
StashFS : Generalized Disconnected Operation

Robert Mustacchi
Computer Science Department

Brown University
rm@cs.brown.edu

Abstract

With the rise of network file systems and cloud-based
data storage an increasingly common problem is be-
ing able to access data if servers or communication
channels fail. In this paper we introduce StashFS, a
generalized method for disconnected file system oper-
ation and access across any two file systems while re-
stricting software modifications only to the client. With
StashFS, clients can disconnect and make changes to lo-
cally cached copies of files. They can detect conflicts and
merge in their changes upon reconnection. In addition,
we measure the performance and overhead of the system
and conclude that the overhead while using it is accept-
able.

1 Introduction

As distributed and cloud services become more common-
place, the expectations of users for easy integration and
data synchronization become much higher. Thus sug-
gesting to a user to do something such as reformat a hard
drive or install a new file system to attain the benefits of
these systems is inviting a nightmare onto those users.
Similarly, those users do not have the ability to install
additional software or add features to these remote ser-
vices, as they lack administrative privileges.

Users need to be able to also use these systems to ex-
tend their storage capabilities beyond that of their initial
device and be able to keep this data synchronized across
all of their devices automatically, without much effort.
Manually running synchronizations or scheduling them
regularly often leads to accidentally missing one.

Additionally, if the user wants to start using these ser-
vices, they should be able to simply start the synchro-
nization process and have their data migrated into their
remote systems and be able to continue using their de-
vices and data as normal.

With these ideas in mind, StashFS was developed.

Figure 1: System Overview

StashFS is designed to live on top of an already existing
local file system and utilize it for local storage. As long
as the cloud or distributed service can be mounted as a
file system, StashFS can use that file system as a backing
store and provide both systems continuous synchroniza-
tion. An example of this architecture is shown in Figure
1. StashFS also provides the ability to go into discon-
nected mode where it modifies local copies of their files.
It can later reconnect and resume synchronizing and push
the changes to the backing store.

1.1 Benefits

At a high level, here are several advantages of using
StashFS:



1. Backup data into another remote file system

2. Temporarily clone data from a remote system

3. Create a copy of data from a remote source that
stays synchronized

One important requirement is that the user should be
able to do all of these without having to reformat their file
system and preferably without installing anything spe-
cific to the underlying synchronization system.

As a result we gain several features:

1. Regular synchronization of data

2. Ability to temporarily or permanently retrieve data
out of the cloud or any other remote source

3. Ability to use data from a remote source locally
while offline and have it synchronize on reconnect

4. Ability to modify our data from another location
and have it merge changes into the local version

1.2 Differences from SCM

There are several similarities with this system to a source
control management (SCM) systems such as RCS, SVN,
git, and mercurial[14, 29, 6, 15]. These similarities
mainly lie in the ability of the system to determine that
something has changed and attempting to help merge
conflicts. However, this system is different in that it
doesn’t have any notion of a history. There is no way to
revert files to a prior version. Building a file system in-
terface based on an existing source control management
system, similar to [18], would be an interesting area to
pursue and explore.

Despite the seeming advantages of using source con-
trol management systems, there are several areas where
this system will perform better. By default, with an SCM,
one uses substantially more space. Not only is there a
copy of each object and its modification history hidden
in the repository, but there is also a copy of the object in
the normal file system. This means that at least twice the
space of the original object will be used. While normally
this is not a significant problem as these repositories are
small, if the entire file system was in an SCM, this would
mean that the effective space had been cut in half.

Furthermore, SCMs function entirely on user input.
A user has to run commands likecommit , update ,
or add . This is not a process which would work well
for general users, especially considering that experienced
programmers sometimes forget to add every file they cre-
ate to the repository before they commit.

2 Related Work

There has been a lot of work done in the area of dis-
tributed file systems that support disconnected operation.
There also has been work done in caching file systems
which serves to maintain local copies of data that resides
on slow or remote media.

Disconnected operation refers to the ability to have a
copy of the working set of data on a local machine and
being able to modify it without having to be connected to
the network. Then, upon reconnecting, there will be data
synchronization and conflict management.

The Andrew File System (AFS), strictly speaking, is
not a disconnected file system, however it does serve as
a basis for Coda and was also one of the early distributed
file systems to include local file caching. One important
aspect of AFS is that rather than always fetching the re-
quired data from the server, it attempts to serve the data
from the client’s local cache. This could be done be-
cause of how locking occurs in AFS. By default, an ex-
clusive lock is granted to a particular user for a particular
file. When an exclusive lock needed to be revoked, AFS
uses a callback to remove that exclusive lock and syn-
chronize changes to the file, after which the file system
would need to renegotiate access to the file[11]. Simi-
larly, when a file is closed by the user, AFS then flushes
its copy of the data back to the underlying server[9].

Through these mechanisms AFS and an AFS-based
follow up, DCE’s DFS[7, 19], could potentially provide
limited file system access while a network connection or
server was acting up. However, these systems do not
work disconnected for an extended period of time, this
motivated the development of Coda for disconnected ac-
cess.

Coda is a disconnected distributed file system that has
several interesting innovations. Coda is built inherit-
ing several features and design decisions from AFS[24].
While connected, Coda utilizes the same callback system
that AFS does. At the same time, while Coda is idle, it
hoards various files that a user wants to ensure are avail-
able in case of disconnection.

Furthermore, Coda balances the local disk cache be-
tween the needs of the user at that instant with the set
of files that the user specified they wanted to have acces-
sible while disconnected. Coda tries to ensure that low
space on the local disk did not hinder working with ad-
ditional data[12].

Another important thing about Coda is its handling of
conflicts when reconnecting. If it detected that there was
a write/write conflict with the remote server, it would end
up aborting the replay of the log, and it would be up to
the user to fix the state.

Coda also utilizes a lazy system of conflict resolution
that is based upon a series of remote procedure calls enti-

2



tled ASRs[13]. Instead of using a remote procedure call
framework, StashFS has a built in system and utilizes
systems already built into the operating system.

StashFS’s major improvement over Coda is removing
the necessity of a central server that is running Coda. By
allowing StashFS to shadow any mount point we gain
more flexibility and potential uses. StashFS can serve as
a purely local caching file system in addition to providing
disconnected access to a networked file system.

Sun developed the Cache File System (CacheFS) in
SunOS 2.3 to speed up and help address bottlenecks on
servers. CacheFS is designed to use the local file system
to store data and speed up usage with NFS and other slow
medium such as CD-ROM and tape. The local file sys-
tem can either be volatile (tmpfs) or non-volatile (ufs).
If it is non-volatile, it would provide an already warmed-
cache when a system came back up. To ensure synchro-
nization, CacheFS polled attributes to see if files changed
using a system similar to NFS[28]. Since then, other sys-
tems have also popped up that allow more generalized
caching[26]. StashFS improves on ideas introduced with
caching file systems by allowing them to work with a
broader set of file systems and more importantly to pro-
vide disconnected operation.

Intermezzo is a follow up from the people who worked
on Coda. Unlike Coda, Intermezzo does not use its own
protocol for the underlying structure. Furthermore, it
doesn’t have its own underlying file systems, but instead
utilizes the existing local file system. For example, it will
use the existing ext2 file system which is different from
how Coda and AFS work[20].

Intermezzo does this by introducing a layer that sits on
top of the VFS. Intermezzo handles the logic behind file
synchronization. However, Intermezzo ends up having
to also handle a lot of journaling and it still operates uti-
lizing a custom multi-RPC callback system. While Inter-
mezzo has several interesting innovations, unfortunately
it was dropped with the release of the Linux 2.6 kernel
branch and thus is not readily usable anymore.

A follow up to Intermezzo is Lustre. Lustre itself
seems to share some of the similarities in that it uses and
exploits the client file systems and provides a wrapper
layer thus creating a distributed cluster[17]. Unlike Inter-
mezzo, Lustre does not support disconnected operation.
StashFS could be used with a Lustre client to provide
disconnected operation.

3 Historical Cycles and Current Issues

When it comes to bottlenecks with networked file sys-
tems the same problems have risen again. One of the
reasons for the development of CacheFS was the fact that
Network bandwidth was precious, but disk space was not
as precious. But as the communication pipes and servers

grew even larger, the ability to utilize them increased,
and CacheFS became unnecessary as network response
times became quite competitive[5].

However, currently our local machines are becoming
quite powerful again. Even laptops have multicore pro-
cessors, potential for GPGPU, and several gigabytes of
RAM. Now utilizing workstation’s local caches to de-
crease load on servers seems viable again. This will
hopefully allow a benefit from decreased server load and
faster response times as most users could fit their work-
ing set entirely in RAM and still have extra space.

There are several shortcomings that StashFS is at-
tempting to rectify. In Coda, you have to use Coda as
the underlying system for both the clients and servers.
You cannot take advantage of any file systems that have
had substantial improvements in their underlying struc-
ture and workings such as data checksums, silently layer
things on top of LVM[16], or use ZFS[4].

While Intermezzo does allow this, it does not allow
other operations. For example, Intermezzo does con-
strain the remote backing store to run Intermezzo. But
if you don’t have control over that remote system, then
Intermezzo is not viable. It is a hope that StashFS will
allow an arbitrary remote file system to be run, whether
it is based on a DFS, accessed via sshfs, or some other
system.

Another improvement to these systems is to add an
ability to temporarily cache desired data, as opposed to
using a permanent store. With the increase in RAM to
a few gigabytes, most non-multimedia based workloads
can be contained entirely in RAM.

4 Design and Architecture

At a high level, StashFS is meant to take either a local
or remote share and mirror it into the opposite environ-
ment and provide synchronized and disconnected access
to it. StashFS is also charged with detecting and manag-
ing conflicts that arise during use.

The design for this system falls into these categories:

File System Interposition: How the existing file sys-
tems on the system are utilized and provide a similar in-
terface.

Disconnected Operation: How data is managed be-
tween remote and local file systems, during both the con-
nected and disconnected operation.

Handling Conflicts: How conflicts from normal op-
eration and reconnection are handled.

User Interactions: The tools the user has to aid in
management and startup.

3



4.1 File System Interposition

Definitions This system is divided into two different
pieces, which correspond to different mount points on
the system: the local mount point and the remote mount
point.

The local mount point refers to a part of the local
file system that will ultimately be shadowed and have
a FUSE based file system[1] interposed or mounted on
top of it. The remote file system refers to some mount
point that represents data that is stored elsewhere, gen-
erally a remote server, distributed file system, or cloud
based service, though this could be a local file system.
The local mount will provide disconnected access to the
remote mount point.

Interposition Effects At the core, StashFS provides a
layer that sits on top of an already existing local file sys-
tem and interposes itself on all the various system calls
that occur on that file system. Thus it becomes no dif-
ferent from any other mounted file system as seen by the
operating system. The different operations that occur are
taken and sent to both the local and remote systems and
validation is done to ensure consistency with the remote
system.

The core of this is handled via FUSE (Filesystem in
Userpace). FUSE is a kernel module that provides a
means for a file system to be run and debugged entirely
in user land. The kernel module gathers file system re-
quests and securely serializes them to the user land. The
return values and any modifications are then sent back to
the kernel where they are returned to the calling process.
Several file systems have been implemented in FUSE,
such as NTFS-3G[2] and SSHFS[3].

The second important piece is mounting another file
system on the local machine that will shadow an existing
file system. On invocation, StashFS will chdir to the tar-
get directory on the local file system and maintain a file
descriptor to it. This allows StashFS to access the orig-
inal underlying system. The user can only access it via
StashFS which receives all of the intended system calls
through FUSE. This flow of control is described in figure
2.

The end result of this is that the user will still see and
have the same file system interface as before the interpo-
sition of FUSE. The data that is present is something that
will also be maintained in the remote system.

To ensure that this is maintained persistently, the user
can optionally add an entry to the operating system’s
fstab, so StashFS is mounted during normal system start
up.

Figure 2: System call flow of control. The user calls
mkdir, which goes to kernel VFS (1), then to the FUSE
module (2), sent to StashFS (3), which makes the calls
on the actual local and remote file systems (4-6).

4.2 Disconnected Operation

There are a few different pieces that need to be consid-
ered for disconnected operation. The first is handling
normal file system operations. These operations have
several potential parts: updating the local copy, validat-
ing that the operation makes sense in the remote system,
and running the operation on the remote server.

We also have to handle the logic of pulling over files
that are requested and ensuring that the correct working
set is being stored on the local system. Furthermore, on
reconnect we need to synchronize all the changes that
have occurred.

Maintaining State Across system reboots, there is a
need to maintain different pieces of information about
the state of the file system. There are three different
states that data can be in:

• The data is currently only on the local system (it
still needs to be initially pushed out or was modified
while disconnected)

• The data is only on the remote system (it still needs
to be initially pulled in or is not cached)

• The data exists in both places and the timestamps
and crc of the remote version is stored locally.

Conflicts are another important area for distributed and
disconnected file systems. If a conflict is detected, then
the data is simply uncached and put into the second state
described above. Then it will be recached when a more
recent version is needed.

To maintain this state, a hidden directory inside each
directory is used. This would be implemented via some-
thing simple similar to a dot file on a Unix system and

4



Figure 3: Flow of open, write, and close system calls

would not show up in any readdir calls. The file stores a
list of all the dirents that exist in the directory as the ac-
tual directory will not necessarily have all of the dirents
present. This file would also describe the state of each
dirent’s synchronization.

When a user enters a folder for the first time, the sys-
tem will make an empty directory in local storage. It will
then read all the dirents from the remote server and use
that information to create the local status file. When a
readdir call comes, it would use this status file to gener-
ate the list of readdir entries.

When a file is accessed, the status file is consulted be-
fore proceeding. From the status file one can find out
if there is a locally cached version of the file. If there
is, it will first compare the timestamps present with the
remote ones. If they differ, it will compute the cyclical
redundancy codes[21] for both files to validate that they
are different and update the file if necessary. Figure 3
mirrors the flow of control when working with a file. If
there is no locally cached copy, it will pull the file over
and cache it (1). The reads and writes to the file will
all go to the local copy of the file (2). When the file is
closed, the entire file is copied back to the remote mount
point (3). While better methods such as [30] exist for
synchronizing differences, this approach was taken due
to its simplicity, allowing efforts to be focused on other
parts of the system.

If a file is removed from the cache, then this status
file would be updated to note that it is no longer cached
and the actual file would be removed from the underlying
local storage. If any dirent of the directory is removed via
theunlink system call, then the corresponding entry in
the status file will be removed, along with any locally
cached versions of the entry. Finally, when the directory
itself is removed, its status file is removed along with the
directory itself.

The status file is in charge of maintaining several dif-
ferent things:

• The name of each dirent present

• Whether that dirent is local, remote, or dirty

• The most recent copy of the stat information from
stat(2)

• The crc of the remote file

Detecting Changes For any file that is currently syn-
chronized between the server and the client, it is easy to
detect whether or not it has changed by comparing the
mtime for the file stored locally with the mtime from the
remote server. If the mtime on the server is larger than
the locally stored mtime and the crc values differ than the
file has changed.

Files will be compared with their remote versions
upon certain state-important system calls (i.e. open, stat,
close, etc.) and when resuming from disconnected oper-
ation.

Log Definition To help maintain state, synchronize
with the remote file system, and control disconnected ac-
cess, a log of file system operations is used. The primary
use for this is for disconnected access. During discon-
nected access, each operation will be appended to the
log. From this information, it will be possible to replay
the entire log to synchronize the local storage with the
remote storage when the user reconnects. During regular
connected operation the log does not need to be used.

Furthermore, the log is designed to ensure if an opera-
tion occurs during a crash that there are some guarantees
about the validity of the data, as losing data is one of the
worst things a file system can do.

The log is going to be structured as a linked list of
entries that will be appended to when operations that
change file and directory state occur. Each entry will
consist of the following fields:

• The file system operation that occurred.

• The path(s) affected

• Any arguments that are necessary for replaying this
operation (i.e. a modet to chmod)

There are a few important additional things to men-
tion. Any time a file system operation occurs based on
its file descriptor, for example, fstat, ftruncate, etc., be-
fore it is logged, the file descriptor is translated back to a
path.

To better handle the cases where multiple operations
are modifying the same file (i.e. multiple writes oc-
curring in a row) as opposed to logging each individual
write, we put the close call in the log. Then when replay-
ing the log, we copy the entire file over to synchronize
it.

If there are multiple write operations to a file across
multiple open and close operations only the most recent
copy of the data is synchronized while replaying the log.

Log Persistence Two different strategies are used to
maintain the log. The first is to always append new en-
tries to the log with synchronous writes a lock to guar-
antee atomicity. The second is to write the offset of the

5



most recently replayed entry to the first few bytes of the
log. This way, in the event of a crash or pause in replay-
ing, the state of the log and the most recently replayed
entry can be determined.

Detecting disconnection Disconnection is defined by
having an operation on the remote mount point time out.
Every syscall on the remote mountpoint has a watchdog
to detect the timeout. This is useful when using hard
mounts with NFS[23], which will not time out when dis-
connected. NFS failures while testing have been success-
fully detected with this strategy. When this happens, the
system switches to disconnected mode. Once the system
manages to successfully establish communication again,
the reconnection process can begin.

During disconnected mode, any attempts to open files
that are not locally cached on the system will fail. Any
files that were already open would be accessible because
they are already present in the local cache.

Handling reconnection Our approach to handling re-
connection is not to try to automatically reconnect to the
system and replay the log. Rather, the user issues a com-
mand which checks our connection status and begin the
reconnection process, via the console. When the recon-
nection command is issued, it will suspend all other oper-
ations in the file system and attempt to replay the log and
deal with conflicts as necessary. Automatic reconnection
was not used due to concerns about flapping: where the
connection status quickly flips between disconnected and
connected operation.

4.3 Detecting and Handling Conflicts

There are several different categories of conflicts to be
concerned with. They are read/read conflicts, read/write
conflicts, and write/write conflicts. In general, read/read
conflicts are not a problem. It does not affect consis-
tency if two people are reading a file at the same time.
Similarly with read/write, it does not have an impact on
consistency, as long as it does not occur in the same exact
byte range. However, write/write conflicts are something
that are an issue and are the primary concern for us to
solve.

Conflict Detection There are two different occasions
when StashFS might end up detecting changes due to a
conflict. A conflict is defined as a file where the local
modified time is older than the remote timestamp and the
crcs differ. They are checked:

• On a syscall that requires checking remote state
while connected.

• When replaying the log

The first case has two subproblems: files with and
without local changes. In the case of an open, if there is a
conflict and something is out of date, all that will happen
is that the file will be synchronized before continuing. In
the other subproblem, where there have been local mod-
ifications, all the writes to the file will be aborted. A
hidden local folder could be used to store the conflicting
copy while the main copy is purged from the local cache
and is synchronized on the next request for it.

In the second case, once a conflict is detected the au-
tomated replay of the log is aborted. Replay then enters
into a manual merge mode until all conflicts are resolved.
Once complete system calls are no longer blocked and
normal operation resumes.

Conflict Resolution In general, most conflict resolu-
tion will occur during log replay. This will be assisted
via the console interface. When some issue occurs, the
console will alert the user as to the nature of the error.
It will then prompt the user as to whether it should skip
replaying this entry or try replaying it again. The latter
option is provided to allow a user to modify state on the
remote mount point directly before continuing.

During the case of replaying a close operation, the
options are slightly different. The user is permitted the
chance of either overriding the remote version or to skip
it and bring over the more recent version.

There are also times where it may be beneficial to the
user to skip an entry while replaying the log, for example,
if the remote server returnsEEXIST to a mkdir call.

4.4 Interactions and Console

Local File System Considerations When deciding on
what type of local file system to use when interacting
with a remote server, it is important to choose the correct
underlying file system. There are two main categories of
file systems that could be used: volatile and non-volatile.

For a non-volatile system, all the data is persisted on
storage such as a hard disk, cd-rom, flash, or tape. This
will allow for a warmed cache across system reboots and
crashes. It can also take advantage of any interesting
features that the local filesystem has, for example, data
deduplication.

The alternative is to use a RAM-backed file system
such as tmpfs or some other volatile file system. Obvi-
ously, this will not allow for persistently warm caches,
but RAM does provide for much faster access times.

In any of these situations the filesystem can be
mounted read only. This allows for a purely caching file
system for slower media such as tape, cd-rom, remotely
stored data, or USB storage devices.

6



Console Design The basic design for the console is a
Unix Domain Socket coupled with a simple terminal that
facilitates communication over the socket. The console
will be usable by the user who started StashFS, though
that user can change the permissions on the bound socket
to allow other users access to the console.

Console Actions The general idea for the console
stems from the desire for a user to be able to control
the ability to modify what they consider important and
decache something for more space while disconnected.

More specifically the console will allow someone to:

• Purposefully disconnect

• Initialize reconnection

• Handle conflicts

• Uncache local copies of files

5 Testing and Results

5.1 Test Setup

For our tests we are using a client running Debian Lenny
with an Intel Core 2 Quad Q6600 2.4GHz cpu with 3
GB of RAM and a Samsung HD160JJ 7200 RPM SATA
II hard drive. We are connected over gigabit ethernet to
a series of Dell R710s and MD3000s running GPFS[8]
exporting NFS shares.

We are running the postmark[10] benchmark in two
different test configurations with five different file sys-
tem configurations. The first test configuration is sup-
posed to emphasize a high number of transactions, but
with a relatively small file size. The second test config-
uration takes the opposite approach, emphasizing fewer
transactions, but significantly larger files. Table 1, shows
the details of the two different test configurations.

We ran these tests in five different file system configu-
rations. We ran them on the client’s local hard drive for-
matted with ext3 and then ran them on an NFS mount.
Next, we ran two different tests with StashFS using ext3
fro the local mount point file system. The first uti-
lizes the local disk as the remote share (StashFS: ext3)
and the second utilizes the NFS mount as the remote
share (StashFS: gpfs). Finally, the last test is done while
StashFS is disconnected (StashFS: DC).

5.2 Results

The results from running postmark can be found in ta-
ble 2. The overall performance of StashFS while con-
nected is about four to five times slower on the large
file tests and about eight times slower on the small file

Item Small Version Large Version
Smallest File 50 KB 100 MB
Largest File 100 KB 500 MB
Number Files 10000 100
Number Transactions 100000 1000

Table 1: Postmark Configurations

FS Type Read Write
ext3 small 3.14 MB/s 3.78 MB/s
gpfs small 2.29 MB/s 2.76 MB/s
StashFS: gpfs small 378.68 KB/s 467.42 KB/s
StashFS: ext3 small 400.79 KB/s 483.23 KB/s
StashFS: DC small 694.10 KB/s 836.87 KB/s
ext3 large 17.76 MB/s 21.00 MB/s
gpfs large 15.52 MB/s 18.35 MB/s
StashFS: ext3 large 3.71 MB/s 4.38 MB/s
StashFS: gpfs large 3.41 MB/s 4.38 MB/s
StashFS: DC large 13.42 MB/s 15.87 MB/s

Table 2: Postmark Test Results

M
B
/s

Figure 4: Postmark Large File Results

7



K
B
/s

Figure 5: Postmark Small File Results

tests. These kinds of performance results makes it clear
that StashFS is not well suited for high availability repli-
cation in server environments. Furthermore, there is an
overhead associated with using FUSE[22], though it does
not account for all of the performance differences seen.

From figure 4, we see the relative performance results
from working with large files. The overhead in the large
tests is mostly a factor of the synchronization that must
occur at the end of each series of writes. With each close
comes the synchronization of the entire file and thus the
copying of several hundred megabytes of data. However,
the performance while in disconnected mode manages
to retain about 75-85% of the performance of connected
operation.

From figure 5 we see that performance is much worse
when there is a higher number of transactions on small
files. This primarily comes from the way that we must
detect disconnection, using watchdog threads for each
system call. This adds a fair amount of overhead to each
system call that occurs on the remote mount point. Fur-
thermore, the performance in disconnected mode with
small files is not as good as with large files, because the
log file is being appended to synchronously. This guaran-
tee helps with consistency, though in a high transaction
environment it causes a large number of synchronous
writes causing more performance overhead.

While it may seem that this overhead is not accept-
able, it is important to remember that these workloads
are not the most accurate representations of typical user
workload. Generally users are not trying to maximize
I/O operations per second for their laptops and desktops.
Thus the relative overhead can be seen as an acceptable
trade off for the cost of synchronizing data and allowing
disconnected access.

6 Future Work

Large Files As the system currently stands, when a file
is opened for the first time, the entire file will be brought
across from the remote mount to the local mount. Say
this file is a video file, that means it is in the realm of
a couple hundred megabytes, that might take some time
to transfer. Now say this file is a VM, that would be a
few GB in size, and that could take significant time to
transfer. Currently there is not a good way to deal with
this in StashFS. Eric Schrock suggested a solution to this
kind of problem in his work on Shadow Migration[25]
by only copying across the data necessary to service a
read request. StashFS could benefit from incorporating a
similar system.

A similar issue exists as we perform operations that
sync data back to the remote server. Currently the design
does not call for maintaining where writes occur, just in
the end that the file has been closed. Thus we end up syn-
chronizing the entire file as opposed to just the changes.
There are several strategies for tackling this such as rsync
or ZFS snapshot send/receive [30, 27].

Remote Renames and Moves Oftentimes files will be
renamed or moved on a file system. This is problematic
as there is currently no way of detecting that something
was moved or renamed at the current abstraction level
FUSE provides. Rather StashFS will see it as one file that
used to exist was unlinked and a new file was also linked
into place. One possible future solution is to try and take
care of some logic with respect to hashing the contents
of the file and using that to detect that a file already exists
and add another hard link to it, in effect adding rudimen-
tary file level deduplication. Another approach is to try
and work at the underlying filesystem’s inode level rather
than at the path level.

Log Optimizations There are several optimizations
that could be made to improve reconnection time and
performance. The first and perhaps the most important
would be creating and storing the log as a DAG (directed
acyclic graph) of changes as opposed to a linked list.
This would allow dependency resolution to be done and
potentially allow for branches of the log to be replayed
in parallel and to occur even if an unrelated branch hits a
conflict.

Another optimization that could be done is similar to
one mentioned in Coda[12]. Here, we would use knowl-
edge of subsequent writes or other changes to files to re-
move earlier entries from the log, thus reducing what is
stored and replayed. Furthermore, like Coda, we could
schedule cache walks periodically to update a user speci-
fied set of files. This allows for more files to be synchro-
nized and thus a smaller likelihood for conflicts to arrive

8



while disconnected.

Continuous Replay and Modification Another im-
provement that would be quite useful is to allow modi-
fications to be done to the file system and other synchro-
nization to occur while the log is being replayed. Thus
the user should be able to use data as per normal while
dealing with synchronizing and data transfer. Also, dur-
ing this time, something like a cache preference walk
could occur to ensure that we get all of the most recent
versions of files.

Console Namespace Integration One feature that
would be both powerful and useful would be to transi-
tion some of the functions of the console into the normal
namespace. Thus if a user owns the file and wants to de-
cache it, they should be able to just use something similar
to rm on it and flush it from the cache but not unlink it
from the file system. Further operations in a similar vein
could be advantageous and worth investigating.

7 Conclusion

Traditionally, disconnected access has required both re-
mote machine support and has not worked across all
filesystems. Further, with data outsourcing there are
concerns over data availability in the face of network
requirements and corporation viability. We introduced
StashFS to address these concerns. StashFS only runs
on clients, there is no server component. It works across
any filesystems that the operating system knows how to
mount. StashFS provides tools to mirror an entire data
set from a remote site or temporarily clone the data for
use with a ramdisk and provides disconnected access to
this data with an acceptable overhead for users.

8 Acknowledgments

I would like to thank Professor Tom Doeppner for his in-
valuable help, critiques and reviews. I would also like
to thank those in Technology House and the CS depart-
ment who put up with me bouncing ideas off of them and
helped critique this paper.

9 Availability

A copy of the source code and a bit of additional infor-
mation on StashFS is available at

http://cs.brown.edu/˜rm/stashfs.html

References

[1] Filesystem in userspace. Available fromhttp://fuse.
sourceforge.net .

[2] Ntfs-3g. Available fromhttp://www.ntfs-3g.com .

[3] Sshfs. Available fromhttp://fuse.sourceforge.net/
sshfs.html .

[4] Jeff Bonwick and Bill Moore. Zfs: The last word in file sys-
tems. Available fromhttp://www.opensolaris.org/
os/community/zfs/docs/zfs_last.pdf" .

[5] Peter J. Braam and Philip A. Nelson. Removing bottlenecks in
distributed filesystems: Coda & intermezzo as examples. InLinux
Expo, May 1999.

[6] Ben Collins-Sussman. The subversion project: buiding abetter
cvs. Linux J., 2002(94):3, 2002.

[7] Thomas W. Doeppner, Jr. Distributed file systems and distributed
memory.ACM Comput. Surv., 28(1):229–231, 1996.

[8] Scott Fadden. An introduction to gpfs version 3.3. Technical
report, IBM Corporation, 2010.

[9] John H. Howard. An overview of the andrew file system. InPro-
ceedings of the USENIX Winter Conference, pages 23–26, 1988.

[10] J. Katcher. Postmark: A new file system benchmark. Technical
Report TR3022, Network Appliance, 1997.

[11] Michael Leon Kazar. Synchronization and caching issues in the
andrew file system. InProceedings of the USENIX Winter Con-
ference, pages 27–36, 1988.

[12] James J. Kistler and M. Satyanarayanan. Disconnected operation
in the coda file system.ACM Transactions on Computer Systems,
10:3–25, 1992.

[13] Puneet Kumar and M. Satyanarayanan. Flexible and safe res-
olution of file conflicts. In TCON’95: Proceedings of the
USENIX 1995 Technical Conference Proceedings on USENIX
1995 Technical Conference Proceedings, Berkeley, CA, USA,
1995. USENIX Association.

[14] J. Hamano L. Torvalds. Git-fast version control system. http:
//git-scm.com .

[15] Matt Mackall. Towards a better scm: Revlog and mercurial. In
Proceedings of the Linux Symposium, pages 83–90, July 2006.

[16] Heinz Mauelshagen and Matthew O’Keefe. The linux logical vol-
ume manager.Red Hat Magazine, July 2005.

[17] Sun Microsystems. Lustre file system high-performancearchi-
tecture and scalable file system. Technical report, Sun Microsys-
tems, October 2008.

[18] Kiran-Kumar Muniswamy-Reddy, Charles P. Wright, Andrew
Himmer, and Erez Zadok. A versatile and user-oriented version-
ing file system. InThird USENIX Confrence on File and Storage
Technologies, 2004.

[19] OSF. File systems in a distributed computing environment: A
white paper. Technical report, Open Software Foundation, 1991.

[20] Michael Callahan Peter J. Braam and Phil Schwan. The inter-
mezzo file system. InIn Proceedings of the 3rd of the Perl Con-
ference, O’Reilly Open Source Convention, 1999.

[21] W.W. Peterson and D.T. Brown. Cyclic codes for error detection.
Proceedings of the IRE, 49(1), January 1961.

[22] Aditya Rajgarhia and Ashish Gehani. Performance and exten-
sion of user space file systems. In25th Symposium on Applied
Computing, 2010.

[23] Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh,
and Bob Lyon. Design and implementation of the sun network
filesystem. InSummer 1985 USENIX Conference, pages 119–
130, June 1985.

9



[24] M. Satyanarayanan. Coda: A highly available file systemfor
a distributed workstation environment.IEEE Transactions on
Computers, 39:447–459, 1990.

[25] Eric Schrock. Shadow migration internals, October 2009. Avail-
able fromhttp://blogs.sun.com/eschrock/entry/
shadow_migration_internals .

[26] Gopalan Sivathanu and Erez Zadok. A versatile persistent
caching framework for file systems. Technical Report FSL-05-
05, Stony Brook University, 2005.

[27] Sun Microsystems.Solaris ZFS Administration Guide.

[28] SunSoft. Cache file system (cachefs) white paper. Technical re-
port, SunSoft, February 1994.

[29] Walter F. Tichy. Design, implementation, and evaluation of a
revision control system. InICSE ’82: Proceedings of the 6th
international conference on Software engineering, pages 58–67,
Los Alamitos, CA, USA, 1982. IEEE Computer Society Press.

[30] Andrew Tridgell and Paul Mackerras. The rsync algorithm. Tech-
nical Report TR-CS-96-05, The Australian National University,
June 1996.

10


