
Sketching Articulation and Pose for Facial Meshes

Edwin Chang ∗

Brown University
Advisor: Odest Chadwicke Jenkins †

Brown University

Figure 1: A reference curve (green) and target curve (blue) are sketched to pose the lower lip of an articulated mesh in our posing system.

Abstract

We present a methodology for articulating and posing meshes, in
particular facial meshes, using sketching as input. Our method
focuses on the use of two sketched curves, a reference and target
curve. Our articulation system uses these curves to deform selected
regions of a mesh in order to specify articulation. Likewise, our
posing system uses reference and target curves to find an optimal
pose in an articulation space of a mesh. This mesh can be articu-
lated using our sketch-based approach or through alternative meth-
ods. Through our method, we seek to make articulation and posing
more intuitive and simple for a novice to learn while also providing
a method for more experienced users to prototype complex defor-
mations.

1 Introduction

Articulating and posing meshes are both challenges that must be
met in order to animate using 3D meshes. Defining the articulation
of a mesh is often a tedious and complex process, requiring a user
to specify several deformation variables for a desired motion. To
achieve satisfactory results, a user may need to manually specify
deformation settings for hundreds of vertices. Furthermore, an in-
finite number of plausible deformations can exist for a given mesh
that range from the realistic flexing and extending of underlying
muscle to cartoon squash and stretch motion. This problem is par-
ticularly difficult when defining the articulation of a facial mesh,
where motion is quickly discernable as natural or unnatural to a
viewer.

While the articulation (or rigging) of a mesh specifies the range of
motion that mesh can take, an animator must then specify the pose
of the mesh in that articulation space. Posing an articulated mesh
presents a separate but related problem to articulation. To specify
a pose efficiently, an animator must be provided with a set of con-
trols that manipulate the deformation of the mesh. Such control rigs
are often in the form of direct manipulation widgets or sliders that
provide a puppet-like control of the mesh to the animator. Often
as much time is spent setting up the user controls for an articulated
mesh as specifying the mesh deformations. Professional computer
animation packages, such as Alias Maya, often allow users to cus-
tomize these interfaces to a high-degree, but are still usually built
from a system of sliders and widgets.

∗e-mail: ewchang@cs.brown.edu
†e-mail: cjenkins@cs.brown.edu

Many of the current interfaces for the above problems provide de-
tailed control to a user, but are unintuitive both to novices and tra-
ditional animators trained with pencil and paper. A sketching in-
terface, however, provides a familiar interface while still providing
a high level of control to users. It can be particularly helpful to a
novice who lacks a strong understanding of facial movement but
is comfortable working with simple line drawings of a face. To
traditional animators, it provides a direct correlation between hand
drawn and 3D animation.

In this paper, we present two separate sketch-based processes, one
for articulating a single mesh and one for posing an articulated
mesh. In our articulation process, the user first selects regions of
interests on the mesh and then manipulates the mesh using curves
drawn in the image plane. These curves provides a simple and rapid
method of defining deformations. Our posing process uses a sim-
ilar approach, but does not require the user to specify regions of
interest. Instead, the user first draws a reference curve on the mesh
for selection followed by a target carve. The pose is then optimized
over the articulation space so that the distance between these two
curves is minimized. The user can introduce additional constraints
to pin parts of the mesh in place. This method is particularly benefi-
cial to novices to use as it requires no knowledge of the underlying
articulation.

Both our articulation and posing methods can work in tandem, but
are independent such that one can be replaced by alternative meth-
ods of articulating or posing. For example, we also use our posing
method with a blend-shape articulated mesh. These methods work
best with facial meshes, but are suitable for other types of meshes
as well.

Our approach provides a simple sketch-based interface for users
to specify deformations to a mesh and to pose those deformations.
Other approaches to the these problems have been proposed, but
were not capable of smooth deformation in enclosed regions, which
is neccessary for facial animation.



2 Related Work

There exists much previous work in mesh articulation and deforma-
tion, as well as the closely related field of mesh editing. One typi-
cal approach for facial articulation is to create several meshes with
the same topology and blend between them, i.e. a blend shape ap-
proach. While robust and granting users a high amount of control,
this approach often requires many blend shapes. The blend shape
process has also been combined with a skeletal approach to provide
the flexibility of a skeletal system with the expressiveness of a blend
shape system [Lewis et al. 2000]. Shapes have also been used as ex-
amples for a combination of shape and transform blending [Sloan
et al. 2001]. We seek to maintain that level of expressiveness in
our method without requiring additional shapes to blend between.
We do use a simple blend shape method of 15 shapes, however, to
test the ability of our posing process to work with several types of
articulation systems. Our articulation system only begins with one
mesh for a user to work with.

Free-Form Deformation (FFD) [Sederberg and Parry 1986] is one
method that provides a wide range of possible deformation without
requiring multiple shapes. Our work parallels the use of FFDs, in
particular a curve-based FFD method that warps the mesh [Singh
and Fiume 1998; Corrêa et al. 1998]. This type of FFD provides
a method of smooth deformation that facilitates the use of curves
sketched by users. Sketches have also been used to specify FFDs
based on scalar field manipulation [Hua and Qin 2003] and as input
to a gesture based FFD interface [Draper and Egbert 2003]. Outside
of FFDs, sketches have also been used as skeletal strokes [Hsu and
Lee 1994] to bend and twist 2-dimensional images.

Recent work has also focused on drawing directly onto the image
plane in order to specify deformation. This poses challenges in in-
terpreting the intent of users as well as providing a coherent transla-
tion from 2D to 3D space. This problem has also been encountered
in 3D modeling using 2D sketches. One modeling method inter-
prets 2D sketches as silhouettes to infer and construct 3D Shape
[Igarashi et al. 1999]. Another solution used for mesh editing is to
treat the process as an inverse NPR process [Nealen et al. 2005],
where the mesh is transformed to match user-drawn contours and
silhouette contours. This process is not ideal for articulation, how-
ever, as it can alter the topology of the mesh by inserting new ver-
tices. Sketches have also been used to specify curves in a free-form
skeleton method [Kho and Garland 2005], but the approach was
limited to deformation in appendage-like parts of a mesh, e.g. tails,
legs, or arms. We extend this approach, in particular its use of ref-
erence and target curves, to work with enclosed areas of a mesh,
which is necessary for facial articulation.

Often one limitation of drawing on the image plane is that defor-
mations remain parallel to the image plane. We approach this by
constraining vertices to follow a surface similar to the method used
in manipulating clothing [Igarashi and Hughes 2002], where cloth
can be positioned by moving it across surface of a mesh.

Posing an articulated mesh involves its own unique challenges sep-
arate from those encountered in articulation. Control widgets are
often added that allow users to interact directly with the articula-
tion parameters. Sketching has been applied to manipulate multiple
control points in order to pose the mesh [Swain and Duncan 2004],
but these control points must have been previously defined by a
user. Sketches have also been used to describe the motion of a fig-
ure across time rather than through individual poses [Thorne et al.
2004]. Other work has treated the posing problem as an optimiza-
tion problem, attempting to determine the pose of a human figure
that best matches hand-drawn sketches [Davis et al. 2003]. Our
work in posing also views the problem as an optimization problem

but focuses on posing articulated facial meshes. Posing a facial
mesh has been approached previously using a blend shape method
[Chuang and Bregler 2002], but required users to build a set of
key blend shapes instead of using a previously created set. Other
work has applied inverse kinematics to sets of existing blend shapes
[Sumner et al. 2005], allowing users to interactively pose between
the blend shapes. Our posing method also works with blend shape
approaches, but is versatile enough to work with many types of ar-
ticulation methods (including our own).

One of the methods of evaluation we use for our posing process
involves the use of curves generated from the tracking of facial fea-
tures in video. We use the eigen-points approach [Covell and Bre-
gler 1996] in order to determine these curves. This approach uses
an eigen-feature based method in order to place control points onto
unmarked images, which we then use to define curves for posing.

3 Approach

While our articulation and posing methods are independent, they
share a simple interaction scheme based on sketching curves. They
differ in that our articulation method requires users to select re-
gions of interest, while posing does not. In addition, while posing
an articulated mesh users can specify constraints to keep parts of
the mesh in place, which is unneeded when articulating but can be
helpful for posing. The reason for these differences become clearer
in the following explanations of our approach.

Start

Find Closest 
Connected Set 

of Vertices

Determine 
vertex weights

Sketch region of 
general interest

Project curve 
onto mesh

Sketch region of 
specific interest

Deform mesh

Sketch reference curve

Sketch target curve

Start

Project curve 
onto mesh

Sketch reference curve

Solve 
for pose

Sketch target curve

Sketch 
constraint curve

Articulation Posing

Figure 2: The flow of user control for articulation and posing



3.1 Articulation

Users specify one deformation at a time in our system in a 4-step
process. Users first select a region of general interest, then a region
of specific interest. Users can then draw reference and target curves
to specify the deformation. Each of these deformations becomes
one dimension in the articulation space. The 4 steps are pictured in
Figure 3.

Figure 3: 1) A region of general interest is selected and then 2)
a region of specific interest to specify articulation weights. 3) A
reference curve and 4) target curve are then drawn to specify the
deformation.

3.1.1 Regions of Interest

In the first step, the user must pick a general region on the mesh
where the deformation is desired, a set of vertices Vg. To do so, the
user first draws a curve Cg, an ordered set of points {g1, ...,gn}, to
encircle the region on the image plane, selecting a set of vertices Va.
The desired set of vertices will be a subset of the set of all selected
vertices (Vg ⊆Va), but often Vg 6= Va as some vertices in Va may be
behind the desired region or occluded by other parts of the mesh.
In order to avoid selecting these vertices, a depth first search on Va
is used to determine connected graph subsets of vertices. The set of
connected vertices containing the vertex closest to the camera and
of sufficient size (|Vk| > 10, where Vk ⊆Va and Vk is connected) is
then chosen as Vg. Each vertex in this set (vi ∈Vg) is then projected
to the image plane in order to determine its 2D distance to the drawn
curve Cg, which is then stored. We will call this distance gi for every
vertex vi in Vg.

The user then encircles a region of specific interest with a new curve
Cs to specify a set of vertices Vs, where Vs ⊆ Vg. Each vertex vi in
Vg is then assigned articulation weights by the following equation,
where wi is the articulation weight and ci is the distance to the curve
Cs on the image plane:

wi =

1.0 if vi ∈Vs,
gi

gi + ci
otherwise. (1)

In this manner, articulation weights smoothly blend off from 1.0 to
0.0 from the region of specific interest to the borders of the region
of general interest. Our system displays the articulation weights
to users by coloring vertices white if unselected, and blue to black

from 1.0 to 0.0 (see Figure 4). There exists one restriction with this
approach - gi and ci are 2D distances calculated on the image plane
and using different camera views when selecting the two regions
may result in an undesirable blend of articulation weights. This
camera restriction only exists at this step.

Figure 4: The blending of articulation weights between the two
regions

3.1.2 Reference and Target Curves

Our system then generates a reference curve Cr, an ordered set of
points {r1, ...,rn}, that estimates a skeletal curve for the region of
specific interest. The curve is determined by ordering the vertices in
Vs by the x value of each vertex to form Cr. If the difference in the
minimum and maximum y values of the vertices in Vs is larger than
the minimum and maximum x values, the y value of each vertex
is used to order Cr instead. This curve is then smoothed through
convolution with a triangle filter reference f ( j) across a kernel size
v that is 1/3 of the number of vertices in the curve (v = |Cr|/3):

r′i =
v/2

∑
j=−v/2

f ( j)ri+j (2)

In some cases this estimated curve may not be satisfactory to the
user, especially when the region of interest does not have a distinct
curve-based feature, like the cheek of a face. If desired, the user
can redraw the curve Cr on the image plane, which is then projected
onto the mesh to form the reference curve. The reference curve, ei-
ther estimated or not, is then slightly smoothed to account for noise
(convolved with a triangle filter reference) and reparameterized to
have a regular spacing. We reparameterize the line by choosing the
new points by distance along the original line, where ri

′ is the i-th
of n points along the reparameterized curve:

ri
′ = Cr(

i−1
n

) (3)

With the reference curve Cr smoothed and reparameterized in 3D
space, the user can choose to move the camera and view the mesh
at different angles. In order to facilitate this, the system does not
depth test when rendering curves, instead overlaying them over the
entire image.

In the final step, the user draws a target curve Ct , indicating how
the mesh should be deformed so that the reference curve meets the
target curve. The order of the points of the curve is reversed if the
target curve’s endpoint, qn, is closer to the reference curve’s start



point, p1, than the target curve’s own startpoint, q1 (i.e. reverse Ct
if |qn − p1| < |q1 − p1| . The target curve is then reparameterized
to match the number of points in the reference curve, n. The points
of the target curve are then projected into 3D space by using the
distances to the camera of the corresponding points on the reference
curve, d1 to dn.

3.1.3 Curve Interpolation

Since the target and reference curves now share the same number
of points, we can determine rotations between the matching line
segments on the two curves by finding the cross product of the two
segments and the angle between them. We will call these rotations
φ j for each segment j. The system stores these rotations as rela-
tive for each segment, such that each rotation assumes all rotations
previous to a line segment have been applied. By keeping rotations
relative, we can determine partial rotations between points on the
curves when we perform the mesh deformation. The system also
calculates a scale change si between the two segments, as the two
curves may be different lengths:

si =
|qi+1 −qi|
|pi+1 − pi|

(4)

With the rotations and scales for each segement of the lines, the
system can then interpolate between the curves by applying a partial
transformation α (where 0 ≤ α ≤ 1) of αφ j and αsi to the line
segments of the reference curve.

(a) Scale and rotation (b) Scale and rotation

(c) Translation (d) Translation

Figure 5: Different methods of curve interpolation

In certain situations, however, applying scale and rotation to in-
terpolate is inappropriate. The curves in Figure 5(a) and 5(b) are
interpolated using the rotation-scale method. In Figure 5(b), this
works well, especially if these lines pose an appendage like a leg.
In Figure 5(a), however, the curve becomes undesirably extended,
which would be inappropriate if these curves were posing a blink-
ing eyelid. For this case, we instead linearly interpolate between
corresponding points on the two curves, translating the points with-
out regard to scale or rotation of the line segments (Figure 5(c).
Our system automatically chooses this method if the endpoints of
the reference and target curves are within 10 pixels of each other,
but also allows the user to specify otherwise.

3.1.4 Mesh Deformation

Once the system has an appropriate method of interpolation be-
tween the reference and target curves, it can deform the vertices of

the mesh according to those curves. Each vertex vi in Vg is projected
onto the reference curve to find the closest point on that curve,
which is then stored as a proportional distance along the length of
the entire curve, li, where 0 ≤ li ≤ 1. This projection is done on the
image plane in 2D space so that vertices farther from camera than
other vertices still project to an appropriate reference point ri. The
system then determines the corresponding point on the target curve,
which we will call the target point ti, by the distance along the tar-
get curve according to li. We then apply the translation from the
reference point to the target point (ti − ri) to the vertex. We must
also apply a rotation transformation to the vertex centered around
the target point. Since this point does not likely lie on the end of a
line segment on the curve, we must calculate the rotation.

Our system first combines all the line segment rotations previous to
the target point, φ j from 1 to k− 1, where the target point lies on
segment k. We then apply a partial rotation of the last line segment’s
rotation, φk, according to the length along on that segment the target
point lies, a value from 0 to 1 we will call u. We express this in the
following equation, where the final rotation is φt . The rotations are
centered about the target point.

φt = (
k−1

∏
j=1

φ j)(φku) (5)

In order to pose between the reference and target curves, the sys-
tem applies the same operations, but instead uses an interpolated
curve, determined using the method described in Section 3.1.3, in-
stead of the target curve. For similar reasons discussed concerning

(a) Deformation with rotation (b) Deformation with undesirable
rotation

Figure 6: Different examples of mesh deformation with rotation

curve interpolation, rotations are not always desired in the mesh
deformation. In Figure 6, a mesh deformation with rotations on
three vertices is depicted in two examples. Rotations are appro-
priate for Figure 6(a), but less so for Figure 6(b), especially if this
were deforming an eyelid. Vertices past the endpoints of the curves
can move greater distances than expected due to rotation. For this
reason, when curve interpolation does not use rotations, we do not
apply them in mesh deformation as well.

Since deformations are specified using curves in the image plane,
it can be difficult to specify deformation outside of one plane of
movement. We approach this problem by allowing the user to spec-
ify simple surfaces to follow. In Figure 7, the deformation is con-
strained to maintain the vertices’ distance from the eyeball sphere.
Otherwise, the vertices move in only one direction and the eyelid
intersects the eyeball.

Once all the vertices have been repositioned according to the target
curve, they are returned back to their original positions according
to the value of the articulation weights determined previously. The
transformation is calculated as a linear translation for each vertex,
where vertices with weight 0 return completely to their original po-
sition and vertices with weight 1 stay in their new position. In this



Figure 7: An eyelid deformation constrained and not constrained to
follow the eyeball surface

manner we can ensure smooth deformations even when the region
is enclosed by other parts of the mesh.

Multiple instances of these deformations can be applied to a mesh
and overlap across vertices. In this case, deformations are applied
in succession to the mesh. While this can result in some unexpected
combinations of deformation, it provides a greater range of defor-
mation that works well with our posing process.

3.2 Posing

Figure 8: The posing process, with constraints in red and reference
curve in green

Given an articulated mesh, posing that mesh presents its own chal-

lenges for estimating the appropriate articulation parameters. Our
approach casts pose parameter estimation as an optimization prob-
lem. We apply our optimization engine to an articulated mesh from
our method and a system based on blend shape interpolation.

Unlike our articulation method, the user does not need to specify
any region of interest. Instead, the user first draws a reference curve
Cr, which is projected onto the mesh. The user then draws a target
curve Ct . As in our articulation method, we reverse the order of
Ct if its endpoint is closer to the reference startpoint than its own
start point. We then reparameterize the target curve to match n, the
number of points in the reference curve. The target curve is then
projected into 3D space using the distances from the camera along
the reference curve. Our system then searches the articulation space
Md of d deformers to find an optimal pose P given by the optimal
articulation parameters x that minimizes the distance between the
reference curve, which maintains its position on the mesh, and the
target curve. The distance term for the optimization is given by the
following, where ri and ti are corresponding points on the reference
and target curves for a given pose x in an articulation space of d
dimensions.

E(P) =
n

∑
i=1

|ri − ti| (6)

In order to solve this optimization problem, we use the downhill
simplex method [Press et al. 1992], which gives us the ability to
perform optimization without the use of derivatives. Since this is
the case, the optimization process does not need knowledge of the
underlying articulation system and can work with any type of ar-
ticulation. The downhill simplex method searches a d-dimensional
space using a simplex shape of d +1 points that searches the space
by reflecting and contracting itself until it reaches its goal (Figure
9). The optimization works best with non-hierarchical articulation
(like faces, rather than arms), however, and is only efficient for a
limited number of variables (d < 20). We propose methods to deal
with this limitation in our discussion section.

Figure 9: Searching in a two-dimensional articulation space using
the downhill simplex method

Using the downhill simplex method, we determine we have reached
an acceptable solution when the vector distance travelled in one it-
eration is less than a fractional tolerance of 0.05. After we have
found this solution, we perform a cleanup stage. Since several of the
articulation parameters may have had no effect on the region of in-
terest, these parameters may have become unneccessarily changed
through searching the articulation space in the optimization pro-
cess. We evaluate a pose Pi for each articulation variable xi, where
xi is set to its original value and all other variables are set to those



from xo, the set of articulation variables derived from optimization.
If the difference between E(Pi) and E(Po) (where Po is the pose set
by xo) is minimal, we return xi to its original value.

Our system also provides a method for the user to set constraints
on the mesh with additional curves in order to keep parts of the
mesh in place (Figure 8). Each constraint curve K j, a set of ordered
points {k1, ...,kn} is projected onto the mesh. When a pose is eval-
uated using equation 6, the following term is also added for each
constraint, where k′i is the position of ki in the new pose P.

E j(P) =
n

∑
i=1

|k′i −ki| (7)

Constraint curves are useful as a deformer on a mesh may have a
small effect on the region the reference curve lies on even though
it mainly deforms a separate area. For example, a cheek deformer
could slightly affect the vertices around the lips on a mesh. When
the user attempts to pose the lips the cheeks could then be undesir-
ably affected. These constraints are drawn on the mesh in the same
manner the reference curve is. Previously used reference curves
can also be used as constraint curves in order to keep previously
specified deformation in place.

4 Results

Figure 10: An articulated mesh colored according to deformer and
articulation weights

We begin with the mesh of a face (seen in Figure 8) and articulate it
using our system to specify a deformation for each eyelid, eyebrow,
cheek, jaw, and various movements of the lips (Figure 12) for a to-
tal of 15 deformers. Figure 10 depicts these deformers as separately
colored regions that fade to black according to articulation weights.
Figure 11 shows some of the poses that can be acheived using this
articulation. Each of these deformations was created quickly, in
under 2 minutes for each. By comparison, specifying similar de-
formations in a blend shape approach required 10-20 minutes per
shape. For eyelid deformations, we specified the deformation to
follow the surface of a sphere centered at the eye. Our system also
works for non-facial meshes, like the trunk of an elephant (Figure
13).

Figure 11: A sampling of poses in our articulation space

Bringing this articulated mesh into our posing system, we can pose
the face using reference and target carves. We also test our pos-
ing system with a mesh articulated by a blend shape method using
shapes created in Alias Maya (Figure 14) and achieve similar results
in both. In the top example, we pose the mouth in two iterations,
one for the upper lip and one for the lower lip. In total, with the
cheek constraints, we drew 6 curves to pose the face (2 constraint
curves, and 2 pairs of reference and target curves). In the lower ex-
ample we posed the right eyelid and left eyebrow using 4 curves (2
pairs of reference and target curves).

4.1 Posing from Video Features

We additionally used our posing process with curves generated
from tracking of facial features in video on our sketch-based ar-
ticulated mesh. These curves were determined through the eigen-
points method [Covell and Bregler 1996] and follow the eyebrows,
eyelids, and lips of the subject in the video. These tracked curves,
while slightly noisy, remain unfiltered in our testing. Since the fa-
cial features of the subject do not match those in the 3d mesh, rel-
ative changes in the tracked curves are applied to user-drawn refer-
ence curves to create new target curves. For one curve from video
Cv f in frame f , relative changes, {c1, ...,cn}, from frame to frame
for each point were determined. These relative changes were then
applied to a user-drawn curve Cu reparameterized to have n points,
{d1, ...,dn}. For each frame of video a new curve C′

u was deter-
mined by applying ci to every point di. The change ci was also
scaled up in order to account for difference in length between Cv0
and Cu:

di
′ = di + ci

|Cu|
|Cv0|

(8)



While the limited articulation of the mesh does not fully match the
range of expression in the human face, the posing process works
well at capturing the motion of the face across frames (Figure 15).

The optimization process for posing requires many iterations before
convergence and results in a pause in the posing system after draw-
ing the target curve. On a AMD XP 2000+ processor, this pause is
under 5 seconds for the blend shape method and under 10 seconds
for our articulation method. The optimization takes longer for our
articulation method because it takes slightly longer to pose than the
blend shape method. From pose to pose this time is small (the mesh
can be posed at (∼50 fps), but is still longer than the blend shape
method (∼90 fps).

5 Discussion

Our implementation allows users to quickly sketch out a wide range
of articulations for a mesh. Several additions could be added to the
system to allow for more complex movements, such as combining
separately defined deformations, but our work focuses on establish-
ing a simple system suited to novices or prototyping deformations
for more complex systems. By combining deformations, however,
we would be able to achieve deformation with similar results to
pose space deformation [Lewis et al. 2000].

We also maintain a level of control in our deformations compara-
ble to blend shape approaches (Figure 14). Furthermore, we do
not face the limitations blend shapes have, such as the issues linear
blending between shapes can cause. For example, it is difficult to
have rotational movement with blend shapes, like an eye blink or
jaw movement. Our method can recreate these motions. With our
method, we are able to apply the strengths of free form deformation
to enclosed areas of the mesh while maintaining smooth deforma-
tion.

Our posing process is likewise easy to use and requires little to no
training or knowledge of the articulation system. Through sketch-
ing curves to pose the mesh, the user has intuitive control over the
articulation space while unaware of the actual articulation parame-
ters.

The optimization required for posing is not instantaneous, however,
and lacks the interactive speeds of other methods. The tradeoff for
compatibility with any articulation system is a speed loss. Further
limitations involve the limit of number of variables the optimiza-
tion process can deal with. The downhill simplex method is only
effective to under 20 variables and a large number of variables will
further slow down the optimization. As many professional facial
animation systems often have several hundred controls, this method
may be impractical. We can reduce the problem, however, by limit-
ing the articulation search space only to those articulation variables
that affect the reference curve. If the search space still remains
overly large, our method can be used in stages, first posing articu-
lation variables that have a large effect and then smaller variables
in greater detail. Another possible approach would be to use di-
mension reduction methods on the articulation space, like principal
component analysis.

6 Conclusion

In this paper, we presented a sketch-based method of preparing a
mesh for animation in two processes - articulation and posing. Our
system focused on facial animation, but was adept at defining other

kinds of motion as well. This system was simple to use and pro-
vided the freedom for a user to specify many kinds of deformation.
Furthermore, the posing process was flexible enough to work with
other kinds of articulation, including blend shape interpolation.

7 Acknowledgements

We thank John F. Hughes for his comments and advice on our work.
Special thanks also go to the Brown Graphics Group, in particular
Olga Karpenko and Tomer Moscovich for initial discussions on this
work.

References

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND
POPOVIĆ, Z. 2002. Interactive skeleton-driven dynamic de-
formations. In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, 586–593.

CHUANG, E., AND BREGLER, C. 2002. Performance driven facial
animation using blendshape interpolation. Tech. rep., Stanford
University Computer Science.

CORRÊA, W. T., JENSEN, R., THAYER, C., AND FINKELSTEIN,
A. 1998. Texture mapping for cel animation. In Proceedings of
ACM SIGGRAPH 1998, 435–446.

COVELL, M., AND BREGLER, C. 1996. Eigen-points. In Proceed-
ings of 3rd IEEE International Conference on Image Processing,
471–474.

DAVIS, J., AGRAWALA, M., CHUANG, E., POPOVIĆ, Z.,
AND SALESIN, D. 2003. A sketching interface for artic-
ulated figure animation. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
320–328.

DRAPER, G. M., AND EGBERT, P. K. 2003. A gestural interface
to free-form deformation. In Proceedings of Graphics Interface
2003, 113–120.

HSU, S. C., AND LEE, I. H. H. 1994. Drawing and animation
using skeletal strokes. In Proceedings of ACM SIGGRAPH 1994,
109–118.

HUA, J., AND QIN, H. 2003. Free-form deformations via sketching
and manipulating scalar fields. In Proceedings of the eigth ACM
symposium on Solid modeling and applications, 328–333.

IGARASHI, T., AND HUGHES, J. F. 2002. Clothing manipulation.
In Proceedings of the 15th annual ACM symposium on User in-
terface software and technology, 91–100.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy:
a sketching interface for 3d freeform design. In Proceedings of
Graphics Interface 2003, 113–120.

KHO, Y., AND GARLAND, M. 2005. Sketching mesh deforma-
tions. In Proceedings of the 2005 Symposium on Interactive 3D
Graphics and Games, 1142–1147.

LEWIS, J., CORDNER, M., AND FONG, N. 2000. Pose space
deformation: a unified approach to shape interpolation and
skeleton-driven deformation. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques,
165–172.



NEALEN, A., SORKINE, O., ALEXA, M., AND COHEN-OR, D.
2005. A sketch-based interface for detail-preserving mesh edit-
ing. In Proceedings of ACM SIGGRAPH 2005, 1142–1147.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VET-
TERLING, W. T. 1992. Numerical Recipes in C - The Art of
Scientific Programming. 408–412.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. In Proceedings of the 13th
annual conference on Computer graphics and interactive tech-
niques, 151–160.

SINGH, K., AND FIUME, E. 1998. Wires: a geometric deforma-
tion technique. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, 405–414.

SLOAN, P.-P. J., ROSE, C. F., AND COHEN, M. F. 2001. Shape by
example. In Proceedings of the 2001 symposium on Interactive
3D Graphics, 135–143.

SUMNER, R. W., ZWICKER, M., GOTSMAN, C., AND POPOVIĆ,
J. 2005. Mesh-based inverse kinematics. In Proceedings of ACM
SIGGRAPH 2005, 488–495.

SWAIN, M., AND DUNCAN, B. 2004. Sketchpose: Artist-friendly
posing tool. SIGGRAPH 2004 Sketch.

THORNE, M., BURKE, D., AND VAN DE PANNE, M. 2004. Identi-
fying and sketching the future: Motion doodles: an interface for
sketching character motion. In Proceedings of ACM SIGGRAPH
2004, 424–431.



Figure 12: A few of the deformations created in the sketch-based articulation system

Figure 13: Deformation of an elephant’s trunk using the articulation system



Figure 14: Posing using similar curves on a sketch-based articulation (left) and a blend shape articulation (right)

Figure 15: Posing using curves from tracking of facial features in video


