
Verifying Interactive Web Programs

by

Daniel R. Licata

A Thesis submitted in partial fulfillment of the requirements for Honors

in the Department of Computer Science at Brown University

Providence, Rhode Island

May 2004

c© Copyright 2004 by Daniel R. Licata

This thesis by Daniel R. Licata is accepted in its present form by

the Department of Computer Science as satisfying the research requirement

for the awardment of Honors.

Date
Shriram Krishnamurthi, Reader

Date
Philip N. Klein, Reader

iii

Acknowledgements

I would like to thank my advisor, Shriram Krishnamurthi, my reader, Philip Klein, and the Brown Computer

Science Department.

iv

Abstract

Web programs are important, increasingly representing the primary public interfaces of commercial orga-

nizations. Unfortunately, Web programs also exhibit numerous flaws. In addition to the usual correctness

problems faced by software, Web programs must contend with numerous subtle user operations such as

clicking the Back button or cloning and submitting a page multiple times. Many existing Web verification

tools fail to even consider, much less effectively handle, these operations.

This paper describes a model checker designed to identify errors in Web software. We present a technique

for automatically generating novel models of Web programs from their source code; these models include the

additional control flow enabled by these user operations. In this technique, we exploit a constraint-based

approach to avoid overapproximating this control flow; this approach allows us to evade exploding the size

of the model. Further, we present a powerful base property language that permits specification of useful

Web properties, along with several property idioms that simplify specification of the most common Web

properties. Finally, we discuss the implementation of this model checker and a study of its effectiveness.

v

Contents

1 Introduction 1

2 Motivation and Foundations 3

2.1 Example Properties . 3

2.2 Verification Approach: Model Checking . 5

2.3 User Operation Calculus . 6

3 Generating Models From Source 8

3.1 The Control-Flow Graph . 8

3.2 The Web Control-Flow Graph . 9

4 Properties 11

4.1 Identifying Web-Page Content . 12

4.2 Atomic Propositions . 12

4.3 Example Property Automata . 14

4.4 Property Idioms . 15

5 Verification Process 17

5.1 Verification Algorithm . 17

5.2 Improving Precision and Efficiency . 18

5.3 Soundness . 19

5.4 Complexity . 19

6 Implementation and Results 21

7 Related Work 22

8 Future Work 23

Bibliography 24

vi

A Alternate WebCFG Construction 26

? Parts of this text have been submitted in a conference paper co-authored with Shriram Krishnamurthi.

vii

Chapter 1

Introduction

The interactive Web is here to stay. Not only are Web sites generated by programs, but they are increasingly

playing the role of “services”, accepting inputs from users, combining these with information in databases,

and dynamically computing results. Indeed, from most users’ perspectives, a corporation such as Ama-

zon.com or eBay is a Web site: the browser is their principal, often only, means of interacting with the orga-

nization. As the number of such organizations increases, the robustness of Web software takes on increasing

importance.

Web applications operate in a world of complex user operations. Users can click the Back button, or

clone a window and submit a request from each clone. The Back button forces the computation to resume

at a prior interaction point; submitting multiple clones causes computation at the same interaction point to

resume multiple times. Worse, these user operations are silent: they occur in the browser only, and are not

reported to the Web application.

The consequence of these complex and silent user operations is that Web programs manifest numerous

subtle errors; Graunke et al. have outlined some of these [10]. For instance, travel sites reserve the wrong

flights or hotels. Furthermore, programmers who have not considered a sequence of operations are likely

neither to develop defensively against it, nor to subsequently test for it. User experience demonstrates that

even the professionally-developed Web sites of commercially successful companies are not immune to these

errors.

User operations are prevalent: (somewhat outdated) studies have shown that the Back button accounts for

a significant percentage of user actions [4]. Even attempts to program defensively against them may go awry.

A recent New York Times article [20] describes such a situation:

But when I clicked on the National [car rental] price[. . .], the site responded with this message:

“You may have back-buttoned too far.” This was my first experience with “back-button” as a

verb. I first translated the phrase as, “You may have pushed the back button too many times.”

Since that was patently untrue, I decoded its true meaning: “We ran out.”

In short, any verification tool for the Web that does not account for user operations is not only incomplete,

but potentially even misleading.

1

2

In this work, we present a verification technique for Web software that does account for user operations;

designing this technique has produced several significant technical contributions. First, we have designed a

Web-aware control-flow analysis that generates a model of a Web program from its source code; this model

captures the control flow engendered by user operations. Secondly, we have developed a powerful data-flow-

analysis-based property language useful for specifying Web properties, along with several property idioms

that simplify specification of the most common Web properties. Finally, we have specialized a model checker

with Web domain knowledge for precise verification.

Chapter 2

Motivation and Foundations

We begin by presenting several typical Web program properties that we would like to verify; these properties

drive our choice of a particular verification approach.

2.1 Example Properties

A sequence of user operations that exposes an actual bug in the flight-reservation program of Orbitz.com

(a travel website) is described in Figure 2.1. The Orbitz property asserts the absence of this bug: the flight

described on the page that the user submits in Step 6 (which we will call the flight-displayed) should

be the same as the actual flight for which his reservation is made (the flight-reserved). The Orbitz

bug was documented by Graunke et al. [10]; at the time of this writing, the Orbitz developers seem to have

programmed defensively against it by disallowing the user from reserving any flight at all when he returns to

the page displaying Flight A and submits it. That is, they have dealt with the complexities of user operations

by restricting the user’s allowed behavior—not an especially satisfying solution.

One might conclude from this example that all Web sites should have something like the Orbitz property—

that the data used for computation should always correspond to what the user saw on the last page he submit-

ted. However, sometimes it is more desirable to have the Amazon property, which is drawn from a desired

property of Amazon.com: once the user selects a book to purchase, it should be contained in his shopping

cart. In particular, the user should be able to select books in two different browser windows and have both

appear in his cart—but this means that the cart will not also satisfy an analogue of the Orbitz property.

Finally, the password-page property prescribes that an authentication page should always be visited before

accessing a certain controlled page—starting at page A, you must go through an access-control page B to

reach page C.

Each of these three properties involves a notion of temporal sequencing of events. Further, each prescribes

that only certain sequences of events should occur on all executions of a system. These qualities suggest the

application of model checking.

3

4

Figure 2.1: The Orbitz Bug; comic by Matt Licata (used with permission)
The comic above shows the result of each of the following steps:
[Step 1] A user enters the desired dates and destination of his flight; he is then presented with a page listing
possible flights, including Flight A and Flight B.
[Step 2] He clicks a link to open the description of Flight A in a new browser window.
[Step 3] Not being particularly enthused about that flight, he returns to the list of flights . . .
[Step 4] and clicks a link to load the description of Flight B, again in a new browser window.
[Step 5] Deciding that Flight A was better after all, he switches back to the window still on the screen showing
Flight A . . .
[Step 6] and submits the form, causing a page confirming his reservation to be displayed.
[Result] Orbitz incorrectly makes a reservation on Flight B.

5

flight−displayed

use flight
to compute

flight
setsend

page listing flights

send page displaying
reservation

compute
flight−reserved

using flight

w3

w1 a b c

w2d

page
send flight−detail

Figure 2.2: Orbitz control-flow graph
Solid denotes immediate successor; solid-with-ellipsis denotes elided nodes; dotted denotes Web

control-flow edge.

2.2 Verification Approach: Model Checking

To apply model checking, a developer first creates a model of the system being verified and then writes down

the correctness properties with respect to which he would like to verify the model; he then applies a suitable

model checking algorithm, which consumes the model and the properties and tells him whether the properties

hold for the model.

We now informally work through this methodology for the Orbitz example given above. The desired

property is that flight-reserved equals flight-displayed. Prior work has shown what code

for a Web program that exhibits the Orbitz bug would look like [10]; we must extract a model from this

code. We could first try the most straightforward technique: from the source code, generate a control-flow

graph. A sketch of a control-flow graph is depicted in Figure 2.2 (ignore the dashed line for now—all the

other edges correspond to control-flow from the actual code); though we have elided many details for the

sake of presentation, all relevant events (in particular, all assignments to the variable flight) are shown.

Looking at this model, we notice something interesting: there is no error! Once flight-displayed has

been computed using the value of the variable flight, the program must use the same value to compute

flight-reserved.

Our analysis failed because the sequence of operations (listed in Figure 2.1) that exposed the bug included

several instances of the user using his browser to return to and resubmit a previously visited Web page. These

actions exploited additional control flow not present in the standard control-flow graph; we must therefore

augment our model. The dotted line in Figure 2.2 shows the control-flow-graph edge necessary to capture the

user’s ability to return to and resubmit the list-of-flights page (Steps 3 and 4 in Figure 2.1). (No edge needs

to be added corresponding to the browser window switch in Step 5 because the two pages were generated

by the same program expression.) This added control flow exposes the bug—now, we can see that the user

might set flight to a new value and then submit the page generated using the old one. To develop a sound

model of Web programs, we will need to add similar edges for all possible user operations.

6

2.3 User Operation Calculus

Rather than accounting for each individual operation that a Web browser provides, we use a calculus of

primitive user operations due to Graunke, et al. [10]; all traditional browser operations can be expressed in

this calculus. Consequently, these primitives are the only user operations about which our verification tool

needs to reason.

Like Graunke et al. [10], we distill the Web to a single server and a single user client. The user’s client

displays Web pages and accepts input; each page includes some text and provides a single form that can

be submitted. The client stores a currently active page and a cache of previously visited Web pages (which

initially contains some start page), and at each step the client can either submit the current page’s form or

switch to a previously visited, cached page. When the user submits a form, the server dispatches the request

to the correct Web program, which generates and returns a new page based on the client’s input. When he

switches the client’s currently active page, the client does not communicate this change to the server. It is the

Web program’s lack of knowledge about these switches that causes so many subtle bugs.

In the present work, we make two simplifying assumptions about user operations: we do not account for

the user typing in a URL, and we assume that a Web browser’s cache contains all previously visited Web

pages. The first is equivalent to the assumption that all relevant pages can reached by submits starting from

some start page, so we will refer to it as the start-page assumption. We will refer to the second as the cache

assumption. The cache assumption is reasonable because servers usually expire any computations that have

been started but not completed after a certain amount of time (minutes to hours); it is reasonable to assume

that the user’s browser cache will contain all pages visited in this same period of time. We assume that all

interactions with the programs we analyze take place before the server session expires; this has the slight

disadvantage of not allowing us to verify properties about the session expirations themselves.

Given these assumptions, we can express the following user operations as combinations of switches and

submits:

• Form Submit, Link: These actions are modelled as a submit; a link is simply a form with no attached

data.

• Back Button, Forward Button, History, Bookmark, Browser Window Switch: By the start-page

assumption, each of these actions involves loading a previously-visited page, which, by the cache

assumption, will be in the cache. It can thus be modelled as a switch to the indicated page.

• Refresh: Refreshing is the act of resubmitting to the server the request that generated the client’s

currently-active page. By the start-page assumption, a page B is either the start page or the result of

submitting a form on page A with certain data. We assume for simplicity that the start page is static, so

refreshing the start page is a no-op. In the other case, refreshing page B can be modelled as a switch to

page A followed by a submit of the same data that was included in the submit that generated B.

• Clone: Cloning is the act of opening a copy of the current browser window on the screen. Cloning itself

does not affect the course of Web interactions: if the user clones page A but then only submits from

one of the clones, then it is just as if he had not cloned at all. However, cloning enables the following

7

situation: given a page A with successors B and C (which correspond to submitting different data from

page A), the user can go forward from A to B and from the clone of A to C. In a real browser, this

sequence of events might produce different results than submitting A to get to B, going Back to A, and

then submitting to get to C. In the first sequence, A is guaranteed to still be in the cache (indeed, it is

still on the screen), whereas in the second sequence it is not. However, with the cache assumption, these

two sequences of actions are equivalent. The situation enabled by cloning can therefore be modelled

as a submit, a switch, and then another submit.

In addition to simplifying the task, verifying using this calculus provides some robustness in the face of

new operations that browsers might someday provide—as long as they can be expressed in terms of switch

and submit, we will not need to change our technique.

Chapter 3

Generating Models From Source

In this chapter, we describe how we generate a model of the control flow of a Web program from its source

code. We assume that the programs we verify are written using special Web-interaction procedures. In the

present work, we analyze programs written in PLT Scheme that exploit the Web programming procedure

send/suspend [12]. This procedure consumes a representation of a Web page and sends that page to the

user; when he submits the form on the provided page, the Web program resumes computation with the values

submitted by the user. In PLT Scheme, this primitive is implemented using continuations (following the lead

of Queinnec [18]). When a Web program is written in this form (rather than as a collection of independent

scripts), it is not necessary to reason about the marshalling and unmarshalling of data at every Web-interaction

point.

We model a Web program P by its Web control-flow graph (WebCFG). The WebCFG is an augmented

control-flow graph (CFG).

3.1 The Control-Flow Graph

A control-flow graph describes all possible sequences of source expression evaluations during all executions

of a program. An ideal control-flow graph of a program P would be a graph with one node for each evaluation

of each expression in P . However, if P does not halt, this ideal control-flow graph will not have a finite

number of states. Model checking requires a finite-state model, so some form of approximation is necessary.

We approximate the control-flow of a program P by defining its CFG (N,n0, E) as follows:

• The node set N contains one node corresponding to each expression in the source code of P . We

denote by expr(n) the source expression corresponding to the CFG node n.

• n0 ∈ N is a unique start node

• The edge set E ⊆ N × N contains an edge (n1, n2) iff expr(n2) might be the next expression to be

evaluated after evaluating expr(n1).

8

9

This CFG collapses all those nodes in the ideal graph that correspond to different executions of the same

source expression into a single node (which agglomerates all of their edges). This collapsing corresponds to

Shivers’s 0CFA [19].

The “might be” in the definition of the edge set is necessary because the control flow of a program

often varies from one execution to the next, but we want the control-flow graph to model the control flow

of all possible executions. The control flow can vary at a conditional (different branches may be taken on

different executions) and at the last expression of a procedure body (different call sites may be returned

to). Additionally, in a higher-order language, the control flow can vary at a procedure application (different

procedures may be called in different executions). Exceptions and continuations create additional branching.

3.2 The Web Control-Flow Graph

As we saw in the Orbitz example, the control-flow graph of a program does not capture the control flow

engendered by user browser operations. We must add this control flow to our model if we are to build a sound

verification tool. By the reduction to primitive user operations in Section 2.3, we must only account for switch

and submit. When the user performs a switch and then a submit, he causes the program to return from a

different Web interaction expression than normal control flow would predict. That is, when the user performs

a switch, he changes which Web-interaction call will be returned from on the next submit; the program will

return from the one that generated the page to which he switched. A submit without any switches introduces

no new control flow—control proceeds as expected to the successors of the Web interaction expression that

generated the submitted page.

To model the control flow enabled by switch, we should add a transition from each Web-interaction node

w to the successor nodes of each Web-interaction node that the user passed through before reaching w; this

corresponds to the user being able to return from (i.e., switch to and resubmit) any previously visited page.

Because we cannot add this exact set of edges without exploding the size of the model (see Appendix ??), we

overapproximate the switch control flow by adding to the CFG an edge from each Web interaction node to

the successors of every other Web-interaction node.

Formally, we can define the WebCFG (NWebCFG, nWebCFG
0

, EWebCFG) of a Web program P with CFG

(NCFG, nCFG
0

, ECFG) as follows. Let W be the set of Web interaction nodes in P . Let X be a set of fresh

nodes, called post-Web-interaction nodes, where |X| = |W | and xi ∈ X is called the post-Web-interaction

node corresponding to wi. Then:

• The set NWebCFG of nodes is given by NCFG
⋃

X .

• nWebCFG
0

= nCFG
0

.

• The set EWebCFG of edges is the union of

– {(n1, n2) where n1, n2 ∈ NCFG − W and (n1, n2) ∈ ECFG}

– {(xi, n) where (wi, n) ∈ ECFG}

– {(wi, xj) for all wi ∈ W and xj ∈ X}.

10

x2

flight−displayed

use flight
to compute

flight
setsend

page listing flights

send page displaying
reservation

compute
flight−reserved

using flight

w3

w1 a b c

w2d

page
send flight−detail

x3

x1

Figure 3.1: Orbitz WebCFG
This figure uses the same arrow convention as Figure 2.2.

We could have directly added edges from each Web-interaction node to the successors of every other Web-

interaction node, but we have instead introduced the post-Web-interaction nodes to collect these edges—the

reasons for this are detailed in Section 5.2.

We construct the WebCFG completely automatically from the source of a Web program using a standard

CFG construction technique (Set-Based Analysis [9, 13] approximates the values of procedure-call positions;

the CFG can then be constructed by traversing the program’s syntax) followed by a simple graph traversal

to add the post-Web-interaction nodes and the Web-interaction edges. Figure 3.2 presents the WebCFG

corresponding to the Orbitz CFG considered in Figure 2.2.

Chapter 4

Properties

If we annotate the nodes of the WebCFG with elements of some set of atomic propositions, then the graph

will describe all traces (atomic proposition sequences) that might occur during execution. The developer

formulates a desired property as a set of traces that should occur. Verification then reduces to containment of

the former in the latter [21].

Developers specify a set of traces as an automaton whose input alphabet is the set of atomic propositions.

Following Naumovich, et al. [17], whose algorithms we employ, we require developers to write separate

automata for safety and liveness properties (because any property described in terms of traces can be decom-

posed into a safety property and a liveness property [1], this separation does not disallow any properties).

Informally, a safety property prescribes that “something bad never happens”, a liveness property that “some-

thing good eventually happens”. Because safety properties are refutable by finite traces, they are expressed

as finite-state, finite-word automata with a designated violation (non-accept) state. Liveness properties are

written as deterministic Büchi automata [5]. The determinism is imposed by the model-checking algorithm

we have chosen [17], and in principle slightly limits the class of properties we can verify (though we have

not encountered this obstacle in practice).

To state concrete properties about Web programs, we must overcome two more challenges:

• To express the Orbitz property, we must be able to talk about strings (the flight-displayed and

the flight-reserved) that appear on Web pages. How can we identify the program expressions

that generate these strings?

• The atomic propositions that label WebCFG nodes must be simple enough to be generated automati-

cally, yet rich enough to enable the expression of interesting properties. What should these be?

The next two sections address each of these problems in turn. We then present some example properties,

followed by three common property idioms that ease specification.

11

12

4.1 Identifying Web-Page Content

How can we associate Web-page contents with the source expressions that generate them? Parsing the HTML

fragments in the program to search for strings is likely to be complex, unwieldy and highly sensitive to data

and formatting changes. Forcing the developer to use special language constructs to label source expres-

sions is intrusive and not portable. Finally, using static-distance coordinates is brittle in the face of program

evolution.

We create a solution that is lightweight, robust in the face of change, and unintrusive by observing that the

association is often already in the Web program’s source! Web developers often use Cascading Style Sheets

(CSS) to tag important page elements with an ID for which independent style-sheets provide formatting direc-

tives. We simply ask developers to associate a CSS ID with any Web page element they want to refer to in a

property and then to use that ID in an atomic proposition. This ID allows us to identify the source expression

that generates the associated Web page element. We similarly use the names of user-input fields to identify

source expressions that extract the values of submitted forms. This solution avoids the complexity and brit-

tleness of the other proposed solutions; it has the additional advantage of being very easy for developers to

comprehend—we have essentially integrated Web presentation elements into the property language.

We refer to a source expression that generates a CSS-tagged HTML element or extracts form input as a

tagged expression. For example, the Orbitz code might contain tagged expressions that generate HTML with

CSS IDs flight-displayed and flight-reserved, while a search engine might contain one that

accesses the user input query.

4.2 Atomic Propositions

Informal Description

Some of our atomic propositions are designed for reasoning about misuse of two sets of data bindings: the

data local to each page the user sees (e.g., hidden form fields) and the data shared by all pages (e.g., session

state and cookies). Many common errors in Web programs result from this misuse [10, 11]. The two data

sets have different properties in situations where the user performs browser actions between the generation

and the submission of a given Web page (for example, Steps 3, 4, and 5 of Figure 2.1): bindings local to each

page are guaranteed not to change between page generation and submission, whereas shared bindings may

be modified. The Orbitz property can be true if the flight is kept local to each page; it will be violated if the

flight is shared by all pages. The Amazon property can be true if the shopping cart is shared by all pages; it

will be violated if the shopping cart is local to each page.

Our set of atomic propositions consists of:

• tagged propositions that are true on WebCFG states corresponding to Web program expressions with

CSS or user-input tags. These allow the developer to check that certain states have certain values and

to reason about the value flow from one expression to another.

• set and join propositions that are true on states corresponding to operations on shared data. set

13

operations replace one value with another, whereas join operations add a new value to a collection

including all the old ones (for example, mutatively adding to a list is a join). These propositions are

useful in specifying the Orbitz and Amazon properties.

• web and postweb propositions that are true at states corresponding to Web-interaction expressions

and their successors. These propositions allow the developer to write properties about the sequencing

of Web-page generation.

The WebCFG can automatically be annotated with these atomic propositions using the results of a data-

flow analysis called Set-Based Analysis [9, 13]. However, this analysis requires knowledge about the potential

return values of all primitive operations, which means knowing the sets of values that a user might type into

each form field. As in the work of Benedikt, et al. [3], we presume that the developer has written down some

approximation of these values. We assume our tool is given an explicit dictionary-style mapping from field

names to values; this mapping could be generated from a more sophisticated (and hence less burdensome to

create) user input abstraction such as SmartProfiles [3].

Formal Description: AP and Labelling

We now give a formal description of our atomic propositions and the rule for labelling the WebCFG states

with them. Except for the nuances of the example property automata that will be presented, the rest of this

paper can be read without understanding these details.

Set-Based Analysis produces two useful outputs. First, it computes an overapproximation of the runtime

values of each expression in the source of the program. Second, it generates a set of flow variables for each

expression in the source; this set contains one flow variable for each potential value of that expression. The

value set enables reasoning about the values of an expression, whereas the flow variable set enables reasoning

about value flow between expressions. In particular, if the value of one expression flows into the value of

another, then all flow variables associated with the first will also be associated with the second.

In following, we will use the term environment to refer to the data local to a Web page that the user sees

and the term store to refer the data shared by all pages. We assume that a Web program has exactly two

syntactically identifiable store operations set and join. A set replaces the value of its first argument

with the value of the second, whereas a join adds the value of the second to a collection containing all values

previously joined to the first.

Notation: expr(n) denotes the source expression corresponding to the WebCFG node n. Tags denotes

the set of all tags; nodes(tag) denotes the WebCFG nodes tagged with tag ∈ Tags. V denotes the set of all

program values, FV denotes the set of all flow variables, and for n ∈ NWebCFG, V (n) and FV (n) denote

the value and flow variable sets corresponding to expr(n). Flow-variable expressions are described by the

grammar FVE ::= s | v | SCv and SC ::= = | ⊆ | * | ⊇ | + where s ⊆ FV and v is

a flow-variable variable.

AP consists of five kinds of tuples, tagged, set, join, web, postweb. Their types are as follows

(we abuse notation here by using each of the tuple names as a type for that tuple name literal):

• tagged ∗ Tags ∗ V ∗ FV

14

• set ∗ Exprs ∗ FV E ∗ FV E

• join ∗ Exprs ∗ FV E ∗ FV E

• web ∗ Z

• postweb ∗ Z

A labelling function L : N → P(AP) associates each node in the WebCFG with a set of atomic propo-

sitions that are true at that node. For a given n, L(n) includes:

• (value, tag, V (n), FV (n)) iff n ∈ nodes(tag).

• (set, nx, FV (nx), FV (nv)) iff expr(n) is an expression that sets expr(nx) to expr(nv).

• (join, nx, FV (nx), FV (nv)) iff expr(n) is an expression that joins expr(nx) to expr(nv).

• (web,m) iff n is Web-interaction number m

• (postweb,m) iff n is Web-interaction number m. Corresponding Web/post-Web nodes have the same

number.

There are a few subtleties in how the developer uses these atomic propositions in properties. When

writing set and join propositions explicitly, the developer must either specify the CFG node by source

position, not specify it at all, or use a rule to generate properties for the specific model being checked (in the

examples presented later, we will use the second and third approaches). The flow-variable expressions exploit

the fact that our verification algorithm is parameterized by the definition of atomic-proposition matching

(that is, determining when a propostion labelling a state in the model is the same as a proposition labelling a

transition in the property). Other than FVE positions, atomic propositions must exactly match. FVE positions

are matched as follows: a literal set in the property matches an identical literal set from the model; a flow-

variable variable in the property matches any literal set on the model, and the variable is associated with the

literal set in a relation kept by the matching routine; a set-constraint in the property matches a literal set in

the model iff the constraint is satisfied for all literal sets related to the constraint’s variable. This notion of

matching allows us to state value-flow relationships in temporal properties.

4.3 Example Property Automata

In the following, we label the violation state of a safety property v and the accept states of a liveness property

with double concentric circles. Any atomic proposition that is not shown labels a self-loop; any part of a

proposition shown with an underscore does not affect atomic proposition matching.

Assuming that there is an expression with CSS tag password-entry on the password page and an ex-

pression with CSS tag access-controlled on the access-controlled page, we can translate the password-

page safety property described in Section 2.1 into a property automaton:

15

1

2

v

(tagged,password−entry,_,_)

(tagged,access−controlled,_,_)

Assuming an input tagged query and a page element tagged display-query that displays the query

back to the user on the results page, we can check the property that a search engine always displays the

results of a user’s query on the next-generated page by verifying both that display-query takes the value

of query and that the following automaton is satisfied. This automaton uses the web propositions to state

that the displayed text is generated before the next page is sent:

1

2

(tagged,display−query_,_)

v
(web,_)

(tagged,query,_,_)

Assuming a tag portal on a portal page, we can check that a portal page is always eventually reachable

by verifying that this automaton is satisfied:

1

2

(web,_)

(tagged,portal,_,_)

4.4 Property Idioms

Though we could now write the Orbitz and Amazon properties directly as automata, we instead define three

property idioms of which they are instances.

So far, we have described the Orbitz property as a relationship between the value of the expression

tagged flight-displayed and the value of the expression tagged flight-reserved: the value

of flight-reserved must be generated from the value of flight-displayed displayed on the

page that the user submitted to make his reservation (call this page pprev). This property is implied by

the conjunction of two other properties. First, all potential values of flight-reserved are also val-

ues of flight-displayed. Second, no values used in the computation of flight-reserved that

were present when pprev was generated have changed since its generation. Similarly, we want to capture

the Amazon property that once a user selects an item to buy, it it appears in his shopping cart. Assuming

appropriate CSS taggings, we state this by saying that the shopping-cart contains all values input as

selected-item.

We offer generalized versions of these properties as idioms in our property language. In the following

definitions, let e1 and e2 denote expressions in the Web program source.

• We say that e1 takes the value of e2 iff any potential value of e1 must also be a value of e2. The first

Orbitz subproperty is an instance of this idiom.

16

1 2 v

takes the value of

(tagged,tag1,_,X)

(tagged,tag2,_, X)

(tagged,tag2,_, X)

1 2 v

(value,id,_,_)

page

(set,<n>,_,_)
(join,<n>,_,_)

1

accumulates

(tagged,tag2,_,f2)

32 v

(tagged,tag1,_,_)

(join,_,f1,f2)

(tagged,tag1,_, f2)
(tagged,tag1,_, f2)

Figure 4.1: Property Idioms as Automata
expr(tag1) takes the value of expr(tag2), expr(tag) is page, and expr(tag1) accumulates the values of
expr(tag2). For page, we label the transition from state 1 to state 2 with one set and one join for each
node whose value is used to compute expr(tag) (we identify these using the flow variables).

• Let pprev denote the last page the user saw before the evaluation of e1. Then we say that e1 is page

iff no values used in the computation of e1 that were present when pprev was generated have changed

since that page’s generation. The second Orbitz subproperty is an instance of this idiom.

• We say that e1 accumulates the values of the e2 iff if the value of e1 contains the value that e2 pro-

duces at each evaluation (where the exact notion of containment depends on the type of value that e2

produces). The Amazon property is an instance of this idiom.

Figure 4.1 shows how to write our idioms as automata over the full set of atomic propositions. takes the

value of is simple to express with flow-variable set-constraints. page requires that no value used to compute

the page value can be kept in the store (if some value were kept in the store, the Web control flow would

allow it to be mutated between page generation and submission). accumulates requires that the accumulated

value be joined to the accumulating value.

Chapter 5

Verification Process

5.1 Verification Algorithm

The model and property language described above are derived from those used in the FLAVERS toolkit [6]:

the FLAVERS algorithms consume a model represented as a graph whose nodes are annotated with certain

atomic propositions and a property written as an automaton over those same propositions. We may thus

reuse the FLAVERS model checking algorithms in our work. We give only an intuitive description of the

algorithms; they are presented formally by Naumovich, et al. [17].

In FLAVERS, a slightly different algorithm is used for verifying liveness properties than for verifying

safety properties. Both start with a common subroutine: traverse the model and associate with each model

state the property states that are reached at that model state (the atomic propositions reached on model states

drive the property automaton, using the particular definition of matching described in Section 4.2). Continue

until no model state n can be reached with the property in a state not already associated with n.

Then, to check if a safety property is true for the model, ascertain that no model states are associated

with the violation state of the property. Recall that a liveness property is expressed as a deterministic Büchi

automaton, and that such an automaton accepts a string iff it reaches an accept state infinitely often. To check

a liveness property, form a cross-product graph between each state in the model and the property states that

were reached at that state, and prune this graph of all nodes where the property is in an accept state. Then,

ascertain that this restricted graph does not contain any strongly connected components. This is a standard

model-checking technique (used also in LTL model checking [5, 21]); it relies on the observation that an

infinite path where the property never reaches an accept state exists iff such a strongly connected component

exists. It is this step that requires the restriction of our property language to deterministic Büchi automata.

At this point, we are able to discover the bug in a model of Orbitz. Using the state labellings from

Figure 3.2 (and only mentioning the depicted nodes), we see that the trace [w1, x1, a, b, c, w2, x2, d] violates

the property that the expression tagged flight-reserved is page.

17

18

5.2 Improving Precision and Efficiency

In this section, we present two improvements upon our verification technique. The first reduces the number

of spurious errors; the second improves the time efficiency of the verification task.

Constraint Automata for Better Precision

When we discovered the Orbitz bug, we also found that the trace [w1, x2, d, w3, x1, a, b, c, w2, x2, d] failed to

satisfy the desired property. This corresponds to the user visiting the successors of the second Web-interaction

point before he has even gotten to generating the second page, something he clearly cannot actually do.

Where did this spurious path come from? When we first defined the WebCFG, we added edges from each

Web-interaction node to the successor of each other Web-interaction node. This overapproximates the control

flow introduced by Web interactions: in reality, a user can only switch to pages he has seen before, not to any

page at all. In this case, the overapproximation resulted in a spurious trace being reported for a program that

actually was incorrect. In other cases, it will cause correct programs to be deemed incorrect—for example,

the password-page property would never hold, as these spurious model paths would make it seem as if the

user could always jump directly to the access-controlled page.

We can improve the number of correct programs that we deem correct by eliminating these infeasible

paths. The naı̈ve way of accomplishing this would be to redesign the WebCFG, adding many slightly aug-

mented copies of the original graph to represent the enabling of new transitions and adding the appropriate

transitions between these copies. This approach would cause an exponential explosion in the size of our

model, which in turn would drastically increase the time required to check properties over it.

Fortunately, the FLAVERS algorithm gives us a better option. The full FLAVERS algorithm allows the

developer to specify any number of constraint automata in addition to the property. A constraint automaton,

like a safety property, is a finite-state, finite-word automaton with a single violation state that is driven by

the propositions reached on the model states. However, the interpretation of reaching the violation state

is different: when a constraint automaton is violated, the model path leading to that violation is no longer

considered valid; the property is thus allowed to be violated on such paths. The modified FLAVERS kernel

can be used directly for the safety property algorithm; it requires only a slight modification (the cross-product

graph is now over the model, the property, and all of the constraints) for the liveness-property algorithm.

Constraints thus provide an easy and efficient way to prevent certain paths in the model from affecting the

results [6].

Helpfully, the constraints needed to remove the spurious paths we introduced in the WebCFG can be

generated automatically. We create one constraint of the following form for each Web-interaction node:

1

2

v

(web,m)

(postweb,m)

Constraint m will be violated on any path where post-Web-interaction node m is visited before Web-interaction

node m; since we have a constraint for each Web-interaction node, at least one constraint will be violated on

19

any path that includes a switch to a previously unvisited page. The post-Web-interaction nodes are necessary

for specifying these constraints: because we have folded all evaluations of an expression into one WebCFG

node, any original CFG node can potentially be reached before any given Web interaction node. Thus, none

of these original nodes can be used as the atomic proposition that sends the constraint to its violation state

without creating the possibility that the constraint will be violated on a valid path.

Property-language-driven Optimization

Our labelling function associates certain nodes in the WebCFG with the empty set of atomic propositions.

Because of the way we have defined the verification process, these unlabeled nodes have no influence on

the verification results (since the atomic propositions reached on the model states are the inputs to the prop-

erty and constraint automata, traversing unlabeled model states will have no effect). Thus, we remove any

sequence of unlabeled states from the graph, connecting the predecessors of the sequence directly to its

successors. Section 6 shows that this optimization can have quite a dramatic impact in practice.

5.3 Soundness

We can now state a soundness result of our model checker: if the model checker claims that the WebCFG of

a Web program P has a certain property, then that property will hold for all executions of P during which

the user performs only switches to previously visited pages and submits. This result follows directly from

the soundness of the FLAVERS algorithms and the fact that the WebCFG and the atomic proposition la-

belling are overapproximations. The WebCFG overapproximates the control flow of the Web program (i.e,

if a sequence of expressions is evaluated in order in some execution of the program, then the corresponding

sequence of nodes appears in the WebCFG) because the standard CFG construction techniques yield an over-

approximation and the edges added to form the WebCFG but not disallowed by the constraints exactly reflect

the control flow enabled by the user operations. Our atomic proposition labelling is an overapproximation

(i.e., if an atomic proposition holds for a program expression, then the WebCFG node corresponding to that

expression is labelled with that proposition) because Set-Based Analysis [9, 13] overapproximates runtime

values. These two facts imply that the set of atomic proposition traces along paths in the WebCFG is a super-

set of the set of atomic proposition traces that actually occur at runtime. By the soundness of FLAVERS, if

the model checker claims that a given property holds for a WebCFG, then that property is true for all atomic

proposition traces along paths through the WebCFG; in particular, it is true for the subset of those traces that

occur at runtime.

5.4 Complexity

The complexity of our method is determined by the complexities of the various phases. The data-flow analysis

has worst-case time complexity O(n3) where there are n expressions in the program source; building the

WebCFG then takes time O(n2), so the time for constructing the model is O(n3). The FLAVERS safety

20

algorithm takes time O(n2 · p · k) where p is the number of states in the property and k is the product of the

numbers of states in each of the constraints. If a developer uses only the constraints we generate for the Web

control flow, then there will only be one constant-size constraint for each Web-interaction node. Thus, k is

O(w), where w denotes the number of Web-interaction nodes, and therefore k is O(n). In this case, we get

an overall worst-case upper bound of O(n3 · p), but we will often do better—w is likely to be much less than

n. Checking liveness properties requires additional time for detecting strongly connected components. Our

space complexities are the same as those of FLAVERS.

Chapter 6

Implementation and Results

We have implemented the algorithms described above for constructing the WebCFG and verifying safety and

liveness properties. Our implementation accepts Web programs written in PLT Scheme, so we rely on an

implementation of Set-Based Analysis called MrFlow [16] for our data-flow analysis. Because our notion of

atomic-proposition matching is nuanced (see Section 4.2), we use a quick reimplementation of the relevant

algorithms.

Our implementation makes some simple assumptions to aid in data reasoning. MrFlow does not provide

useful value set information about strings, which constitute most Web pages. This is because strings can be

combined and decomposed in an arbitrary manner. In contrast, many Web applications do not decompose

strings; they only combine strings collected from various sources. (The use of structured forms decreases

the need to inspect strings for implicit patterns, such as prefixes that determine gender; this information is

instead collected explicitly through separate form fields.) These strings therefore closely resemble collection

data structures such as lists (about which MrFlow provides rich value-flow information). We therefore map

the string primitives onto list primitives, which enables us to trace the flow of strings through the program.

This restriction has sufficed for the programs we have verified.

We have begun to verify CONTINUE [14], a conference-management system that has been used for ISSTA

2004 and many other conferences. Preliminary results are encouraging: an initial WebCFG contained 17,200

nodes, but the property-language-driven state space optimization yielded a model with approximately 300

nodes (the exact number depends on how many expressions are tagged for property use).

21

Chapter 7

Related Work

There have been some past efforts to apply formal verification techniques to the Web. De Alfaro [7] uses

model checking techniques to verify properties of static Web pages. He treats the page and link structure of

the web as a model and then verifies properties written in a slightly restricted µ-calculus over that model.

This technique allows him to check many path properties over static Web sites (such as the password-page

property) and to present errors as paths through the Web model that violate a given property. Unlike de

Alfaro, we are interested in proving properties of interactive Web sites.

Benedikt et al.’s VeriWeb tool [3] explores interactive Web sites using a special browser that systemat-

ically explores all paths up to a specified depth. A user of this tool first makes a model approximating the

values that a user might type into the forms of interest. Next, the user specifies properties (such as string

containment) about individual Web pages. The verifier then traverses the Web sites of interest and reports

errors as sequences of Web operations that lead to a page which violates a property. As in this work, we

are concerned with verifying properties of interactive Web sites. However, our work addresses several key

limitations of this tool. First, it does not take into account user operations, so his tool is unable to catch errors

that occur only in their presence. Our verifier accounts for the control flow enabled by user operations and

discovers user-operation-related bugs. Secondly, its verification is limited to single-page properties. In con-

trast, we provide a method for verifying all-paths properties of interactive Web sites. We can do this because

our verifier operates statically on the program’s source, whereas Godefroid’s tool is dynamic, effectively

“running” the Web site as a Web browser would.

Baresi et al. [2] observe a bug in Amazon and extended UML’s OCL with assertions to capture it. These

assertions roughly correspond to the properties that we have expressed with page; in contrast, we provide a

much richer property language. Furthermore, it is unclear how to verify a program against their assertions, as

the authors provide neither an algorithm nor a mapping to traditional OCL verifiers.

Our formal model for Web operations is given by Graunke, et al. [10]. Using this model, the authors

created a type system that statically discovers abuses of the values filled into form fields and devised a strategy

for detecting data inconsistency problems such as the Orbitz bug. However, these inconsistency problems are

only detected dynamically through changes to the server’s run-time system. In contrast, our system is static

and can provide guarantees about all possible execution sequences.

22

Chapter 8

Future Work

In the future, we would like to perform more case studies to further demonstrate the utility of our tool. We

expect that these will help us identify more property idioms, eventually resulting in a catalog of verification

patterns, akin to that of Dwyer et al. [8], but for the Web.

To verify a larger set of Web applications, we must eventually permit richer reasoning about data. In

particular, we must support a broader set of operations on strings (especially string decomposition), as well

as arithmetic operations. We expect it will be essential to complement our model checker with a theorem

prover: the model checker would output data propositions to the theorem prover, which would determine

whether the desired property could be proven from those constraints.

One factor that greatly influences the utility of a model checker is the quality of the error traces it provides

when a property is violated. Our technique has the advantage of being able to present traces very intuitively

as sequences of Web pages and Web operations that lead to a violation. Indeed, we could potentially even

generate this output in the WebVCR format [3] so that a developer could sit back and watch as the error is

played out.

We have restricted ourselves to analyzing programs that use the send/suspend primitive. Many Web

programs, unfortunately, are not written in this style. We conjecture two solutions to this problem. First, based

on prior work [11], we conjecture that we can use an “inverse CPS transformation” to convert ordinary CGI

programs into a form suitable for our verifier. However, such a tool would have to overcome many engineering

obstacles. Secondly, we could treat individual CGI scripts as open features and use techniques [15] for

reasoning about their composition.

Currently, we do not address the concurrency issues resulting from multiple simultaneous accesses to a

server by different clients (which are different from those resulting from repeated sequential submissions of

the same page by a client). Given that many Web sites allow multiple users to interact with the same data,

this is an important path for future research. We hope to exploit results on atomicity to reduce the sizes of

models involving multiple clients. This process might be abetted by the fact that our current design of the

WebCFG includes more knowledge about the particular sequencing of some events than may be necessary

(for instance, the order of various operations that occur in between two Web interactions may not matter).

23

Bibliography

[1] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed Computing, 2:117–126,

1987.

[2] L. Baresi, G. Denaro, L. Mainetti, and P. Paolini. Assertions to better specify the amazon bug. In 14th

Software Engineering and Knowledge Engineering, 2002.

[3] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Automatically testing dynamic web sites. In

International World Wide Web Conference, Honolulu, 2002.

[4] L. D. Catledge and J. E. Pitkow. Characterizing browsing strategies in the World-Wide Web. Computer

Networks and ISDN Systems, 27(6):1065–1073, 1995.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge, MA, 1999.

[6] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. FLAVERS: A finite state verification technique for

software systems. IBM Systems Journal, 41(1), 2002.

[7] L. de Alfaro. Model checking the world wide web. Lecture Notes in Computer Science, Conference on

Computer Aided Verification, 2001.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications for finite-state

verification. In 21st International Conference on Software Engineering, 1999.

[9] C. Flanagan and M. Felleisen. Componential set-based analysis. ACM Transactions on Programming

Languages and Systems, 21(2):369–415, 1999.

[10] P. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Modeling web interactions. In European

Symposium on Programming, 2003.

[11] P. T. Graunke, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Automatically restructuring programs

for the Web. In IEEE International Symposium on Automated Software Engineering, pages 211–222,

Nov. 2001.

[12] P. T. Graunke, S. Krishnamurthi, S. van der Hoeven, and M. Felleisen. Programming the Web with

high-level programming languages. In European Symposium on Programming, pages 122–136, Apr.

2001.

24

25

[13] N. Heintze. Set-based analysis of ML programs. In LISP and Functional Programming, 1994.

[14] S. Krishnamurthi. The CONTINUE server. In Symposium on the Practical Aspects of Declarative

Languages, 2003.

[15] H. C. Li, S. Krishnamurthi, and K. Fisler. Modular verification of open features through three-valued

model checking. Automated Software Engineering: An International Journal, 2003.

[16] P. Meunier. Selector-based versus conditional-constraint-based data-flow analysis of programs. Master’s

thesis, Rice University, 2001.

[17] G. Naumovich and L. A. Clarke. Extending flavers to check properties on infinite executions of con-

current software systems. In Monterey Workshop on Engineering Automation for Software Intensive

System Integration, 2001.

[18] C. Queinnec. The influence of browsers on evaluators or, continuations to program web servers. In

ACM SIGPLAN International Conference on Functional Programming, 2000.

[19] O. Shivers. Control-flow analysis in scheme. In SIGPLAN Conference on Programming Language

Design and Implementation, 1988.

[20] M. Slatalla. Big, curved and road-ready? Book it. New York Times, 07-17-2003.

[21] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Logic

In Computer Science, pages 332–344, 1986.

Appendix A

Alternate WebCFG Construction

We claimed that overapproximating the switch and submit control flow in the WebCFG and then ruling out

the spurious paths with constraints was necessary to avoid exploding the size of the model. In this section,

we present a WebCFG construction that directly captures the exact control flow and analyze its affect on the

state-space. Thus, our goal in this section is to augment the CFG with all and only edges corresponding to

the user’s ability to switch to and resubmit any previously-visited page.

Construction

Let n denote the number of nodes in the CFG, and m < n the number of Web interaction nodes. Denote

Web-interaction node i by wi. We still introduce the post-Web-interaction nodes, and we denote post-Web

node i by xi.

Single ordering: Assume to start that the CFG gives a total order on the execution of the Web interaction

nodes—that is, the user must progress linearly from w1 to w2 . . . to wm. This corresponds to the program

not presenting the user with any choice about the order in which he visits the Web pages in a site (though of

course he recovers this choice through browser operations). In this situation, there are two kinds of switch

edges that we need to add: those from wi to xj when i > j and those when i < j. Intuitively, the former

correspond to using the Back button (perhaps multiple times), whereas the latter correspond to using the

Forward button (perhaps multiple times). For the “Back” edges—for i > j—we can add the exact edges to

the graph from the start without introducing any new states: because of the total order, any path that reaches

wi must have gone through wj , and thus wj corresponds to a previously-visited page. The “Forward” edges

are more complicated: an edge from wi to xj when i < j should only be present on a path in which the

user has gone through wj . This corresponds to the fact that the user must visit a page once through normal

control flow before he can go “Forward” to it. We can mimic the enabling of these edges at the right time as

follows: tile m copies of the original graph, where copy k is the same as copy k − 1, except that it adds the

“Forward” edges to wk from all wl such that l < k (and copy 1 is simply the original CFG); link these copies

with a transition from state wk in copy k − 1 to state wk in copy k. As a path through this graph reaches new

Web interaction nodes, it enables the appropriate “Forward” arrows by transitioning to a copy of the graph

26

27

including them. The number of states produced by this copying can be cut down slightly by eliminating all

original successors of wl from copy l—there is no need to go on in both the copy without the “Forward”

edges and the copy with them.

All orderings: The construction in the above paragraph gives the proper control-flow augmentation to

reflect any executation trace visits the Web-interaction nodes in order from 1 to n. In some CFGs, the order

in which the Web-interaction nodes are visited will change from trace to trace, depending on the data. We can

model a trace that visits Web-interaction nodes in a different order by renumbering the Web-interaction nodes

and repeating the construction above. To model the control-flow for all possible traces, we must repeat the

process above for each ordering of the Web-interacction nodes allowed by the CFG, and then add a transition

from the start node of the overall model to the start node of the model for each ordering.

Analysis

We now give a lower bound on the size of the model produced by this process in the worst case. The

(unoptimized) single-ordering construction requires m copies of a graph with n nodes, so it requires Ω(mn)

nodes. There exists an input program for which m is linear in n (in particular, m is Ω(n)), so the number of

nodes required in the worst case is Ω(n2). In this case, the number of nodes required by the optimized single-

ordering construction would be Ω(Σn
i=1

i) nodes, so it would still be Ω(n2). The all-orderings construction

requires as many copies of the single-ordering construction as there are orderings of the Web-interaction

nodes. In one case, all orderings of the Web-interaction nodes could be allowed by the CFG, which would

give m! possible orderings. Thus, the worst case has at least m! orderings. Since m is linear in n, this gives

Ω(n!) orderings, and thus Ω(n!) copies of a graph with Ω(n2) states. Thus, the number of states in the worst

case is Ω(n! · n2), which is clearly exponential in n.

We conjecture that any WebCFG construction that explicitly captures the control flow will similarly re-

quire an exponential state explosion.

