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1 Introduction

When reading a thesis, do you expect the first sentence to motivate the
research or to involve a complex statistical process? When writing a news
article, should the first sentence be an expert’s commentary on the situation
or a general introduction to the event? Although intuitively the answer
to these two questions is obvious, most current language models do not
distinguish between different orderings of sentences.

Recently, natural language researchers have developed local and global
models of document coherence. Document coherence is “a property of well-
written texts that makes them easier to read and understand than a sequence
of randomly strung sentences.” (Lapata and Barzilay 2005) The goal is to
capture the flow of topic over the sentences of a document.

Local models capture coherence through the transition of either semantic
or syntactic properties from sentence to sentence. To quantitatively estimate
their success, researchers test the models on the document discrimination
task. It evaluates how often the model can discriminate the document’s
sentence order from random permutations of the sentences. On the other
hand, global models explicitly model the flow of topic through the document.
The sentence ordering task empirically tests the success of these models. In
this task, the model must impose an ordering on a “bag of sentences” and see
how different this ordering is from the original document order. Although
both models are successful within their own task, their performance on the
other’s task is dramatically lower.

Intuitively, unifying the two models is a natural solution. We propose a
combined document ordering model that accounts for both local and global
features. Not only will the combined model solve this problem, but it im-
proves its performance on both tasks! In the next sections, we motivate

∗The research underlying this paper was joint work involving the author, Micha Elsner,
and Eugene Charniak.
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natural language generation systems (2), local and global document mod-
eling frameworks (3 and 4) and discuss a previous attempt to unify the
features (5) Unfortunately, the previous model is not generative and learns
local and global features independently. This motivates our own unified
jointly learned generative model (6). Finally, we test the models on the two
tasks (7).

2 Natural Language Generation Systems

Over the last decade, the natural language generation literature has taken
a dramatic shift from domain specific systems to domain general modeling.
Before this shift, generation systems relied on expert knowledge representa-
tions in order to structure and create text easily understandable by human
readers. For example, Kathleen McKeown’s TEXT generation system for
army devices is based on document structure schemas and a hardcoded re-
lational system between different types of vehicle and missiles at different
levels of specificity (McKeown 1985). As it is neither practical nor scalable
to create a knowledge representation for every possible discourse, researchers
have moved to techniques for learning the structure of domains automati-
cally from corpora. These corpus based techniques borrow sophisticated
machine learning tools and apply them to natural language generation.

Generally, there are three major components of a natural language gener-
ation system: document planning, microplanning, and realization Document
planning determines the content and outline of text to be generated. Mi-
croplanning and realization focus on converting the structure created during
planning into an actual readable document. Although intuitively these com-
ponents are not independent, in order to simplify the problem we (and most
researchers) treat these components as independent modules. As human
readers read documents to find content in particular places of a text, the
document planning step is extremely important. To quote Sripada et. al.
(2001) :

Content determination is extremely important to end users; in
most applications users probably prefer a text which poorly ex-
presses appropriate content to a text which nicely expresses inap-
propriate content. From a theoretical perspective content deter-
mination should probably be based on deep reasoning about the
system’s communicative goal, the user’s intentions, and the cur-
rent context, but this requires an enormous amount of knowledge
and reasoning, and is difficult to do robustly in real applications.

Accordingly, we focus on the document planning problem.
There are two main components to a document planning system: con-

tent determination and document structuring. Content determination se-
lects what information should be presented in the document. Until recently,
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content determination was directly encoded by a domain-expert and not
learned from statistical analysis of corpora. It was thought impossible “to
specify general rules for content determination” (Reiter and Dale 2000). Al-
though this is still true in the sense that new content selection systems must
be retrained for each domain-specific corpus, these systems do not need to
be respecified by a domain expert. By defining content determination as a
classification task (each potential item is either present or not in the gener-
ated text), we can use previously developed machine learning techniques to
solve the content determination problem. This is the approach used in the
last few years by Duboue and McKeown (2003) and Barzilay and Lapata
(2005) . Now that we have the content to expound in the text, how should
we order this content without domain-specific rules?

Sentence ordering models are not only used as a module in natural lan-
guage generation systems. Miltsakaki and Kukich (2004) use rough heuris-
tics to predict students essay grades for ETS standardized tests. In principle,
a true model of document coherence (with a sentence ordering model as a
component) could provide a more principled method to classify student es-
says. Another major use for sentence ordering models is in multi-document
summarization. Kathleen McKeown’s natural language processing group at
Columbia combine multiple different news sources into one coherent news
article with aspects from the different sources (Evans et. al. 2004). In
a news article domain, sentence ordering is intimately connected to sum-
marization as news article readers have strong constraints on the order of
presentation of information (generally, most informative to least). Again this
is the technique used by Barzilay and Lee (2004)’s hidden Markov model of
a document.

There are two major computational approaches to order documents with-
out specifying domain-specific information. First, local coherence models
score coherence as the product of a function of groups of adjacent sentences
over all groups of sentences in the document. Second, global coherence
models track the change of topic throughout the document and judge its
coherence based on the flow of sentence topic. Regardless of the type of
model, they both define the optimal ordering of sentences to be the ordering
of sentences with the largest coherence score.

3 Local Coherence Models

Local coherence models focus on the relation between a small number of the
sentences adjacent to each sentence in a document (D). More formally,

P (D) = P (S1, . . . , Sn) ≡
∏n

i=1 Pcoherence(Si|Si−1, . . . , Si−h)
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where Pcoherence(Si|Si−1, . . . , Si−h) is a coherence function whose argument
is the i-th sentence given the last h sentences (interpreted as a probability).1

Generally, there are two main types of local coherence models, semantic and
syntactic One method for defining the local coherence between adjacent
sentences is semantic similarity. In these models, we assume (most likely in-
correctly) that the meaning of adjacent sentences are more similar than the
meaning of sentences later on in the text. Another type of local coherence
model, syntactic models, are inspired by Centering Theory, which predicts
that the realized entities and pronouns are subject to strict syntactic con-
straints based on the discourse entities of the last few sentences. Grosz et al.
(1995) have argued that the coherence of an entire text depends mostly on
the local coherence between adjacent sentences. Although in practice local
coherence is important, we show that a fully coherent document depends
on the interconnection between local coherence and global structure. In the
next section, we discuss two local semantic similarity models, word overlap
and latent semantic analysis.

3.1 Word Overlap and Latent Semantic Analysis

We model the coherence of a text in local semantic models to be:

coherence(D) = 1
n−h

∏n−h
i=1 sim(Si, . . . , Si−h)

Given the general local coherence framework above, we define a simple coher-
ence metric by representing a sentence as a vector of words and computing
the word overlap between each adjacent sentence (Markov horizon h = 1).
Word overlap provides some useful insights. For example, a word introduced
in a sentence is more likely to be further explained in the next sentence than
much later in the document. Unfortunately, it provides no method of de-
termining the order between the pair of sentences (it is symmetric), which
is a prevalent problem for all local coherence models. Additionally, it is
unable to provide insight about semantically related and coreferent words.
For example, if a car is mentioned in a previous sentence, it is more likely
that the word “wheel” will appear than if falafel was last mentioned. This
insight led Foltz et. al. (1998) to create the latent semantic analysis (LSA)
framework for identifying semantic relations between words.

Latent semantic analysis transforms the document matrix formed for
word overlap into a lower dimensional space. The hope is that the lower
dimensional space represents different groups of related words, which are
actually interchangeable We define our local coherence metric as a distance
metric similar to word overlap, but instead of using the words as our vectors,
we use vectors corresponding to the words mapped into the lower dimen-
sional space. This way LSA could theoretically distinguish between the two

1This assumes a generative framework. If our model is conditional, we can include
later sentences in our context (e.g. Pcoherence(Si|Si−1, . . . , Si−h, Si+1, . . . , Si+h)).
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1: The commercial pilot, sole occupant of the airplane, was not injured .
2: The airplane was owned and operated by a private owner.
3: Visual meteorological conditions prevailed for the personal cross country
flight for which a VFR flight plan was filed.
4: The flight originated at Nuevo Laredo, Mexico, at approximately 1300.
entity 1 2 3 4

PLAN - - O -
AIRPLANE X O - -
CONDITION - - S -
FLIGHT - - X S
PILOT O - - -
PROPER - - - X
OWNER - X - -
OCCUPANT X - - -

Figure 1: A sample four sentences and its corresponding entity grid repre-
sentation

sentence pairs mentioned above. Unfortunately, in practice, the clusters
of words LSA finds is quite noisy. Additionally, the interchangeability as-
sumption is troubling. In the previous example, car and wheel are not fully
interchangeable Wheels are inferable from the mention of a car; however,
a car is not inferable from the mention of wheels. This asymmetry is not
captured by LSA. Although there are more troubling aspects to modeling
document coherence with LSA (most notably its inability to track entities
through the document), we move on to the entity grid model.

3.2 Naive Generative Entity Grid Model

The generative formulation of the entity grid model presented by Lapata
and Barzilay (2005) attempts to model two concepts formalized in Center-
ing Theory. Centering Theory explores how the focus on different entities
changes over the sentences of a document and how these entities are prono-
mialized. First, entities occur in particular syntactic patterns over the sen-
tences of the document. More specifically, there are soft constraints on the
change of focus from sentence to sentence. Second, roughly there are two
main types of entities in a discourse: salient and non-salient. The entities
that are salient are more likely to appear in important syntactic roles and
in more sentences throughout the document. For example, in a document
about Microsoft, we would expect Bill Gates and Microsoft to be salient and
falafel to be non-salient. With these two modeling assumptions, we form a
simple yet powerful generative model of local document coherence.

In their generative formulation of the entity grid model, Lapata and
Barzilay represents a sentence (Si in a document (D) as a vector of the
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syntactic roles (~ri are the roles that all entities take in sentence i) of all the
entities (~e) of the document in this particular sentence. As shown in figure
12, we represent the simple 4 sentence document as a matrix (E = R) of
the roles of each entity (ei,j = ri,j) over all the sentences of the document.
There are four different roles an entity (ri,j ∈ R = {S,O,X,−} )3 can have
throughout the document: subject (S), object (O), occurring but neither
the subject nor object(X), or not occurring in the sentence(−). Now we
formally define the coherence of a n sentence document with m entities to
be:

Pcoherence(D) = P (S1, . . . , Sn) = P (e1,1 = r1,1, . . . , e1,m =
r1,m, . . . , en,1 = rn,1, . . . , en,m = rn,m) = P (E = R)

In order to simplify the derivation to a form we can actually compute, La-
pata and Barzilay make two assumptions. First, all entities are generated
independently of the other entities (column independence). Second, the role
an entity takes in a sentence is independent of the other roles it takes given
the roles it has taken in the last h sentences (row Markov independence).
This allows us to simplify our calculation of the probability of a document
to a double product over each role each entity takes conditioned over the
roles within its Markov horizon:

P (S1, . . . , Sn) =
P (e1,1 = r1,1, . . . , e1,m = r1,m, . . . , en,1 = rn,1, . . . , en,m = rn,m) =
∏m

j=1

∏n
i=1 P (ri,j |r1,j , . . . , ri−1,j) ≈

∏m
j=1

∏n
i=1 P (ri,j|ri−h,j, . . . , ri−1,j)

Unfortunately, the simple maximum likelihood solution fo̊these estimators,

P̂ (ri,j|ri−h,j, . . . , ri−1,j) =
C(ri−h,j ,...,ri,j)

C(ri−h,j ,...,ri−1,j)
(where C(ri−h,j, . . . , ri,j) is the

number of times any the sequence of roles (ri−h,j, . . . , ri,j) appears in the
training corpus), is not very informative. Given the above discussion, the
most obvious problem is that we still do not distinguish between salient and
non-salient entities. Since salient entities should be frequently mentioned
in important syntactic roles, their distribution over roles should be widely
different than non-salient entities for a few reasons. First, most entities do
not occur in most sentences and thus an overwhelming amount of probability
mass is given to the − role. This matches our intuition and also Zipf’s
law, which dictates a majority of the words in a corpus occur only once.
Second, Centering Theory predicts that salient entities reoccur according to
different rules than non-salient entities. With this theoretical impetus, we
add the number of times an entity occurs in a document to the information

2Taken from Elsner et. al. (2007)
3Like Elsner et. al. (2007) we determine the roles heuristically using syntax trees

produced by the parser of Charniak and Johnson(2005) .
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we condition on.4 When we add the number of occurrences of an entity to
our conditioning information, we arrive at another related problem. Even
salient entities do not occur in the majority of sentences of a document.
This leads to our MLE estimate of ∀H : P̂ (ri,j ∈ S,O,X |H) < 0.5, where
H is any possible conditioning information or equivalently ∀H : P̂ (ri,j =
−|H) > 0.5. Taking a generative lens, the most likely generated document
from our model is one without any entities! Not only is this not intuitive
(legitimate documents with no entities?), it leads to poor performance on
the binary classification task. In order to properly address this problem, we
need to move to a more complicated estimator and relax our independence
assumptions.

The first step to improving the generative entity grid is to include psuedo-
count smoothing over the different types. This changes our MLE estimator
of the transition probabilities to

P̂ (ri,j |ri−h,j, . . . , ri−1,j , k;Ck) =
C(ri−h,j ,...,ri,j)+Ck

C(ri−h,j ,...,ri−1,j)+|R|Ck
, where k

is the number of occurrences of entity ei,j , and Ck is its associated
smoothing constant.

Although this amounts to a substantial improvement, the improvement is
grossly different for the optimal values of the smoothing constants and the
ones obtained by estimation from a development corpus. After trying a va-
riety of techniques for deriving principled estimates of the optimal values
for Ck, we discovered that none of these techniques yields satisfactory per-
formance during testing.5 As the value of smoothing constant increases, the
probability of the training corpus decreases. However, it improves the perfor-
mance of the model during testing. By increasing the value of our smoothing
constant, we are increasing the uniformity of our probability distribution,
which “steals” probability mass from the − to − transition, the most likely
transition. By shifting probability mass to transitions with entity occur-
rences, we change our decision boundary during evaluation. Rather then
focusing on when entities do no occur, we increase the importance of entity
occurrences (which are more informative). From these results, we infer a
need to improve our local coherence model beyond simple smoothing.

4Unfortunately, this adulterates our model. It is now a degenerate generative model.
Our two attempts at purifying the salience portion of our model failed empirically. Both
conditioning on the amount of times the entity has occurred “so far” and a simple boolean
flag (salient means occurs more than twice, although this too has its theoretical issues)
failed. So we are stuck with conditioning on the total number of occurrences of each entity
in the document.

5No technique yielded satisfying performance while testing on the development cor-
pus. We did not waste the test corpus on our inferior model, but rather used ten-fold
cross-validation with the training corpus and then for each training corpus in the current
validation broke data into a training set and a held-out set. We used this held-out set to
derive the values of the smoothing constants by maximizing the probability of the held-out
data under the model varying the value of the constants.
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3.3 Relaxed Generative Entity Grid Model

The results from the previous section all point to a major flaw of the naive
generative entity grid model: the most likely transition of the model is −
to −. Although this yields satisfying results when the generative model is
“plugged into” a conditional model (like the SVM as in Barzilay and La-
pata(2005) ), it is no longer generative. This makes it difficult to achieve
our ultimate goal of incorporating the local model into a global coherence
model.6 Thus, we propose a relaxed generative entity grid model. It gen-
erates the syntactic roles of each sentence and decides whether or not each
entity fills the role.

The relaxed entity grid model has its benefits and disadvantages. On one
hand, it is a degenerate and inconsistent estimator (see Elsner, Austerweil,
and Charniak (2007) ), two unwanted properties. Inconsistency imples that
given an infinite amount of training data, our estimator does not converge to
the proper distribution. On the other hand, it yields improved performance
and a model that can be principally incorporated into a global model. We
show in general, local and global models have disparate problems and their
combined model improves performance on both of our tasks.

To “steal” probability mass from the blank transition to more infor-
mative entity transitions, we relax the naive model’s row independence as-
sumption (entity independence). First, we separate our entities into two
sets: those that previously occurred, Ki (known entities at sentence i), and
those that have not, Ni (new entities). Since our local model has little in-
formation to base which syntactic role a new entity should fill, we ignore
entities in Ni for now (but not in the combined model). Thus, our new
model only discerns between the different syntactic roles old entities fill.
The generative process modeling a sentence can be thought of as first gen-
erating the syntactic roles of the sentence. Next we pick the syntactic role,
r, each known entity fills given we are filling r, given the number of times it
occurs in the document and the Markov horizon of all known entities.

Although this eliminates the problem of the most likely document hav-
ing no entities, it does mean multiple entities can fill the same syntactic role
and the same entity can fill multiple syntactic roles (degeneracy). However,
this is an improvement over an entity-less most likely document. Addi-
tionally we assume the distribution of syntactic roles over sentences (how
many subjects, objects, etc. in sentence i) does not change from sentence
to sentence. Formally, the probability of a sentence under our new model
is: P (Si|Si−1, . . . , S1) ≈

P (ri,1, . . . , ri,|R|)
∏

ej∈Ki

∏

r∈Ri
P (ej = r|r, ~Ei−1, . . . , ~Ei−h, ke), where

6The full benefits of combining generative models vs. conditional models is beyond
the scope of this thesis. However, it should be clear how to easily incorporate generative
models together.
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Ri are the syntactic roles to be filled for sentence i, ~Ei−1 is the
vector of roles filled by entities in sentence i − 1, and ke is the
number of occurrences for entity ej .

Here, we face a similar situation in the natural language processing litera-
ture; our context is too specific and thus, our distribution is sparse. There-
fore, we form a new estimator by throwing out the histories of the known
entities not in question and normalizing via brute force, which is unfor-
tunately inconsistent (Elsner et. al. 2007). This results in the following
equation as the basis of our local model:

P (ej = r|r, ~Ei−1, . . . , ~Ei−h, ke) ≈
P (ej=r|r,ei−1,j ,...,ei−h,j ,ke)

∑

el∈Ki
P (el=r|r,ei−1,l,...,ei−h,l,kel

)

We show in the results section that this model is intuitively more satisfying
and leads to better performance in both ordering tasks. Although it does
improve performance, it still is not completely satisfying. It remains an
important door for further refinement and exploration.

Before moving to a global coherence model, we discuss the types of dis-
criminations that local coherence models succeed and fail to make. On one
hand, local coherence models are great at determining random permuta-
tions of the sentences of large documents from the original ordering. If we
abstract away the exact syntactic roles to either occurrence or not, we ob-
serve the general behavior shown in figure 2. We name one bursty column a
“Markov cluster.” Random orderings frequently break up Markov clusters
of sentences, which the model uses to distinguish coherent from incoherent
documents with. This allows our local models to perform very successfully
on the binary classification task.

On the other hand, there are many permutations, which a human reader
can distinguish between, but our model can not (or has little information
to). Consider the ordering of document that is the complete reverse ordering
(so the first sentence is the last sentence, second sentence is the second to
last, and so on). According to local coherence models, the two documents
are nearly equivalent because we still have the same Markov clusters of
sentences (and the effects of asymmetry are minimal). Another difficult
transformation would be random permutations of paragraphs (but maintain
the ordering of sentences within paragraphs). To impose an order on a bag of
sentences, we need stronger constraints for how the sentences within and the
clusters themselves should be arranged. We need a way to judge coherence
that relies on something besides the Markov clusters. One method is to track
the global change of sentence topic throughout the document. This is the
underlying theme behind Barzilay and Lee’s (2004) HMM global coherence
model that we discuss next .
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Figure 2: On the left is the abstracted matrix for a coherent document. A
bar represents the occurrence of the entity in the current sentence. Note
the bursty chains of co-occuring entities. On the right is the abstracted ma-
trix for a randomly permuted document. The bursty chains of co-occuring
entities are violated.

4 Global Coherence Model

Over the last two decades, the seminal natural language generation systems
focused on global text generation schemas. The schemas, like parsing gram-
mars, form a hierarchical structure over the document, which defines the
local and global properties of a document in a recursive manner. Although
these systems are successful in extremely constrained domains , automati-
cally learning these schemas from corpora proves difficult. This is an exciting
area of future research. The building blocks towards automatically learning
rich global topic grammars are an interesting area for later pursuit.

4.1 Topic-based Hidden Markov Model

One exciting recent development in automatic global coherence modeling is
Barzilay and Lee’s (2004) topic based model. Unlike other recent develop-
ments in topic based language modeling (see Hofmann 1999 and more recent
Griffiths et al 2005 ), Barzilay and Lee do not treat topic as an auxiliary
variable. Instead, they assume it is the underlying cause for the document.
They treat the words of each sentence of a document as the emissions from
a hidden Markov model. The hidden Markov model transitions between
hidden semantic states and each state is a language model for the current
sentence. Each hidden state is the topic of each sentence. Since many HMM
learning and prediction algorithms are well studied and developed, the new
modeling method comes with sophisticated techniques for parameter esti-
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mation from corpora.
Although similar to a straight-forward application of an old modeling

technique applied to a new domain, they adapt the technique and prepro-
cess the corpus. Instead of starting their topics from a blank slate, they
preprocess their topics via complete link clustering (where clusters are sets
of single sentences). To cluster, they form simple bigram features, create k

clusters, and merge together all clusters with less than T sentences (where k

and T are parameters to the algorithm set to 100 and 4 respectively). They
assume the hidden states generated the clusters formed by complete-link
clustering. Naturally, they formulate their emission probability functions to
be simple bigram language models with pseudocount smoothing (although
in general, any language model could be applied). Additionally, they define
the state transition probabilities to be the ratio of the number of documents
we observe a sentence from cluster j right after a sentence from cluster i over
the number of documents with at least one sentence from cluster i. Again,
pseudocount smoothing is applied to the transition probabilities to improve
estimates from sparse data. Given these formalizations, we learn parameter
values using EM reclustering at each step. However, in our own implemen-
tation, we found it unnecessary to recluster at each step if a more principled
basis is used (yet still domain-general) for forming the initial clusters.

This model opened the door for domain-general global coherence mod-
eling. For example, it learns from the airplane training corpus that news
articles frequently begin with a sentence describing the date, time, and na-
ture of the accident (it appropriately groups these sentences as a cluster).
Although this technique is an important first step towards a domain-general
global coherence model, there are two major flaws to address. We assume
the underlying structure generating documents is a hidden Markov model;
however, this contradicts our intuition of a hierarchical document structure.
Although for small documents this seems reasonable, it does not scale to
longer documents (sentence topics are actually conditionally independent
given a structured outline) and its solution could lead to improved results.
It would be intriguing to apply syntactic grammar induction techniques to
the document modeling; however, our initial formulations proved this to be
an elusive and difficult project (as most semantic modeling projects are).
Perhaps we can assume an underlying hidden cause for the hidden states.

Important to our combined model, we ignore the local constraints be-
tween entities. This makes it difficult for the model to develop useful sen-
tence topic states that do not contain too specific information. For example,
consider an article describing a battle between Captain Jack Sparrow and
Commodore Norrington in a theoretical Pirate Conquests corpus. Should
the first topic state for the news article include that it is describing a fight
between a pirate and naval commander or that the entities are Sparrow and
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Norrington in particular? 7 Although this may seem contrived, it is a se-
rious problem because the global model is forced to choose between being
overtrained (and sparsity issues) or ignoring how entities change overthe
document. Qualitatively, this leads to the topic model having rough ideas
over what part of the document sentences should be, but trouble deciding
how to group the sentences together (assuming the model choose to ignore
local entity transitions). Quantitatively, it is reflected in its relatively poor
performance on the binary classification task (see table 2 in section 7.2).

5 Motivation for Combined Model

The motivation for a combined model is the hope that we can create one doc-
ument coherence model, which performs well on both tasks with only one
training session. Our discussion of local coherence modeling showed that
local coherence models are good at forming groups of sentences; however,
they cannot order the sentences within each group and the groups them-
selves. Although this is a problem for imposing a coherent sentence order, it
can easily classify between the original and random orderings of a document
because random orderings do not contain Markov clusters. On the other
hand, the HMM model we just discussed has difficulty tracking specific en-
tities through a document. However, it imposes loose, reasonably coherent
constraints on sentence orderings. If these two models have complementary
flaws and benefits, can we combine them in a single unified model that has
all the benefits without the flaws and performs better than each alone on
both tasks? This is the basic motivation behind our proposed model and
Soricut and Marcu (2006)’s mixture model approach.

5.1 A Mixture Model Approach

A mixture model is a convenient method for integrating multiple disparate
models into one model. Each of the models comprises one feature or com-
ponent of the mixture model. The overall decision of the mixture model is
a weighted sum of its different features. Intuitively, each feature’s weight
corresponds to how diagnostic the feature is. Additionally, it assumes that
the coherence of a document is determined by an independent (given the fea-
ture weights) weighted average of the coherence ratings according to each
model. Since the feature weights are constants, the mixture model is driven
either by local or global dependencies and cannot learn the interdependence
between local and global constraints. This is one major problem with a
mixture model approach to unified document coherence models.

Soricut and Marcu (2006)’s sentence ordering model combines local and
global models by a log linear mixture of four different models:

7Jack Sparrow and Norrington are property of the Walt Disney Corp.

12



P (D) =
exp[

∑4

m=1
λmfm(D)]

∑

D′ exp[
∑4

m=1
λmfm(D′)]

, where D is a potential ordering

of the document, λm is the mixture weight of model m, and
fm(D′) is the coherence of ordering D′ by model m.

Although an explicit calculation of P (D) demands computing an expensive
normalization factor, the normalization constant does not need to be cal-
culated for our two tasks. The binary classification task is the ratio of two
document probabilities. The constant appears in both the numerator and
denominator of the ratio and so, it can be ignored. Similarly, imposing a
sentence ordering is the argmax of document probability over all possible
sentence orders. The normalization factor is constant over orderings and so,
it also can be ignored. The four different models used in their mixture are:
the naive entity-grid model (although slightly adapted and non-generative),
the HM content model with bi-gram language models, and two local word-
co-occurrence models based on the classic machine-translation IBM models.
Given uniform weighting between the four models, the mixture performed
worse than its best component alone; however, when the mixture weights are
optimized, the mixture outperforms any of its components on the sentence
ordering task. (Soricut and Marcu 2006)

By unifying global and local coherence models, we form one model, which
performs better than any of the individual models on a particular task. Us-
ing the mixture modeling framework, we form a unified model that suc-
cessfully captures document coherence. Unfortunately, there are two major
problems with this technique: independence and modularity. The indepen-
dence problem was alluded to earlier. Given the mixture weights, all of the
component models are independent from each other. The mixture model
must decide to always include both models (in a constant weighted average)
or choose one of the models to always base its decision on. This indepen-
dence is a problem because the global and local constraints are dependent
on each other and thus cannot be decomposed into two independent parts.
One reason (besides appealing to intuition) for a jointly dependent model
is it allows some words, such as salient entities, to effect both the local
and global constaints, where as other words, such as adverbs, to effect only
local constaints. Another major problem of the mixture model is modu-
larity. We motivated sentence ordering document coherence models as a
module in a multi-document summarization or natural language generation
system. Generative models provide a principled manner for integrating mod-
els together (simply add the link(s) to the graphical model and derive new
estimators). It is unclear how to directly integrate a mixture model system
into a multi-document summarization or coreference system. Although the
sentence ordering task is inherently interesting, it is important to principally
use them in other natural language processing tasks. Additionally, we can
incorporate other generative models and look for areas to improve our model
in principled ways. (see Griffiths et al. 2005 for a similar discussion)
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6 Generative Jointly Learned Unified Global and

Local Model

After the discussion of the mixture model coherence approach, the need to
capture interdependencies between the local and global models is clear. One
principled method that captures component interdependencies is the gener-
ative framework. Additionally, the framework lends itself to modularity -
another of our goals. Before we delve into our sentence ordering model, we
discuss Dirichlet and Pitman-Yor processes and a Bayesian interpretation
of the HMM. Afterwards, we have the tools to form our unified global and
local generative model of document coherence.

6.1 Chinese Restaurant, Dirichlet and Pitman-Yor Processes

Over the last decade, models containing the Chinese Restaurant, Dirichlet,
and Pitman-Yor Processes have proliferated the statistical machine learn-
ing community. These statistical processes have been applied to: enhance
pre-existing models (e.g. the infinite Hidden Markov Model of Beal et al.
2002 ), create new models with improved performance (e.g. latent Dirich-
let allocation of Blei et al. 2003 ), and understand the principle behind
extremely successful, but poorly understood techniques, (e.g. Kneser-Ney
smoothing as an approximation to a generative language model by Gold-
water et al 2006 and Teh 2006 ). One main benefit for modeling with
these processes is generativity. Thus, we can form models that are intuitive,
complex, make principle assumptions explicit, capture the interdependen-
cies of codependent features, and modular. In her thesis, Goldwater (2006)
explores the importance of making the correct prior assumptions. Interest-
ingly, one assumption underlying all of these processes is a priori we expect
our distribution be power-law. One example of the benefit of proper prior
assumptions is Goldwater et al. (2006) and Teh (2006)’s explanation of
Kneser-Ney smoothing with a power-law prior.

Throughout the twentieth century, researchers have shown many social
phenomena follow a power-law distribution. For example, in 1896, Pareto
described the distribution of income over people as a distribution where a few
people have most of the money and the vast majority have relatively small
amounts money.8 This “bursty” behavior (mostly small, but occasionally
extremely large) is characteristic of a power-law distribution. Formally, a
power law distribution is any that fits the following form (Mitzenmacher
2003 ):

P (X ≥ x) ∼ cx−α, where α > 0 and c > 0 is a normalizing

8Researchers frequently assume a Gaussian underlying distribution. One phenomenon
reasonably modeled by a Gaussian distribution is the height of people in the world. Un-
fortunately, not all phenomena are Gaussian.
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constant.

If 0 ≤ α ≤ 2, the power-law distribution has infinite variance, which allows
the distribution to have interesting bursty behavior typical of social phe-
nomena. Additionally, it violates the central assumptions behind the basic
central limit theorem. The normalized sum of random variables with infi-
nite variance does not converge to a Gaussian distribution. In our income
example, it does not make sense to model the underlying distribution as
Gaussian because most people do not have an income near the mean of the
distribution. More importantly for natural language processing, Zipf’s law 9

states that the frequency of words in a language follow a power-law distribu-
tion. Thus, the majority of words occur only a few times in the document;
however, a few words such as “the” occur thousands of times more. It has
been empirically shown that this property holds across different languages,
where each language has a different α value. (Manning and Schütze 1999,
Zipf 1935).

One way to generate a power-law distribution is preferential attachment.
Under preferential attachment, the probability of an event occurring is pro-
portional to the number of times it occurred previously. Consider a view
where a table represents an event and a customer seated at a table repre-
sents one occurrence of the event represented by the table. A priori, we do
not know the number of tables, but we assume a parameter, θ, controls the
probability of creating a new table. Additionally, we assume preferential
attachment, which dictates that the probability we sit at a table is propor-
tional to the number of customers at the table. If we have seated the first
z−i = {z1, . . . , zi−1} customers, the probability that the next customer, zi,
sits at table k is:

P (zi = k|z−i; θ) =







n
(z−i)

k

i−1+θ
k <= Z

θ
i−1+θ

k = Z + 1

where n
(z−i)
k is the number of times k occurs in z−i, Z is the

current number of tables, and θ is a parameter.

This is one view of the Chinese Restaurant Process (CRP).
Changing θ controls how likely we are to create a new table at each time

step.10 As θ → ∞, we create a new table each customer and as θ → 0 all
customers sit at one table. Another interpretation is that θ provides a num-
ber of pseudo-customers to each of the countably infinite tables (similar to
add pseudo-count smoothing). This interpretation is particularly insightful
when we add labels to the tables. We label a table when it is created by

9There is debate about whether or not Zipf actually made this discovery. See Mitzen-
macher (2003) for an interesting historical discussion.

10Although the probability of the first customer sitting at a new table is 1 regardless of
the value of θ
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generating its label from some parent distribution. A customer can sit at
a table if the table’s label matches some information of the customer. For
example, consider a hierarchical model where the base distribution (G0(·))
is uniform over all unigram words. We label a new table in the child (CRP)
distribution by drawing a sample from the parent distribution. Our cus-
tomers in the child distribution are unigram words and can only sit at a
table whose label matches its word (if no such table exists, we create a new
one for it). This gives us the following distribution for the next word:

P (zi = w|z1, . . . , zi−1; θ,G0(·)) =
∑Z

k=1 I(tk = w)
n

z−i
k

i−1+θ
+ θ

i−1+θ
G0(w),

where I(·) is the indicator function and tk is the label of table
k.11

We can use any context as our table labels and any base distribution, which
provides us with a powerful modeling framework. Teh (2006) describes a
language model where the parent distribution of the n-gram restaurant is the
(n-1)-gram restaurant. This defines a hierarchical recursive structure with
a base case uniform distribution as the parent of the uni-gram restaurant
(shown in the equation above). Intuitively, as θ at each level increases, we
approach the base distribution, and as it decreases, we approach the MLE
of each word. Thus, θ controls the smoothing between the parent and child
distributions and optimizing θ provides an optimal smoothed distribution.
It can be shown that this process produces a power-law distribution where
θ controls the value of the exponent of the power-law (α = 1

1−θ
). Thus, we

have defined the probability of a seating arrangement to be:

P (z) =
∏n

i=1 P (zi|z1, . . . , zi−1)

= (
∏n−1

i=1
1

i+θ
)(θZ−1)(

∏Z
k=1 (n

(z)
k − 1)!)

= Γ(1+θ)
Γ(n+θ)(θ

Z−1)(
∏Z

k=1 (n
(z)
k − 1)!)

(note: This distribution is exchangeable, which allows us to use
Gibbs sampling to estimate the parameters later. This is not
equivalent to independent and identically distributed.)

The Dirichlet Process (DP) is one form of the CRP when θ is restricted to
positive non-zero values. (Goldwater 2006) The Pitman-Yor process is an
generalization of the CRP with an extra “discount” parameter δ , which is a
constant discount of the probability mass assigned to each table. Similarly,
the probability of a customer choosing a table given the previous seatings
is:

P (zi = k|z−i) =







n
(z−i)

k
−δ

i−1+θ
k <= Z

Zδ+θ
i−1+θ

k = Z + 1

11Note the table labels are not necessarily unique.
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After creating a new table, the discount parameter saves a constant amount
of probability mass to creating another new table. The Pitman-Yor process
is a CRP when δ = 0, follows a power-law distribution when 0 < δ < 1,
and is exchangeable (Goldwater et. al. 2006). We use it later as our
simple unigram language model based on the Bayesian form of Kneser-Ney
smoothing (equivalent to the above hierarchical uni-gram/uniform model
using the Pitman-Yor process instead of the CRP). (Teh 2006)

6.2 The Infinite Hidden Markov Model

Beal et al. (2002) define the infinite hidden Markov model as a hidden
Markov model with an implicit countably infinite number of possible states.
It is a non-parametric model. This means the number of states grow nat-
urally with the data; not there are no parameters in the probability distri-
butions. Since a DP controls the transition probabilities we can “implicitly
integrate out” the infinite hidden states during inference. Since we want
to develop recurring trajectories, our transition probabilities are defined via
two coupled DPs.12 The bottom DP (with parameter αbot) represents the
decision between performing a pre-existing transition or creating a new state
transition. We can think of the pre-existing transitions as the tables of this
DP and a new state transition as creating a new table. When creating a new
table, we partition the probability mass assigned to each state according to
the top DP. This top DP (with parameter αtop) represents a bias towards
popular states when creating new transitions (preferential attachment). The
customers at each of its tables represent the number of times we have ever
gone to each state. Additionally, creating a new table in the top DP creates
a new hidden state. Thus, our transition probability matrix is dynamic.
Define q1, . . . , qt to represent our hidden state sequence up to time t, nij to
be the number of times we have transitioned from state i to state j, and
n0

i to be the number of times we have ever been in state i. Our probability
transition matrix is defined:

P (qt+1 = j|qt = i;n, αbot, αtop) =


















1
Zbot

nij we pick a pre-existing transition

1
ZbotZtop

αbotn
0
j we pick a new transition to a pre-existing state

1
ZbotZtop

αbotαtop create a new state and transition to it

where Zbot =
∑

j nij + θbot and Ztop =
∑

j n0
j + θtop

One of the nice properties of modeling transitions via hierarchical DP is
that DP generate power-law distributions. Our resulting HMM favor certain
transitions in a power-law fashion. In our case, the hidden states correspond

12Unlike Beal et al (2002), we do not reserve mass for a self-transitions. The DPs are
not hierarchical in the standard Bayesian modeling sense. See Teh et al. (2006)

17



to semantic states (like Barzilay and Lee (2004)). Thus it is reasonable to as-
sume certain sentence topic transitions are favored over others (preferential
attachment). Beal et. al. (2002) describe a similar formulation for emis-
sion probabilities; however, we insert our local entity grid as our emission
generator and thus their emission discussion is not relevant.

6.3 Combined Model - A Hierarchical Generative Document

Story

Our model combines the (global) Barzilay HMM model with the (local)
relaxed entity grid model into one fully integrated unified model. One ben-
efit of generative models is modularity and now we reap the benefits! As
discussed before, we can create a generative hidden Markov model whose
hidden states represent the semantic states of the sentence. Thus, one por-
tion of our model is governed by the transition of sentence topic through
the document. If our emission generator is a bigram add pseudocount lan-
guage model, we have a generative Bayesian formulation of Barzilay and Lee
(2004).

Instead, shown in figure 3’s graphical model, we split our emission func-
tion into two separate generative processes. First, denoted Ei on figure 3,
we generate all the known entities in the sentence the relaxed entity grid.
Since hidden topic states gain meaning through lexicalization, we add the
word token to the conditioning information of our entity grid model. This
is a sparse distribution. Accordingly, so we interpolate over the unlexicaled
entity grid model.13 Second, we generate the new entities, denoted Ni, and
non-entity words, denoted Wi, from a unigram Pitman-Yor language model
(see Teh 2006 for a thorough explanation of hierarchical Pitman-Yor lan-
guage models). Figure 3 shows a time-slice of our generative process given
the previous entities and the last sentence. Although generating the entire
sentence is separated into different generative processes, these generative
processes are not independent. The graphical model defines a structure of
independence and conditional independence. See Jordan and Weiss 2002 for
an excellent tutorial on inference and learning in graphical models (Bayesian
networks).

The graphical model defines a system of equations, which comprise our
model. In addition to defining a probability on documents (which we in-
terpret as a metric of document coherence), we optimize the parameters of
the inner processes by Gibbs sampling. Finally, we can optimize the values
of outer interpolation hyperparameters by Metropolis-Hastings Sampling.
Using the above graphical model (figure 3) as a guide, the following set of
generative processes define our model:

13It is possible to interpolate again over the entity grid with one less piece of Markov
history and so on until we are left with no context information. In practice, we found this
to have little effect.
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Figure 3: A graphical model representation of the generative process behind
one sentence

qi|qi−1, αbot, αtop ∼ iHMM(·)

∀r ∈ ~Ri∀ei,j ∈ ~Ki :

ei,j |r, ~Ei−1, . . . , ~Ei−h, lex(ej), kj , qi, θEG ∼ RelaxedEGrid(·; θEG)
~Wi, ~Ni|qi

~θLM ∼ PY(·|qi; ~θLM)

The relaxed entity grid model is slightly more complicated than we presented
above. In order to make the state information useful, we add the lexical word
of the entity to the conditioning information (lex(ej)). Whenever lexical
information is introduced, sparsity problems occur. Thus, we backoff to the
entity grid without conditioning on the current sentence state and lexical
item. The resulting smoothed equation is:

P (ei,j |ri, ei−1,j , . . . , ei−h,j , lex(ej), kj , qi; θEG) =
C(ei,j ,...,ei−h,j ,lex(ej),kj ,qi)+θEGP (ei,j |ei−1,j ,...,ei−h,j ,kj)

C(ei,j ,...,ei−h,j ,lex(ej),kj ,qi)+θEG

where P (ei,j |ei−1,j , . . . , ei−h,j , kj) is the backed-off relaxed entity grid model
discussed previously. This is similar to a two level hierarchical DP model.
The parameter, θEG, determines how often we create a new table. In other
words, it controls the influence of the parent distribution or the relaxed
entity grid model. This is equivalent to distributing pseudocounts by their
back-off probability.14 Finally, the Pitman-Yor language model generates
the non-entity words and new entities.

Now that we can calculate the probability of a document, how do we
optimize the parameters on our training corpus? Fortunately, the Dirichlet

14This may seem complicated (and it is) but after staring at the equations for long
enough, it should make sense. The benefit of this approach is that we obtain principled
optimized patterns relatively easily.

19



and Pitman-Yor processes are exchangeable, which allows us to use Gibbs
sampling to optimize and train the inner interpolation processes. To learn
parameter values from the training set, we first produce and seat all the
events from each document in the training set into our processes. There
are three different types of events, which correspond to the three generative
processes: new entities to the new entity language model, non-entity words
from the non-entity language model, and known entities from the entity
grid model. Each event is added to its corresponding bottom level process
and propagated through its parents to the hidden states. All events for a
sentence are linked into one event in the underlying hidden state transitions.
Its emission probability is the product of the probabilities of generating each
individual event in the sentence from its appropriate generative process (e.g.
known entities from the relaxed entity grid).

After all events are seated, we have an (informative) starting distribution
to initialize Gibbs sampling. Fortunately, the parent processes define how
their child processes create new tables (the backed-off distribution) and thus
Gibbs sampling amounts to reseating the child processes. As all of these
hierarchical processes have a parent distribution, we define an uninformative
prior distribution over the parameters of the root processes. We refine the
value of the hyperparameter by performing Metropolis-Hastings sampling.
This amounts to randomly accepting randomly proposed hyperparameter
values at a rate proportional to the ratio of the likelihood of all events
under the old and proposed values. Ultimately, we train our model by the
following steps:

1. Create all sentence events, e1, . . . , eT , from the training set.

2. In order15, seat all events into the appropriate bottom-level processes
and update their appropriate parent processes

3. For training iteration 1 to ...

(a) For i = 1 to T

i. Remove sentence ei from the iHMM processes

ii. For all observed events, ocur within ei

A. Remove ocur from its bottom process and all parent pro-
cesses

iii. Seat ei into the iHMM given the iHMM with all other events

iv. For all observed events, ocur within ei

A. Seat ocur into its bottom process according to it and all
parent processes without it

B. Update appropriate parent processes to include ocur

15Order in all of these steps does not matter as long as all events are visited infinitely
often
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(b) For all root processes,

i. Generate new proposed root theta, θ′, from an uninformative
distribution. θ′ ∼ Gamma(α, β)16

ii. Calculate the likelihood of all events under the model with
the current theta value, L(θ), and proposed new theta value
L(θ′)

iii. Sample x ∼ U(0, 1)

iv. θ ← θ′ if L(θ′)
L(θ) ≤ x

All steps within (a) compose one full Gibbs sampling step over the training
set. The steps within (b) compose one full Metropolis-Hastings step. After a
number of training iterations, we are guaranteed to converge on the proper
distributions in all of our processes. In practice, our model converges in
under ten iterations through the training set. (Elsner et. al. 2007)

6.4 Using Simulated Annealing to Impose Order

From the above discussion, we can train and learn parameters for our model
and calculate the probability a sentence ordering. Unfortunately, given “a
bag of sentences” (an unordered document), it is not trivial to find the
optimal ordering of the sentences given a metric that calculates the value
of a particular ordering. In fact, Althaus et. al. (2004) have shown that
the ordering problem is comparable to the Travelling Salesman Problem, is
NP-complete, and “any polynomial algorithm will compute arbitrarily bad
solutions on unfortunate inputs.” Thus, previous researchers have used dif-
ferent approaches to arrive at their solution: A* (Soricut and Marcu 2006),
reduction to TSP (Althaus et al 2004), and Viterbi-style approximation
(Barzilay and Lee 2004). Unfortunately, these methods use the fact that
the models are Markovian. Due to the known entities sets ( ~Ki), our model
is not Markovian. Instead, we use simulated annealing to approximate the
optimal ordering, which in practice rarely yielded estimated search errors.
(Elsner et. al. 2007) We follow Soricut and Marcu (2006) in defining an
estimated search error as when P (solution) < P (original document) (under
the model).

Simulated annealing is an approximation method of optimization for an
arbitrarily complex function. Given the current state, a neighborhood func-
tion, and a temperature schedule, simulated annealing randomly chooses
between greedy hill-climbing and a less optimal state as its next current
state. It picks less optimal next states randomly with probability propor-
tional to the ratio of the function’s values of the two states and the current
temperature of the system. In theory the method is guaranteed to converge
to the global minimum, although for most problems, this would take an

16Changing α and β has little effect. In our experiments we use α = β = 1
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exponential time temperature schedule (and thus we gain nothing by using
simulated annealing). (Russell and Norvig 2003) For the sentence ordering
problem, our two transition functions, γ1(·) and γ2(·), transform the cur-
rent optimal ordering by either swapping two random sentences or moving
a random sentence to a random location in the document (respectively).
Unfortunately, this approach is not scalable to large documents because the
amount of time needed to search the space to find optimal solution increases
dramatically. Additionally,the transition functions may no longer be appro-
priate for documents with complex paragraph structure. In practice, we used
the following steps to perform simulated annealing and find an approximate
optimal solution:

1. Initialize arbitrary ordering ~σcur = (σ1, . . . , σn)

2. For T = 1 to .1 by the temperature schedule T ← 0.99995T

(a) x ∼ U(0, 1)

(b) if x ≤ .75, γ = γ1(·)

(c) otherwise γ = γ2(·)

(d) ~σtemp = γ(~σcur)

(e) x ∼ U(0, 1)

(f) if T
P (~σtemp)

P (~σcur) ≥ x, ~σcur = ~σtemp

3. Approximate optimal ordering is ~σcur

7 Experiments

There are two standard evaluation tasks in the sentence ordering literature:
binary classification and sentence ordering. The binary classification prob-
lem explores the model’s success at choosing between the correct ordering
of sentences of a document from a random ordering of the same sentences.
Lapata and Barzilay (2005) show that human coherence judgments cor-
relate strongly with the original ordering of the document. In a human
judgment experiment, inter-subject agreement is substantially higher than
model-human agreement (0.768 vs. 0.322 at best). (Lapata and Barzilay
2005) Performance is quantified by the percentage of times the model can
distinguish correctly between the actual and random orderings. As the num-
ber of sentences in a document grows, the number of possible permutations
of the sentences grow exponentially.17 Accordingly, the number of possi-
ble permutations that preserve the Markov clusters described in the local
coherence section shrinks dramatically.

17Thus, we only test on a random subset of all the possible orderings of each document
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Remember from the local coherence section, the local coherence mod-
els calculate the probability of a sentence ordering from the syntactic role
transitions of entities. Thus, the model bases its judgement according to
whether or not Markov clusters occur. So, we expect local coherence models
to perform well on this task. Since the global models are not acutely tuned
to the Markov clusters, we do not expect excellent performance. Barzilay
and Lee (2004) do not report binary classification scores, but we evaluated
their model using our own test permutations. Finally, the combined models
should perform at least as well as the local coherence models. Unfortunately,
Soricut and Marcu(2006) do not report binary classification scores; however,
they do mention successfully reimplementing Barzilay and Lapata (2005)’s
entity grid model. If they optimize their mixture weights on binary classifi-
cation, they should do at least as well as Barzilay and Lapata (2005).18 It is
uncertain that the mixture weights optimized on the sentence ordering task
would perform well on the binary classification task. As shown in the last
section, our combined model is not trained with a particular task in mind.

The other standard task is imposing a sentence ordering on an unordered
bag of sentences. This task is more difficult than the binary classification
problem, particularly for the local coherence (specifically entity transition
based) models. The local coherence models can group sentences together,
but is indifferent to different orderings of sentences within the clusters and
the orderings of the clusters themselves within the document. Thus, we
would be surprised to see local models performing better than random. On
the other hand, global coherence models are specifically built with this pur-
pose in mind. Thus, we should expect their performance to be much better.
Finally, it is our hope that the unification of local and global coherence
models yields improvement on the sentence ordering task.

The Kendall’s τ metric evaluates proposed sentence orderings. Lap-
ata (2006) has shown that the Kendall’s τ metric reflects human coherence
judgements for different orderings of the same sentence. Intuitively, the
metric is proportional to the number pairwise swaps between the proposed
ordering of the document and the correct ordering. It ranges from −1 to 1
where 1 signifies the correct ordering and −1 signifies the complete opposite
ordering. Additionally, τ = 0 signifies random performance. It is evaluated:

τ(σ) = 1− S(σ)
N(N−1)

where S(σ) is the minimum number of pairwise swaps between
the correct ordering and σ and N is the number of sentences in
the article.

18set all mixture weights to zero except for the entity grid which is set to one
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Model τ Discr. (%)

[Barzilay and Lapata2005] - 90
[Barzilay and Lee2004] .44 74
[Soricut and Marcu2006] .50 -
Our Unified Model [Elsner et al.2007] .50 94

Table 1: Results for our two tasks on the AIRPLANE test corpus

7.1 Airplane Corpus

In the last few years, the majority of its experiments focus on the AIRPLANE

corpus . It is composed of 200 articles (using the same split as Barzilay
and Lapata (2005) into 100 training and test articles) from the National
Transportation Safety Board describing airplane crashes. Fortunately for
the sentence ordering problem, the articles are generally short without be-
ing trivial. The average sentence length is 11.5 sentences. We reiterate
similar complaints to Elsner et al (2007) regarding the strange introduction
sentence(s) of the documents in the corpus. Forty-six percent of the training
documents begin with the same two sentence preamble: “This is preliminary
information, subject to change, and may contain errors. Any errors in this
report will be corrected when the final report has been completed.” This
makes ordering the introduction of these documents trivial! Additionally,
many of the other documents start abruptly with technical jargon and un-
introduced definite noun phrase. It would be difficult for human readers to
order these articles. Despite these problems, one advantage of the corpus
is its small document length and formulaic style, which affords reoccuring
lexical and semantic patterns. We propose a movement to the Wall Street
Journal corpus used in the parsing literature. As the Wall Street Journal
contains longer articles, we need to develop new techniques that scale to
impose an ordering on a bag of sentences.

7.2 Results

Table 1 shows the results of the two models on the two different tasks on the
AIRPLANE test corpus. We see that our model performs at the state of the
art in both tasks. On one hand, the results of imposing a sentence-ordering
task are inconclusive betwen our model and Soricut and Marcu(2006)’s mix-
ture model. However, this does not invalidate the usefulness of our unified
model. First, our model is generative and thus can be easily incorporated as
a module of another model. Since one goal of these models is to aid multi-
document summarization models, this is an important advantage. Addition-
ally, our model uses a strict subset of the document information the mixture
model uses. For example, our language models are unigram and we do not
incorporate any of the IBM models. Thus, it is reasonable to expect that in-
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Model τ Discr. (%)

Naive Entity Grid .17 81
Relaxed Entity Grid .02 87

Unified w/ Naive EGrid .39 85
Unified w/ Relaxed EGrid .54 96

Table 2: Results for 10-fold cross-validation on the AIRPLANE training corpus
for different versions of our model

troducing our model into their mixture model would yield further improved
results. However, this is speculative; we did not attempt to incorporate our
model into their mixture model.

Table 2 illustrates the quantitative motivation for moving from the naive
to relaxed entity grid. Considering the two isolated local coherence models,
the Relaxed Entity Grid model provides an improvement over the Naive
Entity Grid model for 10-fold cross-validation on the AIRPLANE training
corpus. Surprisingly, the isolated Naive Entity Grid model performs much
better on the τ task. We believe this is due to the unrealistic preamble in a
large portion of the training documents. The Naive Entity Grid model can
use information from the preamble to base its judgment; however, under the
Relaxed Entity Grid model, most entities in the preamble are considered new
and thus ignored. Fortunately, the results of the unified models match our
predictions. The unification provides increased performance on both tasks
for both local models. Additionally, the gain of unifying the relaxed entity
grid and hidden Markov models is greater than any of our other unified
models. Although we are only beginning testing on the Wall Street Journal
corpus, we suspect this gain is domain-general. At this time, we do not have
results for the Wall Street Journal corpus, but we expect the same trend as
the AIRPLANE corpus.

8 Conclusion

Initially, we motivated a document coherence model that accounts for both
local and global constraints. In particular, we motivated an interest for
sentence ordering models that distinguish between different permutations
of the sentences in a document. Although most common language models
discriminate between different orderings of words, these models do not ac-
count for different sentence orders. Human readers have strong constraints
for sentence order (e.g., news articles) and thus sentence order is essential
in natural language generation tasks.

The first sentence ordering models focus on local constraints. Specif-
ically, they track the change of word usage from sentence to sentence (or
a Markov horizon of sentences). Although successful at distinguishing be-
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tween random and the original ordering of a document, local models do not
impose strong enough constraints to compute a coherent ordering of sen-
tences. Accordingly, global models attempt to capture the flow of sentence
topic through the document. They are successful at imposing coherent sen-
tence orderings. Unfortunately, these models have difficulty tracking local
constraints between entities. Hence, they lose obvious connections between
related sentences. It seems natural to combine these models into a unified
framework.

With this goal in mind, Soricut and Marcu (2006)’s mixture model for-
mulated document coherence as a mixture of local and global constraints.
Although successful at improving the isolated models, it does not capture
the interdependence between local and global models. Additionally, it can-
not be principally incorporated into the tasks they were motivated for. On
the other hand, the two main advantages of Bayesian generative modeling
address these two points: principled model interdependence and modular-
ity. Using the infinite hidden Markov model, Dirichlet Processes, and the
relaxed entity grid model, we reformulated the local and global models into
one unified generative process. This unified model performs at the state of
the art on both the sentence ordering and discrimination tasks. It is easy to
incorporate as a module in larger natural language systems. Additionally,
there are obvious directions for improving the models. Therefore, we pro-
vide a compelling, intuitive, combined framework for modeling document
coherence.
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