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Abstract

Feature-oriented software architectures provide a powerful model for building product-line systems.

Each component corresponds to an individual feature, and a composition of features yields a prod-

uct. Feature-oriented verification methodologies must be able to analyze individual features and to

compose the results into results on products; features are hence a form of open systems. In prior

work, Li, Fisler and Krishnamurthi proposed a feature verification methodology based on 3-valued

model checking. This thesis presents a new methodology based on constraint-generation that is sim-

pler and less expensive than the original. In addition, it supports both client-side and producer-side

notions of compositional feature verification.
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Chapter 1

Introduction

Feature-oriented architectures organize code around the features that a system contains, rather

than the objects that form the core of its implementation. By better aligning the implementation

of a system with the external view of users, feature-orientation offers several potential benefits for

software engineering such as ease of maintenance, evolution, and verification. As a result, this

style of organization is at the heart of increasingly important development methodologies such as

product-line software [10], and provides a meaningful framework for component [15, 22] reuse.

While there is growing support for development around features [2, 3, 11, 19, 20, 21, 23], most

of this work ignores key questions of static analyses leading to forms of verification. In principle,

feature-orientation should simplify verification because both features and requirements arise from a

user’s view of a system. Ideally, we would like to verify requirements against the individual feature

modules that implement them, then use some composition-time checks to confirm that features

do not interfere with each other’s properties in composed systems. In practice, feature-oriented

verification is challenging because features interact through issues such as shared state or inconsistent

requirements. (This is an important special case of the feature interaction problem [4, 16].)

Li, Fisler and Krishnamurthi have previously argued that any modular view of feature verification

must treat features as open systems to support data that propagate across features [18]. This requires

techniques for handling propositions whose values are not available at analysis time. Their work used

three-valued model checking as a foundation for compositional verification of open features. While

effective at detecting property violations compositionally, this approach had several drawbacks: it

required multiple model checking passes and multiple interfaces to handle different combinations of

three-valued variables, and generally seemed more cumbersome than necessary.

An interesting observation emerges from a closer look at openness in the context of feature

verification. Features are open with respect to two different kinds of information: propositional

values flowing into a feature (representing data attributes) and the successor states and paths that

follow the feature. Treating these two forms of openness separately leads to a new methodology for

compositional feature verification. This thesis presents such a methodology and demonstrates that

it is simpler and more lightweight than the methodology in [18], while matching its performance
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on a case study. Our approach uses a combination of data flow analysis and constraint generation.

Handling the two forms of openness separately allows our new methodology to rely on two-valued

rather than three-valued model checking; as a result, the algorithm performs fewer model checking

passes and generates more natural interfaces. In addition, this result has a novel feature not found in

previous work: it can be applied in two different contexts, corresponding roughly to the distinction

between consumers and producers of components, thereby offering two different cost models for its

use.

The rest of this thesis is organized as follows. Chapter 2 gives an overview of the feature

verification problem and our constraint-based approach. Chapter 3 presents related work. Chapters 4

and 5 present our formal model of features and the details of our methodology. Chapter 6 discusses

our experimental validation. Chapter 7 presents our analysis of the proposed approach and outlines

future work. Chapter 8 offers concluding remarks.



Chapter 2

Overview of Approach

Consider an email feature suite, which includes components for anonymous remailing and digital

signing of messages.1 A product might include these two features and basic mail delivery, as shown

in Figure 2.1.

This product should satisfy a requirement that if a message is marked for anonymous remailing,

then it should not be digitally signed before it is mailed. The temporal logic formula AG(remailed

→ A(¬signed R ¬mailed)) captures this property. This property checks that the email product

supports the goal of remailing: to maintain the anonymity of the sender (which digital signing

would circumvent). Failure of this property would indicate an instance of feature interaction between

remailing and digital signing. The sample product in Figure 2.1 can violate this property on a path

that includes the upper path of states in the signing feature.

A compositional verification methodology would be able to evaluate this property against the

product using a series of independent checks on the individual features. If the methodology requires

traversing the composed product (potentially expensive or even intractable if the product is large),

then the methodology is non-compositional. This thesis presents a compositional methodology for

open feature verification using the CTL model checking algorithm [9] as its basis.2

The standard CTL model checking algorithm does not inherently support the kinds of features

we analyze. For instance, if a CTL model checker evaluated the given property in the initial state of

the remail feature alone, it would report the property as true because remail does not mention the

proposition signed (the model checker would therefore assume that signed is false). This is erroneous

in two ways. First, with features being open components, a model checker cannot assume that

propositions are false simply because they do not appear in a feature or in a particular state: the

algorithm must assume that some propositions may be asserted prior to executing a feature and that

those values should persist until explicitly unset. Second, with features containing only a portion of

the entire product’s state space, the model checker lacks information about the properties that hold

along paths that emanate from the feature. It is possible to use remail in two different products

1These examples come from a suite due to Robert Hall [14].

2This thesis assumes familiarity with CTL.
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Figure 2.1: A simple email product with remailing and message signing. The dashed transitions
show one possible assembly of features into a composed product. Another assembly might permute
the order of features. In the state machines, ! denotes logical negation, propositions ending in ?
represent control decisions, and all other propositions represent data attributes of email messages.
Identifiers next to states simply name those states.

such that one satisfies this property and one does not. At best, a model checker can only traverse

the feature and determine what constraints it requires on the features that eventually connect to it.

In this particular example, in order for the property to hold in the composed system, any successor

to state r2 in remailmust eventually reach themailed state (to discharge the release operator) unless

the signed attribute is set to false. The temporal logic formula A(¬signed R ¬mailed) captures this

constraint. Whether the original property holds in the signing feature will depend on the value of

remailed that propagates from remail to signing at composition time. To remain compositional,

the methodology must compute information about the values of propositions that one feature can

propagate to subsequent features. In this example, the remail feature has a path on which the

proposition remailed is true.

Intuitively, the overall methodology will generate data bindings from and constraints on each

feature, then use the bindings and constraints to discharge constraints on other features; in other

words, the constraints on a feature will be parametric in information from the features that both

precede and follow that feature. The methodology will attempt to discharge each constraint assuming

that (a) all data values from earlier features have propagated to the current feature, and (b) that the

temporal constraints have been discharged on all subsequent features. Certain failed attempts to

discharge constraints will indicate failures of properties in the composed system; properties hold in

the composed system if all of their constraints discharge successfully. The rest of this thesis presents

this methodology more formally.



Chapter 3

Related Work

Our approach to constraint generation resembles temporal query checking, originally due to Chan [6].

Chan’s approach assumed one variable per temporal logic formula and instantiated it with a propo-

sitional formula over variables in the model. Gurfinkel et al. [13] and Bruns and Godefroid [5]

support multiple variables but still generate propositional constraints over model variables. Our

work generates temporal constraints over propositions that are not in the model (since features are

open systems). Our temporal constraints are subformulas of a given property formula; this restricted

context enables temporal constraint generation in open systems. If we were interested in generating

propositional constraints on open systems, we could use Chechik and Easterbrook’s multiple val-

ued logic framework [7], but the resulting algorithm would be doubly exponential in the number of

unknown propositions and would not naturally extend to temporal constraints.

Our methodology provides a restricted form of feature interaction detection [1, 4, 16], in which

interactions arise as violations of temporal logic properties. None of the other cited approaches detect

interactions compositionally. Chechik and Easterbrook reason about compositions of concerns using

multi-valued model checking [8]. Their framework identifies which concern (feature) is responsible

for property violations when checking composed systems, but does not address proving properties

through compositional reasoning.
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Chapter 4

A Formal Model of Features and

Their Compositions

Our formal model of feature-oriented systems views each feature as a single state machine with

potentially many initial states. In realistic systems, many entities participate in a feature, so a

feature would be defined by a parallel composition of state machines for each such entity. Fisler

and Krishnamurthi have previously showed how to reduce models where each feature has multiple

state machines to the single-machine model [12], hence we adopt the single-machine model here for

simplicity.

In this section, the notation PL(φ) denotes the set of propositional logic expressions over the set

of propositions in φ.

Definition 1 A state machine is a tuple 〈S,Σ,∆, S0, R, Tr, Fa〉 where

• S is a set of states,

• Σ and ∆ are sets of input and output propositions,

• S0 ⊆ S is the set of initial states,

• R ⊆ S × PL(Σ)× S is the transition relation,

• Tr : S → 2∆ indicates which propositions are set to true in each state, and Fa : S → 2∆

indicates which propositions are set to false in each state (∀s ∈ S, Tr(s) ∩ Fa(s) = ∅).

This definition is standard, with one important exception. In the style of open systems we analyze

here, the law of the excluded middle does not hold: the absence of a label does not necessarily imply

its falsity. Our model therefore employs distinct labeling functions for true and false labels.

Our methodology distinguishs between two different uses of propositions within a state machine:

control propositions and data propositions [17]. Control propositions capture settings from the (user)

environment of the system, such as wantsRemail? in Figure 2.1. Data propositions capture attributes

of data in the system, such as signed and remailed . Our methodology treats data propositions as

6
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persistent: their values hold in a system until explicitly changed by an assignment in another state.

Control propositions are not persistent: the labelling functions indicate values of control propositions

on a per-state basis (and are assumed false) if no explicit labelling exists. Our model requires the

designer to classify propositions as data or control within a feature (as shown in definition 4).

We expect features within a system to compose in a pipe-and-filter fashion beginning and ending

in some basic infrastructure that is common to all products within the family (such as basic mail

delivery, in the email example). A composition of features and the base infrastructure forms a

product, where a product consists of both a state machine and a set of interfaces where new features

may be inserted into the system. We capture the common infrastructure in a base product, which is

like a core feature.

In order to view base products and features as components for compositional verification, each re-

quires a notion of an interface. In this model, the interfaces simply specify those states to which other

features connect via both outgoing and incoming edges. In the remail feature from Figure 2.1, for

example, the interface would specify that edges leave from states r1 and r2, (the outgoing interface)

and enter at r0 (the connect interface).

Intuitively, composing features and products involves adding edges between interface states.

Adding all possible such edges, however, might merge paths that should otherwise remain distinct.

A more complex email product, for example, might have different paths through a feature for mes-

sages to be delivered on the local network versus to another network. Our interfaces therefore

include connection specifications for outgoing edges from a state machine. These specifications con-

strain target states to satisfying certain propositions. The following definition formalizes connection

specifications and when they are compatible with potential target states:

Definition 2 Given a state machine, a connection specification is a set of tuples 〈se, g, t, f〉 where

se ∈ S, g ∈ PL(Σ), and t and f are subsets of 2∆. Connection specifications must require edges

added from se on the basis of the specifications to be deterministic. A state s (potentially from

another state machine) is compatible with 〈se, g, t, f〉 if every p ∈ t is in Tr(s) and every p ∈ f is

in Fa(s). Compatibility indicates that composition may insert an edge from se to state s; this edge

would have guard g from the specification.

We now define base products, features, and their interfaces.

Definition 3 A base product consists of a state machineM and an interface 〈{soutgoing}Sconnect, Rout〉

such that if S and R are the states and transitions of M , then soutgoing ∈ S, Sconnect ⊂ S, Rout is

a set of connection specifications for soutgoing, and R contains edges from soutgoing to each state in

Sconnect (this represents the system with no features).

Definition 4 A feature hereafter will be a state machine

(S,Σ,∆, S0, R, Tr, Fa)

with an interface 〈S0, Sexit, Rexit〉 and a set of data propositions D where
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F1 F3
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s2
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Composed product

Figure 4.1: Inserting a feature into a product.

• All propositions in D lie in the domain of at least one of Tr or Fa.

• Sexit ⊆ S is the set of terminal states of the feature; these states must have out-degree 0.

• Rexit is a set of connection specifications for states in Sexit.

Our model supports two techniques for combining features: features can be composed into com-

pound features, and features (composed or simple) can be inserted into products (to form new

products). Our methodology uses both techniques, as defined below.

Definition 5 Let F1 and F2 be features with respective interfaces 〈Sin1 , Sexit1 , Rexit1〉 and 〈Sin2 , Sexit2 , Rexit2〉.

The composition of F1 followed by F2 (denoted F1◦F2) is a feature with state machine (S,Σ,∆, S0, R, Tr, Fa),

data propositions D, and interface 〈Sin1 , Sexit2 , Rexit2〉 where

• S, Σ, ∆, Tr, Fa, and D are the unions of their respective counterparts in F1 and F2.

• R is the union of the transition relations in F1 and F2, plus all edges (se, g, si) such that

se ∈ Sexit1 and si is compatible with some 〈se, g, t, f〉 in Rexit1 .

Inserting a feature into a product is more complicated, as it also involves removing certain

edges so that control routes through the new feature. The removed edges, shown as dashed lines

in Figure 4.1, connect interface states of the product; they are replaced by paths through the new

feature.

Definition 6 Let P be a product containing state machine (SP ,ΣP ,∆P , s0, RP , T rP , FaP ) and

interfaces

{〈Soutgoing1 , Sconnect1 , Rout1〉, . . . , 〈Soutgoingk
, Sconnectk , Routk〉}.

Let F be a feature with state machine

(SF ,ΣF ,∆F , S0F
, RF , T rF , FaF )

and interface 〈Sin, Sexit, Rexit〉. The composition of P and F via interface 〈Soutgoingi
, Sconnecti〉 is a

product PC . The state machine component of PC is

(SC ,ΣC ,∆C , S0, RC , T rC , FaC)

where
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• SC , ΣC , ∆C , TrC , and FaC are the unions of their counterparts in P and F ,

• RC = RP ∪RF except all edges between the interface states Soutgoingi
and Sconnecti from RP

and with

• Every edge (so, g, si) such that so ∈ Soutgoingi
, si ∈ Sin, and si is compatible with some

tuple 〈so, g, t, f〉 ∈ Routi .

• Every edge (se, g, sc) such that se ∈ Sexit, sc ∈ Sconnecti , and sc is compatible with some

tuple 〈se, g, t, f〉 ∈ Rexit.

The interfaces of PC is the set of interfaces from P except interface 〈Soutgoingi
, Sconnecti , Routi〉

and augmented with two new interfaces 〈Soutgoingi
, Sin, Routi〉 and 〈Sexit, Sconnecti , Rexit〉.

Figure 4.1 illustrates these definitions more intuitively. The figure shows a product consisting

of a base product and two features F1 and F3, and the insertion of feature F2 into this product.

The insertion is performed via an interface 〈{s1, s2}, {s6}〉. The interface on F2 is 〈{s3}, {s4, s5}, ∅〉.

Composition removes the dashed edges and adds the four edges that connect F2 to the product.

The italic labels m and d on the states of F3 and the base product capture the idea behind states

being compatible on composition. When F3 was composed with the base product, edges connected

the states from F3 to the base based on constraints in Rexit (not shown).



Chapter 5

The Compositional Verification

Methodology

Chapter 2 gave an intuitive description of our methodology; this section presents the formal de-

tails. The algorithm consists of two phases: an initial analysis phase that generates constraints

and produces data environments for each feature, and an assembly phase that confirms that each

constraint on a feature holds given the data environments of all preceding features and assuming

that all constraints on subsequent features have been discharged.

Chapter 5.1 presents the algorithm for generating the temporal constraints for a feature. Chap-

ter 5.2 defines data environments. Chapter 5.3 describes the algorithm for discharging constraints at

assembly time. The presentation continues to use the sample product from Figure 2.1 as a running

example.

5.1 Generating Constraints

Given a feature and a property (as a CTL formula), the constraint generation algorithm generates a

constraint that is parameterized over both the incoming data environment and the paths emanating

from the terminal states of the feature. The constraint takes the form of a specialized form of CTL

formula: the formula uses names of propositions to parameterize over the data environment and

tagged subformulas to parameterize over the exit paths. The tags on the subformulas contain names

of terminal states in the feature; a tag denotes that the subformula must hold in the successor of the

state named in the tag for the property to hold in the composed system (this successor is determined

only at composition time). In our examples, we denote the tags by subscripts on the subformulas.

As an example, consider the property ϕ = AG(remailed → EF mailed), which states that a

message marked as remailed can eventually be mailed. Running the constraint generation algorithm

on ϕ at the initial state (r0) of remail yields the annotated formula

(ϕr1
∧ (¬remailed ∨ (remailed ∧ (EFmailed)r1

))) ∧ (ϕr2
∧ (EFmailed)r2

)

10



11

The extend-pathenv function referenced in these algorithms takes a path-environment and a
state s. For all data propositions p assigned values in Tr(s) or Fa(s), extend-pathenv updates
the path-environment to reflect the corresponding value of p at s.

The constrain Algorithm

constrain takes a CTL-formula, a state, and a mapping from propositions to boolean (a persistent
valuation called the path environment). The algorithm returns a constraint formula. In the algo-
rithm, p denotes an atomic proposition, s denotes a (non-terminal or terminal) state, sn denotes a
non-terminal state, st denotes a terminal state, C-external is a set of control propositions that are
external to the feature, and φ, φ1, φ2 are CTL formulas.

constrain(p, s, path-env) = true if p is a data proposition of the current feature and path-env(p) = true

false if p is a data proposition of the current feature and path-env(p) = false

false if p ∈ C-external
true if p is not a data proposition and p ∈ Tr(s)
false if p is not a data proposition and p ∈ Fa(s)
p otherwise (i.e., p is a data proposition from another feature)

constrain(¬φ, s, path-env) = ¬constrain(φ, s, path-env)

constrain(φ1 ∨ φ2, s, path-env) = constrain(φ1, s, path-env) ∨ constrain(φ2, s, path-env)

constrain(φ1 ∧ φ2, s, path-env) = constrain(φ1, s, path-env) ∧ constrain(φ2, s, path-env)

constrain(EXφ, sn, path-env) =
∨

t∈post(sn)
constrain(φ, t,extend-path-env( path-env, t))

constrain(EXφ, st) = φst

constrain(E[φ1 U φ2], s, path-env) = path-constrain(E[φ1 U φ2], s, ∅, path-env)

constrain(EG φ, s, path-env) = path-constrain(EG φ, s, ∅, path-env)

The path-constrain Algorithm
path-constrain takes a CTL-formula, a state and a set of states already visited during constraint
generation and a path environment and returns a CTL constraint formula. In the algorithm defi-
nition, s denotes a (non-terminal or terminal) state, sn denotes a non-terminal state, st denotes a
terminal state, marked is a set of states, and φ, φ1, φ2 are CTL formulas.

path-constrain(E[φ1 U φ2], sn,marked, path-env) =
False if sn ∈ marked
otherwise: constrain(φ2, sn, path-env)∨

(constrain(φ1, sn, path-env) ∧
∨

t∈post(sn)
path-constrain(E[φ1 U φ2], t,marked ∪ {sn},

extend-path-env( path-env, t)))

path-constrain(E[φ1 U φ2], st,marked, path-env) =
constrain(φ2, st, path-env) ∨ (constrain(φ1, st, path-env) ∧ (E[φ1 U φ2])st

)

path-constrain(EG φ, sn,marked, path-env) =
true if sn ∈ marked
otherwise: constrain(φ, sn, path-env) ∧

∨

t∈post(sn)
path-constrain(EG φ, t,marked ∪ {sn},

extend-path-env( path-env, t))

path-constrain(EG φ, st,marked, path-env) = constrain(φ, st, path-env) ∧ (EG φ)st

Figure 5.1: The constraint generation algorithm
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Intuitively, this constraint says that the entire property must hold in the successors to both r1

and r2 (from ϕr1
and ϕr2

): this is expected, since an AG property must hold in every state of the

composed system. The constraint further requires that control eventually reaches the mailed state

from r1 unless remailed is already false. This arises from the implication being tested at r0. The

constraint is simpler for r2, because a path to r2 is known to satisfy the remailed proposition.

Figure 5.1 shows the constraint-generation algorithm (called constrain). The algorithm mostly

follows the semantic definition of CTL: given the property to constrain at the initial state, it decom-

poses the property into constraints on subformulas in successor states. Intuitively, the algorithm

partially evaluates the given property over the feature, under the assumption that data propositions

persist along paths. The path-env argument to constrain handles persistence by storing the most

recent value of each data proposition along the current path. The marked argument to constrain

contains states that have already been visited (used to terminate the recursion).

constrain diverges from the normal CTL semantics as necessary to parameterize over data

environments and terminal state properties during this partial evaluation. For example, in the

propositional case, the result of the constrain algorithm depends on the nature of the proposition

relative to the feature.

• The values of data propositions of the feature being verified come from the path-env argument.

• If the proposition is a control proposition of the feature, its value comes from the labeling

functions Tr and Fa. Control propositions are not persistent, and hence do not appear in

path-env.

• If the proposition is a control proposition of another feature (indicated by the proposition

being in the set C-external), its value must be false in this feature. This situation can arise

when checking a property that is primarily about one feature in another feature; the work of

Li, Fisler and Krishnamurthi provides several such examples [17].

• If the proposition is neither a control proposition nor a data proposition of the feature being

verified, nor is in C-external, then its value must come from the incoming data environment.

The constrain algorithm inserts the proposition itself into the constraint formula (as seen in

the last line of the propositional case) to parameterize the constraint over the value from the

data environment.

In addition, when the constrain algorithm reaches a terminal state of the feature, it cannot

evaluate the formula as the successor states will not be available until composition time. The

algorithm parameterizes the constraint over the possible successors by tagging the subformula that

must hold at those successors; in Figure 5.1, this happens in the cases of constrain and path-

constrain that process terminal states (denoted st).
1

The path-constrain algorithm in Figure 5.1 is an auxiliary function in constrain; it is called

to process properties that traverse paths (i.e., those involving the EU and EG operators).

1This tagging is unnecessary in the propositional case because incoming data propositions hold their values unless
explicitly set.
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5.2 Data Environments

Previous sections motivated the persistent nature of data propositions. Since data persists across

states and across features, each feature eventually operates in the context of values for proposi-

tions that are set by previous features. We refer to this information as a data environment. Each

feature produces a data environment for subsequent features that summarizes the values that the

feature assigns to propositions. This section formally defines data environments. We determine

data environments using a computation that closely resembles constant-propagation through flow

analysis.

Definition 7 Let F be a feature with data propositions D. Let Π be a path s0, . . . , st in F where s0

is an initial state and st a terminal state in F .

1. A proposition p is defined for Π if p ∈ D and there exists a state si such that p ∈ Tr(si) or

p ∈ Fa(si). Def(Π) denotes the set of all p that are defined for Π.

2. Let p ∈ Def(Π). The value for p in Π, denoted val(p,Π), is true (resp. false) if there exists a

state si such that p in Tr(si) (resp. Fa(si)) and p is not in Def(sj) for some j > i.

3. The data value for Π is the set {〈p, val(p,Π)〉|p ∈ Def(Π)}.

4. Let st be a terminal state of F . The data environment of F at st is the set {〈s0, DV 〉} such

that s0 is an initial state with a path to st and DV is the set of data values for all paths from

s0 to st.
2 We overload the term data environment to refer also to a function from terminal

states to their individual data environments.

For the remail feature shown in Figure 2.1, the data environment would map state r1 to

〈r0, {〈mail, true〉}〉 and would map state r2 to 〈r0, {〈mail, true〉, 〈remailed, true〉}〉. The data en-

vironment ignores the setting of mail to false in state r0 because both paths override that definition

later in the feature. The proposition wantsRemail? does not appear in the data environment because

it is a control proposition.

When computing the data environment for the base product, the methodology must first remove

all edges between the interface states. Base products generally contain edges that restart the product

on new data (such as an edge from the mailed state to the init state in Figure 2.1, not shown in

the figure). These edges can cause data propositions to incorrectly leak across runs of the product.

Removing these edges ensures that the data environment of the base product accurately reflects the

data available to the features at the start of each new pass through the product.

5.3 Verifying Products

Chapters 5.1 and 5.2 define the fundamental building blocks for compositional feature verification

based on constraints: annotated CTL constraint formulas and data environments. We present

2We assume a standard fixpoint construction to handle infinitely many paths.
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two different approaches to compositional feature verification that build on these techniques. This

section presents the assembly-time algorithm that we have described intuitively earlier in the thesis;

Chapter 5.4 outlines the other.

The assembly-time methodology proceeds in two stages: first, it composes the data environments

coming into each feature with the data environments from the preceding features; second, it checks

the constraints on terminal states using the previously checked constraints from subsequent features.

Assume F1, . . . , Fn denote features, Di the data environment that Fi produces, Ci the constraint on

Fi and check(Ci) the result of checking constraint Ci. Informally, the following equations summarize

the methodology:

• Compute check(Cn) using check(base) and D1 ◦ . . . ◦Dn−1

• Compute check(Cn−1) using D1 ◦ . . . ◦Dn−2 and check(Cn)

• . . .

• Compute check(Ci) using D1 ◦ . . . ◦Di−1 and check(Ci+1)

• Check initial base constraint using check(C1)

Chapter 5.3.1 describes how to compose data environments and Chapter 5.3.2 presents the overall

algorithm.

5.3.1 Composing Data Environments

When two features F1 and F2 are composed sequentially within a product, the data environment

produced by F1 augments the data environment produced by F2; this reflects that F2 may be

open with respect to propositions from F1. A compositional verification methodology must be able

to compose data environments without traversing the composition of their features. This section

presents data environment composition at a definitional level; in our actual implementation, we use

a particular data structure for data environments that enables their simple and efficient composition

(we defer the implementation details to a longer paper).

Definition 8 Let F1 and F2 be features with data environments E1 and E2, respectively. Let R be

the set of all transitions from states from F1 to states of F2 in the composition of F1 and F2. Let

st2 be a state in the domain of E2 (i.e., a terminal state of F2). The composed data environment

for st2 under R is the set of all pairs 〈s01 , {V1, . . . , Vk}〉 such that there exists

• 〈s01 , {DV 11, . . . , DV 1n}〉 in E1(st1),

• a transition (st1 , s02) in R, and

• 〈s02 , {DV 21, . . . , DV 2m}〉 in E2(st2)

and for every h in 1 . . . k, there exists DV 1i and DV 2j such that Vh is DV 2j∪{〈p, v〉 ∈ DV 1i|p 6∈ dom(DV 2j}

(in other words, all bindings from DV 1i whose propositions are not bound in DV 2j). The data en-

vironment composed from E1 followed by E2 via R, denoted E1 ◦R E2, is a function from states st

in the domain of E2 to the composed data environment for st under R.
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In our running example (Figure 2.1), the remail feature’s data environment maps state r1

to 〈r0, {〈mail, true〉}〉 and state r2 to 〈r0, {〈mail, true〉, 〈remailed, true〉}〉. The signing feature’s

data environment maps s1 to 〈s0, {〈mail, true〉, 〈signed, true〉}〉 and state s2 to 〈s0, {〈mail, true〉}〉.

Composing these data environments via the dashed transitions in Figure 2.1 would map s1 to

〈s0, {〈mail, true〉, 〈signed, true〉, 〈remailed, true〉}〉

and state s2 to 〈s0, {〈mail, true〉, 〈remailed, true〉}〉. This composition ignores the value of mail in

remail becausemail is also set in signing. If the signing feature did not set themail , the composed

data environment would still set mail to true based on the bindings in the remail feature.

The following two lemmas establish that composed data environments are equivalent to those

derived from composed features.

Lemma 1 Let F1 and F2 be features with data environments E1 and E2, respectively. Let R be the

set of all transitions from states of F1 to states of F2 in the composition F1 ◦ F2. Let E′st2
be the

composed data environment for some st2 under R and Est2
be the data environment for st2 in the

composition. 〈s01 , DV 〉 ∈ Est2
iff 〈s01 , DV 〉 ∈ E

′
st2

.

Proof: Appendix A.

Lemma 2 Let F1 and F2 be features with data environments E1 and E2, respectively. Let R be the

set of all transitions from states of F1 to states of F2 in the composition F1 ◦ F2. Let E be the data

environment of the composition F1 ◦F2. E is equivalent to the composed data environment E1 ◦RE2.

Proof:

For each st2 in the domain of the data environents, the data environment of st2 in the composition

is equivalent to its composed data environment by Lemma 1.

The following result shows that Lemma 2 can be extended to systems with arbitrary numbers of

features.

Corollary 2.1 Let F1, F2, . . . Fn be features with data environments E1, E2, . . . En respectively.

Let Ri be the set of all transitions from states of Fi to states of Fi+1 in the composition Fi ◦ Fi+1.

Let E be the data environment of the composition F1 ◦ F2 ◦ . . . ◦ Fn and E′ be the composed data

environment E1 ◦R1
E2 ◦ . . . En−1 ◦Rn−1

En. Then E is equivalent to E′.

Proof:

We will prove this by induction.

Base case: n = 2.

In this case Lemma 2 gives the desired result.

Inductive step: Assume the corollary holds for n−1 features. Show that it holds for n features.

By the inductive hypothesis, we have that the data environment of the composition S ′ = F1◦F2◦

. . . Fn−1 is equivalent to the composed data environment E
′ = E1 ◦R1

E2 ◦R2
. . . En−1. Therefore,

we have by Lemma 2 that the composed data environment E ′ ◦Rn−1
En is equivalent to the data

environment of the composition S ′ ◦ Fn, which gives the desired result.
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5.3.2 The Verification Methodology

The methodology consists of two distinct phases: an initial analysis phase that derives data environ-

ments and constraints on all features and a composition phase that checks for constraint violation

between features.

Initial Analysis Assume that a product family will be built from a set of m features and a base

product for the family. Assume that the requirements for features in the family are known, and have

been expressed as a series of CTL formulas ϕ1, . . . , ϕk. Prior to product composition time, assume

that the product assembler has generated the data environments produced by each feature plus the

base product, and run the constrain algorithm on each feature for every subformula of each ϕi.

These steps can be performed once for the set of candidate features for a product and reused over

multiple assemblies from the same set of features and candidate requirements.

Composition Time Assume the client has chosen a sequence of n of the original m features to

assemble into a product, composed the features in order (definition 5), then inserted them into the

base feature (definition 6). The algorithm (verify, shown in Figure 5.2) proceeds in two passes

over the composed assembly:

1. (verify, step 1) Working forwards from the base product through all of the features, compose

the data environment produced by each feature with the data environment produced by the

preceding feature.

2. (verify, step 2) Working backwards from the base product through all of the features, in-

stantiate the constraints on each feature with the values from the data environment and the

results of each annotated subformula in the constraint from the subsequent feature. Check

the instantiated formula for validity (preserved algorithm, Figure 5.2). Note that this step

requires only substitution of previously computed results, not model checking; hence the ap-

proach is compositional. This step may, however, require three-valued propositional reasoning

as subformulas may not be true in all data values in a data environment (hence the method is

incomplete).3

3. (verify, step 3) If the constraint on a property ϕi holds in the initial state of the base product,

then ϕi holds of the composed system. If a preserved check on one of the ϕ1, . . . , ϕk fails to

return true at the initial state of some feature, there may exist a path that fails to satisfy that

property; potential feature interactions are reported in this instance.

Note that all model checking occurred in the constrain checks of the initial analysis. The compu-

tations required at composition time are 3-valued propositional validity checks.

3This method is unoptimized and checks the values of many constraints whose values are unused at assembly time.
An optimized version would check only those constraints that are needed to discharge the tagged formulas in other
states.
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The Verify Algorithm

Let P be a product composed from a base product B and features F1, . . . , Fn. Let ϕ be a CTL
formula for a property that should hold of P . Let ENVS be a function from terminal states of
features in P to their data environments (definition 7); for the outgoing interface states in B, ENVS
should set all data propositions from F1, . . . , Fn to false. The notation ENVS|Fi−1 denotes ENVS
restricted to terminal states from feature Fi−1. ENVS|S denotes ENVS restricted to terminal states
in the set S.

Let Constraints be a set of tuples 〈s0, ψ,constrain(s0, ψ, bindings(s))〉, where s0 is an initial state
of some feature or the base product in P , ψ is a subformula of ϕ, and bindings(s0) is the set of
bindings to propositions in state s0 from Tr or Fa. For each run of constrain in the base product,
remove all edges between the interface states prior to generating the constraint (for the same reasons
as described when computing the data environment for the base).

Let SUBS be a function from initial states and subformulas of ϕ to the set {true, false,⊥}. This
stores the results of checking each constraint under the composed data environments and the verified
subsequent features.

1. For each feature Fi (i = 0 to n, where F0 is the base feature) and each terminal state st of Fi,
replace ENVS(st) with the composition of ENVS|Fi−1 and ENVS(st)) via the set of transitions
between features in P .

2. For each feature Fi (i = n + 1 to 1, where Fn+1 and F0 refer to the base feature),
each initial state s0 of Fi, and each (s0, ψ, c) in the domain of Constraints, check
preserved(s0,ψ,ENVS|pre(s0)).

3. If SUBS(s0, ϕ) = true, where s0 is the initial state of P , then ϕ is true in P . If SUBS(s0, ϕ) 6=
true for initial state s0 of some feature in P , then ϕ does not hold in P (this detects potential
feature interactions).

The preserved Algorithm

preserved takes an initial state s0 of some feature, a formula ϕ and a data environment E and
determines whether E satisfies the constraint for ϕ at s0. Given a state s, post(s) refers to the
successors of s in the composed system. This method works as follows:

1. For each subformula ψ in Constraints(s0,ϕ) that is annotated with a state tag st, substitute
SUBS(post(st), ψ) for ψ in ϕ (this substitution is justified because annotated formulas reflect
constraints on the successor states of those named in the tag, as discussed in Chapter 5.1).
The resulting formula ϕ is completely propositional (but may include ⊥).

2. For every data value V in E, substitute each proposition p in the resulting formula with
its value in V and check the resulting formula for validity. If all such checks are valid, set
SUBS(s0,ϕ) to true. If all such checks are invalid, set SUBS(s0,ϕ) to false. Otherwise, set
SUBS(s0,ϕ) to ⊥.

Figure 5.2: The assembly-time algorithm for discharging constraints.
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Soundness

The proposed methodology is sound if verifying a property in the composed system yields the same

result as verifying the property using the algorithm presented in Chapter 5.3.2. This section presents

the main definition and theorems needed to prove soundness.

The heart of the argument is that checking a constraint at a particular state under a given data

value yields the same result as verifying the constraint in that state in an augmented feature that

sets values of propositions according to the data value. Such a result defines the context in which

properties would be evaluated in the composed system, where all data propagations occur naturally

and there is no need for a temporal constraint because the entire state space is available at analysis

time. This argument, combined with the correctness lemma on composing data environments from

Chapter 5.3.1, yield the overall soundness theorem.

The following definition describes how to augment a feature with the values given in a specific

data value:

Definition 9 Let F be a feature and V be a data value. Let dom(s) denote the set of all propositions

in Tr(s) ∪ Fa(s). Let FV
′ be a feature with the same components as F , with the exception of the

following augmented definitions for the labeling functions and set of data propositions:

• Tr(s0) = Tr(s0) ∪ {p|p 6∈ dom(s0) ∧ V (p) = true}.

• Fa(s0) = Fa(s0) ∪ {p|p 6∈ dom(s0) ∧ V (p) = false}.

• D = D ∪ domain(V ).

The next definition describes the semantics of a feature modelling a formula in a data environ-

ment.

Definition 10 For a data environment D, a feature F , a CTL formula ϕ, and an initial state s0 in

F , s0 models (does not model) ϕ in D iff constrain(FV , s0, ϕ, ∅) = True(False) for each V ∈ D.

If neither of the above hold, the value of ϕ at s0 in D is ⊥.

The following two definitions are needed for the statement of the theorems.

Definition 11 For a data value V and a path environment P , define V ◦P to be the path environment

produced by augmenting P with the values of propositions in V that are not bound in P .

Definition 12 Let F1 and F2 be features, s be a state in F1, and ϕ a CTL formula. Let V be a

data value coming into F1. Let P be a path environment from some initial state s0 of F1 to s. Let c

be the result of constrain(F1, ϕ, s, P ). Define cR to be c with every annotated formula ψst
replaced

with the value of ψ (true, false, or ⊥) in the initial state of F2 with which st connects (in the data

environment of F1V
′).

The first theorem outlines the correctness of using constrain compositionally on two features.
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Theorem 1 Let F1 and F2 be features, s be a state in F1, and ϕ a CTL formula. Let V be a data

value coming into F1. Let c be the result of constrain(F1, ϕ, s). F1V
′ ◦F2, s |= ϕ if V satisfies cR.

Proof: Appendix B.

Using the above theorem, we can now prove soundness of verify.

Theorem 2 Let P,ENV S,Constraints, SUBS,ϕ be as in the definition of Verify, P ′ be P aug-

mented with the empty data environment (all data propositions of the product set to false). Let ϕ1

be a subformula of ϕ. Let Fi be a feature in P , and s0 an initial state of Fi. Then:

Fi ◦Fi+1 ◦ ... ◦B, s0 |= ϕ1 in the data environment of B ◦F1 ◦ ... ◦Fi−1 if SUBS[s0, ϕ1] = True.

Fi ◦Fi+1 ◦ ... ◦B, s0 6|= ϕ1 in the data environment of B ◦F1 ◦ ... ◦Fi−1 if SUBS[s0, ϕ1] = False.

Proof:

We will prove this by induction on the position of Fi in P .

Base case: Fi is the terminal base.

In this case the constraint for ϕ1 has no temporal element. Corollary 2.1 and Theorem 1 give us

the desired result.

Inductive step: Assume that the theorem holds to the right of Fi in the composition. Show

that it holds for Fi.

By the inductive hypothesis and Corollary 2.1, SUBS contains the correct value of each formula

for Fi+1, since Fi+1 is to the right of Fi. Therefore, Corollary 2.1 and Theorem 1 again give us the

desired result.

5.4 An Alternative Verification Model

The methodology proposed in Chapter 5.3.2 follows a client-side strategy: the client performs all of

the constraint generation and checking at assembly time. In that approach, a component producer

may supply the features, but the client performs the verification after choosing which features to

integrate; the verification algorithm therefore can exploit knowledge about all of the features that

will be in the final product.

A different methodology would support server-side verification, where the feature producer would

generate constraints, leaving the client to check compatibility at assembly time.4 This framework

parameterizes the verification algorithm over the features to be composed. This necessarily defers

some model checking to assembly time, but all model checking remains local to individual features.5

Our constraint and data environment generation techniques support compositional verification

under both approaches. The first style generates a large collection of constraints during analysis of

individual features, but requires no model checking at composition time. The generated constraints

4Previous work [12, 18] has taken this approach.

5This model treats C-external slightly differently to preserve compositionality.
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are reusable across subsets and permutations of features within the product, thus amortizing the

cost of product assembly over many products within the product family. The second style supports

an algorithm in which the set of available features may be undecided until composition time; this

flexibility leads to the potential additional model checking runs. In both cases, our approach is

sound under compositional reasoning.



Chapter 6

Experimental Validation

We have implemented the methodology described in this thesis and tested it on a more extensive

version of Hall’s email case study [14]. Our implementation uses a restricted data environment

generation algorithm that does not handle features that set data propositions within cycles; this

restriction yielded a faster algorithm that was sufficient for the email case study.

As this thesis attempts to improve on the methodology from the work of Li, Fisler and Krishna-

murthi [18], our primary goal was to reproduce the results from that work on the same case study.

The new methodology matches the results of the old one: on each property for which the prior

approach reported no property violation, the new one reports that property as holding in the full

system (this is a stronger claim than in the old methodology). Furthermore, on each property for

which the prior approach reported a feature interaction, the new one also reported a potential inter-

action. As our primary goal was to confirm soundness of the approach, we do not report performance

results.
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Chapter 7

Perspective and Future Work

Previous work [18] has argued that model checking did not seem an appropriate approach for feature

verification, due to the clumsiness that arose when using 3-valued model checking to handle open

features. This methodology is more satisfying. While this approach is still subject to the usual com-

plexities and concerns underlying model checking, it does not include undue additional complexities

to achieve compositionality under openness.

The present methodology does, however, make some simplifying assumptions that we are working

to relax as part of our future work. First, the methodology assumes that the compositions of features

are acyclic. Features may contain cycles internally, but the graph showing connections between

features must form a DAG; the algorithms presented in this thesis assume feature connections form

a linear chain rather than a DAG for simplicity. This is less of a restriction than it seems, because

feature composition often resembles simple pipe-and-filter systems in which the only cycles lie within

the base product (which we already support).

The second assumption concerns cycles within features. The current constrain algorithm

assumes that no cycle within a feature sets the value of a data proposition. We could support such

assignments to local propositions (such as a loop counter), but not to propositions that must appear

in the constraint. Although the examples we have used to test our methodology are consistent with

this assumption, relaxing this remains an issue for future work.
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Chapter 8

Conclusion

This thesis presents a compositional methodology for verifying features as open systems. By defini-

tion, any technique that attempts to verify open systems modularly must contend with insufficient

information. This thesis exploits a key insight about the nature of openness in compositional fea-

ture verification: features are open with regards to two distinct kinds of information. Specifically,

openness arises from both propositional values flowing into a feature and temporal constraints on

the control flow leaving a feature.

Concretely, this thesis presents an algorithm that derives separate interface information for each

form of openness. Using standard flow analysis techniques, we derive a propositional formula summa-

rizing the data values that each feature provides to subsequent features; using CTL model checking,

we derive a temporal constraint on the successor states of each feature. A series of simple propo-

sitional checks on the resulting constraints at composition time determines whether compositions

of features violate system-wide properties. The approach is compositional because model checking

occurs only at the level of individual features during constraint generation.

This work stands in contrast to prior work on this problem, which modeled unavailable infor-

mation using 3-valued logic. The corresponding methodology therefore required model checking

algorithms for and produced interface formulas in this more complex logic. The resulting algorithm,

while effective for detecting property violations, required multiple model checking passes per prop-

erty per feature and yielded overly complex interfaces. The new methodology presented in this thesis

eliminates these problems without diminishing the effectiveness of compositional feature verification;

in particular, it uses conventional 2-valued model checking, restricting 3-valued reasoning to purely

propositional cases. We have implemented the new methodology and matched the results of a case

study performed using the 3-valued methodology.
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Appendix A

Proof of Lemma 1

Lemma 1 Let F1 and F2 be features with data environments E1 and E2, respectively. Let R be

the set of all transitions from states of F1 to states of F2 in the composition F1 ◦ F2. Let E
′
st2
be

the composed data environment for some st2 under R and Est2
be the data environment for st2 in

the composition. 〈s01 , DV 〉 ∈ Est2
iff 〈s01 , DV 〉 ∈ E

′
st2
.

Proof:

Let V be a data value, 〈s01 , DV 〉 ∈ Est2
and 〈s01 , DV

′〉 ∈ E′st2
. We show that V ∈ DV ′ iff

V ∈ DV .

If: V is the data value for some Π = s01 , s1, ..., st1 , s02 , ..., st2 , where (st1 , s02) ∈ R. Note that if

we partition Π at any arbitrary state to break it into two paths Π1 and Π2, then V is equivalent to

V2 ∪ {〈p, v〉 ∈ V1|p 6∈ dom(V2}, where V1, V2 are the data environments for Π1 and Π2 respecitively.

In particular, V is equivalent to V2 ∪ {〈p, v〉 ∈ V1|p 6∈ dom(V2} where V1 is the data value for

s01 , ..., st1 and V2 is the data value for s02 , ..., st2 . Therefore V ∈ DV
′.

Only if: V is composed of some V1 and V2 from the data environments of F1 and F2 respectively.

V1 is the data value for some Π1 = s01 , s1, ..., st1 , and V2 is the data value for some Π2 = s02 , ..., st2 ,

where (st1 , s02) ∈ R. V is the data value for Π = Π1, st1 , s02 ,Π2, since V contains the last value of

each proposition bound along that path. Therefore V ∈ 〈s01 , DV 〉.
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Appendix B

Proof of Theorem 1

To prove this theorem, we will need two lemmas showing that path-constrain operates correctly

for EG and EU . There is simultaneous induction here: the lemmas assume that the theorem holds

for the subformulas of EG,EU , and the theorem assumes that the lemmas hold for subformulas

in the structural induction. The base case of the simultaneous induction is the propositional case

in the theorem. We are showing that for each different type of formula, the result of getting the

constraint on that formula in F1, replacing temporal constraints with their values in F2, and check-

ing truth/falsehood in the data environment V is the same as that of running constrain on the

composition augmented with the data environment V . Note also that we have defined cR just before

the statement of the constrain theorem in the thesis. Finally, this is the underlying reasoning about

replacing temporal subconstraints with their values: the values from F2 are the values of modelling

the formula in the data environment of F1 o V. This means that constrain holds (doesn’t hold) for

all data values from F1 o V, which in particular means that it holds (doesn’t hold) for whatever

path value we are considering, since the path value is a data value.

Lemma 3 Let F1 and F2 be features, s be a state in F1, and ϕ1 a CTL formula for which Theorem 1

holds. Let V be a data value coming into F1. Let P be a path environment from some initial state s0

of F1 to s and let marked ⊂ SF1
. Let c be the result of path-constrain(F1, EG ϕ1, s, P,marked).

Then:

path-constrain(F1V
′ ◦ F2, EG ϕ1, s, V ◦ P,marked) = true if V satisfies cR.

path-constrain(F1V
′ ◦ F2, EG ϕ1, s, V ◦ P,marked) = false if V does not satisfy cR.

Proof:

We will prove this by induction on the number of states in SF1
\marked.

Base case: SF1
\marked is empty.

In this case, s ∈ marked, meaning that cR = true, and path-constrain(F1V
′◦F2, EG ϕ1, s, V ◦

P,marked) = true as well (by the algorithm).
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Inductive step: Assume that the lemma holds when SF1
\marked has n states. Show that it

holds when SF1
\marked has n+ 1 states.

V satisfies cR:

If s ∈ marked, then we can prove that the lemma holds using the same reasoning as the base

case. If s is a terminal state, then V satisfies constrain(ϕ1, s, path− env)R and the successor of s

models EG ϕ1 in the data environment F1V
′ (by the algorithm and the definition of cR). Therefore,

the lemma holds (since modelling EG in the data environment implies that constrain is true for all

path environments–see reasoning for EX case of the theorem).

Therefore, assume that s is not a terminal state and s 6∈ marked. In this case,

V ∈ sat(constrain(ϕ1, s, path− env)R) and for some successor t of s,

V ∈ sat(path-constrain(EG ϕ1, t, extend−path−env(t, path−env),marked∪s)R). Thus, by the

assumptions of the lemma and the inductive hypothesis, path-constrain(F1V
′ ◦ F2, EG ϕ1, s, V ◦

P,marked) = true.

V does not satisfy cR:

If s is a terminal state, V 6∈ sat(constrain(ϕ1, s, path − env)R) or the successor of s does not

model EG ϕ1 in the data environment F1V
′. Therefore, the lemma holds (by the assumptions of

the lemma and the definition of modelling in a data environment). s cannot be in marked since cR

would then be a tautology.

Therefore, assume that s is not a terminal state and s 6∈ marked. In this case,

V 6∈ sat(constrain(ϕ1, s, path− env)R) or for all successors t of s,

V 6∈ sat(path-constrain(EG ϕ1, t, extend−path−env(t, path−env),marked∪s)R). Thus, by the

assumptions of the lemma and the inductive hypothesis, path-constrain(F1V
′ ◦ F2, EG ϕ1, s, V ◦

P,marked) = false.

Lemma 4 Let F1 and F2 be features, s be a state in F1, and ϕ1, ϕ2 CTL formulas for which Theorem

1 holds. Let V be a data value coming into F1. Let P be a path environment from some initial state s0

of F1 to s and marked ⊂ SF1
. Let c be the result of path-constrain(F1, E ϕ1U ϕ2, s, P,marked).

Then:

path-constrain(F1V
′ ◦ F2, E ϕ1U ϕ2, s, V ◦ P,marked) = true if V satisfies cR.

path-constrain(F1V
′ ◦ F2, E ϕ1U ϕ2, s, V ◦ P,marked) = false if V does not satisfy cR.

Proof: We will prove this by induction on the number of states in SF1
\marked.

Base case: SF1
\marked is empty.

In this case, s ∈ marked, meaning that cR = false, and path-constrain(F1V
′◦F2, E ϕ1U ϕ2, s, V ◦

P,marked) = false as well (by the algorithm).

Inductive step: Assume that the lemma holds when SF1
\marked has n states. Show that it

holds when SF1
\marked has n+ 1 states.

V satisfies cR:
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s cannot be in marked since cR would then be unsatisfiable (by the algorithm). If s is a ter-

minal state, then we are done using similar reasoning to Lemma 3 (with the addition that the

satisfaction could come from ϕ2–see reasoning below). Therefore, assume that s is not a terminal

state and s 6∈ marked. In this case, we either have that V ∈ sat(constrain(ϕ2, s, path − env)R)

or that V ∈ sat(constrain(ϕ1, s, path − env)R) and for some successor t of s, V ∈ sat(path-

constrain(E ϕ1U ϕ2, t, extend − path − env(t, path − env),marked ∪ s)R). In the former, the

assumptions of the lemma show that the lemma holds. In the latter, by the assumptions of the

lemma and the inductive hypothesis, path-constrain(F1V
′ ◦ F2, EG ϕ1, s, V ◦ P,marked) = true.

V does not satisfy cR:

If s is in marked, then we prove that the lemma holds using the same reasoning as the base case. If

s is a terminal state, then we are done using similar reasoning to Lemma 3. Therefore, assume that s

is not a terminal state and s 6∈ marked. In this case, we have that V 6∈ sat(constrain(ϕ2, s, path−

env)R), and that V 6∈ sat(constrain(ϕ1, s, path−env)R) or for all successors t of s, V 6∈ sat(path-

constrain(E ϕ1U ϕ2, t, extend−path−env(t, path−env),marked∪s)R). Thus, by the assumptions

of the lemma and the inductive hypothesis, path-constrain(F1V
′ ◦F2, EG ϕ1, s, V ◦P,marked) =

false.

Theorem 1

Let F1 and F2 be features, s be a state in F1, and ϕ a CTL formula. Let V be a data value

coming into F1. Let P be a path environment from some initial state s0 of F1 to s. Let c be the

result of constrain(F1, ϕ, s, P ).

Then:

constrain(F1V
′ ◦ F2, ϕ, s, V ◦ P ) = true if V satisfies cR.

constrain(F1V
′ ◦ F2, ϕ, s, V ◦ P ) = false if V does not satisfy cR.

Proof:

Unless otherwise noted, constrain is operating within the context of F1. Also note that for

every formula for which we assume that Theorem 1 holds, we also assume that Lemma 3 and 4

hold–this is the simultaneous induction.

Case ϕ = p (an atomic proposition):

V ∈ sat(cR):

There are three cases: either p is a control proposition of F1 and p ∈ Tr(s), p is a data proposition

and P (p) = T , or p is a data proposition that is not bound by P and V (p) = T . In each case,

constrain(F1V
′ ◦ F2, p, s, V ◦ P ) = true.

V 6∈ sat(cR):

There are four cases: either p is a control proposition of F1 and p ∈ Fa(s), p ∈ C−EXTERN , p

is a data proposition and P (p) = F , or p is a data proposition that is not bound by P and V (p) = F .

In each case, constrain(F1V
′ ◦ F2, p, s, V ◦ P ) = false.

Case ϕ = ¬ϕ1 :

We assume that the theorem holds for ϕ1.
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V ∈ sat(cR): V 6∈ sat((constrain(ϕ1, s, P )R). By our assumption this means that constrain(F1V
′◦

F2, ϕ1, s, V ◦ P ) = false. Thus, constrain(F1V
′ ◦ F2, ϕ, s, V ◦ P ) = true.

V 6∈ sat(cR): V ∈ sat(constrain(ϕ1, s, P )R). By our assumption this means that constrain(F1V
′◦

F2, ϕ1, s, V ◦ P ) = true. Thus, constrain(F1V
′ ◦ F2, ϕ, s, V ◦ P ) = false.

Case ϕ = ϕ1 ∨ ϕ2:

We assume that the theorem holds for ϕ1, ϕ2.

V ∈ sat(cR): Either V ∈ sat(constrain(ϕ1, s, P )R) or V ∈ sat(constrain(ϕ2, s, P )R). WLOG

assume that V ∈ sat(constrain(ϕ1, s, P )R). By our assumption this means that constrain(F1V
′◦

F2, ϕ1, s, V ◦ P ) = true. Therefore, constrain(F1V
′ ◦ F2, ϕ, s, V ◦ P ) = true.

V 6∈ sat(cR): V 6∈ sat(constrain(ϕ1, s, P )R) and V 6∈ sat(constrain(ϕ2, s, P )R). By our

assumption this means that constrain(F1V
′ ◦ F2, ϕ1, s, V ◦ P ) = false and constrain(F1V

′ ◦

F2, ϕ2, s, V ◦ P ) = false. Therefore, constrain(F1V
′ ◦ F2, ϕ, s, V ◦ P ) = false.

Case ϕ = ϕ1 ∧ ϕ2:

We assume that the theorem holds for ϕ1, ϕ2.

V ∈ sat(cR): V ∈ sat(constrain(ϕ1, s, P )R) and V ∈ sat(constrain(ϕ2, s, P )R). By our

assumption this means that constrain(F1V
′ ◦ F2, ϕ1, s, V ◦ P ) = true and constrain(F1V

′ ◦

F2, ϕ2, s, V ◦ P ) = true. Therefore, constrain(F1V
′ ◦ F2, ϕ, s, V ◦ P ) = true.

V 6∈ sat(cR): Either V 6∈ sat(constrain(ϕ1, s, P )R) or V 6∈ sat(constrain(ϕ2, s, P )R). WLOG

assume that V 6∈ sat(constrain(ϕ1, s, P )R). By our assumption this means that constrain(F1V
′◦

F2, ϕ1, s, V ◦ P ) = false. Therefore, constrain(F1V
′ ◦ F2, ϕ, s, V ◦ P ) = false.

Case f = EX ϕ1:

We assume that the theorem holds for ϕ1. We break the proof into two cases: first, where s is a

non-terminal state, and second, where s is a terminal state.

s is a non-terminal state:

V ∈ sat(cR): V ∈ sat(constrain(ϕ1, t, extend − path − env(P, t))R) for some t ∈ succ(s).

By our assumption, constrain(F1V
′ ◦ F2, ϕ1, t, V ◦ extend − path − env(P, t)) = true. Thus,

constrain(F1V
′ ◦ F2, ϕ, s, V ◦ P ) = true (by the algorithm).

V 6∈ sat(cR): V 6∈ sat(constrain(ϕ1, t, extend− path− env(P, t))R) for all t ∈ succ(s). By our

assumption, constrain(F1V
′ ◦ F2, ϕ1, t, V ◦ extend − path − env(P, t)) = false for all t ∈ succ(s).

Thus, constrain(F1V
′ ◦ F2, ϕ, s, V ◦ P ) = false (by the algorithm).

s is a terminal state:

V ∈ sat(cR): This means that the state t0 to which s is connected in the composition models ϕ1

in the data environment of F1V
′, which in particular implies that constrain(F1V

′ ◦ F2, ϕ1, t0, V ◦

extend− path− env(P, t0)) = true. Therefore, constrain(F1V
′ ◦ F2, ϕ, s, V ◦ P ) = true.

V ∈ sat(cR): This means that the state t0 to which s is connected in the composition does

not model ϕ1 in the data environment of F1V
′, which in particular implies that constrain(F1V

′ ◦

F2, ϕ1, t0, V ◦extend−path−env(P, t0)) = false (by the definition of modelling in a data environment
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and the fact that P is in the data environment of F1
′

V ). Therefore, constrain(F1V
′ ◦ F2, ϕ, s, V ◦

P ) = false.

Case f = EG ϕ1:

We assume that the theorem holds for ϕ1. Lemma 3 then gives us the desired result.

Case f = E ϕ1 U ϕ2:

We assume that the theorem holds for ϕ1, ϕ2. Lemma 4 then gives us the desired result.
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