
Unified Management of Heterogeneous Sensor Networks
In the Atlantis Framework

Vesselin Arnaudov

Department of Computer Science
Brown University

varnaudo@cs.brown.edu

Abstract

In recent years, the emergence of low-cost, easily
maintainable embedded devices, as well as an overall
increase of the proliferation and applications of the
concept of ubiquitous computing, have contributed to
the rise of many new sensor and actuator platforms of
different design and intended purpose.
The Atlantis Framework aims to answer the need of a
unified way to manage one or more arrays of sensors
and actuators. It defines a model, captured in a generic
schema, that governs how networks of devices are
represented at various levels of granularity, their data
collection, aggregation, and processing paths, and
provides a simple mechanism to control this
configuration. This paper introduces the problem
addressed and shortcomings of current alternative
solutions, and then proceeds to present the semantics
and sample syntax of the Atlantis schema, an
implementation of the framework along with a sample
application, and concludes with suggestions for future
development.

1. Introduction

The motivation behind the Atlantis Framework is the
current state-of-the-art in bridging and interfacing with
different sensor networks. It was conceived as a
requirement-driven project, seeking to find an
acceptable solution to a wide range of chores that are
often introduced when creating an application that
interacts with sensor data input. Consider the
following scenario: an environmental scientist has the
need to create an application that will visualize the
energy flow in an energy-efficient building. She has
access to the interface of the building’s HVAC system
and its related sensors (carbon dioxide, ventilation
output, etc.), several wired data loggers which support
attachment of devices for taking precise measurements
on water flow, electrical consumption, etc., as well as
a number of wireless motes running TinyOS that can

be scattered around the building and provide data
readings of outside temperature and light levels. The
scientist is interested in being able to easily define the
network, possibly creating relationship between
devices (e.g., whereas the individual readings of light
and temperature from each node in the mote network
are not important, their local combined result would be
important to visualize), and have the data pushed to a
client for visualization in real-time, as well as
available to be queried individually for calibration or
research purposes.

Another scenario would be a university department
that has a Bluetooth network deployed at its site, as
well as a network of wireless cameras with a web
interface. Due to instances of missing equipment, the
department would like to leverage the existing
infrastructure to be able to track the location of
Bluetooth-enabled devices (such as a laptops), and
have the cameras automatically capture and send a
picture from the relevant cameras if the laptop enters a
predefined area (for example, an elevator area), so as
to serve as a potential theft deterrent.

Traditionally, each sensor network in both scenarios
would need to be configured manually and the logic
for interfacing and collecting data from each device
would be embedded in the client. This, however, may
not be desirable since developing such an application
might be technically challenging for an environmental
scientist. Furthermore, should one of the sensor
networks be replaced with another, significant changes
would need to be introduced in the application in order
for it to interface properly with the new data provider.
It would be better for the ease of development of such
applications if abstractions that define the interface
and relationships between sensor devices are
introduced, as well as clearer means of retrieving or
processing streaming data. Although models such as
the Sensor Markup Language (SensorML) [2] or the
Couagar Framework [5] have attempted to provide

-2-

certain solutions to this research question, they do not
rigorously define data processing chores, are not as
flexible towards working with heterogeneous devices,
and are not client oriented, making them sometimes as
difficult to implement in a real scenario as would be to
write a custom application that does the data handling.
The TinyML schema [1], on the other hand, provided a
lot of inspiration and initial start of the project.
Concepts such as sensor field, platform, and virtual
sensor have been adopted in this model, albeit
changed. To illustrate the relationship, AtlantisML is
the 5th transformation of the TinyML specification, but
because of increasing divergence in the models due to
the fact that TinyML is more concerned with
instantaneous readings and does not provide a
reasonable implementation unlike the Atlantis model
witch is requirement-driven and adds data handling
abstractions, it is reasonable to segregate them at this
point and name the resulting markup specification
after the Atlantis model.

The Atlantis model, presented in section 2 of this
paper, first addresses the problem of communicating
with several sensor networks based on different
physical data access points. More specifically, it
defines the notion of a sensor field as a number of
sensors attached to one or more platforms of
homogenous interface (these terms are explained in
more detail in subsequent sections). Such platforms
can contain both basic sensors (physically present
sensors such as a voltmeter or a digital counter), as
well as virtual sensors that are aggregates of one or
more basic sensors connected to the same platform. In
the same model, it defines a field sensor as a virtual
sensor spanning different platforms in the sensor field.
For purposes of clarity and implementation, let there
be another synonym for the platform abstraction in a
field – a platform being the physical device that is
compatible with a field, becomes a node in the sensor
field when it is included in the field configuration and
provided with a unique identifier.

The preliminary analysis on the implementation of the
model by the Atlantis Server, presented in section 3,
shows that it is satisfactory in the sense that large
arrays of sensor fields can be easily encoded in a
human-readable form (xml document), can be stacked
to form a super sensor field, which, when added to a
service agent, I would define to constitute a sensor
network. Whereas the original TinyML model on
which Atlantis is based provides for the common
protocol that would allow the different sensor fields to
be queried by a single client, the service agent
(Atlantis implementation) has the job of actually

providing the interface to communicate to the whole
super sensor field, manage its configuration, and
status. In addition, whereas the original specification
seems to be intended for synchronous polling of sensor
data, it can be expanded and interpreted to be able to
mandate data storage, processing, notification of
subscribers or other type of handling.

2. Atlantis Architecture

This section provides an overview of the Atlantis
framework architecture. The Atlantis framework
provides flexible support for defining and configuring
the composition and behavior of the principal elements
of a sensor network. Throughout this paper, the term
sensor network will be used to define a set of
collaborating devices that can support inquiries for
sensory data or requests for command actuation. Due
to the distributed nature of such devices, the
framework aims to define and enforce rules that
govern a sensor network, so as to achieve cohesion
among heterogeneous sensor devices and provide
transparent access to the network for end users.

The main design goals and overall structure of the core
of the framework - the Atlantis schema – are presented
in section 2.1. Sections 2.2, 2.3, and 2.4 define the
semantics of the principal elements of the model.
Section 2.5 and 2.6 add principals to generalize data
collection via data brokers and behaviors as well as a
subscription mechanism to facilitate asynchronous
information retrieval.

2.1. Unified Protocol (Schema)

The Atlantis model of interaction with sensor networks
is captured by an XML schema. This decision was
made so that proper syntax of the protocol of
communication could readily be enforced in an
implementation. In addition, one goal of the
framework as determined by the scenarios described in
the introduction is to provide an intuitive way to
control the sensor environment. Having such a schema
suggests that elements of the model will be expressed
using Extended Markup Language (although, of
course, this is an implementation decision; XSLT
transformation tools could be used to bind the schema
to other languages). XML is preferred, however,
because it is mostly human readable, tools in various
languages exist for its parsing and construction and
hence – clients to the framework could be
implemented on different platforms relatively
intuitively. The AtlantisML schema defines all

-3-

principal elements that take part in the interaction and
data processing with the sensor network. A peculiar
feature of the schema is that a lot of the elements are
non-mandatory, i.e. they may not be present in XML
document that is based on it. This provides the
necessary flexibility to use AtlantisML as a protocol,
inherently compliant with the model, to query and
configure the sensor network it defines. Furthermore,
AtlantisML compatible devices would then be able to
provide services typical of distributed systems such as
transparency, load distribution, fail-over, and
scalability.
For the full definition of the XSD schema, please refer
to the current project website (subject to change) at
http://www.cs.brown.edu/~varnaudo/projects/Atlantis.

2.2. Sensor Field and Platforms

The top-level element in the schema is the Super
Sensor Field, which is a collection of Sensor Fields.
The sensor field, is the main building block in the
model that captures the notion of a sensor network.

Figure 1: Structure of Sensor Field Abstraction

Optional elements are marked by a dashed line around them
and elements that are allowed repetition have the minimum

and maximum occurrences as subscripts

It is an abstraction that groups together sensor devices
with a common access/control interface (or a gateway
in our model, discussed in section 2.4). Devices that
have this property are said to form a homogeneous
network. For example, the web-based cameras
discussed in one of our scenarios will be one such
group, since all of them are accessible by queries using
the http protocol.

TinyOS motes, on the other hand, are possible
reachable by TinyDB queries (assuming TinyDB is
also installed on each one). Consequently, each will
define their own sensor field. A sensor field must
possess a unique identifier (ID) under the local
namespace of the governing document (each
AtlantisML schema instance is assumed to have a local
and a target namespace corresponding to its site
location, similar to other XML schema constructions).
The other optional elements of the sensor field (see
Figure 1) are discussed in the sub-sections that follow.

Platforms

A platform in the model is an abstraction for a
physical hardware device that provides an interface for
interaction and supports one or more sensors and/or
actuators attached to it (discussed in next section).
Examples include the Mica mote, a wireless network
camera, or even a workstation running Linux with a
Bluetooth radio. This paper (and the model) will use
also the term node to refer to a platform when it is a
part of a sensor field. Borrowed from GML and
modified to fit the needs for defining the sensor
network are the optional location and orientation
attributes of the platform. The platform characteristics
include a unique identifier of the model of the platform
(ModelID) which can be used by an implementation to
organize available platforms in a catalogue and
correlate them to available gateways, as well as a
unique identifier (ID), that is assigned to a node.

The argument why the model organizes platforms in
sensor fields (and supports communication to
heterogeneous devices via the super sensor field
abstraction), as opposed to merely having a collection
of platforms is because, in real applications,
homogeneous platforms are usually deployed with a
common purpose and often define a site (both
logically and geographically). In addition, when
security structures and meta policies are added to the
model (as described in section 7), better granularity
over access control of particular sites, as well as the
managing gateways can be achieved if such grouping
already exists.

-4-

Figure 2: Defining Platforms in Atlantis

2.3. Sensor/Actuator Models

Sensors, in the Atlantis framework, are split into two
categories. The first one, basic sensor, models a
physical device such as a voltmeter, or RSSI readings
from a Bluetooth radio. Orientation attributes are again
borrowed from GML models that suggest scientist
sometimes require additional information about the
sensor positioning when calibrating or analyzing its
data. Additional characteristics of a basic sensor
include model identifier so the sensor can be
addressed, and optional vendor details and accuracy
settings.

The other fundamental sensor type is a virtual sensor,
which models an aggregate sensor on a node. Such
sensors resemble the basic sensor abstraction, but have
additional elements governing the basic sensors it
spans and the aggregate function that is to be applied
to the data.

The mechanism with which virtual sensors are handled
is left to the particular implementation of the model,
however, it is envisioned that a good data server will
provide mechanisms for virtualizing a sensor (creating
a new aggregate sensor) either natively on the target
platform, or as a pseudo-virtual sensor, in which case
the implementation takes care of performing the data
collection and aggregation operations on the local site,
so that it remains transparent to a client.
Actuators, are modeled in the exact same manner as
sensors, with the addition of a SetFlag element with
necessary attributes to hold parameters to be executed
as commands.

Field sensor or actuator structures model virtual
sensors/actuators that span sensors on multiple nodes
(platforms) in a sensor field.

Figure 3: Definition of Basic Sensor

2.4. Gateways

Before the data collection and aggregation
implementation can be discussed, it is important to
note how Atlantis models access to the different sensor
fields and defines the bridge to the actual hardware
devices. Each sensor field has a related gateway
definition element stored in a catalogue which contains
specific details about the library, package, and entry
point of each gateway that is to be used. Gateways are
modeled as separate library packages to allow for
flexibility in implementation such as dynamic
installation (it is assumed that in most scenarios, there
will be potentially more than one client using an
Atlantis manager so persistence has to be accounted
for in the model), as well as proprietary gateway
libraries which do not fall under open source
agreements. An example gateway would be the client
part of TinyDB used to inject queries and retrieve data
from TinyOS-mounted sensors.

Furthermore, the gateways (and corresponding sensor
fields) are classified as one of the three main types:
active (where the field actively pushes its data back to
the gateway server as listener, such as in the case of
TinyDB), passive (where the sensor field responds to a
polling request by the gateway; an example in such a
case would be probably building control systems with
limited capabilities), and hybrid (where the sensor
field will actively save data onto local data loggers and
then respond to polling requests by accessing the
stored data and providing it to the gateway). The most
notable difference between the three different types is
that, in the case of a power failure or crash at the

-5-

gateway server, a hybrid sensor field will not suffer
any loss of data point readings.

2.5. Data Collection

The Atlantis model presents two types of querying the
underlying sensor networks for data readings, as
required again by applications.

Synchronous querying (client sends request document
to server, server identifies requested data, gathers
instantaneous reading and returns from the call) is
accomplished by placing a query element at some
level of the AtlantisML compliant document indicating
that we are interested in the values of the siblings of
the current schema element. For example, a query
element present in a sensor field would mandate the
return of the sensor field ID, as well as the platforms
in that sensor field, and other related structures (such
as subscribers, etc.). Then, a query placed within a
platforms element should reveal further details about it
(sensors and orientation belonging to it, location,
orientation, etc.) and so on depending on the desired
level of detail.

Figure 4: Query Element (flag)

When a query element is placed under a sensor, the
datavalues element will be populated with the
instantaneous readings of the sensor. Using this model
of inquiry allows for an intuitive construction of the
query by examining the human-readable document

produced by the server and placing the flag at the
appropriate places (which could even be done by
manually constructing the document, so that the client
could be as simple as a text editor).

The nature of sensor data acquisition, however,
requires the Atlantis model to support asynchronous
means of data retrieval, where a query is submitted to
the framework with requirements set for the start time,
sample rate (granularity), and duration. Then, the
query element will need to set an appropriate identifier
for the field task (see section below) that will take
control over the acquisition process.

2.5.1. Field Tasks

A field task is a structure in the model that governs
how asynchronous data retrieval and processing is
done. It has a unique identifier, set by the requesting
client (or automatically depending on the
implementation of the system), a main data processing
agent (called a data broker in this model), field for
whether the task is to remain persistent (in case of
needs to pause it and restart or in the situation of a
server shutdown), a priority element that would dictate
how tasks should be scheduled, and a collection of
broker behaviors (explained in section 2.5.3) that
allow the modeling of a more advanced data flow path.

Figure 5: Field Task Structure

In a simple scenario, where the client is only interested
in data collected and occasionally spooled for its

-6-

retrieval), the main data broker would be defined to be
an event spooler that will take advantage of the
subscribers element in a sensor field and log
appropriate data values there.

2.5.2. Data Brokers

Data brokers define processing agents in the
framework. Similar to a gateway, Atlantis models the
data broker, so that it can be an atomic object in the
implementation. The reason for this is again to ensure
that new computational logic can be dynamically
added to the sensor network server, and that they can
be developed by third parties without caring about the
specific implementation of the framework, as long as it
conforms to the model. Furthermore, it would be
desirable if data brokers can be potentially outsourced
to other compliant implementation so that load
balancing and fail-over capabilities can also be
implemented. For the purpose, a unique identifier of
the broker is required in its definition, as well as the
corresponding package, endpoint, and library where it
can be accessed. An additional location element is in
place to facilitate exchange of brokers among different
servers, and two Boolean flags that allow discovery of
the broker as a field sensor/actuator.

Figure 6: Data Broker Definition

Due to the fact that data brokers can be linked together
via behaviors, an additional structure that specifies the
syntax of the input and output of these agents is
required. The broker data exchange object

Figure 7: Broker input/output standard

encapsulates the broker identifier (broker name), the
task that originated it, type definitions of the data their
value. It is important to introduce some notion of types
in the model, as data could all be potentially encoded
as a string. Types will further be useful in section 2.5.4
where data filters are defined.

2.5.3. Broker Behaviors

A broker behavior structure is a part of a field task
defined in a sensor field and provides mechanisms for
processing of data in addition to that done by the
original task data broker.

Figure 8: Data Broker Behavior

The broker behavior first specifies whether there will
be data output from this structure. It proceeds to
establish which position of the chain of behaviors it

-7-

occupies by the hierarchy element (it is
implementation-specific how the hierarchy will be
handled but the recommendation is to use 1 for the
first behavior, and subsequent integers for the rest). A
mandatory positive data path references a data broker
structure which will be normally responsible for the
processing of the incoming data broker exchange
object. Optionally, a data filter could be present in this
abstraction to provide a Boolean ruling of whether the
data should be processed by the positive broker (‘yes’
ruling) or the negative data path broker. If the negative
data path is not define, and the filter return false, then
the data object is discarded and does not proceed
further down the chain. Otherwise, the data is
processed by one of the two brokers defined in the
data paths and their output data (possibly different
from the incoming data) is then propagated down the
chain. Thus, the broker behavior object provides for an
if/else conditional control of the data that is flexible
enough to create data paths scenarios fulfilling the
needs of most applications (examples of which will be
discussed in the sample application section).

2.5.4. Data Filters

The data filter that was mentioned in the previous

Figure 9: Data Filter

section is a simple evaluator that checks data
encapsulated in incoming objects of the broker data
exchange type against some criteria and renders a
true/false ruling.

The data filter, due to its computational nature, is also
meant to be an atomic structure that can be moved to a
different Atlantis compliant server. Therefore, it
defines the elements that have been so far required for
portability (libfile,etc.), as well as a check type element
governing the type of check to be performed of the
data values vector (for example, some permissible
values in the current implementation are individual
where each element of the vector is checked against
the check expression, average where the average value
of the vector is checked, and others). The check
operator defines the type of check to be performed
(greater-or-equal-to, not-equal-to, etc.) and the check
expression is what the data vector is compared against.
Since the filter is an atomic object in the model, the
precise syntax of the filter and especially the check
expression can be different depending on its
implementation. However, it is recommended that the
authors of filters implement a wildcard that allows
pattern matching among the other checks.

2.6. Events and Subscribers

The subscriber and events structures model the last

Figure 10: Subscriber Description

-8-

portions of the data flow path in the Atlantis
framework needed for asynchronous data processing
and retrieval. A subscriber is an element added to the
sensor field when a client desires to be notified (or to
pull) data that has been prepared for it.

It features the unique name of the client (subscriber
name), and whether it is going to be an active (pull)
relationship or the client will declare a URL and
endpoint (is Active, subscriber URL, and data endpoint
respectively) so that the server can push data when it
is ready directly to it.

In all cases, the client will specify one or more event
configurations (belonging to events) that it is
interested in receiving, each containing enough data
about the originating task that triggered the event, the
broker, and if applicable (when using the passive
approach, the position of the spooling broker in the
chain of behaviors). The event spool sequence (see
figure on next page) of the event configuration then
holds the actual data pertinent for the client that has
not yet been picked up.

Section 4 of this paper, where a sample application
based on an implementation of the platform is
described, will provide a more detailed discussion on
the data flow and how each element from the model is
used.

Figure 11: Event Configuration and Spool

3. Implementation

This paper offers a sample implementation that
follows the model and guidelines of Section 2. The

Atlantis Server is presently a Java-based daemon
exposing a web service accessible through Simple
Object Access Protocol, in order to fulfill the goal of
being accessible from a broad range of clients.

The service then exposes a single entry-point method
to the AtlantisML interpreter, as well as a number of
methods that can be invoked through the service
endpoint and can be used to administer the server:
install new nodes in a field, remove sensors or nodes
in a field, commandeer data acquisition and processing
chores, report errors and notifications, and in general,
maintain the proper consistency in the super sensor
field configuration. Since it is a SOAP service, it is
accessible through any client that is capable of
receiving and transmitting properly encoded SOAP
packages; the current proof-of-concept application
discussed in the next section uses a Java client but
previous versions of the server have had Macromedia
Flash clients for a Pocket PC that demonstrate the ease
of use and interoperability of the service.

Clients are envisioned to communicate with the server
via the endpoint of the AtlantisML interpreter, by
providing an AtlantisML conforming XML document.
One further advantage of the single entry point
decision is that, as a per-client service that deals only
with AtlantisML compliant documents, it can in future
use caching, implemented by a simple round-robin
queue, to store hashes of AtlantisML requests and
answer, if possible, by a cached AtlantisML response
document. By lessening the burden in this manner
when numerous clients are often inquiring for the
sensor field configuration for example, one could
expect less congestion within each sensor field and
gateway, and enhance performance and power
consumption especially when it is comprised of low-
power, limited-resource embedded devices (such as
the Mica family of motes).

As noted, the service contains a gateway catalogue
file residing amongst its resources with specific details
about the location and library of each gateway
implementation that is being used in the current
configuration of the super sensor field. The library
consists of an archive .jar file, in addition to a pointer
to an entry class that implements the Gateways
interface: the server dynamically attempts to create a
new instance of the gateway at initialization, and can
have a gateway updated to a newer version without a
recompile/reinstall of the server base. On the other
hand, this also allows 3rd parties to develop their own,
potentially proprietary gateways without any other
knowledge or tweaking of the main service code.

-9-

Proof-of-concept gateways for interacting with a
camera network, the TinyDB application running on
top of TinyOS, and a Linux-based network of
Bluetooth devices are provided. A gateway, in addition
to providing basic functionality to assess the status of
and poll the sensor field, has the extended ability to
report whether the field supports native virtualization
of sensors or not: as discussed in the AtlantisML
model, a native virtualization would mean that the
virtual sensor operation is defined in and processed at
each platform in the field, and then data could be
queried just like a basic sensor reading. If the sensor
field does not support such a function, the server
creates a pseudo-virtual sensor: one that is defined at
the server level and not at the platform level. This,
however, is transparent to any of the clients of the
service and only matters how data collection is
performed.

Data Collection and Aggregation

The basic data collection and aggregation performed
by the Atlantis service is done in the following
fashion. Whenever a ‘query’ flag is detected in the
incoming AtlantisML document by the interpreter, it
exposes all other elements at the current level for that
particular sensor field and returns the document back
to the reader (for exapamle, a query flag set inside the
<SensorField> parent would indicate that the
client wants to learn about all nodes within the sensor
field, with at least, their identifiers and characteristics,
as well as the characteristics of the sensor field itself).
In this implementation, the data about the
configuration is actually stored in a AtlantisML
compliant document residing on the file system and is
bound via a casting engine back to Java classes that
enforce its marshalling to and from the disk.

When a query flag is detected inside a <BasicSensor>
or <VirtualSensor> tag, the start time, end time,
granularity (sample rate), and optional parameter of
the query would also need to be indicated. The service
then proceeds to evaluate the time span of the request.
If it finds that the time span includes future periods of
time, it returns an error response that the data is not yet
available, and it requires a new field task
(implemented in the Task object) to perform the data
collection.

A new task or data collection chore is dynamically
instantiated upon the particular type of the gateway
that needs to communicate with the sensor field: if it is
an active gateway, then the corresponding task is a
PassiveTask object that registers itself as a listener to

the gateway and takes in whatever results arrive from
the gateway (of course, it initially injects the required
query inside the target network). On the other hand, if
it is a hybrid or passive gateway, the task that is run is
an ActiveTask which, as a separate thread that is awake
only at the specified sample rate period, actively polls
the gateway for the required information and then
propagates the result.

All tasks use a MetaQuery object that identifies the
data that needs to be collected as well as how precisely
it needs to be reconstructed: the structure is quite
complicated since I allow virtual sensors to be
aggregated as well (building a virtual sensor from one
or more other virtual sensors). The MetaQuery
constructs a balanced tree of the objects with the real
physical (or natively virtual) sensors as the leaves. The
gateway only uses the identifier of the physical (or
natively virtual) sensors and when it returns data, the
MetaQuery is responsible to propagate the collected
results to each object further up in the tree, gradually
fulfilling its requirements until all sensor aggregates
have been filled. Using such a structure provides us
also with the flexibility of optimizing the injections in
the sensor fields (when multiple tasks are running at
the same time, sensors do not need to be polled again
if they are already asked for by more than one task that
runs at the same sampling rate with the same
parameters).
The data handling, upon a received MetaQueryResult
object from the gateway is performed again in a
customizable way by the Task object
(implementation of the field task and related
behaviors) and is best illustrated by the discussion
of the sample application implemented in the
Atlantis framework that follows in the coming
section.

4. Sample Application

One of the easiest way to illustrate the versatility of
the Atlantis model, implementation and data flow
would be to trace the execution of a sample application
that uses the framework. For this purpose, this section
will briefly discuss the interaction between the
Bluetooth (BT) Localization application [4] and the
Atlantis server. The goal of the client application is to
visually track the location of a BT device using several
Linux machines equipped with BT radios and capture
an image obtained from a wireless camera if the device
is found in a user-defined range of coordinates. The
setup is as follows.

-10-

There are two sensor fields that will need to be
supported and configured in the Atlantis server: one
that defines the BT network, with platforms being the
BT-enabled workstations. Basic sensors supported on
each base station are readings of the remote signal
strength indicator (RSSI), power transmit level, and
link quality. Actuators are the ability of a base station
to connect and disconnect to a remote device.

The camera network is defined by a sensor field in
which platforms are the actual web-based cameras and
the sensors – the image sensor of the camera.

The process begins by an AtlantisML request by the
client to return all platforms, their respective platform
characteristics, and location elements from the BT
sensor field so that they can be displayed in the GUI.
It then proceeds to ask the server to add a new
resumable field task to the field with the proper
identifier and priority and asks that the custom
BTLocalizer data broker (which produces a tuple of x,y
coordinate values of the device or a special string if
not enough data could be gathered to find them) be
assigned as the primary processing agent.

Afterwards, the client requests that a new broker
behavior be added to the field task at the first available
hierarchy (in this case – 1) and defines a positive data
path (a data broker) to be the Event Spooler (a special
broker that interacts with the subscribers structure and
saves or pushes data to requesting clients when it is
received) and negative data path to be empty (data is
discarded). A data filter is then associated with this
behavior and defines that verdict should be true if the
data vector coming from the BTLocalizer broker is not
the string “INVALID” (known to the client from the
documentation of the data broker to mean that not
enough data was available to produce localization
coordinates).

Next, the client requests another broker behavior to be
attached to the field task, and specifies that the
CameraBroker be the one in the mandatory positive
data path. This processing agent grabs an image from
the camera network defined by the second sensor field.
A filter is attached to this behavior that has a tuple of
coordinates in the check expression element (ex..:
(<15,30>, <12,25>)), a check operator of “between”,
and a check and data type of “tuple”. The result is that
if the data type entering this behavior is of the type
“tuple”, each element of it ((x,y) coordinates) will be
checked to be in between the values of the
corresponding tuple in the check expression.

A third behavior is finally added that has the Event
Spooler data broker again set as the positive data path
and no additional filter is configured (i.e. the data will
always flow to the spooler).

The client asks the server to enter it in the list of
subscribers for the sensor field with a unique identifier
as an active subscriber (it will poll for new events
when it decides to) and sets up event configurations to
listen for the specified task and the event spooler at
hierarchy one and for events generated by a spooler at
hierarchy three.

The last step that the client undertakes is to set the
query flag of the appropriate sensors on the base
stations of the BT field, the parameter of the query (the
address of the BT device to be tracked), and the
identifier of the field task that has been set up to take
care of the data.

The server evaluates and complies with each of the
requests in the previous steps and sets up the necessary
structures in the current sensor field configuration.
When it processes the last step, it creates a MetaQuery
object as explained in the previous section when the
implementation of the server was discussed. The
MetaQuery is provided to the Task Manager which
spawns passive or active tasks, depending on the
gateway. In this particular applications, the gateway is
passive so the server needs an active task that re-
injects the query at the specified sample rate.

Once data is available from the sensors, the
MetaQueryResult object (containing a vector of data
from each platform) is modified to comply with the
Broker Data Exchange (data type and values are set
accordingly in a schema-compliant document) and the
data is provided to the main broker (the BTLocalizer).
This is done by the Task object that has access to the
field task settings in the sensor network configuration
and uses it to guide the data flow.

Next, the task analyzes whether there is a broker
behavior chain that needs to do something with the
data. The new Broker Data Exchange (BDX) object
generated by the main broker is then handled by the
broker behavior construct that is first in hierarchy. If
there is a filter (as in this case, results of “INVALID”
need to be discarded), the BDX object is forwarded for
further processing by the broker identified in the
positive data path of the behavior in case of a positive
ruling from the filter or it is discarded since no
negative data path has been defined at this level.

-11-

Therefore, a valid coordinate tuple will pass the filter
and continue to the first Event spooler. It will look into
the subscribers and take the appropriate action (spool
as in this case, or push the data to the client). The
event spooler echoes the incoming data as its output
(performs no modifications to it).

The BDX object output by the event spooler now must
enter the next behavior, in this case – the one defining
whether or not we need to take a picture. A filter
analyzes again the data and if the coordinates are
within the specified region, the BDX data is sent to the
positive broker, which is the Camera Broker (or
discarded since we do not care to continue otherwise
and have not defined a negative data path).

The Camera Broker takes the BDX object and using
the coordinates determines the camera that needs to be
used for capturing. It outputs a new BDX object that
contains the image data.

The new BDX data travels to the next behavior in the
chain. It contains no filter so it automatically goes to
become the input of the broker defined in the positive
data path. In this case, this is another event spooler
that saves the image data to be used by the client.

5. Conclusions

It can be argued that the more abstractions and
structures a model specifies for such a framework, the
more bulky and complicated its implementation
becomes. The Atlantis model does introduce a number
of abstractions, however, its requirements to an
implementing service are flexible and allow for
optimization on many levels (for example, when load
distribution, fail-over and security policies are
introduced in future versions). The current model
achieves it goals by allowing clients as simple as a text
editor (with network capabilities) to manipulate,
configure, and extract data from a variety of sensor
fields. Development of plug-ins (gateways and data
brokers) is made straightforward and does not require
any other knowledge about the framework
implementation except the necessary interfaces for
data access and exchange. Moreover, the flexible
structures governing data flow allow for the
construction of many usable applications or tools to
augment existing applications (for example, providing
sensor data and management of client subscriptions to
the Borealis Streaming Database [7]). All in all, the
Atlantis framework should be a useful tool and model
whenever rapid deployment of new sensor networks
and research applications that bridge them is required.

6. Future Directions

Due to the sheer size of the project, a number of
important further improvements have so far been left
out at this stage. They include:

• Access control policy to govern relationships
between principals (including clients) of the
framework. Since the model is represented by
an XML schema, this would be an easy but
necessary addition to facilitate real
deployment of the system and data integrity

• Peer-to-peer or directory-based discoverability
of Atlantis servers and principals (sensor
fields, gateways, brokers) and mechanisms for
server-to-server communication that is
transparent to the client.

• Load distribution and fail-over mechanisms of
data brokers and filters

• Complex data aggregation functions
(virtualization): currently, only Avg, Min,
Max, Log functions are supported

• Pseudo-native calibration in the same manner
as the pseudo-native virtualization

• Porting catalogue and configuration files
under database management – using JDBC to
automatically create database schemas in
accordance with XML schema of sensor data
being obtained or sensor field configuration

• Preventing the tampering with the integrity of
the collected data through watermarking
techniques

7. Acknowledgments

My gratitude goes to Professor Ugur Cetintemel and
Professor John Jannotti for their support, guidance,
and encouragement in realizing this project. Many
thanks also to Professor Roberto Tamassia for the use
of the Algorithmics laboratory and the patience to let
me become distracted with this project for awhile.
Credit is due to Jason Ye for providing and adapting
his great Bluetooth Localizer to become a proof-of-
concept application for this framework, and of course,
the invaluable contribution of the Department TStaff
for their support and patience in defeating the foils of
deploying Bluetooth and sensor networks within the
department.

-12-

8. Bibliography

[1] Ota, Nathan, Kramer, William, T.C. TinyML:
Meta-data for Wireless Networks.
<http://kingkong.me.berkeley.edu/~nota/research/
TinyML/project-paper-1.pdf>

[2] Sensor Model Language (SensorML) –
<http://vast.uah.edu/SensorML>

[3] Cox, Simon, Daisey, Paul, Lake, Ron, Clemens,
Portele. OpenGIS Geopgraphy Markup Language
Implementation Specification (GML 3). Version 3.0
for the Open GIS Geography Markup Language
(GML) Implementation Specification.
<http://xml.coverpages.org/geographyML.html>

[4] Ye, Jason. Atlantis: Location Based Services with
Bluetooth

[5] Philippe Bonnet, J. E. Gehrke, and Praveen
Seshadri. Towards Sensor Database Systems.
Proceedings of the Second International Conference
on Mobile Data Management. Hong Kong, January
2001.

[6] XML Schema Working Group, W3C XML
Schema <http://www.w3.org/XML/Schema>

[7] Daniel Abadi, Yanif Ahmad, Hari Balakrishnan,
Magdalena Balazinska, Ugur Cetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, John Jannotti,
Wolfgang Lindner, Samuel Madden, Alexander Rasin,
Michael Stonebraker, Nesime Tatbul, Ying Xing, Stan
Zdonik: The Design of the Borealis Stream Processing
Engine, Technical Report (Brandeis University/Brown
University/MIT), March, 2004.

