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Abstract

Methods of population stratification are important for disease as-
sociation studies, in which unknown population subdivisions can cause
major complications. We present a comparison between existing meth-
ods of determining population subdivisions, most notably Markov
Chain Monte Carlo and PCA-correlated SNPs. We also extend the
basic Markov Chain Monte Carlo algorithm for small numbers of in-
dividuals by implementing and applying the Propp-Wilson algorithm
to ensure convergence.

1 Introduction

The major complicating factor for disease association studies is the existence
of unknown subdivisions in the populations under study. As such, an impor-
tant area of ongoing research is the identification and inference of population
structure. Our work centers on investigating and comparing existing meth-
ods and measures of population stratification and applying a more rigorous
theoretical approach to real data.

Much of the focus of our research is on the application of Markov chain
Monte Carlo (MCMC) methodology to the problem of population structure
inference. MCMC involves sampling from a probability distribution to make
predictions or inferences about model parameters. Samples are gathered
from a constructed Markov chain that is run long enough to converge to the
necessary stationary distribution. As applied to the population subdivision
problem, the distribution of individuals or individual loci amongst population
groups given the frequencies of alleles within each population group is of
particular interest. Given a Markov chain constructed with this distribution,
estimates of the model parameters, such as which individuals belong to which
populations, can be obtained.

Some notable work by Jonathan Pritchard, Daniel Falush, et al. in this
area has already resulted in the development of the program STRUCTURE,
which infers population structure using multilocus genotype data using an
MCMC algorithm. Their ongoing research has focused primarily on extend-
ing their software program to relax initial limitations, such as permitting
linked loci and null alleles. Our research aims to focus on potential improve-
ments to the application of the MCMC algorithm to the population sub-
division problem by implementing some of the more theoretically rigorous
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approaches to MCMC, namely the Propp-Wilson algorithm, which ensures
convergence to the stationary distribution.

Another important component of my work is a discussion of the existing
methods and measures of subdivisions in population. Predating the work by
Jonathan Pritchard, Daniel Falush, et al., a series of measures of population
stratification were proposed based on F -statistics. For example, Wrights FST

measure represents the correlation between genes in a particular subdivision
of the total population. A much more recent development was the suggestion
by Paschou et al. to use Principal Components Analysis (PCA), and identify
PCA-correlated SNPs to capture population structure. By examining these
other methodologies, I hope to contextualize my work on MCMC methods
within the broader scope of proposed approximations to the problem of pop-
ulation structure identification.

2 Background

2.1 Markov Chain Monte Carlo (MCMC)

Monte Carlo integration involves evaluating the expected value of a function,
say f by sampling from a set of random variables, say X, a total of n times
according to the probability distribution of the random variables, say π, and
then approximating the expected value by summing up the function applied
to each of the n selected random variables and dividing by n. Markov Chain
Monte Carlo utilizes a Markov chain to sample from X according to the
distribution π.

2.1.1 Markov Chains

A Markov chain [5] is a stochastic process with the Markov property, mean-
ing that future states depend only on the present state, not past states.
This random process can be represented as a sequence of random variables
{X0, X1, X2, ...}, where each variable takes its value from a finite state space
S = {s1, s2, ..., sk}. A transition matrix P defines the probability of transi-
tioning from a state Xt to Xt+1, given that Xt = si. In addition, an initial
distribution, say µ(0), defines the probability of X0 taking its value from each
of the possible states S.

When simulating a Markov chain on a computer, it is useful to define
an initiation function and an update function, both of which take random
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numbers in the range [0, 1]. The initiation function maps intervals along
the range [0, 1] to states {s1, s2, ..., sk} according to the initial distribution,
in order to return a random initial state. The update function performs
a similar mapping, while taking into account the current state s ∈ S to
determine the probabilities of each candidate state, and returns the next
randomly chosen state.

Markov chains can be either reducible or irreducible. An irreducible
Markov chain has the property that every state can be reached by every
other state. This means that there is no state si from which there is no
chance of ever reaching a state sj, even given a large amount of time and
many transitions in between. Mathematically, this translates to each state si

having a strictly positive probability of transitioning to every other state sj.
A reducible Markov chain is simply a Markov chain that is not irreducible.

Markov chains can also either be periodic or aperiodic. The period of a
state si is defined as the greatest common divisor (gcd) of the set of times
the chain has a positive probability of returning to si, given that X0 = si

(i.e. we start with state si). If the period is one, the Markov chain is said
to be aperiodic, otherwise it is considered periodic. For example, a Markov
chain with two states s1 and s2, with s1 transitioning to s2 with probability
1 and s2 transitioning to s1 with probability 0.5, would be periodic. Starting
with X0 = s1, the chain has a positive probability of returning to s1 at times
2, 4, 6, 8, ..., therefore the chain is periodic with period 2.

Given a Markov chain that is both irreducible and aperiodic, some power-
ful properties hold. First, let us define a stationary distribution, π, A station-
ary distribution is a probability distribution on the set of states S such that
if the initial distribution of states µ(0) is the stationary distribution, then the
distribution of states for every time following that will also be the station-
ary distribution. According to a set of proven theorems, an irreducible and
aperiodic Markov chain has one and only one stationary distribution π, to-
wards which the distribution of states converges as time approaches infinity,
regardless of the initial distribution.

An important consideration is whether the Markov chain is reversible. A
Markov chain with stationary distribution π and transition matrix P is said
to be reversible if the stationary distribution is reversible, meaning πiPi,j =
πjPj,i. If a distribution for a given Markov chain is reversible, then that
distribution is the stationary distribution. This is an important theorem,
since if it can be shown that a particular distribution of interest is reversible
for a Markov chain, then the Markov chain will converge to that distribution.
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2.1.2 Markov Chain Monte Carlo Implementations

Various implementations of Markov Chain Monte Carlo [4] exist to ensure
that the distribution of interest is indeed the stationary distribution of the
Markov chain by defining the way in which state updates are carried out. The
general algorithm is known as Metropolis-Hastings, of which the Metropolis
algorithm, single-component Metropolis-Hastings, and Gibbs sampling are
special cases.

The Metropolis-Hastings algorithm depends on an acceptance-rejection
criterion to ensure that the Markov chain converges to the distribution of
interest π. According to the algorithm, during a given step t, a new state
Xt+1 is sampled from some proposal distribution Q, which can depend on the
current state Xt. Thus, a new candidate state Y is chosen from Q(Xt+1|Xt).
The critical step is then determining whether to accept the candidate state
and thus let Xt+1 = Y , or reject the candidate state and let Xt+1 = Xt. The
candidate state is accepted with probability:

α(Xt, Y ) = min

(
1,

π(Y )Q(Xt|Y )

π(Xt)Q(Y |Xt)

)
(1)

It can be shown that this algorithm results in a reversible Markov chain
with distribution π. We first note that the probability of transitioning to
state Xt+1 given the current state Xt is equivalent to: (1) the probability
of choosing Xt+1 from the proposal distribution Q times the probability of
accepting Xt+1 (α(Xt, Xt+1)) plus, (2) in the case where Xt+1 = Xt, the
probability of rejecting all other candidates Y . The probability of rejecting
all other candidates Y is given by 1 minus the probability of accepting each
candidate Y according to the acceptance criterion. Using an indicator vari-
able IXt+1=Xt that is 1 when Xt+1 = Xt and 0 otherwise, we can write this
mathematically as:

P (Xt+1|Xt) = Q(Xt+1|Xt)α(Xt, Xt+1)

+IXt+1=Xt [1−
∫

Q(Y |Xt)α(Xt|Y )dY ] (2)

We now consider the acceptance criterion α, which we can rearrange as fol-
lows:

α(Xt, Xt+1) = min

(
1,

π(Xt+1)Q(Xt|Xt+1)

π(Xt)Q(Xt+1|Xt)

)
(3)
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π(Xt)Q(Xt+1|Xt)α(Xt, Xt+1)

π(Xt+1)Q(Xt|Xt+1)
= min

(
π(Xt)Q(Xt+1|Xt)

π(Xt+1)Q(Xt|Xt+1)
, 1

)
(4)

π(Xt)Q(Xt+1|Xt)α(Xt, Xt+1)

π(Xt+1)Q(Xt|Xt+1)
= α(Xt+1, Xt) (5)

π(Xt)Q(Xt+1|Xt)α(Xt, Xt+1) = π(Xt+1)Q(Xt|Xt+1)α(Xt+1, Xt) (6)

Rewriting equation (2) we see that:

Q(Xt+1|Xt)α(Xt, Xt+1) = P (Xt+1|Xt)

−IXt+1=Xt [1−
∫

Q(Y |Xt)α(Xt|Y )dY ] (7)

Q(Xt|Xt+1)α(Xt+1, Xt) = P (Xt|Xt+1)

−IXt=Xt+1 [1−
∫

Q(Y |Xt+1)α(Xt+1|Y )dY ](8)

Substituting these equations (7 and 8) into (6) and canceling out the equiv-
alent indicator variable terms that appear on both sides, we finally see that

π(Xt)P (Xt+1|Xt) = π(Xt+1)P (Xt|Xt+1) (9)

Since this is the equation that needs to hold for the Markov chain to be re-
versible with distribution π, we can be sure that π is the stationary distribu-
tion of the Markov chain created by the Metropolis-Hasting algorithm. Thus,
as long as the Markov chain is irreducible and aperiodic, the Metropolis-
Hastings algorithm will result in samples that converge to the distribution of
interest π.

Gibbs sampling is a special case of Metropolis-Hastings. However, the
proposal distribution Q is taken to be the full conditional distribution for
the stationary distribution π, so candidates are always accepted. Johannes
and Polson [6] present a proof showing that single component Gibbs sampling
results in a reversible Markov chain with stationary distribution π.

2.1.3 Propp-Wilson

The Propp-Wilson algorithm [5], or coupling from the past, involves running
several copies of a Markov chain from some time in the past up to time 0 in
order to guarantee convergence to the stationary distribution.

The algorithm works as follows:

1. Choose an increasing series of positive integers (N1, N2, ...). A good
candidate is (N1, N2, ...) = (1, 2, 4, 8, ...) for reasons described shortly.
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2. Start a counter c = 1.

3. Run a Markov chain starting at every state in the state space S =
{s1, s2, ..., sk} for time −Nc up to time 0, using an update function
given the random numbers U−Nm+1, U−Nm+2, ..., U0, which are the same
for each of the k chains.

4. If all of the chains end up in the same state at time 0, then the Markov
chain has converged to the stationary distribution.

5. Otherwise, increase the counter by 1 and go back to step 3, reusing the
same random numbers U−Nm−1+1, U−Nm−1+2, ..., U0 for time −Nm−1 to
time 0.

Since (N1, N2, ...) can be any increasing series of positive integers, one
might wonder why the series (1, 2, 4, 8, ...) was chosen. To understand why
this is a good candidate, define an integer random variable N ′ as the mini-
mum n such that the chains starting at time −n converge to the same state
at time 0. We now consider the alternative series (1, 2, 3, 4, ...). Using this
series, the number of time units the Markov chain needs to be run is

1 + 2 + 3 + 4 + · · ·+ N ′ =
N ′∑
i=1

i =
N ′(N ′ + 1)

2
(10)

which grows according to N ′2. In contrast, the series (1, 2, 4, 8, ...), requires
that the Markov chain needs to be run for the number of time units given by

1 + 2 + 4 + 8 + · · ·+ N ′ =
log2 N ′∑

i=0

2i = 2log2(N ′)+1 − 1 = 2 ·N ′ − 1 (11)

which grows only linearly with N ′. Thus, the series (1, 2, 4, 8, ...) than (1, 2, 3, 4, ...)
is more efficient since it grows linearly as opposed to polynomially with N ′.

Given that the number of states k can be very large, requiring the simula-
tion of a possibly unrealistic number of Markov chains, an important idea in
implementing Propp-Wilson is sandwiching. Sandwiching applies to Markov
chains that have some sort of ordering and allows a fewer number of initial
states to be considered. Namely, if a set of states can be ordered in such a
way that the convergence of the first and the last state guarantees conver-
gence of the inner states, then only the first and the last state need to be
simulated from time −Nm to time 0 until they converge.
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2.2 Population Subdivision Problem

The basic population subdivision problem requires separating M individuals
into K populations, based on the genotypes, given by genetic markers, of the
individuals.

2.2.1 Pritchard’s Markov Chain Monte Carlo Approach

Jonathan Pritchard et al. developed a Markov Chain Monte Carlo algorithm
for inferring population structure using genotype data [8]. They assumed that
each population ”is modeled by a characteristic set of allele frequencies.”

In the initial algorithm, they specify three vectors, X, P, and Z, where X
is the given observed genotypes, P is the unknown allele frequencies for each
population, and Z is the unknown population of origin of the individuals. It
is assumed that the populations are in Hardy-Weinberg equilibrium and that
loci within populations are in complete linkage equilibrium. They define the
following elements in each of the vectors:

(x
(i,1)
l , x

(i,2)
l ) = genotype of individual i at locus l, where

i = 1, 2, ...,M and l = 1, 2, ..., L

z(i) = population of origin of individual i

pklj = frequency of allele j at locus l in population k

where k = 1, 2, ..., K and j = 1, 2, ..., Jl and

Jl is the number of distinct alleles observed at locus l

They propose using Markov Chain Monte Carlo methods to sample from
the distribution Pr(Z, P |X) and infer Z and P from (Z(0), P (0)), (Z(1), P (1)),
..., (Z(N), P (N)). They use a Gibbs sampler with stationary distribution
π(Z, P ) =Pr(Z, P |X) and an initial uniform distribution for Z. The algo-
rithm is a two-step process:

1. Sample P (n) from Pr(P |X, Z(n−1)).

2. Sample Z(n) from Pr(Z|X, P (n)).

Step 1 involves sampling new allele frequencies for each population given
X and the previous Z. The allele frequencies for each locus l and each popula-
tion k are modeled by the Dirichlet distribution, namely pkl ∼ D(λ1, λ2, ...λj).
Specifically,

pkl|X, Z ∼ D(λ1 + nkl1, λ2 + nkl2, ...λj + nklJl
) (12)
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where λ1 = λ2 = λj = 1.0 to give a uniform distribution of allele frequencies
and nklj is the number of copies of allele j at locus l observed in individuals
belonging to population k according to Z.

Step 2 involves sampling new populations for each individual given X
and the new P. The genotypes are assumed to be random independent draw-
ing of alleles from the population frequency distribution of alleles, meaning
Pr(x

(i,a)
l = j|Z, P ) = pz(i)lj. Reversing this idea, we see that the Pr(Z|X, P )

can be calculated as

Pr(z(i) = k|X, P ) =
Pr(x(i)|P, z(i) = k)∑K

k=1 Pr(x(i)|P, z(i) = k)
(13)

where Pr(x(i)|P, z(i) = k) =
∏L

l=1 pklx(i,1)pklx(i,2) . This assumes that an equal
proportion of the sample comes from each population.

Jonathan Pritchard et al. also extended the original algorithmic frame-
work to handle admixed populations by adding a vector Q that records the
proportion of an individual’s genome that originates from a given population.
Further extensions allowed accounting for linked loci, a new prior model for
allele frequencies based partly on Wright’s FST measure, [2] and the inclusion
of dominant markers and null alleles [3].

2.2.2 Paschou’s Principal Component Analysis (PCA) Approach

Paschou et al. propose using Principal Component Analysis (PCA) to iden-
tify SNPs capturing population structure, which can then be used to perform
k-means or other clustering and subdivide the individuals into populations
[7].

Their algorithm operates on an m× n matrix A with m individuals and
n SNPs per individual. The elements of the matrix A are {−1, 0, +1}, repre-
senting, respectively, homozygous for allele 1, heterozygous, and homozygous
for allele 2. The algorithm operates under the supposition that there is a
larger number of SNPs than individuals (m ≤ n).

To perform PCA, the Singular Value Decomposition (SVD) of the matrix
A is calculated. One of the three matrices returned by the SVD is a matrix U
of orthonormal vectors that are linear combinations of the columns of SNPs.
These vectors are termed ”eigenSNPs.” The common technique known as
dimensionality reduction is to estimate the matrix A by using only the first
k columns of the matrix U . Thus we can consider only the fist k eigenSNPs.
To find actual SNPs that correspond to these eigenSNP abstractions, we can
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sort the columns of A according to scores given by the sum of the squared
coefficients of the top k eigenSNPs. The top k columns of this newly sorted
matrix should then represent the SNPs that capture the most structure of
the data.

Paschou et al. also suggest a method for determining the number of
principal components k of the matrix A. To do this, they consider whether
the ith principal component results in a matrix that has significantly (which
they say is 15%) more structure compared to a random permutation of the
matrix. To evaluate the significance of the ith principal component, the
top singular value of a matrix Am−k reconstructed from the ith and smaller
principal components is compared to the top singular value of the same
matrix Am−k with the rows randomly permuted. If the top singular value
of Am−k is more than 15% of the randomly permuted version, then the ith
principal component is considered significant.

2.2.3 Wright’s FST Measure

Wright’s FST is a measure of population subdivision, not a method for de-
termining the subdivisions among a set of individuals [1]. It represents ”the
correlation between genes within a deme or subdivision (S) relative to the
genes of the total population.” It is calculated as follows:

FST =
varS(p)

p(1− p)
(14)

Thus, FST is a measure of the variance of allele frequencies across subdivisions
divided by the maximum variance, which is the variance that will result from
the allele frequencies within each subdivision diverging completely from the
average population frequency.

3 Discussion of Methods and Results

To further the current work surrounding the Population Subdivision problem,
we extended Pritchard’s MCMC algorithm and performed a cross validation
of the MCMC and PCA approaches. We implemented all of the algorithms in
Mathematica version 6.0, which provided useful built-in functionality such as
the ability to sample from a specified distribution and compute the singular
value decomposition of a matrix.
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3.1 Propp-Wilson Extension to Pritchard’s MCMC Al-
gorithm

The benefit of Propp-Wilson is that it guarantees convergence to the sta-
tionary distribution, which in the case of Pritchard’s MCMC algorithm is
the Pr(Z, P |X). In order to guarantee this convergence, Propp-Wilson re-
quires a Markov chain to be run from all possible states S = {s1, ..., sn}. In
the context of the MCMC algorithm, we need to consider the possible states
for Z and P . However, since P depends on Z, and we are generally primarily
focused on Z, we can focus on the possible states for Z. The set of possible
states for Z is the set of groupings of individuals into k populations.

The algorithm works well for very small numbers of individuals (less than
10), but unfortunately grows exponentially with the number of individuals.
For k = 2 populations and n individuals, the number of possible states for
Z is 2n−1, and in general is O(nk).

3.2 Cross Validation of MCMC and PCA Methods

We begin with the idea that PCA-correlated SNPs should capture population
structure better than randomly selected SNPs. To confirm this idea, we
propose running the MCMC algorithm on sets of individuals from different
populations using both PCA-correlated SNPs and randomly selected SNPs.

We used data from the Human Genome Diversity Project (HGDP)-Centre
dEtude du Polymorphisme Humain (CEPH) Cell Line Panel, which consisted
of 2834 SNPs taken across 36 genomic regions in 927 individuals from 7
continental regions. To perform the cross validation, we chose individuals
randomly from a set number of populations, k = {2, 3, 4, 5, 6, 7}. (Note that
separating individuals into one population is not informative.) For each of
the 36 genomic regions, we identified the top PCA-correlated SNP, and then
chose one SNP randomly from each region. We ran the MCMC algorithm
with a set burn-in time of 10000 iterations on both the individuals’ PCA-
correlateds SNPs and the individuals’ randomly selected SNPs. We compared
the resulting population subdivision to what we know from the original data
set is the true continental subdivisions of the individuals.

As evidenced by the results shown in Figure 1, the MCMC algorithm
was much better at subdividing individuals into populations using the PCA-
correlated SNPs instead of randomly selected SNPs from the 36 genomic
regions.
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Figure 1: Comparing the ability of the MCMC algorithm to subdivide indi-
viduals into populations using PCA-correlated SNPs and randomly selected
SNPs to the ground truth using the HGDP-CEPH data.

4 Conclusions

We have seen that Propp-Wilson is impractical for more than a small number
of individuals, although the convergence guarantees make this approach en-
ticing. With regards to the cross-validation, we showed that PCA-correlated
SNPs distinguish individuals better than random SNPs, providing evidence
for the idea that PCA-correlated SNPs capture population structure and that
the MCMC algorithm can correctly identify populations of individuals when
given population-dependent genotype data.

5 Future Work

To continue the work presented in this paper, obtaining results from other
data sets (e.g. HapMap) would provide more evidence that could prove use-
ful in the analysis of the existing population subdivision methods. Also, we
would like to investigate whether the limited results of the Propp-Wilson al-
gorithm could be useful in perhaps providing better estimates of convergence
time, or if there is some way to limit the exponential state space to produce
meaningful results for larger data sets in a reasonable amount of time. We
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would also like to consider better controls for cross-validation, as the compu-
tational complexity of the problem limits the ability to perform the MCMC
algorithm over large numbers of SNPs and individuals.
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