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Abstract 
 
In the past few years, there has been a massive boom in the popularity of poker 

as an American pastime.  While there has always been interest in poker in the 

United States, the game was propelled into the limelight due in no small part to 

the aptly named Chris Moneymaker, an accountant from Tennessee.  In 2003, 

Moneymaker rose to the top of a then all-time high field of 800 players and 

claimed the first place purse of the World Series of Poker main event, raking in a 

cool $2.5 million.  While the standard buy-in for the main event of the World 

Series is $10,000, Moneymaker managed to turn an initial investment of $39 

dollars into $2.5 million by winning a satellite tournament on the Internet poker 

room, PokerStars.  Since then, poker has experienced an explosion in popularity.  

The field of the 2004 WSOP swelled to approximately 2,500 players, and this 

year’s event is expected to be even larger.  Internet poker has seen a similar 

explosion of popularity.  As I write (at 2 in the morning), PokerStars has 20,070 

players at 3511 separate virtual tables with average pot sizes ranging from a 

paltry $.25 to $625.  With the ever-growing number of players, and ever 

increasing money stakes, Internet poker presents a large number interesting 

problems.   

 

In Internet poker, it pays to have as much data as possible.  A player with a large 

database of hands often has a huge advantage playing against others.  However, 

while most Internet poker sites allow you access to the hands in which you 

participated, they usually do not allow you access to hands in which you did not 

take part.  Moreover, the hand histories that one can obtain from the online poker 

sites are uneven in quality, some omit important information such as player chip 

stacks, and to my knowledge none include temporal information, that is, how long 

a player took to act.  In the following, I present my method for automatically 

transcribing player hands, along with a presentation of some statistics from my 

corpus of 64,000 hands of Texas Hold’em.   
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Opening Remarks 
 

The most popular variation of poker that is played today is undoubtedly 

Texas Hold’em, specifically No Limit Texas Hold’em.  For that reason, I 

chose to focus on this particular poker variation.  All of my data was collected 

at No Limit tables, and all my remarks pertain specifically to No Limit (though 

they are probably true elsewhere as well).  In this thesis, I assume a working 

knowledge of the rules of No Limit Hold’em, and a familiarity with basic poker 

terminology.  If you are unfamiliar with Hold’em, I direct you to the appendix, 

where you will find some references to familiarize you with the basics as well 

as a glossary of the terms I use.  
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Data Collection 

1. Introduction 

 
Figure 1: The PokerStars interface 

 

All Internet poker applications have a large number of commonalities in their 

interfaces.  This thesis takes the PokerStars interface (see Figure 1) as a 

representative of the standard GUI.  Each table has some fixed number of 

virtual seats (9 in this case), which users can choose to occupy (we see an 

unoccupied seat (1) at the bottom of the table).  When a seat is occupied, the 

player’s name, stack (2), and user icon are displayed.  We also see a simple 

text console (3), which is used for chat, as well as announcements of various 

game events.  Lastly is the table itself, which is where the community cards 

(4) are dealt.  From these elements, the user is able to discern all information 

that is relevant to the current state of the game.  This user interface is also 

the entry point through which I chose to extract all hand data. 

1 

4 

3 

2 
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2. Data Collection Methods 
When approaching the problem of accumulating hand data, there are 

three different approaches that lend themselves: 

1. Sniffing packet traffic between the poker client and server. 

2. Taking advantage of provided hand history facilities. 

3. Scraping the screen to obtain game information. 

Each of these approaches has its own drawbacks.  Option 1 presents a 

number of technical difficulties.  First, the task of reverse engineering the 

packet format would be tedious and time consuming.  Second, and more 

importantly, the traffic between the client and server is securely encrypted.  

While in theory, it should be possible to determine the encryption key through 

studious examination of local binaries, in practice this would be extremely 

difficult, and probably illegal.  Moreover, the packet format and encryption 

schemes would vary between poker programs, severely restricting the 

general applicability of any code I produced.   

Similar considerations apply to using application native hand history 

facilities.  As noted previously, support for hand histories is uneven.  Some 

programs do not provide them, and those that do make use of differing 

formats.  The means for accessing these histories are similarly varied.  The 

GUI access points differ, as do the formats in which these histories are 

transmitted; some are sent by email, others are saved as local text files.   

This leaves the final approach: performing screen captures.  While there is 

bound to be a number of application specific elements (i.e. fonts, element 

positions, card faces, etc.), the general form of the GUI shares the common 

elements of player seats, board cards, and chat window.  In addition, by 

necessity, a screen scraper has full access to all relevant game information.  

After all, if the screen scraper could not see it, the human players would not 

be able to either.   
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3. Screen Capturing Primitives 
In order to create screen captures on the fly, I resorted to the built-in Java 

library, Robot1.  This class allows for real time screen capturing as well as 

simulated user input (which could be useful for future extensions).  This 

facility allows for the creation of simple image recognition primitives: simple 

image matching and prefix based foreground recognition.   

 

a) Simple Image Matching 
This operation is as simple as it sounds, it involves a pixel by pixel 

comparison between two images.  In pseudocode: 
 

ExactMatch(image_1, image_2) 
Input: Two images 
Output: True if the images are pixel by pixel matches, 
false otherwise 
  
for(x = 0; x < image_1.width; x++) { 
 for(y = 0; y < image_1.height; y++) { 
  if(image_1[x][y] ≠ image_2[x][y]) { 
   return false; 
  } 
 } 
} 
 
return true; 

 

This method gives a quick and easy method of performing a direct 

comparison between two passed images.2  However, if we wish to make 

a comparison between a target image and a collection of comparison 

images, this method is inefficient, especially as the number of 

comparison images grows.   
 

b) Trie Based Image Matching 
To perform proper text recognition one needs to compare screen 

images against all possible characters.  While it is simple to implement 

                                                 
1 http://java.sun.com/j2se/1.5.0/docs/api/java/awt/Robot.html  
2 Note that the image comparison is only affected by the size of the first image, if the second image is larger, 
it can still match. 
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this using simple image matching, the running time becomes unwieldy 

as the number of images increases.  In order to optimize the running 

time when comparing a source image against a large number of 

candidate images, it becomes necessary to use a prefix trie.  While tries 

are commonly used in string matching applications, a simple 

generalization allows us to apply the trie technique for image matching.  

Given the library of images to compare against, we select a color to act 

as a relevant, or foreground color.  After this foreground color is selected, 

we treat the candidate images as strings with length equal to the pixel 

width of the image.  The K-th “character” of these image strings 

corresponds to the number of foreground pixels in the K-th column of the 

candidate image.   

 
Figure 2: The 'T' corresponds to the string 1,1,1,10,10,1,1,1 

 

Once the trie is constructed, in order to find the matching image, we 

simply have to traverse the tree, and find the image with the longest 

matching prefix.  In pseudo-code3: 

 

                                                 
3 In the actual code, the images are paired with data (e.g. a character that matches the image).  However, in 
the pseudo-code, this detail is elided. 
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ConstructTrie(images) 
Input: A collection of images 
Output: An image trie 
 
trie.root = ConstructNode(images, -1) 
  
return trie 
 
 
ConstructNode(images, depth) 
Input: A collection of images, and the node depth 
Output: A trie-node 
 
if(images.size == 1)  
 node.residents = images 

return node 
 
 
foreach(image in images)  
  

//There are no more ‘characters’ left 
 if(image.width == depth + 1)  
  node.residents += image //Add the image 

 
 child_images[image.pixelCount(depth+1)].add(image) 
 

 
foreach( ( count, matching_images) in child_images)  
 node.children[count] =  

ConstructNode(matching_images, depth + 1) 
 
 
return node 
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FindMatch(trie, match_against) 
Input: A trie and an image to match against 
Output: The matching image, or null if there is no match 

 
cur_node = trie.root 
offset = 0 
 
while( cur_node ≠ null && offset < match_against.width )  
 
 count = match_against.pixelCount(offset) 
 tmp = cur_node.children[count] 
 
 
 if(tmp == null && cur_node.residents.size == 0)  
  return null 

 
 
if(tmp == null)  
 foreach( image in cur_node.residents )  
  if( ExactMatch(image, match_against) )  
   return image 

 
return null; 

 
cur_node = tmp; 
offset++; 
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4. Text Recognition 
Using trie based image matching, the task of performing text recognition 

becomes significantly easier.  Say we have an image that corresponds to a 

body of text that we wish to match against, for example:  

 
Now, to extract the text from the image, we simply need a trie of images 

corresponding to the characters of the text’s font.  To determine the text 

contents, we simply begin at the first column of the image, and advance one 

pixel at a time checking whether there is a match in the trie.  In pseudo-code: 

  
ParseString(image, trie) 
Input: An image to parse and the parsing trie 
Output: A string corresponding to the parsed image. 
 
string = “” 
offset = 0 
 
while( offset < image.width )  
 subimage = Subimage of image beginning at offset 
 match = FindMatch( trie, subimage ) 
 if( match == null )  
  offset++ 
  continue 

 
string += GetCorrespondingChar(match)  

 offset += match.width 
} 
 
return string 
 

In order to construct the character trie, it was necessary to collect images 

matching each of the characters that could be encountered.  Once this was 

completed, I assembled images into a simple configuration image that was 

parsed at run time (Figure 3).  This image consisted of the upper and 

lowercase letters and the numerals as well as various punctuation 

characters.4  Each individual character is delimited by blue pixels.  The 

punctuation characters are presented in ASCII-order to ease parsing the 

configuration file (red pixels indicate the next character in ASCII order is 

                                                 
4 In order to preserve my sanity, I did not create an exhaustive listing of all ASCII characters, only those 
that are the most common. 
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omitted).  In addition, since character-fields vary slightly in height depending 

on their location on the screen, it was also necessary to duplicate the 

numerals. 

 
Figure 3: The character  configuration image (slightly enlarged) 

 

In addition, each game has a unique game ID, for which it was necessary to 

produce another character configuration image: 

 
Figure 4: Game ID character configuration image 

In practice, this solution works very well.5  It is a concise representation of a 

particular on screen font which can be easily generalized to any font that 

might be encountered on Internet poker. 

                                                 
5 With one small exception: lowercase ‘L’ and upper case ‘I’ look exactly the same.  The result is that all 
occurrences of ‘I’ are replaced by ‘l’.    
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5. Game Element Parsing 

a) Text Fields 
With text recognition in hand, parsing the text based game elements 

simply becomes a matter of locating the relevant text fields in the GUI, and 

extracting the text.  In the PokerStars interface, there are three relevant text 

fields:  

 
Figure 5: Relevant text fields 

1. The unique game ID number 

2. Individual player name 

3. Player stack 

For each of the virtual seats at a table, these fields are always located in 

the same spot in relation upper left hand corner of the player window.  

Therefore, extracting the values of these text fields is a simple matter of 

predetermining their locations, and then scanning these locations when the 

need arises.   

1 
2 
3 
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b) Graphical Fields 
Graphical fields are those gameplay related elements of the GUI that are 

neither playing cards nor text fields.  These are: 

 

1. Player action 

2. Button position 

Whenever a player performs an action, their icon momentarily changes 

reflect the action that they just took.  A player has the following actions 

available to them: ‘fold’, ‘bet’, ‘call’, ‘raise’, ’check’, ‘muck’, ‘fold’, ‘post small 

blind’, ‘post big blind’, ‘post big blind and small blind’, and ‘show cards’.  

These actions can all be easily recognized through the use of simple image 

matching.   

 
Figure 6: Action configuration file6  

 

The button position on the table can also be easily determined through the 

use of simple image matching (see Figure 6 for the image configuration file).  

Since the table surface is green, to locate the button, one simply has to 

determine which seat has a red pixel in front of it (this corresponds to the red 

pixels contained in the ‘D’).  

                                                 
6 These correspond to bet, call, check, fold, muck, post big blind, post big and small blind, post small blind, 
raise, seat empty, and show cards respectively. 

1 
1 

2 
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c) Card Fields 
The final category of parsed game elements is the card elements.  There 

are two types of cards that can be parsed: 

 
Figure 7: Card Types (aces take down a $5000 pot) 

1. Hole cards 

2. Community cards 

These two card types differ only in their placement on the screen.  Since 

the suit and numerals are placed consistently on each card, correctly parsing 

each card is simply a matter of recognizing the suit and the numeral correctly.  

This is accomplished in a manner very similar to standard text parsing.  One 

simply makes use of a trie, constructed using captured images of each of the 

numerals and suits.  Rather than pairing a character with each image in this 

trie, one simply substitutes a suit/numeral value.  Below is the configuration 

image for card parsing:  

 
Figure 8: Card parsing configuration image 

1 

2 
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6. Game Parsing 
The stages of parsing a complete game of poker can be broken down into 

three distinct segments, each of which is parsed in a slightly different manner. 

a) Pre-betting Action 
The goal of pre-betting action is to determine which players are in the pot, 

their stacks, and their names.  Determining the identity of the players in the 

pot is complicated by the fact that not all players sitting at the table play each 

hand.  All poker programs allow the users to sit out hands if they choose, and 

seated players are also prevented from playing if they time out or have just 

sat down at the table.7  However, the player with the dealer button must 

always be involved in the hand, and the small and big blind must follow the 

button in a clockwise order.  Therefore, to determine the blinds, one polls the 

players on the screen for actions, moving in a clockwise direction around the 

table.  In practice, it is sufficient to poll for player actions every 100 

milliseconds.  In addition, the seats that have already acted must be noted, 

so that they are not double counted.  After the blinds have been posted, the 

cards are dealt, and the players in the hand can be deduced by noting which 

players have cards dealt to them.  Even though the blinds at a table never 

change, the first time it is parsed, these blinds need to be determined.  This 

can be ascertained by checking the amount of a player’s stack before and 

after they post the big or small blinds.  The difference is the blind amount.  

Finally, we cannot begin parsing a game mid-hand.  To determine when a 

new game has begun, we simply poll the position of the button.  Since the 

button moves at the end of every hand, a change in button position indicates 

that a new hand has begun.  In pseudo-code: 

                                                 
7 Players are prevented from playing after sitting down immediately to the left of the button, as this would 
allow them to take advantage of position. 
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ParsePrebetting(table) 
Input: A table of virtual seats 
Output: A transcript of the pre-betting portion of the  
  game.  
 
//Wait for the beginning of a new game 
buttonPos = getButtonPosition(table); 
 
while(getButtonPosition(table) == buttonPos) { 
 wait for 50 ms 
} 
 
buttonPos = getButtonPosition(table); 
 
//Update the stacks of all the players 
updateStacks(table); 
 
//Continue polling until the cards are dealt8 
while( !cardsDealt(table) ) { 
 
 //Move around the table, starting one to the  
 //left of the button 
 for( seat in table starting to button’s left ) { 
  //Skip players that have already acted 
  if(seat.hasActed) { 
   continue; 

} 
 
action = getAction(seat); 
if( action == NO_ACTION ) { 
 continue; 
} 
if( action == POST_SB ) { 
 //The blind is the difference between 
 //the old and new stack 
 smallBlind = seat.getStack; 
 seat.updateStack(); 
 smallBlind = smallBlind – seat.getStack; 
 
 RECORD POSTING OF SMALL BLIND 
}  
//Posting big blind and big blind and small  
//blind is handled the same way 
... 

} 
wait for 50 ms 

}  
//Create transcript of player seating, and game statistics  
//noting which players have cards dealt to them 
... 
return transcript 

                                                 
8 This allows the capturing of newly seated players posting the blind for entry. 
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b) Betting Action 
The bulk of game parsing occurs while during the betting action.  This 

covers the betting on all betting rounds (preflop, flop, turn, and river), as well 

as the community cards that are dealt.  As each betting round is identical in 

structure9, they can each be handled in an identical manner.  Parsing 

community cards is simply a matter of examining the card field in the center 

of table, and shall not be discussed further here.  The main difficulty is in 

determining the order in which players are required to act.  In No Limit 

Hold’em, the betting begins immediately to the left of the button, and 

proceeds around the table in clockwise fashion.  Each player can then either 

bet, check, call or raise.  The betting round ends when either a) the player in 

last position checks (indicating that no more money was added to the pot) or 

b) the action is called around to the last player that bet or raised or c) there is 

only one player left in the pot (this occurs when all the other players fold).  At 

any time, a player may opt to call, bet or raise all-in.  After moving all-in, a 

player may perform no further actions.  In addition, a player that has moved 

all in may win no more from each other player than the total that they 

contributed to the pot.  Lastly, if a player does not have enough remaining 

money to call a bet, they may call all-in instead.   Again, note that 

determining the amount of a bet is simply a matter of determining a player’s 

stack before and after they act.  The pseudo-code for parsing follows: 

                                                 
9 With the exception of preflop, here, the blinds are treated as having already bet, but are able to act in spite 
of this.   
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ParseBettingRound(table) 
Input: A table of virtual seats 
Output: A transcript of the betting round  

 
activeSeat = //Player to left of button 
 
//Set all player’s amt_in_round to 0 
 
//The amount of that a player has to call to stay in 
callBurden = 0; 
 
//Continue until everyone has folded, or everyone has 
//met the call burden 
while( table.activePlayers > 1 && ( !activeSeat.hasActed ||  

activeSeat.amt_in_round ≠ callBurden ) ) { 
 
//Poll the next player until they act 
do { 
 action = getAction(activeSeat); 
 if( action == NO_ACTION ) { 
  wait for 50 ms 
  continue; 

} 
} while( action == NO_ACTION ); 
 
//We have an action 
activeSeat.hasActed = true; 
 
RECORD ACTION //Record the action for the transcript 
 
//Handle the different action types 
if( action == CHECK ) { 
 //Don’t need to do anything 
} 
if( action == BET ) { 
 callBurden += action.betAmt; 
 activeSeat.amt_in_round += action.betAmt; 
} 
if( action == RAISE ) { 
 callBurden = action.raised_to; 
 activeSeat.amt_in_round +=  

(cullBurden – active.amt_in_round); 
} 
//If the player moves all in, or folds,   
if( action.all_in || action == FOLD) { 
 REMOVE SEAT FROM ACTING ORDER 
} 

} 
 
//Return the transcript of the betting round 
return transcript; 
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c) Pot resolution 
This is the final phase of game parsing involves determining who the 

winner of the pot (or pots, if there are side pots formed by players moving all-

in).  If the pot is won uncontested (i.e. everyone else folds), the winner of the 

pot is obvious.  However, if the final betting round ends, and there is more 

than one player remaining in the hand, that game must be resolved with a 

show-down.  In the case that there is a side pot or pots (i.e. one or more 

players moved all-in, and other players with bigger stacks continued playing), 

the pots are resolved in a top-down fashion.  The pot with the active players 

is resolved with a showdown.  Then the side pot involving players with 

second highest amount of money invested is resolved by pitting the winner of 

the topmost pot against the player (or players) in that side pot10.  This 

continues with the third highest pot and so on until all pots have been 

exhausted.  This segment of the game parsing also requires that all players’ 

final hands be determined.  This is accomplished through the following 

algorithm for hand checking11:  

 

1. Sort the player’s 7 cards (5 community and 2 hole cards) by suit (if two cards have the 
same suit, sort by numerical value), and check for any flushes.  If a flush is found, check 
for a straight-flush (check if the value of the 4th card after the flush high card is equal to 
the numerical value of the flush high card minus 4, specially casing the ace for the case 
of a 5 high flush).  If this is found, the player’s hand is a straight flush, otherwise note 
that the player has a flush (this might not be their best hand however). 

2. Sort the cards by numerical value.   

3. Step through the cards one by one, performing the following checks in order: 

a. Check whether the 3rd card after the current is the same value.  If it is, we have 4 
of a kind, this is the best possible hand. 

b. Check whether the 2nd card after the current is of the same value.  If it is, we 
have at least 3 of a kind.  If we previously had a pair, the player has a full house 
as their best possible hand.  Otherwise, note the index of the 3 of a kind 

c. Check whether the next card has the same value.  If it does, there is a pair.  If 
there was previously a 3 of a kind, we now have a full house, the best possible 
hand for this player.  Otherwise, note index of the pair. 

d. Check whether the last value we checked 1 higher than the current card value.  
Keep track of the number of consecutive cards.  If this number ever reaches 5, 
the player has a straight.   

                                                 
10 For quick reference, the ranking of hands in Hold’em, from best to worst is: straight-flush, four of a kind, 
full house, flush, straight, three of a kind, two pair, pair, high card. 
11 I elide the pseudo-code on this one, it’s more complicated than it’s worth 



 23

4. Check the remaining possible outcomes.  If the player had a flush from step 1, their best 
hand is a flush.  Failing that, using the information noted in 3, check for a straight, 3 of a 
kind, two pair, and pair in that order.  If the player has none of these, they have high 
card. 

 

Compared to determining the player’s hands, determining the winner of each 

pot is relatively simple: 
DeterminePotWinners(pots) 
Input: A collection of pots, in highest-amount-invested-
first order. 
Output: A transcript of the pot results.   

 
bestHand = null; 
 
foreach(pot in pots) { 

 
 //Check players, in act order 
 foreach( seat in pot ) { 
  hand = getHand(seat); 
 
  //Check the player’s hand, see if it’s a winner  
  if(hand != MUCK) { 
   //If this player shows a better hand, 
   //he/she is the current winner 
   //(any hand is better than a null hand) 
   if( hand > bestHand ) { 
    potResult.clear();  
    potResult.winners += seat; 
    bestHand = hand; 

}  
//The player ties 
if( hand == bestHand ) { 
 potResult.winners += seat; 
} 

} 
} 
 
RECORD POT RESULTS 

} 
 
//return a transcript of the events 
return transcript 
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d) Overall Hand Parsing 
Once obtained, the elements of prebetting, betting action, community 

cards and pot resolution are concatenated to produce a complete transcript 

of the hands.  Sample output from the program follows: 
 
----------------BEGIN_HAND--------------- 
Hosting Application: PokerStars 
Game ID: 1437847749 
Starting time: 1112137891635 
Players: 4 / 9 
Blinds: 10.0 / 20.0 
Play Money: false 
----------------------------------------- 
  1 hazards21 ( 2345.0 in chips ) 
  2 HaveMyCash ( 2000.0 in chips ) 
Button 3 TheNutters ( 2468.0 in chips ) 
  5 sigalit ( 777.5 in chips ) 
----------------------------------------- 
0.6   - sigalit posts SB of 10.0 
4.0   - hazards21 posts BB of 20.0 
3.0   - HaveMyCash folds 
0.0   - TheNutters folds 
3.8   - sigalit raises 40.0 to 60.0 
1.7   - hazards21 folds 
----------------------------------------- 
Main pot:  
sigalit wins pot (40.0) 
----------------------------------------- 
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7. The Query Environment: Main Components 
Once a corpus of data has been assembled, it is necessary to create an 

environment in which the data can be examined in a meaningful way.  I 

chose to create two main units of functionality in my query environment 

which represent the important components of the data, namely the players 

and games.   

a) Player 
Between the two primary components, the player is far simpler.  As noted 

previously, each player is associated with an identifying name (usually 

indicating their massive poker playing skills).  In addition, for ease of access, 

each player is associated with all of the games that they have taken part in.  

Therefore, a player can be summarized as follows:   

Type Name 
String m_playerName 
Set<Game> m_games 

b)  Game 
In essence, a game is composed of the following components:  

1. Header information (i.e. blinds, start time, number of players involved) 

2. Player roster (the name of the players in the game, their relative position, and stacks) 

3. Betting action and community cards 

4. Pot resolution 

5. The per-player game outcomes (i.e. money won or lost, betting round played to, etc)  

Each of these elements has corresponding field in a game object: 

Type Name 
GameHeader m_header 
Roster m_roster 
Map<Round,RoundTranscript> m_rounds 
List<Results> m_resolutions 
Map<Player, Outcome> m_outcomes 

These fields correspond to the sum total of the information recorded in a 

single game transcript, and allow the hand data to be programmatically 

examined.   
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8. The Query Environment: Secondary components 
I now briefly present the secondary components of the query environment. 

a) GameHeader 
As noted, the game header contains metadata about a hand of Hold’em.  

While most of this data could be ascertained through an examination of the 

betting action, it is much simpler to store it in advance.   

Type Name Description 
String m_appName The hosting poker application (i.e. 

PokerStars) 
long m_gameId The unique game ID 

Date  m_startingTime The start time of the game 

byte m_numPlayersIn The number of players 
participating in the hand 

byte m_numSeats The number available seats 

float m_smallBlind The size of the small blind 

float m_bigBlind The size of the big blind 

float m_totalPotSize The total pot size 

b) Roster 
This object is responsible for storing information about the seating 

arrangement of the players, as well as their initial state.  It is essentially a 

mapping between players and RosterEntries. 

Type Name Description 
Map<Player, RosterEntry> m_entries A collection of roster 

entries, mapped from 
players 

Set<Player> m_players A set of the players in the 
game 

c) RosterEntry 
The RosterEntry stores the starting information about a player in a specific 

game.   

Type Name Description 
Player m_player The player whose information this is 

float m_stack The amount of money the player has 

HoleCards m_cards The player’s hole cards (if any) 

byte m_position How many players act before them 

boolean m_isButton Whether or not the player has the 
dealer button 
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d) RoundTranscript 
This is simply a list of the actions performed by the players in this betting 

round, along with any community cards that were dealt. 

Type Name Description 
BoardCards12 m_board The dealt community cards (if any) 

Round m_round Which round this is (i.e. flop, river, 
etc) 

List<Actions> m_actions The actions taken in the round 

Set<Players> m_players The players in the round 

e) Action 
This records the details of any action that a player takes.  The available 

actions are: check, bet, raise, fold, call, and post SB/BB/BB and SB.    

Type Name Description 
Player m_player The player performing the action 

float m_amt The amount of money added to the 
pot (if any) 

float m_delay The amount of time a player took to 
perform an action 

float m_toLevel The amount that the player raised to 
(if any) 

ActionType m_type The type of action (i.e. fold, check) 

boolean m_allIn Whether a player is all in with this 
action 

f) Results 
This documents the outcome of a single pot of the game.   

Type Name Description 
float m_potAmount The size of the pot 

List<Player> m_winners The winners of the pot 

byte m_potNum The pot number (the bottom-most 
pot is 0) 

PokerHand m_bestHand The winning hand 

g) PokerHand 
This represents a 5-card hand in poker.   

Type Name Description 
Card[] m_cards An array of the 5 cards used in the 

hand 
byte m_handType The type of the hand (i.e. pair, full 

house, etc).  This can be used for 
comparing the strength of hands 
(higher value is a stronger hand) 

 

                                                 
12 I elide a description of BoardCards, it is simply an array of cards 
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h) Outcome 
This represents the fate of a particular player in a given game.  This outcome 

can be either win or lose.  A player can lose by folding, mucking, or showing 

a hand that is beaten.  A player can win by showing a winning hand, or 

winning the pot uncontested (everyone else folds).    

Type Name Description 
Player m_player The player whose outcome this is 

byte m_outcome The outcome (fold, muck, win-
show, lose-show) 

boolean m_potContested Whether the pot was contested 

Round m_round The betting round this outcome 
occurred on 

i) DataSet 
Last, but not least, I touch upon the object that holds the record of all the 

games and players, and acts as a programmatic entry point for all queries.  

In essence, this is simply a set of all players (accessible by name), and all 

games.  Both the collection of players and games can be iterated over. 

Type Name Description 
Map<String, 
Player> 

m_playerMap A map from player names  

Set<Game> m_gameSet A set of all the games 
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9. Sample Query  
I now present the code of a sample query (the results of this query will be 

discussed in the following sections).  The query in question prints out the 

total size of all pot sizes in terms of multiples of the big blind.  The results are 

categorized by blind size, and printed to an output stream.   

 
public void performQuery(DataSet ds,  

PrintStream... output) { 
         

TreeMap<Float, LinkedList<Float>> results =  
  new TreeMap<Float, LinkedList<Float>>(); 
 

//Iterate over all the games 
    for(Game cur: ds.getGames()) { 
             
    float blind = cur.getHeader().m_bigBlind; 
            

if(!results.containsKey(blind)) { 
    results.put(blind,  

new LinkedList<Float>()); 
   } 

             
    float potSize =  

cur.getHeader().m_totalPotSize / blind; 
       

//Add the normalized pot size to the results set 
   results.get(blind).addLast(potSize);     

   }           
 
   //Prints the collected data to output    
  printResults(output);         
} 
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10. Lessons learned 
While developing the hand parser, I made several realizations.  First, in 

retrospect, I feel it was a mistake to parse betting rounds by using the on-

screen action indicators rather than parsing the text console.  I encountered 

a number of unexpected issues while coding the action parsing.  For 

example, the action indicators on the player icon continue displaying the 

player’s action for approximately 3 seconds after they perform that action.  

This can lead to confusing scenarios in which players act fast enough that 

action returns to a player while they are still displaying their previously taken 

action.  Also, in order to ensure that actions were recorded in the correct 

order, it was necessary to implement a game logic that mirrored that which 

was already implemented server side.  It would have been far more efficient 

to simply parse the text console (which was guaranteed to be in the correct 

order) rather than going to the screen.  I had briefly considered this approach 

when I began coding, however I underestimated the difficulties of on-screen 

parsing, and opted to take the action-icon route instead.  By the time that I 

had fully determined the difficulties that this method presented, it would have 

taken more time to rewrite my hand parsing than to finish the on-screen 

action scraping implementation.  However, in any future implementation that I 

may write, I will certainly use text-console parsing for actions rather than 

screen parsing.  Also, this is an application that readily lends itself to a 

database backend.  Since the corpus of data in question (64,000 hands) was 

relatively small, and I did not have sufficient time to learn and implement a 

database back-end, I opted to use a simpler Java class-based backend.  

However, this solution will not scale well, and there are a number of 

performance and functionality benefits that a proper database backend will 

impart.  Future implementations would benefit from an implementation that 

makes use of a database. 
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11. Future Directions 
As indicated in section 10, there are several reimplementation goals that 

provide a boost to performance and ease the burden of hand parsing 

implementation for other poker programs.  However, in terms of extended 

functionality, there is a large possibility space.  As a future end goal, I would 

like to create a poker collection/analysis tool with a full graphical front-end as 

well as a fully customizable and extensible database-based backend.13  As a 

first step towards this goal, I implemented a (very) simple graphical front-end 

which allowed runtime loading of database queries using the reflection 

capabilities of Java.  While this is a nice start, I found that the time involved in 

writing a query dominated the time that was required to compile the query 

into my test program.  Therefore, in practice, I found little need for the 

runtime extensibility functionality that I coded.   

 Another possible avenue of extension is the implementation of a poker-

playing AI agent.  In conjunction with the table parsing that I have already 

implemented, it would not be terribly difficult to create a simple agent which 

played a tactically simple but sound game.  Such an agent could be quite 

profitable, especially at the lower blind games, where the players are far 

weaker.   

 Lastly, an interesting programming language project would be to create a 

specialized query language for the purposes of examining the accumulated 

hand data.   

 There is a large number of interesting problems in this area, and these 

suggestions are by no means intended to be exhaustive.   

                                                 
13 This differs from existing programs, which do no support easy extension. 
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Data Analysis: Betting habits 
1. Introduction 

In this section I present my analysis of several queries that I found to be 

interesting, or informative in some way.  Before I present any data from my 

data set, there is a major disclaimer that must be noted.  In general, the 

hands that are revealed in Internet poker are those that win.  This is due to 

the fact that players whose hands are beaten are allowed to muck their 

hands without showing their cards.  Consequently, it is usually the case that 

the only time a losing hand is seen is when the loser has to reveal his hand 

before the winner.  Therefore, when drawing conclusions about hand 

selection, one must always be careful to note that stronger hands will have 

disproportionate representation.  That said, I now present the statistics of my 

data set.   

Summary Statistics: 
$0.10 Big Blind Games: 1459 

$1.00 Big Blind Games: 2929 

$2.00 Big Blind Games: 2847 

$4.00 Big Blind Games: 18668

$6.00 Big Blind Games: 5382 

$10.00 Big Blind Games: 11705

$20.00 Big Blind Games: 18236

Total Games: 61236

Total Unique Players: 3708 

As I did not have enough time to devote to observing all types of game 

simultaneously, my data collection in different blinds varied significantly.  As 

a rule I was more interested in seeing how the higher stakes players played, 

so I only collected lower blind games for the purposes of establishing a 

baseline.  I now present some statistical analysis.   
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2. Average Normalized Pot Size  

a) Data 
In the following chart14 we see the distribution of pot size for $.10 blinds. 
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Mean: 20.1
Std Dev: 30.7
Mode: 2.5

 
Chart 1: Distribution of pot size for $.10 big blinds 

From this we see that the average pot size is approximately 20 times the big 

blind, while the pots are most frequently between 2 and 3 times the big blind.  

This corresponds to the case where every player folds to a bet, or the small 

blind calls a half bet, and the big blind checks.  While this is the commonest 

pot size, there is also a relatively gradual tailing off in the distribution.  

Contrast this with the distribution of the pot size obtained in the $4.00 big 

blind games: 

                                                 
14 Please note that in all the distributions I present, the final column indicates the number frequency of 
items with value greater than the highest marked bucket.  In this case, pots with size greater than 100. 
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Chart 2: Distribution of pot size for $4.00 big blinds 

Lastly, consider the distribution of the $20.00 big blinds: 

Mean: 14.0 
Std Dev: 25.0 
Mode: 2.5 
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Chart 3: Distribution of pot size for $20.00 big blinds 

This is the tightest distribution, with the lowest mean and standard deviations. 

Note that once again the mode is between 2 and 3 times the big blind.  

Mean: 13.3 
Std Dev: 19.7 
Mode: 2.5 
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b) Analysis 
In general, it is interesting to know how large pot sizes get as a function of 

blind size.  The average pot size is affected by several factors the most 

important of which are:  

1. The number of players involved in a pot, and how long they stay in 

2. The size of the players’ bets/raises 

3. The willingness of players to call bets/raises 

As we shall see in the following sections, all of these factors are 

interrelated.  As the number of players involved in a pot increases, there is a 

greater and greater incentive for additional players to become involved, as 

the size of the pot, as well as the pot odds15 become more and more 

favorable.  Therefore, to some extent, the number of players experiences a 

positive feedback loop.  The greater the number of players entering a pot, the 

greater incentive for additional players to enter.  But what helps determine 

willingness to enter the pot?  While this is a function of players’ preferences 

and hole cards, it is also affected by the size of the bets/raises that the 

players expect to encounter.  If the players generally make small bets/raises, 

players will be more inclined to enter a pot cheaply by limping16.  Therefore, 

the size of player bets has a direct impact on the size of the pot.  As we will 

shall see, players at lower levels are much more likely to limp or bet weakly, 

and thus players are incentivized to participate in pots.  As a result, smaller 

bets and raises have the seemly unintuitive effect of increasing pot size. 

Lastly, having more players that are more willing to call bets/raises are 

also likely to increase the size of bets (as a bet needs to be larger to be 

significant) and also to increase the number of players involved in the hand 

(they are more willing to stick around).  A player’s willingness to call a bet is a 

function of the size of the bet, as well as their expectation that others will also 

call.  Clearly, a player should almost always be willing to call a bet that is a 

mere 1/10th of the pot.  Similarly, a player should be more willing to call a bet 

                                                 
15 Pot odds refer to the return/investment ratio of an action.  For example, if 5 players enter a pot, each 
calling the big blind, the 6th player  to act will be getting 6.5 to 1 odds on their money by calling the big 
blind as well.  They only have to win 1 out of 7.5 times in order to break even. 
16 A player is considered to limp if they simply call the big blind preflop.   
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that is ½ the size of the pot if they expect that the 6 players following them 

will also call the bet (they are effectively getting [1 + 7 * .5 = ] 4.5 to .5 odds 

on their call). 

This data, and the data to follow supports the hypothesis that games at 

lower blind levels: 

1. More players are involved in pots, and stay in pots longer 

2. Players make smaller bets/raises 

3. Players are more willing to call bets/raises 

The following data further supports this conclusion. 
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3. Betting Round Statistics   

a) Data 
In this table we have the percentage of players that see the flop (provided the 

hand reaches the flop), as well as the percentage of times that the game 

proceeds to the flop.  Only games with a full compliment of 9 players are 

considered. 

Blind Level % of Players 
to Flop 

% of games with 
 flop seen 

$0.10 40% 90% 

$4.00 35% 79% 

$20.00 32% 70% 
Table 1: Flop Statistics 

 
This chart illustrates what percentage of hands at a given blind level end at a 

given betting round.   
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Chart 4: Indicates what percentage of games end at a given betting round 
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Finally, this chart indicates what percentage of hands end on a given betting 

round, given that they reach that betting round (since 100% of hands end on 

the river once they reach the river, the river is omitted from the chart). 

0

5

10

15

20

25

30

35

40

Preflop Flop Turn

Betting Round

Pe
rc

en
ta

ge

$.10 Blinds
$4.00 Blinds
$20.00 Blinds

 
Chart 5: Percentage of time a hand ends on a betting round, given that it reaches that round 
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b) Analysis 
This data reinforces the conclusions of the previous section.  In the lowest 

blinds, a greater percentage of players see the flop, and the flop is seen 

more often.  As the blinds increase, the number of players seeing the flop, 

and flop seen decrease.  This indicates that players at higher blind levels are 

not only involved in fewer pots, but flops are seen less often.  This conclusion 

is further reinforced by Chart 4.   We see that at the highest blind, the largest 

proportion of the games end preflop (that is, all players but one fold), and the 

smallest percentage of games at the smallest blind end preflop.  Conversely, 

the smallest blinds have the highest percentage of hands ending on the river, 

whereas the largest blinds have the smallest.  This demonstrates that players 

at smaller blinds are more willing to stay in a pot longer than players at 

higher blinds.  Chart 5 demonstrates this point more clearly.  From this chart 

it becomes obvious that the lower the blind level, the more willing the players 

are to stay in hand.  Also, we find that the flop produces the highest 

percentage of folded hands.  This is to be expected, as at this point the 

players have seen 5/7 of the cards that they will be dealt.  Consequently, 

most players make (or miss) their hand on the flop, and will usually be more 

willing to fold to bets.   
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4.  Player bet size as a proportion of the current pot 

a) Data 
We now examine perhaps the most telling data with regard to player skill, the 

distribution of bet size with relation to the pot.   
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Chart 6: Distribution of bets, with bets as proportion of the pot for $.10 blinds  

In this chart we see the bet distribution as a function of the pot.  In the lowest 

blind level, the bets are distinctly skewed towards the low end of the bet 

spectrum.  As we increase the blind size, the skew will shift away from the 

bottom end of the spectrum, and move towards the top end.  We also see a 

relatively large proportion of bets that are more than 1.5 times the size of the 

pot.  These bets are considered to be over-bets. 

Mean: 0.59 
Std Dev: 0.51 
Bets above 1.5: 3.5% 
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Chart 7: Distribution of bets, with bets as proportion of the pot for $4.00 blinds 

As the blinds increase, the bet distribution moves more towards the upper 

end of the bet range, and the percentage of over-bets decreases markedly. 
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Chart 8: Distribution of bets, with bets as proportion of the pot for $4.00 blinds 

In the final chart, we see a decided shift towards the upper end of betting 

range.  The average bet’s value has increased substantially, and players err 

on the side of a higher bet rather than a lower bet. 
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b) Analysis 
Here we find the root of the weaker play found at the lower blind levels.  

Players at the lower levels systematically bet weakly.  Betting in poker serves 

several purposes, including: 

1. To get more money into the pot 

2. To thin the field (when you have a hand that plays well against a small number of 
players, but loses values as the number of players increases) 

3. To bluff (to induce your opponents into folding) 

4. To gain a free card (i.e. scare your opponents into just calling rather than betting or 
raising) 

5. To gain information about your opponents hand 

However, as mentioned before, the smaller the bet, the more inclined a 

player should be to call.  When a bet is so small that a player has better than 

4 or 5 to 1 odds to call, a player should call with almost any hand.  However, 

this effectively eliminates 4 of the 5 purposes in betting (and weakens the 

remaining one).  If you bet weakly, there is little chance that you will 

significantly thin the field.  Moreover, a bluff with a weak bet gives one’s 

opponents a strong incentive to call.  Therefore, bluffing weakly simply puts 

more of your money into a pot you expect to lose (if you thought you had the 

best hand, you wouldn’t be bluffing).  In addition, a weak bet is unlikely to 

cow opponents into meekly calling or not raising.  Lastly, if you bet such that 

your opponent is getting correct odds to call irrespective of the cards they 

hold, you have gained no information at all.  This leaves only betting to get 

more money into the pot.  However, by doing this, you are attracting more 

players into the pot, and more players means a greater chance that another 

player can catch a miracle card to beat you.  Therefore, players at lower blind 

levels actually remove most of the value of betting, and in essence create a 

game that is far more governed by luck.   

In fact, this is probably the root cause of larger and longer pots found at 

lower blinds.  Players at these levels have learned from experience that they 

will not face strong betting.  Consequently, they are not afraid to put money 

into the pot to try and hit long-shot draws.  Moreover, they know everyone 

else’s proclivity for calling, and know that they will most likely be getting 

proper odds to call, since everyone else will as well.  Lastly, since they know 
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that most other players are compulsive callers, they are less inclined to bet 

strongly with anything less than the best (or near best) hand.  After all, 

betting strongly just means that they lose more money when a player holding 

the jack and 3 of spades hits his flush on the river!  This creates an 

environment where players are actively encouraged to maintain poor playing 

strategy.   

However, a player moving from a lower blind level to a higher would 

rapidly find that their weak betting strategy is no longer effective.  Many more 

pots are bet and raised strongly, thus making simply calling with weak hands 

less viable.  In addition, a player that bets weakly will often find themselves 

re-raised for all of their money.  In other words, players that move up in 

blinds have to quickly adapt their style to avoid being bullied by strong 

players.   

 It is also worth mentioning the over-betting.  As seen above, players at the 

$.10 blinds over-bet the pot more than twice as much as the higher blind 

players.  Many weaker players think that the best strategy is to commit all or 

most of their money to the pot when they pick up a decent hand.  However, 

this is a mistake for two reasons: 

1. If your hand is best, you are scaring players away 

2. If your hand is not best, you will lose a lot of money 

If one’s hand is actually the best hand, one gains the most money by having 

a few players with second-best hands stay in the pot.  These players can pay 

off bets in later rounds.  By over-betting, a player scares away decent hands 

that would otherwise have given away some more of their money.  However, 

by putting in such a large bet, players are actually ensuring that they will only 

be called by very strong hands, hands that are probably better than their own.  

In essence, by over-betting a pot with a pretty good hand one will only be 

called by a superior hand.  
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5. Conclusion 
In this section, we have seen that players at lower blinds tend to make 

mistakes in fundamental poker strategy.  They enter too many pots, bet 

weakly, and stay in pots longer than they should.  As the blinds increase in 

value, however, players tighten up significantly, and start betting much more 

aggressively.  This suggests several basic approaches to playing the 

different blind levels.   

 At low levels, hands that are traditionally considered to be very strong (for 

example, a pair of aces or kings) lose a bit of value since they will likely be 

facing a number of other players.  Since one can expect to see the flop 

cheaply (as seen above, there are few aggressive bets), drawing hands 

(suited cards for flushes, and consecutive cards for straights) go up in value, 

and one should be willing to call moderate bets with these hands.  Therefore, 

at lower blinds, it is advised to lower one’s requirements for starting hands, 

and to see more flops, hoping to hit a straight or a flush.   

However, at blinds, this strategy is no longer as sound.  Since there are 

fewer players involved in pots, drawing hands lose value much of their value.  

Not only can one no longer expect to see the flop cheaply, there are also less 

players to pay off flushes and straights.  In addition, limping into pots will no 

longer be profitable, since there is a good possibility that a player later in the 

act order will make an aggressive raise, which you will not be in the position 

to call.  It therefore becomes necessary to play a tighter game, and to be 

more selective with hands, as well as more aggressive. 
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Data Analysis: Descriptive Data 
1. Introduction 

In this section, I present data of little strategic import.  Rather, this is data that 

I found to be interesting for its own merits.   

2. Hand Occurrences 
Here is the number of occurrences of the different hand types that I have 

appeared in hands I have transcribed.   

Hand Type # of Occurrences
High Card 2057 

Pair 8713 

Two Pair 7008 

Three of a Kind 1848 

Straight 1535 

Flush 1312 

Full House 1263 

Four of a Kind 127 

Straight Flush 27 (2 Royal flushes) 
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3. Winningest and Losingest Players 
Here is a listing of the top 10 winningest and losingest players, both 

normalized, and un-normalized.   

Winningest Players Losingest Players 

Name: Big Blinds won per 
hand entered: 

 Name: Big Blinds lost per  
hand entered: 

lobojiji 1.56 2fouroffsuit -2.89 

m@ldito   1.37 69PokerDog -2.64 

LotG 1.32 123shank -1.98 

bigslick789 1.30 Donald -1.82 

michael1123 1.25 EY400 -1.76 

nutsetter 1.24 SPlKE01 -1.58 

cpfactor 1.20 JuiceltUp -1.37 

TheAvatar 1.12 KdNZ -1.22 

brettk00 1.07 dud711 -1.21 

DV6215 1.05 mdcslcmdc -1.21 

Table 2: Winningest and  Losingest Players, normalized to blind size 
 

Winningest Players Losingest Players 

Name: Total Dollars Won:  Name: Total Dollars Lost: 
Halfrek $33,752.80 SPlKE01 -$25,057.90 

michael1123 $20,578.50 69PokerDog -$20,601.66 

BBuddy $11,553.00 Donald -$14,041.50 

Euphoria18 $11,229.00 thorladen -$12,598.72 

brettk00 $9,640.65 ElkY -$11,715.80 

bigslick789 $8,947.25 EY400 -$11,379.50 

TheTakeover $8,499.23 EASSA -$11,130.50 

inturn $7,580.00 curzdog -$9,600.34 

TheSeize $7,288.50 hazards21 -$8,819.50 

twincaracas $6,870.30 ibiza007 -$7,873.25 

Table 3: Winning and Losingest Players, absolute 
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4. Hand with largest pot 
This is the observed hand with the largest pot: 
----------------BEGIN_HAND--------------- 
Hosting Application: PokerStars 
Game ID: 1500749300 
Starting time: Sun Apr 10 10:38:52 EDT 2005 
Players: 9 / 9 
Blinds: 10.0 / 20.0 
Play Money: false 
----------------------------------------- 
  0 StuDaKid ( 5702.0 in chips ) 
  1 SixSticks ( 1884.0 in chips ) 
  2 michael1123 ( 8928.0 in chips ) 
  3 Halfrek ( 16864.0 in chips ), cards: [ 8d 6d ] 
  4 stormcrow ( 547.0 in chips ) 
  5 ibiza007 ( 2487.0 in chips ) 
  6 jayla ( 4609.0 in chips ) 
Button 7 lNcinerate ( 9199.0 in chips ) 
  8 Lyric ( 2135.0 in chips ), cards: [ 7h 7s ] 
----------------------------------------- 
0.0   - Lyric posts SB of 10.0 
0.0   - StuDaKid posts BB of 20.0 
5.4   - SixSticks folds 
3.3   - michael1123 raises 60.0 to 80.0 
1.1   - Halfrek calls 80.0 
0.4   - stormcrow folds 
14.9  - ibiza007 folds 
1.6   - jayla calls 80.0 
1.0   - lNcinerate folds 
1.9   - Lyric calls 70.0 
0.5   - StuDaKid folds 
----------------------------------------- 
Flop is [ 5c Qh Kd ] 
----------------------------------------- 
1.2   - Lyric checks 
1.9   - michael1123 checks 
1.8   - Halfrek checks 
0.6   - jayla checks 
----------------------------------------- 
Turn is [ 5c Qh Kd 7d ] 
----------------------------------------- 
10.5  - Lyric bets 300.0 
8.1   - michael1123 raises 500.0 to 800.0 
2.1   - Halfrek calls 800.0 
1.4   - jayla folds 
3.4   - Lyric raises 1255.0 to 2055.0 and is all in 
15.2  - michael1123 raises 1256.0 to 3311.0 
20.4  - Halfrek calls 2511.0 
----------------------------------------- 
River is [ 5c Qh Kd 7d 4s ] 
----------------------------------------- 
9.4   - michael1123 bets 2000.0 
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4.4   - Halfrek raises 11473.0 to 13473.0 and is all in 
1.1   - michael1123 calls 3537.0 and is all in 
----------------------------------------- 
Side Pot 1: 
1.5   - Halfrek shows [ 8d 6d ] for Straight - Eight high. 
[ 8d 7d 6d 5c 4s ] 
2.8   - michael1123 mucks 
Halfrek wins pot ( 13586.0 ) 
----------------------------------------- 
Main pot: 
5.9   - Lyric shows [ 7h 7s ] for Three of a Kind - Sevens. 
[ 7d 7s 7h Kd Qh ] 
Halfrek wins pot ( 6505.0 ) 
----------------------------------------- 
-----------------OUTCOME----------------- 
StuDaKid folded on PREFLOP ( stack change: -20.0 ) 
SixSticks folded on PREFLOP ( stack change: 0.0 ) 
michael1123 mucked on RIVER ( stack change: -8928.0 ) 
Halfrek showed hand and won on RIVER ( stack change: 11163.0 ) 
stormcrow folded on PREFLOP ( stack change: 0.0 ) 
ibiza007 folded on PREFLOP ( stack change: 0.0 ) 
jayla folded on TURN ( stack change: -80.0 ) 
lNcinerate folded on PREFLOP ( stack change: 0.0 ) 
Lyric showed hand and lost on RIVER ( stack change: -2135.0 ) 
-----------------------------------------  
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Closing 
I have presented my methodology and findings on Internet poker.  As 

mentioned early, the data I have collected, as well as the analysis I have 

performed are only beginning to scratch the surface.  To properly the gauge 

the performance of a single player, it would be necessary to record many 

more games than I had time for.  In addition, there is a huge set of possible 

circumstances that can be presented by the board.  In order to cover this 

range of possibility with any degree of thoroughness, I would require a data 

set that is orders of magnitude larger.   

 

However, in spite of the relatively small data set, there was still some 

interesting data to be found.  Hopefully future work will uncover more useful 

information. 

 
Image 1: Doyle Brunson 
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Appendix: 
1. Poker Rules sites: 

•  http://www.ultimatebet.com/rules-strategy/texas-holdem.html 

A simple rules summary 

•  http://www.poker1.com/mcu/mculib_rules.asp 

An exhaustive rules listing 

2. Glossary 
Term Definition 

Stack The amount of money a player has; their chip stack 

Muck Folding a losing hand at a showdown with out showing it.  This 

can only be done if a better hand has already been shown 

Preflop The first round of betting 

Flop The second round of betting 

Turn The third round of betting 

River The fourth and final round of betting 

Button / 

Dealer button 

A marker indicating that a player is the “dealer” and thus the last 

to act 

Blind A mandatory preflop bet.  The bet is “blind” because the player 

must act without seeing their hand. 

 


