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2 INTRODUCTION

1 Abstract

As the content of the Internet is brought to mobile devices with small screens of varying aspect

ratios, a technology is needed to resize images to fit these displays. Seam carving is one such

technology. It uses the content of an image to remove thin strips of pixels, called seams, to both

shrink images and change their aspect ratios. One difficulty with the technique, however, is that as

seam carving progresses, distortions accumulate that eventually make the image unrecognizable.

I proposed an experiment to compare seam carving to other techniques for resizing images, by

determining the size at which an image ceased to be easily recognizable. I then proposed an

algorithm to automatically predict this size, and used the results from the experiment to evaluate

that algorithm. The data from this study suggested that by automatically detecting when an image

becomes unrecognizable, it is possible to shrink the width of an image using seam carving until

this occurs, and then continue using uniform scaling. This method produced a superior result over

seam carving alone.

2 Introduction

Seam carving is a method for resizing images, with consideration of their content, to adapt them

to displays of varying sizes and proportions. In the process, small distortions may result from

changes to aspect ratio or information that is removed in order to fit the image within the desired

dimensions. The method iterates over the image, shrinking it by either one row or column at a

time, so that these small distortions accumulate and eventually make the image unrecognizable.

I sought to determine when this change occurs, and whether it is possible to automatically judge

when a seam carved image becomes unrecognizable, either across all humans or on a per-human

basis. This information could potentially allow algorithms to combine seam carving with less

disruptive techniques such as seam carving in order to resize and re-proportion images without

losing recognizability.

Applications of seam carving are numerous, but let us consider one example. As the content
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2 INTRODUCTION

of the Internet begins to appear on mobile devices, such as the Apple iPhone (Apple Computer,

Cupertino, CA), web browsers must adapt images designed for desktop monitors to much smaller

displays. Doing so poses two challenges: first, mobile displays have much smaller dimensions

than their desktop counterparts, and second, the aspect ratios of a display and of those images may

differ. An intelligent solution will not only shrink the image, but also fill the entire display rather

than leave some portions blank, and will not arbitrarily crop the image, which can potentially lose

important information. Seam carving offers a solution to both these problems by considering the

content of an image while adapting it to an arbitrary size and width.

Seam carving achieves this goal by shrinking the size of an image by one row or column at a

time. It then iterates until it reaches the desired dimensions. At each step, seam carving calculates

the energy of every individual pixel using an energy function, usually the image gradient. Next, it

calculates the minimum weight seam in the image and removes it. A seam is a chain of pixels, one

from each row (to shrink the width) or column (to shrink the height), in which each pixel either

neighbors two other links or is at the edge of the image. The weight of a seam is the sum of the

energies at each pixel it contains. The authors of the seam carving technique, Avidan and Shamir

(2007), suggested that by removing seams, seam carving dramatically increases the average energy

across the image. This is very different from uniform scaling, where shrinking the image has little

effect on the average energy.

Distortions resulting from seam carving are inevitable, both because the algorithm alters the

aspect ratio of the image and because it removes information. Fortunately, small distortions are

not always significant. Most images on the web serve only to convey a particular idea, which these

small distortions do not interrupt. However, large disruptions will occur if images are seamed too

far, causing subjects in the images, such as people and faces, to become misshapen and not easily

recognizable. The degree of this distortion varies greatly between images, and is highly dependent

upon their content. For instance, images that are highly condensed become more distorted than

other types of images (Avidan and Shamir, 2007). These types of images may be more successfully

resized by uniform scaling. One way to distinguish between these is for the author of a web page
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to insert a tag into the HTML code that specifies the resizing method to perform. Another is by

detecting this automatically.

This experiment examined whether there exists a certain point at which a seam carved image

become unrecognizable. Additionally, it related this point to the average energy across the image.

The results showed that such a correlation exists, and subsequently, that the average energy is

useful in predicting this point. I proposed both an experiment to determine when an image becomes

unrecognizable and a prediction tool which uses the average energy across the image to predict the

point at which this change occurs.

3 Methods

3.1 Experimental setup

Participants.

The participants in this study were all undergraduate and graduate-level students at Brown Univer-

sity, ages 20 to 30, and 22.7 years old on average. Twelve of the students were female (60%), and

eight male (40%). This age demographic represents some of the primary users of the Internet, and

is therefore very applicable to many target applications of seam carving. Students all were given

informed consent per Brown IRB guidelines and were compensated for their participation.

Stimuli.

Internet-based applications also motivated the selection of test images, which were taken from the

New York Times website (http://www.nytimes.com). Fifty images were selected from many

different sections of the site and included images of people, portraits, landscapes, and some car-

toons. The dimensions of these images varied, though most were approximately 600 pixels wide

and 300-400 pixels tall. The smallest image was 190 pixels wide by 240 pixels tall, and the largest

was 575 pixels wide by 500 pixels tall.
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3.1 Experimental setup 3 METHODS

Figure 1: Screenshot of the experimental window

Design.

Because seam carving is too computationally intensive to be performed in real time, images were

carved in advance and the results were compiled into a high-quality movie. Participants used

a slider to display a particular frame from the movie; positions towards the left selected wider

images while positions towards the right selected thinner images (Figure 1). Uniform scaling was

performed in real time. All images were displayed on a web page using the Apple QuickTime

plug-in (Apple Computer, Cupertino, CA).

Each of the fifty images was displayed three times using techniques of seam carving, scaling

and a combination of both. The order of the images and of the techniques was randomized; how-

ever, the combination technique always came after seam carving. The starting position of the slider

was also randomized uniformly across the second and third quartiles of the available widths. This

was intended to reduce bias by the subjects that may be caused by viewing the entire image first.

Since applications of the technique may not begin with the original image, this was considered a
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more accurate testing method. Students were then instructed, “Adjust the movie until the image is

as small as possible while still being easily recognizable. With a quick glance, you should be able

to get the gist of the photo without being distracted by misshapen elements.” I called the width at

which this occurs the fail width of an image.

I decided that only the width of the image would be seamed, in order to change the aspect

ratio and therefore necessitate some distortion to the image. In seam carving, this distortion results

from the removal of seams, while in uniform scaling, objects appear elongated. The decision also

focuses the problem at hand on changing the aspect ratio to match that of a display, rather than

simply reducing the size of the image.

3.2 Seam carving

The seam carving implementation used for this experiment was designed to be similar to that

described by Avidan and Shamir (2007). The energy function was a measure of the gradient at

each individual pixel (Efford, 2000, 164). The image was converted to the perceptually uniform

LAB color space (Durrett, 1987, 96-9). Then, the vertical and horizontal gradients were determined

using Prewitt kernels (Efford, 2000, 164-5) over a 3 × 3 pixel neighborhood for each color channel

and summed together. The absolute values of each gradient were added together to create the final

energy value.

A seam was considered to be a chain of individual pixels, one from each row of the image.

Linking pixels were restricted to those within a one-pixel radius of each other. The minimum seam

across the image was computed using dynamic programming, building seams from one side of the

image to the other. The minimum seam was then removed. In the case that multiple seams shared

a minimum weight, one of these options was selected at random. This avoided bias towards seams

from a particular section of the image. To remove subsequent seams, additional iterations were

performed and both the gradient and seams were recomputed each time.

This seam carving implementation did not employ any smoothing technique after seaming the

image. Avidan and Shamir (2007) suggested that seam carving could be used in combination with
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a Poisson reconstruction to reduce the sharp contrast observed where seams had been removed. For

the purposes of this experiment, I determined that smoothing would not have a significant effect

on the recognizability of the images.

4 Results

4.1 Comparing techniques: seam carving vs. uniform scaling

The results of this experiment provided a fail width, the smallest width at which the image was

easily recognizable, for each image with each of the three techniques: seam carving, uniform

scaling, and a combination of both. The average width of the original images was 576.7 pixels, and

the average fail width for seam carving was 311.4 pixels (a 46.0% reduction), sd = 151.0, 201.5

pixels for uniform scaling (a 65.1% reduction), sd = 98.7, and 204.9 pixels for the combination

technique (a 64.5% reduction), sd = 102.8 (Table 1). The deviation in these results was remarked

to be relatively large. This suggests that images tend to become unrecognizable very gradually, and

that an algorithm attempting to predict this point may be able to return many acceptable values.

Based on the results, uniform scaling of an image had a clear advantage over simple seam carv-

ing, evidenced by the fact that images remained easily recognizable at smaller widths when calcu-

lated with scaling than with seam carving. To determine the statistical significance of the results,

a matched-pair within subjects t-test was computed between the data from seam carving and from

uniform scaling, t(19) =−10.58, p < .001. However, in the test using the combined method, sub-

jects were able to continue reducing the widths of already maximally seamed images by using uni-

form scaling, producing a significant advantage over seam carving alone t(19) =−8.05, p < .001.

This final result was not significantly different from uniform scaling alone, t(19) = 0.53, p = .603.

To determine the cause of the deviation in the results, the standard deviation on a per-subject

basis was computed for seam carving. Participants’ answers for each image were computed as

a percentage of the average fail width. For instance, if an image had an average fail width of

400 pixels but a particular participant determined that the fail width was 350 pixels, the answer is
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recorded as 350/400 = 87.5%. The average standard deviation in these percentages was 23.0% for

seam carving. This deviation is far less than the 39.9% observed across the group, indicating that

subjects had individual preferences or definitions of the recognizability of an image that were con-

sistently either smaller or larger than the average for the general population. This suggested that it

may be possible to tailor a prediction of the fail width to individual users for optimal performance.

4.2 Predicting the usefulness of seam carving

The goal of this experiment was to determine whether the average energy across an image could be

used to determine when an image undergoing seam carving was no longer recognizable by human

observers. This study considered the average energy across the image, the change in the average

energy during seam carving, and the percentage change as three possible measures of the images

through which this point could be determined. Evidence from the seam carved images showed

that as an image’s width shrunk, the average energy across the image increased continuously.

Therefore, given a threshold value, it was possible to stop shrinking the size of the images at the

last width for which the average energy (or change in average energy, percent change, etc.) was

less than or equal to the threshold. This was the predicted fail width.

I considered the accuracy of a particular threshold the number of images for which the fail

width was greater than or equal to the average result of the human experimental data minus the

standard deviation for that image. I calculated the residual by averaging the square of the difference

between each predicted fail width and the corresponding empirical fail width, and then taking the

square root. I decided that the optimum threshold value would be the value for which the average

residual was minimized and the accuracy was approximately 98%. This accuracy would indicate

that only one image out of fifty was too small to be easily recognizable within the range of standard

deviation.

The most successful threshold I obtained to match the entire set of images and empirical data

was when the percent change in image width was used as a measure. This value was 43.67%, with

an accuracy of 94.0% and average residual of 79.31 pixels. This average residual was significantly
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less than the standard deviation of the experimental results, and represented a viable result for real-

world applications. The next-best threshold was when change in average energy over the image

was used as a measure, with the threshold set at 10.22, providing an accuracy of 96.0% and average

residual of 83.08 pixels. Thresholds for several other measures appear in Table 2, and the graph of

their residuals appears in Figure 2.

I also validated the prediction method using a jackknife procedure (Agency, 2008). Rather than

using the results from all images and all participants, I withheld one image, subject, or both at a

time and then optimized the threshold. Finally, I averaged together the thresholds, accuracy and

residuals obtained. This technique ensured that the thresholds would generalize better to images

and participants besides those included in this experiment. The statistics obtained confirm that the

percent change in image width and change in average energy over the image provide very good

predictors of the fail width.

5 Discussion

Automated seam carving is vulnerable to removing too much of an image or distorting subjects

such that they become unrecognizable. Results from this experiment showed that distortion from

seam carving prevented images from being easily recognizable far sooner than uniformly scaled

images. It was therefore useful to know when this distortion began to occur, and to modify the

algorithm by switching to uniform scaling. Doing so enabled the images to remain recognizable

even at much smaller widths.

Furthermore, this experiment showed that either the percent reduction in image width or the

change in average energy over a seam carved image was a useful predictor of when an image

started to become unrecognizable, which I called the fail width. I have proposed an algorithm

which performs seam carving on the image until the change in average energy across the image

from the original exceeds a threshold value. Data from this experiment showed that this algorithm

can provide a prediction that is well within the range of acceptable values.
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6 Limitations

This experiment focused on seam carving using a specific algorithm to carve away columns from

a limited set of images. This makes the results very useful for the applications described, but

potentially less useful in others. The choice of algorithm, for instance, could be tailored to certain

tasks by recognizing particular shapes in an image and creating a mask to seam carve around those

objects. In this case, the specific results from this experiment may not be able to describe the new

algorithm.

The images used in this experiment were also very similar in size, shape, and composition,

which may have led to some bias in the results. While the results are valuable when used with

many images found on the Internet, it may be practical to repeat the experiment for larger, full-

resolution images. Despite these limitations with the actual results, the techniques used in this

experiment are highly flexible. Few changes would be needed to use this experiment with other

algorithms or images.

7 Additional Research

7.1 Alternative energy functions

One convenient property of seam carving is that the energy function is flexible and can be modified

to improve the way images are seam carved, or to combine multiple elements. Avidan and Shamir

(2007), for instance, tested a saliency measure, Harris-corners measure, and eye gaze measurement

as replacements for the standard gradient measure. They also suggested that particular objects can

be painted, manually or automatically, with higher or lower energies in order to preserve them or

remove them from a scene.

In order to evaluate whether one energy function is “better” or “worse” than another, the meth-

ods of this experiment can be performed with seam carved images that use different energy func-

tions. Instead of comparing seam carving to uniform scaling, the experiment can compare one type
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of seam carving to another. One function is judged “better” than another if the average fail width

is lower. Such a test could also reveal whether a particular energy function works better for some

types of images and worse for others.

Given time constraints, my own evaluations are based on a modification to this technique. I

compared each energy function against a baseline — the seam carved images used in the experi-

ment (LAB gradient energy measure), at the average empirical fail width. These baseline images

were compared side-by-side against images that were seam carved to the same widths using the

new energy function. I then judged whether each test image was more or less easily recognizable

than the baseline. The energy function received a score: the number of images that were better

than the baseline minus the number that were worse. A positive number (maximum 50) indicated

that the new method was better than the baseline, and a negative number (minimum−50) indicated

that it was worse. This test was designed such that the subjective judgment calls would be unlikely

to vary between participants, and it would therefore provide meaningful information even with a

single observer.

I performed this test with two different energy functions: smoothing the image prior to calcu-

lating the LAB gradient, and image saliency. The smoothing technique used a 5× 5 pixel Gaussian

filter, σ = 5 (Efford, 2000, 155-6), to transform images before calculating the gradient. The method

earned a score of −2, suggesting that the results were slightly less recognizable than the baseline.

The image saliency energy function achieved a score of −16, indicating that it performed worse

than the baseline. Selections from these results are shown in Figure 3.

7.2 Color space and the gradient

The choice to calculate the image gradient using a LAB color space was motivated by the desire to

reflect the differences between pixels as humans perceive them. This incorporated color informa-

tion into the calculations as well as other factors. However, gradients are often calculated by first

transforming the image into grayscale. To compare seam carving with these two different gradi-

ents, I repeated the simple experiment above in order to compare the two gradients to each other.
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The grayscale gradient earned a score of 8, indicating that it performed somewhat better than the

LAB gradient. This suggested that luminosity differences between different subjects in the images

were more significant than color differences. A selection of these results are shown in Figure 4.

7.3 Springs and jumps

Seam carving stipulates that a seam consists of one pixel from each column or row of an image

and that those pixels neighbor one another. This has a computational advantage in that it limits the

total number of seams in an image and thus reduces the number of computations that need to be

performed. However, seams may achieve smaller total energies if they are allowed to “spring” to

pixels that are further away, or “jump” if the difference between two neighboring pixels exceeds a

certain threshold.

I implemented springs in seam carving by attaching a weight to the spring length. Springing

to a non-neighboring cell increased the energy proportionally with the square of the spring length,

thus favoring smaller springs. In my implementation, springs were given a weight of 0.056, mean-

ing that a spring of length x would have a weight of 0.056 · (x2) plus the energy at that pixel. I

observed that when seam carving images with springs, the seams removed were often clustered in

one particular region of the image, more so than without springs. This caused lots of disruption in

that part of the image. Images tended to be equivalent to or worse than the baseline seam carved

images.

Jumping allows seams to jump to a different part of the image if the energy at all of the three

neighboring pixels exceeds a certain threshold. In my own experiments, I found that 0.5 was the

optimum threshold. Even at this level, however, shifts of large parts of the image occurred at each

jump. For instance, if a seam ran down the left side of an image until it hit an object and then

jumped to the right side, all of the pixels in between would shift against each other. This created

large disruptions and made all of the images worse in comparison to the regular seam carving.

Examples of both springs and jumps are shown in Figure 5.
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7.4 Face detection

One suggestion that Avidan and Shamir (2007) make is that seam carving can be used in conjunc-

tion with a mask. A person could, for instance, manually paint over the important objects in an

image, and only the seams around that image would be removed. The same could be done with

some automated methods, such as face detection. I used the OpenCV face detection implemen-

tation in order to create a mask over faces, and then performed seam carving normally (Library,

2008).

Face detection earned a score of −1, suggesting that there was little difference between this

seam carving implementation and the baseline. However, viewing the images revealed many cases

in which face detection did provide a significant gain, shown in Figure 6. In many cases, the face

detection algorithm detected not only faces, but also returned many false positives, and it was in

these images that the seam carving became worse. Additionally, it would be useful for the detector

to return an outline of the face, rather than a circle. These flaws in the algorithm prevent seams

from passing through some unimportant areas where they otherwise would. If improvements to

the detection algorithm can be made, it will become more similar to manually painting over the

subjects and may yet provide an advantage in seam carving.

8 Conclusions and Future Work

The two experiments described here showed how seam carved images, calculated using various

techniques, can be compared against one another and against other resizing techniques. The first

experiment also helps us determine when images cease to be easily recognizable. This information

is useful in switching between methods in order to improve the overall result.

This work suggested that the seam carving technique could be improved upon in various ways.

First, stopping seam carving at the fail width and switching to uniform scaling provided a signif-

icant advantage over seam carving alone. Also, seam carving images with a grayscale gradient

offered a better result than a LAB color space gradient. Other modifications to the energy function
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may garner additional improvements.

One way to improve the prediction of the fail width may be to incorporate multiple measures

of the image into the calculation. For example, rather than using the average energy alone, this

measure may be more useful when considered in conjunction with the minimum energy. Also, the

prediction may be improved by tailoring the results to particular users.

It is also curious that the combination of seam carving and uniform scaling provided a less

satisfactory result than uniform scaling alone. Perhaps the instructions led subjects to seam the

images too much. It would seem that the combination results should be at least as good as the

uniform scaling results, never worse, because in the worst case seam carving can be stopped at the

very first frame and uniform scaling performed from there. So, rather than asking subjects to seam

carve the images as far as possible while the image remains, “easily recognizable,” perhaps they

should be instructed to seam carve them as far as possible while it does not distort any portion of

the image necessary for its comprehension.

Using this reasoning, if a seam is removed from one of the principle subjects, seam carving

should stop immediately rather than continuing. If this does provide better results, then combin-

ing seam carving with automatic detection of the subjects should provide substantial gains. Face

detection, for example, could be used to find the people which are the primary focus of the image,

and prevent any seams from passing through them. If the detection algorithm can be perfected, the

benefit to seam carving should be significant.

With improvements in automatically seam carving images, the technique will become more

and more useful in applications, including the resizing of images to fit displays of different aspect

ratios. Experimental methods such as those described here will continue to serve as important

measures of how successful one algorithm is compared with another.
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A APPENDIX

Seam Carving Uniform Scaling Combination

Image Average Std Dev Std Error Average Std Dev Std Error Average Std Dev Std Error

1 401.3 123.35 27.58 214.6 99.17 22.17 218.7 109.29 24.44

2 302.0 137.80 30.81 223.0 82.41 18.43 210.6 83.66 18.71

3 220.6 122.67 27.43 198.9 108.89 24.35 153.5 64.36 14.39

4 169.8 57.82 12.93 153.2 85.01 19.01 125.1 52.63 11.77

5 198.2 104.15 23.29 224.6 97.82 21.87 173.5 81.54 18.23

6 200.7 77.91 17.42 170.3 65.68 14.69 156.6 74.69 16.70

7 112.2 45.07 10.08 73.2 36.49 8.16 77.3 38.18 8.54

8 412.4 127.39 28.49 242.0 88.74 19.84 253.3 92.60 20.71

9 299.0 145.65 32.57 182.0 79.82 17.85 210.7 90.74 20.29

10 315.4 124.60 27.86 210.3 95.29 21.31 230.4 110.45 24.70

11 366.6 138.20 30.90 199.8 72.08 16.12 238.3 95.10 21.26

12 224.3 117.86 26.35 162.0 57.89 12.95 149.4 62.37 13.95

13 381.0 157.99 35.33 191.2 91.41 20.44 216.8 93.18 20.84

14 356.4 129.52 28.96 242.6 108.67 24.30 199.2 82.20 18.38

15 287.1 136.56 30.54 237.6 116.77 26.11 198.4 74.34 16.62

16 283.0 122.30 27.35 228.5 90.39 20.21 219.0 101.89 22.78

17 231.6 115.82 25.90 199.4 93.26 20.85 167.7 69.13 15.46

18 329.1 126.85 28.36 208.8 117.05 26.17 224.9 95.53 21.36

19 258.2 83.57 18.69 237.3 98.18 21.95 180.4 64.65 14.46

20 357.4 149.48 33.43 204.3 113.73 25.43 240.8 119.44 26.71

21 444.7 136.16 30.45 182.1 83.75 18.73 228.6 87.98 19.67

22 331.6 128.04 28.63 225.2 94.04 21.03 244.8 124.52 27.84

23 391.9 125.19 27.99 180.6 77.41 17.31 237.5 108.34 24.23

24 347.0 149.44 33.42 240.6 110.73 24.76 206.3 80.32 17.96

25 440.4 95.88 21.44 182.2 98.58 22.04 195.9 101.55 22.71

26 293.7 169.22 37.84 201.0 94.38 21.10 239.3 134.93 30.17

27 188.2 105.98 23.70 191.3 116.84 26.13 134.2 83.92 18.76

28 324.9 114.01 25.49 246.8 100.09 22.38 203.6 63.23 14.14

29 280.7 104.66 23.40 201.1 121.54 27.18 167.1 53.12 11.88

30 196.1 71.30 15.94 204.8 110.83 24.78 176.7 71.75 16.04

31 297.0 141.03 31.54 209.2 89.63 20.04 250.6 146.11 32.67

32 302.1 128.44 28.72 162.4 86.04 19.24 176.6 71.30 15.94

33 294.1 116.06 25.95 242.5 129.64 28.99 209.0 78.14 17.47

34 368.2 174.61 39.04 184.6 85.88 19.20 203.2 84.92 18.99

35 506.0 161.86 36.19 205.8 105.28 23.54 279.7 127.20 28.44

36 336.7 177.48 39.69 180.0 84.22 18.83 248.2 144.95 32.41

37 418.3 107.99 24.15 223.7 110.56 24.72 248.0 126.06 28.19

38 203.9 104.00 23.26 173.7 94.17 21.06 172.3 89.66 20.05

39 286.1 87.01 19.46 216.0 101.59 22.72 196.2 65.87 14.73

40 351.2 190.42 42.58 178.0 70.48 15.76 217.5 124.32 27.80

41 490.5 138.91 31.06 191.7 75.59 16.90 242.0 135.39 30.27

42 285.3 120.27 26.89 209.3 101.09 22.61 198.9 127.17 28.44

43 255.5 125.30 28.02 205.8 92.52 20.69 183.4 78.22 17.49

44 327.6 113.68 25.42 151.1 88.65 19.82 186.5 99.88 22.33

45 330.8 153.07 34.23 158.9 88.36 19.76 211.4 96.27 21.53

46 251.3 137.20 30.68 194.0 96.43 21.56 182.8 103.02 23.04

47 422.9 160.66 35.92 230.4 120.01 26.83 264.4 115.25 25.77

48 396.4 120.26 26.89 220.9 109.78 24.55 282.5 112.84 25.23

49 337.1 117.89 26.36 254.6 86.87 19.43 246.2 98.89 22.11

50 163.1 94.05 21.03 223.3 89.38 19.99 168.7 100.51 22.47

Averages 311.4 151.0 4.77 201.5 98.7 3.12 204.9 102.8 3.25

Table 1: Results by image
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Energy Over Image Energy Over Seam Ratio of Seam Average Energy Percent Reduction

Average Change Percent Change Average Change Percent Change to Image Average Energy in Image Width

All Items

Threshold 31.20 10.22 44.35% 12.24 8.54 148.57% 31.94% 42.67%

Accuracy 98.0% 96.0% 98.0% 98.0% 98.0% 98.0% 96.0% 94.0%

Residual 196.71 83.93 90.74 152.15 105.86 150.09 191.06 80.11

Image Jackknife

Threshold 27.92 7.78 24.91% 10.87 8.15 110.78% 26.58% 41.52%

Accuracy 98.0% 100.0% 98.0% 98.0% 98.0% 100.0% 100.0% 97.9%

Residual 213.05 106.76 125.65 167.94 109.33 166.32 228.76 81.22

Subject Jackknife

Threshold 31.24 10.13 43.33% 12.25 8.53 148.87% 31.85% 42.17%

Accuracy 97.4% 96.5% 96.6% 97.8% 96.5% 96.7% 96.5% 96.8%

Residual 196.51 84.76 91.68 152.22 106.18 150.40 191.91 81.63

Image and Subject Jackknife

Threshold 27.90 7.79 24.92% 10.79 8.07 110.88% 26.52% 40.93%

Accuracy 99.5% 99.7% 98.2% 98.8% 99.3% 99.4% 100.0% 99.3%

Residual 213.16 107.21 125.99 169.07 110.72 166.23 229.17 83.88

Table 2: Optimized prediction thresholds by image measure, with and without jackknifing
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Jackknife Residuals by Technique
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Figure 2: Jackknife Residuals by Technique

17



A APPENDIX

Original images

Gradients of smoothed images, LAB color space

Saliency energy measure

Seam carved images using gradients of smoothed images

Seam carved images using saliency energy measure

Figure 3: Alternative energy functions and their effects on seam carving
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Original images

Grayscale gradients

LAB Gradients

Seam carved images, grayscale gradient

Seam carved images, LAB gradient

Figure 4: Effects of color space on seam carving
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Original images

Seam carving with springs, seams shown in red

Seam carving with springs

Seam carving with jumps, seams shown in red

Seam carving with jumps

Figure 5: Seam carving with springs and jumps
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Original images, with detected faces circled

New gradients

Standard seam carving

Seam carving with face detection

Figure 6: Modifications to seam carving with face detection
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