
Declarative, composable views

Michael Greenberg
Brown University

mgreenbe@cs.brown.edu

Abstract
Widespread use of HTML [W3Cb], JavaScript, and the DOM
[W3Ca] has led to sub-optimal ‘best practices’. We apply the bidi-
rectional programming formalism of lenses [FGM+05] to define
user interfaces in JavaScript that are declarative, composable, clear,
and concise — in half the code. Additionally, we define two new
bidirectional combinator over lists,order andlist map.

Categories and Subject Descriptors D [3 Programming Lan-
guages]: 3 Language Constructs and Features; H [5 Information
Interfaces and Presentation]: 2 User Interfaces

1. Introduction
HTML [W3Cb], JavaScript, and the DOM [W3Ca] are the primary
platform for world-wide web applications. Increasingly, entire ap-
plication suites are developed for the so-called ‘Web 2.0’ with these
technologies. Working with old HTML standards and parsers, mul-
tiple implementations of JavaScript, and an often difficult to use or
non-standard DOM implemenation, many developers have resorted
to tools like the Google Web Toolkit [GWT], which compile from
Java into JavaScript. More often than not, though, programmers de-
velop ad hoc solutions to the problems posed by these three tools.

In this paper, we address one of the DOM’s problems. In par-
ticular, programmers use HTML and the DOM not only as the user
interface, but as the application data model. To determine a piece
of application-relevant data, programmers must query the DOM
for the value. This querying is often done by hand, or through a
thin wrapper that hides inconsistences in DOM implementations.
This leads to a loss of composability, since queries tend to rely on
unique identifiers and structural invariants. Since JavaScript pro-
grams can only rarely be composed from old programs, program-
mers are forced to write and rewrite subtle variations of the same
DOM interaction code.

We apply lenses, the bidirectional tree combinators of??, to
the DOM. Duringget, lenses produce a view given the data model;
during putback, lenses merge the HTML view back into the data
model. Programmers are able to use these combinators to declare
DOM views, e.g.,

div_tag({’class’: ’field’},
[’Value: ’],
input_tag({’size’: 2, ’type’: ’text’}))

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Honors thesis Brown University, Providence, RI.
Copyright c© 2007 Michael Greenberg

declares a view that puts the data model in aninput tag nested in-
side adiv tag, with the text ‘Value: ’ before it. Thislens, defined in
terms of the HTML it produces, can unpack the produced HTML
back into the data model automatically. A system ofbindings coor-
dinates this effort, taking care of callbacks.

This compositional style liberates programmers from having to
devise unique identifiers for nearly every relevant node in the DOM
— something that is particularly problematic when there are lists in
the data model. We believe that alleviating this problem is one of
the most winning advantages of the lens system, for, as Andrew
Appel says in [App92], “The beauty of FORTRAN ... is that it
relieves the programmer of the obligation to make up names for
intermediate results”.

2. HTML, JavaScript and the DOM
2.1 HTML and the DOM

HTML [W3Cb] is the presentation language used throughout the
world-wide web. In its first widespread incarnations — HTML 3, 4
— certain features were encouraged or, at the very least, common
that pose many problems today. Two simple examples are non-
XML markup (e.g.,<br>without a close tag) and in-line JavaScript
event handlers (e.g.,<img src="..." onclick="alert(’1337
h4X0r’)" />). Browsers deal with this in an effective way by
having two modes: standards mode and quirks mode. When non-
standard XML is detected, the HTML parser switches to a mode
able to handle the numerous oddities of real-world HTML.

Similar problems arise in JavaScript. Just like HTML, initial
JavaScript implementations were poorly specified and unprinci-
pled. Additionally, early versions of Internet Explorer and Netscape
offered slightly different APIs; worse still, often the APIs were the
same but the semantics were different!

The DOM API [W3Ca] emerged as a standard interface to
the presentation layer, and was adopted with varying degrees of
adherence by browser JavaScript implementations.

The API for the DOM is relatively low level and often ver-
bose. For example, to create a node, one might runvar node =
document.createElement(’img’). The programmer could call

node.setAttribute(’src’, ’http://...’)

to set the attributesrc of the img tag just created. Similarly, the
methodnode.appendChild(...) can add children to the node.
Frustratingly, there’s no way to create a node with a set of attributes
and a set of children in a single call, and thus there is no convenient
way (within the DOM API) to make a series of JavaScript calls nest
like the HTML they generate.

2.2 The state of the art

Many toolkits (e.g., [Moc], [jQu]) alleviate the DOM’s problems
by wrapping its API. This is often done with a function with a
cryptically short name, such as$. In this paper, this function will
be calledmake dom node, and it is called with a node name, an



<!DOCTYPE html PUBLIC
"-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html>
<head>
<title>Time Display</title>
<link rel="stylesheet" media="screen"

href="testbed.css"></link>
<script type="text/javascript">
function loader() {

// ...
}
</script>
</head>
<body onload="loader();">
<span id="time1"></span><br />
<span id="time2">
<span id="start2"></span>
<span id="stop2"></span>

</span>
</body>
</html>

Figure 1. The HTML base for a scripted page

optional JavaScript object mapping attribute names to values, and
an optional list of child nodes. For example, the following code:

make_dom_node(’div’, { ’class’: ’para’ },
[make_dom_node(’p’, {},

[’IN the beginning...’]),
make_dom_node(’img’, { ’src’:

’http://www.cistinechapel.com/...’ })])

creates the HTML fragment:

<div class="para">
<p>IN the beginning...</p>
<img src="http://www.cistinechapel.com/..." />

</div>

Thus wrappers make the creation of HTML fragments effective,
easy, and fairly similar to writing HTML itself.

Where wrappers provide less assistance is getting data in and
out of the DOM. While a consistently named facade is placed in
front of the DOM’sappendChild function and its relatives, this is
merely a whited sepulcher. Information is put into the DOM by ref-
erence to fixed IDs, with anywhere from one to hundreds of unique
identifiers in the document. These identifiers are often generated
mechanistically, but must still be referred to appropriately in order
to retrieve the data that lies in the DOM.

While the issue of unique names is problematic, there are further
issues with the DOM. With data coming from remote sources
(e.g., the server, other clients editing a shared document) and local
sources (the user), the most up-to-date model of the data is often
the DOM itself. That is to say, present JavaScript practice uses the
DOM as anad hoc model. The application datais accessible only
through the DOM, and so programmers are left struggling with a
presentation API in order to manipulate application data.

Take, for example, an editable time display; it should show input
boxes for hours, minutes, and seconds, for both a start time and a
stop time. To show generality, we’ll display (from a single model)
two time displays working side-by-side. The base HTML structure
which the JavaScript will hook into is in figure 1; the final rendering
can be seen in 2.

Figure 2. Two time displays, rendered side-by-side

// the global, top-level data model
var model = { ’start’: { h: 12, m: 29, s: 52 },

’stop’: { h: 1, m: 45, s: 14 } };

function time_id(id, type) {
return id + ’_’ + type;

}

function make_time_display(time, id, callback, text, sep) {
text = text || ’’; // no text, by default
sep = sep || ’:’; // default separator

function time_v(outer_id, id, v) {
var node = make_dom_node(’input’,

{ ’id’: outer_id + ’_’ + id,
’class’: ’time_’ + id, ’size’: 2,
’value’: v }, []);

// manage callbacks...
add_event_handler(node, ’change’, callback);
add_event_handler(node, ’keypress’, callback);

return node;
}

// * node creation
return make_dom_node(’span’, { ’id’: id },

[text,
time_v(id, ’hours’, time.h),
sep,
time_v(id, ’minutes’, time.m),
sep,
time_v(id, ’seconds’, time.s)]);

}

function extract_time_display(id) {
return {

’h’: get_dom_object(time_id(id, ’hours’)).value,
’m’: get_dom_object(time_id(id, ’minutes’)).value,
’s’: get_dom_object(time_id(id, ’seconds’)).value

};
}

Figure 3. A conventional JavaScript time display



function make_time1(model) {
var time1 = get_dom_object(’time1’);

// manually deal with DOM creation/deletion
while (time1.hasChildNodes()) {
time1.removeChild(time1.firstChild);

}

// * multiple calls to dom_update
time1.appendChild(make_time_display(

model.start, ’start’, dom_update(0, ’start’),
’Start time: ’));

time1.appendChild(make_time_display(
model.stop, ’stop’, dom_update(0, ’stop’),
’Stop time: ’));

}

function make_time2(model) {
// slightly more direct
var start2 = get_dom_object(’start2’);
start2.parentNode.replaceChild(make_time_display(

model.start, ’start2’,
dom_update(1, ’start2’, ’start’),
’Start time: ’),

start2);
var stop2 = get_dom_object(’stop2’);
stop2.parentNode.replaceChild(make_time_display(

model.stop, ’stop2’,
dom_update(1, ’stop2’, ’stop’),
’Stop time: ’),

stop2);
}

Figure 4. Time displays with start and stop times

The JavaScript objectmodel is the global data model — a
JavaScript object with propertiesstart andstop, each of which
refers to a ‘time’ — a JavaScript object with propertiesh, m, ands.

The functionmake time display in figure 3 takes in a time
(represented as the aforementioned JavaScript object, a sub-object
of model), an id for future reference to the time display, a callback
to call when the user edits the time, a labeltext (the empty string
by default), and a separatorsep (a colon by default). The functions
make dom node andadd event handler are common wrappers
around the DOM API to simplify object creation. As an example,
the line marked* in figure 3 creates aspan element with anid
attribute equal to the value of theid variable; its children are a a
PCDATA node with the value oftext and thesep-separated input
boxes formed by the inner functiontime v. add event handler
is used to hide inconsistences in the callback registration and event
models between browsers.

The functionextract time display looks up the time dis-
play rendered with a given id and extracts the value as a JavaScript
object with propertiesh, m, ands.

2.3 Problems

There are several problems with the above. First and foremost, the
structure of the view is duplicated in code — first inmake time display,
where the JavaScript object provided intime is deconstructed
into the threeinput tag children of thespan tag; and again in
extract time display, where theinput tags are looked up by
generated id and the values extracted.

A second problem lies in the callbacks. Either the same call-
back for everyinput tag must be used — the option taken in

var model_updaters = [];

var dom_update = function (idx, id, which) {
which = which || id; // update start or stop?

var callback = function () {
var v = clone(model);
v[which] = extract_time_display(id); // *

if (!equal(model, v)) {
model = v;

for (var i = 0;i < model_updaters.length;i++) {
if (idx != i) { model_updaters[i](model); }

}
}

};

return function () {
window.setTimeout(callback, 5);
return true;

};
}

make_time1(model);
model_updaters.push(make_time1);

make_time2(model);
model_updaters.push(make_time2);

Figure 5. DOM update callbacks in conventional JavaScript

make time display in figure 3 — or a callback for each must
be written. In either case, logic for determining where the event
occurred and which part of the model must be updated.

The role of idx is subtle. When the first view, created by
make time1, is updated, the model will be updated bydom update.
This new model should be redisplayed inmake time2, so that it
stays up to date. It’s important thatmake time1 is not updated,
however, since it would do so by recreating the DOM nodes —
possibly losing user edit events and certainly losing text-caret fo-
cus.1 Thus eachdom update function has anidx, which represents
the index of that time display inmodel updaters, an array of call-
backs that redisplay the given time display. In order to reduce code
duplication, a singledom update function is written that is pa-
rameterized over a single sub-time display, passed in the paramter
which, the value of which can be either’start’ or ’stop’. Note
that in the definition ofmake time1 in 4, there are two calls to
dom update, one for each time display.

Within the callbacks, a third problem is the high level of re-
dundancy not only the macro level —make time display and
extract time display share logic — but on the micro level, as
well: the unique identifiersstart2 andstop2 are repeated four
times! When JavaScript’s lax static error checking is taken into ac-
count, a single typo can cause aggravating, hard-to-find bugs.2

1 While it is possible to implement an update mechanism that
doesn’t create or destroy DOM nodes, this requires yet another
function beyond make time display and extract time display:
update time display. Since selective updates assuage the need for non-
destructive updates and are easy to implement, that route was taken.
2 Using technology like [Fir] makes this process easier, but not painless.



Note also that almost every data point has unique identifiers; the
alternative to this is bug-prone by-hand iteration of the DOM.3

Another downside of unique identifiers is that they must be
maintained in order to compose constructors (make time display)
and accessors (extract time display). When used on a large
scale, machine generated identifiers become an attractive alterna-
tive, however hard to maintain.

3. Lenses
Lenses are an abstraction for bidirectional mappings. When a pro-
grammer defines a lens, a mapping is given from JavaScript values
to DOM nodes and from those DOM nodes back into JavaScript
values. Thus a lens effectively defines bothmake time display
andextract time display at once.

The advantages of lenses solve all of the problems with tradi-
tional JavaScript programming except for callback maintenance:
they eliminate the duplication inherent in constructors and acces-
sors (e.g.,make time display andextract time display), re-
move the need for extraction code that accesses unique identifiers,
and in fact make unique identifiers unnecessary except for as a way
of binding to specific locations in the document.

In addition to solving all but one of the problems in the conven-
tional JavaScript/DOM model, lenses are extremely easy to com-
pose. Their ease of composition makes lenses useable as a widget
set without the architecture of systems like [jQu] or [Ope].

3.1 Formalism

The presentation of the theory of lenses follows that of [FGM+05],
which presents the theory in more detail, as well as more lenses.

The expressiona ⊑ b is true iff a = b or a = Ω, where
Ω is a special value marking ’undefined’. The meta-variablesA
andC represent arbitrary sets;a andc are elements in those sets,
respectively.

A lens l is the tuple〈lր, lց〉, which consists of two operators,
readget andputback. The operatorl ր (get) is a partial function
from a setC to a setA; the operatorl ց (putback) is a partial
function from A × C to C. While there need not be such an
assocation, the setC is the ‘concrete’ or ‘source’ set, whileA is
the ‘abstract’ or ‘target’ set. A lens iswell-behaved if it upholds
the following laws:

lց ((lր c), c) ⊑ c ∀ c ∈ C (GETPUT)
lր (lց (a, c)) ⊑ a ∀ (a, c) ∈ A × C (PUTGET)

The GETPUT law requires that aputback immediately after aget
produces the original (concrete) value. This is a weak, unidirec-
tional guarantee of invertability.

ThePUTGETlaw requires that aget immediately after a putback
produces the original (abstract) value. This is the other unidirec-
tional guarantee of invertability.

In general, lenses work over a set oftrees T , which is taken to
mean unordered trees with named edges, where names come from
some setN . Written in horizontal notation,

t = {w 7→ {} , b 7→ {c 7→ {}}}

is a double-edged tree with the edge labelledw pointing to the
empty tree (thevalue w), and the edge labelledb pointing to
the valuec. The set of labels oft is dom(t) = {w, b}. The
expressiont(w) is equivalent to{}, while t(b) = {c 7→ {}}. For
ann 6∈ dom(t), let t(n) = Ω.

3 Toolkits like [jQu] abstract over this a little, but it must still be written by
hand and is often fragile — a node intervening between a parent node and
children being searched for can disrupt the results.

l = hoist a; hoist b

t = {a 7→ {b 7→ {c 7→ {}}}}

lր t = {c 7→ {}}

lց ({d 7→ {}} , t) = hoist aց (hoist bց ({d 7→ {}} , t(a)), t)

= hoist aց ({b 7→ {d 7→ {}}} , t)

= {a 7→ {b 7→ {d 7→ {}}}}

Figure 6. hoist a; hoist b

3.2 Lenses

A few relevant lenses are presented. The proofs of well-behavedness
and other properties are available in [FGM+05].

3.2.1 Basic lenses

First, theid lens takes trees inC to trees inA.

idր c = c

idց (a, c) = a

Note thatGETPUTandPUTGEThold trivially. Note additionally that
the second part of the tuple is ignored duringputback; such lenses
are calledoblivious.

A more useful lens isconst:

(const v d)ր c = v

(const v d)ց (a, c) =

(

c c 6= Ω

d c = Ω

The const lens is not oblivious, since it relies on the value ofc
duringputback.

The last of the basic lenses is a simple tree lens,hoist:

(hoist n)ր c = c(n) if dom(c) = {n}

(hoist n)ց (a, c) = {n 7→ a}

During get, hoist “hoists” its argument out of a single-valued
tree with a given label; duringputback, the given abstract argu-
ment is “plunged” back under the given label. It is important to
note thathoist is defined only for certain trees, e.g. both{} and
{n 7→ {q 7→ {}} , v 7→ {}} are invalid arguments tohoist n. In the
formalism, this simply means that those trees aren’t in the domain
of hoist n (in fact, they’re not in the domain of anyhoist).

Thehoist lens has a dual,plunge:

(plunge n)ր c = {n 7→ c}

(plunge n)ց (a, c) = t if a = {n 7→ t}

3.2.2 Combining forms

Given this basic set of lenses, some combining forms can be in-
troduced. First, there is a general sequencing operator, called; in
[FGM+05]. It is pronounced ‘seq’. Here we use metavariablesl
andk to represent arbitrary lenses.

(l; k)ր c = kր (lր c)

(l; k)ց (a, c) = lց (kց (a, lր c), c)

In theget direction,; is intuitive, and behaves like◦, the standard
function composition operator. Duringputback, however,; behaves
differently. In order to get the domains right,k must be given the
result oflր c as its concrete argument — duringget, kր received
lր c, and so it should receive that onputback as well.l, however,
received justc during get, and so should use that as its concrete
argument.



Consider figure 6 as an example. Note how an edit to the abstract
view, changing the valuec to the valued was propagated back
through the lenses to be a deep edit to the original treet.

The simplest conditional lens,fork, uses predicates over edge
names to split objects between two different lenses. First we define
the operators|p and\p on objects:o|p ≡ {n 7→ o(n) | p(n)}. That
is, o|p is the objecto restricted to edges satisfying the predicatep.
We then define its dual,o\p = o|¬p. We say thato1 · o2 is the
tree such that∀ t1 ∈ dom(o1).(o1 · o2)(t1) = o1(t1) and∀ t2 ∈
dom(o2).(o1 · o2)(t2) = o2(t2) anddom(o1) ∩ dom(o2) =; that
is, it o1 · o2 the disjoint tree-intersection ofo1 ando2.

(fork p lp lf )ր c = (lpր c|p) · (lf ր c\p)

(fork p lp lf )ց (a, c) = (lpց (a|p, c|p)) ·

(lf ց (a\p, c\p))

The first lens,lp, is the ‘pass’ lens, andlf is the ‘fail’ lens. They are
so-named becauselp is given the object with properties that ‘pass’
the predicatep, andlf is given the object with properties that ‘fail’
p.

Using fork, we can definefilter andfocus (see section 3.2.3).
Thefilter lens filters out edges that don’t match a predicate:

filter p d ≡ fork p id (const {} d)

The passing properties go through thelp = id lens, so the object of
passing properties is left alone. Failing properties are sent through
lf = const {} d. When the results of each lens’get are merged,
the object of passing properties is merged with the empty object
produced bylf . On putback, constwill either restore the missing
properties or put in the given default value.

There is a more general conditional lens,xfork, that uses two
predicates:pc and pa. Its get direction is identical tofork with
p = pc, but duringputback the abstract argumenta ∈ A is split
usingpa:

(xfork pc pa lp lf )ց (a, c) = (lpց (a|pa
, c|pc

))·(lf ց (a\pa
, c\pc

))

The predicatepa allows for more refined handling duringputback;
for an example of its use, seeadd in section 3.2.3.

In addition to the basic sequencing combinator; and the con-
ditional combinatorsfork andxfork, there are tree-structural com-
bining forms. The most general tree-structural combining form is
wmap:

(wmap m)ր c = {n 7→ m(n)ր c(n)|n ∈ dom(c)}

(wmap m)ց (a, c) =



n 7→ m(n)ց (a(n), c(n)) |
n ∈ dom(a)

ff

Here m is a partial function fromN to lenses; it is total on
dom(c)∪dom(a). Remember thatc(n) = Ω, for n 6∈ dom(c). So
wmap applies a (possibly) different lens to each child of a tree on
both get andputback; during the latter, it will new children in the
abstract argument will beputback with Ω as the abstract argument.

3.2.3 Focus and add

The reasonputback takes a second argument,c ∈ C, is so thatget
can project away information. One way to do this is with the lens
focus. Usingfilter and lettingλe.e = n define the predicate that
matches onlyn, we definefocus:

focus n d ≡ filter (λe.e = n) d; hoist n

All edges butn arefilter-ed out, and thenn is hoist-ed up.
Just asfocus restricts the information presented byget, add

adds constant, immutable information that is projected away on
putback. It is defined using the more complicated conditional oper-
atorxfork(whereλe. ⊥ is the predicate that is always false):

add n t ≡ xfork (λe. ⊥) (λe.e = n) (const t {} ; plunge n) id

The add lens is complicated enough that it should be stepped
through carefully.

t = {baz 7→ {quux 7→ {}}}

l = add foo {bar 7→ {}}

= xfork (λe. ⊥) (λe.e = foo)

(const {bar 7→ {}} {} ; plunge foo) id

lր t = ((const {bar 7→ {}} {} ; plunge foo)ր t) · (idր t)

= {foo 7→ {bar 7→ {}}} · t

t
′ = {foo 7→ {bar 7→ {}} , baz 7→ {quux 7→ {}}}

On putback,pa = λe.e = n does its work.

lց (t′, t) = (idց (t′\pa
, t\pc

)) ·

((const {bar 7→ {}} {} ; plunge foo)ց

(t′|pa
, t|pc

))

= (idց (t, t)) ·

((const {bar 7→ {}} {} ; plunge foo)ց

({foo 7→ {bar 7→ {}}} , {}))

= t · {}

= t

Note thatlp = const {bar 7→ {}} {} ; plunge foo takes what
was added and puts it back to the empty tree. It may help to recall
the definition of; from section 3.2.1.

3.2.4 Lists and ordered data

Unordered edge-labelled trees inT can distinguish between chil-
dren, but there is no way to establish an order between children.
In [FGM+05], ordered data are modelled with linked lists, trees
with childrenhd andtl, corresponding to the value of an entry in
the list and a pointer to the next node in the list. They are able to
to get quite far with this model, defining filters and iterators over
lists. Their iterator over lists,list map, is fairly weak: adding and
removing items to and from the list is not reliable, and can result
in mismatches between entries in the abstract list and the concrete
list.

In the sequel, we will present a formalism for array-style lists,
addressed by index, and alist map that supports edits. For discus-
sion of how this work differs from [BFPS07], see 5.

Let a list be defined as the languageL = T ∗, strings of zero
or more trees. We writeLA for lists of trees in the setA. Thus we
haveǫ as the empty list and· as the list concatenation operator. We
inductively define the functionlength : L → Z.

length(ǫ) = 0

length((t ∈ T ) · (l ∈ L)) = 1 + length(l)

We use sum notation to represent concatenation over a series; that
is,

Pn

i=0
ti = t0 · t1 · ... · tn. We define equality-moduloΩ point-

wise and write it, as usual, with the⊑ operator.
Before addressinglist map, we’ll define two lenses that find

much use in the DOM:layout, and its workhorse,order. Each
HTML element has an unordered set of attributes and an ordered
set of children. Suppose we want to create the following HTML
fragment:

<span class="time">
Hours: <input class="time hours"

type="text" size="2" />
</span>

Thespan has two children: a text node, with the valueHours: ,
and aninputtag, with a set of attributes. If we define this as a lens,
we’ll want to send some input value (say, thehours attribute of



some object passed in as the concrete tree duringget) to thevalue
attribute of theinput tag. Leaving explanation of the DOM lenses
themselves to section 4, the list-to-object transformation works like
so:

l = layout(’text’, ’Hours: ’,
’hours’,

input_tag({’class’: ’time hours’,
’type’: ’text’,
’size’: 2 })).

seq(span_tag({ ’class’: ’time’ }))

During get, this lens will take an objecto with a single property
hours and map it to a list

[’Hours: ’, input tag(...).get(o)]

which is in turn passed to thespan tag lens, which will use the pro-
vided list as its children. For example, callingl.get(’hours’: 12)
will create the HTML fragment above with thevalue attribute of
theinput tag set to12.

The layout lens works as a combination ofwmap, add, and
order. The arguments tolayout come in name/mapping pairs,
where the mapping can be either a lens or a constant (a number
or some text to be transformed into a DOM node, a pre-made
DOM node).layout is defined in three stages: firstwmap with the
name/lens mappings, and then a seriesadds with the name/constant
mappings. Finally,layout delegates toorder. Theorderlens takes
a list of edge names, and then maps objects with those names to a
list, with the values in order according to the list of names.

(order

k
X

i=0

ni)ր c =

k
X

i=0

o(ni)

(order

k
X

i=0

ni)ց (

k
X

i=0

ai, c) = {ni 7→ ai}

Theorem 1. For all c ∈ C such that dom(c) = {ni|0 ≤ i < k}
and a ∈ A such that length(a) = k, order

Pk

i=0
ni upholds

GETPUTand PUTGET.

Proof. By case analysis.

3.2.5 The list map lens

Let Σ = {ai(v), di} be the set of edit operations.ai(v) ‘adds’ the
valuev to a list at indexi; di ‘deletes’ the value from indexi. This
is expressed formally in the partial functionapply : Σ × L ⇀ L.

apply(ai(v),

n
X

i=0

ti) = t0 · t1 · ... · ti · v · ti+1 · ... · tn

for i ≤ n + 1

apply(di,

n
X

i=0

ti) = t0 · t1 · ... · ti−1 · ti+1 · ... · tn

for i ≤ n

Thepartial functionapply applies the edit to the list. To see why
mustapply be partial, consider the value ofapply(d0, ǫ) — there’s
nothing to delete! An editσ is valid for a given listl iff (σ, l) ∈
dom(apply). Out of convenience, the validity predicatevalid will
be defined not over individual edits, but over the languageE = Σ∗,
strings of zero or more edits; it maps ontoB, the boolean set
containing⊤ and⊥. Thus we havevalid : E × L → B:

valid(ǫ, l) = ⊤

valid((σ ∈ Σ) · (e ∈ E), l) =
(σ, l) ∈ dom(apply)∧
valid(e, apply(σ, l))

We define thereplay of a string of edits as the partial function
replay : E × L ⇀ L.

replay(ǫ, l) = l

replay((σ ∈ Σ) · (e ∈ E), l) = replay(e, apply(σ, l))

Lemma 1. dom(replay) = {(e, l) ∈ E × L| valid(e, l)}

Proof. By induction one.

Lemma 2. Given lists l1 and l2 ∈ L such that length(l1) =
length(l2), for all edits e ∈ E such that valid(e, l1), we have:

1. valid(e, l2)
2. length(replay(e, l1)) = length(replay(e, l2))

Proof. By induction on the number of edits ine.

We writereplayk(e, l) to meanreplay(e, l) where every edit of
the formai(v)is replaced withai(kր v).

Lemma 3. If, for l1, l2 ∈ L and e ∈ E, valid(e, l1), then for all
lenses k,

1. length(replay(e, l)) = length(replayk(e, l))
2. Letting

Pn

i=0
ai = replayk(e, l2) and

Pn

i=0
ci = replay(e, l1),

then for each i either ai = kgetv and ci = v for some ai′(v)
or ai = l2i′ and ci = l1i′ .

Proof. By induction on the number of edits ine, with help from
lemma 2.

We are now prepared to introduce the E-lenslist map, which
follows a variation ofGETPUT and PUTGET. An E-lens l is the
tuple 〈lր: LC → LA, lցe: LA × LC → LC〉, read ‘get’ and
‘putback with edits’. Theputback operator is parameterized over a
string of editse ∈ E. E-lenses could just as easily be formulated,
then, as the triple〈lր: LC → LSA, lց: E × LA × LC → LC , e ∈ E〉.

The only example we have of an E-lens is the list-iteration lens
list map. In theget direction, it applies (‘maps’) a lensk over each
tree in the list:

(list mape k)ր
n

X

i=0

ci =

n
X

i=0

kր ci

Theputback of list map is more complicated — it uses the string
of editse to alter both the abstract and concrete lists.

(list mape k)ց (a =
Pn

i=0
ai, c =

Pn

i=0
ci) =

let
Pn′

i=0
a′

i = replayk(e, a)
Pn′

i=0
c′i = replay(e, c)

in

Pn′

i=0
kց (a′

i, c
′

i)

We then prove variants ofGETPUTandPUTGET for list map.

Theorem 2. For the lens l = listmapek, all c ∈ C, a ∈ A, and
e ∈ E such that length(a) = length(c) and valid(e, a):

lցe ((lր c), c) ⊑ replay(e, c) (GETPUTe)
lր (lցe (a, c)) ⊑ replayk(e, a) (PUTGETe)

Proof. (GETPUTe) In the simplest case, we note thatl ր c = ǫ,
that the only list with length equal toǫ is ǫ, and thatlց (ǫ, ǫ) = ǫ.

First, we havelր
Pn

i=0
ci =

Pn

i=0
kր ci. We wish to show

that lցe (
Pn

i=0
kր ci, c) ⊑ replay(e, c). Running theputback,

we end up with

(list mape k)ց (a =
Pn

i=0
kր ci, c =

Pn

i=0
ci) =

let
Pn′

i=0
a′

i = replayk(e, kր ci)
Pn′

i=0
c′i = replay(e, c)

in

Pn′

i=0
kց (a′

i, c
′

i)



First, we have that the two lists withreplay-ed edits are of the
same length by lemma 3. To restate our earlier goal, we must show
that

Pn′

i=0
kց (a′

i, c
′

i) ⊑ replay(e, c), or, more concisely, that
Pn′

i=0
kց (a′

i, c
′

i) ⊑
Pn′

i=0
c′i.

Also by lemma 3, for eachi, a′

i is either the result of an edit
ai′(v) (for somei′, sincea′

i may have been ‘pushed up’ by edits
earlier in the list) or corresponds tok ր ci′′ . In the first case, we
havec′i = v for that edit, and soa′

i = kր c′i; in the latter, we have
thatc′i = ci′′ and soa′

i = kր c′i.
Thus, in both cases, we wish to prove thatkց (kր c′i, c

′

i) ⊑
c′i for eachi. Sincek upholdsGETPUTand⊑ is point-wise onL, l
upholdsGETPUTe. �

(PUTGETe) The ǫcase is as inGETPUTe: l ցe (ǫ, ǫ) = ǫ,
lր ǫ = ǫ, andǫ ⊑ ǫ.

Givenlցe (a, c) =
Pn′

i=0
kց (a′

i, c
′

i), we wish to prove that:

lր
n′

X

i=0

kց (a′

i, c
′

i) ⊑ replayk(e, a) = a
′

i

n′

X

i=0

kր (kց (a′

i, c
′

i) ⊑ a
′

i

Given thatk upholdsPUTGET and that⊑ is point-wise onL, l
upholdsPUTGETe. �

QED.

There are two important limitations of this formalization and
proof. First, where do the editse ofցe come from? Second, how
is nesting oflist map lenses supported? Given a lens working on a
list of lists of numbers, the lenslist map (list map (focus foo))
won’t be able to track edits in the innerlist map.

The solution to the second problem is a technical one, of which
only a sketch is given, since it doesn’t affect the proof. All lenses
must be converted into E-lenses. For some lenses, likehoist and
focus, this requires no changes — edits make no sense in their non-
list context. Combinators like; and wmap, however, must keep
track of edits to be passed down to their sublenses. The sequencing
lens,;, keeps track of edits for each of its child lenses;wmap must
keep track of edits for each property it maps.4

The solution to the first problem is the JavaScript/DOM event
handling system of binding system — see section 4.1.

As an example of the weakness of this system, note that the edits
ai(v) anddi are insufficient to implement a swap edit — during
putback, the value fromc would be lost, replaced with thev of
ai(v). Extending the system with a swap event is not complicated
— it only requires a slight modification to lemma [?] — but it
shows the awkwardness of the system.

4. DOM Lenses
The system of lenses described in section 3 can be applied to
JavaScript-enabled web pages to alleviate this problem. We take
JavaScript values asC and DOM nodes asA. The get operator
‘projects’ or ‘displays’ a value in the DOM; theputback operators
‘merges’ changes in the DOM back into a JavaScript model.

The most general DOM lens is thetag lens. Given a tag name,
a placement for values (e.g. as a child node, as an attribute), and a
set of default attributes and child nodes, it maps values to and from

4 As an optimization, combinators which have nolist map children don’t
keep track of edits at all.

DOM objects. This is best shown by example:

l1 ≡ tag ’input’ ’value’

{ ’id’: ’hours’ } []

html x ≡ <input id="hours" value="x" />

l1ր 12 = html 12

l1ց (html 15, 12) = 15

The first argument totag in l1 says that aninput tag should be
created; the second says that the concrete-tree value should be put
in thevalue attribute during get and that the salient data will reside
there on putback. Next, a JavaScript object is given indicating that
the attributeid should be set tohours. The final argument is a list
of children for the node; children ofinput tags do nothing, so the
empty list is given. As an alternative example:

l2 ≡ l1; tag ’span’ ’child’

{} [’Hours: ’]

html x ≡ <span>Value:

<input id="hours" value="x" />

</span>

l2ր 12 = html 12

l2ց (html 15, 12) = 15

The second lens ofl2 is a span tag with no attributes and a
single child, a text node reading “Hours: ”. The second argument,
’child’, instructstag to send the value on get to the first child
after the default children; on putback, the last child of the node will
be extracted. The lensl1 is sequenced before thespan lens ofl2,
so theinput tag created byl1 is put as the last (second) child of
thespan lens. To wit:

l2ր 12 = (tag ’input’ ’value’ { ’id’: ’hours’ } [];

tag ’span’ ’child’ {} [’Hours: ’)ր 12

g1 = (tag ’input’ ’value’ { ’id’: ’hours’ } [])ր 12

= <input id="hours" value="12" />

l2ր 12 = (tag ’span’ ’child’ {} [’Hours: ’])ր g1

The formulation ofl2 is somewhat counterintuitive: the child of the
span tag must be given before its parent! To alleviate this problem,
a special form of ‘tree sequencing’ is introduced, along with per-
tag lenses which use intelligent default placements. We can then
rewritel2 as:5

span tag {}[’Hours: ’] (input tag {’id’: ’hours’})

Thespan tag automatically gets and puts its values to and from its
last child; theinput tag gets and puts its values to and from the
value attribute.

To show how lenses express more complex interfaces, the direct
HTML-generating code of figure 3 will be re-written with lenses.

4.1 list map in action

The implementation oflist map makes it easy to apply edits.
list map takes a lens contructor function, which it calls with three
functions:add before , add after , anddelete . During get,
for each item in the list, the lens constructor is called, parameterized
with functions specialized to its index. These can be embedded in,
say, theonclick callback of a link to cause a given item to be
deleted, or to add list entries before or after a given item. This is
perhaps best explained in an example.

5 To simplify the argument-list parser of thetag lenses, the real code
would have to beplunge v ; span tag ({}, ’text’, ’Hours: ’,
’v’, input tag {’id’: ’hours’})



// the global, top-level data model
var model = { ’start’: { h: 12, m: 29, s: 52 },

’stop’: { h: 1, m: 45, s: 14 } };

function time_display(id, text, sep) {
text = text || ’’; // no text, by default
sep = sep || ’:’; // default separator

// an abstraction for an input field
function time_v(id) {
return input_tag({ ’class’: ’time ’ + id,

’size’: 2 });
}

// wrap the list as the child of a span element with
// id="$id" while laying out the arguments in this
// order, mapping h, m, and s to time_v inputs with
// appropriate ids
return span_tag({ ’id’: id },

’text’, text,
’h’, time_v(’hours’),
’sep1’, sep,
’m’, time_v(’minutes’),
’sep2’, sep,
’s’, time_v(’seconds’));

}

Figure 7. A JavaScript time display with lenses

We take our model to be a list of objects with propertiesheader
andtxt — a paragraph heading and some text. For example,

[{ header: "Intro",
txt: "Hello, this is some text!" },

{ header: "Conclusion",
txt: "My, that was enlightening." }]

The code in figure 8 usesprune, the dual offocus, to strip away
the paragraph text intxt and then put the header in aninput tag.
It then adds references to links that, when clicked, either add or
delete the entry. Thedef parameter is passed as the value to put in
C — that is, thev of ai(v).

The code forfull edit in figure 9 displays the paragraph to
edit in atextarea and the header above it in aninput tag.

Since edits are managed by the three functions passed in to the
lens constructor, nesting oflist maps is possible.

4.2 Binding and bind lens

Building an HTML representation of a model is only half of the
work; the functionbind lens coordinates with the DOM so that
the HTML representation presented (the view) and the JavaScript
model are ‘in sync’.

In the JavaScript example of figure 3, thechange andkeypress
events are singled out as events that require the model and the
view to be resynchronized. Additionally, themake time1and
make time2functions take a model and update the DOM to reflect
it.

These two synchronization actions — updating the DOM from
a new model and updating a model with information from the
DOM when an event indicates that an edit has occured — mirror
the two operations of the DOM lenses:get andputback. Ad-hoc,
hand-optimized code is often used instead of the relatively clear
system of figures 4 and 5 in order to mutate rather than replace the
model. In general, however, following [FGM+05] and [FGK+06],

function edit_header(def) {
return function (add_bef, add_aft, del) {
var add_bef_btn =
make_dom_node(’a’, { href: ’#’ }, [’^’]);

var add_aft_btn =
make_dom_node(’a’, { href: ’#’ }, [’v’]);

var del_btn =
make_dom_node(’a’, { href: ’#’}, [’x’]);

add_event_handler(add_bef_btn, ’click’,
function (e) {
add_bef(def);
// false -> don’t change browser URL
return false;

});

add_event_handler(add_aft_btn, ’click’,
function (e) {
add_aft(def);
return false;

});

add_event_handler(del_btn, ’click’,
function (e) {
del();
return false;

});

return prune(’txt’).li_tag({},
’header’, input_tag({}),
’bef’, add_bef_btn,
’sp1’, ’ ’,
’aft’, add_aft_btn,
’sp2’, ’ ’,
’del’, del_btn);

};
}

toc_lens =
ol_tag({ id: ’toc’ },

list_map(edit_header(
{ header: ’New Section’,
txt: [’You forgot to enter text!’] })));

Figure 8. A list map lens — table of contents

synchronization engines work in terms of the lens operations: get
from the model, putback from the DOM.

The basicbind lens accepts a DOM-update callback and re-
turns a model-update callback. The latter is called with a new model
when the DOM has changed, and the former is called with a new
model when an external agent has modified the model, e.g. the re-
mote value on the server has been updated.

Thus we write the actual binding as in figure 11, with mod-
erate similarity to figure 5. There are three notable differences.
First, there is nothing specific to the time display program in the
lens-based definition ofmodel update; the line marked with*
in the JavaScript-based definition highlights that requirement. Sec-
ond, thedom update function is passed in to the binding mecha-
nism, rather than being part of the DOM creation itself, as in fig-
ure 4. Third, and perhaps most importantly, unique identifiers are
only given tobind lens as a hook for DOM node insertion. The
JavaScript definitions ofdom update andmodel update required



function full_edit(def) {
return function (add_bef, add_aft, del) {
var add_bef_btn =
make_dom_node(’a’, { href: ’#’ }, [’^’]);

var add_aft_btn =
make_dom_node(’a’, { href: ’#’ }, [’v’]);

var del_btn =
make_dom_node(’a’, { href: ’#’}, [’x’]);

add_event_handler(add_bef_btn, ’click’,
function (e) {
add_bef(def);
return false;

});

add_event_handler(add_aft_btn, ’click’,
function (e) {
add_aft(def);
return false;

});

add_event_handler(del_btn, ’click’,
function (e) {
del();
return false;

});

return div_tag({},
’header’, input_tag({}),
’bef’, add_bef_btn,
’sp1’, ’ ’,
’aft’, add_aft_btn,
’sp2’, ’ ’,
’del’, del_btn,
’txt’, div_tag({’class’:’para’},

textarea_tag({rows: 5,
cols: 80})),

’br’, make_dom_node(’br’, {}, []));
};

}

content_lens =
div_tag({ id: ’content’ },

list_map(full_edit(
{ header: ’New Section’,
txt: [’’] })));

Figure 9. A list map lens — document editor

var lens1 = span_tag({ ’id’: ’time1’ },
’start’,
time_display(’start’,

’Start time: ’),
’stop’,
time_display(’stop’,

’Stop time: ’));

var lens2_start = focus(’start’).
seq(time_display(’start2’,

’Start time: ’));
var lens2_stop = focus(’stop’).

seq(time_display(’stop2’,
’Stop time: ’));

Figure 10. Composing lenses

var model_updaters = [];

var dom_update = function (idx) {
return function (v) {
if (!equal(model, v)) {
model = v;

for (var i = 0;i < model_updaters.length;i++) {
if (idx != i) { model_updaters[i](model); }

}
}

};
};

set_error_handler(debugger_on_error);

var model_update = lens1.bind_to(’time1’,
dom_update(0));

model_update(model);
model_updaters.push(model_update);

model_update = lens2_start.bind_to(’start2’,
dom_update(1));

model_update(model);
model_updaters.push(model_update);

model_update = lens2_stop.bind_to(’stop2’,
dom_update(2));

model_update(model);
model_updaters.push(model_update);

Figure 11. Binding lenses

two unique identifiers each — one for the hook into the DOM and
another for a hook into the model.

Thus the event handling mechanism forbind lens is general –
if only a single lens works off of the model, then there is no need
for a complicateddom updateandmodel update as defined here;
the former can be reduced to just swapping out a new model for
the old one, while the latter can be kept around by reference, rather
than in a list likemodel updaters.

4.3 Lenses and Flapjax

The Flapjax programming language [Fla] is a functional-reactive
programming language in the spirit of FrTime [CK06], built
on top of JavaScript. It offers support for complex event-based
systems both as a library and as a compiled language. Flapjax
makes JavaScript/DOM programming easier by means of events
— streams of values — and behaviors — special objects the value
of which can change over time. Expressions which depend on be-
haviors (events) become behaviors (events) themselves, either ex-
plicitly by means oflifting or implicitly by means of the compiler.
For example, in compiled Flapjax, one can declare

var timeB = timer_b(100); // ms since the epoch
var secsB = Math.floor(timeB / 1000)

The value of the variabletimeB updates (approximately) every 100
milliseconds to a new value; whenever those updates occur, the
value of the variablesecsB is recomputed asMath.floor(timeB
/ 1000). In turn, anything depending onsecsB will be updated
whenever it changes, viz. once a second.

Lenses take advantage of this system by allowing binding to
time-varying models. As those models update, the DOM updates;



var model = model_b({’start’: {h: 12, m: 29, s: 52},
’stop’: {h: 1, m: 45, s: 14}});

lens1.bind_to_b(model, ’time1’);
lens2_start.bind_to_b(model, ’start2’);
lens2_stop.bind_to_b(model, ’stop2’);

Figure 12. Binding lenses with Flapjax

as the DOM updates, those models are updated. We can then rewrite
the binding of the time display example as simply as in figure 12.

The b indicates that the values are behaviors, values which
change over time. Since is based on a framework of managed call-
backs, the lens binding framework can bind directly into Flapjax,
with no need for user callback definitions.

5. Related Work
The two most similar systems for bidirectional computation are
the basis for this work, Foster, et al. [FGM+05], and Hu, et al.
[HMT04].

The seminal work of Foster, et al. on ‘lens’ combinators serves
as the foundation for this work, which is a nontrivial re-application
of their work for user interface components. Additionally, this work
reifies a multi-lens synchronization system that is a hybrid of the
original, single-lens synchronization originally described and the
SYNC-maintenance rules of [HMT04].

In Bohannon, et al. [BFPS07],resourceful lenses are defined
over regular expressions over strings. In particular, a Kleene-star
iteration operatormatch is given that will adequately ‘match up’
any edits made to items in the sequence by means of a ‘key’
(a semi-unique part of the data). Our formulation oflist map
differs frommatch in several ways. First, the domains are different
— regular expressions over strings and combinators over edge-
labeled trees — though this can most likely be reconciled without
excessive difficulty. Second,match is purely functional, working
by means of a dictionary by key of sequence items, whilelist map
must have its edits managed by a third party and is effectively
stateful. Third, and perhaps most importantly,list map is partially
operation based, and so matches the event model of the DOM more
accurately. (For more on this, see future work in section 6.) The
purely functional nature ofmatch makes its formalization much
more elegant than that oflist map; moreover, they prove more
interesting properties of their entire R/S/K-lens hierarchy than we
do for our single lens. Integrating the two is definitely a component
of future work (again, see section 6).

The bidirectional formulation of Hu, et al. relates more closely
to this work — both deal with the bidirectional transfer of struc-
tured model data to structured view data. Their theoretical basis
differs significantly this work’s, since theGETPUTGETand PUT-
GETPUT laws offer much weaker guarantees than their correspon-
dentsGETPUT and PUTGET. Additionally, their index-based tree
combinators are quite unnatural in an HTML environment. Their
system of structured edits is also a poor match for the JavaScript
DOM, which doesn’t provide the level of event granularity neces-
sary to implement their system.

In contrast to the systems of both Foster, et al. and Hu, et
al. linear sequencing operator ‘;’, this work’s tree-like sequencing
better fits the domain.

While Meertens manuscript [Mee98] is ostensibly about “user
interaction”, his system, as Foster, et al. point out, is much more
generally defined than this work’s, though no practical application
is given. His event system, like Hu, et al.’s, is “operation-based”
[FGM+05], and so a poor match for the JavaScript DOM.

Despite the similarity in name, Wadler’s work on ‘views’
[Wad87] isn’t directly related to the views of this work. Not only
are hisget andputback user-defined, there is no structural support
for user interfaces.

6. Future Work
This work grew out of frustrations with the need to use the DOM as
an ad hoc data model when programming even the simplest Flapjax
programs with remote updates. Fully integrating the lens system
described into Flapjax is a natural first step of the future work;
expanding the widget set available beyond basic HTML widgets
(e.g., edit-in-place text, toolbars) would serve as a good test of both
the lens system itself and its integration into Flapjax.

When integrated, the lens system will allow us to focus our at-
tention on principled client/server synchronization for shared data.
At present, clients are self-deprecating: any new model from the
server (and, indirectly, from another client) trumps the current
client. Other models of interest would be clients with time-based
update models (e.g., don’t take a value from the server unless local
data hasn’t changed inx milliseconds) and user-specified merging
algorithms (perhaps in a variant of the lens language, where theA
andC are remote and local clients, respectively).

As mentioned in section [?], the resourceful lenses of Bohan-
non, et al. [BFPS07] could serve as a launching pad for an in-
vestigation of differentlist map primitives and laws more general
thanGETPUTe andPUTGETe. As browser support for DOM Level 2
DOMSubtreeModified events [W3Ca] becomes widely available,
operation-based solutions will become more viable.

At present, lens combinators are defined in JavaScript and run-
time. Since lenses are amenable to an HTML-like tree-sequencing
syntax, there is no reason that lenses could be written statically
in the HTML itself, by means of tags in a special namespace. A
compiler could then compile those special nodes into either lenses
or, even better, callbacks installed directly. This would wed the
efficiency of the direct callback style with the correctness, easy
to use, succinct lens syntax. The compiler could be implemented
either as a program run on HTML-with-lenses to generate plain
old HTML, or as a dynamic JavaScript library which compiled the
HTML-with-lenses to HTML on the fly, by means of the DOM
API. There are advantages to both approaches: a dynamic compiler
must process the page at each load, and could be expensive, but
it would simplify the debugging and development process – until,
perhaps, a static copy could be compiled and distributed.

References
[App92] Andrew W. Appel.Compiling with continuations. Cambridge

University Press, New York, NY, USA, 1992.

[BFPS07] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, and
Alan Schmitt. Resourceful lenses for ordered data, April
2007. Submitted for publication.

[CK06] Gregory H. Cooper and Shriram Krishnamurthi. Embedding
dynamic dataflow in a call-by-value language. InProgram-
ming Languages and Systems. 15th European Symposium on
Programming, ESOP 2006, volume 3924/2006 ofLecture
Notes in Computer Science, pages 294–308, Vienna, Austria,
2006. Springer-Verlag.

[FGK+06] J. Nathan Foster, Michael B. Greenwald, Christian
Kirkegaard, Benjamin C. Pierce, and Alan Schmitt. Exploit-
ing schemas in data synchronization.Journal of Computer
and System Sciences, 2006. To appear. Extended abstract in
Database Programming Languages (DBPL) 2005.

[FGM+05] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore,
Benjamin C. Pierce, and Alan Schmitt. Combinators for
bi-directional tree transformations: a linguistic approach to



the view update problem. InPOPL ’05: Proceedings of the
32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 233–246, New York, NY,
USA, 2005. ACM Press.

[Fir] FireBug JavaScript debugger, http://getfirebug.com/.

[Fla] Flapjax, http://www.flapjax-lang.org/.

[GWT] Google Web Toolkit, http://code.google.com/webtoolkit/.

[HMT04] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. Apro-
grammable editor for developing structured documents based
on bidirectional transformations. InPEPM ’04: Proceedings
of the 2004 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation, pages 178–189,
New York, NY, USA, 2004. ACM Press.

[jQu] jQuery, http://jquery.com/.

[Mee98] L. Meertens. Designing constraint maintainers for user
interaction, 1998.

[Moc] MochiKit, http://mochikit.com/.

[Ope] OpenLaszlo, http://www.openlaszlo.org/.

[W3Ca] W3C DOM Specification, http://www.w3.org/DOM/.

[W3Cb] W3C HTML Specification, http://www.w3.org/html/.

[Wad87] Philip Wadler. Views: A way for pattern matching to
cohabit with data abstraction. In Steve Munchnik, editor,
Proceedings, 14th Symposium on Principles of Programming
Languages, pages 307–312. Association for Computing
Machinery, 1987.


