
Comparing Apples and Oranges: Using
Consensus Rankings for Decision Support

Jacob Baskin

May 10, 2008

Abstract
Conference program committees, graduate admissions committees,

and even many social Web sites, are in the business of ranking content.
However, they have too much content for everyone to review all of it.
It therefore becomes necessary to order content based on partial in-
formation. Simply comparing numerical scores is error-prone because
different reviewers see different portions of the content and score in
different ways.

This paper describes a local-search algorithm for the Linear Or-
dering Problem specifically designed for rank aggregation that can be
used to construct a consensus ordering of options based on reviewers’
relative preferences. We will then discuss a system for using this or-
dering to categorize options by quality and to identify conflict among
reviewers. Lastly, we will review the performance of this system on
data extracted from a faculty search and a number of small academic
conferences, and identify a number of features of reviewer behavior
that may serve as obstacles for decision support systems in this do-
main.

NOTE: this may not be the latest available version of this paper.
Please contact sk@cs.brown.edu to receive the most up-to-date in-
formation available.

1 Introduction

Whether deciding whom to hire, which applicants to admit to a graduate
program, or which papers to accept to an academic conference, there are nu-

1



merous occasions when people must make decisions as a group, but when it
is impractical for each group member to have reviewed all of the information.
In these situations, the group members must quickly establish which appli-
cants (or papers, or job candidates) deserve the most consideration from the
entire group, and which are likely to be rejected.

Groups normally accomplish this task by having members rate options,
and then comparing these ratings to determine which options are better. But
how is this accomplished? One common method is averaging the numerical
scores assigned to each candidate, and using these averages to represent each
option’s quality. However, this technique assumes that all reviewers mean
the same thing when they give a score of, say, 6 out of 10. Yet in real-
world situations, people may assign scores very differently from each other:
one reviewer may almost never give scores as high as 6, but there may be
another reviewer for whom 6 is below average. It is hard to tell whether these
differences reflect underlying discrepancies in how reviewers assign scores, or
whether they are the result of the options that one reviewer happens to have
seen being better or worse than those that another person scored.

This problem can be circumvented by only taking into account the rel-
ative preferences of each reviewer: which candidates they prefer to others.
Regardless of how high or low the actual scores are, it is clear that if reviewer
A gives candidate 1 a higher score than candidate 2, she prefers 1 to 2. Thus,
if we extract from each reviewer’s score data an ordering of the options he
reviewed, and find a way to aggregate these orderings, we can take all reviews
into account together without having to produce a potentially problematic
comparison of numerical scores.

Aggregating orderings—combining the relative preferences of multiple
people into a single “consensus ordering” in as fair of a way as possible—is the
very same problem addressed by voting theory. Accordingly, it has been much
studied, beginning in the 18th century with Borda [4] and Condorcet [14].
More recently, Kemeny [10] proposed a rule whereby the consensus ranking
should be chosen to minimize the number of violations: the number of cases
where the consensus ordering ranks Ci as better than Cj, but some reviewer
Rk prefers Cj to Ci.

The Kemeny rule has a number of desirable properties as a preference ag-
gregation function [19, 18]. However, it has one very important undesirable
property: it is NP-hard. Indeed, while there exists a polynomial-time approx-
imation schema for finding the Kemeny-optimal ranking in tournaments [11],
the general case is NP-hard to approximate better than 1.36. . . [9, 5]. Fur-

2



thermore, branch-and-bound methods to find optimal rankings cannot handle
more than 80-100 options [3, 2]; as conferences, jobs, and graduate schools
routinely have hundreds of applicants, a larger-scale method is required.

Even if we can find an optimal or near-optimal order, however, simply
supplying it to the user is not enough. Presenting such an order as the
“correct” ordering of the options would ignore number of important issues.
An option that has received few reviews, for instance, may have a highly
variable place in the ordering. Additionally, such an order presents only a
relative picture of the options’ quality: we do not know whether the 15th-best
option is “good” or not, only that it is better than the 16th-best, 17th-best,
and so forth. Lastly, if options are scored on multiple criteria, there may
be different orderings that must be integrated with each other. Thus, it is
necessary to manipulate the consensus order or orders to obtain a stable,
objective, and integrated view of options’ quality.

This paper presents both a novel local-search algorithm for finding near-
optimal consensus orderings and a strategy for using these orderings to pro-
vide decision support to committees tasked with reviewing large numbers
of submissions. We tested the local search algorithm against other heuris-
tic algorithms for solving the Linear Ordering Problem, both on existing
problem sets and on random problems designed to be similar to the data en-
countered in large rank-aggregation scenarios. Our algorithm achieves much
better solutions for large and hard problems than existing algorithms, most
of which have been optimized for quickly finding solutions to smaller, more
“well-behaved” instances; additionally, it solves most smaller problems to
optimality.

The decision support algorithm was also implemented in the Resume
job application management system and the Continue 2 conference man-
agement system [12], and evaluated using real-world data derived from the
Brown University Computer Science Department’s 2008 faculty, and from
four small conferences that used Continue 2.

2 Local Search Algorithm

We can use reviewers’ preference data to construct a weighted directed graph
G = (V, E), in which each vertex v ∈ V represents an option being reviewed,
and the edge from vi to vj has weight cij equal to the number of reviewers
who prefer i to j. Given this graph, finding the Kemeny-optimal ordering

3



becomes an instance of the Linear Ordering Problem (LOP), in which the
goal is to find a total order >o that minimizes

L(o) =
∑

i,j : i>oj

cij

Another formulation of this problem is to find the order that maximizes

U(o) =
∑

i,j : i>oj

cji

Since L(o) + U(o) represents the sum of the weights of all edges in the
graph, it has the same value for all >o, and these formulations are equivalent.
However, which formulation is chosen does affect how the results of heuristic
algorithms are judged. If L(o)

U(o)
is 0.2 as it is in some of the instances found in

the popular LOLIB problem set [17], then an algorithm that solves problems
to within 1% of optimality when judged using the U(o) formulation will solve
problems to 5% optimality when judged by the L(o) formulation. However,
problems arising from rank aggregation tend to have much smaller values
for L(o)

U(o)
, as reviewers tend to generally agree with each other, resulting in a

small number of “violations” relative to “non-violations”. Indeed, real-world
preference data from the Resume faculty application system shows L(o)

U(o)
values

as low as 0.015; this means that this same algorithm would be up to 66%
from the optimal L(o) value for this class of problems.

All results below will be L(o) values. This is opposed to most local-search
algorithms’ reports, which list U(o) values, but the “minimal-violations” in-
terpretation of this problem is the one that applies most to the particular
case of Kemeny-optimal ordering.

2.1 High-Level Algorithm

Our algorithm has the same structure as the variable neighborhood search
of Garcia et al. [6]:

O ← findLocalMax(randomOrder())
bestOrder← O
for i = 1 . . . numIters do

for k = 1 . . . kmax do
O ← diversifyk(O)
O ← findLocalMax(O)

4



if C(O) < C(bestOrder) then
bestOrder← O
break

else if C(O) > C(bestOrder) then
O ← bestOrder

end if
end for

end for

Our algorithm begins with a random ordering, and proceeds to a local
maximum. At every iteration, we then try to improve on that maximum by
performing a series of successively larger “diversification” moves, followed by
the finding of another local maximum.As soon as we reach a local maximum
better than the one where we started, the series starts all over again, with
the smallest diversification moves.

We improve on Garcia et al. are in two places: we have a novel technique
for finding local maxima, and we modify the diversification step to be more
appropriate for sparse graphs. These techniques result in major improve-
ments, especially on the particular problem instances encountered in rank
aggregation.

2.2 Finding Local Maxima: “Cascade”

Most attempts to find good local maxima for the linear ordering problem
have used a BestFit search, in which the algorithm examines each vertex,
and inserts that vertex in the position that results in the most improvement
of the objective function. When none of the vertices can be moved in a
way that improves the objective function, the algorithm terminates. While
this does not produce a very good heuristic for the linear ordering problem
on its own [16], many algorithms have used it to good effect for finding
improvements on solutions arrived at by other means. [8, 2].

Our algorithm improves on BestFit by performing the insertion moves in
an order more likely to result in a high local optimum. To do this, we use
cascadeMoveUp, shown below, and a similar cascadeMoveDown.

procedure cascadeMoveUp(p)
po ← p
co ← 0
for i = p− 1 . . . 0 do

5



ci ←The cost of moving the vertex at p to i
if ci ≤ co then

co ← ci

po ← i
end if

end for
if po > 0 then

cascadeMoveUp(po − 1)
cascadeMoveUp(po)

end if
end procedure

The intuition behind these moves is that the cost of switching the vertices
in po and po − 1 (or po + 1 in the MoveDown case) must be greater than 0,
or else po − 1 rather than po would be the optimal position for the vertex at
p. However, it is possible that moving the vertex in position po farther would
decrease the cost if the vertex at po−1 were not “in the way”. Thus, we first
try and move the vertex in po − 1 as far as we can, and then try once again
to move the vertex in position po.

We can combine these two moves into a heuristic for finding local optima,
by performing each of them on all vertices in order of their position:

procedure cascadeAll
repeat

cold ← C(O)
for i = N − 2 . . . 0 do

cascadeMoveDown(i)
end for
for i = 1 . . . N − 1 do

cascadeMoveUp(i)
end for

until C(O) = cold
end procedure

In practice, we have found that this move works much better than us-
ing the INSERT move alone, particularly on sparse matrices such as those
produced in rank aggregation. For real-world data, we have found that this
move produces results 75% closer to optimal on average than BestFit. On the
other hand, it also performs significantly more slowly than BestFit, as the
recursion results in each move examining the same vertices repeatedly. But if

6



we remember which vertices are “stuck”—already unable to move further—
and use this information to terminate the recursion early, we can achieve
a substantial speedup: with this optimization, Cascade takes only 50-75%
longer than BestFit, as opposed to over 200% longer without it.

2.3 Diversification: Adapting to Sparse Problem In-
stances

In a typical conference, job search, or social Web site, most pairs of options
have not been compared directly with each other. This means that the graph
of reviewers’ relative preferences will be very sparse. This poses a problem,
because it results in there existing many moves that, despite changing the
position of a vertex, do not substantially change the solution: if the only
result of a move is that vertices with no connection to each other are re-
arranged, then it is unlikely this move will result in the discovery of a new
local optimum.

Garcia et al. use a diversification step diversifyk which performs k random
moves in which a randomly-chosen vertex is placed in a randomly chosen
position other than its own. We modify this move by identifying, for a vertex
k, the vertices pred(k) and succ(k)—the closest vertices ordered lower than
k and higher than k, respectively, to which k is directly connected. Our
diversification step uses only random moves that switch relative order of k
and either pred(k) or succ(k).

2.4 Computational Experiments

We evaluated our algorithm against the real-world data derived from the
Brown Computer Science Department faculty search, against the instances in
LOLIB [17], against the “Random Type 2” instances generated by Campos
et al [1], and against a set of instances randomly generated to be similar
to real-world rank aggregation instances. these instances were generated
by simulating k reviewers each ranking p of n papers. Their rankings are
each set initially to be identical, but are then each perturbed by m random
INSERT moves. The rankings are then combined into an instance of the
linear ordering problem. For each of n = 300 and n = 400 we generated
both “sparse” instances (k = n/10, p = 30, m = 15) and “dense” instances
(k = n/5, p = 50, m = 20). We generated 10 each of these 4 types, for 40
instances in total.

7



On each of these instances, we ran four variants of our algorithm:

• VNS: our algorithm without the Cascade heuristic or the modifications
to the diversification step; essentially identical to the algorithm in [6].

• VNS-D: our algorithm with the modifications to the diversification
step.

• VNS-C: our algorithm with the Cascade heuristic.

• VNS-CD: our algorithm with both the Cascade heuristic and the mod-
ifications to the diversification step.

For each of these algorithms, we set kmax = 20, while Garcia et al.
set kmax = 10; we found that using a high kmax improved solutions for
rank-aggregation problems in particular. We ran each algorithm for five
seconds, rather than setting maxIters to a particular value; this allowed us
to determine whether the additional time taken by the Cascade heuristic is
put to better use than it would be by simply adding more iterations.

On LOLIB instances, each algorithm reached the optimal solution for
every problem, with the exception of VNS-CD, which returned a solution
2 below optimal on be75np.

On Random Type 2 instances, our modifications to the diversification
step made no substantial differences, but the Cascade heuristic improved
the algorithm. The numbers below show the average scores of each type of
algorithm on each set of instances, the average distance from the optimal
solution, and the number of best solutions.

8



Size 100 Size 150 Size 200

VNS 111569.36 385614.64 928062.52
D: 0.00 D: 1.92 D: 8.00
Best: 25 Best: 12 Best: 8

VNS-D 111569.92 385616.64 928064.28
D: 0.56 D: 3.92 D: 9.76
Best: 23 Best: 8 Best: 9

VNS-C 111569.36 385614.56 928060.52
D: 0.00 D: 1.84 D :6.00
Best: 25 Best: 13 Best: 7

VNS-CD 111569.52 385613.52 928060.92
D: 0.16 D: 0.90 D: 6.40
Best: 24 Best: 18 Best: 6

For the random rank-aggregation instances, the Cascade heuristic con-
sistently improved on BestFit. The modifications to the diversification step
resulted in slight improvements; however, surprisingly, these improvements
were greater for dense instances than for sparse instances. Additionally, the
VNS-D algorithm was the worst of the four on three of the four sets of
problems; it seems that the Cascade heuristic and the diversification changes
interact positively, but the diversification changes alone do not improve the
solutions.

400 Dense 300 Dense 400 Sparse 300 Sparse

VNS 2605.2 1589.6 539.5 446.5
D: 14.2 D: 3.8 D: 3.7 D: 1.2
Best: 1 Best: 0 Best: 1 Best: 6

VNS-D 2601.6 1593.2 541.1 448.2
D: 10.6 D: 7.4 D: 5.3 D: 2.9
Best: 1 Best: 1 Best: 0 Best: 2

VNS-C 2596.5 1587.0 537.0 445.9
D: 5.5 D: 1.2 D: 1.2 D: 0.6
Best: 4 Best: 5 Best: 5 Best: 7

VNS-CD 2595.8 1586.9 536.4 446.7
D: 4.8 D: 1.1 D: 0.6 D: 1.4
Best: 4 Best: 5 Best: 6 Best: 5

For the problems encountered by our decision-support system, our algo-
rithm provides a real improvement over “standard” VNS. For the “Fit” data

9



set, which was sparser, VNS-CD performed best (and notably reached the
best solution which much more regularity than the other algorithms), while
for“Potential”, both VNS-C and VNS-CD were roughly equal.

Potential Fit

VNS 328.89 308.33
D: 3.6 D: 4.8
Best: 1 Best: 0

VNS-D 328.11 308.78
D: 3.3 D: 4.4
Best: 1 Best: 1

VNS-C 325.67 306.89
D: 0.7 D: 3.1
Best: 5 Best: 1

VNS-CD 326.11 305.56
D: 1.0 D: 2.0
Best: 4 Best: 4

As can be seen above, the VNS-CD algorithm, while it appears to show
gains over VNS for hard problems in general, succeeds especially in the
domain of rank aggregation. In fact, this is the only domain in which the
changes made to the diversification step are of any use; in other domains,
our diversification step sometimes results in a worse heuristic. But in the
particular area of Kemeny rank aggregation, both these modifications and
the Cascade heuristic are effective.

3 Categorization Algorithm

While the VNS-CD algorithm yields a good ordering of the vertices, just
finding a consensus ordering is not enough. This ordering may have a num-
ber of problems if used as direct a guide to which options ought to be picked.
First, there may be some options that have very few reviews, and thus are
not particularly constrained in their position within the order. Such op-
tions may be ranked very high, even though we are not necessarily justified
in labelling them “good”. Moreover, there may be multiple, equally good
consensus rankings: the exact order of the options may be determined by
chance. Lastly, this ranking is not linked to any judgements of the options’
independent “goodness”. There may be one case where the pool of options

10



contains a large number of good choices, and another in which the options
to choose from are mostly quite poor. We would like to be able to indicate
that more of the choices are worthy of consideration in the first case than in
the second case.

An ordering is not the ideal tool for decision support for other reasons.
Since the top options will ultimately be further reviewed in any event, the
exact order—which is in any event the product, in part, of random chance—
does not matter as much as the general position of the vertices. Additionally,
when integrating reviewers’ preferences in multiple different areas—a faculty
candidate may be judged in both teaching and research ability, for example—
we will not have a single consensus ordering, but a different one for each area.
If we could find a way to produce a reliable and consistent picture of which
vertices are good and which are bad, taking into account relative preferences
and beliefs about objective quality with respect to multiple criteria, this
would be much more useful than the original orderings.

To produce a categorization using our consensus ordering, we first attempt
to move unconstrained vertices to better positions. This is accomplished by
using the succ(p) and pred(p) functions defined in section 2.3. Since moving
a vertex to any position in the order between its predecessor’s position and
its successor’s would not affect the cost, all that our consensus ordering really
tells us about a vertex’s position is that it should be below its predecessor
and above its successor. Thus, we create Oh, an order sorted by succ(p)
which we use to look for good vertices, and Ol, an order sorted by pred(p),
to use when looking for bad vertices.

The next step is anchoring each consensus ordering. To accomplish this,
we return to the “raw” scores. Our goal is to figure out approximately which
numerical score is equivalent to which position in the sorted order. Thus,
we compute a moving average of scores—the average of the average scores
within a given region in the ordering. Looking at vertices’ average scores in
isolation would result in the same biases we have set out to correct; on the
other hand, we expect average scores to be predictive of quality most of the
time. Thus, by taking a moving average, we can use the consensus ordering
while still getting a rough idea of the score to which a given position in the
ordering corresponds.

Using user-supplied cutoffs cgood and cbad, we then find the “cutoff ver-

tices” in Oh and Ol—the first vertex in Oh with a moving average score below
cgood, and the first vertex in Ol with a moving average score above cbad

11



Every vertex that is orderd before these vertices in Oh and Ol, respectively,
are labelled “good” and “bad”.

The next step is identifying vertices that are “in conflict”. To accomplish
this, we look at all “good” vertices v ∈ G, and calculate the percentage
of preferences that compare v and some non-“good” vertex u in which u is
ranked above v:

conflict(v) =

∑
u6∈G cuv∑

u6∈G cuv + cvu

If this value exceeds the cutoff value cconflict, v is labelled as “good but
conflicted”. A similar technique is used to identify “bad but conflicted”
vertices.

Lastly, we combine the categories obtained from the rankings for each of
the different criteria. For a vertex to be considered good overall, it must be
categorized as good for each criterion; a similar rule applies for bad vertices.
To be conisdered conflicted, however, a good (or bad) vertex need only be
identified as conflicted on a single criterion.

3.1 Algorithm Effectiveness

Using the data acquired from Resume for the Brown Computer Science De-
partment’s faculty search, we conducted qualitative blind comparison studies
in which the results of this categorization algorithm were compared with a
categorization that used only the unadjusted average scores. The techniques
were each rougly as effective at identifying good applicants. Evaluating our
algorithm’s ability to identify bad applicants was difficult since such appli-
cants tend to be discussed less and thus be less well-remembered; however,
none of the applicants that our algorithm identified as bad were invited for
interviews. Our algorithm was very successful at identifying which applicants
were conflicted, within both the “good” and “bad” groups.

Many of the difficulties that arose in Resume with our decision support
technique related to applicants with only a single review; not only did such
applicants have a tendency to be handled poorly by our algorithm, but we
also hypothesized that their unreliable position also affected applicants with
more scoring information. When we excluded from our algorithm all appli-
cants with fewer than two scores in any category, the accuracy and stability
of our algorithm vastly increased. On the other hand, it led to no information
being provided for many applicants, particularly low-scored ones.

12



Excluding the least-reviewed applicants also makes the data in Resume
more like a conference situation, where virtually all papers have three or more
reviews. We tested our categorization algorithm using data from a number of
conferences that used Continue 2 with “Identify the Champion” [15] scoring.
However, it is important to note that the number of papers ranked as “good”
or “bad” was very dependent on the score cutoffs used; which cutoffs were
effective varied by conference. Some cutoffs would produce zero “good” or
zero “bad” papers for one conference, even though they produced reasonable
breakdowns for others. This may be a result of the small range of scores
offered by Identify the Champion, or it may be the case that deciding how
many applicants to select as “good” and as “bad” using score-based cutoffs
is not particularly effective.

To incorporate review information as fully as possible, we incorporated
reviewers’ expertise ratings into our algorithm. If reviewer r prefers paper
a to b, and has experience ea for a and eb for b, we weight the reviewers’
preference by min(ea, eb). We assigned numerical values of 3, 4, and 5 to
the three different experience levels specified in [15]. The intention is not
to discount reviews by non-experts, but to ensure that if there is a direct
disagreement between an expert and a non-expert, the expert will win.

We found that our algorithm was slightly worse at identifying which pa-
pers would be accepted than the “Identify the Champion” scoring system.
While we never identified an accepted paper as “bad”, we occasionally iden-
tified as “good” papers that would go on to be rejected. However, our al-
gorithm labeled more papers as “good” or “bad” than were given scores of
A and D; for papers to which no reviewer gave either of these ratings, our
algorithm correctly identified which papers would go on to be accepted 80%
of the time, which provided an improvement over the minimal information
otherwise available.

It is worthwhile noting, furthermore, that these conferences do not rep-
resent the target environment for our decision support technique. All four
conferences used for evaluation were small (between 10 and 36 submissions),
and all four used the scoring system designed for “Identify the Champion”;
our technique is designed for conferences with many more submissions, in
which accpeting all A-rated papers may not be an option; it is also intended
to be used with a scoring system with more granularity.

13



4 Real-World Scoring Behavior

In this section, we list some observations about the ways in which reviewers
used the Resume scoring system, and discuss how these properties are likely
to have affected the decision support algorithm.

Open Reviews In the Resume reviewing system, unlike those of most
conferences, reviewers are not assigned to particular applicants, but are free
to choose whom they review. This is a consequence of different domains:
whereas reviewers in conferences are expected to arrive at their opinions
only by reading the materials given, outside information is encouraged in the
setting of a faculty search. Thus, as any reviewer may have information to
contribute about a given applicant, reviews are left “open” to all. Addition-
ally, reviewers may refer applicants to other reviewers if they feel a particular
perspective or type of knowledge is needed; for instance, they may tell a re-
viewer about an applicant in their field. This results in a variable level of
review coverage: some applicants receive many reviews, others receive few.
This is one of the factors that results in the particular “sparseness” of the
preference graph in this instance. Even if there are a large number of reviews,
they will probably not be distributed evenly among all candidates.

Unscored Applicants Some applicants who are judged to be clearly “be-
low threshold” or “out of area” for a given department are not given scores
at all. This means that they are free to move anywhere in the ordering with-
out affecting its cost. We address this particular issue in our categorization
scheme: becuse we order vertices by their predecessors and successors rather
than just using their supplied position, these applicants will never be judged
as either good or bad. When we excluded applicants with too few scores,
these are removed even before any ordering takes place, thus alleviating the
problem completely.

Best-of-the-Worst Applicants Reviewers in the Brown Computer Sci-
ence Department faculty search rated applicants using both a “Faculty Po-
tential” scale and a “Goodness of Fit” scale. Reviewers were also permitted
to not assign a value to one or the other of the scores if they chose not to.
This led to some reviewers using the “Goodness of Fit” scale when they be-
lieved an applicant was such a bad fit that this alone should disqualify them.

14



Accordingly, the applicants to whom these reviewers gave their highest fit
scores were not good at all, but were rather the “best of the worst”. When
combined with the poor review coverage for certain applicants, particularly
bad ones, this led to some applicants—those who only got “best of the worst”
fit scores—appearing very high in the consensus ranking for goodness of fit.
This was partially addressed by the predecessors-and-successors scheme in
the categorization algorithm, but some of these applicants were in fact con-
strained enough by the even worse fit scores given to other applicants that
some of them were categorized as “good” based on their fit scores. Exclud-
ing applicants with too few scores fixed this problem entirely, as “best of the
worst” applicants had only one “fit” score.

Counterpoint Reviewers Some reviewers mainly provided “counterpoint”
reviews for highly-ranked applicants, in which they balanced overwhelmingly
positive sentiment with questions and concerns. Though such reviews were
generally accompanied by low scores, these scores did not necessarily indicate
that the reviewer disliked the applicant, merely that negative information was
being provided. This demonstrates a social aspect of review scoring that we
found to be very important in Resume: scores do not just indicate relative
preferences, but rather function as a richer means of communication to other
reviewers. On the other hand, the relative scores reviewers give are generally
consistent with their preferences, even if they are not given solely as a way
of expressing these preferences. In this case, since reviewers who provided
mostly “counterpoint” reviews tended to give very few (if any) high scores,
our algorithm dealt with such reviews very nicely: relatively high “coun-
terpoint” reviews did not affect the position or the category of the reviewed
applicant, but lower reviews by the same reviewers did, as these lower reviews
did likely indicate a preference against the applicants in question.

In general, despite the poor coverage resulting from the lack of assigned
reviews, our algorithm performed well on data from Resume. Particularly
when applicants without enough scores were excluded from the ranking, it
managed to overcome many potential problems arising from how reviewers
used the scoring system throughout the decision-making process.

15



5 Related Work

Cook et al. have previously examined the problem of creating a consensus
ranking from those of individual reviewers [3]; a branch-and-bound algo-
rithm is proposed that results in very fast optimal solutions for low-noise
instances with up to 60 elements. By using a heuristic local-search algo-
rithm, we sacrifice the ability to obtain an optimal solution for increased
scalability; our algorithm is capable of handling much larger problems in a
reasonable amount of time. We also address the problem of unreliable con-
sensus rankings, allowing our system to be more robust and to provide more
dependable information. Additionally, by returning a categorization rather
than an ordering of the input elements, our system supports its users in
their decision-making process, rather than simply attempting to return an
“optimal” answer. Lastly, the procedure designed by Cook et al. is meant
to be used in concert with their allocation scheme for peer reviews, which
is not always practicable, especially in similar domains such as faculty and
graduate-school application screening where reviewers must be given the op-
portunity to rate the applicants about whom they have personal knowledge.

Another approach to this problem was demonstrated by Hasan et al. [7] in
the domain of trust recommendation. This approach replaces each score with
its percentile—instead of revealing a score of 8/10, say, one would learn that
a given reviewer ranked an option above 75% of the others she reviewed.
While this approach is much computationally simpler, ours solves a num-
ber of problems that would plague this approach if applied to conferences,
searches or similar situations. For instance, Hasan et al. assume that a per-
son’s “medium” score is reflected by the median of their observed scores. If
a reviewer rates mostly good or mostly bad options, this may not be the
case; as mentioned in section 4, we have encountered such behavior in real
situations, with “counterpoint” reviewers. Additionally, this approach may
obscure useful information that can be uncovered by rank aggregation; for
instance, if we know that A is better than B and B is better than C, our al-
gorithm will always (in the absence of conflicting information) place A above
C, while this is not necessarily the case when using percentiles.

Identify the Champion [15] is a pattern language for co-ordinating the
peer review process; among its components is a scoring system designed
to reveal which reviewers are willing to “champion” papers at the program
committee meeting. While our system uses scores in a different way, there is
no reason why other components of the Identify the Champion system could

16



not be combined with our algorithm. Identify the Champion can also be
used to design the prompts associated with the scores offered to reviewers.

Alternate Local Search Algorithms Other local search algorithms for
the Linear Ordering Problem have been proposed, using metaheuristics such
as tabu search [13], scatter search [1], and simulated annealing [16]; Huang
and Lim have also developed a genetic algorithm for the Linear Ordering
Problem [8]. However, most of these algorithms were designed for instances
such as those encountered in the Triangulation Problem for Input-Output
Matrices in economics; indeed, the popular LOLIB library of sample in-
stances for the linear ordering problem are derived entirely from this source,
and tend to be both smaller (60 elements or fewer) and denser than the
problems encountered in our domain. Our algorithm is designed specifically
for large, sparse problem instances, resulting in much improved behavior for
rank aggregation in particular; in addition, the introduction of the “Cas-
cade” method of finding local optima results in improvements over existing
algorithms on all problems.

6 Conclusion and Future Work

This paper has presented an improved local search algorithm for the linear
ordering problem based on variable neighborhood search. We have discussed
the Cascade procedure, which generates significantly better local optima than
the BestFit heuristic used in the past. This procedure, along with a strat-
egy for more effectively diversifying solutions in “sparser” problem instances,
yields major improvements, when integrated into VNS, particularly for prob-
lem instances arising from rank-aggregation.

While the Linear Ordering Problem has been studied extensively in the
context of combinatorial optimization, these improvements demonstrate that
there are still many possibilities to explore. Since the majority of research
has focused on problem instances from domains other than rank aggregation,
the work of producing algorithms tuned to this particular area has only just
begun. Moreover, while many different local-search heuristics have been
proposed, there has been very little research on finding neighborhoods for
local search that go beyond the simple INSERT move.

We also discussed a decision-support algorithm that uses the consensus
ordering produced by this local search procedure to help find which of the op-

17



tions under review are good and which are bad, as well as to identify conflict
between reviewers over particular options. In the difficult case presented by
data from the Resume job application system, this algorithm particularly
excels at identifying conflict. For small conferences, while this algorithm does
not improve the ability of “Identify the Champion”’ [15] to reliably identify
papers that will be accepted, it does give more useful information about
papers in the middle of the pack. Combining our ranking approach with
“Identify the Champion” may result in a very effective system, and would
be an interesting direction for future research on this topic.

Much more empirical data is required to give a good assessment of the ef-
ficacy of this decision support algorithm in comparison to less-sophistocated
methods; this data will be created as the algorithm is used in the Continue 2
system. It may be possible to design effective decision-support algorithms for
this task that do not rely on solving the NP-hard Linear Ordering Problem to
find a consensus ordering. Additionally, finding better ways of reducing the
variability of consensus rankings—perhaps identifying and extricating dis-
connected components of the preference graph, for instance—could result in
algorithms that are based on Kemeny rank aggregation being less susceptible
to strange patterns of reviews such as those discussed in section 4 above.

References

[1] V. Campos, M. Laguna, and R. Mart́ı. Scatter search for the linear
ordering problem. pages 331–340, 1999.

[2] I. Charon and O. Hudry. A branch-and-bound algorithm to solve the
linear ordering problem for weighted tournaments. Discrete Appl. Math.,
154(15):2097–2116, 2006.

[3] W. D. Cook, B. Golany, M. Penn, and T. Raviv. Creating a consensus
ranking of proposals from reviewers’ partial ordinal rankings. Computers
& Operations Research, 34(4):954–965, 2007.

[4] J.-C. de Borda. Mémoire sur les élections au scrutin. Histoire de
l’Académie Royale des Sciences, 1781.

[5] I. Dinur and S. Safra. The importance of being biased. In STOC ’02:
Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, pages 33–42, New York, NY, USA, 2002. ACM.

18



[6] C. G. Garcia, D. Pérez-Brito, V. Campos, and R. Mart́ı. Variable neigh-
borhood search for the linear ordering problem. Comput. Oper. Res.,
33(12):3549–3565, 2006.

[7] O. Hasan, L. Brunie, J.-M. Pierson, and E. Betino. Elimination of
subjectivity from trust recommendation, 2008.

[8] G. Huang and A. Lim. Designing a hybrid genetic algorithm for the
linear ordering problem. In GECCO, pages 1053–1064, 2003.

[9] R. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, NY, 1972. Plenum Press.

[10] J. Kemeny. Mathematics without numbers. Daedalus, 88:571–591, 1959.

[11] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In
STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pages 95–103, New York, NY, USA, 2007. ACM.

[12] S. Krishnamurthi, P. Hopkins, J. McCarthy, and J. Baskin. Continue
2.0 conference management system, 2008.

[13] M. Laguna, R. Marti, and V. Campos. Intensification and diversification
with elite tabu search solutions for the linear ordering problem. Comput.
Oper. Res., 26(12):1217–1230, 1999.

[14] Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet. Essai
sur l’application de l’analyse á la probabilité des décisions rendue á la
pluralité des voix. Paris: Imprimerie royale, 1785.

[15] O. Nierstrasz. Identify the champion. In N. Harrison, B. Foote, and
H. Rohnert, editors, Pattern Languages of Program Design, volume 4,
pages 539–556. Addison Wesley, 2000.

[16] J. Petit. Experiments on the minimum linear arrangement problem. J.
Exp. Algorithmics, 8, 2003.

[17] G. Reinelt. Lolib, 1997.

[18] D. Saari and F. Valognes. Geometry, voting, and paradoxes. Mathemat-
ics Magazine, 71(4):243–259, 1998.

19



[19] H. Young and A. Levenglick. A consistent extension of condorcet’s elec-
tion principle. SIAM Journal on Applied Mathematics, 35(2):285–300,
1978.

20


