
An Empirical Study of Structural Symmetry
Breaking

Aurojit Panda
Department of Computer Science

Brown University
apanda@cs.brown.edu

1

People who helped with far too much
of this:

Meinolf Sellman, Dan Heller and Justin
Yip with all the work that went into mak-
ing this happen, and for help with the
writing. Itay Neeman, Jason Davis and
Lian Garton for all the help they gave,
and for the long nights. Tom Doeppner
for helping, just because we asked.

Abstract

We present an empirical comparison between dynamic and static methods
for structural symmetry breaking (SSB). SSB was recently introduced as the
first method for breaking all piecewise value and variable symmetries in a
constraint satisfaction problem. So far it is unclear which of the two techniques
is better suited for piecewise symmetric CSPs, and this study presents results
from the first empirical comparison between the two. The empirical study is
conducted using graph coloring, and a novel test bed for generating piecewise
symmetric problems also described in this work.

1 Introduction

Symmetries can cause a significant performance hit for systematic constraint solvers.
Constraint solvers can loose time exploring redundant parts of the search tree many
times over. All sorts of attempts have been made to solve this problem, including
adapting ordering heuristics, addition of static constraints, addition of constraints
during search, and filtering values using dominance detection. The later has been
found especially useful for problems involving large symmetry domains.
The core of symmetry breaking using dominance detection (SBDD) is based on the
act of dominance detection. The first methods proposed for doing this in general
were based on computational group theory, as done in [4] and [8], while the first
methods which were provably polynomial time were designed for specific kinds of
value symmetries in [6]. This work was later extended to handle any kind of value
symmetry in general, in polynomial time, [11] . Based on these results, [12] showed
that for specific piecewise symmetric CSPs, both value and variable symmetry could
be broken in polynomial time using structural symmetry breaking (SSB).

SSB is based on introducing a structural abstraction of a given partial assign-
ment of variables to values. This abstraction, originally proposed for a dynamic
method also gives rise to a set of static constraints which can be used to break all
piecewise symmetric variable and value constraints [2]. Dynamic symmetry breaking
methods have the advantage of being able to accommodate dynamic variable and
value ordering without running an increased risk of underperforming. Dynamic or-
dering has been shown to be superior in a vast majority of cases, however when used
with static symmetry-breaking methods it runs the risk of not being aligned with the
symmetry breaking constraints. We could for instance be exploring and dismissing

perfectly reasonable solutions because they are not favored by the static constraints,
which in general pick one representative solution from an equivalence class of solu-
tions. To address this problem [9] suggests a semi-static method that provably does
not remove the first solution encountered by a dynamic-search method, however
no such method is known for piecewise symmetric problems. Static methods are
simpler to use, enjoy a lower-overhead per choice point, and exhibit an anticipatory
character that emerges from filtering symmetry breaking constraints in combination
with constraints imposed by the problem.

Ease of use aside, it is unclear which of these two methods work better: quick,
anticipatory yet inflexible static methods, or heavier yet more flexible dynamic meth-
ods. This work provides the first empirical comparison between the two.

2 Background

We begin by defining terms, and exploring the differences between static and dy-
namic methods.

2.1 Definitions

Constraint Satisfaction Problem A constraint satisfaction problem (CSP) is
defined to be a tuple (Z, V,D,C), where Z = {X1, X2, . . . , Xn} is a finite set
of variable, V = {v1, v2, . . . , vn} is a finite set of values, D = {D1, D2, . . . , Dn}
is a finite set of domains, such that Di ⊆ V is the set of possible instantiations
of Xi, and C = {C1, C2, . . . , Cn} is a finite set of constraints over subsets of
Z, specifying their valid combinations.

Assignment Given a CSP, (Z, V,D,C), an assignment A is a set of pairs (X, v) ∈
Z×V , such that (X, v), (X,w) ∈ A ⇐⇒ v = w. Assuming the cardinality of
Z is n, an assignment of cardinality n is called complete, and a complete as-
signment satisfying all the constraints in C is called a solution. An assignment
that is not complete is defined to be a partial assignment.

Partition A partition P of set S is a set of sets P = {P1, P2, . . . Pn} such that
S =

⋃
Pi and Pi

⋂
Pj == ∅∀i 6= j. We generally write S =

∑
i Pi.

Piecewise Permutation Given a partition P over set S, a bijection π : S →
S is called a piecewise permutation if π(Pi) = Pi ∀Pi ∈ P , where π(Pi) =
{π(x) |x ∈ Pi}

Piecewise Symmetric CSP Given a CSP (Z, V,D,C), and partition P for Z,
and partition Q for V a CSP has piecewise variable and value symmetry iff
there exists π : Z → Z and φ : Q → Q such that both π and φ are piecewise
permutations. Equivalently, given Z =

∑
I≤k Pi and V =

∑
j≤l Qj, we say the

CSP has piecewise variable and value symmetry iff all variables within each
Pi and all values within each Qj are considered to be interchangeable.

Dominance Given two assignments A and B for a CSP, we say that A dominates
B iff there exists a piecewise permutation π over Z =

∑
i Pi and φ over

V =
∑

j Qj such that ∀(X, v) ∈ A we have (π(X), φ(V)) ∈ B.

Dominance Detection Problem Given two arbitrary assignments A and B we
call the problem of detecting whether A dominates B the dominance detection
problem.

2.2 Dynamic Symmetry Breaking

There are two popular methods of breaking symmetries dynamically. The histori-
cally earlier one was Symmetry Breaking During Search (SBDS). SBDS works by
adding constraints to the problem during the backtracking phase of the search, thus
preventing exploration of symmetric search regions. This works well for problems
with relatively few symmetries (n-queens for instance), but suffers from the fact
that one constraint per symmetry is added upon backtracking. This is an obvious
problem for problems involving vast symmetries.

For problems with large numbers of symmetries, Symmetry Breaking by Domi-
nance Detection (SBDD) has been shown to be the method of choice [1, 3]. The idea
behind SBDD is to check before exploring a new subtree, whether it is is symmetric
to a subtree that has already been explored (or more precisely, to check whether it
maps, under some symmetry, into a fully explored subtree). In the terminology of
SBDD, check to make sure that the subtree currently being explored is not sym-
metrically dominated by a subtree that has been explored earlier. Since a check is
made for dominance, rather than equivalence, it can be shown that the number of

comparisons required is a linear factor of the number of previously explored assign-
ments [1, 3].

The algorithmically interesting part of SBDD is finding efficient ways of per-
forming the actual dominance check, that is finding a variable permutation π and
a value permutation α under which the current partial assignment B is dominated
by some previously explored partial assignment A. In general, computational group
theory can be exploited to perform this task, however there are no guarantees that
this can be accomplished in polynomial time. In General, dominance checking is NP-
hard [12]. However, for special cases of symmetry it is possible to check dominance
efficiently. Structural symmetry breaking is one such efficient technique, originally
targeted at piecewise symmetric CSPs.

2.2.1 Structural Dominance Detection

The core idea for devising an efficient dominance checker for piecewise symmetric
CSPs lies in the definition of signatures for values under an assignment.

Signatures Given a partial assignment A, for all values v we define

signA(v) := (|Xi ∈ (Xi, v) ∈ A|)k≤r

where k indexes the different variable partitions
∑

k≤r Pk. That is , the signa-
ture of v under A is the tuple that counts, for each variable partition, by how
many variables in the partition the value is taken in A.

• We say that a value v in an assignment A dominates a value w in an
assignment B iff v and w belong to the same value-symmetry class and
signA(v) ≤ signB(w). Here the ≤ relation is defined component wise,
i.e. x ≤ y ⇐⇒ xi ≤ yi ∀i where xi denotes the ith component of the
tuple x.

• We say that v and w are structurally equivalent iff signA(v) = signB(w).

Consider the following example. We have a CSP with variables {X1, . . . , X8}
over domains D(Xi) = {v1, . . . , v6}. Assume that the first four, and the last
four variables are symmetric with each other, i.e. P1 = {X1, . . . , X4}, and P2 =

X1

X2

X3

X4

P1

X5

X6

X7

X8

P2

v1

v2

v3

Q1

v4

v5

v6

Q2

X5

X6

X7

X8

P2

X1

X2

X3

X4

P1

v1

v2

v3

Q1

v4

v5

v6

Q2

A2A1

Figure 1: Assignments A1 and A2.

{X5, . . . , X8}. Further assume that Q1 = {v1, . . . , v3} and Q2 = {v4, . . . , v6}. Now
given assignments A1 = {(X1, v1), (X2, v1), (X3, v2), (X6, v5), (X7, v1), (X7, v2)}, and
A2 = {(X1, v6), (X2, v1), (X3, v2), (X4, v2), (X5, v1), (X6, v6), (X7, v2), (X8, v2)} (Fig-
ure 1), we have signA1(v1) = (2, 1), the number of variables in each variable partition
assigned to v1. Now we can see from above that:

A In assignment 1:

1 v1 ∈ Q1 has signature (2, 1)

2 v2 ∈ Q1 has signature (1, 1)

3 v5 ∈ Q2 has signature (0, 1)

B In assignment 2:

I v2 ∈ Q1 has signature (2, 2)

II v1 ∈ Q1 has signature (1, 1)

III v6 ∈ Q2 has signature (1, 1)

Lining these conditions up we see that:

1 - I (v1 7→ v2, {X1, X2} 7→ {X3, X4}, {X7} 7→ {X7, X8})

2 - II (v2 7→ v1, {X3} 7→ {X2}, {X8} 7→ {X5})

v4

v5

v6

v4

v5

v6

v1

v2

v3

v1

v2

v3(0,0)

(1,1)

(2,1)

(0,0)

(0,0)

(0,1)

(0.0)

(1,1)

(2,2)

(0,0)

(0,0)

(1,1)

A1 A2

Figure 2: A bipartite graph illustrating a method for determining dominance be-
tween two assignments using Lemma 1. The Figure gives the signatures for each
value, links pairs of values where the one in assignment A1 dominates the one in
A2, and a perfect matching that proves that A1 dominates A2 is designated by solid
lines.

3 - III (v5 7→ v6, {X6} 7→ {X6})

The relationships above show that A2 is structurally an assignment that extends
A1, i.e. modulo application of symmetries, and hence reordering, the assignment
A1 extends A2. In other words, A1 symmetrically dominates A2 according to the
definition of dominance given previously.

We now use a result from [12] to find an efficient way of performing a dominance
check similar to what was performed above.

Lemma 1. An assignment A dominates another assignment B in a piecewise sym-
metric CSP iff there exists a piecewise permutation α over

∑
l≤sQl such that v ∈ A

dominates α(v) ∈ B for all v ∈ V . Value dominance is as defined using signatures.

We can use this lemma to build an efficient method for checking dominance
relations between two assignments. Given assignments A and B we can set up a
bipartite graph where for each value v, there is one node on the left, and one on
the right. An edge connects two nodes with associated values v and w if and only if
signA(v) ≤ signB(w). A dominated B if and only if the bipartite graph contains a
perfect matching (see Figure 2). Computationally, piecewise symmetry detection is
hence no harder than solving a bipartite matching problem.

To summarize, we use SBDD to perform dynamic structural symmetry break-
ing. Before expanding a new search-node we check if the partial assignment leading
up to the current node is dominated by a partial assignment that has been fully
explored earlier. We explore only if this is not the case. Dominance detection en-
sures that we have to carry out no more than a linear number of dominance checks.
SSB performs dominance checks by computing signatures of values in the partial
assignments under consideration, sets up a bipartite graph, and checks to see if it
can find a perfect matching.

2.2.2 Filtering

As previously noted, one of the advantages of the static method is its anticipatory
character. We can extend the above dominance checking algorithm to provide us
with a method to filter values from domains which would lead to a symmetric choice
point. Put differently, we an use symmetry-based filtering to anticipate when vari-
able assignments will result in symmetric configurations.

To do so we have to distinguish between two different types of filtering: ancestor-
based filtering, i.e. comparing extensions to the current partial assignment against
fully explored assignments, and sibling-based filtering, i.e. comparing extensions to
the current partial assignment against other such extensions.

For the later we assume that all siblings are generated by branching on the same
variable, in which case we note that sibling symmetry can only be caused by value
symmetry in the problem. We can thus break all sibling symmetry by choosing one
arbitrary value out of each group of values within the same value partition that have
the same signature.

Ancestor-based filtering can be performed by considering almost successful dom-
inance checks. When the bipartite graph that we set up (as shown above), contains
an almost perfect match, i.e. only one edge is missing in the graph preventing us from
finding a perfect match, we can quickly identify critical edges, and check whether
a variable assignment would cause a critical edge to be added to the graph. If this
this the case, we have found a critical variable assignment, that should be avoided
by removing that value from the variable’s domain. [12] shows that ancestor-based
filtering for a single node can be carried out in time O(nm3.5 + n2m2), where the

problem has m values, and n variables. Since the complexity of filtering is domi-
nated by ancestor-based filtering, filtering for a single node can be carried out in
O(nm3.5 + n2m2) time.

2.3 Static Structural Symmetry Breaking

As was shown in [2], we can exploit the signature abstraction to devise a linear set
f constraints which provably leaves only one solution in each equivalence class of
solutions. We start by assuming a total ordering of the variables Z = {X1, . . . , Xn}
and values V = {v1, . . . , vm}. We can break variable symmetry by requiring that
variables with smaller indices take smaller or equal values.

To break value symmetry we resort to using the signatures of values in complete
assignments. Within each value component, we require that smaller values have
lexicographically larger or equal signatures than larger values. The problem then
reduces to efficiently computing the signatures for values. This can be accomplished
using the existing global cardinality constraint (GCC), which allows us to restrict
and count how many times a value is taken by a given set of variables, as described
in [10].

Formally, given a piecewise symmetric CSP (
∑a

k=1 Pk,
∑b

l=1Ql, C), with Pk =
{Xik , . . . , Xik+1−1} and Ql = {vjl

, . . . , vjl+1−1, the static constraints added are:

Xh ≤ Xh+1 ∀1 ≤ k ≤ a, ik ≤ h < ik+1

GCC(Xik , . . . , Xik+1−1, v1, . . . , vb, f
k
1 , . . . , f

k
m) ∀1 ≤ k ≤ a

(f 1
h , . . . , f

a
h) ≥lex (f 1

h+1, . . . , f
a
h+1) ∀1 ≤ l ≤ b, jl ≤ h < jl+1

where ik denotes the index of the first variable of variable component Pk with
ia+1 = n + 1, and jl denotes the index of the first value in value component Ql

with jb+1 = m+ 1.

As an example, consider the problem of scheduling study groups for two sets of
five indistinguishable students. There are six identical groups of tutors with four

slots each. Let {S1, . . . , S5}+ {S6, . . . , S10} be two sets of piecewise interchangeable
variables denoting each of the students. Let the domain {t1, . . . t6} denote the set
of interchangeable tutor groups. The static constraints are:

S1 ≤ . . . ≤ S5

S6 ≤ . . . ≤ S10

GCC(S1, . . . , S5, t1, . . . , t6, f
1
1 , . . . , f

1
6)

GCC(S6, . . . , S10, t1, . . . , t6, f
2
1 , . . . , f

2
6)

(f 1
1 , f

2
1) ≥lex . . . ≥lex (f 1

6 , f
2
6)

Now consider the assignment:
α = {(S1, t1), (S2, t1), (S3, t2), (S4, t3), (S5, t3)}

⋃
{(S6, t1), (S7, t2), (S8, t3), (S9, t4), (S10, t5)}.

Within each variable component, the first two ordering constraints are satisfied. We
can use the GCC constraints to determine frequencies, and we find that the lexico-
graphic constraints are satisfied since

(2, 1) ≥lex (2, 1) ≥lex (1, 1) ≥lex (0, 1) ≥lex (0, 1) ≥lex (0, 0)

On the other hand, if student 10 moves from tutor 5, to tutor 6, the lexicographic
constraints are no longer satisfied, because

(2, 1) ≥lex (2, 1) ≥lex (1, 1) ≥lex (0, 1) ≥lex (0, 1) �lex (0, 1)

Régin provides a filtering algorithm for the GCC constraints [10], such that
filtering all static structural symmetry breaking constraints takes no longer than
O(

∑a
k=1 |Pk|2m) = O(n2m), where m is the number of values, and n is the number

of variables in a given CSP.

2.4 Model Restarts

[5] introduces the concept of model restarts. As has been shown above, static sym-
metry breaking imposes a smaller time overhead per choice point. However they are

very sensitive to search orderings, and can introduce a large variance in runtime.
Since static symmetry-breaking algorithms work by excluding all but one represen-
tative of each equivalence class of solutions, in cases where static symmetry-breaking
constraints are not aligned with search-orderings, they may interrupt the construc-
tion of many reasonable solutions simply because the solution was not the represen-
tative chosen by the constraints.

In general we choose to enforce a static search ordering which does not clash with
our static-symmetry breaking constraint. However since dynamic search-orderings
are known to perform better than static-search orderings, we choose to utilize ran-
domization and restarts to provide better performance. When a search takes too
long (as determined by exceeding a given fail-limit), we interrupt the search, gen-
erate a new ordering, generate a new set of static symmetry breaking constraints
which do not clash with this new ordering, and restart our search with an updated
fail-limit. These restarts are referred to as “model restarts”.

3 Benchmarks for Comparison

We use two classes of CSPs to serve as a benchmark for our comparisons. We intro-
duce a random benchmark generator for producing piecewise symmetric CSPs with
different characteristics, and we also test on the graph coloring benchmark intro-
duced in [7].

3.1 Random Benchmark Generator

We introduce a simple benchmark generator that produces hard instances of piece-
wise symmetric CSPs. Given n variables, m values, nc, the number of variables per
constraint, and mc, the number of values per constraint, we generate a given num-
ber of global cardinality constraints (GCC), each over a set of nc randomly chose
variables, and mc randomly chosen values, whereby we enforce that all variables in
the constraint taken together, take each value in the constraint exactly once. We
employ two variations on this basic concept:

• We either add a constraint to make sure that all variables take distinct values,
or a GCC over all variables and values that forces each value to be taken at
most two times.

UNBIASED BIASED
15 15

VPC AllDiff GCC AllDiff GCC
2 100 (7.05 : 5.87) 100 (7.14 : 5.85) 100 (4.60 : 5.86) 100 (4.56 : 5.87)
3 100 (7.03 : 7.17) 100 (7.20 : 7.17) 100 (4.64 : 7.05) 100 (4.59 : 7.10)
4 100 (7.15 : 8.42) 100 (7.13 : 8.23) 99 (4.35 : 8.29) 99 (4.62 : 8.23)
5 100 (7.09 : 9.23) 100 (7.21 : 9.46) 87 (4.54 : 9.39) 88 (4.58 : 9.56)
6 100 (7.08 : 10.18) 100 (7.05 : 10.28) 60 (4.46 : 10.29) 62 (4.65 : 10.39)
7 99 (7.12 : 10.70) 100 (7.17 : 10.79) 33 (4.59 : 10.74) 33 (4.60 : 10.72)
8 90 (7.04 : 10.83) 95 (7.09 : 10.35) 16 (4.60 : 10.72) 15 (4.63 : 10.72)
9 81 (7.22 : 10.47) 81 (7.18 : 10.35) 1 (4.60 : 10.41) 2 (4.70 : 9.39)
10 52 (6.99 : 9.36) 61 (7.17 : 9.49) 0 (4.54 : 9.32) 0 (4.60 : 9.39)
11 18 (7.23 : 8.37) 19 (7.08 : 8.23) 0 (4.60 : 8.22) 0 (4.72 : 8.31)
12 1 (7.12 : 7.12) 1 (7.14 : 7.13) 0 (4.48 : 7.27) 0 (4.59 : 6.96)

Table 1: Percentages of feasible solutions in the different benchmark sets with 15
variables and values for different numbers of values per constraint (VPC). In brackets
the average number of variable and value partitions are noted.
• We draw variables or values either uniformly or from a biased distribution

where variables with higher indices are more likely to be chosen than ones
with lower indices.

Every constraint in the problem partitions variables and values in the problem
into two sets, those involved in the constraints, and those that are not. Variables
and values which appear together in all the constraints that they appear in, are in
the same equivalence class, and are hence interchangeable.

As can be observed, not all randomly generated problems are feasible. For this
set of benchmarks we generated files with 15 variables, and values. The number of
variables per constraint was fixed at 12, while each constraint involved anywhere
from 2 to 12 values. We had instances where variables selected from both uniform,
and biased instances, while values were always selected uniformly. We also varied our
choice for the global constraint (either 0-2GCC, or AllDifferent). Table 1 summarizes
the property of instances in our benchmark.

3.2 Graph Coloring Benchmark

We also use a benchmark introduced in [7], which consists of graph coloring prob-
lems over symmetric graphs. Nodes in the graph with the same set of neighbors are
interchangeable, and constitute a variable partition. Further more all colors under
consideration are interchangeable, and form a value partition. In [7], graph coloring
problems are generated on the basis of four parameters: n, the number of nodes,
r ≤ n, p, q ∈ [0, 1], parameters governing graph structure. In particular, we start by
selecting the sizes, between 1 and r, for the initial node partitions, ether uniformly
or with a bias towards smaller partitions, until we reach a total of n nodes (the
last partition can be truncated to guarantee that we have exactly n nodes). For
each partition, with probability q, we connect all nodes in the partition to form a
clique. Finally for each pair of partitions we connect all nodes in one partition with
all nodes in the other partition with probability p.

As is done in [7], we set r = 8, p = 0.5, q ∈ {0.5, 1}, and n ∈ {20, . . . , 40}.

4 Results

As [5] shows, dynamic structural symmetry breaking, despite its large computational
overhead per choice point, is a practical method for improving the amount of time
spent solving structurally symmetric CSPs. The main motivation for the current
work is to study whether it is more effective to use dynamic SSB, with its ability
to accommodate dynamic variable selection heuristics, or static SSB, with its lower
overhead per choice point.

We benchmarked algorithms on 2 GHz AMD Athlon64 3800+ dual core CPUs,
with 2 GB of main memory. In Figure 3, we show times from three different algo-
rithms: dynamic SSB using a min-domain heuristic to choose the branching variable
(dSSB-md), static SSB using a min-domain heuristic to choose the branching vari-
able (sSSB-md), and static symmetry breaking with a static variable ordering, in
accordance with the static symmetry breaking constraints (sSSB-st). We note that
static SSB can lead to speed-ups of orders of magnitude when compared to dynamic
SSB, especially in the critically constrained region. The more erratic curve of run-
ning static SSB with the min-domain heuristic is a result of the high variance in
running time, cause by the interaction of static symmetry breaking constraints with

2e-04

1e-03

4e-03

2e-02

6e-02

2e-01

1e+00

4e+00

2e+01

 0 2 4 6 8 10 12

M
e
a
n

 T
im

e

Number of Values Per Constraint

dSSB-md

sSSB-md

sSSB-st

2e-04

1e-03

4e-03

2e-02

6e-02

2e-01

1e+00

4e+00

2e+01

6e+01

3e+02

 0 2 4 6 8 10 12

M
e
a
n

 T
im

e

Number of Values Per Constraint

dSSB-md

sSSB-md

sSSB-st

6e-05

2e-04

1e-03

4e-03

2e-02

6e-02

2e-01

1e+00

4e+00

2e+01

 0 2 4 6 8 10 12

M
e
a
n

 T
im

e

Number of Values Per Constraint

dSSB-md

sSSB-md

sSSB-st

6e-05

2e-04

1e-03

4e-03

2e-02

6e-02

2e-01

1e+00

4e+00

2e+01

6e+01

3e+02

 0 2 4 6 8 10 12

M
e
a
n

 T
im

e

Number of Values Per Constraint

dSSB-md

sSSB-md

sSSB-st

Figure 3: The figures give mean times in seconds (log-scale) on 100 instances with
15 variables and values, 12 variables per constraint, unbiased (top) or biased (bot-
tom) variable selection, and AllDifferent (left) or GCC (right) as constraint over all
variables and values. The cutoff was set to 600 seconds.

dynamic variable ordering. Even though we observe instances in which dynamic
search ordering is beneficial, overall we believe that deviating from a static search-
ordering when using static SSB is a bad idea.

In Figure 4 we compare the performance of our static SSB, with model restarts
(sSSB-gcc-res), the static SSB variant from [7], which utilized a min-domain heuristic
(sSSB-reg-md, curves taken from the paper), and the dynamic SSB, again utilizing
a min-domain heuristic (dSSB-md). We observe that the dynamic method is orders
of magnitude worse than both static techniques. We also observe that our static
SSB method works somewhat better than the variant discussed in [7].

5 Conclusions

We observe that despite the seemingly obvious benefits offered by dynamic sym-
metry breaking, as opposed to static symmetry breaking, static symmetry breaking

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 30 32 34 36 38 40

M
e
a
n

T
i
m
e
(
s
e
c
)

Number of Nodes

dSSB-md
sSSB-reg-md

sSSB-gcc-res

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 30 32 34 36 38 40

M
e
a
n

T
i
m
e
(
s
e
c
)

Number of Nodes

dSSB-md
sSSB-reg-md

sSSB-gcc-res

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 20 25 30 35 40

M
e
a
n

T
i
m
e
(
s
e
c
)

Number of Nodes

dSSB-md
sSSB-reg-md

sSSB-gcc-res

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 20 25 30 35 40

M
e
a
n

T
i
m
e
(
s
e
c
)

Number of Nodes

dSSB-md
sSSB-reg-md

sSSB-gcc-res

Figure 4: We give mean time (in seconds, log-scale) on 100 instances of the uniform
(top) and biased (bottom) graph-coloring benchmark with q = 0.5 (left) and q = 1
(right). The cutoff was set to one hour.

outperforms the dynamic version by orders of magnitude. We observe this in both
a random benchmark proposed by us, and graph coloring instances shown in [7].

References

[1] Fahle, T., Schamberger, S., and Sellmann, M. Symmetry breaking.
Proceedings of CP’01 (2001), 93– 107.

[2] Flener, P., Pearson, J., Sellmann, M., and Hentenryck., P. V.
Static and dynamic structural symmetry breaking. Proceedings of CP’06
(2006), 695–699.

[3] Focacci, F., and Milano, M. Global cut framework for removing symme-
tries. Proceedings of CP’01 (2001), 77–92.

[4] Gent, I., Harvey, W., Kelsey, T., and Linton, S. Generic sbdd using
computational group theory. Proceedings of CP’03 (2003), 333–347.

[5] Heller, D., Panda, A., Sellmann, M., and Yip, J. The practice of
structural symmetry breaking. unpublished.

[6] Hentenryck, P. V., Flener, P., Pearson, J., and Agren., M.
Tractable symmetry breaking for csps with interchangeable values. Proceed-
ings of IJCAI’03 (2003), 277–282.

[7] Law, Y. C., Lee, J., Walsh, T., and Yip, J. Breaking symmetry of
interchangeable variables and values. Proceedings of CP’07 (2007), 423–437.

[8] Margot, F. Exploiting orbits in symmetric ilp. Mathematical Programming
98, 1-3 (2003), 3–21.

[9] Puget, J. F. Dynamic lex constraints. Proceedings of CP’06 (2006), 453–467.

[10] Régin, J. Generalized arc-consistency for global cardinality constraint. In
Proceedings of AAAI’96 (1996), AAAI Press, pp. 209–215.

[11] Roney-Dougal, C., I. Gent, T. K., and Linton, S. Tractable symme-
try breaking using restricted search trees. In Proceedings of ECAI’04 (2004),
pp. 211–215.

[12] Sellmann, M., and Hentenryck, P. V. Structural symmetry breaking.
Proceedings of IJCAI’05 (2005), 298–303.

	Introduction
	Background
	Definitions
	Dynamic Symmetry Breaking
	Structural Dominance Detection
	Filtering

	Static Structural Symmetry Breaking
	Model Restarts

	Benchmarks for Comparison
	Random Benchmark Generator
	Graph Coloring Benchmark

	Results
	Conclusions

