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1 Introduction and Motivation

An application for Intelligent Agents that has recently received attention is Supply Chain Management.
The use of Intelligent Agents makes possible new approaches to SCM problems, ranging from Sales De-
cisions, and Assembly and Distribution, to Inventory Management. This paper will explore the inventory
management problem in the context of an intelligent SCM agent.

We focus on a difficult inventory problem, that of producing optimal ordering policies for com-
ponents, when the demand for components overlaps products. The combinatorial nature of the cost-
minimization problem makes it difficult to optimize analytically. The goal of this study is to evaluate the
success of search techniques in finding optimal inventory policies.

The background is drawn mostly from Operations Research, where work has been done to char-
acterize the optimal solution to the inventory problem with correlated demands. We will present this
background, highlight the difficulties in using existing methods to manage inventory when decisions
must be made quickly, and evaluate the methods that an agent might use to overcome these difficulties.
Our results are obtained through simulation of an Assemble-To-Order (ATO) System.

As a framework, we use the problem of TAC (Trading Agent Competition) 2003, where an SCM prob-
lem for agents has been defined. TAC is a competition where agents compete as PC manufacturers who
must sell products, consisting of configurations of common components, based on market predictions.
Inventory Management is an essential agent activity.

2 Model

In this section, we will describe the way in which we have attempted to model the inventory problem for
a Supply Chain Management Agent. We will introduce the inventory mechanism and its notation, and
present some of the classical results of inventory theory from which our strategies are built. Sections three
and four will highlight some of the specific problems that arise in the more complicated environment in
which our agent will operate. We will then describe prior work that has been aimed at solving these
problems [8,9,12] before presenting our own strategies and results.

2.1 Assemble-To-Order

It is possible to model the TAC agent inventory problem as a cost-minimization problem in an Assemble-
To-Order system. An ATO system is one in which demand is received for products, and supply is ordered
in terms of components. Stock is held only for components, and products are assembled when an order
is filled. Assembly is instantaneous. [12] This resembles the TAC inventory problem, if we define filling
demand as delivering the necessary components, not to the customer, but to the assembly system. In this
case, we need only deliver the right group of components, so no assembly time is necessary. We must
deliver the components in a complete group, so the system looks the same as an ATO. In TAC, there are
multiple sets of goods that could fulfill the same product demand, but we will ignore that substitutability
for now.

Definition: ATO

• Components,iε{1, . . . ,m}
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• Productsjε{1, . . . , n}, st. j ⊆ {1, . . . ,m}

• Demand Distribution:ϕ(ξ = d) at timet

• Inventory:yi(t) = Stock ofi on hand at timet

• Penalties:pj, hi cost of product shortage, excess inventory

2.2 Inventory Management

Each day, demand is generated by each of our demand processes, and we are thus faced with a quantity of
each product that we are required to fill. In an Assemble-To-Order system, stock is stored in components.
When an order for a product comes in we have to take each of the required components out of stock and
assemble and deliver the product. An inventory policy aims to have all of the necessary components in
stock, so that orders can be filled from inventory that is already held on hand when the orders arrive.

However, the overriding goal is to minimize costs, and the holding cost is thus a prohibitive factor
that will limit the size of a stock that is profitable to hold. With limits on the quantity of inventory that
is held, it is possible that we will not be able to meet all of a particular day’s demand from the inventory
that we have on hand. In this case, a product order will need to be backordered while we wait for the
necessary components to arrive in stock.

Typically when orders are backordered, it will be among our highest priorities to fill these orders.
The mechanism that we have implemented for filling orders in this study is First-In, First-Out (FIFO),
which assigns priority to the earliest arriving orders. If backorders exist, then they will have to be filled
before the day’s demand (actually, we do not have a strict FIFO, as we make anything that we are capable
of making at the time). In reality, there will be an Assembly component to the agent that will decide
which orders are filled first, and we will provide components as they are needed. We will assume a more
pressing need for those components that the Assembly Component asks for first, so FIFO seems like a
good model of the Agent’s inventory service mechanism.

When the day’s demand is received, it is queued for fulfillment behind the backorders that have been
carried over from the day before. Thus, when backorders exist, our physical measure of inventory on
hand will not accurately represent our ability to meet incoming demand. We introduce a new term, Net
Inventory,ni, to represent our stock level of physical inventory for a component, less the quantity of that
component required to meet product orders that have already been backordered.

In defining backorders as demand that we are incapable of filling on its arrival, we are making the
assumption that it is desirable to fill orders as soon as they arrive. However, actual orders will be for
some specified future due date. Of course, it is possible to reduce the actual system into our system by
waiting until the due date to fill orders, so there is not necessarily any problem with our mechanism.
However, this approach ignores the value of advanced information to the inventory policy. Still, we must
consider that our demand is actually demand imposed on us by the Assembly component, so there is a
time of assembly as well. This means that the actual lag between customer orders and the time at which
the component is needed will bedue date lag - assembly time.

We choose, instead, to model the inventory system as an ATO where demand comes from the As-
sembly component, and is to be filled immediately. To take advantage of advanced information, we
will consider some portion of the demand deterministic, based on knowledge of the upcoming assembly
schedule, and some portion to be stochastic. The stochastic portion will be smaller than in a model that
does not account for advanced knowledge and can thus be predicted more accurately, lowering costs. For
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the purpose of this paper, we will look only at how to optimize the inventory levels necessary to prepare
for the stochastic portion of demand. Since we are concerned with the risk resulting from uncertainty
of demand when determining the optimal stock level, the components needed for filling deterministic
demand can be added to our solutions without affecting their optimality.

We will, however, pay close attention to the delay experienced in obtaining components from the
supplier. The notion of leadtime will be central to our solutions. When a component is ordered from
a supplier, there will be some delay, possibly stochastic, until it is received. As a result, we must plan
ahead with this delay in mind, realizing that we must order today the inventory not only for today’s or
tomorrow’s demand but possibly for demand due well in the future. In making decisions based on this
type of horizon, it becomes important to know not only how much inventory is physically on hand, but
how much is scheduled to arrive in the near future. Thus we add to our notation the termxi, representing
the quantity of componenti that is currently due to us from our suppliers.

A common assumption when modeling inventory is that leadtimes do not cross, meaning that all com-
ponents ordered at timet will arrive before those ordered at timet + 1. Again, this is not an assumption
that will necessarily be accurate, but a heuristic that helps in establishing optimality. A consequence of
this assumption is that we can count all orders that have been placed with the supplier asorders due
when making our current inventory decision, because they are guaranteed to have arrived before the
components that we are currently ordering.

Given these modeling assumptions, we can use the following variables to represent the state of our
ATO at a timet:

• yi(t) = Physical Inventory at timet

• wi(t) Quantity of Component Committed to Backordered Products

• ni(t) Net Inventory at timet

– ni(t) = yi(t)− wi(t)

• xi(t) Outstanding orders for component expected from supplier at timet

We will use these indicators to determine, based on our policy, the optimal amount of each component to
order at timet.

2.3 Maintaining A Basestock

The policy that we will implement for managing our inventory is called an “Order-Up-To Policy”, and is
dependent on establishing on optimal stock level called a “basestock level”, which the policy will then try
to maintain. The optimal basestock level,s∗, is generally not the quantity of physical inventory that we
have on hand. Rather,s∗ will be a target level at which we will attempt to keep our sum of Net Inventory
and Outstanding Orders.

The policy operates by (if possible) filling demand from inventory on hand, and then placing a re-
plenishment order for the same quantities of components that were used up in filling the day’s demand.
The actual quantity ordered is thus dependent on both the inventory position (on hand, backorder, and
due from suppliers) at the start of the day and the day’s demand.

If we first fill the day’s demand (or backorder what we cannot fill), the ordering decision for dayt
becomes:
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Order Quantity for dayt, zi(t) = s∗ − ni(t)− xi(t)

2.3.1 Optimality of Order-Up-To Policies

The basestock strategy is meant to ensure that there are always enough components in the system (in
inventory or on the way) to fill the demand that is expected between today and the time at which any
parts ordered today will arrive. The following analysis will consider only a single time periodt, with the
purpose of proving that, given a distribution for demand, there exists an optimal level at which to keep
your holdings so as to minimize expected costs. Furthermore, we see that this optimal solution is depen-
dent on the respective costs of ordering too little or too much of a component, and attempts to balance
the expected costs of each.

Focusing on a system of only one item (one component and one product), if we follow an order-up-
to policy, then the cost for each period can be described by the function:
g(d, y) = h× (y − d); y > d

p× (d− y); y ≤ d
The expected costs for a given stock level can thus be expressed by C(y):

C(y) =
∫∞
0 g(ξ, y)ϕ(ξ) dξ.

Splitting holding and shortage costs, we get:
C(y) = h

∫ y
0 (y − ξ)ϕ(ξ) dξ. + p

∫∞
y (ξ − y)ϕ(ξ) dξ.

Later on, we will look at evaluating this to obtain an expectation of our costs, but to show that the order-
up-to policy is optimal (and to compute the optimal basestock, for that matter), we only need to find a
minimum to C(y), so we set the derivative to 0.

dC(y)
dy

= h
∫ y
0 ϕ(ξ) dξ.− p

∫∞
y ϕ(ξ) dξ. = 0

Integrating over the pdf,ξ, we get the cdf,Φ, and because
∫∞
0 ϕ(ξ) dξ. = 1,

hΦ(y∗) = p[1− Φ(y∗)] = 0, and thusΦ(y∗) = p
p+h

[3]

We obtain the somewhat intuitive answer that the optimal basestock in a stochastic setting is one which
sets the probability of overordering to the ratio of theshortagepenalty toholding + shortagepenalties.

This proof will hold for a general demand distribution, though we will assume a Poisson demand process
(i.e independence of demand between time periods). The requirement for optimality to hold is the con-
vexity of the expected cost curve. This ensures that there will be a global minimum and is true provided
non-decreasing holding and shortage costs. Thus there exists an optimal order-up-to policy for a very
general case of the single-item problem.

3 Single-Item Solutions

The case considered in the above proof, where only a single period comes into consideration is known as
the “Newsvendor Problem” (so-called because demand for a particular newspaper lasts only for a single
day), and has been well studied. As in the Newsvendor case, we will begin our study of Inventory Control
policies through time, by examining the single item case. The calculations are a good deal simpler than
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in the TAC problem, but it is a revealing special case of an ATO.

If C(s, ϕ(ξ)), is the cost function, given a basestocky, and a (exogenous) demand function, we can
formulate the single-item optimization problem [12] as follows:
C(s, ϕ(ξ)) = minimizeE[

∑T
t=0[hyt + pwt]]

subject to
zt + yt = s
zt + wt = d(t)
wt, yt, zt ≥ 0, ∀w, x, z

We assume that the demand and cost functions are stationary, so the optimaly remains the same
throughout all periods. For the single-item case, this optimization problem can be easily solved as a
linear program. However, we will detail algorithms for determining the optimal basestock levely that
will be useful in our approximations of the larger multi-product optimization problem.

3.1 Zero Leadtime

The first case is the case of zero leadtime. This is a special case in itself, and has an optimal solution for
any configuration of components to products. When leadtime is zero, we can satisfy demand immediately
as it is realized. Assuming unlimited capacity, there is no need to follow a policy in this case. This
approach will remain optimal with any type of stochastic demand or correlation between components, so
we will have no need to look any further at the zero leadtime case.

3.2 Deterministic Demand/ Deterministic Leadtime

The deterministic demand/deterministic leadtime case collapses to a zero leadtime case, where decisions
need to be made a leadtime cycle before the due date. Although we cannot instantly fill demand, as we do
in the zero leadtime case, we do have full knowledge of the demand schedule, and can thus order ahead
of time and never have to face uncertainty.

This solution is useful in conceptualizing the way in which a basestock is affected by leadtime. Al-
though, with deterministic demand we should be able to maintain a physical inventory of 0 (by ordering
exactly the amount necessary to fill demand), our optimal basestock will be equal to theleadtime demand,
and will consist entirely of outstanding supplier orders.

Leadtime demand is an important concept in the functioning of a basestock policy. We have estab-
lished that the goal of a basestock policy is to maintain a level of components in the system sufficient
for meeting the demand that we expect during a leadtime cycle. The strategy we have described for the
deterministic demand/deterministic leadtime case equates to maintaining a basestock ofλ ∗ l = leadtime
demand.

Algorithm ComputeDeterministicBasestock
Inputs:
Demand Rateλ
Leadtimel
Outputs:
Optimal Basestock Levels∗
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1. LeadtimeDemand =λ ∗ l

2. Returns∗ =LeadtimeDemand

3.3 Stochastic Demand/Deterministic Leadtime

With stochastic demand, the goals are the same as in the deterministic case. If we will be fulfilling an
order on dayt, then we must order that quantity on dayt − l, since it will takel days to arrive. If we
do this properly, we can fill the order from the inventory on hand (most of which will have arrived at the
start of the day). If we keepXi + Ni equal to the leadtime demand, then our inventory on hand can be
used to fill all orders prior to the arrivall days from now. The problem in the stochastic case, is that we
do not know exactly what the leadtime demand will be. We could carry the expected leadtime demand,
but if we face very high backorder costs or very high holding costs then it will be to our advantage to
order more or less so that we increase or decrease our probability of overordering or underordering to
avoid the larger cost. The basestock level that optimally balances these costs can be obtained using the
inverse cumulative distribution function of the leadtime demand distribution.

The goal is to set:
P (Overordering) ∗ CostOfOverordering= P (Underordering) ∗ CostOfUnderordering
If φ is the cumulative distribution function of Leadtime-Demand, then, in the single-item case, this trans-
lates to:

s∗ ← φ−1 b
b+h)

In the single item case,b is the unit costs of underordering and filling demand late.h is the unit cost of
overordering and holding excess inventory.

Algorithm ComputeStochasticDemandBasestock
Inputs:
Poisson Process with rateλ
Leadtimel
Late Penaltyp
Holding Costh
Outputs:
Optimal Basestock Levels∗

1. LeadtimeDemand← PoissonProcess with rateλ ∗ l

2. UnitCostOfUnderordering← p

3. UnitCostofOverordering← h

4. DesiredRiskOfExcess←UnitCostofUnderordering/(UnitCostOfUnderordering + UnitCostOfOverorder-
ing)

5. Letφ = InverseCumulativeFunction of LeadtimeDemand

6. s∗ ← φ(DesiredRiskOfExcess)

7. Returns∗
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3.3.1 A basestock example

Problem: We have one item which we can buy from a supplier for 10 dollars at a deterministic leadtime
of 3 days, and can sell for 20 dollars. Daily demand comes in the form of a Poisson process with a
rate of 20 items per day. If more items arrive from the supplier than there is demand for, we can hold
items in inventory at a cost of$5 per unit per night. If our net inventory (Inventory on hand - Customer
Backorders), is less than the days demand, we are charged a shortage price of 8 dollars for every unfilled
order (backlogged) at the end of the day. What is the optimal basestock level to maintain?

Solution: With deterministic leadtime of three days, the leadtime demand,φ will come in a Poisson
process with rate of 60.
DesiredRiskOfExcess =8

8+5
= .6154

BaseStock =φ−1(.6154) = 62 Items.

Figure 1: Ending Balance and C(s)
Refer to Figure 1 in the appendix. The graph shows results from simulations of basestock policies from
40 to 80, under the above conditions, with the optimal at 62. Notice the holding costs increasing with s,
and the shortage penalties decreasing.

3.3.2 Steady State Analysis

Steady-State analysis illustrates the relationships between all of our state values, and translates into an
alternate representation of the objective function and the optimal basestock level. The ATO system can
be modeled as an M/G/∞ queueing system. This means that inputs are Poisson processes , service times
are generally distributed, and there are an infinite number of servers. This is a fitting description of our
system, where demand from customers constitutes the entry of an order into the system, and arrival of
components into stock constitutes a departure. Thus, all orders due from the supplier can be considered
jobs in our system.

Since we place a replenishment order with our suppliers whenever we fill demand, there is a Poisson
arrival of jobs into the system. Furthermore, an infinite server queuing system has the characteristic that
every job arriving is immediately serviced, and thus there are no queues, only jobs being serviced. The
effect of this is that the time needed to service a job (receive an order from the supplier) is independent
of the number of jobs being serviced. Since every order is given a leadtime, and that length of time
represents its service time, regardless of the number of other orders due, an infinite server system is
the appropriate model. (Future work will be to model correlation in our leadtime distribution, so that
the service times are no longer generated by independent distributions, though this does not necessarily
mean reducing the number of servers).

The M/G/∞ queueing model provides a complete description of the variablexi. The variableXi

can be used to represent the steady-state level of jobs in the system and thus the expected value ofxi.
This value should equalλ

µ
, whereλ is the arrival rate, andµ is the service rate.λ is simply the rate of

the Poisson process generating demands andµ is equal to 1
E[l]

, sincel, the leadtime, is the time for any
service. Thus, the number of orders we expect to have due from the supplier at any time is:Xi = λi∗E[li]

The above equation implies that the expected number of outstanding supplier orders is not affected
by the level ofs∗ that we set, provided we operate an order-up-to policy. What our policy will decide, are
the respective levels of on-hand inventory and backorders. We can express these in terms ofXi andsi.
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This allows for the steady-state formulation of other system indicators as described by [8].

• Ni is the steady-state distribution of Net Inventory for itemi.

• Ii is the steady-state distribution of Inventory on hand for itemi.

• B will represent steady-state distributions of backorders, withBj representing product backorders
for productj, andBi representing the number of product backorders caused by a shortage of com-
ponenti. In the single item case, we will useBi to represent both the product and the component.

Since these distributions are dependent on our policys, we will use the notationNi(s), Ii(s), andBi(s)
to represent that steady-state distributions resulting from a specific policy.
By definition of the ordering decision under an Order-Up-To policy,Ni(s) = si − xi. Costs are bases on
Ii andBi, which together make up the Net Inventory. When Net Inventory is positive, we will be charged
holding costs on excess inventory. When Net Inventory is negative, we will incur shortage penalties.
Thus, we have the identities:

• Ii(si) = [si −Xi]
+

• Bi(si) = [Xi − si]
+

SinceXi is determined exogenously, we can clearly see the way in which our policys determines costs.
The actual costs can be computed by integrating over the distribution,Xi, to obtain:

• Ii(si) =
∫ si
0 (si − xi) dxi

• Bi(si) =
∫∞
si

(xi − si) dxi

The expected costs in the steady-state
Ci(si) = h

∫ si
0 (si − xi)P [Xi = xi] dxi

+ p
∫∞
si

(xi − si)P [Xi = xi] dxi

closely resemble those in the Newsvendor problem,with the distinction that we compare demand over a
leadtime to supply + supply due, rather than a day’s supply and demand. We can optimizesi using the
inverse cdf ofXi the same way we minimized costs by computingy from the inverse cdf of demand in
the Newsvendor problem.

3.4 Stochastic Leadtime

When both demand and leadtime are stochastic, the optimal policy will be dependent on the leadtime
demand. When demand is Poisson distributed, the expected arrivals in consecutive days are independent
random variables. Because Poisson processes can be split and aggregated into Poisson processes, the
distribution for the demand over a leadtime consisting of some uncertain number of periods is exactly
a Poisson distribution, with a rate ofλ ∗ E[l]. Thus, the algorithm above can be easily adapted to the
case of stochastic leadtimes. Although this is a trivial change from the case of deterministic leadtime, we
present the algorithm because it will be called by algorithms developed later:

Algorithm ComputeBasestock
Inputs:
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Poisson Process with rateλ
Leadtime Distributionϕ(L = l)
Late Penaltyp
Holding Costh
Outputs:
Optimal Basestock Levels∗

1. LeadtimeDemand← PoissonProcess with rateλ ∗ E[l]

2. UnitCostOfUnderordering← p

3. UnitCostofOverordering← h

4. DesiredRiskOfExcess←UnitCostofUnderordering/(UnitCostOfUnderordering + UnitCostOfOverorder-
ing)

5. Letφ = InverseCumulativeFunction of LeadtimeDemand

6. s∗ ← φ(DesiredRiskOfExcess)

7. Returns∗

4 Assembly System

Another special case of an Assemble-To-Order system is an assembly system. In an assembly system,
there is only one product being produced, but it must be assembled from several components. The
solutions are considerably more complex than in the newsvendor problem, but are more intuitive than in
the Multi-Product case.

4.1 Deterministic

The deterministic case for an assembly system is not much more complicated than in the single-item case.
Complexity in assembly systems arises from reliance on the joint demand of components to determine
expected penalty costs. As in the single-product system, in the deterministic case of an Assembly system,
the optimal ordering policy will create zero penalty costs, so we do not need to worry about joint demand.
For each component in the Assembly System, the (Order-Based) policy is to determine the leadtime
demand for the product and multiply that quantity by the quantity of the component that is needed for
each unit of product demand that is filled. This allows us to solve a Newsvendor-like problem for each
component.

Components in an assembly system are complementary. When supply of one is increased, supply of
the others should be increased as well, to maintain optimality. This has no effect on the deterministic
optimal policy, but will be important in the stochastic case. If a product consists of two components, we
always want supply to be equal. If supply of one component exceeds that of the other, that supply must
be held as excess, since we cannot yet deliver the product. Thus, even though the joint policy determines
the balance, we only need to look at one decision variable to determine the supply of both components.
This allows a single-item approach to perform optimally.
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4.2 Deterministic, Different Leadtimes

The leadtime demand can be calculated separately for each component in an assembly system if they have
different deterministic leadtimes. Again, since penalty costs are avoided altogether, it is not necessary to
consider joint demand. This allows us to solve a Newsvendor-type problem for each component.

4.3 Stochastic, Deterministic Leadtimes

The stochastic problem with deterministic leadtimes can be solved by computing the single-item solution
for the product. Essentially, we treat the entire group of components as one item. We can ensure that
there will always be the same stock level for each component present, so we can think of the product as
one item and order the components together. Thus, the holding cost will be the sum of all holding costs
and the backorder cost will be the backorder penalty for the product. We can then order that amount for
each.

Algorithm StochasticAssemblySolution
Inputs:
Poisson Process with rateλ
Leadtimel
Late Penaltyp
Holding Cost vectorh
vectorA = ai

Outputs: Optimal Basestock policy,m-vectors∗

1. LeadtimeDemand = PoissonProcess with rateλ ∗ l

2. UnitCostOfUnderordering← p

3. UnitCostofOverordering← ∑
i hi

4. DesiredRiskOfProductExcess←UnitCostofUnderordering/(UnitCostOfUnderordering + UnitCostO-
fOverordering)

5. Letφ = InverseCumulativeFunction of LeadtimeDemand

6. Fori = 1...m

7. s∗i ← φ(DesiredRiskOfProductExcess) ∗ Ai

4.4 Stochastic, Stochastic Leadtimes

When leadtimes are stochastic, the Assembly system problem becomes considerably more difficult. With
deterministic leadtimes, we had assurance that we could schedule complementary components to arrive
simultaneously. This assurance allowed us to treat the entire product as a single item. However, when
leadtimes are different, there is a chance that one component will arrive on time, but we will still need
to hold it in inventory because another component has been delayed. In addition, when a component is
delayed, we do not know whether the shortage penalty is caused entirely by that component, or if several
components have been delayed. Thus, shortage costs become a function of the joint basestock policy.
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We can still compute a steady-state for component shortages using only the component demand and
its expected leadtime, but we are unable to predict how this will translate into product shortages without
taking the leadtime distributions of the other components into account. We will give approximation
methods for the costs incurred, as developed in [9], when we solve the multi-product problem.

5 Difficulties in the Multi-Product Case

5.1 Multi-Product Singleton

If there are multiple products, and each one is distinctly composed of one component, than it is possible
to use ComputeBasestock to solve for the optimal policy for each item, since there is no correlation
between the items or the backorder costs.

5.2 Multi-Product No Overlap

If there are multiple products, and each one is composed of a distinct set of components, then it is possible
to use StochasticAssemblySolution on each product to compute a stock policy for its components.

5.3 Overlapping Component Demand

Unfortunately, even in the case of deterministic leadtime, it is not possible to solve this problem opti-
mally using StochasticAssemblySolution if the products share components. It may seem intuitive to use
StochasticAssemblySolution on each product, and then sum up the stock levels needed for the solution
of each product in which the component is included. However, this approach is flawed in that it does not
account for our ability to pool our risks by dealing with separate outstanding order queues for the same
component as one queue. The following example of a multi-product ATO with component overlap will
make this clear.

5.3.1 Risk Pooling

We have two products, A and B, each consisting of one component, C. We will assign a backorder cost
of 5 to each product and a demand rate of 20 units. The holding cost for C is 3. The leadtime for C is 3
days.

The item-based solution for both A and B is calculated as follows:
Leadtime Demand = 60.
DesiredRiskOfExcess = (5/8)
s∗ = 64
Total Item-Based stock level= 128

If the demand processes are both Poisson, we know that the total demand for C, from the aggregate
of the processes will be a Poisson process with a rate of 40.
We can calculate a true optimal stock level for C using the aggregate demand:
LeadtimeDemand = 120.
DesiredRiskOfExcess = (5/8)
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s∗ = 126
The Product-Based policy overestimates the risk of stocking out and will accumulate excess holding
costs.

5.3.2 Backorders and The Joint Cost Function

The ’Risk Pooling’ example suggests that to calculate the optimal policy for each component based on
independent item calculations, we should calculate for the aggregate component demand stream, rather
than solving a single-item problem for each product and extending the solution to its components. How-
ever, this approach makes it difficult to assess the shortage costs for each item, as the exact shortage cost
for a unit of each component must consider the penalties that could result from a shortage of each product
the component is in, and in the correct proportions. In the assembly system approach, we recognized that
when we underorder for one component, we incur penalties not only for failure to fill demand on time,
but for the excess of other components that we now hold. The extent of these penalties is dependent on
the joint stock policy. We will now look at how the optimal vectors can be calculated.

We can use the queuing approach to aid in developing an expression for the expected cost. If we have
steady-state values for theI(s) andB(s), then we can use them to calculate expected costs [9]. For any
component, the total expected costs will have a holding cost component and a penalty cost component.
The holding cost component will be dependent onI(s) and onhi. The penalty cost component will be
dependent onB(s) and on bothhi andbj, since component shortages result in both product shortages
and excess inventory of other components.

As in the derivation of the optimal basestock policy, the cost function will consist of steady-state
inventory,

∫ si
0 (si − Xi) dxi. = [si − Xi]

+ times the cost of overordering, and steady-state backorders∫∞
si

(X−si) dxi. = [Xi − si]
+ times the cost of underordering.bj is a shortage cost applied to products,

and we will thus have to assess a penalty ofbj on product shortages, which have a steady-state rate of
BK(s). One component of the cost function will be this product

∑
j bjE[Bj(s)]. hi is a unit holding

cost applied to components. It is clear that we will incur a costhi ∗ [si −Xi]
+ which by the steady state

identities is equivalent to[si −Xi + Bi(si)]. This cost covers the holding cost for holding inventory up
to our basestock levels.

Still missing from our cost function is a term to represent the holding costs incurred on comple-
mentary components when a component is backordered. Sincehi is a per component cost, this must be
component-based. The rate at which we experience shortage related holding costs for componenti is
Ji(s) =

∑
j3i[B

j(s)−Bj
i (si)]. [Bj(s)−Bj

i (si)] is the difference in that rate of backorders for productj
and the rate of shortages for componenti resulting from demand forj. This difference represents the rate
at which componenti is delivered to meet demand forj, only to be held because of a shortage of another
component.
[9] shows that the expected costs sum to:

C(s) =
∑

i hisi +
∑

j b̃jE[Bj(s)]

whereb̃j = bj +
∑

iεj hi

The backorder cost for one component is dependent on the backorder rate of other components and thus
their policies, making the overall backorder cost minimization problem a non-separable function of the
joint distribution.

The approach outlined in [9] is to solve an independent problem for each component to determine its
optimal level. We estimate the shortage costs that a backorder of componenti will cause in each product
j, iεj in such a way that we are assured an upper bound on each components basestock level. This
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eliminates the problem of not having an accurate way of translating product demand into component
demand (because of risk pooling) or component costs into product costs(due to an inseparable function
for backorder costs). However, the approach is difficult to implement in that it involves evaluatingC(s),
which is a difficult problem in itself.

We experiment with evaluatingC(s) through simulation. The benefits of this approach are limited
by the problem that inexact cost values can disrupt the convexity ofC(s) and the time required to reach
steady state average costs makes the algorithm undesirable for practical use.

6 Approximations

6.1 Upper Bound

In the equation for the optimal cost, the total backorder cost is calculated for products, and is a function
of the product backorder rate and the product backorder cost. In order to separate the cost equation, a
bound can be put on the effect that a change in one items basestock has on the total backorder costs.
Recall thatBj(s) = maxiεj Bj

i (si)
An effect of this is that:Bj(s + ei)−Bj(s) ≥ Bj(s). [9]
We expect the derivative of the function of Steady-State backorders due to type j demand from item i to
relate to that of all demand for item by the ratioλj

λi
, the ratio of demand for productj, to that of itemi.

(Note that if we relax the unit matrix restraint we need to multiply this byaji.)
Thus, if we take the expectation of the above inequality, we get the relationship we need between the

derivatives:4iB
j(s) ≥ 4iB

K
i jsi) = λj

λi
4Bi(si)

Since the derivative of the holding costs is constant with respect tos, this inequality containing the
derivative of the backorder costs can be extended to the derivative ofC(s). From this we can obtain that
4iC(s) ≥ 4iCI(s). [9] show that by the submodularity of C(s), this leads directly to the conclusion that
s∗i ≤ sI∗

i for all i. Thus, if we optimizesi for bi =
∑

j3i
λj

λi
(bj +

∑
jεj

hj) we obtain a lower bound ons∗.
Essentially, we have shown that by overstating the effects of a component shortage, we can achieve a

definite upper bound ons∗. The unit backorder cost is determined by two things. When components over-
lap products, the difficulty is to assess what portion of the backorders for a component will be expressed
by a late order in each product. Furthermore, when a backorder for componenti causes a penalty on an
order of productj, what is the additional cost that can be expected because of holding costs paid on other
components in that product that have already arrived at the supplier. These expectations are calculated
by integrating over an exponential number of permutations of leadtime distributions [8], but we can only
estimate when deriving closed form approximations [9]. The cost calculation associated with the above
upper bound forsi assumes that every time a component is backordered, it causes a penalty that would
not have already been caused by a shortage of a complementary component.

Thus, for each component, when we compute the upper bound, we assume that:

1. The unit shortage cost for componenti includes a portion of costs from each product,j, that is
proportional to the expected costs of a shortage of productj caused by a backorder of component
i, by the proportion of demand for componenti that comes from productj.
This means that we expect a shortage penalty to result from every backorder of producti, (

∑
j3i

λj

λi
=

1), and that any shortage ofK that occurs when multiple components are out of stock, is counted
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multiple times.

2. Each time there is a backorder of componenti resulting in a shortage of productj, we expect to
incur as a result of that backorder of componenti, a holding cost on every item inj other thani.

The above provides an intuitive description to accompany the mathematical proof of [9]. This type
of understanding is necessary in looking for a lower bound to increase the effectiveness of the closed
form approximations. [9] provide no mathematical proof for their suggested lower bound, but point
to extensive empirical evidence. The goal in determining a lower bound would be to understate the
effects of a shortage, rather than overstate. The counterpart of our upper bound would be to assume
that all of the components that are packaged in a product with componenti are stocked out when
componenti is stocked out. This estimate is both unrealistic and too low to be effective. A tighter
lower bound is suggested by [9], with justification provided in that paper. We computed this bound:
pi = Σj={i}

λj

λi + Σj3i,j 6={i}
λj

2maxcεj{λc}(p
j +

∑
cεj,c 6=i hc)

This bound is based on the idea that if the shortages of respective components in a product occur si-
multaneously as much as possible, the product backorder rate will be the maximum of all components
backorder rates, since no other component will cause a product shortage when this components is in
stock.
The two bounds described in this section yield the following algorithms, used to initiate our search pro-
cedures:

ComputeUpperBound
inputs:
ATO System
output:
m-vector,s, of Upper Bounds on Optimal Basestock levels

1. ∀i

2. λi = Σj3i aji ∗ λj

3. pi = Σj3i
λj

λi
(pj +

∑
cεj,c 6=i hc)

4. ∀i

5. si = ComputeStochasticBasestock(λi, li, pi, hi)

ComputeLowerBound
inputs:
ATO System
output:
m-vector,s, of Lower Bounds on Optimal Basestock levels

1. ∀i

2. λi = Σj3i aji ∗ λj
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3. pi = Σj={i}
λj

λi + Σj3i,j 6={i}
λj

2maxcεj{λc}(p
j +

∑
cεj,c 6=i hc)

4. ∀i

5. si = ComputeStochasticBasestock(λi, li, pi, hi)

7 Search Algorithms

We implement search algorithms to obtain solutions better than those given by closed-form approxima-
tions. [9] suggest that the a global optimal solution can be reached in polynomial time using a Steepest
Descent or Best Improvement method. This claim, however, rested on the ability to evaluate the cost
functionC(s) exactly. They rely on existing methods for minimization of submodular functions to find
the best neighbor policy. The simulation-based Best Improvement search relies on an exponential num-
ber of simulations to find the minimum of the neighborhood that they suggest, and is thus impractical,
despite its it optimal performance. We use the same methods in generating bounds to the optimal policy
but use simulation-based comparisons and experiment with search algorithms that will be more practical
than Best Improvement.

This section will describe the general structure of the algorithm we use to find a basestock, and sev-
eral searches that we have implemented and tested.

Algorithm: FindCorrelatedPolicy
Inputs: ATO System, StartingBound, SearchType, SimDays
Outputs: Vectors of component basestock levels
Initialize:
UpperBound← ComputeUpperBound(ATO)
LowerBound← ComputeLowerBound(ATO)
s← StartingBound
s′ ← s

1. while (s′ = s)

2. s′ ← s

3. s←Search(ATO system,s, SimDays)

4. Returns

To initialize, we call the ComputeUpperBound and ComputeLowerBound algorithms from above. We
experiment by altering the search used in step 3. The “Steepest Descent” search was implemented as
follows:

Best Improvement Search
Inputs: ATO System,s, SimDays
Output: s∗

Initialize:
s∗ ← s
H ← {s′ | ∀i, (si − s′i)ε{0, 1}}
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1. ∀s′εH

2. if Evaluate(s′, ATO, SimDays) < Evaluate(s∗, ATO, SimDays)

3. s∗ ← s′

4. returns∗

To reduce search time, we replaced Best Improvement Search with First Improvement Search, or “Hill-
Climbing”:

First Improvement Search
Inputs: ATO System,s, SimDays
Output: s∗

Initialize:
s∗ ← s
H ← {s′st.‖(si − s′i)‖ = 1, iε{1 . . . m} ∧ si = s′i, h 6= i}

1. while(s∗ = s ∧H 6= ∅)

2. randomly chooses′εH

3. H ← H − s′

4. if Evaluate(s′, ATO, SimDays) < Evaluate(s∗, ATO, SimDays)

5. s∗ ← s′

6. returns∗

Since First-Improvement finds a local minimum (as does steepest descent, though with a greater prob-
ability that the local will also be a global minimum, in our case), the initialization is important. Typically,
the search can be executed multiple times, with random restart positions used. We tried starting it twice,
using each bound as a starting position. Finally, we improved on the performance of First Improvement
by implementing Simulated Annealing:

Simulated Annealing
Inputs: ATO System,s, SimDays, Cooling Schedule
Output: s∗

Initialize:
s∗ ← s
s′ ← s H ← {s′st.‖(si − s′i)‖ = 1, iε{1 . . . m} ∧ si = s′i, h 6= i}
T according to Cooling Schedule

1. while(s∗ = s ∧H 6= ∅)

2. randomly chooses′′εH

3. H ← H − s′′
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4. 4(s′, s′′)← Evaluate(s′′,ATO,SimDays) - Evaluate(s′,ATO,SimDays)

5. if rand[0, 1] ≤ exp{−4(s′,s′′)
T
}

6. if Evaluate(s′′, ATO, SimDays) < Evaluate(s∗, ATO, SimDays)

7. s∗ ← s′′

8. Update T according to schedule

9. returns∗

For a cooling schedule we obtained good results by initializingT = 4, and cooling according to the
scheduleTi = 4 ∗ .8

i
2 , wherei is the total number of search iterations that have been executed. Each

iteration consists of a full execution of the algorithm above, which itself is called iteratively from Find-
CorrelatedPolicy. All of these searches are iterative and generate a new neighborhood for their solution
until a local a minimum is found, though this part of the search has been abstracted into the FindCorre-
latedPolicy algorithm in this section.

8 Simulation

Our search is dependent on our ability (imperfect as it may be) to evaluate the level of costs that we
expect to incur when implementing a particular basestock policy, and thus to choose the better of two or
more policies. We do this by simulation, using our own ATO simulator. We simulate both the behavior
of the market, through randomly generated demands and leadtimes, and the behavior of our agent, by
managing inventory with an Order-Up-To mechanism.
The design of the simulator is as follows:

ATO Simulator
Input: ATO, Simulation Length, Policy
Output: Cost/Day

• The product structure of the ATO is expressed as ann ×m matrix A, whereaij is the number of
units of componentsi needed to assemble one unit of productj.

• For each product, there is a sale price and a demand distribution associated with it.

• Each day’s demand is generated by samplingn Poisson demand distributions.

• For each component, there is a cost of purchase and a leadtime distribution associated with it.

• Leadtime is discretely distributed, with an expected delivery date, and probabilities associated to
a finite number of delay lengths. A component’s leadtime distribution is randomly sampled every
time an order is placed for the component, to determine when that components will arrive (this
information is stored internally in the order and only the distribution is known to the agent).

A high-level view of a simulation day is as follows:
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1. Supplier Progress: All orders due are moved one day closer to arrival. Orders that have reached
their arrival date are removed from the outstanding orders queue and added to the stock of physical
inventory. When a component arrives, its cost is subtracted from the starting balance.

2. Daily Demand: All of the product demand distributions are sampled, and the matrixA is used
to convertdj(t) into dj(t) ∗ A = di(t). Component demands are then added into the queue of
backorders waiting to be filled. Existing backorders and the newly generated demand are filled
until supply runs out, at which point, a late penalty is assessed for all items remaining in the
backorder queue. When an item is filled, its sale price is added to the balance.

3. Restock: Orders are placed for components according to the policy that was input at the start of the
simulation. Specifically, for each componenti, zi = s− yi + wi − xi is ordered, and that quantity
is added to the queue of orders due from the supplier. A leadtime, sampled from the distribution is
assigned to each order.

4. End of Day: A holding penalty is subtracted from the balance for each unit of stock that remains
in physical inventory at the end of the day. In TAC, interest will be accumulated at this time, with
holding costs coming in the form of lost interest.

Since we are trying to minimize computation time, we want to keep our simulations as short as pos-
sible. However, a large number of cycles are required for convergence to steady-state values and thus
for accurate cost predictions. Still, the policy that performs better in a short simulation is likely, with
some likely probability, to perform better in the steady-state. Part of our research has been directed at
determining a simulation length that will evaluate correctly with a large probability while using only a
minimum of computation time. The table below shows the average distance form the mean in samples
of cost estimates taken at different lengths in an ATO system that we studied. The variance continues to
reduce dramatically as the simulation length is extended up to 20,000 days of simulation, but stabilizes
thereafter. Thus, we accept the results of 25,000 day simulations as steady-state results and base on out
performance evaluations on these figures. Simulations performed while searching must be considerably
shorter, with a goal of simulating less than 100 days. The table shows a good deal of variance in the cost
estimates at this length. There is enough variance that the policy chosen through a comparison based on
data obtained at this length will not necessarily be the better policy with steady-state data. The effects of
this error on the performance of policies obtained through search are examined in the Results section.

Simulations Days Avg Distance from Mean in 10 samples
5000 4.215259999999989

10000 4.260071999999968
15000 3.844680000000005
20000 3.7984373333333226
25000 1.9263360000000376
30000 1.79210000455

Figures 2-4 in the appendix show data collected from simulations of a two-product system with cor-
relation. Multiple polices were simulated in an attempt to characterize the cost function for the system.

• Figure 2 shows data collected from 25,000 day simulations with policy increments of 5 to show the
general convexity of the cost function.
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• Figure 3 shows data collected from 25,000 day simulation with policy increments of 1. The curve
is not smooth, because their is correlation, but there is only a global minimum.

• Figure 4 shows data collected from 15,000 day simulations, and stochastic leadtimes (Figure 2 used
deterministic, which speeds convergence). The curve has a similar general shape, but local minima
exist. Actual searches will have more variance than in figure 4.

9 Results

The following is a summary of results we obtained in testing of search algorithms on a number of two
and three-product ATO’s. We tested over a range of simulation lengths (for evaluation) and cost ratios.
Refer to the appendix for more specifics. For consistency, we present data collected, except when it is
stated that we are testing a range of a particular variable, from the following three-product ATO, which
we will call the “Test System”.

ATO: TestSystem
Components: A,B,C
∀i, ϕ(li) :

• 3 days: 50%

• 4 days: 30%

• 5 days: 20%

Each component has a cost of$10 per unit.
Holding costswere identical for each components but varied among simulations.
Products: A,B,ABC

• Product A:$50 per unit,pA = 30, Poisson Demandλ = 3

• Product B:$90 per unit,pB = 54, Poisson Demandλ = 6

• Product ABC:$90 per unit,pABC = 54, Poisson Demandλ = 6

9.1 Closed-Form Performance

One of the most important results we obtained was that the bounds proposed by [9] worked well in
practice. In experiments conducted on two and three product systems with correlated demands, we
consistently found the optimal to lie between these bounds. Moreover, the bounds were sufficiently tight
to suggest that they may be of use as approximations in environments where decision time is severely
limited; TAC being among these situations.

Though tests on larger systems are still necessary, these results are encouraging. In comparison of the
performance results of the upper bound policy to those of the optimal policy, we consistently found the
costs/day to be within 5% of the optimal in 25000 day simulations.
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9.2 Computation Time

Using the upper bound as a policy would have obvious advantages in terms of computation time, as
no search is necessary. Even among searches, there was a significant range of search times. Since the
limiting factor in the speed of a search is the number of simulations that are needed before termination
of the algorithm, we compared computation time by keeping track of the average number of simulations
needed by each algorithm as an indicator.

Search procedures were tested on the Test System, with a range of simulation lengths. Below are
average number of simulations per search for 200 searches spread uniformly over the range of simulation
lengths{10, 20, . . . , 100}

• Steepest Descent: 22.2 sims

• First Improvement: 6.2 sims

• First Improvement w/ restart: 11.4 sims

Clearly, there is a computational advantage for either First-Improvement algorithm in comparison to
Steepest Descent. Since Steepest Descent must evaluate every policy in its neighborhood, the number of
simulations it requires makes it unattractive for use in a TAC environment. Finally, the advantage gained
by First Improvement was so drastic, that restarts could be used while maintaining an improved search
time. This improved performance over the single First Improvement considerably.

9.3 Search Performance

The improved search time of the First-Improvement search did not come without a tradeoff in perfor-
mance. Both Steepest Descent and First Improvement find global optimum policies given perfect evalua-
tion, and both fell short of this mark when using simulation data. First Improvement, however, following
an often more convoluted path to the optimal, was more susceptible to errant evaluations. Thus, the
Steepest Descent begins consistently near-optimal behavior at much shorter simulation lengths than First
Improvement. (See Figure 5)

This affect carried through into the shortest simulation lengths, where Steepest Descent outperformed
First Improvement in all but those cases where the optimal was extremely close to one of the bounds.
However, First Improvement w/ Restart and Simulated Annealing performed significantly better, chal-
lenging the average performance of Steepest Descent in considerably less time.

9.4 Conditions

Since the performance of First Improvement was overly sensitive to starting position, “Restarts” seem to
be a necessary extension. By searching from both bounds, First Improvement w/ Restart was less affected
by changes in the cost ratio, whereas First Improvement search from the upper or the lower performed
well only under certain conditions (compare performance of “firstupper” and “firstlower” in Figure 7
and Figure 8). Steepest Descent also proved to be relatively robust. Results are given for a range of
holding costs (with penalty cost held constants) to gauge the effect that the cost ratio had on each policy’s
effectiveness.
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9.5 Conclusion

Other than Steepest Descent, all of the algorithms seem to be heavily affect by the starting location at
low simulation lengths. Still, the time saved is enough that several restarts can be executed in the time
of a single Steepest Descent algorithm. It is clear, that in the case of small simulation lengths, a global
minimum is far from assured. Under these conditions, a greedy algorithm is likely not to be the best
method since it cannot recover from a mistake made as as result of error in evaluation. This explains the
performance gains made by Simulated Annealing relative to First Improvement. Unfortunately, (from
an efficiency viewpoint), the more evaluations that are made, the lower the probability is that the overall
performance will be significantly affected by errant values. This would suggest that it is worth the time
to try a longer search. However, the accuracy of our closed form approximations, and perhaps our ability
to add further heuristics about the policy to which we should initialize, make it fairly certain that using
multiple randomized searches, that are likely to terminate quickly, will turn out a good result.(See Figure
6)

10 Future Work

10.1 Heuristics

The success of closed form approximations suggests that it will be possible to perform reasonably well
without spending any time searching. The experiments showed that higher ratios of holding to shortage
costs yielded optimal policies closer to the lower bound,and lower ratios yielded policies nearer the upper
bound. A future problem will be to determine a heuristic strategy that bids the upper or lower bound
depending on some type of average cost ratio. Preliminary results using the average of upper and lower
bounds, as well as a weighted average toward the (generally) tighter upper bound have been promising.

10.2 Leadtime Correlation

Demand correlation is a difficult problem for which some background exists, but leadtime correlation
is a very much untouched topic. We are attracted to this problem (of correlation across time periods)
because of closeness to real life situations, where a supplier delay in one time period is likely to indicate
a shortage that could “ripple” into future periods. This problem is difficult in that it violates many of the
key assumptions of our model, namely the applicability of a queuing system, which ensures steady-state
convergence in the model that we have been using.

10.3 Leadtime Decisions

Another way in which the leadtime could be more accurately modeled is by changing leadtime to an
endogenous variable, taking only cost/leadtime tradeoffs as exogenous. This is representative of the TAC
environment, as well as real life situations to which SCM agents may be applied.
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Figure 2: Cost/Day A:20, AB:20
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Figure 3: Cost/Day A:20, AB:20 detLT
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Figure 4: Cost/Day A:20, AB:20
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Figure 5: Performance of Longer Searches in 3-product setting with h = 20
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Figure 7: Performance of Search Solutions for three product ATO, h = 20
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