezier, all 24.75 .04613 28.93

Table 6.1: Averages of aesthetic properties using curvilinear method with GEM on the Rome Graphs.

The results of the averages and variances show how the curved lines significantly improve angular

resolution, one of the most crucial features of graph readability. With the added heuristic of binding

all vertices, using cubic Bezier curves led to an overall average angular resolution 46 percent closer

to optimal, with an average increase of less than one crossing per edge. The ranges also reflect the
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edge type, type of binding angular resolution edge separation number of crossings
straight edges (without method) 98.53 9.45 1162.87
quadratic Bezier, none 54.27 9.49 1422.42
quadratic Bezier, crossed 56.63 9.14 1445.16
quadratic Bezier, all 58.71 9.66 1448.90
cubic Bezier, none 48.68 9.96 1351.51
cubic Bezier, crossed 40.27 9.83 1301.90
cubic Bezier, all 30.88 9.95 1277.20

Table 6.2: Variances of aesthetic properties using curvilinear method with GEM on the Rome
Graphs.

edge type, type of binding angular resolution edge separation number of crossings
straight edges (without method) 9.51 - 82.14 .010 - .197 0 - 222
quadratic Bezier, none 7.54 - 56.08 .011 - .188 0 - 262
quadratic Bezier, crossed 7.07 - 61.06 .005 - .181 0 - 264
quadratic Bezier, all 6.13 - 63.75 .007 - .217 0 - 282
cubic Bezier, none 6.10 - 49.83 .007 - .187 0 - 249
cubic Bezier, crossed 7.18 - 47.03 .005 - .192 0 - 246
cubic Bezier, all 3.65 - 42.52 .011 - .202 0 - 256

Table 6.3: Ranges (min-max) of aesthetic properties using curvilinear method with the GEM on the
Rome Graphs.

significant improvement in angular resolution, though they reveal less about the changes in edge

separation and number of crossings.

It should be noted that binding in general was not very effective when using quadratic Bezier

edges. This is because both vertices share every control point, so when one vertex pulls it to fix

a crossing, it often will create a new crossing at the opposite vertex. For cubic Bezier curves, the

results show binding is an extremely effective heuristic; it’s best when used on all vertices, not just

the ones with local intersections.

Unlike the GEM algorithm, the KK did not perform well with the curvilinear method. This

method increases the input size by O(|E|), and this has a variable effect, depending on the speed

on the algorithm. Because of its O(n3) running time per iteration compared to GEM’s O(n2), KK’s

efficiency scaled very poorly and made it prohibitively slow on large graphs. More than that, the KK

algorithm uses graph-theoretic distances, and the addition of all the dummy vertices hampers the

effectiveness of the algorithm itself, creating far too many new crossings to justify any improvement

in angular resolution or edge separation.



Chapter 7

Conclusion and Future Work

The results of experimentation on the Rome Graphs prove that the curvilinear drawing method

described here can significantly improve the angular resolution, and thus overall readability, of a

graph layout. The mild improvement in edge separation will certainly have a less striking effect on

overall aesthetics, but is still good. These benefits must be weighed with the cost of a small increase

in the number of crossings. In visual examples, such as maps and charts, this could be a worthwhile

tradeoff. But in situations where crossings are most critical to minimize, this method might not be

appropriate.

Our experimentation also showed that the curvilinear drawing method will not work successfully

with every force directed algorithm. Though it was very effective using GEM, it did not work on

larger graphs using KK. So the method should be tested to ensure it will work with a given drawing

algorithm.

Future research should investigate the effect of this process with faster methods like that of

Gajer and Kobourov [9] and Harel [10], and slower, crossing minimizing algorithms like DH [5], as

discussed earlier. It might also be interesting to test the effect of using interpolating splines like the

Catmull-Rom, which pass through their control points, instead of Bezier curves.

Finally, designing the method to work with a particular algorithm could allow the ability to add

sophisticated features, like preserving edge crossings [2], making it more customizable and effective

in a variety of applications.
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