
Authentication of Embedded Data in HTML Documents through the Use of Prooflets

by

Christian D. Straub

B.S, Brown University, 2003 (Expected)

A Thesis submitted in partial fulfillment of the requirements for Honors

in the Department of Computer Science at Brown University

Providence, Rhode Island

April 2003

c© Copyright 2003 by Christian D. Straub

This thesis by Christian D. Straub is accepted in its present form by

the Department of Computer Science as satisfying the research requirement

for the awardment of Honors.

Date
Roberto Tamassia, Reader

Date
Tom Doeppner, Reader

iii

Authentication of Embedded Data

in HTML Documents through the

Use of Prooflets

Christian David Straub

Brown Department of Computer Science

April 2003

iv

Preface

In this thesis, I describe an efficient approach for securely authenticating dynamic content embed-

ded in a web page. This technology, which I call prooflets, consists of an extension of the HTML

tag library and of a service for publishing and distributing authenticated data. Prooflets leverage

emerging authentication methods, such as authenticated dictionaries and XML digital signatures.

I show how prooflets protect web content against the risk of tampering by providing cryptographic

proofs of integrity. I also demonstrate the advantages, efficiency and scalability of prooflets and dis-

cuss their applications to a variety of data authentication problems. Finally, I present our prototype

implementation of prooflets by means of a browser toolbar and of a distributed authentication web

service.

v

Contents

1 Introduction 1

1.1 Main Contributions . 1

1.2 Requirements . 2

2 Prooflets 3

2.1 End-to-End wentegrity Client . 3

2.2 EEI Client User wenterface . 3

2.3 Components . 4

2.4 Base Classes . 5

2.5 Embedding Prooflets into web Documents . 5

2.6 Extensibility and Applications . 6

2.7 Proxy Server wemplementation . 7

2.8 Additional Advantages . 8

2.8.1 Liability to the Provider, Not the Distributor 8

2.8.2 Aggregation of Content . 8

3 Content Delivery Models 9

3.1 Authenticated Dictionaries . 9

3.2 Providers and Sources . 10

3.3 Advanced Authenticated Data Structures . 10

4 Web Services Implementation 12

4.1 Client wenteraction and Responsibilities . 12

4.2 Types of Prooflet Requests . 12

4.2.1 Domain Intellectual Property . 13

4.2.2 Load Balancing of the Responder Servers . 13

5 Visualization and Forgery Concerns 14

5.0.3 Visualization Goals . 14

5.1 Visual Forgery . 15

5.2 Forgery of Web Content . 15

vi

5.3 Web Browser Vulnerability . 16

5.4 The Visual Authentication Problem . 17

6 Passive and wenteractive Approaches 18

6.1 The Passivity Approaches . 18

6.2 wenteractive Deterrence . 19

7 Protecting Prooflets Against Spoofing 21

7.1 Casual Visualization Scheme . 21

7.2 wenteractive Deterrence Schemes . 22

7.3 Visual Portfolio Recognition System . 22

7.4 Web wentegrity Client Toolbar . 22

7.5 Validating Single Prooflets . 23

7.6 Prooflet View of the Document . 24

7.7 Visualization of Connected Data . 24

7.8 Snapshot of Prooflet Content . 24

7.9 Viewing Specific Prooflet wenformation . 24

8 Conclusions 25

9 Acknowledgments 26

Bibliography 27

? The chapter on content delivery describes an authenticated dictionary system that was the work

of Tamassia et al, and was not an integral part of my researh.

vii

Chapter 1

Introduction

Often, people and corporations alike assume that data is authentic merely by implicitly trusting

the entity that delivers it. This is evident in the numerous stock tickers, sports scores, weather

forecasts, and news articles widely available on the wenternet. But as digital information becomes

more pervasive, the threat to the integrity of the data increases. Clearly, there exists a demand for

an efficient system that will guarantee the end-to-end integrity of content from a trusted source to

a client, especially when it is distributed and aggregated through third parties.

In this thesis, I present prooflets, a scalable architecture for authenticating web content. Prooflets

overcome the major limitations of the traditional approach to content authentication, which is based

on signing a time-stamped cryptographic hash of the content. Prooflets are especially effective when

the content rapidly changes over time (e.g., stock quotes). I have designed prooflets by leverag-

ing standard web technologies. Thus, prooflets can be readily adopted in today’s web publishing

applications.

Finally, I must be able to present authentication information to the user while also preventing

spoofing attacks against such a visualization scheme. As I will discuss, this is a very difficult problem

to solve, due to the open nature of current web browsers. Nevertheless, I present an approach to

maximize the effectiveness of prooflets against such spoofing attacks.

1.1 Main Contributions

This thesis introduces prooflets, describes their role in web services, and analyzes the security of this

new technology. The main contributions of our work are as follows:

• I define prooflets and show how they provide a mechanism to verify the integrity of (or securely

retrieve) data from a trusted source of information that is delivered to a client via intermediate

third parties.

• I design a prooflet tag library that extends standard HTML tags and can be readily embedded

in any HTML document,

1

2

• I introduce the End-to-End wentegrity Client (EEI client), a web browser enhancement serving

as a trusted application for the verification of prooflets.

• I demonstrate how the EEI client can effectively inform the user about the authenticity of web

content that is tagged with prooflets.

• I show how prooflets allow portal sites to reduce the liability and costs associated with aggre-

gating and publishing securely web content originating from third part providers.

• I describe how prooflets achieve architectural, computational and economic scalability through

the incorporation of authenticated dictionaries, an emerging authentication technology for

dynamic and distributed data.

• I describe a visual presentation scheme to minimize the vulnerability of prooflets against spoof-

ing attacks.

1.2 Requirements

The following three primary requirements have guided the development of prooflets:

• First, I seek to ensure that information sent from a distributor on behalf of a trusted content

provider arrives at the client intact, i.e., it matches the records of the provider’s database. wef

the data received by the end user is different from the provider’s records, the user must be

able to detect the modification.

• Second, I want to provide authentication by extending rather than supplanting the current

web content delivery infrastructure. That is, the authentication components must be specified

in a standard way, and consequently, must be compatible with web service platforms such as

Enterprise JavaBeans (EJB), ColdFusion, and .NET.

• Third, I want to develop a visualization scheme that is resilient against spoofing attacks and

other attacks aimed at altering the presentation of the authentication information.

By the above requirements, prooflets include a tag library that extends the standard HTML tag

set in common use today. By representing prooflets with HTML tags, I make prooflets available to

any publisher that has capability of developing static or dynamic web pages.

Chapter 2

Prooflets

Prooflets are a technology for publishing authenticated data and making it available in a highly

distributed manner. A prooflet tag is a specific HTML tag delimiting a portion of an HTML or

XML document that can be authenticated or securely retrieved through a prooflet. Prooflet-aware

browsers recognize such tags. A sample document containing prooflets is shown in Figure 2.3.

2.1 End-to-End wentegrity Client

Given that prooflets are a new technology, there are no current prooflet-aware browsers available.

wenstead, I have developed an End-to-End wentegrity client (EEI client) that can be installed on

top of conventional web browsers such as wenternet ExplorerTM and NetscapeTM. The EEI client

communicates with the browser through the COM+ APwe and is able to intercept and preprocess

documents containing prooflets before they are displayed to the user.

The EEI client parses the prooflet tags, performs the associated authentication query, and verifies

the integrity of the requested data. In our prototype implementation of the prooflet architecture,

the client interface is a toolband object that appears next to the browser’s standard buttons (see

Figure 2.1). The inclusion of the EEI client is thus unobtrusive to the end user, yet provides the

user with sufficient visual feedback.

2.2 EEI Client User wenterface

In addition to resolving the prooflet references, the EEI client also allows the users to further

discern additional prooflet information and modify the presentations of prooflets in the document.

To provide for a uniform look and feel for prooflets, a user may specify that a particular style be

used for valid and invalid prooflets. Right clicking on a prooflet will present the user with additional

information such as the trusted source of the content, the key tag used to identity the prooflet, and

the expiration date. The user may also quickly view all prooflets embedded on the page (and their

3

4

Figure 2.1: End-to-End wentegrity client example.

validation status) in a single window, and be able to navigate to a particular prooflet by double

clicking the prooflet in this window. An example of this prooflet window can be seen in Figure 2.2.

The EEI client also has a notion of a time-to-live (ttl) for prooflet enhanced data. The user may

specify the maximum ttl of a prooflet (based on a source, or key tag, etc). After this lifetime has

expired, the prooflet will invalidate itself and update its screen presentation to reflect this change.

A complete screenshot of the EEI Client can be seen in the Appendix.

2.3 Components

In a minimalist environment, a prooflet tag contains a control domain, a request type, and a key or

value. The control domain uniquely identifies the content source and the associated set of responders

to access. Content providers are responsible for maintaining their own prooflet source. The inclusion

of the control domain allows a prooflet to specify which of these systems to communicate with.

The request type is either retrieval, in which case the key to the data is supplied, or containment

(authentication of data within the prooflet).

In addition to the requisite attributes necessary to generate the authentication query, numerous

optional attributes may be included in the prooflet tag. For instance, the CSS display style of

authenticated (and non-authenticated) data can be specified. A behavior may be set if some data is

not verified (i.e., a level of warning to the user can be specified). The prooflet tag can also specify

whether or not to aggregate prooflet responses.

5

Figure 2.2: User interface window showing an overview of all prooflets in a document.

2.4 Base Classes

Since a document may consist of many prooflets tags, all with similar sources, query methods and

control domains, the concept of a prooflet base class was developed. A prooflet base class contains

much of the configuration attributes presented in Section 2.3. Such base classes are declared first

and then can be used by the prooflets. Prooflets can specify a base class to inherit from; the tag

then needs only to supply the attributes specific to that tag, such as the key or value to request.

In addition, a prooflet may override base class attributes, and other base classes may inherit (and

override) the attributes of a previous base class.

2.5 Embedding Prooflets into web Documents

Since prooflets tags are based on standard HTML tags, integrating them into HTML documents

is routine. Prooflet tags can either be standalone (self contained XML snippets) or span large

amounts of text (with start and end tags). Since prooflets can be embedded into text, they can be

contained within spans, placed in DHTML layers, dynamically displayed, etc. In addition, prooflets

can be customized and deployed at runtime by web services technology or XSLT transformations.

Prooflets can also be constructed interactively by end users during runtime and deployed by re-

loadable internal frames. Any technology that can produce text can formulate a prooflet, and the

web developer can leave the mechanics of the authentication routines to the EEI client.

As can be seen in Figure 2.3, prooflet base classes are specified typically at the top of the

6

document and follow a rigid XML format (indeed, they are parsed as individual XML documents).

In order to provide the maximum flexibility in deploying prooflets, base class descriptions can be

held externally and be referenced in the HTML document just as any external XML data source

would typically.

<xml id=”prooflets”> <prooflet-base-defs>
<prooflet-base id=”newsRef”>

 <control-domain> b.algomagic.com </control-domain>
 <source-db> b_newsEx </source-db>
 <query-type> containment </query-type>
 <auth-style> color: white; background-color: green </auth-style>
 <noauth-style> font-style: italics; color: black; background-color: red </noauth-style>
 </prooflet-base>
 <prooflet-base id=”stockTck” base=”stock”>
 <source-db> b_stocksEx </source-db>
 <query-type> retrieval </query-type>
 </prooflet-base>
</prooflet-base-defs> </xml>

<html>
<head><title> Prooflet Example </title></head>
<body>

A digest of this text will be taken and compared to the source database b_newsEx. If the hash matches the database entry ‘newsRef’,
then this text will be validated. Otherwise, the authentication will fail, and the background of this text will be changed to red (which is
specified in the prooflet base).

The following will be a retrieval request. AlgoMagic stock is currently trading at
 current as of 10 minutes.

</body></html>

Figure 2.3: Static HTML example showing the use of prooflets.

Prooflet base tags are optional and are usually contained within XML external references that are

recognizable by later browsers. (For complete backwards compatability, these may be ommitted).

The actual prooflet tags are an extension of the standard span HTML tags. For non-prooflet aware

browsers, the type identifier will be ignored, and the content will be displayed to the user without

verification. Thus, embedding prooflets in a document will not interfere with the presentation of

that document to older or non-prooflet aware browsers.

2.6 Extensibility and Applications

A standard authentication interface is provided by the prooflet distribution system. Since prooflets

are expressed in XML, custom attributes can be easily integrated into prooflets. Additional clients

based on the prooflet technology would need only an XML parser and a means to communicate with

the prooflet responders. Thus, prooflets could be deployed in venues other than HTML documents.

wendeed, prooflets could annotate XML documents, email, or any other distributable medium sent

in plain text.

Furthermore, the data protected by prooflet technology can span farther than simple text. For

7

instance, data such as images, sound, and even videos can be authenticated by prooflets. Here,

the prooflet would take the cryptographic hash of the multimedia object and use this to verify its

integrity. Thus, prooflets are a powerful verification technique that is not only easily deployable,

but can be used in a multitude of authentication scenarios.

2.7 Proxy Server wemplementation

Another means to realize prooflet transactions (other than via the EEI client) is through the use

of a prooflet proxy server. In situations where clients have a secure link to the proxy server (i.e.,

corporate LANs, VPNs, etc), a prooflet proxy server could serve the same purpose as the EEI client.

An example of this architecture is illustrated in Figure 2.4.

clients

prooflet
proxy

server

prooflet
responders

HTML
documents

with embedded
prooflets

Figure 2.4: Prooflet proxy server handling requests.

All clients can forward HTTP requests through the proxy server. The proxy server will then

analyze the requested documents to ascertain whether or not they contain embedded prooflets. If

the document contains prooflets tags, then the proxy server can initiate the prooflet query on behalf

of the client. The proxy server can then embed the prooflet response in the HTML document

(effectively replacing the prooflets with the associated data) and send the plain HTML document

back to the client. In the case that the data is not authenticated, the Proxy server can annotate the

document to indicate that an integrity violation was detected.

The addition of a prooflet proxy server eliminates any custom browser enhancements at the

client level. In addition, it makes the inclusion of prooflets transparent to the end users. Having

all validation efforts performed by a small set of Proxy servers also eases the deployment of prooflet

technology to existing networks.

8

2.8 Additional Advantages

Although prooflets aim to solve the problem of data integrity, there are two corollary advantages

that prooflets provide.

2.8.1 Liability to the Provider, Not the Distributor

Under previous distribution systems, portal sites and other distributors of content would first gather

the content from various external sources, combine them into a web page, and finally send them

to the client when the document is requested. Since the distributor serves the content on behalf

of the provider, it is the distributor who has the responsibility to ensure the integrity of the data.

Alternatively, the distributor needs only to refer users to the various providers through the use of

prooflets. Prooflets can then handle the authentication and retrieval of data. Since this data would

typically originate from a source server under the content provider’s control, the burden of liability

is placed on the provider.

2.8.2 Aggregation of Content

Since many portal sites contain content from a wide array of different external sources, if a portal

site wished to guarantee the integrity of data from each source, they would have to provide secure

channels between a server under their control and a source server. Prooflets eases the aggregation

of data by allowing the distributor of data to merely specify which source to take (or authenticate)

the data from. The security and distribution of data is handled automatically by prooflets.

Chapter 3

Content Delivery Models

In order to efficiently serve digital information to a large number of clients, several requirements

must be satisfied by the prooflet authentication architecture. Specifically, it must be cost-effective,

easy to maintain, secure, and scalable. The underlying technology for content delivery used in this

paper is based on an authenticated dictionary system (ADS). In this section, I will give a brief

overview of ADSs and describe how they are used in conjunction with prooflets.

3.1 Authenticated Dictionaries

An ADS consists of a centralized source responsible for maintaining a dynamically evolving set

S of key-value pairs (or, more generally, a database) and any number of responders, which can

provide authentic answers to queries made by users on S. An ADS provides users with cryptographic

assurances of key membership in S and of the mapping between keys and values in S. An important

feature of ADSs is that the source is the only point of trust and is not exposed to user queries.

Responders, on the other hand, are considered untrusted but are nevertheless enabled to provide

authentication services on behalf of the source.

The source of an ADS maintains a schedule for updating responders. I call the period of time

between updates a quantum. Throughout the course of a single quantum, trusted content providers

can update the set S at the source with insertion and removal operations. When a quantum expires,

the source distributes to its responders a list of modifications and a signed statement, which I will

call the basis. wenformally speaking, the basis is a time-stamped compact digest of the current

contents of set S.

When a client queries a responder for a specific key, the responder returns the key-value pair,

a proof of containment, and the current basis. The proof can be considered a partial digest of the

source set that, when combined with the key-value pair, yields the basis. Since the basis is singed by

the source, if the responder (or any attacker between the responder and client) attempts to falsify

the proof, the client can easily detected the tampering. An example of the verification process for a

tree-based authenticated dictionary can be seen in Figure 3.1.

9

10

H
yxz

H
yx

y
 x

z

contains(
x
)

x
H
y?z

H
y?

y
 ?

z

H
yxz

Proof
 Answer

Basis

Authenticated

Dictionary

Query

Process

Response

Figure 3.1: Tree-based authenticated dictionary.

A complete discussion of authenticated dictionary systems can be found in [1, 2, 3, 5, 13, 14, 15,

17, 19] and a high-level overview can be seen in Figure 3.2.

3.2 Providers and Sources

In the simplest deployment scenario for prooflets, each provider of web content is responsible for

maintaining its own ADS source and responders. Since the provider locally controls the source, there

is a high level of assurance that the content is not compromised between creation and insertion into

the ADS. Additionally, each provider can dynamically scale the availability of authenticated content

by adjusting the number of deployed responders.

Smaller content providers may choose instead to rely on a third-party to provide the ADS services.

In this setting, the link between the provider and the ADS service introduces a potential vulnerability.

Additionally, the provider must trust that the ADS service is not modifying the content and has

a sufficient number of responders to handle the query load. Solutions to these additional security

concerns are discussed in [12], which introduces the notion of cryptographic receipts.

3.3 Advanced Authenticated Data Structures

An attacker can intercept a web document before it reaches the EEI client and modify the keys

used in retrieval queries. Thus, providers should use ADS keys that are easily understandable so

that the end user can determine if the displayed authenticated content is consistent with the web

document they are viewing. Content providers that find this too restrictive, or require a richer set

of queries, can use a more sophisticated authenticated dictionary that supports range queries, like

the one presented in [14].

11

STMS
DNS UPDATES

 UPDATES

 UPDATES Contains(x)

Response
 Yes/No

 Proof

 Basis

Secure
Source

Responder
Servers

Client

(1)

(2)

(3)

(5)

(4)

At the start of a time quantum:

(1) The source securely

distributes database updates as

well as the signed Basis.

When the user initiates a request:

(2) The client queries the DNS

server to locate a responder.

(3) The DNS server for the

control domain selects a

responder based on current

server loads.

(4) The client sends the SOAP

request to the specified

responder.

(5) The responder answers the

requests and also transmits a

proof and the signed Basis as

part of the response.

Figure 3.2: Architecture of an authenticated dictionary system.

For example, a news agency may want to allow users to query for the top five most viewed news

articles. Using a standard authenticated dictionary, this would be easy to spoof since it would be

difficult to encode the notion of ranking in the key for the article. An attacker could replace the set

of keys contained in the web document to reflect an arbitrary set of articles (if, for example, they

wished to hide negative press they were receiving). Using an advanced ADS that supports range

queries [14], the provider can use prooflets representing the retrieval of all and only the news items

in a given range of rank (e.g., 1 through 5) or time (e.g., in the last six hours).

Chapter 4

Web Services Implementation

4.1 Client wenteraction and Responsibilities

Due to the standardized nature of the prooflet end-to-end integrity architecture, the client has

minimal responsibilities in order to communicate with the ADS responders. Specifically, requests

are sent from the EEI to a responder over Simple Object Access Protocol [?] or SOAP. In addition,

authentication information is also sent back to the EEI client from the responder over SOAP. An

additional step transforms the ADS authentication to a standard XML digital signature [?] through

the use of an XML transform [?].

The SOAP request contains the responder to contact, the key whose value must be obtained,,

and the source for the data. The SOAP response will contain the answer, the basis, and an XML

signature over the basis. All that is left for the client is to verify the basis with respect to the

signature, and then obtain the value from the prooflet response. All computation required for the

verification of the proof is handled by the XML transform, and is applied to the response before the

signature is verified.

Due to the platform agnostic nature of SOAP, the client can be written in any number of different

programming languages for any computing environment. Modern implementations of SOAP are

readily available for Java and the languages of the .NET Framework (C#, Visual Basic .NET, etc).

In addition, since prooflets use SOAP through the HTTP protocol, it can be implemented through

any language capable of sending requests over the wenternet (i.e. standard web server requests).

4.2 Types of Prooflet Requests

There are two types of requests that can be handled by our prooflet architecture. The first is a

containment request. This type of request is generally used to verify the authenticity of data. For

example, a large body of text could be included in a document. A prooflet request could then be

performed to verify that the text has not been modified since leaving its initial source. The values

12

13

stored in the database are message digests of the actual text. The client can then take a digest of

the text to verify its consistency with the value returned in the prooflet response.

The second type of request is a retrieval request. This is used when a distributor wishes to refer

the client to the provider of the authentic data. Here, a key is provided in the request and the value

is returned in the response and inserted into the web document. Provided that the basis is verified

via the signature, the client can be assured that the value it obtains is what is stored in the source

database.

4.2.1 Domain Intellectual Property

Due to the open nature of the prooflet architecture and the fact that information transmitted between

client and responder are not proprietary, it is conceivable that unauthorized users may gain access

to the source data and present this data as their own. More specifically, using prooflet technology,

a portal site may retrieve unauthorized information from a prooflet responder by including the

requisite prooflet tags in its HTML documents. A simple way to prevent this is as follows. The

web server and the prooflet distribution system can negotiate a shared secret at the time that their

relationship is formed. When a client accesses a web page, the web server can include a referral

token which is a cryptographic hash of the shared secret and the client’s weP address. The client

can then forward this token to the Responder as proof of authorization. Since the hash is one-way,

the token cannot easily be forged. This technique can be extended to avoid replay attacks.

4.2.2 Load Balancing of the Responder Servers

One of the benefits of the prooflets architecture is that it readily allows for responders to be deployed

in unsecured locations with minimal setup. However, in order to exploit the multitude of the

distributed and redundant nature of these responders, the architecture must allow for load balancing

between them.

In order to accomplish this goal, the control domain (see Section 2.3) is given a second purpose.

With prooflets, the control domain is associated with a subset of prooflet sources. A random al-

phanumeric entry is added as a sub-domain to the control domain, and this URL is used to locate a

responder. Since the sub-domain will (with high probability) be unique for each SOAP request, the

client will be forced to resolve the responder weP with each call. The authoritative DNS server for

the control domain can then select a responder in a round robin fashion when responding to prooflet

responder lookups.

Chapter 5

Visualization and Forgery

Concerns

The issue of security is critical given the ubiquity of the wenternet in multiple, almost fundamental,

aspects of life. wendeed, modern cryptographic techniques provide us with the ability to conduct

our daily business on the wenternet in a secure way, but often it is difficult to bring these techniques

to the end user due to complicated user interfaces and cumbersome design.

The transport layer security protocol (TLS) [7] and its predecessor SSL are widely used today

for protecting the transmission of sensitive information over the wenternet. Unfortunately though,

the security provided by TLS is undermined by the simplicity of the interface provided by most

browsers. The icon of a closed lock indicates that an encrypted channel has been established, but

can offer a false sense of security if the identity on the SSL certificate is not scrutinized. Moreover,

the closed lock icon and certificate overview windows can easily be forged (see, e.g., [23]).

As the wenternet becomes pervasive and web transactions become critical, ensuring the end-to-

end integrity of web content has become a fundamental issue in information security. Even with

a cryptographically secure system, the task of presenting the relevant authentication information

to the user in a way that is clear, concise, and useful remains. Web pages themselves are already

complicated enough and have enough UI design issues [20] without flooding the user with even

more unnecessary or unused information, but obfuscating all of the information is also completely

ineffective — clearly some sort of balance must be reached.

5.0.3 Visualization Goals

In consideration of the problems introduced above, I have identified the following general goals for

a secure user interface:

• To not give the user too much information without explicit requests, but still inform the user

of potential threats as they arise

14

15

• To give the user an intuitive way to view all of the relevant information when desired. This pre-

sentation should be both simple and perceptually effective, while providing resistance against

forgery and spoofing attacks that prey on human factors. The latter is clearly a problem, as

has been demonstrated in [9] and [21].

• Preserving the layout and intentions of the content providers without compromising the in-

tegrity of their content.

I set out to accomplish a simple and secure visualization of authentication information. Standard

HTML and client-side scripting languages [11] are insufficient to realize our visualization because

malicious scripts could interfere with the presentation of the information. wendeed, almost all of the

cues in current web browsers, when not actively investigated, can be faked by client-side scripts [24].

To combat this problem, I describe extensions compatible with any modern web browser to provide

a visualization environment that is flexible, powerful, and highly resistant to forgery attacks.

5.1 Visual Forgery

System architectures meant to secure data often employ visual measures to indicate to the user

that the data is trustworthy. This is done typically to provide notification to the user that some

authentication routine is being employed. Sometimes, such an indication is necessary for the user to

trust the source. For instance, it is common to create a secure connection to a web site (for example,

an e-commerce site), and thus the owners of the web site would want to let the user know that the

transmission of credit card numbers or other sensitive information is secure. For example, Thawte

and Verisign employ “secure icons” to identify sites for which they provide SSL certification.

5.2 Forgery of Web Content

The wenternet can be viewed as a loosely structured aggregate of independent service providers.

When one requests data from a web server, the request, as well as the answer, travels through many

different routers throughout the wenternet. Thus, there are many opportunities for a malicious user

to intercept and manipulate the data. In general, most of this information is sent plaintext and thus

the user would not be able to detect whether or not the data has been modified. wef the medium

is raw HTML (as is common for web pages), all authentication information encoded in HTML may

be forged by an attacker. Felten et. al., [9] Paoli et. al. [21] and many others have established

that spoofing attacks in general are both relatively easy to perform and present a serious security

problem.

Today’s scripting languages [8] (VBScript, Javascript, DHTML, etc) are powerful manipulators

of visual data. Both VBScript [16] and Javascript [10] can make runtime modifications to both the

structure of the HTML parse tree and the contents of a particular node of the tree. In addition, most

elements support a style attribute that follows the Cascading Style Sheet (CSS) specifications [22].

16

The style tag allows visual modification of the HTML element, changing such things as background

color, border, and text style.

To put this into the context of visual forgery, imagine for instance, that a web publisher wanted

to mark important parts of a web page with a red background. They can specify a particular CSS

style attribute (specifying the background color) to a span element that encapsulates the text. The

problem with this approach is twofold, however. First, an attacker could intercept the web page en

route to the client and modify the HTML directly. Second, an attacker could add client-side scripts

that will modify the web page visualization at runtime. In either case, the attacker could remove the

red background for the specified text and apply the red background to another part of the document.

Although this attack is not normally severe, if authentication information were visualized through

HTML, than the defense against such a spoofing attack becomes much more important.

5.3 Web Browser Vulnerability

Even user interface components of the web browser are not immune to a spoofing attack. Ye,

Yuan and Smith [24] illustrated that the status bar, and even toolbars of common web browsers

can be spoofed by an attacker. The authors of this paper have reproduced such experiments and

have produced realistic, interactive, and fake simulations of these portions of the web browser, as is

reproduced in Figure 5.1.

Figure 5.1: This window may look authentic, but all content below the file menu is fake. Using
Javascript, one can actually even interact with the toolbar.

A common response to this problem in web browsers is to simply disable client-side scripting

and other common spoofing procedures (such as the ability to launch new windows.) While these

measures do block spoofing attacks at runtime, they do not address the issue of an attacker modifying

17

the HTML en route to the user. Using Secure Socket Layer (SSL) can prevent modification of data

between the server and the client [7]. Combined with the elimination of client-side scripting, this

approach goes a long way to prevent spoofing attacks. However, blocking client-side scripting would

have adverse affects on legitimate uses of the technology. For instance, many companies verify web

form content before allowing the user to submit that information.

5.4 The Visual Authentication Problem

Due to the fact that forgery is easily accomplished, an interesting and frustrating problem develops.

Without overstepping current technology, if I wished to visually identify certain parts of a web page

that satisfy a certain property, how do I visualize these parts while preventing an attacker from

spoofing our technique?

For instance, assume I had the capability to provide digital signatures for selected portions of

text in the same web document (e.g., a financial portal may want to provide “trusted stock quotes”

digitally signed by the NASDAQ). A client application running within the web browser would then

automatically indicate to the user that the text is digitally signed by highlighting it in green. How

do I prevent an attacker from duplicating our approach and highlighting other parts of the document

in green as well? This is one case of the visual authentication problem, and a solution is presented

in the next section.

Chapter 6

Passive and wenteractive

Approaches

The principle of least effort [18] dictates that the very causal user does not need to be presented with

the full details of authentication information at all times. While a sizable amount of information

is necessary to combat certain attacks, the tradeoff between the degree of security and ease of use

must be weighed carefully.

In this section, I discuss the differences between passive and interactive approaches to prevent or

detect spoofing. I further justify the need for limited user interaction to provide for usable security.

6.1 The Passivity Approaches

Before I can examine techniques to prevent or detect forgery attacks, I must first investigate the

boundaries that our approach must follow. First, I introduce the concept of passivity. I describe a

passive environment as follows:

• The underlying architecture lends itself easily to forgery attacks.

• Users are casual (i.e. not paranoid) and tend to take minimal interest in overt security mea-

sures.

• Significant security events (e.g., a successful SSL connection) are displayed to the user without

interaction

Perhaps the most recognizable form of passivity is the small lock icon which is displayed in most

browsers to indicate an SSL-encrypted session. Ye, Yuan, and Smith [24] have generated several

convincing examples of spoofed SSL locks. Clearly then, this passive security measure does not

sufficiently protect the user’s interests.

18

19

(a) (b)

Figure 6.1: (a) Ye and Smith’s synchronized random dynamic boundaries is built on top of Mozilla’s
source code. (b) This is a spoofed version realized using Javascript and HTML and viewed in Mozilla.
Although the changes are less than subtle, most casual users will likely have difficulty telling them
apart by a cursory inspection.

One might argue that more sophisticated passive techniques could be used which are resistant

to spoofing. For example, the lock icon could be replaced with something not easily forged. A

web browser enhancement could easily be implemented which augments the lock with personal

information like the name of the user’s first child (or any other data not easily guessed by an

attacker). Whenever a user navigates to a secure web page, instead of showing just the lock icon,

the browser instead shows the icon overlaid with the private identifier chosen by the user. The

system is more difficult to forge since the attacker cannot (1) determine the private identifier used,

and (2) the private identifier varies with each user.

Ye and Smith’s developed an approach known as sychronized random dynamic boundaries (SRD)

that required authenticated windows to alternate border colors with the same frequency as a control

window. Both the overlayed icon and the SRD approach are, in fact, very difficult to spoof. However,

to an untrained eye, a simple spoofing attack may be sufficient. (See Figure 6.1) But I question

the effective security that these techniques provide the end user. On one hand, the overlayed icon

may prove to be too subtle for most users to detect. On the other hand, some users might find

synchronized random dynamic boundaries to be overly obtrusive and therefore train themselves to

ignore them. I contend that all passive approaches will fall somewhere in the the spectrum between

subtlety and obtrusiveness and ultimately be either overlooked or ignored.

6.2 wenteractive Deterrence

Taking passivity into account, it is clear then that to provide a stronger level of security against

forgery attacks, some level of user interaction is required. Let us consider the SSL example again,

20

this time concentrating on user interaction. On common browsers, if the user clicks on the lock icon,

an information screen will be displayed with more specifics on the web site. wet should be noticed

that this information can also be spoofed [24]. However, say I introduce a similar method as above.

Here I place the private identifier on the information pop-up. Since the user is actively inspecting

the specific details of the certificate, it is highly likely that the user will also notice if the private

identifier is not what the user has chosen it to be. Let us formalize this concept and introduce

interactive deterrence, which involves the following:

• The user takes an interactive step to determine the authenticity of visual markup.

• This system provides a mechanism for expressing interest in the authentication process through

user interaction.

• Since the user has expended effort to determine its validity, it is reasonable to assume that the

user will verify that standard security procedures succeeded

• Based on the ability to fully employ such security measures, the chance of detecting a forgery

attack is increased greatly.

For example, adopting interactive deterrence under the SSL scenario, the user would most likely

first check to see if the private identifier is correct before examining the contents of the certificate

(assuming both are accessible and highly visible). wenteractive deterrence does not guarantee success

against spoofing attacks. What it does suggest is that the likelihood that the user will notice

such an attack is much higher than under passive measures, or pure visual measures. Thus, I will

use interactive deterrence as a guide to formulate our counter-measures against forgery attacks.

Although interactive deterrence requires some level of user interaction, successful implementations

of the model will strive to keep this interaction as minimal as possible.

Chapter 7

Protecting Prooflets Against

Spoofing

Since prooflets are deployed using standard HTML and rely on communication channels from a web

server to the browser, prooflets are in principle susceptible to forgery attacks. Fortunately, prooflets

can adhere to some protocols that lies outside the reach of an attacker (an established protocol

defense), and I can deploy these security tactics to help detect spoofing attacks. I divide our security

measures into two groups. On a casual level, I provide visual measures to identify prooflets-validated

content. For an increased security against forgery attacks, I employ the interactive deterrence model

and require a minimal (usually a single click) level of interaction from the client.

7.1 Casual Visualization Scheme

When the importance of the data is low, I can describe a convenient scheme for casual use of the

prooflet system. wef the user wishes to further examine the prooflet, they can resort to using stronger

visualization schemes as presented later in this section.

Casual visualization of prooflets is simple. Since prooflets are in fact “special” HTML tags, I can

specify what style the resulting content should be displayed with in both validated and invalidated

conditions. For instance, I can specify that if the content is validated by the web integrity client,

then it will appear to the user with a green background. wef the data was not validated then I can

specify that the content should be displayed with a red background. Obviously, this scheme lends

itself to spoofing attacks, and may not provide much information in itself to convince the user of

validation. (i.e., does green always associate with valid?) Thus, to provide a higher level of user

authentication, I now turn our attention to stronger forms of visualization that are more resilient

against forgery attacks.

21

22

7.2 wenteractive Deterrence Schemes

I now present several interactive deterrent schemes to further shield the user against spoofing attacks.

Each scheme requires some level of user interaction, but affords significantly better protection than

simple casual schemes. This scheme involves the web integrity client toolbar, the validation of single

prooflets, the prooflet view of the document, and the visualization of connected data. These concepts

will be described in the following sections.

7.3 Visual Portfolio Recognition System

In order to distinguish between visual elements created by the prooflet user interface, and visual

elements that are created by an attacker to appear like the prooflet user interface, I employ a visual

portfolio recognition system. Based on the notion that recognition systems are superior to typical

recall based approaches, I extend the visual hashing scheme presented by Dhamija and Perrig [6].

When prooflets are installed, a user selects 4 images out of a selection of 6,000 images that are

randomly presented to the user. These 4 pictures form what is called the visual portfolio. Each user

of the system thus would have their own visual portfolio.

The visual portfolio will be displayed on any visual element purporting to originate from the

prooflets user interface. Assuming the user has undergone an initial training period, visual recogni-

tion can be remarkably more successful than typical MAC phrase [23], personal identifier, or “magic

key” systems where the user is required to memorize a word or phrase.

With an image pool of size, say, 6,000 and a visual portfolio of four images, there is a huge number

of possible portfolios. Unlike English phrases, which are vulnerable to dictionary attacks, there is no

correlation between a picture and the one following it. Thus, the analogous of a dictionary attack

on a visual portfolio would have to be made against the full range of possible portfolios.

There is also some protection against insider attacks. An insider attack occurs when an attacker

has access to the computer screen of the victim. The attacker can then “read” the visual portfolio,

and attempt to use this in a later attack. Since I are using complicated images, however, it is difficult

for an attacker to simply record the images. Thus this provides a slightly higher degree of protection

against using strings as the identifier.

7.4 Web wentegrity Client Toolbar

The web integrity client is embedded into the browser: its interface consists of a toolbar that sits

adjacent (or nearby) to the address toolbar on the browser. The toolbar can be used to inform the

user of certain events. As was mentioned earlier, toolbars can be spoofed by an attacker. To counter

this, the visual portfolio is also displayed on the toolbar. Since all the following approaches are

interactive deterrents, I can assume that the client will take notice if the visual portfolio displayed

does not match the actual visual portfolio. (Section 6.2)

23

Figure 7.1: Sample view of an early version of the prooflets user interface.

7.5 Validating Single Prooflets

In order to validate any particular prooflet, the user needs only to hover the mouse over the content.

wef the content is validated, an icon on the toolbar will change to a green check-mark. wef it is not

validated, the icon will change to a red X mark. wef the content is not a prooflet, then the icon

will will be left blank. In this spirit of interactive deterrence, casual mouse-overs are not considered

validation attempts. This procedure only becomes useful when the user makes the asserted effort

to validate the prooflet. Since the user has a vested interest to examine the prooflet, she will most

likely “look out” for a change in the icon.

24

7.6 Prooflet View of the Document

wet is somewhat distracting for the user if they have to roll-over every prooflet they wish to manually

inspect. wenstead, some mechanism must be available to allow the user to visually inspect all

prooflets on the web page. The “prooflet view of the document” accomplishes just this. wet is

triggered when the user clicks an icon on the prooflets toolbar (a condition of interactive deterrence).

When triggered, all content that is not associated with a prooflet will slowly fade away from the

screen (though not completely). What the user is left with then is purely prooflet content. Since the

rest of the content is still slightly visible, the user can see the context of each prooflet and its relative

position on the page. The transition effect is intentional. As suggested by Chang and Ungar [4], the

slow modification of the document provides enough visual clues to help the user understand that the

prooflets are being emphasized. To prevent attacks against this view of the document, the original

document is first cloned, then purged of client-side scripts before being displayed to the user.

7.7 Visualization of Connected Data

Prooflets also support the ability to connect various content to each other. A typical use for this

is key-value pairs. For instance, if our web page listed several stock quotes, the stock symbol (key)

could be a content entity separate from the stock price (value). Although these connections can

be made contextually by the user, an attacker can rearrange the keys (in this case stock symbols).

Since all the keys are valid, the casual user may not realize that the key-value association has been

altered. To counter this attack, when the user enters the prooflet view of the document, keys and

their associated values are shown using the same background color. The user can then immediately

connect like colors and make inferences based on the relative locations of the prooflets.

7.8 Snapshot of Prooflet Content

At any point, the user can take a “snapshot” of all prooflets in a document. A snapshot consists

of displaying all prooflet related data, the associated keys, timestamp, and all other relevant data

concerning each prooflet in a tabular order. This window is launched by an icon on the toolbar, and

is protected using the visual portfolio approach described above.

7.9 Viewing Specific Prooflet wenformation

If the user wanted to view the particular authentication information about a single prooflet (i.e.

timestamp, keys, protected data, source, etc), the user right clicks on a suspected prooflet. wef the

content is indeed a prooflet, a new window will be displayed showing the relevant information. Like

the snapshot view, this window is protected using the visual portfolio.

Chapter 8

Conclusions

I have presented a secure and extensible system for verifying the integrity of web content. Our

prooflet framework allows for content providers to easily deploy their content is a distributed and

trusted way. Furthermore, the prooflet tags can be easily incorporated into HTML documents

and comply with existing web standards. Our End-to-End wentegrity client provides users with

an intuitive and unobtrusive interface for verifying the authentication status of sections of content

enclosed by prooflet tags.

Prooflets allow for a secure, high-volume content authentication system that has low overhead

and small operating costs. In addition, prooflets are both architecturally and economically scalable.

The use of prooflets leverages web services to achieve greater levels of portability and extensibility

in authenticating web content.

25

Chapter 9

Acknowledgments

I would like to thank Roberto Tamassia who has provided countless hours of advice and knowledge.

I would also like to thank Tom Deoppner for providing useful advice towards the completion of this

thesis. Finally, I would like to acknowledge the tremendous programming efforts of Micheal Shin,

and the graphics advice of Sean Cannella.

26

Bibliography

[1] Aris Anagnostopoulos, Michael T. Goodrich, and Roberto Tamassia. Persistent authenticated

dictionaries and their applications. In Proc. Information Security Conference (ISC 2001), vol-

ume 2200 of LNCS, pages 379–393. Springer-Verlag, 2001.

[2] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable certificate management using

undeniable attestations. In ACM Conference on Computer and Communications Security, pages

9–18. ACM Press, 2000.

[3] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient

revocation of anonymous credentials. In Proc. CRYPTO, 2002.

[4] Bay-Wei Chang and David Ungar. Animation: from cartoons to the user interface. In Pro-

ceedings of the 6th annual ACM symposium on User interface software and technology, pages

45–55. ACM Press, 1993.

[5] Premkumar Devanbu, Michael Gertz, Chip Martel, and Stuart Stubblebine. Authentic third-

party data publication. In Fourteenth IFIP 11.3 Conference on Database Security, 2000.

[6] Rachna Dhamija and Adrian Perrig. Deja vu: A user study. using images for authentication.

In Proceedings of the 9th USENIX Security Symposium, August 2000.

[7] T. Dierks and C. Allen. RFC 2246: The TLS protocol version 1, January 1999. Status:

PROPOSED STANDARD.

[8] ECMA. Ecmascript language specification, 1999.

[9] E. Felten, D. Balfanz, D. Dean, and D. Wallach. Web spoofing: An internet con game. In 20th

National Information Systems Security Conference, 1996.

[10] David Flanagan. JavaScript: The Definitive Guide. O’Reilly and Associates, 2001.

[11] Armando Fox, Steven D. Gribble, Yatin Chawathe, Anthony S. Polito, Andrew Huang, Ben-

jamin Ling, and Eric A. Brewer. Orthogonal extensions to the WWW user interface using

client-side technologies. In Proceedings of the 10th annual ACM symposium on User interface

software and technology, pages 83–84. ACM Press, 1997.

27

28

[12] Michael T. Goodrich, Michael Shin, Roberto Tamassia, and W. H. Winsborough. Authenticated

dictionaries for fresh attribute credentials. Technical report, Brown University, 2002.

[13] Michael T. Goodrich, Roberto Tamassia, and Jasminka Hasic. An efficient dynamic and dis-

tributed cryptographic accumulator. In Proc. Int. Security Conference (ISC 2002), volume 2433

of LNCS, pages 372–388. Springer-Verlag, 2002.

[14] Michael T. Goodrich, Roberto Tamassia, Nikos Triandopoulos, and Robert Cohen. Authenti-

cated data structures for graph and geometric searching. In Proc. RSA-CT, 2003. To appear.

[15] P. C. Kocher. On certificate revocation and validation. In Proc. Int. Conf. on Financial

Cryptography, volume 1465 of LNCS. Springer-Verlag, 1998.

[16] Paul Lomax, Matt Childs, and Ron Petrusha. VBScript in a Nutshell, 2nd Edition. O’Reilly

and Associates, 2003.

[17] Chip Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz, April Kwong,

and Stuart Stubblebine. A general model for authentic data publication, 2001.

http://www.cs.ucdavis.edu/˜devanbu/files/model-paper.pdf.

[18] Alan Morse. Some principles for the effective display of data. In Proceedings of the 6th annual

conference on Computer graphics and interactive techniques, pages 94–101, 1979.

[19] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. In Proc. 7th

USENIX Security Symposium, pages 217–228, San Antonio, 1998.

[20] Jakob Nielsen. User interface directions for the Web. Communications of the ACM, 42(1):65–72,

1999.

[21] F. De Paoli, A. L. DosSantos, and R. A. Kemmerer. Vulnerability of ‘Secure’ web browsers. In

Proceedings of the National Information Systems Security Conference, pages 476–487, 1997.

[22] W3C. Cascading style sheets, level 2, 1998.

[23] E. Ye and S.W. Smith. Trusted path for browsers. In Proceedings of the 11th Usenix Security

Symposium, August 2002.

[24] Eileen Ye, Yougu Yuan, and Sean Smith. Web Spoofing Revisited: SSL and Beyond. Technical

Report TR2002-417, Dartmouth College, Computer Science, Hanover, NH, February 2002.

