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Chapter 1 

Introduction 

The goal of photorealistic rendering is to generate an image of a virtual scene that would match as closely 

as possible a photograph taken of the same scene in the real world.  The field of photorealistic rendering 

has drawn the interest of many researchers with a fascination for this unique opportunity to simulate 

nature in its infinite complexity and has consequently flourished over the past 25 years.  Today, this goal 

has been realized to the point where even experts are often unable to differentiate between a rendered 

image and a photograph, and it is this realism that has made rendering into an important tool that is used 

ubiquitously throughout such fields as entertainment, education, marketing, and academia.  Many of these 

applications benefit from some theoretical guarantee of the physical correctness of the renderings they use 

and therefore require rendering algorithms that are physically-based in that they attempt to model the way 

light functions in the real world.  The deeper understanding that is gained from studying the underlying 

physical processes may still benefit applications without these needs because more insight into these 

fundamentals can allow one to design better non-physically-based algorithms as well.  While the original 

goal of photorealistic rendering has certainly been accomplished, there are still practical problems that 

hinder many potential students from successfully entering the field.  The objective of this thesis is to 

address several of these problems by introducing a new rendering framework named Milton. 

Milton is a cross-platform, open-source rendering framework written in C++, with an emphasis 

on design, efficiency, and maintaining a very high quality codebase.  It is no secret that there are many 

rendering engines out there, but there are few, if any open source engines that fulfill all of the goals that 

Milton has set out to accomplish – all of the goals which are necessary for such an engine to be useful as 

an educational tool for others wishing to advance themselves in the field.  In addition to providing a clean, 

yet advanced reference engine, this thesis will discuss the major software engineering and design choices 

embodied by Milton.  We will also provide implementation details for a notoriously difficult rendering 

algorithm known as Metropolis Light Transport (MLT). 
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1.1 Thesis Organization 

Chapter 2 presents a brief overview of global illumination theory, including relevant light transport 

definitions, the rendering equation, path integral framework, and Monte Carlo integration.  Chapter 3 

relates this theory to practice, discussing several biased and unbiased rendering algorithms available in 

Milton.  Chapter 4 introduces Milton as a rendering framework, focusing on its major design decisions 

and results.  Chapter 5 concludes with a summary of this thesis’ contributions and considerations for 

future work.  
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Chapter 2 

Global Illumination Theory 

We are mainly interested in rendering algorithms which are physically-based in that they attempt to 

simulate the distribution of light throughout a scene in a way which mimics how light in the physical 

world is distributed.  Towards that end, global illumination is a term used to describe the full distribution 

of light throughout a scene, and in this chapter, we will give a brief overview of the theory behind global 

illumination algorithms in general.  It is not the intent of this chapter to be a rigorous or complete 

introduction to the topic, but rather to give just enough of an overview and provide important definitions 

such that a reader unfamiliar with rendering theory will be able to follow along with the remainder of the 

thesis. 

 

2.1 Assumptions 

 Though we would like to focus on general-purpose, physically-based global illumination 

algorithms in order to render as accurately as possible, we will conform to several common assumptions 

pertaining to the properties of light that simplify this task at a conceptual and/or computational level.  

Many of these simplifications result in no perceived difference between a render and an actual photograph 

for the vast majority of scenes.  Since our objective is to simulate only the most relevant qualities of light 

necessary to satisfy the goal of photorealistic rendering, we make the following simplifying assumptions: 

• We will adhere to the geometric optics model of light which looks at light from a macroscopic 

view and disregards the fine-grained wave and particle effects of light.  This model treats photons 

as a continuum in which light is emitted, scattered, and absorbed only at surfaces, and travels 

along straight lines between these surfaces [Vea97]. 

• All light is assumed to be unpolarized and perfectly incoherent, and therefore, polarization, 

diffraction, and interference effects are ignored (many effects are then lost). 

• Light between surfaces in the scene exists in a vacuum, i.e., participating media are ignored. 

• The speed of light is assumed to be infinite and all measurements leading to the final render are 

assumed to occur instantaneously. 
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For many real-world environments, these assumptions prove to be insignificant, allowing us to capture 

the same view of a scene via rendering as would be perceived in a photograph.  For this reason, almost 

every physically-based global illumination algorithm adheres to similar assumptions. 

 

2.2 Light Transport 

Given this simplified model of light, we will now provide the most relevant theory behind global 

illumination algorithms used to simulate the distribution of light in a virtual scene.  We will first define a 

number of common terms from radiometry and tie them into the rendering equation, which concisely 

describes the complete flow of light throughout a scene.  We will then relate the rendering equation to the 

equivalent, yet lesser-known, path integral framework, which more conveniently captures the structure of 

several popular global illumination algorithms. 

 

2.2.1 Light Transport – Definitions 

We wish to simulate the three-dimensional world that we live in, and spherical coordinates 

naturally arise in trying to describe the flow of light throughout that world.  Related to spherical 

coordinates is the notion of solid angle, the three-dimensional analog of normal angles we are used to in 

2D.  Just as angles are typically measured in radians, solid angles are typically measured in dimensionless 

units called steradians, denoted by sr.  Let ��D� denote the solid angle of set of directions � � �� as the 

surface area of � projected onto the unit sphere.  Solid angles conceptually measure how much of the 

three-dimensional field-of-view a set of directions constitute, and from this definition, it follows that there 

are 4
 steradians in a sphere. 

 

Figure 1:  Solid angle � and projected solid angle �┴ of an set of directions � on the unit hemisphere. 


��� 

� 

�� 

� 
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 Another useful, related concept is a projected solid angle, denoted by ����� with � � ��, which 

gets its name by projecting � onto the unit disc and integrating the resulting area.  Projected solid angle at 

a surface point � with associated normal vector 
��� is defined by 

 ������ � � |� · 
���|������  (1) 

This definition implies that the projected solid angle of the entire upper hemisphere is equal to 
. 

 

2.2.2 Light Transport – Radiometry 

 Radiometry is the study of the physical measurement of light, and it will be helpful to be familiar 

with some of the physical quantities used in radiometry to measure light.  Complementary to radiometry 

is the related field of photometry, which concerns itself with measuring a human observer’s perception of 

light.  Given physical measurements from radiometry, there are standardized conversions to analogous 

measurements in photometry, taking into account the physiology of the human eye and its response to 

light of varying wavelengths.  For instance, a well-known radiometric property of light is that it has an 

associated wavelength
1
, whereas the photometric equivalent would be our perception of color. 

 The fundamental unit in radiometry is radiant energy, which is often denoted by � and expressed 

in joules (�).  Radiant power (aka flux) is radiant energy per unit time and is denoted by Φ with units of 

watts (� � � !"#$/$#&). 

 Φ � ���'  (2) 

Radiant power can be interpreted as describing the rate at which energy flows through or is 

absorbed by a surface per second.  In relation to surfaces, irradiance (() is defined with respect to a 

surface point � with geometric normal 
���, as radiant power per unit surface area and is measured in units 

of [� · )*�]. 

 (��� � �Φ�x�dA�x�  (3) 

                                                           
1
 The human visual system is sensitive to electromagnetic radiation with wavelengths in the range of 

approximately 380 to 780 nanometers.  Radiation in this visible range of the spectrum is referred to as light. 
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The single most important radiometric quantity for rendering is radiance, denoted by .��, ��. 

which measures the number of conceptual photons leaving a small surface perpendicular to � at �, per 

unit time, whose directions are contained in a small solid angle ����� around � [Vea97].  Alternatively, 

using the previous definitions, radiance can be expressed as 

 .��, �� � ��Φ�x, ω��1���������� (4) 

i.e., radiance is irradiance per unit projected solid angle with units of 2� · )*� · $3*45 (this technically 

doesn’t account for exitant radiance because irradiance is only defined for incident directions, but this 

definition is commonplace and we stick to it for simplicity). 

 We note that all of these radiometric quantities are really wavelength-dependent, and that 

analogous spectral versions exist.  It should be implied that whenever discussing radiance or one of its 

relatives, we really mean spectral radiance or the equivalent spectrally-dependent quantity.  Spectral 

radiance, for example, is defined as radiance per unit wavelength, i.e., .6 � �./�6 with units of 2� ·)*� · $3*4 · 
)*45. 
 

2.2.3 Light Transport – Scattering 

It will be useful to distinguish between incident and exitant radiance functions, denoted by .7��, �7� and .8��, �8� respectively
2
.  Incident radiance measures the radiance arriving at a point � from 

direction �7, whereas exitant radiance measures the radiance leaving from a point � in direction �8 

[Vea97]. 

An important part of global illumination algorithms is modeling how light interacts with surfaces 

in the scene.  Surfaces may be composed of many different material properties, which when looked at 

from a macroscopic viewpoint, may be succinctly represented by a single function, the bidirectional 

scattering distribution function (BSDF).  The reflectance properties of a surface affect its appearance, and 

when light strikes a surface, though there is a lot going on under the hood, at a high level, some light may 

be reflected, some may be absorbed, and some may be transmitted through the surface (transparency).  A 

mirror, for example, has very different reflectance properties as opposed to a diffuse wall.  The BSDF 

conceptually relates incoming light to outgoing light, allowing us to represent the reflectivity and “color” 

                                                           
2
 We adopt the convention that �7  always represents a vector conceptually incident on the surface and �8 always 

represents a vector exitant from the surface (see Figure 2). 
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of a large class of materials all under one common interface.  The BSDF, 9:��7 ; �8� with �7, �8 < Ω, 

is defined as the ratio of differential exitant radiance to differential irradiance and therefore has units of 2$3*45. 
 9:��7 ; �8� � �.8��8��(��7� � �.8��8�.7��7������7� (5) 

It will sometimes be more convenient to write the BSDF in three point form, with �, >, ? < 1 as 

 9:�� ; > ; ?� � 9:� > @ �A> @ �A ; ? @ >A? @ >A� (6) 

It is generally more common in computer graphics to hear about a BRDF (bidirectional 

reflectance distribution function), 9B�C7 ; C8� with C7, C8 < ΩD, the difference being that BSDFs are 

defined over the entire sphere of solid angles and therefore include transmission, whereas BRDFs are 

defined only on the positive hemisphere at a surface point with respect to its local geometric normal.  

BRDFs represent a common subset of allowable BSDFs, and they suffice in simulating the majority of 

real-world materials.  We note that BSDFs are themselves a subclass of the more general BSSRDFs 

(bidirectional surface scattering reflectance distribution functions), which allow reflected light to exit 

from a different point on the surface as it entered, effectively allowing the simulation of subsurface 

scattering effects.  As Milton currently doesn’t support BSSRDFs, we will not touch on them further, 

assuming that light reflection described only at the surface  is a good enough approximation for the types 

of commonplace materials we wish to render. 

 

 

Figure 2:  Geometry involved in definitions of BSDF and BRDF (image source: Wikipedia) 

�7 �8 
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Physically plausible BRDFs have several key properties or constraints, namely reciprocity and 

conservation of energy.  Reciprocity means that BRDFs are symmetric: 

 9B�� ; �8� � 9B�@�8 ; @�7� (7) 

Conservation of energy states that a surface should not reflect more energy than it receives.  Formally, 

this can be written as: 

 � 9B��7 ; �8������8� E 1     H�7 < ΩΩ  (8) 

i.e., for any possible incident direction �7, the cumulative fraction of energy that is reflected over all 4
 

steradians must be less than or equal to one.  This ensures that light propagated through a scene will 

converge to a steady-state distribution. 

 

2.2.4 Light Transport – The Rendering Equation 

 We now have all of the background necessary to formulate an equation which will succinctly 

describe the steady-state radiance distribution for a given scene.  Let .I��, �8� denote the radiance 

emitted from a point � in direction �8, and let .B��, �8� denote the indirect radiance that is reflected at 

point � in direction �8.  Then we can break up radiance into its mutually exclusive emitted and reflected 

components as follows 

 .��, �8� � .I��, �8� J .B��, �8� (9) 

 .B��, �8� � � .��, �7�9:��7 ; �8�Ω �����7� (10) 

Combining these two yields the integral formulation of the rendering equation
3
: 

 .��, �8� � .I��, �8� J � .��, �7�9:��7 ; �8�Ω �����7� (11) 

In order to produce an accurate snapshot of the world, we must attempt to evaluate or 

approximate the incident radiance at every point on the camera’s film plane and for all of the possible 

incident directions.  Much of rendering, therefore, boils down to evaluating radiance, and it is for this 

reason that equation (11) is so important.  The rendering equation is recursive, in that the unknown 

                                                           
3
 Kajiya’s original rendering equation was stated in a slightly different, although equivalent form. 
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quantity, radiance, is defined in terms of itself, thus making it particularly difficult to solve with 

traditional analytical methods.  It is sometimes more convenient to formulate the rendering equation as a 

recursive integral over scene surfaces, and after performing the relevant change-of-variables, one obtains 

the following area formulation of the rendering equation: 

 .��, �8� � .I��, �8� J � .��, �7�9:��7 ; �8�K L�� M >��1�>� (12) 

where 1 represents the union of all points on surfaces in the scene, �7 � �*NA�*NA, and L�� M >� is known 

as the geometry term that arises from the change-of-variables as 

 L�� M >� � O�� M >� P�
��N · �7��
��� · �7�PA� @ >A�  (13) 

O�� M >� � Q 1, if � and > are mutually visible0, if � and > are not mutually visible b 
Here,  O�� M >� denotes the so-called visibility term, 
��� is the surface normal at a point � < 1, and 
��N is 

the respective surface normal at a point > < 1.  Note that both the geometry and visibility terms are 

symmetric with respect to surface points and are therefore explicitly expressed as such using the notation 

‘� M >.’ 

 

2.2.5 Light Transport – Path Integral Framework 

The light transport problem can be reformulated in a more compact, non-recursive form known as 

the path integral framework, first presented in [Vea97].  This framework recasts the rendering equation as 

a single integral over an abstract space of all possible paths of light, yielding a more global view of light 

transport which lends itself to general-purpose integration methods.  In the path integral framework, an 

image with c pixels is created by recording a set of measurements d4, … , df, where dg corresponds to the 

�hi pixel.  Each pixel is assumed to lie on a virtual camera sensor which responds to incident radiance at 

that location in the scene through sensor responsivity, denoted by �I��, �� and measured in units of 

[�*45.  Each measurement can be written in the following path integral form
4
: 

                                                           
4
 See Chapter 8 of [Vea97] for more details, including a rigorous construction. 
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 dg � � 9��j�kg��j��l��j�
Ω

 (14) 

where Ω is the set of all possible paths of light, �j < Ω is a path of light composed of a chain of m vertices �n, �4, … �o*4 with �7 < 1 and m p 1, 9��j� denotes the amount of light propagated along �j, kg��j� is a 

reconstruction filter function specific to pixel � (only dependent on the last vertex in the path), and l is a 

product-area measure over Ω.  This integral sums the light received by a virtual CCD sensor representing 

pixel � over all of the possible ways light could reach it.  After evaluating an integral of this form for each 

pixel in the image lying on the camera’s sensor, we end up with an image produced by very similar 

processes that would’ve produced a photograph of a similarly configured scene in the real world. 

The main function of interest here is 9��j�, which for our purposes resembles a function known as 

the measurement contribution function
5
, and can be expressed for a path �j composed of m vertices as 

9��j� � .I��n ; �4�L��n M �4� qr 9:��7*4 ; �7 ; �7D4�L��7 M �7D4�o*�
7s4 t �I��o*� ; �o*4� (15) 

Equation (15) is obtained by expanding the area formulation of the rendering equation (12) 

through each of the m vertices in �j.  It enumerates the radiance propagated along �j and has a much 

simpler structure than the rendering equation, one in which a single expression defines the value of each 

measurement.  By dealing with whole paths rather than rays (as is traditional when working with the 

rendering equation), the path integral framework provides a more explicit and complete description of 

light transport [Vea97].  As we will see shortly, one of the biggest advantages of the path integral 

framework is that it is convenient for working with probability densities on paths, which is necessary for 

any Monte Carlo-based rendering approach. 

 

2.3 Sampling 

The purpose of this section is to take the previous light transport equations and show how their 

solutions can be effectively approximated through the use of random sampling.  Regardless of its form, 

the rendering equation’s structure is too complicated to solve analytically (except for trivial cases).  The 

best we can do in practice is to construct a random variable to approximate a solution to the rendering 

                                                           
5
 This definition is slightly different from that of [Vea97]; the dependence on pixel � has been separated out in 

accordance with the formulation of MLT, and this definition lends itself to the most intuitive implementation. 



14 

 

equation
6
.  Furthermore, we will want to concentrate on unbiased estimators, whose expected value is 

equal to the measurement we are trying to obtain.  We will give a brief overview of how Monte Carlo 

(MC) integration can be applied to the path integral formulation, after which we will describe several 

common variance reduction techniques implemented in Milton.  This will provide the framework 

underlying nearly all of the rendering algorithms described in chapter 3. 

 

2.3.1 Sampling – Monte Carlo Integration 

Recall from equation (14) that we would like to evaluate integrals of the form 

dg � � 9��j�kg��j��l��j�
Ω

 

Monte Carlo integration approximates this integral stochastically, sampling many random paths u7 
according to some density function v defined over Ω, and using an estimator for each pixel � of the form 

 dwx � 1
 y 9�u7�v�u7� kg�u7�z
7sn  (16) 

 dwx is a standard Monte Carlo estimator which exemplifies Monte Carlo integration, and it has the 

nice property that it remains unbiased regardless of the number of samples, 
, that are taken.  Observe 

that if each sample u7 is independently generated and if v is non-zero everywhere 9 is positive
7
, then 

 ({dwx| � 1
 y � 9��j�v��j� v��j�kg��j�
Ω

z
7sn �l��j� � � 9��j�kg��j��l��j�

Ω

� dg (17) 

Equation (16) underlies many unbiased rendering algorithms such as path tracing, bidirectional 

path tracing, and their multitude of variants.  In particular, these algorithms generally sample paths 

backwards beginning from each pixel in the output image, recording the probability density of having 

created any one path (either implicitly or explicitly) and the contribution of that path (v�u7� and 9�u7� 

respectively) and evaluating each pixel estimate  dwx progressively.  Metropolis Light Transport, another 

unbiased rendering algorithm, takes a quite different approach and will need some reworking to fit within 

this framework. 

                                                           
6
 Such a random variable is known as an estimator.  An estimator for a quantity � is a random variable, generally 

denoted by �} , whose expected value should be close to (ideally equal to) �, and whose variance should be small. 
7
 We have no notion of negative light, so 9 is assumed to be non-negative 
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One of the main advantages of Monte Carlo integration is its simplicity and compact structure.  

An unbiased estimate of this extremely complex, infinite dimensional integral is obtained after taking a 

single sample over path space, and a better estimate is obtained simply by taking more samples.  On the 

other hand, one of MC integration’s biggest disadvantages is its slow convergence.  The standard 

deviation of a MC estimator reduces to the form �~dwx� � 4√z ��u�, which implies that in order to reduce 

noise in the output image by a factor of two, we must take four times as many samples, regardless of the 

sampling method or the dimension of the integration domain Ω. 

 

2.3.2 Sampling – Variance Reduction Techniques 

 Since the main disadvantage of Monte Carlo integration is its slow convergence, many methods 

have been developed to reduce the variance of the u7 (which will in turn reduce the variance of dwx).  Thus 

far, we haven’t mentioned how the random paths u7 are actually generated; we will do so in chapter 3, but 

for now let us note several desirable properties of samplers which will generate lower variance u7:  
stratification, quasi MC (QMC), and importance sampling.  Stratification refers to ensuring that the u7 are 

well distributed over the important regions of path space.  QMC is a form of stratification which uses 

pseudo-random sequences of samples instead of random samples in order to bound the discrepancy of the 

resulting sample distribution, thereby ensuring stratification over the sample space. 

Importance sampling attempts to draw the u7 from a probability density function proportional to 9��j�.  Note in equation (16) that if v��j� were to equal 9��j�, then our estimator would be perfect, with a 

variance of zero.  In practice, 9 can be very complicated and achieving this goal is unrealistic, but by 

drawing more samples from the regions where 9 is large (concentrating our sampling effort on the 

"important" regions of the domain), the variance of our estimate overall is reduced, as long as we 

compensate for our uneven sampling rate.  Think of importance sampling this way:  if we have only one 

shot at sampling 9 (only one sample because of very limited resources), we would like to concentrate that 

sample in the region of the domain that will contribute the most to the value of the integral we are 

ultimately trying to approximate.  By biasing our sampling technique towards ‘important’ regions of the 

domain with respect to 9, we get more bang for our buck and correspondingly end up with a much lower 

variance estimator.  If we were to instead naively sample uniformly across the domain, Ω, there's a good 

chance that our one, precious sample would be wasted by sampling a path, �j, that is unimportant, where 9��j� is relatively small or even zero.  
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Chapter 3 

Global Illumination Practice 

The rendering equation, path integral framework, and Monte Carlo estimator developed in the previous 

chapter all formulate the theory behind the global illumination problem.  Many algorithms have been 

developed to bring this theory into practice, and in this chapter we will concentrate on several of these 

rendering algorithms that have been implemented in Milton, with an eye towards pointing out their 

assumptions, differences, advantages, and disadvantages, all within the common framework developed in 

chapter 2.  See the results section (4.4) for a comparison of these different rendering algorithms and their 

implementations in Milton.  In particular, we would like to focus on global illumination algorithms which 

have the following properties: 

• Complete – Some global illumination algorithms require a certain representation of scene 

geometry or a certain description of light.  We would like algorithms which share only those 

assumptions described at the beginning of the previous chapter.  This rules out algorithms such as 

radiosity, though radiosity certainly still has applications in its own right. 

• Robust – The performance of a global illumination algorithm should depend only on what the 

scene represents, rather than the details of how it is represented [Vea97]. 

• Unbiased – An important issue for remaining robust is bias.  An unbiased algorithm is guaranteed 

to produce the correct result on average, whereas a biased algorithm is not.  This added guarantee 

most often comes at the cost of increased rendering time and/or noise, but it both remains an 

important guarantee for certain types of applications and is also more physically-based and 

therefore more amenable to more realistic / general models of light transport. 

• Offline – We limit ourselves to non-real-time algorithms, though the theory and principles 

discussed here are still relevant to any rendering algorithm, real-time or otherwise. 

 

3.1 Ray Tracing 

 Ray tracing is a fairly naïve global illumination algorithm based on an expansion of the integral 

form of the rendering equation, which depending on its variant, may or may not be a full solution to the 

rendering equation.  The rendering equation (11) may be defined with appropriate operators and expanded 
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as a Neumann series of the form . � ∑ �7.I�7sn , where � represents a scattering operator
8
.  Traditional 

Whitted-style ray tracing approximates this with a finite sum and generally only with a simplified 

scattering operator ��.  An image is produced by tracing rays backwards from the eye into the scene, 

evaluating the direct illumination at the closest intersection point, and adding the indirect contribution by 

recurring with zero or more secondary reflected rays.  Stochastic ray tracing describes a strategy in which 

variance is reduced by spawning multiple reflection rays at each intersection point, resulting in an 

exponential branching factor with increasing ray-tree depth (� in the previous summation). 

 Ray tracing is easy to implement, independent of scene representation, and captures shiny, 

mirror-like objects very well, though it is generally biased, not robust, and generally not a full solution to 

the rendering equation. 

 

3.2 Path Tracing 

 Path tracing is an unbiased derivative of ray tracing that samples many paths starting through a 

given pixel, each of which can be seen as a random walk through path space, utilizing Russian Roulette
9
 

at each intersection point to either sample a reflected ray and continue the random walk or terminate.  

Compared to unbiased stochastic ray tracing (also utilizing Russian Roulette), which takes one or a few 

high quality samples which spawn many secondary rays at each intersection point, path tracing takes 

many low quality samples that spawn only one secondary ray at each intersection point. 

 Path tracing is a brute force, unbiased solution to the full rendering equation, and as such, it is the 

simplest and most straightforward global illumination algorithm to implement.  One disadvantage of path 

tracing is that its performance depends a lot on the composition of the scene.  Path tracing is much better 

at sampling certain parts of path space than others, and in particular, effects such as caustics that are 

formed by paths sampled with very low probability starting from the eye may take an extraordinarily long 

time to produce. 

 

 

                                                           
8
 See chapter 4 of [Vea97] for more details. 

9
 Given a non-zero probability v, Russian Roulette replaces a quantity � by an unbiased estimator �} , such that �} � Q �/v , with probability v0, with probability 1 @ v �  such that ({�}| � �� v J 0�1 @ v� � �  is unbiased. 
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3.3 Bidirectional Path Tracing 

 Bidirectional path tracing (BDPT) is an unbiased global illumination algorithm that combines 

path tracing with particle tracing (path tracing starting from light sources), enabling a better distribution 

of samples throughout path space.  BDPT was independently developed by Veach and Guibas [VG94] 

using the path integral framework and Lafortune and Willems [LW93] using the global reflectance 

distribution function (GRDF), differing only in their underlying frameworks.  BDPT in Milton and in this 

thesis uses the path integral framework of Veach and Guibas because of its generality and subsequent use 

in Metropolis Light Transport (see section 3.5). 

 In BDPT, each measurement for dwx independently generates a light path starting from a light 

source and an eye path starting from the eye, and then considers all possible ways of creating complete 

paths by connecting subpaths of the light path to subpaths of the eye path.  This creates a family of 

different sampling techniques for u7, each of which has its own probability density over path space, and 

each of which samples some regions of path space more efficiently than others.  Samples from this family 

of paths are then combined using multiple importance sampling into a single estimate for dwx. 

 Appendix A contains the core definitions used to concisely describe and efficiently implement 

both BDPT and bidirectional mutations (which are based on BDPT and will be explained in section 3.5).  

Using the same notation as chapter 10 of [Vea97], each measurement of BDPT can be summarized as 

follows: 

 dwx � 1
 y �7
z

7sn , �7 � y C:,��:,��
:�n,��n , �:,�� � �:�&:,���� (18) 

where C:.�, �:�, &:,�, and ��� are all defined in Appendix A, with C:,� representing the multiple importance 

sampling weight, �:� and ��� representing the cumulative measurement contribution weights for 

generating an $-length light subpath and a '-length eye subpath respectively (of the form 9/v), and &:,� 

representing a deterministic connection factor for connecting the first $ vertices of the light subpath with 

the first ' vertices of the eye subpath.  �:,��  is known as the unweighted contribution function and is an 

aggregate Monte Carlo estimator of the form 9/v for connecting the light subpath generated by 

measurement � of length  $ to the eye subpath generated by measurement � of length '.  In this respect, 

equation (18) is an example of the standard Monte Carlo estimator introduced in equation (16), generating 

multiple paths per each sample u7 and combining them using multiple importance sampling. 
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 BDPT uses the path integral framework to handle indirect lighting problems far more efficiently 

and robustly than ordinary path tracing [Vea97].  By sampling both from the light sources and from the 

eye, it retains the ability to sample paths that can only be sampled efficiently from one or the other (e.g., 

caustics are relatively hard to sample from the eye but are natural to sample from the lights, whereas 

direct specular reflections are relatively hard to sample starting from the lights but are natural to sample 

from the eye).  BDPT is therefore able to converge much faster than path tracing even for relatively 

simple scenes.  BDPT will make another appearance during the discussion of bidirectional mutations, 

which lie at the heart of Metropolis Light Transport, to be explained in section 3.5. 

 

3.4 Photon Mapping 

 Photon mapping is an efficient, popular, biased solution to the rendering equation, developed by 

Henrik Wann Jensen.  It is a two-pass global illumination algorithm in which photons are first traced from 

light sources and stored in a global kd-tree called the photon map.  Final gathering is then performed by 

tracing paths from the eye and using the photon map to approximate irradiance at points in the scene.  The 

first pass can be considered a special-case of particle tracing, in which photons are distributed throughout 

the scene from light sources, storing energy everywhere they bounce, and the second pass can be 

considered as a modified path tracer, augmented with lookups into the photon map and special-casing to 

ensure that illumination is never double-counted.  For more details on the implementation of photon 

mapping, see Jensen’s book “Realistic Image Synthesis Using Photon Mapping” (2001) and/or the open-

source photon mapping implementation available in Milton. 

 The popularity of photon mapping has increased dramatically due to its relative simplicity and 

fast, smooth results.  These come, however, at the cost of being biased, having a large memory overhead 

for storing the photon map(s), and being notorious for scene-specific parameter tweaking (e.g. number of 

photons, k-NN search radius, etc.). 

 

3.5 Metropolis Light Transport 

 Metropolis Light Transport (MLT) is an unbiased global illumination algorithm originally 

introduced by Veach and Guibas in 1997.  MLT is currently the most efficient light transport algorithm 

known for robustly rendering arbitrarily complex scenes that many other rendering algorithms would 

consider difficult for various reasons (e.g., strong indirect illumination, small cracks / holes, etc). At its 
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core, MLT is an application of the general-purpose Metropolis-Hastings sampler, applied in the context of 

trying to sample all possible paths of light starting at an emitter and ending at a virtual camera sensor in a 

carefully tuned way such that the probability density of simulating any one path is proportional to that 

path's relative contribution to what that virtual sensor would end up ‘seeing’ in the virtual scene.  

The focus of this section will be to develop intuition for MLT within the Monte Carlo framework 

previously presented, including implementation details and intuition where possible.  We will first give a 

brief overview of the general-purpose Metropolis-Hastings sampler and then describe how it can be 

applied to global illumination via MLT.  This is not meant to be a rigorous formulation but rather to 

complement the corresponding sections of Veach’s thesis and related resources in an attempt to clarify 

subtle points that arose during the implementation of MLT in Milton.  The reader is referred to Veach’s 

thesis for more details and to the Milton source (src/milton/renderers/mlt) for an example 

implementation. 

 

3.5.1 Metropolis-Hastings Sampler 

Given some initial state �jn < Ω, a sequence of random variables u4, … , uz is a called Markov 

chain if the probability density function of u7 is only dependent on u7*4 according to some transition 

function v�· |�j7*4�.  The chain is thought of as being “memory-less” because pending states “forget” 

about all previous states except for the immediately preceding state.  Given some non-negative, 

equilibrium function 9��j� as a target, the goal of the Metropolis algorithm is to construct a Markov Chain 

such that in the limit as 
 ; ∞, the u7 are eventually distributed proportionally to 9 (depicted in Figure 3). 

 

Figure 3:  The equilibrium function � (left) and a conceptual histogram (right) of states visited by the Metropolis 

algorithm over �, which are distributed in proportion to �.  Also shown is an example of a proposed transition 

between two states in �. 

 The Metropolis algorithm is a random walk which carefully transitions between states u7*4 and u7 subject to a condition known as detailed balance, which says that for any two states �j, >� < Ω, 

9 u 

Ω Ω 
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 9��j�v�>�|�j� � 9�>��v��j|>�� (19) 

Detailed balance states that the expected flow of “energy” between any two states should be equal, where 

energy refers to the value of target function 9.  Achieving detailed balance is particularly important 

because the resulting Markov Chain will be distributed proportionally to 9, as desired. 

Let u7*4 � �j.  The Metropolis-Hastings (MH) sampler achieves detailed balance by transition as follows: 

• Sample a tentative state >� according to a probability density function ��>�|�j�, known as the 

tentative transition function 

• Calculate an acceptance probability ��>�|�j� according to the Metropolis-Hastings ratio: 

 ��>�|�j� � min �1, 9�>�����j|>��9��j���>�|�j�� (20) 

• Set u7 � Q >�, with probability ��>�|�j��j , otherwise  b 
The resulting Markov Chain will converge to the desired stationary distribution if we ensure that ��>�|�j� � 0  H�j, >� < Ω with 9��j� � 0 and 9�>�� � 0. 

 

3.5.2 Application to the Path Integral Framework 

In order to see how this will apply to the Monte Carlo estimator dwx that we developed previously, 

let us assume for a moment that we are able to draw successive paths u7 such that the probability density 

of sampling a path �j is proportional to the luminance of that path – i.e.,  v��j� � 9�� ��j� where 9�� ��j� 

represents the luminance of the light transported along the path �j.  Then for v to be a valid probability 

density function,  we would have: 

 v�u7� � 9�� �u7�¡ , ¡ � � 9�� ��j��l��j�,
Ω

 (21) 

where ¡ is a normalization constant ensuring that v integrates to one (because it is a probability density 

function).  Substituting this new definition for v into the definition of dwx from equation (16) yields 

 dwx � ¡
 y 9�u7�9�� �u7�
z

7sn kg�u7� (22) 
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This corresponds to taking 
 samples u7, each with the same luminance (9 9�� ⁄  ensures that), and 

maintaining a histogram over the image with the end result being that pixels which receive more samples 

(more non-zero terms in the summation) will have a higher relative luminance than those which receive 

fewer samples.  Because we’re assuming that  v��j� � 9�� ��j�, we expect the number of samples 

recorded in pixel � to be proportional to the ideal luminance of pixel �, resulting in the correct luminance 

histogram across the image as a whole. 

 This approach requires us to evaluate ¡ and to sample from a density function proportional to 9�� .  The Metropolis algorithm will give us the latter, and Veach explains how ¡ can be estimated during 

Metropolis initialization (sections 11.3.1-11.3.2).  Note in the above construction that although the 

constant ¡/
 must be estimated for dwx to remain unbiased, it is irrelevant and can safely be ignored in 

practice if tone mapping is applied to the output image (for most tone mapping operators which are 

indifferent to positive multiplicative constants when ¡ is non-zero
10

). 

 Algorithm 1  Metropolis Light Transport 

function MLT �j �  �jn 

while patient do >� � )!'�'#��j� � � & )v!'#1&&#v'�
&#£3 ¡�¡�"�'>�>�|�j� 

if 3�
� )�� ¤ � then �j � >� 

end if 3#& 3�¥�)v"#��j� 
end while 

end function 

An overview of the MLT algorithm is given in the pseudocode above.  After an initialization phase which 

computes the total image brightness and an initial path �jn, the algorithm walks through path space by 

mutating the current path and either accepting or rejecting mutations according to the Metropolis-

Hastings algorithm described previously.  Much of MLT, therefore, concentrates on how to design 

mutation strategies to mutate paths such that the resulting Markov Chain will converge as quickly as 

possible. 

 

                                                           
10

 Milton uses so-called Reinhard tone mapping by default  (Photographic Tone Reproduction for Digital Images. 

Reinhard et al, 2002) 
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3.5.3 Mutation Strategies 

Although the Metropolis-Hastings algorithm guarantees that the u7 will converge correctly in the 

limit as 
 ; ∞, there is nothing preventing the walk from getting “stuck” for an arbitrarily long, yet finite 

period of time – which manifests itself in practice as extremely bright pixels caused by abnormally long 

chains that get stuck in a local maximum, away from which no mutation strategy could easily mutate.  

Path space should ideally be explored quickly and thoroughly, mixing local exploration, which is a key 

strength of the Metropolis algorithm, with large mutations as best as possible.  Large mutations benefit 

from attempting to explore path space more readily at the expense of generally having a smaller 

acceptance ratio, resulting in long chains of the same path without successful mutation.  Small mutations, 

on the other hand, benefit from larger acceptance ratios at the cost of either being trapped within local 

maxima and/or taking a long time to explore path space and thus converge.  These two types of mutations 

directly conflict with each other, though they are both necessary for fast convergence, and it is this 

fundamental conflict which has gained a lot of attention recently by various researchers in the applied 

sciences (see, e.g. [Liu00] , [Liu01], [Cra05]). 

Mutation strategies are responsible for modifying the current path in accordance with the goal of 

fast convergence, and in conforming to the interface presented by the Metropolis-Hastings sampler, they 

must be able to compute the conditional probabilities of their actions.  Namely, for a mutation which 

proposes path >� from �j, it must also be able to compute the MH ratio given in equation (20), comprised 

of 9��j�, 9�>��, ��>�|�j�, and ���j|>��.  In accordance with this restriction, Veach proposed three main types 

of mutations, namely bidirectional, lens subpath, and perturbation mutations, each of which was designed 

with a specific purpose in mind towards facilitating fast convergence. 

Bidirectional mutations lie at the heart of MLT and are responsible for handling large mutations, 

such as modifying a path’s length.  This is achieved by deleting a (possibly empty) subpath of the current 

path and replacing it with a (possibly empty) different subpath.  In order to satisfy the ergodicity 

condition of the Metropolis algorithm, there is a non-zero probability that the entire path will be deleted 

and an entirely new subpath will be generated.  Appendix B gives an explicit derivation for how to 

compute the acceptance probability ��>�|�j� for the case of bidirectional mutations. 

Lens subpath mutations aim to stratify samples over the image plane.  Each mutation consists of 

deleting the lens subpath of the current path and replacing it by a new one (lens subpaths are of the form 

(L|D)S*E).  In Milton, lens subpaths are stratified across the image plane using a pseudo-random rover 

similar to those used in old 8-bit graphics dissolve effects.  A candidate pixel for the new lens subpath is 

first chosen randomly and, if that pixel already has its quota of proposed lens subpath mutations, the rover 
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searches in a deterministic order until it finds a non-full pixel.  It is worth mentioning that lens subpath 

mutations based only on the pseudo-random rover empirically produce strange artifacts in the output 

image, and it is only when combined with random pixel selection and a quota-management system that 

lens subpath mutations result in natural-looking, well-stratified images.  Lens subpath mutations may be 

as simple as uniformly sampling the film plane, though the added stratification added by the pseudo-

random rover yields a noticeable improvement in practice. 

The idea behind perturbation mutations is that by slightly moving vertices along a path, you can 

exploit coherence while exploring nearby paths that will make similar contributions to the image, thereby 

increasing the acceptance probability.  Perturbations are designed to complement the strengths and 

weaknesses of bidirectional mutations in that they make relatively small, low-cost changes to paths that 

have a larger acceptance probability as opposed to bidirectional mutations which are in charge of making 

large scale changes (making successive paths less correlated) at the expense of generally lower 

acceptance probabilities. 

Veach proposed three types of (mutually-exclusive) perturbation mutations:  lens, caustic, and 

multi-chain perturbations.  Lens perturbations concentrate on small changes to the film plane location by 

modifying the lens edge of the form
11

 �.|���¥ � (.  Caustic perturbations also change the lens edge but 

are designed to concentrate solely on caustic suffixes of the form �.|��¥ J �(.  Multi-chain 

perturbations focus on paths with a suffix of the form �.|���¥ J �¥ � (.  In practice, it is worth 

mentioning that lens and multi-chain perturbations, both of which select a new point on the film plane, 

can be simplified by perturbing the old film plane location uniformly with a small, square grid (e.g., 

10x10 pixels) as opposed to Veach’s original suggestion of using a polar perturbation with 3 chosen 

exponentially and ¦ chosen uniformly.  The uniform solution is actually preferred because disregarding 

the film plane boundaries, there is no chance that the proposed mutation will fall into the same pixel as 

the original – which is important to mitigate the appearance of bright pixels. 

 

3.5.4 Computing the Acceptance Probability 

We will now attempt to clarify a subtlety that was not clearly addressed in Veach’s PhD thesis 

regarding the calculation of the acceptance probability at the heart of the Metropolis-Hastings sampler.  It 

                                                           
11

 We are using Heckbert’s regular expression notation to classify paths, in which . denotes a vertex on a light 

source, ( denotes a vertex on the eye / camera, and � and ¥ represent diffuse and specular vertices respectively. 
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involves how detailed balance is affected by multiple mutation strategies and is depicted in Figure 4 

below. 

 

Figure 4:  The solid lines in the figure on the left encompass all of the possible ways to transition between states §̈ 

and ©̈, whereas the dashed lines in the figure on the right represent the different types of mutations which can 

transition between §̈ and ©̈ (e.g. bidirectional, perturbation, etc.).  A necessary condition for detailed balance is to 

ensure that the overall number of transitions along the solid lines are equal but a simplifying, sufficient condition is 

to ensure that transitions along corresponding dashed lines are equal. 

In other words, Figure 4 states that once a mutation strategy has been chosen for sampling a candidate path y�, all of the other mutation strategies may safely be ignored in the computation of ��>�|�j� for that step of 

the walk.  This means, for instance, that a bidirectional mutation only has to consider all possible ways of 

transitioning from >� to �j according to another bidirectional mutation (the corresponding dashed line), as 

opposed to considering all possible ways of transitioning from >� to �j.  In practice, this greatly simplifies 

the implementation of mutations because they only have to compute the bidirectional conditional 

probabilities for paths they mutated (which can be done as a byproduct during )!'�'#) as opposed to 

calculating the transition probability density � for arbitrary paths. 

  

�j >� �j >� 
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Chapter 4 

Milton 

Milton is a high quality, open-source C++ rendering framework that is capable of advanced global 

illumination as demonstrated by its implementation of all of the rendering algorithms presented in the 

previous chapter.  As an aside, we note that Milton’s name comes from a mixture of MLT and the 

character named Milton from Office Space.  The purpose of this chapter will be to describe the motivating 

principles and goals behind Milton’s development, to ultimately show that these goals have been 

accomplished, and to present Milton as a potentially useful, open-source resource for use within the 

computer graphics community.  After detailing these motivating principles, we will discuss the main 

software engineering design considerations embodied in Milton, several areas of difficulty and how our 

goals evolved as development progressed, and briefly touch on some results.   

 Milton is a moderately large software-engineering endeavor, consisting at this time of over 50k 

lines of well-structured C++.  With that in mind, the intent here is not to cover all of Milton – for that 

there is separate source code documentation – but rather to focus on the high-level aspects of Milton’s 

design which are inherent to any global illumination framework, and could, therefore, potentially be 

useful to other, similar engineering efforts. 

 

4.1 Goals 

Milton was designed with several, often-times competing goals in mind, and in order to 

understand some of the design considerations implemented in Milton, it will first be helpful to clarify the 

motivating principles behind these goals as follows: 

• Design – From a computer science standpoint, what’s much more difficult than the 

implementation of rendering algorithms themselves, is how to design and develop a modular, 

robust, extensible framework that is capable of both advanced, physically-based global 

illumination  while at the same time maintaining a simple core design that is easy to understand 

and starting using for those with varying backgrounds in their knowledge of rendering.  Creating 

an elegant design for such a framework is akin to how a mathematician might think about the 
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problem.  One attempts to take the various concepts and their relationships to a given problem 

and ascertain their most basic, underlying principles which may then be abstracted out into their 

own more general, self-contained concepts and relationships.  Similarly for the design of a 

rendering framework, maintaining a design that is sufficiently abstract with respect to rough, 

seemingly basic spots like surface materials, shapes, and colors so as to enable extensions, while 

at the same time maintaining a simple design, requires a careful balance between difficult 

software engineering design considerations.  Arguably the most important goal during the 

development of Milton has been to maintain as clean and elegant of a design as possible, and 

section 4.2 is therefore dedicated to exploring the major design decisions put into practice by 

Milton. 

 

• Robustness – Real world environments can be very complex in terms of geometry, materials, and 

lighting, and although there has been a plethora of work within the graphics community focused 

on emulating that complexity in a computationally feasible manner (e.g., texture mapping, 

various surface representations, shaders, etc.), the practical usability of a rendering engine such as 

Milton is bounded in a real world setting by its ability to robustly handle very complicated 

scenes.  An important aspect of robustness, therefore, is efficiency and resource management.  

Efficiency in light of robustness has been a key goal of Milton from the start, and towards that 

end, Milton contains a highly optimized, concurrent ray tracing base, which remains relatively 

indifferent to increasing scene complexity and is practically bounded in computation time and 

complexity by the resources of the underlying machine (number of processor cores, memory, etc.) 

and not by anything algorithmic in the rendering framework itself. 

 

• Generality – The majority of the rendering algorithms implemented in Milton are physically-

based and unbiased.  This is, however, in direct opposition to the majority of scene inputs, which 

although scenes in Milton are capable of retaining physical validity up to the assumptions 

outlined in section 2.1, the vast majority of practical scenes take advantage of some non-

physically-based hack such as Phong shading or bump mapping.  These hacks seem to go against 

some of the core principles that Milton is based upon.  These techniques do, however, have their 

place in terms of both current utility and precedent.  They are heavily engrained in both industry 

and academia, and for the majority of non-academic settings, bias isn’t nearly as important a 

factor as looking “good.”  That being said, Milton still aims to uphold these principles, and 

attempts to allow for general-purpose rendering algorithms, rather than concentrating on a 

specific class of algorithms such as those that are unbiased.  Another important part of generality 
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is to ensure that rendering algorithms are presented with an abstract-enough interface so as to 

facilitate arbitrary shape and material representations.  Having a framework, for instance, which 

only recognizes triangular meshes, would be a limiting factor that is easily overcome with a better 

design.  For this reason, in addition to providing our own built-in implementations of  the main 

interfaces exposed by Milton, most public interfaces allow for dynamic behavior to be added at 

run-time through the use of external plugins (*.so / *.dll). 

 

• MLT – Several design decisions centered around one of our most prevalent goals, which was to 

support Metropolis Light Transport. 

 

4.2 Design 

With these goals in mind, we will now delve into areas we came across during the design and 

development of Milton which were either notably interesting and/or challenging.  We will describe the 

material representation in Milton, the scenefile format and related PropertyMap paradigms, the core Path 

data structure, several high level optimizations implemented in Milton, the PointSampleRenderer design, 

and conclude with a discussion of several problems of the current design. 

 

4.2.1 Material Representation 

 Materials in Milton aim to be physically-based in the sense that a point on the surface of a 

primitive is characterized by its reflective, emissive, and sensor response properties.  Reflectance is 

defined by a BSDF hierarchy, and emitters / sensors are defined similarly.  Milton does not currently 

support BSSRDFs which would allow for the simulation of subsurface scattering.  BSDFs built into 

Milton include lambertian, thin dielectric (including Fresnel’s Laws), energy-conserving Phong (see 

Figure 5), absorbent, and an aggregate hierarchal BSDF composed of one or more sub-BSDFs.  All built-in 

BSDFs allow for efficient importance sampling, and it worth noting that sampling from a BSDF uses the 

same Sampler interface that other, more standard, samplers use such as the built-in normal sampler which 

draws samples u7   dd� ~ «�l, ��.  This common sampling interface allowed us, for example, to 

implement generic multiple importance sampling, where the only difference between different Sampler 

implementations is the type of variant returned by the sample method. 
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          Ideally, one would have the ability to define an arbitrary mapping between surface points (or for 

that matter, any point — participating media / subsurface effects, etc.) and an associated BSDF defined at 

a given point.  A Material would then, from a design standpoint, be a function which takes in a surface 

point (generally specified by u, v coordinates across the surface) to a specific BSDF defined at that point.  

This is a very generic and physically-based solution to the design of a material system for a rendering 

engine such as Milton, but we have chosen to go with a slightly simpler option.  In Milton, instead of 

having a completely arbitrary mapping between surface points and their associated BSDFs, each surface 

and its associated material define a mapping to a single parameterized BSDF, whose parameters are 

allowed to vary with respect to the given surface point.  This is useful for a variety of empirically or 

physically-based BSDF models with user-defined inputs that allow a single BSDF model to capture the 

appearance of a wide range of real-world materials.  BSDF input parameters may be constant along the 

surface of the material or vary according to filtered lookup in an image defined over the (u, v) coordinates 

of the surface.  This same parameterization holds for emittance defined across a surface as well as so-

called sensor response, which indicates how responsive a point is measuring incident radiance (sensor 

responsivity is non-zero only for points on the surface of a camera). 

 

Figure 5:  Modified Phong BSDF Visualization (reciprocal and energy-conserving) 

 The lambertian BRDF, for instance, models a perfectly diffuse surface whose exitant distribution 

of energy is uniform over the hemisphere without respect to the incident angle of light.  It takes as input a 

single parameter per sampled wavelength, referred to as m¬, representing the fraction 20, 15 of reflected 

versus absorbed spectral radiance at a given wavelength.  This parameter, m¬, is allowed to vary along the 

surface of the Material as input to the single DiffuseBSDF, via lookup in an image defined over the (u, v) 

coordinates of the surface.  This is commonly known as a texture map, though it is fundamentally more 

general in that it can be used to parameterize BSDFs in many more ways than just modulating the surface 

“color” with position. 
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 Materials are defined without respect to the underlying surface such that a single Material may be 

referenced from many different shapes.  Each distinct Shape instance in the scene has a reference to its 

associated Material, and upon intersection, a Shape queries its Material to lazily fill in an associated 

BSDF, Emitter, and Sensor for the intersected SurfacePoint.  A SurfacePoint is a core data structure 

which encapsulates all of the relevant geometric information about a point on the surface of a Shape, in 

addition to providing everything necessary for shading evaluation (BSDF), emittance evaluation 

(Emitter), and sensor response evaluation (Sensor).  SurfacePoints explicitly support the useful distinction 

between geometric and shading normals defined at a point, where the geometric normal is the actual 

normal of the underlying surface, and the shading normal is a (possibly) perturbed version of the 

geometric normal.  Normal vectors are primarily used in dot products, and in order to cleanly support 

shapes such as point lights or pinhole cameras which don’t really support the notion of a normal vector, 

all normal dot product requests go through a normal vector proxy contained in the SurfacePoint, which 

takes in a Vector3 and returns one if the underlying surface does not support normals, or the actual dot 

product of the shading normal with the given vector otherwise.  This decision has allowed us to naturally 

handle point lights (which arguably have their uses) without the need for special-casing. 

 

4.2.2 Scenefile Format 

Many classes in Milton are customizable via a number of input parameters, and it would both be 

awkward and decrease readability to have those classes take in all possible combinations of inputs as 

parameters either via constructors or accessors / mutators.  We chose to instead parameterize these classes 

at run-time via a common base class called a PropertyMap, which represents a key-value mapping 

between std::string keys and a set of well-defined primitive variant-value types (int, double, string, etc.).  

By taking advantage of boost::any, a template variant holder utility class provided by the boost library, all 

code dealing with parameters became both more extensible and more readable at the expense of static 

type-checking in several places.  This allows parameters for most core Milton classes to be specified via 

the commandline or more commonly in the scenefiles themselves, and loose type-checking is instead 

done at run-time during scenefile parsing.  This setup allows for a lot of flexibility, both within Milton 

and in terms of allowing external extensions.  One could, for example, use the same built-in loading code 

and scenefile format but add his/her own BSDF type with its own arbitrary key-value inputs, as long as 

the value-types in question are supported variants, without having to change anything within the Milton 

library itself.  Milton also provides a global PropertyMap encapsulated in a ResourceManager which 

stores global program options (specified, for instance, on the commandline), as well as a global thread-
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local PropertyMap allowing for synchronized, thread-specific storage.  The global thread-local storage is 

used, for example, in Milton’s implementation of Jensen’s PhotonMap in order to store a single, 

preallocated photon buffer per render thread. 

Closely related to the loose nature of PropertyMaps is the Milton scene file format.  In order to 

fulfill our goals of having scenefiles that were going to be both concise, well-defined, and highly 

extensible via arbitrary key-value pairs, we ended up defining an implementation-independent context 

free grammar to capture the structure and types that would be used in Milton scenefiles as well as a 

concrete implementation of that grammar via the popular JSON
12

 format.  Figure 6 depicts an example 

Milton scenefile using the JSON file format containing a single area light source and rendered with the 

built-in path tracer. 

{ 

"scenefile" : { 

"renderer" : { 

"type" : "pathTracer", 

"noRenderThreads" : 10, 

"noSuperSamples" : 1000 

}, 

 

"camera" : { 

"type" : "thinlens", 

"eye" : [ 0, 10, 0 ], 

 

"aperture" : 50, 

"fstop" : 18 

}, 

 

"scene" : { 

"material" : { 

"emitter" : { 

"type" : "oriented", 

"power" : [ 80, 80, 80 ] 

}, 

 

"plane" : { } 

} 

} 

} 

} 

Figure 6:  Typical JSON scenefile example.  Keywords in blue are aggregate types which accept child elements. 

                                                           
12

 JSON stands for Javascript Object Notation and is a valid subset of the Javascript language used commonly in 

webapps for data exchange due to its concise, human-readable format 
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Many aspects of the scenefile, including the camera, output, and renderer are all optional, and in the case 

that they aren’t provided, reasonable defaults will be used.  What’s great about JSON is that its own 

design (and Javascript in general) was guided by the recursive definition of objects as unordered lists of 

key-value pairs similar in spirit to our extensible PropertyMap paradigm.  For more information on the 

Milton scenefile format, in-depth documentation is available at http://milton.mjacobs.net/docs/scenefile/. 

 

4.2.3 Path Data Structure 

Paths of light are the central unit in the path integral formulation of light transport, upon which 

path tracing, bidirectional path tracing, and MLT are all founded (Milton’s implementation of photon 

mapping also utilizes the same path structure for convenience).  The data structure used to store and 

manipulate paths is therefore a very important part of any global illumination algorithm.  In Milton, a 

Path, that we’ll denote by �j, is composed of m PathVertex vertices, �n�4 … �o*4 with m p 0.  Each 

PathVertex stores reference-counted SurfacePoint (which includes relevant associated metadata, UV 

cords, normal vector, BSDF, etc.), as well as a cache of carefully chosen information local to that 

PathVertex in its parent Path.  For a PathVertex �7, this extra information includes: 

L��7*4 M �7�, L��7 M �7D4�,  �7�, �7�, v7�, v7�, 9:��7*4, �7, �7D4�, v­®�������̄ ��7|�7*4�, v­®°���������7|�7D4� (23) 

Of this data, �7�, �7�, v7�, and v7� all store cumulative information about either the light or eye 

subpath of the parent path up through and including vertex �7 (see Appendix A for a summary of these 

definitions or Veach’s thesis for detailed explanations).  A PathVertex’s BSDF can be queried for whether 

or not that vertex represents a symbolic Dirac delta distribution commonly referred to as a specular 

vertex.  These vertices require and/or benefit from special handling in several global illumination 

algorithms. 

The Path data structure contains methods for appending a vertex onto a light subpath by either 

sampling the BSDF of the last vertex, or, in the case that the path is currently empty, randomly sampling 

an initial vertex from the light sources in the scene.  Path contains a similar method for prepending a 

PathVertex onto an existing eye subpath by either sampling the adjoint BSDF of the first vertex in the 

path, or, in the case where the current path is empty, sampling a location on the film plane.  All mutable 

Path operations record the corresponding probability densities of their actions for later use (and an 

append or prepend operation may optionally use Russian Roulette, in which case the compensating factor 

is implicitly rolled into the path’s cached probability density).  Paths may also be appended onto each 
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other or broken into subpaths, all the while retaining both valid local and cumulative information in every 

PathVertex relating to the current Path as a whole.  Implicit reference-counting is utilized for dynamic 

PathVertex data because of the frequency of copying that goes on during Path manipulation and because 

one SurfacePoint can be referenced by multiple PathVertex vertices from different Paths.  In addition to 

manipulation operations, Path contains methods for efficiently querying the contribution and cumulative 

probability densities of any valid subpath.  This functionality is necessary for bidirectional path tracing 

and also simplifies the code for computing the acceptance probabilities of bidirectional mutations in 

MLT. 

 

4.2.4 Optimization 

Efficiency is a very important prerequisite for robustness, and Milton contains several features 

with the goal of efficient rendering in mind.  Milton is highly multithreaded, and the core rendering speed 

is practically limited by the number of cores on the underlying machine.  The number of rendering threads 

is customizable at run-time via scenefiles, and multithreading is cross-platform thanks to Qt.  We have 

also implemented an efficient, templated linear algebra library that’s accelerated through the use of SSE 

(Streaming SIMD Extensions) which, for example, allow two 4-element vectors to be added together in a 

single assembly instruction using specialized 128-bit SSE registers. 

          The main computationally complex operation inherent to most ray-based rendering algorithms is 

computing intersections between rays (vectors in ±² coupled with an origin point) and a collection of 

objects constituting the scene.  We are very proud to say that at the heart of Milton sits an extremely 

hand-optimized kd-Tree, which may be constructed via one of several built-in heuristics (the default of 

which is the Surface Area Heuristic, SAH).  A great deal of time was spent implementing an as-efficient-

as-possible (without resorting to assembly) spatial acceleration scheme, and the result is that Milton 

renderers are capable of handling large scenes with billions of primitives.  In practice, rendering speed 

grows sub-log-linearly with respect to the number of primitives due to the nature of the SAH and the 

optimized kd-Tree traversal routine which incorporates aggressive culling for cases where early 

termination is possible.  kd-Tree build times are, however, noticeable for larger scenes due to the ³�
 log 
� complexity of the SAH version that we’ve implemented.  Note that due to the scenegraph-like 

format of Milton scenefiles, multiple levels of recursive kd-Trees are likely to be created per-scene 

(meshes, for example, always contain their own sub kd-Tree).  This has the advantage of making it 

unlikely for a single kd-Tree to become unwieldly in size and approach the limits of memory on the 

underlying platform.  It does, however, have the disadvantage that the weighting scheme for top-level kd-



 

Trees used in the surface area heuris

approximately equal in terms of expected traversal cost (i.e., traversing a 

kd-Tree will be much more expensive t

knowledge is not currently utilized anywhere

of the recursive kd-Tree structure would be an interesting topic for further research.

 

Figure 7:  (left) OpenGL visualization of a kd

structure that is functionally equivalent to an octree

same octree after three splits.  (right) A third 

Note that all primitives, materials, and lights in Milton have the ability to 

debugging and development purposes.  

applications as a general-purpose visualization tool.

 

4.2.4 PointSampleRenderer 

Besides MLT, every rendering algorithm that we’ve discussed attempts to evaluate incident flux 

over the camera lens by taking many point samples along the film plane, typically in proportion to the 

number of pixels in the desired output image, and then reconstructing an image from those samples by 

convolving the point samples with some type of reconstruction filter app

There are many possible ways of selecting sample points on the film plane which 

sense, and the selection of sample points is 

the exception of adaptive sampling).

from the relatively expensive process of evaluation, we can easily support an arbitrarily large number of 

core render threads, whose purpose is to evaluate point samples via whatever re

                                                           
13

 Reconstruction filters available in Milton include uniform, linear, Gaussian, Mitchell, and Lanczos sinc.
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urface area heuristic may be degraded because sub-primitives may no longer be 

approximately equal in terms of expected traversal cost (i.e., traversing a node containing a 

more expensive than traversing a node containing a child primitive

knowledge is not currently utilized anywhere).  A scheme to balance the SAH based on more knowledge 

Tree structure would be an interesting topic for further research. 

 

) OpenGL visualization of a kd-Tree built with a spatially-uniform splitting strategy, yielding a data 

equivalent to an octree.  (middle) Alternative visualization utilizing transparency 

A third OpenGL visualization of a more adaptive kd-Tree built with 

ll primitives, materials, and lights in Milton have the ability to preview themselves in OpenGL for 

  This has also made Milton useful in other, non-rendering computer graphics 

purpose visualization tool. 

Besides MLT, every rendering algorithm that we’ve discussed attempts to evaluate incident flux 

by taking many point samples along the film plane, typically in proportion to the 

number of pixels in the desired output image, and then reconstructing an image from those samples by 

convolving the point samples with some type of reconstruction filter approximating the ideal sinc

There are many possible ways of selecting sample points on the film plane which 

sense, and the selection of sample points is inherently independent of their subsequent evaluation (with 

ng).  By completely separating the process of generating point samples 

relatively expensive process of evaluation, we can easily support an arbitrarily large number of 

core render threads, whose purpose is to evaluate point samples via whatever rendering algorithm is 

tion filters available in Milton include uniform, linear, Gaussian, Mitchell, and Lanczos sinc.

primitives may no longer be 

node containing a large, child 

child primitive, but this 

).  A scheme to balance the SAH based on more knowledge 

 

uniform splitting strategy, yielding a data 

utilizing transparency of the 

Tree built with the SAH.  

themselves in OpenGL for 

rendering computer graphics 

Besides MLT, every rendering algorithm that we’ve discussed attempts to evaluate incident flux 

by taking many point samples along the film plane, typically in proportion to the 

number of pixels in the desired output image, and then reconstructing an image from those samples by 

roximating the ideal sinc
13

. 

There are many possible ways of selecting sample points on the film plane which might make 

independent of their subsequent evaluation (with 

By completely separating the process of generating point samples 

relatively expensive process of evaluation, we can easily support an arbitrarily large number of 

ndering algorithm is 

tion filters available in Milton include uniform, linear, Gaussian, Mitchell, and Lanczos sinc. 
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currently selected, without changing or complicating the sample generation code at all.  All Milton 

renderers besides the OpenGL preview renderer are subclasses of PointSampleRenderer, which acts as a 

shared buffer in a standard producer-consumer problem.  SampleGenerator threads produce sample points 

over NDC in 20,15� (normalized device coordinates representing the camera’s viewport), and a 

customizable number of render threads consume those samples by evaluating them and adding the 

resulting incident radiance values to a synchronized RenderOutput.  The RenderOutput is abstract and 

may be either piping samples out to a file, an image generated with a reconstruction filter, a canvas in the 

Qt GUI which comes bundled with Milton, or possibly a user-defined plugin. 

 

4.2.5 Problems with Current Design 

 Several primitive shapes are currently unable to calculate their world-space surface area correctly 

after undergoing arbitrary non-affine transforms.  Another problem that’s more software engineering-

oriented in nature is that while the PropertyMap design pattern is very extensible and clean to use, it does 

so by sacrificing strict compile-time type checking and is thus susceptible to type mismatches at run-time 

(via boost::bad_any_cast exceptions).  This possibility is currently minimized by excessive type checking 

during scenefile parsing to ensure that dynamic parameters match their expected types, at least for built-in 

classes.  While this does not provide the type of strong guarantee one would like from a typing system, 

we have found it to be adequate during testing to catch accidental type errors in scenefiles.  Another 

problem related to the poor guarantees of PropertyMaps is that there is currently no standard way for 

classes that utilize and expect dynamic parameters from PropertyMaps to ‘publish’ this information in a 

way that could be used by the scene loader and/or a better auto-documentation scheme.  Expected 

parameters for classes exposed in scenefiles are currently not tied to the class’ implementation, which will 

inevitably lead to inconsistencies in documentation over time (source code documentation, however, is 

auto-generated using Doxygen to resolve this problem). 

 From a physical point-of-view, there are places where Milton does a poor job of ensuring that 

units match up properly and that every calculation has a corresponding physical interpretation.  The goal 

of approaching rendering from a physically realistic angle often lost out to the somewhat conflicting goals 

of efficiency and readability.  We encourage other rendering engines to consider early on in their design 

the degree to which they will ensure the accuracy and consistency of physical units. 

 A common design pattern for classes within Milton is to have an init method in addition to the 

constructor, whose purpose is to initialize the object after the caller sets up any possible metadata that 
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may be necessary for it to do so.  While this design pattern has the advantage of allowing for more 

flexible, lazy initialization, in practice, it has proven unintuitive for other programmers to get used to, and 

a redesign of the init-before-use paradigm might be worth considering. 

 The scenefile format in Milton includes optional renderer, camera, and output definitions, in 

addition to the required scene definition.  If we were to redesign the high-level scene format, we would 

instead opt to separate out the main content (the scene and camera definitions) from its presentation 

(renderer and output fields), by placing the latter in its own milton.ini file to be loaded separately upon 

running Milton.  Allowing individual scenefiles to override defaults for renderer-specific parameter does, 

however, have its advantages; photon mapping, for instance, is notorious for its dependence on scene-

specific parameters. 

 

4.3 Difficulties 

 One particularly annoying difficulty in any rendering engine such as Milton is the correct 

handling of so-called specular surfaces.  Specular surfaces simulate perfect mirrors by having a BSDF 

which is represented by a Dirac delta distribution (which is non-zero over one or a finite set of directions 

with measure zero), making them particularly difficult to simulate under a traditional Monte Carlo 

framework since they are impossible to sample successfully with probability one.  Specular surfaces are 

much more efficiently handled by deterministic sampling in which the probability density function is also 

a Dirac delta distribution akin to sampling a discrete, cumulative distribution function.  The infinite 

densities and corresponding infinite BSDF values that arise during simulation are difficult to work with 

and combine with cumulative MC estimates along the path as a whole.  And though perfect specular 

surfaces don’t technically exist in the real world, they have nevertheless been engrained as a standard part 

of computer graphics, originally due to the fact that their deterministic sampling makes them easy to 

simulate in non-MC frameworks.  Furthermore, if we were to disregard perfect specular reflectors, we 

would still have to work with highly-peaked BSDFs in order to represent polished glass – an alternative 

which comes with its own pitfalls, given that floating point numbers lose precision fast when working 

with extreme-valued functions (both large and small). 

 In order to simulate specular surfaces, most rendering frameworks separate diffuse reflection out 

from specular reflection (where diffuse reflection refers to non-perfectly-specular reflection), and in this 

respect, Milton is no different.  BSDFs in Milton have a flag denoting whether they represent a symbolic 

Dirac delta distribution or a normal BSDF, coupled with a finite probability density function.  This 
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solution is somewhat unsatisfying as it necessitates a great deal of special-casing in the rendering 

algorithms themselves.  One of motivating principles behind any rendering Framework like Milton is to 

try and abstract out all of the difficult and/or unpleasant commonalities that rendering algorithms may run 

into, and in this respect, we have failed to do so for specular surfaces.  And while there is certainly 

something to be said for having the ability to simulate specular surfaces differently if a rendering 

algorithm wishes to do so (photon mapping is a great example of this approach), there is certainly also 

something to be said for keeping the exposed API (of BSDFs, for example) as simple as possible and not 

forcing external algorithms to adhere to special-casing that is not intrinsic the physics which are being 

simulated.  Along these lines of thought, one idea we had during development which never got put into 

Milton, would be to provide wrappers for both the representations of BSDF values and probability 

densities which would use operator overloading to maintain internal, symbolic representations that 

implicitly adhered to strict rules for common mathematical operations such as multiplication and addition.  

These wrappers would symbolically ensure the correctness of any computation involving Dirac delta 

distributions and would provide for easy, implicit conversions between discrete CDFs and continuous 

PDFs.  BSDFs could still expose the specular flag, but at least this way wouldn’t necessitate an extra 

complication of rendering algorithms and would allow for some algorithms such as bidirectional path 

tracing and MLT to be implemented much more compactly and elegantly by removing all special-casing.  

Again, this approach was never implemented into Milton due to time constraints, but it seemed interesting 

enough to mention. 

 Another practical difficulty we ran into with MC-based rendering algorithms was a singularity 

inherent to the geometry term
14

, L�� M >�, used to convert between solid angle and area measures.  L is 

unbounded due to the division by distance squared, which in practice, amounts to singularities in corners 

and near edges of objects.  Debug builds of Milton attempt to check for these singularities through the 

religious use of assertions to ensure that possible affected values do not result in NaNs or infs, though the 

unbounded nature of the geometry term can still lead to poor simulation of paths which contain adjacent 

vertices that are arbitrarily close to each other. 

  

                                                           
14

 See equation (13). 



 

4.4 Results 

 In this section, we provide

algorithms available in Milton.  We 

mesh comprised of around 40k triangles.

Figure 8:  The same scene rendered using 

(bottom left), and MLT (bottom right).  The 

correct, reference image.  Note the lack of caustics on the floor and lack of indirect illumination in the ray traced 

version.  Discrepancies in the bidirectional path tracing and MLT renders are due to 

well as implementation issues with correctly handling specular 

  

                                                           
15

 The Cornell Box scene was developed by Cornell University as a standard test scene for physically based 

rendering. 
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In this section, we provide a brief comparison of results obtained using the different rendering 

We begin with a Cornell Box
15

 scene containing a transparent dragon 

mesh comprised of around 40k triangles. 

 

 

The same scene rendered using ray tracing (top left), path tracing (top right), bidirectional path tracing

(bottom right).  The brute force path traced version in the top right should be seen as 

lack of caustics on the floor and lack of indirect illumination in the ray traced 

sion.  Discrepancies in the bidirectional path tracing and MLT renders are due to differences in tone mapping as 

implementation issues with correctly handling specular paths. 

The Cornell Box scene was developed by Cornell University as a standard test scene for physically based 

different rendering 

scene containing a transparent dragon 

 

 

ectional path tracing 

path traced version in the top right should be seen as a 

lack of caustics on the floor and lack of indirect illumination in the ray traced 

differences in tone mapping as 

The Cornell Box scene was developed by Cornell University as a standard test scene for physically based 



 

Figure 9:  Two interesting bloopers of t

of unsynchronized access from multiple render threads 

 

 

Figure 10:  (left)  All primitive shapes in 

world-space surface area.  Any shape, 

cool effects such as the lion emitter path traced 

resolution (scanned) Stanford bunny mesh 

million triangles overall.  The scene uses two SAH kd

instances), and one for the scene overall, allowing this complicated scene to render via path tracing at 16 samples 

per pixel in approximately 5 minutes (on a 
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of the Cornell Box which occurred while debugging photon mapping as a result 

from multiple render threads to the global, diffuse photon map. 

 

primitive shapes in Milton allow for samples to be taken across their surface

 including meshes, may therefore be used as an emitter, providing for some 

such as the lion emitter path traced in the image on the left.  The image on the right 

resolution (scanned) Stanford bunny mesh instances, each of which contain about 70k triangles yielding around 70 

million triangles overall.  The scene uses two SAH kd-Trees, one for the master bunny model (shared by all 

tances), and one for the scene overall, allowing this complicated scene to render via path tracing at 16 samples 

on a quad-core machine with 8 render threads and two area light sources).

 

photon mapping as a result 

 

amples to be taken across their surface and evaluation of 

be used as an emitter, providing for some 

right contains 1000 high 

, each of which contain about 70k triangles yielding around 70 

Trees, one for the master bunny model (shared by all 

tances), and one for the scene overall, allowing this complicated scene to render via path tracing at 16 samples 

core machine with 8 render threads and two area light sources). 



 

 

Figure 11:  Milton incorporates a thin lens camera model

as aperture and focal distance.  The top image

using a pinhole camera (no depth of field

parameter.  The focus in these images was set 

the focal distance as the world-space dista

through the focal point. 

 

Figure 12:  Example of dispersion (yellow region)

wavelength-dependent. 
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Milton incorporates a thin lens camera model, which supports depth of field via realistic parameters such 

top image shows a simple scene consisting of three fractal meshes, 

no depth of field).  The three images below show the effect of varying the focal distance 

parameter.  The focus in these images was set automatically by specifying a focal point in NDC and 

space distance between the camera and the first object intersected by a ray shot 

 

(yellow region), in which the internal index of refraction of an object is 

 

which supports depth of field via realistic parameters such 

consisting of three fractal meshes, path traced 

show the effect of varying the focal distance 

by specifying a focal point in NDC and then calculating 

nce between the camera and the first object intersected by a ray shot 

, in which the internal index of refraction of an object is 
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Chapter 5 

Conclusion 

We have presented Milton as a high quality, open  source rendering framework, with a focus on its design 

and the lessons we have learned along the way.  In addition, we have provided an alternative, 

implementation-focused reference for MLT in an attempt to clarify its subtleties, including an open 

source implementation available in Milton. 

On a broader level, we believe that Milton may be useful as a general educational framework for 

those wishing to learn the principles of rendering.  Milton has already been used successfully as support 

code for several projects in the graduate-level computer graphics course at Brown University (CS224).  

Feedback from this trial has been encouraging, given that, we hope Milton to one day fulfill a niche 

within the educational computer graphics community, of being a free, well-structured open source 

rendering framework that is both clean, extensible, and capable of advanced rendering techniques such as 

MLT.  In particular, although there are many rendering engines out there, there are none that fulfill all of 

the goals for Milton.  As of writing this document, there are several popular, free, advanced rendering 

engines available online (e.g., Indigo, PBRT, Luxrender, Yafray, Aqsis, Sunflow, etc.), only some of 

which are open-source (PBRT, Luxrender, Yafray, and Sunflow), and the only one of which in the 

author’s opinion passes as well-written, well-documented, high quality code, is Sunflow, which is written 

in Java.  In this respect, we believe that although there are many renderers with features similar to Milton 

available online, there remains an unfilled niche for a clean, well-documented / open-source, global 

illumination rendering framework written in C++, a niche that we hope Milton may someday grow to 

fulfill.  
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Appendix A 

Bidirectional Definitions 

 

Let  >� � >n>4 … >o*4 be a path composed of m vertices (zero-indexed as in C/C++), where vertex >nis 

assumed to lie on a light source and vertex >o*4 is assumed to lie on the film plane. For reference 

purposes, we define the following cumulative probability density functions v:� and v��, as well as 

cumulative Monte Carlo estimators of the form 9/v, for light subpaths and eye subpaths of a given 

length, denoted by �:� and ���, respectively (as in chapter 10 of Veach’s thesis). 

v:� � µ 1, $ � 0v¶�>n�, $ � 1v­®�������̄ �>:*4|>:*��L�>:*� M >:*4� · v:*4� , 2 E $ E mb 

v�� � µ 1, ' � 0v¶�>z*4�, ' � 1v­®°��������>o*�|>o*�D4�L�>o*� M >o*�D4� · v�*4� , 2 E ' E mb 

�:� � ¹̧º
¹» 

1, $ � 0.I�n��>n�v¶�>n� , $ � 19:�>:*² ; >:*� ; >:*4�v­®�������̄ �>:*4|>:*�� · �:*4� , 2 E $ E m
b 

��� � ¹̧º
¹» 

1, ' � 0�I�n��>o*4�v¶�>o*4� , ' � 19:�>:*² ; >�*� ; >�*4�v­®°��������>o*�|>o*�D4� · ��*4� , 2 E ' E m
b 

In order to gain intuition for what these cumulative functions look like, here are equivalent definitions 

presented in a more intuitive (though less precise), expanded form: 

v:� � v¶�>n� · qr v­®�������̄ �>7|>7*4�L�>7*4 M >7�:*4
7s4 t 

v�� � ¼ r v­®°��������>7|>7D4�L�>7 M >7D4�o*�
7sz*� ½ · v¶�>o*4� 
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�:� � .I�n��>n�v¶�>n� · qr  9:�>7*� ; >7*4 ; >7�v­®�������̄ �>7|>7*4�
:*4
7s4 t 

��� � ¼ r 9:�>7 ; >7D4 ; >7D��v­®°��������>7|>7D4�
o*�

7sz*� ½ · �I�n��>o*4�v¶�>o*4�  

 

The following functions are defined in chapter 10 of Veach’s thesis for use in bidirectional path tracing 

and are provided here both for completeness of this reference and because they will be referred to in 

Appendix B. 

v:,��>�� � v:�v�� 

&:,� � µ .I�>n ; >4�, $ � 0, ' � 0�I�>o*� ; >o*4�, $ � 0, ' � 09:�>:*� ; >:*4 ; >z*��L�>:*4 M >o*��9:�>:*4 ; >o*� ; >o*�D4�, s � 0, ' � 0b 
�:,�� � �:�&:,���� 

C:,� � v:,��∑ v:,��:�n,��n  �power heuristic with ¿ � 2� 

9�>�� � .I�>n ; >4�L�>n M >4� ¼r 9:�>7*4 ; >7 ; >7D4�L�>7 M >7D4�o*�
7s4 ½ �I�>o*� ; >o*4� 
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Appendix B 

MLT Acceptance Probability 

 

We present here the explicit acceptance probability used for bidirectional mutations in Milton’s 

implementation of MLT, using the same notation as in chapter 11 of Veach’s thesis. 

Again, let >� � >n>4 … >o*4, and let �j � �n�4 … �z*4 be paths composed of m and 
 vertices respectively. 

��>�|�j� � min �1, 9�� �>�����j|>��9�� ��j���>�|�j�� � min �1, ���j|>����>�|�j�� 

��>�|�j� � ��>�|�j�9�� �>�� 

� v¬2", )5 ∑ vÀ2�, mÀ @ �5 v�D7,o*��D7��>��oÁ7sn 9�� �>��  

� v¬2", )5 y vÀ2�, mÀ @ �5  v�D7,o*��D7��>��9�� �>��
oÁ

7sn  

� v¬2", )5 y vÀ2�, mÀ @ �5��D7,o*��D7��
oÁ

7sn  

We set  v�D7,o*��D7��>�� to zero if either >�D7 or >o*��D7� is specular.
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