
Data Replication under Latency Constraints
Siu Kee Kate Ho (siho@cs.brown.edu)

Abstract
 To maintain good quality of service, data
providers have to satisfy requests within some
specified amount of time. One cheap way to
achieve this is to place replicas of data
objects so that clients could obtain requested
data from at least one replica within given
time limits. The number of these replicas
should be minimized to reduce storage and
update costs. In this paper, naïve and smart
algorithms to determine placement of replicas
are being implemented and investigated. In
naïve algorithm, when current latency
constraint cannot be satisfied, a new replica
is placed in the server closest to the request
client. In smart algorithm, if an existing
replica can be moved to a new location and
satisfy the new request, and if this move would
not dissatisfy any existing request, this replica
will be moved; otherwise, a new replica will
be created in the server closest to the request
client.

1. Introduction
 Internet and other large-scale data
dissemination systems are becoming
increasingly important in our daily lives, for it
can spread information widely, conveniently,
and almost immediately. Often, we want to
deliver data within some specific time, and
having copies of data objects in different
locations is one way to ensure timely service
to clients.
 Replica placement to satisfy latency
constraints would be useful in applications
such as content delivery network, which main
concern is to deliver data to clients quickly
and efficiently. It would also be useful in any
large-scale database or data storage system, if
data has to be extracted in a timely manner.
This project is part of SAND1, a scalable
network database system using overlay
topology.

1 SAND: a Scalable Network Database, by Yanif
Ahmad and Ugur Cetintemel

1.1 Latency Constraints

With the growing importance in
efficiency, fast and stable performance in data
delivery becomes one of the clients’ major
concerns. One way to ensure stable delivery
performance is to set up latency constraints,
so data will arrive within a specific time limit.
Different queries have different requirements
on these latency constraints, depending on
their functions and their values to the clients.
However, most of the time, clients will sent
out similar queries over a period of time,
hence, latency constraints are specific to
client, for particular data object.

1.2 Need for Data Replication
 To satisfy the latency constraints
mentioned above, we could either vary the
speed of data transfer, or shorten the transfer
distance. Since bandwidth and CPU speed are
difficult and expensive to change, shortening
transfer distance by placing replicas of data
objects closer to requesting clients is the
cheapest and essential ways to ensure data
delivery time.
 There are, however, some problems that
arise with the increase number of replicas
[21]. One of such problems is the increase in
update cost. When a replica is created, an
extra message to this new replica will have to
be sent every time data is being updated. So,
update cost increase proportionally with the
increase number of replicas.
 Another problem is data consistency. In
content delivery network, where update
occurs only on a small set of primary replica,
this would not be a big problem. However, in
a system where update can be recorded in any
replica, the higher the number of replicas, the
harder it is to keep data consistent, simply
because there are more locations to worry
about.
 One way to mitigate these problems is to
reduce the number of replicas created.

1.3 Approach
 The main issue being explored in this
paper is how to determine the placement of
replicas dynamically, when latency
constraints cannot be satisfied. The replica
should be placed so that future requests can be
answered within some given time limits. We
implement two algorithm: naïve and smart.
The naïve algorithm places a new replica in
the server closest to the client when latency
constraint cannot be satisfied. The smart
algorithm considers moving an existing
replica to satisfy this new latency constraint
without invalidating old ones. By comparing
these two algorithms, the tradeoff between
calculation time and optimality is discussed.
To ensure scalability, we based our design on
an overlay location and routing
infrastructure called Tapestry[3],
which maintains decentralized resources.

1.4 Outline
The rest of the paper is organized as follows:
in the next section we compare our algorithm
against other related work. Tapestry is
presented in more detail in section 3. In
section 4, we describe our naïve and smart
algorithm. In section 5, we discussed about
clustering in Tapestry, and using it to improve
our algorithm. In section 6, we evaluate these
two algorithms. We will then outline future
work in section 7. Finally, we conclude in
section 8.

2. Related Work
 Data replication is a popular topic, and a
lot of researches had been done in this area.
However, most of these focused on load-
balancing or data consistency, and not many
on latency constraints.
 Many web content delivery uses DNS-
based redirection to route clients’ requests to
the closest replica, so latency may be reduced.
However, because of its centralized nature, its
can easily result in server overloading, thus
hindering the scalability [17].
 The most similar work to this is probably
Dynamic Replica Placement for Scalable
Content Delivery [8]. The above paper

proposed building dissemination tree built on
top of Tapestry infrastructure to determine
replica placement. It aims to balance load as
well as satisfying latency constraints, with
more focus on balancing load. It also
proposed naïve and smart algorithm – the
naïve one will place replica on the server
closest to the client that satisfy all both load
and latency constraints; the smart one looks
into a larger set of server, and choose the one
with lightest load, and if none satisfy, a
replica is placed as far away from the request
client as possible. Since its main concern is
load balancing, its smart algorithm would
create a lot of unnecessary replicas when
resource is spare and load is balanced. Also,
since it only create replicas, but never migrate
or delete them, it will results in more replicas
than our smart algorithm in the long run.

3. Tapestry Infrastructure
 Tapestry is a distributed, scalable, fault-
tolerant and self-organizing overlay location
and routing infrastructure [3,4]. It locates data
object quickly with guaranteed success.
Unlike traditional models, which keep object
locations in a centralized manner, Tapestry
stores locations of replicas for different data
objects in different servers. We refer these
servers as nodes.

 Nodes and objects in Tapestry can be
identified with unique identifier, which is
represented by a string of digits. Node
identifiers are referred as node-IDs and object
identifiers are referred as global unique
identifiers (GUIDs). Every object is mapped
to a node, which node-ID has the most
common suffixs as the GUID of the object.
We refer this node as the root node. The root
node stores all the locations of the related
object replicas.

 Figure 1 shows a portion of Tapestry.

Replica

234
L1

13A 973

Replica
L1

L2 32E
987L2

1AE6 L3

L1 Root

L3 58E

876L4
8D3

78EL1

Fig. 1. The Tapestry Infrastructure

3.1 Routing
 Tapestry uses local neighbor tables to route
towards the root node. The neighbor table of a
node is formed when this node is inserted.
The table contains the node-IDs of some n
nodes within some latency bound. The routing
process tries to resolve destination address
(which is GUID) one digit at a time, from
right to left, each time closer to the root node.
In figure 1, solid thin lines are neighboring
links that connects one Tapestry node to
another. As shown, digit is resolved one digit
at a time, going from **** ***6 **E6

 *8E6 58E6.

3.2 Locating Replica
 When a new object o is inserted or a new
replica of o is created, the server s storing the
object will send a message towards the root
node for that object, leaving a location pointer
in the form of <GUID(o), node-ID(s)> at each
intermediate node. These are not a copy of the
data object, but pointers to server s where o is
being stored. When a node stores location
pointers for multiple replicas, it keeps these
pointers sorted in the order of distance from
itself.

 To locate a replica, the request client c
sends a message towards the object root node.
When it encounters a location pointer, it
follows this pointer and route directly to the
object. If no location pointer is encountered in
any immediate node, it will eventually reach
the root, where pointers to locations of
replicas will definitely be encountered.
Otherwise, this object does not exist.
 Experiments in [20] shown that Tapestry
can route any request from node c for object
o, to the statistically closest node that contains
a replica of o. It is shown that any existing
node in the system will be found within at
most logN hops, where N represents the size
of ID namespace. In [12], it is shown that
average distance traveled in locating an object
is proportional to the distance from that object
in terms of the number of hops traversed.

4. Replica Placement
 We present two algorithms that
dynamically place replicas with only limited
knowledge about the network topology. Our
goal is to satisfy latency constraints while
minimizing the number of replica created.

Old Replica

Old Request
Clients

Old Request
Clients

New Replica

New Request
Client

New Request
Client

Fig. 2.1: Before applying any algorithm. In
this diagram, dotted lines represent latency
constraints, and solid line circles represent
Tapestry servers.

Fig. 2.3: After applying smart algorithm

4.1 Naïve Algorithm
 In this algorithm, we attempt to place a
replica in the server as close to the request
client as possible. We assume that any client c
maintains a set of servers closest to itself, in
order to connect to the rest of the Tapestry
system. Hence, we simply place a replica of
the requested object on the server the client
contacted, when latency constraint cannot be
satisfied.
 Figure 2.2 illustrates this naïve algorithm.

4.2 Smart Algorithm
 In smart algorithm, we attempt to move an
existing replica to a new location so that it can
satisfy the new request as well as all the
existing requests. If there are multiple
possible placement locations, the closest one
from the request client will be chosen. This is
illustrated in figure 2.3. If none of the existing
replicas could be moved, we will then create a
new replica in the server closest to the client,
similar to the naïve placement. Comparing
figure 2.2 and 2.3, it is obvious that smart
algorithm will result in less number of
replicas comparing to the naïve algorithm.

Old Replica

Old Request
Clients

New Replica

 There is a risk with this algorithm if not
implemented correctly: since replicas are
migrated instead of created, if old supported
clients are not checked carefully, the replica
may be moved every time a request is made.
For example, if client A makes a new request
for object o, which is currently located in
node O1, the smart algorithm relocate object o
to O2. Client B then make a request for object
o, and if the placement process does not check
whether client A can still access object o
within its latency constraint, the replica may
be moved back to O1, and this would become
a cycle. Hence, we have to be very certain that
no currently supported clients will be
dissatisfied after the replica is moved.

New Request
Client

Fig. 2.2: After applying naïve algorithm

 In order to save “ping” message, we try to
use overlay latency to estimate the IP latency
whenever possible.

 Procedure NaiveReplicaPlacement (requesting_client c, object o)

1. Locate the closest replica r using Tapestry routing service.
2. if time(above_operation) ≤ latency_constraint then return r; exit
3. if pings(c, r) ≤ latency_constraint then return r; exit
4. s = first Tapestry server c connected to
5. puts a replica on s
6. s publishes o in Tapestry
7. return s

Algorithm 1: Naïve Replica Placement

Procedure SmartReplicaPlacement (requesting_client c, object o)
1. Locate the closest replica r using Tapestry routing service.
2. if time(above_operation) ≤ latency_constraint then return r; exit
3. if pings(c, r) ≤ latency_constraint then return r; exit
4. R = Ø
5. c sends a messages through Tapestry to root node of o, getting first 5 location

pointers, insert these pointers to R
6. A = Ø
7. foreach re ∈ R

a. if pings(c, re) ≤ 2*average_latency then
b. P = Ø
c. c sends a message through Tapestry to re, foreach intermediate node i
d. if (distOverlay ≤ latency_constraing) then insert i to P
e. N = P
f. foreach supported_client su in re
g. re sends message along with P to su
h. other = false; C = Ø
i. if su can be satisfied by other replica except re then other = true
 else
j. for each p ∈ P
k. if pings(su, p) ≤ latency_constraint(su) insert p to C
l. N = N – C
m. A = A ∪ <re, C>

8. if A = Ø then put replica on server s closest to c; publish s, return s; exit;
9. old = null; new = null; sd = ∞
10. foreach a ∈ A
11. if pings(c, getfirst(C)) < sd then
12. old = re; new = getfirst(C)
13. move replica from old to new; publish new; unpublish old; return new

Algorithm 2: Smart Replica Placement

 In the smart algorithm above, we assume
that each node storing a replica maintains a
list of last n clients accessing it for data in
some extended period of time.

5. Clustering in Tapestry
 As seen from the smart algorithm above, a
lot of messages are being sent to check
whether latency constraints of existing queries
would be dissatisfied when a replica is being
moved. This is highly inefficient since almost
every node in a close-by area receives the
same messages and does the same calculation.
It would be more efficient if a node could
represent all nodes in nearby area and only do
the calculation once. One way to achieve that
is by clustering.

5.1 Division of clusters
 The locality property of tapestry ensures
that nearby nodes often have common suffix.
Hence, we can use this property to divide
clusters without extra calculation. All nodes
with the same l suffixs will be put into one
cluster. In each cluster, a cluster head is
chosen by routing towards destination
*****sss, where s represents the suffix, and *
are filled with the digit representing the
number of suffix matched. For example, for
cluster with last three suffix being 524, its
cluster head is 33333524, filling all space
except the suffix with 3. If the number of
common suffix exceeds the base of the mesh
digit, then (number of common suffix) mod
base is being used as filling digit.
 Moreover, this clustering system contains
hierarchy of clustering, simply by specifying
l. Cluster in level 0, in which no suffix has to
be in common, contains the whole network.
Clusters in level 1, in which 1 digit of suffix
has to be in common, contains a large number
of nodes. Clusters in level n, where n is the
number of digits in node-ID, contains only the
head node itself. The higher the level number,
the less is the number of nodes contained
within a cluster. In this division, we can
ensure that every cluster contains several
completed sub-clusters.

000Level

 Each replica head stores mindistance =
minimum (latency_constraint(c) – distance
(latency(c), headnode)), where c is any node
within the cluster.
 To apply clustering into the smart
algorithm, we can change step 7f to 7k in
algorithm 2 so that instead of going through
every single clients, it checks, from cluster
level n/2, n being the maximum number of
digits in node-ID, whether mindistance -
dist(head node, location-to-check-with) > 0. If
it is, then all nodes within that cluster is
satisfied, otherwise, it has to go down a
hierarchy, and re-do the above.

6. Evaluation
 Looking at the naïve and smart algorithm,
we predict that smart algorithm will create
less replicas compare to naïve algorithm,
which seems to be the case looking at
experimental result. However, the calculation
cost for smart algorithm is also much higher
than naïve algorithm.
 We conduct our experiment with 30
Tapestry nodes. An object is first published
from a random node. Afterwards, within some
specific time limit, every node in the system
request for that data object within some

Level 111 111 111

225 227 229Level

Level 357 397 327

Level 597

Fig. 3: Hierarchy of clients. Cluster heads are
used to represent clusters in the above
diagram.

latency constraints in a random time. Smart
algorithm is being run several times to ensure
that all clients’ requests have really been
covered. The results are presented in fig. 4.

Although smart algorithm produces much
better result, its calculation cost is high, and
our experiment shows that there is a decent
chance that a replica may have to be moved
multiple times before it reaches its optimal
location. So, if latency constraints and
network structure changes very often, there is
a high chance that the replica will
continuously be moving around and process
time will be unnecessary wasted on
calculating placement location and migrating
replicas. In which case, using a naïve
algorithm could be a better idea, when
placement calculation and replica migrating
costs outweigh the update costs. Moreover,
having more replicas in different locations
also means that the chances of satisfying
latency constraints of new queries increases.
However, when network structure is relatively
stable and if latency constraints are not
changed very often, then, it is best to use the
smart algorithm, so update costs could be
reduced. To determine which algorithm to
use, one has to calculate update and
placement costs for each algorithm, and
choose the algorithm with least total cost.

7. Future Work
 In this paper, only latency constraints are
being considered. In the future, we would like
to include load-balancing as one of the
consideration as well. Moreover, more
experiments can be conducted to compare the
efficiency of different data replication
algorithms purposed by others in different
environments. Furthermore, algorithms for
replica deletion can be explored to
supplement with current replication placement
algorithm, for better update performance. Last
but not least, we can explore auto-selection of
different replica placement algorithms based
on local environment.

Number of replicas for object o
after running the experiment

6

2

8. Conclusion
 Techniques for placing and migrating
replicas are being explored in this paper. We
found that the smart algorithm which result in
optimal replica placement maybe too costly in
a fast-changing environment, when the costs
in calculating and migrating replica outweigh
data update cost. Hence, different algorithms
should be applied in different environment.

Naïve
algorithm

Smart
algorithm

Reference
1. Yanif Ahmad and Ugur Cetintemel. SAND: a Scalable Network Database.
2. Kubiatowicz, D. Bindel, et al. OceanStore: An Architecture for Global-Scale Persistent

Storage. Proceedings of ACM ASPLOS, November, 2000
3. Ben Y. Zhao, et al. Tapestry: An Infrastructure for Fault-tolerant Wide-area Location and

Routing. UCB Tech. Report UCB/CSD-01-1141
4. Kirsten Hildrum, et al. Distributed Object Location in a Dynamic Network. Proceedings

of the Fourteenth ACM Symposium on Parallel Algorithms and Architectures (SPAA)
2002

5. Ben Y. Zhao. A Decentralized Location and Routing Infrastructure for Fault-tolerant
Wide-area Applications

6. Sean Rhea et al. Pond: the OceanStore Prototype. Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (FAST '03), March 2003

7. Dennis Geels and John Kubiatowicz. Appears in Proceedings of the SIGOPS European
Workshop 2002. Replica Management Should Be A Game. Proceedings of the SIGOPS
European Workshop 2002, Sep 2002

8. Yan Chen, Randy H. Katz and John D. Kubiatowicz. Dynamic Replica Placement for
Scalable Content Delivery. Proceedings of the First International Workshop on Peer-to-
Peer Systems (IPTPS 2002), March 2002.

9. Patrick R. Eaton. Caching the Web with OceanStore. U.C. Berkeley Master's Report,
Technical Report UCB/CSD-02-1212: November 2002.

10. Dennis Geels. Data Replication in OceanStore. U.C. Berkeley Master's Report, Technical
Report UCB//CSD-02-1217, November 2002.

11. A. Rowstron et al. Storage Management and Caching in PAST, A Large-Scale, Persistent
Peer-to-Peer Storage Utility. In Proc. Of the 18th ACM Symposium on Operating System
Principles (SOSP), 2001.

12. G. Plaxton et. al. ALMI: Accessing nearby copies of replicated objects in a distributed
environment. In Proc. Of the SCP SPAA, 1997.

13. I. Stoica et al. Chord: A scalable peer-to-peer lookup service for Internet applications.
Proceedings of ACM SIGCOMM, 2001.

14. Yan Chen et al. SCAN: A Dynamic, Scalable, and Efficient Content Distribution
Network. In Proc of the International Conference on Pervasive Computing, August 2002.

15. J. Jannotti et. al. Overcast: Reliable multicasting with an overlay network. Proceedings of
OSDI, 2000

16. S. Jamin et al. Constrained mirror placement on the Internet. Proceedings of IEEE
Infocom, 2001

17. T. Loukopoulos et al. An Overview of Data Replication on the Internet.
18. J. Wang. A Survey of Web Caching Schemes for the Internet. ACM Computer

Communication Review (CCR), 29(5), 1999.
19. Guillaume Pierre. A Peer-to-Peer System to Bring Content Distribution Networks to the

Masses.
20. Y. Chen et al. Quantifying network denial of service: A location service case study.

Proceeding of Third International Conference on Information and Communications
Security, 2001

21. J. Gray et al. The dangers of replication and a solution. In Proc. Of ACM SIGMOD
Conf., 1996

http://www.cs.brown.edu/courses/cs295-1/Papers/asplos00.pdf
http://www.cs.brown.edu/courses/cs295-1/Papers/asplos00.pdf

