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Abstract 
 
In recent years, the emergence of low-cost, easily 
maintainable embedded devices, as well as an overall 
increase of the proliferation and applications of the 
concept of ubiquitous computing, have contributed to 
the rise of many new sensor and actuator platforms of 
different design and intended purpose. 
The Atlantis Framework aims to answer the need of a 
unified way to manage one or more arrays of sensors 
and actuators. It defines a model, captured in a generic 
schema, that governs how networks of devices are 
represented at various levels of granularity, their data 
collection, aggregation, and processing paths, and 
provides a simple mechanism to control this 
configuration. This paper introduces the problem 
addressed and shortcomings of current alternative 
solutions, and then proceeds to present the semantics 
and sample syntax of the Atlantis schema, an 
implementation of the framework along with a sample 
application, and concludes with suggestions for future 
development.  
 
1. Introduction 
 
The motivation behind the Atlantis Framework is the 
current state-of-the-art in bridging and interfacing with 
different sensor networks. It was conceived as a 
requirement-driven project, seeking to find an 
acceptable solution to a wide range of chores that are 
often introduced when creating an application that 
interacts with sensor data input. Consider the 
following scenario: an environmental scientist has the 
need to create an application that will visualize the 
energy flow in an energy-efficient building. She has 
access to the interface of the building’s HVAC system 
and its related sensors (carbon dioxide, ventilation 
output, etc.), several wired data loggers which support 
attachment of devices for taking precise measurements 
on water flow, electrical consumption, etc., as well as 
a number of wireless motes running TinyOS that can 

be scattered around the building and provide data 
readings of outside temperature and light levels. The 
scientist is interested in being able to easily define the 
network, possibly creating relationship between 
devices (e.g., whereas the individual readings of light 
and temperature from each node in the mote network 
are not important, their local combined result would be 
important to visualize), and have the data pushed to a 
client for visualization in real-time, as well as 
available to be queried individually for calibration or 
research purposes. 
 
Another scenario would be a university department 
that has a Bluetooth network deployed at its site, as 
well as a network of wireless cameras with a web 
interface. Due to instances of missing equipment, the 
department would like to leverage the existing 
infrastructure to be able to track the location of 
Bluetooth-enabled devices (such as a laptops), and 
have the cameras automatically capture and send a 
picture from the relevant cameras if the laptop enters a 
predefined area (for example, an elevator area), so as 
to serve as a potential theft deterrent. 
 
Traditionally, each sensor network in both scenarios 
would need to be configured manually and the logic 
for interfacing and collecting data from each device 
would be embedded in the client. This, however, may 
not be desirable since developing such an application 
might be technically challenging for an environmental 
scientist. Furthermore, should one of the sensor 
networks be replaced with another, significant changes 
would need to be introduced in the application in order 
for it to interface properly with the new data provider.  
It would be better for the ease of development of such 
applications if abstractions that define the interface 
and relationships between sensor devices are 
introduced, as well as clearer means of retrieving or 
processing streaming data. Although models such as 
the Sensor Markup Language (SensorML) [2] or the 
Couagar Framework [5] have attempted to provide 
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certain solutions to this research question, they do not 
rigorously define data processing chores, are not as 
flexible towards working with heterogeneous devices, 
and are not client oriented, making them sometimes as 
difficult to implement in a real scenario as would be to 
write a custom application that does the data handling. 
The TinyML schema [1], on the other hand, provided a 
lot of inspiration and initial start of the project. 
Concepts such as sensor field, platform, and virtual 
sensor have been adopted in this model, albeit 
changed. To illustrate the relationship, AtlantisML is 
the 5th transformation of the TinyML specification, but 
because of increasing divergence in the models due to 
the fact that TinyML is more concerned with 
instantaneous readings and does not provide a 
reasonable implementation unlike the Atlantis model 
witch is requirement-driven and adds data handling 
abstractions, it is reasonable to segregate them at this 
point and name the resulting markup specification 
after the Atlantis model. 
 
The Atlantis model, presented in section 2 of this 
paper, first addresses the problem of communicating 
with several sensor networks based on different 
physical data access points. More specifically, it 
defines the notion of a sensor field as a number of 
sensors attached to one or more platforms of 
homogenous interface (these terms are explained in 
more detail in subsequent sections). Such platforms 
can contain both basic sensors (physically present 
sensors such as a voltmeter or a digital counter), as 
well as virtual sensors that are aggregates of one or 
more basic sensors connected to the same platform. In 
the same model, it defines a field sensor as a virtual 
sensor spanning different platforms in the sensor field. 
For purposes of clarity and implementation, let there 
be another synonym for the platform abstraction in a 
field – a platform being the physical device that is 
compatible with a field, becomes a node in the sensor 
field when it is included in the field configuration and 
provided with a unique identifier.  
 
The preliminary analysis on the implementation of the 
model by the Atlantis Server, presented in section 3, 
shows that it is satisfactory in the sense that large 
arrays of sensor fields can be easily encoded in a 
human-readable form (xml document), can be stacked 
to form a super sensor field, which, when added to a 
service agent, I would define to constitute a sensor 
network. Whereas the original TinyML model on 
which Atlantis is based provides for the common 
protocol that would allow the different sensor fields to 
be queried by a single client, the service agent 
(Atlantis implementation) has the job of actually 

providing the interface to communicate to the whole 
super sensor field, manage its configuration, and 
status. In addition, whereas the original specification 
seems to be intended for synchronous polling of sensor 
data, it can be expanded and interpreted to be able to 
mandate data storage, processing, notification of 
subscribers or other type of handling.  
 
2. Atlantis Architecture 
 
This section provides an overview of the Atlantis 
framework architecture. The Atlantis framework 
provides flexible support for defining and configuring 
the composition and behavior of the principal elements 
of a sensor network. Throughout this paper, the term 
sensor network will be used to define a set of 
collaborating devices that can support inquiries for 
sensory data or requests for command actuation. Due 
to the distributed nature of such devices, the 
framework aims to define and enforce rules that 
govern a sensor network, so as to achieve cohesion 
among heterogeneous sensor devices and provide 
transparent access to the network for end users. 
 
The main design goals and overall structure of the core 
of the framework - the Atlantis schema – are presented 
in section 2.1. Sections 2.2, 2.3, and 2.4 define the 
semantics of the principal elements of the model. 
Section 2.5 and 2.6 add principals to generalize data 
collection via data brokers and behaviors as well as a 
subscription mechanism to facilitate asynchronous 
information retrieval. 
 
2.1. Unified Protocol (Schema) 
 
The Atlantis model of interaction with sensor networks 
is captured by an XML schema. This decision was 
made so that proper syntax of the protocol of 
communication could readily be enforced in an 
implementation. In addition, one goal of the 
framework as determined by the scenarios described in 
the introduction is to provide an intuitive way to 
control the sensor environment. Having such a schema 
suggests that elements of the model will be expressed 
using Extended Markup Language (although, of 
course, this is an implementation decision; XSLT 
transformation tools could be used to bind the schema 
to other languages). XML is preferred, however, 
because it is mostly human readable, tools in various 
languages exist for its parsing and construction and 
hence – clients to the framework could be 
implemented on different platforms relatively 
intuitively. The AtlantisML schema defines all 
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principal elements that take part in the interaction and 
data processing with the sensor network. A peculiar 
feature of the schema is that a lot of the elements are 
non-mandatory, i.e. they may not be present in XML 
document that is based on it. This provides the 
necessary flexibility to use AtlantisML as a protocol, 
inherently compliant with the model, to query and 
configure the sensor network it defines. Furthermore, 
AtlantisML compatible devices would then be able to 
provide services typical of distributed systems such as 
transparency, load distribution, fail-over, and 
scalability. 
For the full definition of the XSD schema, please refer 
to the current project website (subject to change) at 
http://www.cs.brown.edu/~varnaudo/projects/Atlantis. 
 
2.2. Sensor Field and Platforms 
 
The top-level element in the schema is the Super 
Sensor Field, which is a collection of Sensor Fields. 
The sensor field, is the main building block in the 
model that captures the notion of a sensor network.  

 
Figure 1: Structure of Sensor Field Abstraction 

Optional elements are marked by a dashed line around them 
and elements that are allowed repetition have the minimum 

and maximum occurrences as subscripts 

It is an abstraction that groups together sensor devices 
with a common access/control interface (or a gateway 
in our model, discussed in section 2.4). Devices that 
have this property are said to form a homogeneous 
network. For example, the web-based cameras 
discussed in one of our scenarios will be one such 
group, since all of them are accessible by queries using 
the http protocol.  
 
TinyOS motes, on the other hand, are possible 
reachable by TinyDB queries (assuming TinyDB is 
also installed on each one). Consequently, each will 
define their own sensor field. A sensor field must 
possess a unique identifier (ID) under the local 
namespace of the governing document (each 
AtlantisML schema instance is assumed to have a local 
and a target namespace corresponding to its site 
location, similar to other XML schema constructions).  
The other optional elements of the sensor field (see 
Figure 1) are discussed in the sub-sections that follow. 
 
Platforms 
 
A platform in the model is an abstraction for a 
physical hardware device that provides an interface for 
interaction and supports one or more sensors and/or 
actuators attached to it (discussed in next section). 
Examples include the Mica mote, a wireless network 
camera, or even a workstation running Linux with a 
Bluetooth radio. This paper (and the model) will use 
also the term node to refer to a platform when it is a 
part of a sensor field. Borrowed from GML and 
modified to fit the needs for defining the sensor 
network are the optional location and orientation 
attributes of the platform. The platform characteristics 
include a unique identifier of the model of the platform 
(ModelID) which can be used by an implementation to 
organize available platforms in a catalogue and 
correlate them to available gateways, as well as a 
unique identifier (ID), that is assigned to a node.  
 
The argument why the model organizes platforms in 
sensor fields (and supports communication to 
heterogeneous devices via the super sensor field 
abstraction), as opposed to merely having a collection 
of platforms is because, in real applications, 
homogeneous platforms are usually deployed with a 
common purpose and often define a site (both 
logically and geographically). In addition, when 
security structures and meta policies are added to the 
model (as described in section 7), better granularity 
over access control of particular sites, as well as the 
managing gateways can be achieved if such grouping 
already exists. 
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Figure 2: Defining Platforms in Atlantis 

 
2.3. Sensor/Actuator Models 
 
Sensors, in the Atlantis framework, are split into two 
categories. The first one, basic sensor, models a 
physical device such as a voltmeter, or RSSI readings 
from a Bluetooth radio. Orientation attributes are again 
borrowed from GML models that suggest scientist 
sometimes require additional information about the 
sensor positioning when calibrating or analyzing its 
data. Additional characteristics of a basic sensor 
include model identifier so the sensor can be 
addressed, and optional vendor details and accuracy 
settings. 
 
The other fundamental sensor type is a virtual sensor, 
which models an aggregate sensor on a node. Such 
sensors resemble the basic sensor abstraction, but have 
additional elements governing the basic sensors it 
spans and the aggregate function that is to be applied 
to the data. 
 
The mechanism with which virtual sensors are handled 
is left to the particular implementation of the model, 
however, it is envisioned that a good data server will 
provide mechanisms for virtualizing a sensor (creating 
a new aggregate sensor) either natively on the target 
platform, or as a pseudo-virtual sensor, in which case 
the implementation takes care of performing the data 
collection and aggregation operations on the local site, 
so that it remains transparent to a client. 
Actuators, are modeled in the exact same manner as 
sensors, with the addition of a SetFlag element with 
necessary attributes to hold parameters to be executed 
as commands. 
 
Field sensor or actuator structures model virtual 
sensors/actuators that span sensors on multiple nodes 
(platforms) in a sensor field. 

 
 

 
Figure 3: Definition of Basic Sensor 

 
2.4. Gateways 
 
Before the data collection and aggregation 
implementation can be discussed, it is important to 
note how Atlantis models access to the different sensor 
fields and defines the bridge to the actual hardware 
devices. Each sensor field has a related gateway 
definition element stored in a catalogue which contains 
specific details about the library, package, and entry 
point of each gateway that is to be used. Gateways are 
modeled as separate library packages to allow for 
flexibility in implementation such as dynamic 
installation  (it is assumed that in most scenarios, there 
will be potentially more than one client using an 
Atlantis manager so persistence has to be accounted 
for in the model), as well as proprietary gateway 
libraries which do not fall under open source 
agreements.  An example gateway would be the client 
part of TinyDB used to inject queries and retrieve data 
from TinyOS-mounted sensors. 
 
Furthermore, the gateways (and corresponding sensor 
fields) are classified as one of the three main types: 
active (where the field actively pushes its data back to 
the gateway server as listener, such as in the case of 
TinyDB), passive (where the sensor field responds to a 
polling request by the gateway; an example in such a 
case would be probably building control systems with 
limited capabilities), and hybrid (where the sensor 
field will actively save data onto local data loggers and 
then respond to polling requests by accessing the 
stored data and providing it to the gateway). The most 
notable difference between the three different types is 
that, in the case of a power failure or crash at the 
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gateway server, a hybrid sensor field will not suffer 
any loss of data point readings. 
 
2.5. Data Collection 
 
The Atlantis model presents two types of querying the 
underlying sensor networks for data readings, as 
required again by applications.  
 
Synchronous querying (client sends request document 
to server, server identifies requested data, gathers 
instantaneous reading and returns from the call) is 
accomplished by placing a query element at some 
level of the AtlantisML compliant document indicating 
that we are interested in the values of the siblings of 
the current schema element. For example, a query 
element present in a sensor field would mandate the 
return of the sensor field ID, as well as the platforms 
in that sensor field, and other related structures (such 
as subscribers, etc.). Then, a query placed within a 
platforms element should reveal further details about it 
(sensors and orientation belonging to it, location, 
orientation, etc.) and so on depending on the desired 
level of detail.  
 

 
Figure 4: Query Element (flag) 

 
When a query element is placed under a sensor, the 
datavalues element will be populated with the 
instantaneous readings of the sensor. Using this model 
of inquiry allows for an intuitive construction of the 
query by examining the human-readable document 

produced by the server and placing the flag at the 
appropriate places (which could even be done by 
manually constructing the document, so that the client 
could be as simple as a text editor). 
 
The nature of sensor data acquisition, however, 
requires the Atlantis model to support asynchronous 
means of data retrieval, where a query is submitted to 
the framework with requirements set for the start time, 
sample rate (granularity), and duration. Then, the 
query element will need to set an appropriate identifier 
for the field task (see section below) that will take 
control over the acquisition process. 
 
2.5.1. Field Tasks 
 
A field task is a structure in the model that governs 
how asynchronous data retrieval and processing is 
done. It has a unique identifier, set by the requesting 
client (or automatically depending on the 
implementation of the system), a main data processing 
agent (called a data broker in this model), field for 
whether the task is to remain persistent (in case of 
needs to pause it and restart or in the situation of a 
server shutdown), a priority element that would dictate 
how tasks should be scheduled, and a collection of 
broker behaviors (explained in section 2.5.3) that 
allow the modeling of a more advanced data flow path.  
 

 
Figure 5: Field Task Structure 

 
In a simple scenario, where the client is only interested 
in data collected and occasionally spooled for its 
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retrieval), the main data broker would be defined to be 
an event spooler that will take advantage of the 
subscribers element in a sensor field and log 
appropriate data values there. 
 
2.5.2. Data Brokers 
 
Data brokers define processing agents in the 
framework. Similar to a gateway, Atlantis models the 
data broker, so that it can be an atomic object in the 
implementation. The reason for this is again to ensure 
that new computational logic can be dynamically 
added to the sensor network server, and that they can 
be developed by third parties without caring about the 
specific implementation of the framework, as long as it 
conforms to the model. Furthermore, it would be 
desirable if data brokers can be potentially outsourced 
to other compliant implementation so that load 
balancing and fail-over capabilities can also be 
implemented. For the purpose, a unique identifier of 
the broker is required in its definition, as well as the 
corresponding package, endpoint, and library where it 
can be accessed. An additional location element is in 
place to facilitate exchange of brokers among different 
servers, and two Boolean flags that allow discovery of 
the broker as a field sensor/actuator.  
 
 

 
Figure 6: Data Broker Definition 

 
Due to the fact that data brokers can be linked together 
via behaviors, an additional structure that specifies the 
syntax of the input and output of these agents is 
required. The broker data exchange object 

  

 
Figure 7: Broker input/output standard 

 
encapsulates the broker identifier (broker name), the 
task that originated it, type definitions of the data their 
value. It is important to introduce some notion of types 
in the model, as data could all be potentially encoded 
as a string. Types will further be useful in section 2.5.4 
where data filters are defined. 
 
2.5.3. Broker Behaviors 
 
A broker behavior structure is a part of a field task 
defined in a sensor field and provides mechanisms for 
processing of data in addition to that done by the 
original task data broker. 
 
 

 
Figure 8: Data Broker Behavior 

 
 
The broker behavior first specifies whether there will 
be data output from this structure. It proceeds to 
establish which position of the chain of behaviors it 
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occupies by the hierarchy element (it is 
implementation-specific how the hierarchy will be 
handled but the recommendation is to use 1 for the 
first behavior, and subsequent integers for the rest). A 
mandatory positive data path references a data broker 
structure which will be normally responsible for the 
processing of the incoming data broker exchange 
object. Optionally, a data filter could be present in this 
abstraction to provide a Boolean ruling of whether the 
data should be processed by the positive broker (‘yes’ 
ruling) or the negative data path broker. If the negative 
data path is not define, and the filter return false, then 
the data object is discarded and does not proceed 
further down the chain. Otherwise, the data is 
processed by one of the two brokers defined in the 
data paths and their output data (possibly different 
from the incoming data) is then propagated down the 
chain. Thus, the broker behavior object provides for an 
if/else conditional control of the data that is flexible 
enough to create data paths scenarios fulfilling the 
needs of most applications (examples of which will be 
discussed in the sample application section).  
 
2.5.4. Data Filters 
 
The data filter that was mentioned in the previous  

 
Figure 9: Data Filter 

section is a simple evaluator that checks data 
encapsulated in incoming objects of the broker data 
exchange type against some criteria and renders a 
true/false ruling. 
 
The data filter, due to its computational nature, is also 
meant to be an atomic structure that can be moved to a 
different Atlantis compliant server. Therefore, it 
defines the elements that have been so far required for 
portability (libfile,etc.), as well as a check type element 
governing the type of check to be performed of the 
data values vector (for example, some permissible 
values in the current implementation are individual 
where each element of the vector is checked against 
the check expression, average where the average value 
of the vector is checked, and others). The check 
operator defines the type of check to be performed 
(greater-or-equal-to, not-equal-to, etc.) and the check 
expression is what the data vector is compared against. 
Since the filter is an atomic object in the model, the 
precise syntax of the filter and especially the check 
expression can be different depending on its 
implementation. However, it is recommended that the 
authors of filters implement a wildcard that allows 
pattern matching among the other checks. 
 
 
2.6. Events and Subscribers 
 
The subscriber and events structures model the last  
 

 
Figure 10: Subscriber Description 
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portions of the data flow path in the Atlantis 
framework needed for asynchronous data processing 
and retrieval. A subscriber is an element added to the 
sensor field when a client desires to be notified (or to 
pull) data that has been prepared for it. 
 
It features the unique name of the client (subscriber 
name), and whether it is going to be an active (pull) 
relationship or the client will declare a URL and 
endpoint (is Active, subscriber URL, and data endpoint 
respectively)  so that the server can push data when it 
is ready directly to it.  
 
In all cases, the client will specify one or more event 
configurations (belonging to events) that it is 
interested in receiving, each containing enough data 
about the originating task that triggered the event, the 
broker, and if applicable (when using the passive 
approach, the position of the spooling broker in the 
chain of behaviors). The event spool sequence (see 
figure on next page) of the event configuration then 
holds the actual data pertinent for the client that has 
not yet been picked up. 
 
Section 4 of this paper, where a sample application 
based on an implementation of the platform is 
described, will provide a more detailed discussion on 
the data flow and how each element from the model is 
used. 
 

 
Figure 11: Event Configuration and Spool 

 
 
3. Implementation 
 
This paper offers a sample implementation that 
follows the model and guidelines of Section 2. The 

Atlantis Server is presently a Java-based daemon 
exposing a web service accessible through Simple 
Object Access Protocol, in order to fulfill the goal of 
being accessible from a broad range of clients.  
 
The service then exposes a single entry-point method 
to the AtlantisML interpreter, as well as a number of 
methods that can be invoked through the service 
endpoint and can be used to administer the server: 
install new nodes in a field, remove sensors or nodes 
in a field, commandeer data acquisition and processing 
chores, report errors and notifications, and in general, 
maintain the proper consistency in the super sensor 
field configuration. Since it is a SOAP service, it is 
accessible through any client that is capable of 
receiving and transmitting properly encoded SOAP 
packages; the current proof-of-concept application 
discussed in the next section uses a Java client but 
previous versions of the server have had Macromedia 
Flash clients for a Pocket PC that demonstrate the ease 
of use and interoperability of the service. 
 
Clients are envisioned to communicate with the server 
via the endpoint of the AtlantisML interpreter, by 
providing an AtlantisML conforming XML document. 
One further advantage of the single entry point 
decision is that, as a per-client service that deals only 
with AtlantisML compliant documents, it can in future 
use caching, implemented by a simple round-robin 
queue, to store hashes of AtlantisML requests and 
answer, if possible, by a cached AtlantisML response 
document. By lessening the burden in this manner 
when numerous clients are often inquiring for the 
sensor field configuration for example,  one could 
expect less congestion within each sensor field and 
gateway, and enhance performance and power 
consumption especially when it is comprised of low-
power, limited-resource embedded devices (such as 
the Mica family of motes).  
 
As noted, the service contains a gateway catalogue 
file residing amongst its resources with specific details 
about the location and library of each gateway 
implementation that is being used in the current 
configuration of the super sensor field. The library 
consists of an archive .jar file, in addition to a pointer 
to an entry class that implements the Gateways 
interface: the server dynamically attempts to create a 
new instance of the gateway at initialization, and can 
have a gateway updated to a newer version without a 
recompile/reinstall of the server base. On the other 
hand, this also allows 3rd parties to develop their own, 
potentially proprietary  gateways without any other 
knowledge or tweaking of the main service code. 
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Proof-of-concept gateways for interacting with a 
camera network, the TinyDB application running on 
top of TinyOS, and a Linux-based network of 
Bluetooth devices are provided. A gateway, in addition 
to providing basic functionality to assess the status of 
and poll the sensor field, has the extended ability to 
report whether the field supports native virtualization 
of sensors or not: as discussed in the AtlantisML 
model, a native virtualization would mean that the 
virtual sensor operation is defined in and processed at 
each platform in the field, and then data could be 
queried just like a basic sensor reading. If the sensor 
field does not support such a function, the server 
creates a pseudo-virtual sensor: one that is defined at 
the server level and not at the platform level. This, 
however, is transparent to any of the clients of the 
service and only matters how data collection is 
performed. 
 
Data Collection and Aggregation 
 
The basic data collection and aggregation performed 
by the Atlantis service is done in the following 
fashion. Whenever a ‘query’ flag is detected in the 
incoming AtlantisML document by the interpreter, it 
exposes all other elements at the current level for that 
particular sensor field and returns the document back 
to the reader (for exapamle, a query flag set inside the 
<SensorField> parent would indicate that the 
client wants to learn about all nodes within the sensor 
field, with at least, their identifiers and characteristics, 
as well as the characteristics of the sensor field itself).  
In this implementation, the data about the 
configuration is actually stored in a AtlantisML 
compliant document residing on the file system and is 
bound via a casting engine back to Java classes that 
enforce its marshalling to and from the disk.  
 
When a query flag is detected inside a <BasicSensor> 
or <VirtualSensor> tag, the start time, end time, 
granularity (sample rate), and optional parameter of 
the query would also need to be indicated. The service 
then proceeds to evaluate the time span of the request. 
If it finds that the time span includes future periods of 
time, it returns an error response that the data is not yet 
available, and it requires a new field task 
(implemented in the Task object) to perform the data 
collection.  
 
A new task or data collection chore is dynamically 
instantiated upon the particular type of the gateway 
that needs to communicate with the sensor field: if it is 
an active gateway, then the corresponding task is a 
PassiveTask object that registers itself as a listener to 

the gateway and takes in whatever results arrive from 
the gateway (of course, it initially injects the required 
query inside the target network). On the other hand, if 
it is a hybrid or passive gateway, the task that is run is 
an ActiveTask which, as a separate thread that is awake 
only at the specified sample rate period, actively polls 
the gateway for the required information and then 
propagates the result.  
 
All tasks use a MetaQuery object that identifies the 
data that needs to be collected as well as how precisely 
it needs to be reconstructed:  the structure is quite 
complicated since I allow virtual sensors to be 
aggregated as well (building a virtual sensor from one 
or more other virtual sensors). The MetaQuery 
constructs a balanced tree of the objects with the real 
physical (or natively virtual) sensors as the leaves. The 
gateway only uses the identifier of the physical (or 
natively virtual) sensors and when it returns data, the 
MetaQuery is responsible to propagate the collected 
results to each object further up in the tree, gradually 
fulfilling its requirements until all sensor aggregates 
have been filled. Using such a structure provides us 
also with the flexibility of optimizing the injections in 
the sensor fields (when multiple tasks are running at 
the same time, sensors do not need to be polled again 
if they are already asked for by more than one task that 
runs at the same sampling rate with the same 
parameters). 
The data handling, upon a received MetaQueryResult 
object from the gateway is performed again in a 
customizable way by the Task object 
(implementation of the field task and related 
behaviors) and is best illustrated by the discussion 
of the sample application implemented in the 
Atlantis framework that follows in the coming 
section. 
 
4. Sample Application 
 
One of the easiest way to illustrate the versatility of 
the Atlantis model, implementation and data flow 
would be to trace the execution of a sample application 
that uses the framework. For this purpose, this section 
will briefly discuss the interaction between the 
Bluetooth (BT) Localization application [4] and the 
Atlantis server. The goal of the client application is to 
visually track the location of a BT device using several 
Linux machines equipped with BT radios and capture 
an image obtained from a wireless camera if the device 
is found in a user-defined range of coordinates. The 
setup is as follows. 
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There are two sensor fields that will need to be 
supported and configured in the Atlantis server: one 
that defines the BT network, with platforms being the 
BT-enabled workstations. Basic sensors supported on 
each base station are readings of the remote signal 
strength indicator (RSSI), power transmit level, and 
link quality. Actuators are the ability of a base station 
to connect and disconnect to a remote device.  
 
The camera network is defined by a sensor field in 
which platforms are the actual web-based cameras and 
the sensors – the image sensor of the camera. 
 
The process begins by an AtlantisML request by the 
client to return all platforms, their respective platform 
characteristics, and location elements from the BT 
sensor field so that they can be displayed in the GUI.  
It then proceeds to ask the server to add a new 
resumable field task to the field with the proper 
identifier and priority and asks that the custom 
BTLocalizer data broker (which produces a tuple of x,y 
coordinate values of the device or a special string if 
not enough data could be gathered to find them) be 
assigned as the primary processing agent. 
 
Afterwards, the client requests that a new broker 
behavior be added to the field task at the first available 
hierarchy (in this case – 1) and defines a positive data 
path (a data broker) to be the Event Spooler (a special 
broker that interacts with the subscribers structure and 
saves or pushes data to requesting clients when it is 
received) and negative data path to be empty (data is 
discarded). A data filter is then associated with this 
behavior and defines that verdict should be true if the 
data vector coming from the BTLocalizer broker is not 
the string “INVALID” (known to the client from the 
documentation of the data broker to mean that  not 
enough data was available to produce localization 
coordinates).  
 
Next, the client requests another broker behavior to be 
attached to the field task, and specifies that the 
CameraBroker be the one in the mandatory positive 
data path. This processing agent grabs an image from 
the camera network defined by the second sensor field. 
A filter is attached to this behavior that has a tuple of 
coordinates in the check expression element (ex..: 
(<15,30>, <12,25>)), a check operator of “between”, 
and a check and data type of “tuple”. The result is that 
if the data type entering this behavior is of the type 
“tuple”, each element of it ((x,y) coordinates) will be 
checked to be in between the values of the 
corresponding tuple in the check expression. 
 

A third behavior is finally added that has the Event 
Spooler data broker again set as the positive data path 
and no additional filter is configured (i.e. the data will 
always flow to the spooler). 
 
The client asks the server to enter it in the list of 
subscribers for the sensor field with a unique identifier 
as an active subscriber (it will poll for new events 
when it decides to) and sets up event configurations to 
listen for the specified task and the event spooler at 
hierarchy one and for events generated by a spooler at 
hierarchy three. 
 
The last step that the client undertakes is to set the 
query flag of the appropriate sensors on the base 
stations of the BT field, the parameter of the query (the 
address of the BT device to be tracked), and the 
identifier of the field task that has been set up to take 
care of the data. 
 
The server evaluates and complies with each of the 
requests in the previous steps and sets up the necessary 
structures in the current sensor field configuration. 
When it processes the last step, it creates a MetaQuery 
object as explained in the previous section when the 
implementation of the server was discussed. The 
MetaQuery is provided to the Task Manager which 
spawns passive or active tasks, depending on the 
gateway. In this particular applications, the gateway is 
passive so the server needs an active task that re-
injects the query at the specified sample rate. 
 
Once data is available from the sensors, the 
MetaQueryResult object (containing a vector of data 
from each platform) is modified to comply with the 
Broker Data Exchange (data type and values are set 
accordingly in a schema-compliant document) and the 
data is provided to the main broker (the BTLocalizer). 
This is done by the Task object that has access to the 
field task settings in the sensor network configuration 
and uses it to guide the data flow. 
 
Next, the task analyzes whether there is a broker 
behavior chain that needs to do something with the 
data. The new Broker Data Exchange (BDX) object 
generated by the main broker is then handled by the 
broker behavior construct that is first in hierarchy. If 
there is a filter (as in this case, results of “INVALID” 
need to be discarded), the BDX object is forwarded for 
further processing by the broker identified in the 
positive data path of the behavior in case of a positive 
ruling from the filter or it is discarded since no 
negative data path has been defined at this level. 
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Therefore, a valid coordinate tuple will pass the filter 
and continue to the first Event spooler. It will look into 
the subscribers and take the appropriate action (spool 
as in this case, or push the data to the client). The 
event spooler echoes the incoming data as its output 
(performs no modifications to it).  
 
The BDX object output by the event spooler now must 
enter the next behavior, in this case – the one defining 
whether or not we need to take a picture. A filter 
analyzes again the data and if the coordinates are 
within the specified region, the BDX data is sent to the 
positive broker, which is the Camera Broker (or 
discarded since we do not care to continue otherwise 
and have not defined a negative data path).  
 
The Camera Broker takes the BDX object and using 
the coordinates determines the camera that needs to be 
used for capturing. It outputs a new BDX object that 
contains the image data. 
 
The new BDX data travels to the next behavior in the 
chain. It contains no filter so it automatically goes to 
become the input of the broker defined in the positive 
data path. In this case, this is another event spooler 
that saves the image data to be used by the client. 
 
5. Conclusions 
 
It can be argued that the more abstractions and 
structures a model specifies for such a framework, the 
more bulky and complicated its implementation 
becomes. The Atlantis model does introduce a number 
of abstractions, however, its requirements to an 
implementing service are flexible and allow for 
optimization on many levels (for example, when load 
distribution, fail-over and security policies are 
introduced in future versions). The current model 
achieves it goals by allowing clients as simple as a text 
editor (with network capabilities) to manipulate, 
configure, and extract data from a variety of sensor 
fields. Development of plug-ins (gateways and data 
brokers) is made straightforward and does not require 
any other knowledge about the framework 
implementation except the necessary interfaces for 
data access and exchange. Moreover, the flexible 
structures governing data flow allow for the 
construction of many usable applications or tools to 
augment existing applications (for example, providing 
sensor data and management of client subscriptions to 
the Borealis Streaming Database [7]). All in all, the 
Atlantis framework should be a useful tool and model 
whenever rapid deployment of new sensor networks 
and research applications that bridge them is required.  

6. Future Directions 
 
Due to the sheer size of the project, a number of 
important further improvements have so far been left 
out at this stage. They include: 
 

•  Access control policy to govern relationships 
between principals (including clients) of the 
framework. Since the model is represented by 
an XML schema, this would be an easy but 
necessary addition to facilitate real 
deployment of the system and data integrity 

•  Peer-to-peer or directory-based discoverability 
of Atlantis servers and principals (sensor 
fields, gateways, brokers) and mechanisms for 
server-to-server communication that is 
transparent to the client. 

•  Load distribution and fail-over mechanisms of 
data brokers and filters 

•  Complex data aggregation functions 
(virtualization): currently, only Avg, Min, 
Max, Log functions are supported 

•  Pseudo-native calibration in the same manner 
as the pseudo-native virtualization 

•  Porting catalogue and configuration files 
under database management – using JDBC to 
automatically create database schemas in 
accordance with XML schema of sensor data 
being obtained or sensor field configuration 

•  Preventing the tampering with the integrity of 
the collected data through watermarking 
techniques 
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