
The Crunch Mobile Robot

Edward C. Kern
chris@jormungand.net

Department of Computer Science
Brown University, Providence, RI

Honors Thesis submitted 2005-05-05
Advisor: Tom Dean

Reader: Chad Jenkins

Figure 1: The Crunch Mobile Robot

ABSTRACT
Crunch is a two wheel inverted pendulum balancing robot
equipped with 8 sonars and 8 infrared rangefinders and uses
a FastSLAM-like[6] particle filter algorithm to build consis-
tent maps. This paper presents a summary of the robot’s
design and capabilities as well as the particle filter algorithm
used for consistent map building.

1. HARDWARE
1.1 Inverted Pendulum Balancing
Crunch has only two wheels and thus is inherently unstable.
It is equipped with an angular rate sensor and accelerom-
eter which, when combined using a complementary filter,
measure the current pitch. The drive control microcon-
troller drives the wheels with a linear sum of the robot’s
pitch, pitch rate, wheel velocity, and error from commanded

position. Forward/backward motion commands are intro-
duced by subtracting the commanded velocity from the ac-
tual wheel velocity and moving the commanded position at
the same velocity. Rotational motion commands are intro-
duced by adding the command to one wheel velocity and
subtracting it from the other; this does not alter the fore/aft
balance.

1.2 Sensors
Crunch is equipped with two navigational sensor systems:
sonar and infra-red. Each system has eight sensors at 45
degree angles 6 inches (sonar) and 8 inches (infra-red) above
the ground and each sensor measures either a single distance
or no return.

The principle difference between the sonar and infra-red is
the field of detection. The sonar transducers are 40 khz
piezo-electric type and have a beam pattern about 45 de-
grees wide. While this means they do not provide very high
resolution, it also means that it is unlikely that a nearby ob-
ject will not be detected by at least one sonar. The infra-red
sensors, Sharp GP2D12s, have a beam width only a few de-
grees wide. As such they may not detect all nearby objects
like the sonars but their tighter beam width allows them to
resolve smaller environmental features.

There are also current and voltage sensors on the battery
and charger circuits and current sensors on each of the two
motor drivers.

1.3 Support Systems
Crunch is powered by a 24 cell NiMH AA-size battery pack.
The balancing time constant of an inverted pendulum is
proportional to the height of its center of gravity. Thus, in
order to maximize stability, the batteries are located as high
as possible, in contrast to traditional robot design.

On-board computations are done by two ATmega32 16MHz
microcontrollers: one for inertial measurement, balancing,
and movement and another to control the sonars and infra-
red sensors. Both microcontroller serial ports are multi-
plexed into a 900MHz radio modem which transmits sensor
data to and receives movement commands from a PC run-
ning Linux. The only behavior Crunch is capable of perform-
ing autonomously is balancing; all mapping and navigation
algorithms are run on the PC.



Figure 2: Sensor fusion in the local map: sonar mea-
surements (blue cones) and infra-red rangefinder
measurements (green rays) are integrated to find
occupied (black) and unoccupied (white) regions
which are then reduced to the location visible walls
(red shading).

2. MAPPING

2.1 Sensor Fusion
A local occupancy grid map is maintained for a 2x2 me-
ter square centered on the robot. When infra-red and sonar
data is received it is integrated on the local map in a pseudo-
Bayesian manner. (Since the purpose of the map is to com-
bine infra-red and sonar data, not to estimate probability
of occupation based on past and current data, it allows
new data to alter strong priors much more than Bayes rule
would.) When dead-reckoning updates are received, the map
is transformed and resampled at the new location; during re-
sampling, areas outside the map are assumed to have neutral
belief.

While an occupancy grid map works well for integrating sen-
sor data, we eventually store the sensor data in a more com-
pact form. Rays are traced from the center of the local map
(ie. the robot) in all directions to the first point with oc-
cupancy probability greater than a threshold. These points
are connected into adjacent sequences of points which rep-
resent the walls that are currently visible to the robot. We
also apply the following filters: elimination of short curves,
coalescing of adjacent curves separated by only a few infinite
readings, and a Gaussian smoothing.

Due to the inability of the sensors to identify specific objects
reliably, no effort is made to explicitly identify landmarks;
the only representation is the general shape of objects.

2.2 Obstacle Avoidance

Figure 3: Vector field histogram corresponding to
local map shown in Figure 2. The vector to the
objective is shown as a green arrow; the valleys are
identified by colored arcs on the gray circle; the com-
manded direction, shown as a red arrow, is selected
from the valley closest to the objective.

For local path planning Crunch uses the vector field his-
togram algorithm.[2] This is extremely easy since building
the histogram is simply a radial sum of the local map and
thus the extra computation needed is small.

The weights on the local map are scaled according to cer-
tainty of occupation squared and linearly decreasing from
the center. The scaled weights are then summed radially,
producing a distribution of obstacle density around the robot.
“Valleys”, contiguous arcs where the density is below a cer-
tain threshold, are identified as potential courses for the
robot; a path through one of the valleys is selected based on
the vector to a commanded objective waypoint.

Crunch has no global path planning and is generally oper-
ated manually.

2.3 Mapping
The reduction from occupancy grid to parametric curve is
executed after every half meter of robot movement. We
assume that within that distance dead reckoning error is
small and can be ignored. The resulting curves are stored
along with the spatial transformation the robot underwent
from the last location. This results in a data structure which
encodes the robot’s movement path as well as the walls it
observed at intervals along the path and forms the basis for
our maps.

2.4 Map Likelihood
In order to build a consistent map it is necessary to apply
corrections to the dead reckoning spatial transformations



along the path. In order to compute a most likely map it is
first necessary to define likelihood in terms of the map rep-
resentation we use. Our formulation has two components:
the plausibility of the corrections and the self-affinity of the
resulting map. The plausibility models confidence in the
dead reckoning ability of the robot. While we know that
the dead reckoning path is not correct, it is usually close to
the true path; thus we use a Gaussian to compute the likeli-
hood of a set of path corrections. The self-affinity of a map
is a measure of how well the map matches itself in locations
where the corrected path predicts that it crosses itself.

2.5 Map Affinity
To evaluate a candidate path it is necessary to compare the
pairs of curves that the path predicts are near each other;
we have experimented with two estimates for similarity of
such curves.

The first map affinity function we used treats each curve as
a set of individual line segments. To compare two sets of
curves, each segment in the first curve is compared to each
segment in the second curve. A sum is computed of the
dot product of the normals of the curves multiplied by an
exponentially decreasing function of the distance between
them. Thus, curve segments which are nearby and oriented
in the same direction contribute positively, whereas curves
which are nearby and oriented in different directions con-
tribute negatively. One serious flaw in this approach is that
walls that cross at right angles produce zero affinity since
the dot product is always zero; we would prefer that they
be assigned a negative affinity.

The second map affinity function we used has properties
more similar to traditional occupancy grid correlation func-
tions. Test points are generated in a Gaussian pattern around
the center of the two curves being compared. Each point is
evaluated as being either inside or outside each of the two
curves; the affinity is a function of the percent of points for
which the curves agree. One advantage of this method is
that the number of sample points can be reduced, increas-
ing the variance of the affinity measurement but reducing
computational time. Also it is possible to short-circuit the
evaluation when it becomes clear after a small number of
sample points that the affinity is very bad.

2.6 Local Search
For simple environment topologies – in general, ones without
long cycles – a local search is sufficient for finding the most
likely map. While the robot drives around extending the
path, a background thread continuously generates random
perturbations of the path and evaluates them, accepting im-
provements greedily.

Local search has a serious drawback in this application, how-
ever: the dimensionality of the search space is continuously
growing. Thus as the path becomes longer, the amount of
searching that can be done in any particular part of it given
fixed processor time diminishes.

2.7 Particle Filter
The drawback of local search is that it stores only a sin-
gle path hypothesis and after closing a large loop that one

hypothesis will usually differ sufficiently from the true path
that local search will not find the true path.

The particle set consists of several weighted hypothesis for
the robot’s path which together implicitly represent an ar-
bitrary distribution. As the robot moves and its path is
extended the particle set is also extended according to a
probabilistic motion model consisting of uncorrelated Gaus-
sian angle and distance errors. The variances of these errors
are estimated manually and hardcoded.

Since a path hypothesis implies a map we can measure the
likelihood of the path given the consistency of the map.

In our formulation the map’s affinity is additive over pairs of
vertices so it can be computed incrementally as particles are
extended; when paths cross themselves the walls observed
around each are compared and the resulting affinity is added
to the particle’s value.

As the particles are extended, new observations will increase
the weight of some particles and decrease the weight of oth-
ers until many particles have weights orders of magnitude
less than the most likely particle. The power of a particle
filter[1] is that it provides a framework for dividing compu-
tational time evenly over weight of belief. This is ensured
by periodically resampling the particles such that each new
particle has equal weight. Resampling, however, reduces di-
versity in the particle set. Even in cases of equally weighted
particles being sampled, some particles will be lost and oth-
ers duplicated, leading to particles sharing long prefixes.
This collapsing of the distribution to the most likely par-
ticle, or particle depletion, generally leads to the failure to
close a cycle properly. In order to prevent particle deple-
tion it is necessary to resample the particle set only when
observations have changed the weight distribution.

This is accomplished by making the resample phase of the
particle filter conditional depending on the current particle
weight distribution. Each particle in the filter that has a
weight much less than average is essentially wasted. To pa-
rameterize this we compute the number of bits of entropy in
the particle weight distribution using H = −

P

x
P (x) log

2
P (x).

The effective number of particles representing the path be-
lief is 2H and when the particle distribution is uniform (such
as following resampling) this is exactly the total number of
particles. The particles are only resampled when the frac-
tion of effective particles falls below a threshold.

Since particles are extended, duplicated, and deleted but
never otherwise altered it is natural to represent them in a
common-prefix tree structure. Specifically, we store a tree
in which a node consists of a candidate path delta for a
particular path vertex as well as a pointer to the node storing
the delta for the previous path vertex. A particle contains a
pointer to a leaf of this tree. Each node in the tree contains a
reference count and is deallocated when no nodes or particles
reference it. A similar tree is used in [5] and [4].

3. PF CONSEQUENCES
An interesting statistic about the particle filter is the profile
of the particle tree. The profile is the number of nodes at
each depth divided by the total number of particles. This



Figure 4: Rao-Blackwellization: when you sample
the path (s0..s3) you can compute the probability of
the implied map (m) from just the (newly) indepen-
dent observations (z0..z3)

shows which sections of the path are known with relative
certainty and which ones require further observations before
they will be known. A specific case of this is the maximum
depth with only one node; before the corresponding path
vertex all particles are identical and thus that segment of
the path is fixed.

3.1 Related Work
Several other roboticists have applied particle filtering tech-
niques to the SLAM problem.

The underlying observation that makes this sort of algo-
rithm useful is that observations, when conditioned on the
robot’s path, are independent. It is thus only necessary to
approximate the path of the robot. This simplification is
known as Rao-Blackwellization.[7]

Whereas Crunch has no sense of individual landmarks at
all, most particle filter mapping systems uses the traditional
SLAM model where all observations are of discrete land-
marks. In such cases the data association problem must
also be solved, that is, when a landmark is observed one
must determine whether it is a new landmark or one of the
previously observed landmarks. Particle filters offer an ad-
vantage over EKF based SLAM algorithms as each particle
maintains its own hypothesis of data association. This pre-
vents the case where an incorrect data association leads to
catastrophic failure.[6] Crunch’s low sensing ability makes
the data association problem more difficult.

In [4] a robot equipped with a laser rangefinder is used and
laser scans are matched in order to enhance dead-reckoning
accuracy. In addition to providing more accuracy than odom-
etry, scan matching provides a covariance matrix for the an-
gular and range errors which is used to extend particles.
This approach is more elegant and effective than Crunch’s
hardcoded variances and zero covariance but Crunch’s sen-
sors lack the range and accuracy for scan matching.

4. RESULTS
We drove Crunch manually around parts of the 4th and 5th
floors of the Thomas J. Watson Sr. Center for Information
Technology at Brown. The maps corresponding to the most
likely particle are show in figures 5 and 6.

5. CONCLUSIONS
This paper has presented a new robot design as well as a
new non-landmark FastSLAM implementation and support-
ing map representations and evaluation functions. While the
results are not particularly impressive when compared with
other FastSLAM implementations, they were obtained using
a much smaller, cheaper, and less capable robot.

6. REFERENCES
[1] A. Blake and M. Isard. CONDENSATION - conditional

density propagation for visual tracking, Sept. 14 1998.

[2] J. Borenstein and Y. Koren. The vector field histogram
- fast obstacle avoidance for mobile robots. IEEE

Journal of Robotics and Automation, 1991.

[3] W. Burgard, D. Fox, H. Jans, C. Matenar, and
S. Thrun. Sonar-based mapping with mobile robots
using EM. In Proc. of the International Conference on

Machine Learning, 1999.

[4] D. Hahnel, W. Burgard, D. Fox, and S. Thrun. An
efficient fastslam algorithm for generating maps of
large-scale cyclic environments from raw laser range
measurements. In IROS-03, 2003.

[5] M. Montemerlo and S. Thrun. Simultaneous
localization and mapping with unknown data
association using fastslam. Master’s thesis, Carnegie
Mellon University, 2003.

[6] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit.
FastSLAM: A factored solution to the simultaneous
localization and mapping problem. In Proceedings of

the AAAI National Conference on Artificial

Intelligence, Edmonton, Canada, 2002. AAAI.

[7] K. Murphy. Bayesian map learning in dynamic
environments. In Neural Info. Proc. Systems, 1999.

[8] R. C. Smith and P. Cheeseman. On the representation
and estimation of spatial uncertainty. The International

Journal of Robotics Research, 1986.

[9] S. Thrun, M. Montemerlo, D. Koller, B. Wegbreit,
J. Nieto, and E. Nebot. Fastslam: An efficient solution
to the simultaneous localization and mapping problem
with unknown data association. Journal of Machine

Learning Research, 2004. To appear.



Figure 5: Two loops around an approx. 50m cycle on the CIT 5th floor. Map computed in real-time using
2000 particles. The terminal distribution of particles is shown.

Figure 6: A 250m drive from the AI Lab. Map computed offline using 5000 particles.


