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Abstract  
     To maintain good quality of service, data 
providers have to satisfy requests within some 
specified amount of time. One cheap way to 
achieve this is to place replicas of data 
objects so that clients could obtain requested 
data from at least one replica within given 
time limits. The number of these replicas 
should be minimized to reduce storage and 
update costs. In this paper, naïve and smart 
algorithms to determine placement of replicas 
are being implemented and investigated. In 
naïve algorithm, when current latency 
constraint cannot be satisfied, a new replica 
is placed in the server closest to the request 
client. In smart algorithm, if an existing 
replica can be moved to a new location and 
satisfy the new request, and if this move would 
not dissatisfy any existing request, this replica 
will be moved; otherwise, a new replica will 
be created in the server closest to the request 
client. 
 
1. Introduction 
     Internet and other large-scale data 
dissemination systems are becoming 
increasingly important in our daily lives, for it 
can spread information widely, conveniently, 
and almost immediately. Often, we want to 
deliver data within some specific time, and 
having copies of data objects in different 
locations is one way to ensure timely service 
to clients. 
     Replica placement to satisfy latency 
constraints would be useful in applications 
such as content delivery network, which main 
concern is to deliver data to clients quickly 
and efficiently. It would also be useful in any 
large-scale database or data storage system, if 
data has to be extracted in a timely manner. 
This project is part of SAND1, a scalable 
network database system using overlay 
topology.  
                     
1 SAND: a Scalable Network Database, by Yanif 
Ahmad and Ugur Cetintemel 

 
1.1 Latency Constraints 

With the growing importance in 
efficiency, fast and stable performance in data 
delivery becomes one of the clients’ major 
concerns. One way to ensure stable delivery 
performance is to set up latency constraints, 
so data will arrive within a specific time limit. 
Different queries have different requirements 
on these latency constraints, depending on 
their functions and their values to the clients. 
However, most of the time, clients will sent 
out similar queries over a period of time, 
hence, latency constraints are specific to 
client, for particular data object. 
 
1.2 Need for Data Replication 
     To satisfy the latency constraints 
mentioned above, we could either vary the 
speed of data transfer, or shorten the transfer 
distance. Since bandwidth and CPU speed are 
difficult and expensive to change, shortening 
transfer distance by placing replicas of data 
objects closer to requesting clients is the 
cheapest and essential ways to ensure data 
delivery time. 
     There are, however, some problems that 
arise with the increase number of replicas 
[21]. One of such problems is the increase in 
update cost. When a replica is created, an 
extra message to this new replica will have to 
be sent every time data is being updated. So, 
update cost increase proportionally with the 
increase number of replicas.  
     Another problem is data consistency. In 
content delivery network, where update 
occurs only on a small set of primary replica, 
this would not be a big problem. However, in 
a system where update can be recorded in any 
replica, the higher the number of replicas, the 
harder it is to keep data consistent, simply 
because there are more locations to worry 
about. 
     One way to mitigate these problems is to 
reduce the number of replicas created. 
 



1.3 Approach 
     The main issue being explored in this 
paper is how to determine the placement of 
replicas dynamically, when latency 
constraints cannot be satisfied. The replica 
should be placed so that future requests can be 
answered within some given time limits. We 
implement two algorithm: naïve and smart. 
The naïve algorithm places a new replica in 
the server closest to the client when latency 
constraint cannot be satisfied. The smart 
algorithm considers moving an existing 
replica to satisfy this new latency constraint 
without invalidating old ones. By comparing 
these two algorithms, the tradeoff between 
calculation time and optimality is discussed. 
To ensure scalability, we based our design on 
an overlay location and routing 
infrastructure called Tapestry[3], 
which maintains decentralized resources.  
 
1.4 Outline 
The rest of the paper is organized as follows: 
in the next section we compare our algorithm 
against other related work. Tapestry is 
presented in more detail in section 3. In 
section 4, we describe our naïve and smart 
algorithm. In section 5, we discussed about 
clustering in Tapestry, and using it to improve 
our algorithm. In section 6, we evaluate these 
two algorithms. We will then outline future 
work in section 7. Finally, we conclude in 
section 8. 
 
      
2. Related Work 
     Data replication is a popular topic, and a 
lot of researches had been done in this area. 
However, most of these focused on load-
balancing or data consistency, and not many 
on latency constraints. 
     Many web content delivery uses DNS-
based redirection to route clients’ requests to 
the closest replica, so latency may be reduced. 
However, because of its centralized nature, its 
can easily result in server overloading, thus 
hindering the scalability [17].  
     The most similar work to this is probably 
Dynamic Replica Placement for Scalable 
Content Delivery [8]. The above paper 

proposed building dissemination tree built on 
top of Tapestry infrastructure to determine 
replica placement. It aims to balance load as 
well as satisfying latency constraints, with 
more focus on balancing load. It also 
proposed naïve and smart algorithm – the 
naïve one will place replica on the server 
closest to the client that satisfy all both load 
and latency constraints; the smart one looks 
into a larger set of server, and choose the one 
with lightest load, and if none satisfy, a 
replica is placed as far away from the request 
client as possible. Since its main concern is 
load balancing, its smart algorithm would 
create a lot of unnecessary replicas when 
resource is spare and load is balanced. Also, 
since it only create replicas, but never migrate 
or delete them, it will results in more replicas 
than our smart algorithm in the long run. 
 
3. Tapestry Infrastructure 
     Tapestry is a distributed, scalable, fault-
tolerant and self-organizing overlay location 
and routing infrastructure [3,4]. It locates data 
object quickly with guaranteed success.  
Unlike traditional models, which keep object 
locations in a centralized manner, Tapestry 
stores locations of replicas for different data 
objects in different servers. We refer these 
servers as nodes.  
 
     Nodes and objects in Tapestry can be 
identified with unique identifier, which is 
represented by a string of digits. Node 
identifiers are referred as node-IDs and object 
identifiers are referred as global unique 
identifiers (GUIDs). Every object is mapped 
to a node, which node-ID has the most 
common suffixs as the GUID of the object. 
We refer this node as the root node. The root 
node stores all the locations of the related 
object replicas.  
 
     Figure 1 shows a portion of Tapestry. 
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Fig. 1. The Tapestry Infrastructure 

3.1 Routing 
     Tapestry uses local neighbor tables to route 
towards the root node. The neighbor table of a 
node is formed when this node is inserted. 
The table contains the node-IDs of some n 
nodes within some latency bound. The routing 
process tries to resolve destination address 
(which is GUID) one digit at a time, from 
right to left, each time closer to the root node. 
In figure 1, solid thin lines are neighboring 
links that connects one Tapestry node to 
another. As shown, digit is resolved one digit 
at a time, going from ****  ***6  **E6 

 *8E6  58E6.  
 
3.2 Locating Replica 
     When a new object o is inserted or a new 
replica of o is created, the server s storing the 
object will send a message towards the root 
node for that object, leaving a location pointer 
in the form of <GUID(o), node-ID(s)> at each 
intermediate node. These are not a copy of the 
data object, but pointers to server s where o is 
being stored. When a node stores location 
pointers for multiple replicas, it keeps these 
pointers sorted in the order of distance from 
itself.  

     To locate a replica, the request client c 
sends a message towards the object root node. 
When it encounters a location pointer, it 
follows this pointer and route directly to the 
object. If no location pointer is encountered in 
any immediate node, it will eventually reach 
the root, where pointers to locations of 
replicas will definitely be encountered. 
Otherwise, this object does not exist.  
     Experiments in [20] shown that Tapestry 
can route any request from node c for object 
o, to the statistically closest node that contains 
a replica of o. It is shown that any existing 
node in the system will be found within at 
most logN hops, where N represents the size 
of ID namespace. In [12], it is shown that 
average distance traveled in locating an object 
is proportional to the distance from that object 
in terms of the number of hops traversed. 
 
4. Replica Placement 
     We present two algorithms that 
dynamically place replicas with only limited 
knowledge about the network topology. Our 
goal is to satisfy latency constraints while 
minimizing the number of replica created. 
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Fig. 2.1: Before applying any algorithm. In 
this diagram, dotted lines represent latency 
constraints, and solid line circles represent 
Tapestry servers. 

Fig. 2.3: After applying smart algorithm 

4.1 Naïve Algorithm 
     In this algorithm, we attempt to place a 
replica in the server as close to the request 
client as possible. We assume that any client c 
maintains a set of servers closest to itself, in 
order to connect to the rest of the Tapestry 
system. Hence, we simply place a replica of 
the requested object on the server the client 
contacted, when latency constraint cannot be 
satisfied. 
     Figure 2.2 illustrates this naïve algorithm.  
 
 
 

4.2 Smart Algorithm 
     In smart algorithm, we attempt to move an 
existing replica to a new location so that it can 
satisfy the new request as well as all the 
existing requests. If there are multiple 
possible placement locations, the closest one 
from the request client will be chosen. This is 
illustrated in figure 2.3. If none of the existing 
replicas could be moved, we will then create a 
new replica in the server closest to the client, 
similar to the naïve placement. Comparing 
figure 2.2 and 2.3, it is obvious that smart 
algorithm will result in less number of 
replicas comparing to the naïve algorithm. 
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     There is a risk with this algorithm if not 
implemented correctly: since replicas are 
migrated instead of created, if old supported 
clients are not checked carefully, the replica 
may be moved every time a request is made. 
For example, if client A makes a new request 
for object o, which is currently located in 
node O1, the smart algorithm relocate object o 
to O2. Client B then make a request for object 
o, and if the placement process does not check 
whether client A can still access object o 
within its latency constraint, the replica may 
be moved back to O1, and this would become 
a cycle. Hence, we have to be very certain that 
no currently supported clients will be 
dissatisfied after the replica is moved.  

New Request 
Client 

Fig. 2.2: After applying naïve algorithm 

     In order to save “ping” message, we try to 
use overlay latency to estimate the IP latency 
whenever possible. 



 
 Procedure NaiveReplicaPlacement (requesting_client c, object o) 

1. Locate the closest replica r using Tapestry routing service. 
2. if time(above_operation) ≤ latency_constraint then return r; exit 
3. if pings(c, r)  ≤ latency_constraint then return r; exit 
4. s = first Tapestry server c connected to 
5. puts a replica on s 
6. s publishes o in Tapestry 
7. return s 

Algorithm 1: Naïve Replica Placement 

Procedure SmartReplicaPlacement (requesting_client c, object o) 
1. Locate the closest replica r using Tapestry routing service. 
2. if time(above_operation) ≤ latency_constraint then return r; exit 
3. if pings(c, r)  ≤ latency_constraint then return r; exit 
4. R = Ø 
5. c sends a messages through Tapestry to root node of o, getting first 5 location 

pointers, insert these pointers to R 
6. A = Ø 
7. foreach re ∈ R 

a. if pings(c, re) ≤ 2*average_latency then 
b.      P = Ø 
c.      c sends a message through Tapestry to re, foreach intermediate node i 
d.           if (distOverlay ≤ latency_constraing) then insert i to P 
e.      N = P 
f.      foreach supported_client su in re 
g.            re sends message along with P to su 
h.            other = false; C = Ø 
i.            if su can be satisfied by other replica except re then other = true 
                 else  
j.               for each p ∈ P 
k.                  if pings(su, p) ≤ latency_constraint(su) insert p to C 
l.            N = N – C 
m.  A = A ∪ <re, C> 

8. if A = Ø then put replica on server s closest to c; publish s, return s; exit; 
9. old = null; new = null; sd = ∞ 
10. foreach a ∈ A  
11.       if pings(c, getfirst(C)) < sd then  
12.               old = re; new = getfirst(C) 
13. move replica from old to new; publish new; unpublish old; return new 

Algorithm 2: Smart Replica Placement 



     In the smart algorithm above, we assume 
that each node storing a replica maintains a 
list of last n clients accessing it for data in 
some extended period of time. 
 
5. Clustering in Tapestry 
     As seen from the smart algorithm above, a 
lot of messages are being sent to check 
whether latency constraints of existing queries 
would be dissatisfied when a replica is being 
moved. This is highly inefficient since almost 
every node in a close-by area receives the 
same messages and does the same calculation. 
It would be more efficient if a node could 
represent all nodes in nearby area and only do 
the calculation once. One way to achieve that 
is by clustering.  
 
5.1 Division of clusters 
     The locality property of tapestry ensures 
that nearby nodes often have common suffix. 
Hence, we can use this property to divide 
clusters without extra calculation. All nodes 
with the same l suffixs will be put into one 
cluster. In each cluster, a cluster head is 
chosen by routing towards destination 
*****sss, where s represents the suffix, and * 
are filled with the digit representing the 
number of suffix matched. For example, for 
cluster with last three suffix being 524, its 
cluster head is 33333524, filling all space 
except the suffix with 3. If the number of 
common suffix exceeds the base of the mesh 
digit, then (number of common suffix) mod 
base is being used as filling digit.  
     Moreover, this clustering system contains 
hierarchy of clustering, simply by specifying 
l. Cluster in level 0, in which no suffix has to 
be in common, contains the whole network. 
Clusters in level 1, in which 1 digit of suffix 
has to be in common, contains a large number 
of nodes. Clusters in level n, where n is the 
number of digits in node-ID, contains only the 
head node itself. The higher the level number, 
the less is the number of nodes contained 
within a cluster. In this division, we can 
ensure that every cluster contains several 
completed sub-clusters. 
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     Each replica head stores mindistance = 
minimum (latency_constraint(c) – distance 
(latency(c), headnode)), where c is any node 
within the cluster. 
     To apply clustering into the smart 
algorithm, we can change step 7f to 7k in 
algorithm 2 so that instead of going through 
every single clients, it checks, from cluster 
level n/2, n being the maximum number of 
digits in node-ID, whether mindistance - 
dist(head node, location-to-check-with) > 0. If 
it is, then all nodes within that cluster is 
satisfied, otherwise, it has to go down a 
hierarchy, and re-do the above. 
 
6. Evaluation 
     Looking at the naïve and smart algorithm, 
we predict that smart algorithm will create 
less replicas compare to naïve algorithm, 
which seems to be the case looking at 
experimental result. However, the calculation 
cost for smart algorithm is also much higher 
than naïve algorithm. 
     We conduct our experiment with 30 
Tapestry nodes. An object is first published 
from a random node. Afterwards, within some 
specific time limit, every node in the system 
request for that data object within some 
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Fig. 3: Hierarchy of clients. Cluster heads are 
used to represent clusters in the above 
diagram. 



latency constraints in a random time. Smart 
algorithm is being run several times to ensure 
that all clients’ requests have really been 
covered. The results are presented in fig. 4. 

 
Although smart algorithm produces much 
better result, its calculation cost is high, and 
our experiment shows that there is a decent 
chance that a replica may have to be moved 
multiple times before it reaches its optimal 
location. So, if latency constraints and 
network structure changes very often, there is 
a high chance that the replica will 
continuously be moving around and process 
time will be unnecessary wasted on 
calculating placement location and migrating 
replicas. In which case, using a naïve 
algorithm could be a better idea, when 
placement calculation and replica migrating 
costs outweigh the update costs. Moreover, 
having more replicas in different locations 
also means that the chances of satisfying 
latency constraints of new queries increases. 
However, when network structure is relatively 
stable and if latency constraints are not 
changed very often, then, it is best to use the 
smart algorithm, so update costs could be 
reduced. To determine which algorithm to 
use, one has to calculate update and 
placement costs for each algorithm, and 
choose the algorithm with least total cost. 

 
7. Future Work 
     In this paper, only latency constraints are 
being considered. In the future, we would like 
to include load-balancing as one of the 
consideration as well. Moreover, more 
experiments can be conducted to compare the 
efficiency of different data replication 
algorithms purposed by others in different 
environments. Furthermore, algorithms for 
replica deletion can be explored to 
supplement with current replication placement 
algorithm, for better update performance. Last 
but not least, we can explore auto-selection of 
different replica placement algorithms based 
on local environment.  

Number of replicas for object o 
after running the experiment 

6

2 
 
8. Conclusion 
     Techniques for placing and migrating 
replicas are being explored in this paper. We 
found that the smart algorithm which result in 
optimal replica placement maybe too costly in 
a fast-changing environment, when the costs 
in calculating and migrating replica outweigh 
data update cost. Hence, different algorithms 
should be applied in different environment. 

Naïve 
algorithm 

Smart 
algorithm 
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