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Chapter 1

Overview

Web programming is in a state of turmoil. Developers must use technology unsuitable for the

complex requirements of modern Web sites. As new programs serving a widening array of purposes

are increasingly deployed on the Web, the situation will only worsen.

Modern Web sites, such as Gmail and Facebook, are powered by the programming language

JavaScript. Even relatively static sites rely on JavaScript to function, such as the home page of the

New York Times, which uses numerous program elements to display movies, ads, picture galleries,

and so forth. Unfortunately, JavaScript has many warts that make it a poor choice to use to develop

large-scale programs.

JavaScript poses challenges that are new to programmers used to developing traditional desk-

top programs. For example, one issue Web developers must deal with is incompatibility between

browsers. A given JavaScript program might function flawlessly in one browser, but be severely bro-

ken when viewed with others. Creating a Web application that can run in all browsers is not trivial,

as evidenced by many websites that require a particular browser to be viewed. JavaScript’s evolution

as a language is to blame. It was created without a formal specification and implemented by several

browser makers who did not collaborate to ensure consistency amongst their implementations.

Security is another vital issue. It is exceedingly easy to unintentionally create JavaScript pro-

grams containing security vulnerabilities. Symantec, a maker of anti-virus software, documents

11,253 occurrences of a particular type of vulnerability over a six-month period [7]. Those with

malicious intent have reacted accordingly, proliferating Web programs exploiting these vulnerabil-

ities. For perspective, Google estimates that about one in ten Websites could contain malicious

code [4]. Symantec admonishes users to turn off JavaScript support whenever visiting untrusted

sites [8], which most users do not know how to do. The cause is once again related to JavaScript’s

development. The language was designed fifteen years go, without the concerns of modern Web ap-

plications in mind. As the scope of Web sites has expanded to fit today’s broad needs, JavaScript’s

fundamental design has remained unchanged.

To begin to improve the state of Web programming, we must first deal with JavaScript. Given

the language’s many shortcomings, we might be tempted to replace JavaScript with a technically
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Program Lines of Code Overhead (Annotated LOC)
watchimer 947 1.80%
countdown 129 3.10%
topten 443 4.06%
morse 275 4.36%
watchimer 947 4.44%
resistor 591 5.41%
catchit 165 5.45%
rsi 328 6.71%
animation 70 7.14%
hashapass 257 7.78%
text2wav 488 8.40%
metronome 106 11.32%
TOTAL 3799 5.05% (avg)

Figure 1.1: Annotation overhead on JavaScript code

superior language. Unfortunately, JavaScript is pervasive; one estimate shows that 73% of websites

rely on JavaScript for important functionality [3], while a review I performed of the top 500 visited

sites on the Internet1 revealed that all 483 sites that I was able to access at the time used JavaScript.

A solution replacing JavaScript will break compatibility with existing Web infrastructure.

Instead, we need to give Web programmers tools and techniques that enable them to reason

about existing JavaScript code. Along with my advisors, I have developed Typed JavaScript [14],

a tool that fits this description. Typed JavaScript is a type system, which is a system that allows

programmers to document the behavior of their code using a formal language called types. A type

checker then automatically proves that the documentation is correct. Type systems make programs

easier to manage and helps assure developers that they are correctly reasoning about their code.

Developers already use type systems in the field, as many industrial languages such as Java and C#

use simple versions of them.

To use Typed JavaScript, programmers merely have to insert annotations that document their

program’s expected behavior. However, even this can be a burden! Our empirical evidence (fig-

ure 1.1) shows that adding annotations entails documenting 1-12% of a program. This can be a la-

borious process, as successfully annotating a program requires understanding and keeping large parts

of the code in mind simultaneously. The overhead of adding annotations limits Typed JavaScript’s

usability, as Web developers must take a non-trifling amounts of time to change their code to work

with our type system.

My independent contribution is JSTrace, a tool that provides a method of automatically annotat-

ing existing code. My tool directly tackles the burden of annotating JavaScript code, making Typed

JavaScript a more effective tool. By facilitating the process of using a type system to reason about

Web programs, JSTrace directly confronts issues plaguing Web developers today, such as browser

incompatibility and Web security.

1according to Alexa Internet, a company that tracks website usage information.
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In collaboration with my advisors, I have made the following contributions:

• We created and published a semantics [13] for JavaScript. A semantics is a formal description of

how programs in a given language function, and gives insight into the nature of a programming

language.

• We evaluated our semantics on a significant portion of a browser test suite, showing that the

semantics corresponds to reality.

• We used our semantics to build a safe subset of JavaScript that prevents a particular type of

security vulnerability.

• We conducted a survey of real-world JavaScript programs, focusing on idioms that employ

JavaScript’s quirks.

• We developed a type system for JavaScript that handles these quirks, allowing developers to

use modern technology to reason about their programs.

In this document, I present JSTrace. I first discuss the general idea behind my tool and choices

made when developing it. I then expose the technical details of the tool’s functionality. In the

evaluation chapter, I demonstrate that the tool is effective at reducing the burden of typing programs.

I then conclude, discuss future work, and review related work.



Chapter 2

Introduction

Thesis Statement Run-time analysis on JavaScript is an effective way to reduce the burden of

porting existing JavaScript code to Typed JavaScript.

2.1 Static Type Inference

Languages such as Haskell and OCaml use static type inference to reduce the amount of annotations

required. Type inference is sound, and provides the principal type for any expression [21]. We might

try to apply this technique to Typed JavaScript.

However, Typed JavaScript’s type system is not conventional. One of the goals of Typed

JavaScript is to be able to type existing code with as little overhead as possible. Annotations

are not the only type of overhead, however. Code from languages without a type system, such

as Python and JavaScript, often looks very different than code from a statically typed language,

such as Java. It uses idioms that traditional type systems would reject. Thus, if Typed JavaScript

were designed as a conventional type system, we would either have to reject programs using these

idioms, or require the idioms to be refactored to fit our type system. This is undesirable, so Typed

JavaScript is engineered to admit as many of these idioms as possible.

2.1.1 Subtyping

JavaScript programs employ both nominal and structural subtyping. As a result, the type system

supports both. An example of nominal typing is in the browser DOM, where HTMLDocument is a subtype

of Node. An example of structural typing is with structural object types — the type {x : Int, y : Int}

is a subtype of the type {x : Int}.

The traditional Hindley-Milner type inference algorithm doesn’t work with subtyping. Variants

have been developed that do work with subtyping [22]. However, JavaScript has other properties

that make static inference difficult.

5
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function double (a) /*: Int + {val : Int} -> Int */ {

if (typeof a === "number ")

return a * 2;

else

return a.val * 2;

}

double (4);

double ({val: 15});

Figure 2.1: JavaScript code exhibiting flow-based reasoning

2.1.2 Flow-based Reasoning

JavaScript programs use control flow to reason about types. For example, the function double in

figure 2.1 works on both integers and on objects containing an integer field, val. It uses a primitive

JavaScript operator, typeof, to branch on the type of the argument it was supplied. The type of the

argument is the type union Int + {val : Int}.

A traditional type checker would fail on this code for two reasons. It would not allow a * 2,

because a might be an object type, and it would not allow a.val * 2, because a might be an integer.

However, Typed JavaScript takes control flow into account using flow analysis. The conditional

ensures that in the true branch of the if statement, a is an integer, and in the false branch, an

object. The comment in the figure is a type annotation, and the code snippet is valid Typed

JavaScript code. A static type inference algorithm would also have to take these flows into account.

2.1.3 Ambiguous Syntax

In addition to complications with the type system, JavaScript’s syntax and semantics itself poses

problems. A static inference algorithm must, by definition, work over syntax. To complicate matters,

JavaScript’s syntax is ambiguous. For example, the expression foo[idx] could either be:

• Array access:

var foo = [1, 2, 3, 4];

var idx = 3;

In this case, foo is an array, and idx indexes into the array.

• Object property access:

var foo = {Bob: 20, Jill: 30};

var idx = "Jill ";

In this case, foo is an object used as a mapping between strings and integers. idx is a string.

The same goes for dot references. For example, foo.length could mean:

• Getting the length of an array: var foo = [1, 2, 3, 4];

• Getting the length field of an object: var foo = {length: "long"};.
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It is difficult to statically distinguish functions and constructors. Examine the following function:

var foo = function (x,y) { this.x = x; this.y = y; };

Based on the function’s call sites, it can be:

• A constructor:

var pt = new foo (10, 10);

• A method:

var obj = {x: 0, y: 0, set: foo };

obj.set (10, 10);

• Even a method working on global variables:

var x = 3, y = 5;

foo (10, 10); // sets the global variables x and y!

Furthermore, JavaScript operators perform rife amounts of implicit type conversions. The ex-

pression a * b can be valid whether its operands are:

• Numbers:

var a = 3, b = 5;

• Strings, which are implicitly converted to numbers:

var a = "3", b = "5";

• Objects, which are implicitly converted to numbers:

var a = {valueOf : function () { return 3; }};

var b = {valueOf : function () { return 5; }};

• Objects, converted to strings, and then converted to numbers:

var a = {valueOf : function () { return "3"; }};

var b = {valueOf : function () { return "5"; }};

• Any combination of the previous!

var a = {valueOf : function () { return "3"; }};

var b = 3.4;

Even when syntactically referencing the property of an object, e.g. num.toString(), the operand is

not guaranteed to be an object. If num is the value 42, for example, the integer is implicitly converted

to an object whose toString method returns "42".

These properties of JavaScript make it difficult to infer types soundly. However, it’s important

to note that type checking and type inference are two separate algorithms. The Hindley-Milner
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algorithm is particularly desirable, since it is sound and infers the principal type, but this need not

be the case. As long as we have a sound type checker, we can run any inferred types through that

type checker to verify them for correctness.

With this in mind, we can attempt to reduce the annotation burden.

2.2 Variable Annotations

Languages like C, C++, Java and, until recently, C#, require annotations on variable bindings as

well as functions. In Typed JavaScript, this is optional. By default, when the type checker sees a

variable binding, it takes the type of the variable to be the type of the expression initializing it. For

example, the following is valid Typed JavaScript code, giving the variables types Int, Boolean, and

{x : Int, y : Int} respectively:

var a = 0;

var b = true;

var c = {x: 29, y: 30};

This type is not always correct. For example, if a variable has some union type, and it is initialized

with a value having only one of the types, then the correct union type will not be calculated. In

these cases, the type checker returns an error, and a type annotation must be added.

Unfortunately, function annotations cannot be calculated. Unlike variable bindings, where the

initial value provides a good hint as to the variable’s type, a function’s type depends on its entire

body, as well as all its call sites. In the next section, I present a tool which effectively discovers

function annotations using run-time analysis.
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JSTrace

I have developed JSTrace, a run-time analyzer to discover Typed JavaScript types. JSTrace has

two components: a JavaScript file implementing the functionality of the tool, and a compiler that

inserts the hooks into a JavaScript program necessary for the tool to work.

3.1 Overview

Since the overhead of annotating local variables is mostly gone, JSTrace’s only goal is to discover

and output the types of the functions in a program. To use the tool:

• Compile the file to be traced. This wraps expressions, such as functions, as necessary for the

tool to be able to track type information.

• Run the compiled code and explore as many code paths as possible. As the compiled code

runs, more and more accurate information is gathered and outputted to the user.

• Use the output to automatically annotate the original source code.

• Run the annotated code through the type checker to verify the types.

Upon wrapping a function, we have already discovered an arrow type. At this point, we have no

information about what types it takes or returns. This is indicated in figure 3.1(a) with Unknown. On

every invocation of the function, we can inspect the values given as parameters and returned from

the function at run-time (figure 3.1(b)). When new invocations reveal values of different types, we

discover a type union (figure 3.1(c)).

9
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(a) (b)

(c)

Figure 3.1: Discovering function types
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unk = Unknown | Host | UntracedFunction

flat = undefined | null | string | bool | int | double

builtin = Date | RegExp | Array<tag>

func = [tag] tag · · · -> tag | constructor id : tag · · · -> tag

obj = { id: tag · · · } | InstanceOf<id>

tag = unk | flat | builtin | func | obj | tag + tag | Ref<id>

Figure 3.2: JSTrace tag language

3.2 Tags

JavaScript code is inherently untyped. It’s technically incorrect to state that JavaScript code reasons

about types. However, in order for JavaScript code to correctly evaluate, values must contain tags

indicating whether they are strings, object, etc. Expressions such as primitive operators implicitly

access these tags to function properly. JavaScript also provides operators that yield tag information

directly: the typeof, instanceof, and === operators, and for..in loops.

JSTrace uses these operators to inspect values. Figure 3.2 represents the kinds of tags that

JSTrace keeps track of. Some tags, such as flat, can be discovered directly with a primitive operator.

Others, like func, can only be discovered by deeper inspection, which is accomplished by wrapping

functions as explained in the next section.

When JSTrace provides output, it converts these tags into their closest representations in Typed

JavaScript’s type system. Most of these are straightforward. For example, flat value tags become the

corresponding flat value types. Constructed object types, i.e. InstanceOf<id> tags, become nominal

types taking the name of the constructor. One interesting case, however, is Unknown, generated when

we have no information about a parameter or return value of a function. We could choose to simply

output an error message, forcing the programmer to change that annotation before even attempting

to type check. A more practical solution, however, is to output Any, signifying that the function can

take or return a value of any type. This annotation is often incorrect. However, it sometimes passes

type checking, for example in the case of an event handler that does not return a value. In these

cases, it saves programmer time and effort, which is the goal of JSTrace.

3.3 Wrapping User Functions

The JSTrace compiler wraps all function statements and expressions with a call to a JSTrace function,

wrapFunc, which returns a wrapped version of the function.

First, wrapFunc creates a unique tag name and adds it as a property of the function. A tag object

is created and stored in a global map, indexed by this tag name. It is initialized with the number

of named parameters, gotten with functions’ length property, so even if a function is never called,

JSTrace can at least provide a syntactically correct type annotation.

Whenever user code calls a user function, the wrapped version is called instead. It, in turn,

inspects the values given and returned using a JSTrace function inspectValue (section 3.4), which
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var foo = function () {

if (this instanceof arguments .callee )

alert (" constr ");

else

alert ("func ");

}

Figure 3.3: Attempt to check if a function was called as a constructor

returns tag objects for each value. The wrapped function then merges the new information with the

information it already gathered. For example, if the first parameter in a given function was only

known to be int, and a string was just observed, that parameter’s tag becomes the union int + string.

3.3.1 Handling Constructors

Typed JavaScript provides nominal types for objects created by constructors. To infer nominal types,

we must determine whether a function was called as a constructor. Unfortunately, it’s impossible

in JavaScript to tell how a function was called from inside the function. We might try checking

if this was created by the current function we’re in, which can be accessed by the special variable

arguments.callee, as shown in figure 3.3. If foo is invoked as foo(), then "func" is alerted; if it is

invoked as new foo(), then "constr" is alerted. However, this does not work in all cases:

var z = new foo ();

z.foo = foo;

z.foo (); // alerts "constr ", since "this" is bound to z, and z is instanceof foo

Instead of directly checking inside a wrapped function whether it was called as a constructor,

JSTrace wraps new expressions with a call to wrapNew. This wrapper checks to see if the constructor

being called is a tagged function. If it isn’t, then it has been given a native constructor, e.g. Date,

and it performs the new expression as JavaScript normally would. If it is given a tagged function

then, before calling new, wrapNew marks the function to indicate that it is being called as a constructor.

wrapFunc can then tell how a function is being called by checking to see if the function is marked.

If the function was called as a constructor, then the created object really has a nominal type. To

indicate this, wrapFunc tags a constructed object with InstanceOf<name>, where name is the name of

the constructor. If that object is ever inspected, this nominal tag is returned instead of a structural

tag.

3.3.2 Handling “This”

this is valid in any JavaScript function. In many cases, however, functions never use this, even if

they are part of an object:

var obj = {foo: function () { return 100; }};

obj .foo ();
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The type of this within the function is an object containing the function property foo. This is, in

fact, a recursive type, and this type of recursion is not permitted by Typed JavaScript. However, the

function in foo never uses this. Therefore, there is no need restrict the type of this in the function,

and in this case, JSTrace will infer that foo can be called either as a regular function, or as a method

of any object.

To account for this case, JSTrace wraps all calls to this. The wrapper is given a reference to the

function it’s in. The wrapper looks at the function’s tag and updates it to indicate that the function

does use this.

3.4 inspectValue

inspectValue turns values into tag objects.

Flat values First, typeof is used on the given value. If typeof returns "number", "string", "boolean",

or "undefined", a flat value tag is returned. "number" is further distinguished into "int" and "double"

by checking if the number is an integer.

inspectValue("hi") � string

inspectValue(4) � int

inspectValue(31.4) � double

Constructed objects If typeof returns "object", the object is checked to see if it has been con-

structed by a wrapped constructor. This indicates a nominal tag.

var MyClass = wrapFunc (function () {});

inspectValue(wrapNew (MyClass , [])) � InstanceOf <MyClass >

Built-in objects If the object is not constructed, inspectValue uses instanceof to determine whether

the object is one of the basic JavaScript object types, e.g. Date, or Number. Since these are basic

JavaScript objects, there is no need to inspect them more deeply.

inspectValue(new Date ()) � Date

Arrays Arrays are built-in objects, but require more work. If the object is an array, the elements

in the array are each inspected and their types are merged into a type union representing the type

of the elements in the array.

inspectValue([1, 2, "string "]) � Array <int + string >



CHAPTER 3. JSTRACE 14

Tagged objects Now we know we have a structural object. First, the object checked to see if it

has been seen already. If it is, we return a reference to that object using its tag name, since we have

seen the object already.

var obj = {a: 4};

inspectValue(obj) � {a : int}

inspectValue(obj) � Ref <obj >

Structural objects If the object was untagged, and therefore not seen before, then we assign

the object a unique tag name. The object’s properties are then examined using a for..in loop.

inspectValue calls itself recursively on each property.

inspectValue({

foo: "Bob", bar: {baz: 13.2}}) � {foo : string , bar : {baz : double }}

We must be careful to prevent infinite recursion, since an object could contain a reference to itself.

However, any cycle must contain an object that has already been tagged. Once that object is in-

spected, a reference to its tag name will be returned, instead of it being deeply inspected. Therefore,

an infinite cycle will not occur here. However, we must check for infinite recursion when converting

the tags to types. When following references, we must check whether we have already seen the tag

the reference points to. This indicates a type of recursion that Typed JavaScript does not support,

so JSTrace outputs an error.

var obj = {};

obj .self = obj;

inspectValue(obj) � {self : Ref <obj >}

tagToType (inspectValue(obj )) � "{ self : ERROR -RECURSION }"

Host objects The previous approach works on native JavaScript objects. However, JavaScript

implementations can also implement “host” objects such as DOM elements in browsers or framework

objects in Google Desktop [9, Section 4]. These objects can be troublesome. Some, such as the

framework object in Google Desktop, don’t allow addition of arbitrary properties, so they cannot be

marked as being tagged. This can lead to infinite recursion. Others don’t allow inspection with a

for..in loop.

JSTrace checks whether inspection or tagging objects fails. After detecting a failure, there is

nothing the analysis can do, so a Host tag is returned. On output, we could convert Host tags to the

Any type, as with Unknown. However, knowing an object is a Host object can be an important hint to

the programmer, so JSTrace requires the programmer to insert a manual annotation.

This isn’t such a large defeat; usually, these objects are returned from API functions, and the

API must be annotated anyway for type checking to function. It does limit the tool’s usefulness in

inferring API types, however.

inspectValue(framework ) � Host
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Tagged functions If typeof returns "function", inspectValue checks to see if the function is tagged.

If it is, it returns a reference to that function’s tag:

var f = wrapFunc (function (a) { return a.toString (); });

inspectValue(f) � Ref <f>

tagToType (inspectValue(f)) � "(Any -> Any )"

f(4);

tagToType (inspectValue(f)) � "(Int -> String )"

In this way, higher-order function types can be inferred:

var callF = wrapFunc (function (f, val) { return f(val ); });

callF(f, 93);

inspectValue(callF ) � (Ref <f> * int -> string )

tagToType (inspectValue(callF )) � "(( Int -> String ) * Int -> String )"

Since callF has a reference to f’s tag, information about f propagates to callF:

f("hey ");

tagToType (inspectValue(callF )) � "((( Int + String ) -> String ) * Int -> String )"

We must prevent infinite recursion here as well:

var a = wrapFunc (function (f) {return 5;});

var b = wrapFunc (function (f) {return "str ";});

a(b);

b(a);

inspectValue(a) � Ref <b> -> int

inspectValue(b) � Ref <a> -> string

tagToType (inspectValue(a)) � "(((ERROR -RECURSION -> Int) -> String ) -> Int )"

Untraced functions If the function is not tagged, the function must have come from code that

has not been wrapped. Since JavaScript provides no other tools to dynamically inspect functions,

inspectValue gives up and returns an "UntracedFunction" tag to indicate this scenario. Once again,

this could provide a useful hint to the programmer, so it is not converted to Any on output.

inspectValue(document .write ) � UntracedFunction

Typically, these are all the values that typeof can return. However, ECMA-262 indicates that

typeof can return an implementation-specific value for other “host” objects [9, Section 11.4.3]. In

this case, the tool has no recourse, so it treats the value as having a flat tag whose name is whatever

string typeof returned. In practice, this has never happened.

3.5 Output

The simplest way to provide output is a list of annotations, one per line of output, where the

first line is the annotation on the first function in the file, the second line on the second function,

etc. To achieve this goal, JSTrace maintains a global array with each entry corresponding to each

annotation. wrapFunc takes the function’s position in the file as a parameter. When wrapFunc is called,
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Figure 3.4: JSTrace output on Firefox

it sets the corresponding entry in the array to the function’s tag. Thus, to produce the output,

JSTrace simply iterates through the array, looking up each tag in the global map and converting it

to a string representing the corresponding type.

There is a case where an entry in the array wouldn’t be initialized. If a user function that creates

nested functions is never called, then neither is the wrapper. To make sure that a syntactically

correct function annotation is printed for each function, the compiler inserts a call to an initialization

function, taking an array whose elements are the number of named arguments in each function. If a

function is never even created, then JSTrace will consider its parameters and return value Unknown.

JSTrace, in principle, works on any implementation of JavaScript. However, providing output

is implementation-dependent. Therefore, JSTrace currently only works on the Firefox and Google

Desktop JavaScript environments.

Firefox Output on Firefox is provided via a pop-up window, which is updated every second.

Figure 3.4 is a screenshot for a traced version of a currency conversion tool. The swap button

has never been pressed, so JSTrace doesn’t yet know any information about swapFromTo except the

number of arguments.

Google Desktop On Google Desktop, hooks are inserted into the right-click menu. Clicking on

the proper menu option pops out a DetailsView containing the output, also updated every second

(figure 3.5).

Using the Output There are two types of output: the human-readable one already shown, which

aids with evaluating code coverage while running JSTrace, and a machine-readable one (figure 3.6).

JSTrace provides another program which takes the machine-readable version as input, along

with the original JavaScript file, and stitches them together to provide an annotated version of the

program. This annotated version can then be run through our type checker to verify type soundness.
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Figure 3.5: JSTrace output on Google Desktop

Figure 3.6: Machine output on Google Desktop
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Evaluation

I ran JSTrace on gadgets and browser programs. I ran the traced programs and used the discovered

types to annotate the program. I then recorded how many more changes were necessary to get the

program to type check.

In figure 4.1, “Changes” is the total number of changes necessary to get the program to type

check. “Annotations” is how many of these changes were function annotations. “Refactorings” is

the number of code changes unrelated to annotations that had to be made for the program to type

check. This category of changes is mostly due mostly to idioms Typed JavaScript doesn’t support,

such as using uninitialized global variables, or passing eval strings to setTimeout instead of functions.

The “Automated” column is the number of these annotations that the tool correctly created. The

remainder required manual changes. The “Automated” column is shown both as a percent of total

annotations required as well as total changes required.

As the table shows, JSTrace greatly lowered the number of annotations that had to be performed

manually. For some programs, like topten.js, most of the burden lay not in the function annotations,

but in correcting code that used certain idioms. In these cases, the impact of the tool was small,

reducing the number of changes required by around 20%. However, in some, such as text2wav.js, the

tool was able to do most of the work required to type the program, reducing the burden by around

75%. On average, 91% of annotations were successfully discovered by JSTrace, which was 46% of

all changes that were required by Typed JavaScript.

The cost of running the traced programs themselves did not seem high. Creating a traced

version of a program was straightforward and did not take long. The runs I performed usually

required around a minute or two of clicking through all the possible user interface components. This

was a small effort compared to reading and understanding most of the code before being able to

begin annotating the functions. Since the tool cut the number of changes required in half without

much effort, it is an effective way to reduce the burden of typing a program.

18
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Filename LOC Changes Annotations Refactorings Inferred Inferred
(% of LOC) (% total) (% total) (% annots) (% total)

watchimer.js 947 34 (3.59%) 17 (50.00%) 17 (50.00%) 15 (88.24%) 44.12%
countdown.js 129 8 (6.20%) 4 (50.00%) 4 (50.00%) 4 (100.00%) 50.00%
animation.js 70 5 (7.14%) 5 (100.00%) 0 (0.00%) 4 (80.00%) 80.00%
resistor.js 591 52 (8.80%) 32 (61.54%) 20 (38.46%) 32 (100.00%) 61.54%
morse.js 275 25 (9.09%) 12 (48.00%) 13 (52.00%) 12 (100.00%) 48.00%
text2wav.js 488 50 (10.25%) 41 (82.00%) 9 (18.00%) 38 (92.68%) 76.00%
hashapass.js 257 30 (11.67%) 20 (66.67%) 10 (33.33%) 14 (70.00%) 46.67%
rsi.js 328 49 (14.94%) 22 (44.90%) 27 (55.10%) 22 (100.00%) 44.90%
metronome.js 106 16 (15.09%) 12 (75.00%) 4 (25.00%) 10 (83.33%) 62.50%
catchit.js 165 25 (15.15%) 9 (36.00%) 16 (64.00%) 6 (66.67%) 24.00%
topten.js 443 85 (19.19%) 18 (21.18%) 67 (78.82%) 18 (100.00%) 21.18%
TOTAL 3799 379 (9.98%) 192 (50.66%) 187 (49.34%) 175 (91.15%) 46.17%

Figure 4.1: Changes required to type check programs



Chapter 5

Conclusion

I have created JSTrace, a tool that automatically annotates JavaScript programs with information

gathered while running them. I have described how the tool uses JavaScript’s built-in operators to

gather tag information about values, and then converts these tags to types that Typed JavaScript

understands. Finally, I evaluated the tool on real-world JavaScript code, showing that it is effective

at reducing the burden of typing programs. Facilitating the process of porting existing code makes

Typed JavaScript a more practical tool, and therefore helps tackle some of the concerns that plague

Web development today.

Future Work I am interested in whether JSTrace could be automated further to remove the

need for user interaction when running a traced program. Perhaps a method can be developed

to automatically click and interact with GUI elements in a browser. Another possibility is to

simulate a browser environment without the overhead of fully rendering Web pages and taking user

input. It may also be possible to modify a browser’s JavaScript interpreter to automatically trace all

JavaScript code it executes, thus removing the need for a separate compilation step. This might even

allow discovery of host objects, which cannot be deeply inspected with JavaScript alone. Discovering

host object types could prove useful for typing APIs, which currently must be done manually.

I noticed that most of the function annotations JSTrace discovered did not exercise its full

capabilities, such as discovering higher-order function types. I’m therefore also interested in how

effective an unsound static inference algorithm would be in discovering correct annotations. Even

though it would be difficult to get accurate results, Typed JavaScript function annotations might

be simple enough to make even a rough approximation useful. The benefit would be to remove the

overhead of compiling and running a program entirely.

20



Chapter 6

Related Work

Static Analysis Other forms of static analysis besides type systems have been proposed to deal

with the problems JavaScript poses without replacing the language. One type of tool is a “lint” [16,

18, 19], which mostly detects code patterns that are considered bad form and can lead to bugs.

These are of limited usefulness, as they only provide a superficial analysis of the code, and serve

more as style guidelines.

Other tools provide a deeper analysis of the code [17, 12]. These fully-automated tools are often

not practical, however. They yield imprecise results, and they do not scale, taking hours to run on

larger programs. Web developers are used to immediately running their programs whenever they

make modifications.

My approach is to use a type system. This yields accurate results that are more useful than

those of a lint, and runs quickly even on large programs.

Semantics A type system requires a semantics to relate typing judgements to program execution.

The ECMA specification [9] is informal and complex, consisting of 200 pages of prose and pseudocode,

making it unsuitable to use. Maffeis, Mitchell, and Taly provide an operational semantics [20] based

directly on the specification. It is still large at 30 pages, it omits a few syntactic forms, and inherits

the standard’s complexities. Other semantics only work over a small portion of JavaScript [15, 24].

For Typed JavaScript, my advisors and I are using a semantics we published called λJS [13].

λJS takes a different approach, presenting a simplified, conventional core semantics. The rest of

JavaScript, with all its inherent complexity, is desugared to this core semantics. Desugaring together

with the core is small, manageable, and covers all of JavaScript besides eval, making it suitable for

use with a static type system tackling real world code.

Static Type Inference Static type inference has been attempted on JavaScript. Anderson et

al. develop a semantics, a type system, and a sound static inference algorithm [2] for a subset of

JavaScript. However, the subset excludes prototypes, first-class functions, nested functions, and

global variables, rendering their system unusable for most real JavaScript programs.
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B. Cannon presents a form of type inference for Python [5]. His goals are different than mine,

however, aiming to improve the performance of Python code by using types to removing run-time

type checks. He concludes that Python is not geared towards type inference, noting that Python’s

properties interfere too much with type inference for it to be effective. JavaScript shares many of

these properties, indicating that static type inference might be an incorrect choice for JavaScript.

A. Aiken and B. Murphy present a type inference algorithm for a dynamically typed language,

FL [1]. Their goal was also to improve performance. FL is significantly different from JavaScript

and lacks many of its thorns. They also cite performance issues with their algorithm, stating that

it is exponential in the worst case.

Michael Furr et. al present Diamondback Ruby [11], a static type system along with an inference

algorithm for the dynamic language Ruby. Like Typed JavaScript, their type system provides union

types. However, their type checker provides no way of discriminating union types with control opera-

tors. Their type system is unsound, generating warnings instead of failing on code that is potentially

unsafe. Typed JavaScript’s goal is to prevent potentially unsafe code from being published on the

Web, and therefore aims to statically reject programs containing errors. Furthermore they, too, cite

performance problems on larger code bases.

R. Cartwright and M. Fagan present Soft Typing [6], a system for bringing type checking to

dynamic languages. The goals of soft typing are to pass as many programs as possible and to

require no annotations from the programmer. Programs that the system cannot prove correct are

wrapped to instead fail at run-time. As before, we wish to reject programs before they are published

ont he Web.

Mixing static and dynamic code Gradual Typing [23] attempts to migrate code to use static

types. It offers a representation for dynamic types in a static type system, allowing static and

dynamic code to mix freely while still offering some guarantees about statically known parts of a

program. While one of Typed JavaScript’s goals is to support migration to a static type system, we

would do so only with clean separation between the typed and untyped parts of a program by using

contracts [10]. It is also unclear whether Gradual Types work on real world programs, whereas we

have evaluated Typed JavaScript on actual code and shown it to be effective.
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