
Conflict Avoidance:

Data Structures in Transactional Memory

Lucia Ballard

May 3, 2006

Abstract

The Dynamic Software Transactional Memory system lets multiple

threads safely access data through atomic transactions. Conflicts between

transactions require one to abort, incurring a high performance cost. By

managing the likelihood that actions will produce conflicts, data struc-

ture design greatly impacts the efficiency of transactional programs. I

analyze a red-black tree and a binomial heap, using both the classic al-

gorithms and delayed-rebalancing versions which enclose the rebalancing

step in a separate transaction. Delaying the rebalancing step of these

structures dramatically improves their performance by minimizing over-

lapping claims to transactional objects.

1 Introduction

As multiprocessors become common, the ability to coordinate the actions of

multiple threads becomes more and more important. Traditional locking mech-

anisms address the issue, but can easily introduce race conditions or deadlocks

into otherwise consistent code. In contrast, the Dynamic Software Transac-

tional Memory (DSTM) system introduced by Herlihy et. al. [3] allows multiple

threads to modify multiple objects atomically without explicitly locking them.

1

If more than one thread simultaneously attempts to modify the same object,

one must abort its attempt and retry, a costly endeavor.

Consequently, the design of the data structures used in a transactional sys-

tem becomes of great importance. An entirely new area of optimization is

opened up. More than the running time of an algorithm, the number of con-

flicts it encounters determines its efficiency. Data structures can concentrate

modifications in one area, inducing conflicts, or spread modifications among

disparate areas, minimizing conflicts.

In this paper, I analyze a red-black tree and a binomial heap, both self-

balancing data structures whose algorithms can be split into multiple transac-

tions. These changes compromise the data structures’ invariants and extend

their worst-case running time. But the performance gain by avoiding conflict

more than compensates for the loss in sequential efficiency.

2 Locking vs. Transactions

Both locking and transactions provide a way to safely access a data structure

from multiple threads, but choosing one over the other brings various costs

and benefits. First, they differ greatly in ease of use. Locking is notoriously

tricky to use well. Coarse-grained locking is conceptually simple, but introduces

a sequential bottleneck around the data structure in question. Fine-grained

locking permits multiple threads to access the data structure, but requires great

care in design to avoid introducing deadlocks or race conditions. Every change

to the data structure could invalidate the locking system, making the structure

hard to maintain.

In contrast, correctly using transactional memory is trivial from the pro-

grammer’s standpoint. Mutable objects in the shared data structure are in-

stantiated as transactional objects from a factory. Threads can read or write

these objects in any order they please, as long as they bracket their actions in

a transaction. When the transaction has finished, it either commits if there

has been no conflict, or aborts and retries automatically if another thread has

2

modified one of the objects involved. A separate module, the contention man-

ager, chooses which of two conflicting threads to abort. The programmer may

write the contention manager from scratch or choose from a variety of defaults

provided by DSTM.

When it comes to speed, transactions no longer have the advantage. When

threads rarely contend for the data structure, both locking and transactions

incur a small fixed cost. Threads asking for mutexes must generally make a

system call to acquire and release the lock. Threads committing transactions

must make a private copy of the object’s data and adjust the object’s internal

state.

When contention is high, locks generally outperform transactions. Threads

that fail to acquire a lock will queue up behind it, but don’t lose any progress. In

contrast, threads whose transactions are aborted must discard their copies of ev-

ery object they modified and re-execute the entire transaction. Also, depending

on the contention manager chosen, threads may end up cyclically preempting

each other as each transaction retries and reopens the same object for modifi-

cation. The trading back and forth of mutual preemptions magnifies the cost of

contention and presents a major hurdle to system performance.

Scherer et. al. [5] investigated the design of contention managers and the

problem of finding the most efficient algorithms for choosing which threads to

abort. But the cost of conflict remains high, even with well-designed contention

managers. This paper examines the issue from a different perspective: how to

avoid the conflicts in the first place.

3 Conflict Avoidance

3.1 Set Overlap

Each thread running a transaction in DSTM tracks the objects it has read and

modified in a read set and write set, respectively. Conflicts occur only when

one thread modifies an object that another thread has either read or modified.

3

When a thread attempts to commit a transaction, it searches through each of

its sets to detect modifications in its read set or reads in its write set. Data

structures that keep each thread’s sets from overlapping will necessarily reduce

conflict among threads.

Additionally, some data structures have objects, such as root nodes, that

must be read for nearly every transaction. Modifying such an object can in-

validate many transactions at once. Algorithmic changes that avoid writes to

such commonly-read nodes, or that find ways to avoid opening those nodes for

reading, should also improve performance. It is not simply set size that deter-

mines the amount of contention, but also the degree of mixing between reads

and writes.

3.2 Delayed Rebalancing

Many popular data structures are self-balanced to improve efficiency. As items

are added or deleted to trees, for example, one branch of a tree may grow much

longer than another, so searches may take much longer than logarithmic time.

The tree still performs correctly. But adding a rebalancing operation after each

insertion or deletion improves the tree’s efficiency.

The cost of maintaining balance is increased complexity for each operation,

which often requires a thread to access a large number of nodes. The added

complexity can constrain the number of concurrent threads that the data struc-

ture can support, creating a bottleneck. Delayed rebalancing often releases this

bottleneck and improves performance in concurrent situations.

In delayed rebalancing, operations such as inserts or deletes are divided into

two phases: the initial modification and the rebalance. Once a thread has com-

pleted the initial insertion or deletion, it can return and report success. Later,

it or another thread can restore the data structure to a balanced state. This

strategy compromises the worst case running time, since many modifications

could pile up and warp the tree structure. But, as discussed by Hanke [2], it

can make data structures more robust. Since changes often arrive in bursts,

4

delayed rebalancing allows a data structure to accommodate busy periods and

wait for slower periods to tidy up.

Delayed rebalancing should be even more important in a transactional mem-

ory environment. By splitting one complex operation into several simpler ones,

it reduces the number of objects accessed in each transaction. Threads will be

less likely to modify any particular node. However, the strategy is not with-

out costs—the transaction machinery must run several times for each logical

operation on the data structure. The following experiments were conducted to

analyze the costs and benefits to overall performance of delayed rebalancing.

4 Red-Black Trees

4.1 Data Structure Overview

Red-black trees are a classic benchmark in the study of concurrency. They

maintain roughly even depth among their branches, preventing the run-time

degradation that slows down unbalanced search trees. They are also tricky to

lock properly as operations run both up and down the tree, possibly entering a

deadlock. Even in a transactional environment, where deadlock is impossible,

they make for an interesting test case by allowing delayed rebalancing.

A red-black tree is a sorted binary tree with the following properties [1]:

1. Every node is colored red or black.

2. The root node is black.

3. The leaf nodes are black.

4. No red node has a red parent.

5. The number of black nodes encountered on every path from any internal

node to the leaf nodes is equal.

Insertions work by finding the leaf node at the proper place in the tree, and

replacing it with a new red node holding the new key and two more leaf nodes.

5

If the new node’s parent is also red, property 4 is violated and the tree must be

rebalanced. The rebalance may rotate the nodes and terminate, or it may recolor

nodes and propagate the property violation up to the node’s grandparent. In

this way, some rebalances modify a chain of nodes from the fringe all the way

up to the root. For a full description, see the appendix.

4.2 Modifications

Since the insertion operation is easily split into an initial insert and a subsequent

rebalance, red-black trees are well suited to the delayed rebalancing strategy. A

thread will first insert its new node at the fringe of the tree and mark it for later

rebalancing. In some other transaction, it will re-examine the node and fix up

the tree, restoring the red-black properties. The interval between transactions

temporarily compromises the balance of the tree, so that other inserts or lookups

may take longer than O(log(n)) time.

It can be difficult to track which nodes need rebalancing. As explored by

Larsen [4], relocating the nodes that have been marked for updates is non-trivial,

since nodes may have moved around the tree through other rotations. Also,

other rebalancing operations may have rotated or recolored the neighborhood

and rendered the requested update obsolete.

The simplest solution—lazy rebalancing—proved effective. Rather than

clean up after an insert, each thread cleans up imbalances it encounters on its

way to insert. As the thread traces down through the tree, should it encounter

a red parent-child pair, it puts aside its pending insert and performs the rebal-

ance. Then, in a new transaction, it starts again from the root and searches

down to the fringe. If it finds the correct leaf node without encountering any

imbalances, it performs the insert and finishes.

This algorithm will never clean up all the imbalances of the tree. It also

extends the running time of an insert from O(log(n)) to O(log2(n)), as a thread

may trace from root to leaf repeatedly. But it eliminates the need for extra

tracking mechanisms for marked nodes, which introduce new areas of contention

6

and add significant complexity to the rebalancing operation.

This relaxed red-black tree does not prevent starvation of a single thread—

for that matter, neither does the underlying library. However, each operation

the thread makes, whether a rebalancing or an insert, is making progress. If the

thread must stop to rebalance at a node, it has verified the correctness of the

nodes above, so the rebalance operation must move the tree closer to a balanced

state. This implies that rebalancing threads cooperate—the work done by one

thread helps all others towards their inserts. This cooperation makes the tree

obstruction-free.

4.3 Experimental Setup

The RedBlackTree benchmark inserts various integers into a standard red-

black tree, using one transaction for each insertion. The RelaxedRedBlack-

Tree inserts integers into a tree that delays rebalancing, spending several trans-

actions on each insertion. For comparison, the UnbalancedRedBlackTree

never performs a rebalancing step: it simply leaves the nodes in the order it in-

serted them. If rebalancing is unnecessary, it should outperform both red-black

tree variants.

The test ran on a four-processor machine using the default contention man-

ager, an exponential-backoff algorithm [5]. Each benchmark ran for 20 seconds

each, doing an insertion or a lookup for a random integer with equal probabil-

ity, to simulate the mix of reads and writes that a data structure might receive

(varying the probability of running an insert, anywhere between 20% and 100%,

had little effect on the relative performance of benchmarks, so only one set of

data is presented here). The benchmarks were tested with simultaneous access

by a number of threads ranging from 1 to 60.

The performance of each benchmark depends heavily on the distribution of

values to insert. If the inputs are randomized, rebalancing does not bring much

benefit—the tree stays balanced naturally. If they are inserted in order, an

unbalanced tree will degrade to the linear running time of a linked list. Various

7

low jitter medium jitter high jitter

Figure 1: Low, medium, and high jitter. A higher jitter value gives a close-to-
random distribution, while a low value yields in-order data.

degrees of randomness ought to bring about different results. On each loop,

each thread inserted the value k + r, where k was the current loop increment

and r a random value between 0 and some maximum, called the jitter value

(see figure 1). Low jitter leaves k essentially in order; high jitter outweighs k

and provides nearly random data. Each benchmark was tested with four jitter

values: 1 (in-order), 100, 10,000, and 1,000,000 (highly randomized).

The data presented represent the average over eight full test runs. Two

statistics were tracked: the percentage of transactions that committed, and the

rate of successful operations. Commit percentage directly measures the abil-

ity of the data structure to avoid the cost of the abort-retry sequence. But

the RelaxedRedBlackTree uses several transactions for each operation, so

simply counting the number of commits overstates how many operations it per-

forms. The number of operations per second records the overall throughput of

the data structure.

8

4.4 Results

As conjectured, smaller transactions do lead to higher commit percentages (see

figure 2). RedBlackTree, which needs up to O(log(n)) nodes per insert, loses

more and more transactions to conflicts as concurrency rises. Unbalanced-

RedBlackTree only modifies one node at a time, so it can maintain almost

perfect commit rates. The RelaxedRedBlackTree, by contrast, is very sen-

sitive to randomness. Each thread modifies at most seven nodes per transaction,

but the amount of randomness determines whether those nodes are also present

in other thread’s write sets. With more ordered input, every thread is concen-

trated in one small part of the tree, so each rebalance will likely conflict with the

others. Contention is much lower with randomized inputs that let each thread

operate in a different area of the tree.

If only commits mattered, then it would never be worthwhile to rebalance.

But commit percentage does not correlate with the length of transactions or the

number of transactions per operation. When overall throughput in considered,

the strengths of delayed rebalancing become apparent.

The contrast between RedBlackTree and UnbalancedRedBlackTree

highlights the tradeoffs of balancing. Each rebalance increases transaction size,

generating conflict and slowing down the insert, but also fends off the degrada-

tion of the tree into a linked list. As expected, UnbalancedRedBlackTree

outperforms the RedBlackTree with randomized input; with ordered input,

the outcomes are reversed.

RelaxedRedBlackTree combines the strengths of both. It keeps trans-

action sizes small when the inputs are random, since most writes occur towards

the tree’s fringe and are not dependent on higher and more popular nodes. It

also maintains a balanced tree when the inputs are ordered. The benchmark

performed decently under all jitter conditions, and excelled in the mixed case,

when the inputs were randomized but trended upwards.

However, there is significant overhead associated with delayed rebalancing.

The tree can become lopsided, lengthening the path some threads must traverse;

9

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

c
o

m
m

it
s

(%
)

number of threads

Red-Black Tree Commits: Jitter 1

RedBlackTree
RelaxedRedBlackTree

UnbalancedRedBlackTree
 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

c
o

m
m

it
s

(%
)

number of threads

Red-Black Tree Commits: Jitter 100

RedBlackTree
RelaxedRedBlackTree

UnbalancedRedBlackTree

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

c
o

m
m

it
s

(%
)

number of threads

Red-Black Tree Commits: Jitter 10,000

RedBlackTree
RelaxedRedBlackTree

UnbalancedRedBlackTree
 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

c
o

m
m

it
s

(%
)

number of threads

Red-Black Tree Commits: Jitter 1,000,000

RedBlackTree
RelaxedRedBlackTree

UnbalancedRedBlackTree

Figure 2: Percentages of red-black tree transactions that commit. For both
RedBlackTree and UnbalancedRedBlackTree, commit percentage stays
steady relative to the randomness of the input. But for RelaxedRedBlack-

Tree, increased randomness greatly improves its commit rate.

10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60

in
se

rt
s

p
e
r

se
c
o

n
d

number of threads

Red-Black Tree Inserts: Jitter 1

RedBlackTree
RelaxedRedBlackTree

UnbalancedRedBlackTree

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60

in
se

rt
s

p
e
r

se
c
o

n
d

number of threads

Red-Black Tree Inserts: Jitter 100

RedBlackTree
RelaxedRedBlackTree

UnbalancedRedBlackTree

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60

in
se

rt
s

p
e
r

se
c
o

n
d

number of threads

Red-Black Tree Inserts: Jitter 10,000

RedBlackTree
RelaxedRedBlackTree

UnbalancedRedBlackTree

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60

in
se

rt
s

p
e
r

se
c
o

n
d

number of threads

Red-Black Tree Inserts: Jitter 1,000,000

RedBlackTree
RelaxedRedBlackTree

UnbalancedRedBlackTree

Figure 3: Red-black tree throughput for increasingly random inputs. Relaxed-

RedBlackTree’s performance does not significantly degrade for ordered in-
put, and improves as randomness increases.

11

each time an imbalance is found, the thread must fix it and restart, redupli-

cating the traversal from the root down; and there is the cost of opening and

committing more transactions. These factors keep RelaxedRedBlackTree’s

throughput lower than RedBlackTree under ordered input, when rebalancing

is most crucial.

Even with extremely random data, the overhead of delayed rebalancing did

not slow the RelaxedRedBlackTree down relative to the Unbalanced-

RedBlackTree. A qualitative look at the state of the RelaxedRedBlack-

Tree may explain its surprisingly good performance. In the top layers of the

tree, which are often traversed, the tree looked like a standard red-black tree.

Towards the fringe, there were more red nodes than black nodes, as threads were

unlikely to follow and fix up any particular path. The rebalancing operations

were most effective in the area where the most threads depended on them—

the top of the tree. Thus the rebalancing operations helped a great number of

threads, maintaining a high level of throughput.

However random or ordered the data, if only one thread was at work, the

RedBlackTree always performed best. Even if the inputs practically balanced

themselves, the investment in perfect rebalancing paid off in the sequential case.

But as soon as contention was introduced, the situation changed. Tree balance

matters, but conflict avoidance matters more.

5 Binomial Heaps

5.1 Binomial Heap Overview

The binomial heap collects a series of keys and efficiently finds the object with

the lowest-valued key. Unlike simpler heaps, which provide only insert and

extract-minimum operations in logarithmic time, the binomial heap can also

merge with another heap in O(log(n)) time. Like the red-black tree, it is a self-

balancing data structure. Its algorithmic complexity makes it an interesting

test case for delayed rebalancing and other conflict avoidance strategies.

12

The heap consists of a linked list of heap-ordered binomial trees, where each

binomial tree of depth n consists of two trees of depth n − 1 linked together.

When the heap is in a balanced state, there is only one tree of each depth, or

degree, in the list. An item is inserted by creating a new tree of degree zero—

just a single node—and adding it to the front of the list. The heap then runs

the union operator on the list, uniting any pair of trees of degree k into a tree

of degree k + 1. When the union completes, there is again only one tree of each

degree. To extract a node, the heap is searched for the tree with the smallest

key at the root node; that tree is split into its component trees; and the sub-

trees are merged back into the main heap. For more details on the workings of

binomial trees, see the appendix.

5.2 Modifications

The binomial heap lends itself to delayed rebalancing. Both the insert and

extract-minimum operations can be halted at a middle point, leaving the heap

intact, but with potentially more than one tree of any particular degree. This

imbalance doesn’t affect the correctness of the tree or the running time of an

insertion. But extractions could suffer, as many more nodes must be searched

to find the tree with the lowest key. This cost, as well as the inherent cost of

running more transactions, may outweigh the benefits of splitting transactions

into smaller chunks. The BinomialHeap runs the standard algorithm, while

the RelaxedBinomialHeap uses delayed rebalancing.

The binomial heap also suffers from a transactional “hot spot.” The first tree

on the heap’s list is modified during every insert and almost every union. Unlike

the red-black tree, whose root is far more often read than written, the first node

of a binomial heap is in almost every thread’s write set. Even if a union doesn’t

modify the first node, the node has been read, so the transaction will have to

abort if the node changes. With any significant number of threads performance

quickly degrades. This single node amounts to a sequential bottleneck.

To ease the pressure on this hot spot, the linked list could be modified.

13

ArrayHeap splits the list into several linked lists in an array, one list for each

degree of tree up to some maximum. The insertion and extract-minimum op-

erations in the ArrayHeap work analogously to the standard binomial heap,

adding trees to the front of the appropriate list in the array. The union, however,

can act on each list separately. If the list’s length is greater than one, union

combines pairs of trees and adds them to the next higher list. This way, unions

can proceed independently in different parts of the array. The ArrayHeap

benchmark runs each operation, including a full union, in one transaction. A

delayed-rebalancing version, the RelaxedArrayHeap, has the same underly-

ing structure as the ArrayHeap, but does each insertion, extract, and step of

the union as a separate transaction.

5.3 Experimental Setup

All four versions of the binomial heap ran for twenty seconds at a time on a

four-processor machine. These runs were repeated for increasing numbers of

threads from 1 to 48. Each thread executed a loop that inserted a random item

with probability 3

4
and extracted the minimum item with probability 1

4
. Mixing

the two operations allowed the tree to grow with time but still accounted for

the performance problems with extract-minimum. These benchmarks, like the

red-black tree, also gathered statistics on both commit percentage and total rate

of operations. The data presented is the average of eight full tests.

5.4 Results

Relaxing the standard binomial heap had little effect on its commit percentage.

Although each transaction involved fewer steps, those steps still all accessed the

very front of the linked list, and so could easily conflict with each other. Both

heaps’ performance degraded quickly with more threads running.

The normal array heap suffered from the same problem, and its commit

percentage closely tracked the BinomialHeap and RelaxedBinomialHeap.

But the relaxed version maintained a much higher percentage of commits—since

14

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

co
m

m
its

 (
%

)

number of threads

Binomial Heaps: Commits

ArrayHeap
BinomialHeap

RelaxedArrayHeap
RelaxedBinomialHeap

Figure 4: Commit percentage for each heap. By reducing conflicts on the degree-
zero node, RelaxedArrayHeap maintains a significantly higher commit ratio
than any other heap variant.

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20 25 30 35 40 45 50

op
er

at
io

ns
 p

er
 s

ec
on

d

number of threads

Binomial Heaps: Operations per second

ArrayHeap
BinomialHeap

RelaxedArrayHeap
RelaxedBinomialHeap

Figure 5: Rate of operations on each binomial heap. RelaxedArrayHeap

maintains a performance advantage, but it wanes as the level of conflict rises.

15

each transaction looked at a single linked list of some degree, several unions could

proceed in parallel without conflicting.

Throughput resembled the commit performance. Even with the overhead

of beginning and committing a new transaction for every stage of a union, the

RelaxedArrayHeap maintained a steady lead over all other versions of the

binomial heap in operations per second. But as concurrency rose, contention on

the first list of trees was still too high to allow for much parallelism. Still, both

array heaps outperformed both standard heaps.

The RelaxedBinomialHeap had the worst overall rate of operations. De-

layed rebalancing added the overhead of many transactions, but didn’t prevent

contention on the first node. This shows that delayed rebalancing is no panacea,

and it is not simply transaction length that determines performance—the strat-

egy only works if it limits the number of objects involved in each transaction.

6 Conclusion

In addition to the questions of worst-case running time and parallelism, data

structures in a transactional environment have another dimension critical to

their efficiency—the degree of conflict they induce. Contention depends on

which objects are modified during each operation. Smaller sets of objects, and

those that tend to be dispersed throughout the structure, provide fewer chances

for conflict. The sacrifices in worst-case running time and balance inherent in

delayed rebalancing are well compensated by the efficiency gain through con-

flict avoidance. But applying delayed rebalancing indiscriminately may not give

much benefit: the greatest performance boosts come from keeping highly con-

tested nodes out of some transactions entirely.

Further research into contention management could lessen the importance of

conflict avoidance by minimizing the high cost of contention. In the meantime,

there is much room for improvement among the algorithms presented. The

relaxed red-black tree could be extended to include deletions, and the binomial

heap could be further fractured to reduce conflict on the first tree. Overall, it is

16

clear that minimizing the number of nodes involved in each transaction should

be the top priority for data structure design in a transactional system.

References

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

MIT Press and McGraw-Hill, first edition, 1990.

[2] Sabine Hanke. The performance of concurrent red-black tree algorithms.

Lecture Notes in Computer Science, 1668:286–??, 1999.

[3] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural sup-

port for lock-free data structures. In Proceedings of theTwentiethAnnual

International Symposium on Computer Architecture, 1993.

[4] Kim S. Larsen. AVL trees with relaxed balance. Journal of Computer and

System Sciences, 61(3):508–522, 2000.

[5] W. N. Scherer and M. L. Scott. Advanced contention management for dy-

namic software transactional memory. In Proceedings of Distributed Com-

puting, 2005.

17

APPENDIX

A Red-Black Tree Rebalancing

When a newly inserted red node n’s parent is also red, a red-black tree requires

rebalancing. The particular steps taken depend on the configuration of the tree.

1. If n’s uncle (the parent’s sibling) is also red, the nodes may be recolored.

n remains red; its parent and uncle are colored black; and the grand-

parent is colored red. This preserves the equal-depth property from the

grandparent—each path from it to the fringe encounters the same number

of black nodes. Now that the grandparent is red, it may also have a red

parent, and so the rebalancing algorithm must be called on it.

2. If n’s uncle is black, a rotation must occur. Assume the parent is the left

child of the grandparent. If n is the right child of the parent, it must be

rotated left.

3. Now n is aligned with the parent. Perform a right rotation on the grand-

parent. This brings the red parent to the top, with the red child and black

grandparent as its left and right children. Recolor the parent black and

the grandparent red. Now all the red-black properties are satisfied and

the rebalancing is finished.

Steps two and tree are reflected left-to-right if the parent is the right child

of the grandparent.

B Binomial Heaps

A binomial heap is a linked list of binomial trees, each tree in heap order (that

is, every node’s value is the minimum of all the values below it). The list is

sorted by the degree of each tree, and contains only one tree of each degree.

Every tree of degree n consists of two linked trees of degree n − 1, with one

18

x

xy

yc a

ca b b

Figure 6: Left and right rotations on a red-black tree. A, b, and c are unmodi-
fied, and the left-to-right order of every node is preserved.

tree as the first child of the other. Thus, there are
(

n

k

)

nodes at depth k. This

property gives binomial heaps their name.

To insert, a new tree of degree zero is created containing the key to be

inserted. The tree is added to the front of the list. Then a union operation is

performed.

To extract the minimum key, the list is searched for the tree with the lowest

key. That tree is removed, and the value at the root node is saved. Each child of

the root node is also a binomial tree in heap order: these child trees are merged

back into the heap’s list of trees, and then a union is performed. Finally, the

value at the root node is returned.

The union operation works as follows: the input is a list of trees where

there are potentially more than one tree of any degree. Each tree in the list is

considered sequentially. If the tree after it has the same degree, the two trees

are linked: the tree whose root node has the lowest key adds the other tree as

its first child. Now they form a new tree of the next higher degree, which is

reinserted in the list.

19

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� � �
� � �
� � �

� �
� �
� �

� � �
� � �
� � �

	 	
	 	
	 	

� � �
� � �
� � �

� � �
� � �
� � �

0 1 2 3

Figure 7: Binomial trees of degree 0, 1, 2, and 3. Each tree of degree k is
composed of two trees of degree k − 1, one shaded, one plain.

Binomial Heap:

Array Heap:

Figure 8: Differences in structure between ArrayHeap and BinomialHeap.
Triangles are binomial trees; squares are array pointers.

20

