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1 Abstract

Protein Structure Prediction (PSP) is a grand challenge of bioinformatics with broad implications for com-

binatoric optimization, computational geometry, and physical energy models. Under most accepted compu-

tational models, PSP is NP-hard, even when the chemical and physical properties of proteins are greatly

simplified. The objective of PSP (also known as protein folding) is to select the molecule conformation which

minimizes the energetic potential. We study real biological proteins from the Protein Data Bank in order to

infer general energy functions for the protein folding problem. While the general problem is intractable, we

seek to find methods of folding and mathematical principles that might suggest how to optimize sufficiently

realistic energy functions. We will study the established HP model on the face-centered cubic lattice, con-

jectured by Kepler and proven by Hales to provide the “tightest” packing of identical spheres. The objective

of analyzing Protein Data Bank structures is two-fold. We firstly seek the best possible energy function for

this model. Secondly, we will investigate biplanar and octahedral structures in the FCC lattice which may

yield novel algorithms for structure prediction.
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2 Introduction

Proteins are the primary functional units of the living cell. The challenge of inferring a protein’s three-

dimensional structure from its sequence is known as the Protein Structure Prediction (PSP) problem. PSP

is of crucial importance to the biological community, which has collected protein structures in databases

since the 1960s. Chemical methods of measuring protein conformations (such as X-ray crystallography)

have improved over time and contributed to the founding of large protein structure databases such as the

Protein Data Bank (PDB). Nevertheless, there exist classes of proteins for which 3D structure reconstruction

is impossible using these methods. In addition, scientists wish to discover first principles of protein folding

(“folding” and “structure prediction” are used interchangeably throughout this paper, although folding

refers to a larger body of protein-related problems). Solving the protein folding problem would enhance

understanding of diseases which are caused by misfolding and allow scientists to speculate on unknown

proteins (ie. drug design). For these reasons, PSP is a long-standing and elusive problem in computational

biology.

Protein structure is diverse, but by no means arbitrary. Biologists classify proteins as polypeptide

polymers which form a backbone chain by the dehydration of their carboxyl group. Each amino acid carries

a sidechain functional group, except for the compact amino acid glycine. The primary structure of the

protein is the sequence of these amino acid residues from amino terminus to carboxyl terminus. The primary

structure is thus a string over the twenty-letter alphabet of amino acid types. The secondary structure

of the protein is defined by domains which exhibit certain structural motifs that stabilize the protein’s

conformation. The most frequent of these are the right-handed α-helix and the β-sheet, a planar motif

in which the backbone threads back around itself. The goal of PSP is to predict the tertiary structure of

proteins, which is the three-dimensional shape of the folded protein. Of biological relevance, but beyond the

scope of this paper, is quaternary structure, in which several polypeptide subunits interact to form a stable

conformation together.[3]

The dogma of PSP is that biology has selected the lowest possible energy conformation of the polypeptide

as native. The problem is thus to infer the lowest energy conformation from the energy landscape.

Molecular biology has accumulated a corpus of knowledge on the commonalities and eccentricities of
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biological proteins (ie. those present in cells). Several secondary structural motifs are known. The afore-

mentioned α-helix is a right-handed helical structure spaced by 3.6 residues per turn, and in which the

structure requires certain sidechains and hydrogen bonding to be present. The β-sheet consists of multiple

strands which are attracted by hydrogen bonds in either a parallel or antiparallel conformation. Less com-

mon, but prominent, formations such as the greek-key and β-hairpin are observed. For membrane-spanning

proteins (transmembrane proteins) and the TIM barrel, both α and β domains interact. The secondary

structure motifs play a significant role in the tertiary structure, for they define the dihedral angles between

adjacent amino acid residues. The polypeptide backbone adopts two torsional angles for each residue: φ

for the rotation between the α-carbon and the amine nitrogen atom, and ψ between the α-carbon and the

adjacent carbon′ (“carbon-prime”, in the carbonyl group).[3] Ramachandran showed that the joint distri-

bution of these two angles clusters at three disparate domains, each corresponding to its own secondary

structural element.[29] Frequently, scientists use this prior knowledge in order to inform models of protein

folding. Nevertheless, PSP is a grand problem which is difficult even when secondary structure information

is known beforehand. In fact, Levinthal estimated that under restriction of φ and ψ angles to realistic values,

a polypeptide of length 100 has over 10143 possible conformations.[20] It is an understatement that näıve

enumeration is no solution for protein folding.

One approach to PSP, which we focus on, is ab initio protein folding. Ab initio requires that no prior

knowledge of the protein is known except for its primary structure. In practice, these efforts have been

less fruitful than which exploit a priori knowledge such as the protein type; for example, the globular

protein hemoglobin may be better targeted using a special method. Ab initio methods seek to discover

general characteristics of protein structure and are the subject of decades of work. A landmark study by

Anfinsen in the 1960s established that a protein denatured (unfolded) by interfering agents reconstituted its

native confirmation when those agents were removed.[1] This experiment develops the intuition that protein

structure is dependent only on the primary structure and justifies the ab initio effort.
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2.1 Hardness results for protein folding

Computationally, it is generally understood that PSP is an NP-hard problem. Arguably, the most general

formulation (Ngo and Marks) postulates a protein in which each atom is identified, and their respective

connectivities are enumerated. Given this information alone, and a generic energy function similar to all-

atom physical models, U :

U =
∑

b

Kbond
b (lb−l0b )2+

∑
a

Kangle
a (θa−θ0

a)2+
∑

t

Ktorsion
t (1−cos

[
nt(φt − φ0

t )
]
)+
∑
i>j

Knonlocal
ij f(rij/r0

ij) (1)

Ngo and Marks showed that the minimization of U is NP-hard for any dimensionless function f(x) with a

unique minimum at x = 1.[23] The proof of NP-hardness supposes a polypeptide chain in which a variably

folded region (one with several possible torsions) exists, and the global minimum is only achievable when

some scaffold region comes in contact with the variable region. The scaffold region must bend around a fixed

domain in order to make this contact. Ngo and Marks arrive at a reduction to the partition problem: the

energy is minimized if and only if the algorithm answers the Partition problem.[23] The Partition problem

asks whether a set of integers may be partitioned into two subsets of equal sum, and is necessary, under

the conditions described, for the geometric conformation that is energetically minimum. This formulation

corresponds to the general chemical and geometric characteristics of the problem and is respected as a proof

of hardness; indeed, there is yet to be an popular formulation which is computationally “easy”. For instance,

discrete models of protein folding are also NP-hard by reduction to bin packing (the minimization of bins

into which objects are placed) or Hamiltonian path problems.[16]

Furthermore, PSP is a problem for which there is no unique formulation. There are several models of

protein folding, and they generally fall into one of two categories: off-lattice and on-lattice. Off-lattice models

allow the protein’s components to move, free-floating, in a continuous space. These models are popular in

biology since they agree with the observed flexibility of proteins and the science of X-ray crystallography.

On-lattice models map the protein’s components to points on a discrete lattice. The goal of on-lattice

models is to confine the size of the energy landscape and reduce the protein folding problem to its simplest
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formulation.

2.2 Bridging the lattice debate

PSP research is sharply divided between the off-lattice and on-lattice factions. On-lattice protein folding

algorithms have mathematically provable guarantees on performance, but these methods are not currently

popular among biological researchers; most frequently, structural prediction in the twenty-first century has

favored off-lattice models and heuristic algorithms. This study seeks to bridge the divide by projecting

biological proteins from their continuous representations onto a reasonable lattice model, from which one

may gain intuition for solving the discrete PSP problem. We adopt, and will formalize in Section 3.2, a

model derived from the well-studied hydrophobic-polar (HP) model proposed by Kenneth Dill. Dill’s survey

of proteins identified the interactions between hydrophobic residues to be the dominant force in protein

folding.[19] The model generalizes amino acids by partitioning them to two sets: hydrophilic (liking water)

and hydrophobic (repelled by water).

A hallmark of correct protein folding is the early incidence of hydrophobic collapse, in which internal

hydrophobic residues bury themselves into the core of the molecule. The HP model exploits the dominance of

hydrophobic-hydrophobic contact in the folding event in order to drastically reduce the problem complexity.

Furthermore, we adopt a sidechain model in which the sidechain portion of the amino acid residue is localized

to a lattice point adjacent to, but separate from, the α-carbon’s position. Intuitively, this formulation is

more faithful to polypeptide structure. In addition, Bromberg and Dill showed that the sidechain model has

beneficial properties for minimization of protein energy, particularly by the increase of degrees of freedom

of conformation, the distinct and sharp minimum in entropy when a sidechain-folded protein arrives at the

native formation, and an empirical distribution of residue-residue contacts adhering more closely to PDB

structures.[4]

The as-of-yet unanswered questions for on-lattice models pertain to the appropriateness and effectiveness

of discretization in regards to real proteins. Does there exist a lattice which expresses known elements of

protein structure? What is a reasonable and predictive lattice energy function for proteins? How can we

model the hydrophobic collapse – the “key ingredient” of folding – in a way that aids algorithmic design?

5



2.3 Method of Protein Chain Lattice Fitting

The Protein Chain Lattice Fitting (PCLF) problem consists of choosing the optimal superposition of a lattice

structure such that it minimizes the root mean squared distortion between the subject protein’s (continuous)

coordinates and the lattice coordinates. Solving the PCLF problem requires choosing the optimum scaling for

the lattice (generally these parameters are known in the case of proteins) and then the optimum translation

and rotation pair. Gaur describes a reduction of PCLF to VLP-3-SAT (var-linked planar 3-SAT), which is

an instance of 3-SAT admitting a linear ordering of the variables such that the implication graph is planar.[6]

The problem of RMSD minimization for PCLF is therefore NP-complete. In order to plot proteins from the

PDB repository onto an FCC-sidechain lattice, we use the University of Freiburg’s LatFit software and its

default parameters.[22]

LatFit uses a technique first described by Park and Levitt[25] for a greedy solution to the PCLF problem.

The LatFit algorithm first assigns coordinates for each of the protein residues and sidechains. The backbone

coordinate is that of the residue’s α-carbon, and the sidechain is coordinate is the center of mass for all atoms

in that sidechain (except for the amino acid glycine, which is sidechain-less; LatFit maps the “sidechain”

coordinate for this amino acid to the α-carbon).

LatFit assumes a fixed lattice distance of 3.8Å, which is the distance between adjacent α-carbons in the

polypeptide structure. Additionally, it is approximately equal to the average distance from the α-carbon to

the center of mass of the sidechain (3.6Å).[21]

LatFit builds the lattice-fit polypeptide residue-by-residue starting from the amino terminus. The algo-

rithm stores an array of the k best fittings (by cRMSD, see Eq. 2). To fit residue i, LatFit attempts all

possible elongations of the k best self-avoiding fittings up to residue i − 1. The k best of these are then

retained for the next iteration. One challenge for the algorithm is to compute the optimally rotated lattice

which fits the PDB structure; this is accomplished by dividing the entire rotation range for each of the three

dimensions rX , rY , rZ into s equal parts and repeating the aforementioned fitting procedure a total of s3

times. The optimal rotation of these s3 instances is then subjected to further refinement over a rotation

range of mrπ for sr intervals to produce the final output.[21] For fewer than 50 of 1000 of the tested 1198

proteins the algorithm fails because at some stage, none of the k best fits can be extended in a self-avoiding
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fashion.

cRMSD =

√∑l
i=1(|P̂ b

i − Lb
i |)2 + (|P̂ s

i − Ls
i |)2

2 · l
(2)

LatFit is a greedy heuristic, but uses a respected method which roughly covers the search space. LatFit

achieves a mean 1.84Å cRMSD over the protein corpus for fitting to an FCC-sidechain model (3.29Å for

the plain cubic lattice), and only 11 protein instances exceed a cRMSD of 2.00Å. For reference, the X-ray

crystallography resolution of these structures is roughly 1.5Å, and recall that the distance between α-carbons

is ≈ 3.8Å. Thus quantization introduces some penalty, but it is not of an order of magnitude different than

error observed in other fitting processes.[22] LatFit is currently the only software which fits arbitrary PDB

files to sidechain lattice models. In principle, fitting of lattice models could be improved by an Expectation

Maximization formulation which descends to a local minimum cRMSD, or by a comprehensive study which

analytically probed the asymptotic limit of cRMSD for biological proteins. In 1996, Huang et al. performed

an analysis of a contact potential model which achieved a mean cRMSD of 1.52Å for native structures at

298K. This result is not necessarily generalizable due to the small sample of five proteins used, and the

continuous space of the contact potential. However, the study establishes that a cRMSD of this magnitude

is strong amongst the available fitting methods.[15]

It should be noted that there exist artificial lattices with far higher coordination numbers than the

FCC, which has regularly spaced connectivity and is thus classified as a regular lattice. In fact, researchers

have developed lattices that span the continuum between the FCC’s kissing number (12) and the (specially

designed for proteins) CABS (Cα-Cβ-Side groups) model with 800 allowable vectors. We favor the FCC

because it is the unique solution to Kepler’s conjecture for the tightest packing of equally-sized spheres.[8]

Thus the FCC vectors not only express paths between α-carbons and sidechain, but also define a closest

“kissing” for all 12 adjacent spheres. The FCC thus has the geometrical properties desired for tight packing

of hydrophobic residues, and we choose it as the simplest and most natural lattice for folding. The high

coordination lattices do offer much stronger average RMSD (for example, on the order of .35Å for the CABS

model described above), but arguably that is a result of “overfitting” to biological structures. It would be

a great advance to prove that enough information is captured in the FCC model, which my analysis will
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answer to some degree.

3D models of the lattice-fit proteins used for the subsequent analysis are accessible via the Internet at

http://www.brown.edu/Research/IstrailLab/pdbView.php. The corpus extracted from the PDB repos-

itory consists of 1198 proteins selected on the basis of having a length within 50-300 amino acids and no

greater than 1.5Å RMSD from error in X-ray crystallography (the technology of fitting crystallography ex-

periments to Euclidean space too has error!). The restriction on X-ray crystallography resolution prohibits

analysis on proteins which may not discretize well due to random deviations, or which were measured on

older hardware. In the online 3D structures, a Jmol applet is used to visualize the FCC on-lattice structure

with the backbone colored gray, hydrophobic sidechains red, and hydrophilic sidechains green.

Character ∆x ∆y ∆z
0 +1 +1 0
1 +1 -1 0
2 +1 0 +1
3 +1 0 -1
4 0 +1 +1
5 0 +1 -1
6 0 -1 +1
7 0 -1 -1
8 -1 +1 0
9 -1 -1 0
A -1 0 +1
B -1 0 -1

Figure 1: Vectors in the Face-centered Cubic Lattice

3 The Protein Energy Potential Function Problem

3.1 Introduction to the energy function inference problem

In motivating the NP-hardness of PSP, recall that we cited a generic energy function U for polymers of

atoms. Physical energy functions of this variety are used in order to produce all-atom computer simulations

of the protein folding process, or as a “brute-force” method for solving protein structural prediction problems

(most notably, Folding@Home). The advantage of deriving energies from thermodynamics (typically free
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energy) is that in these cases the potential is a function of known quantities (e.g. electrostatic repulsion).

Most commonly, energy functions used for PSP are summative quantities of pairwise interactions between

residues. Statistical energy functions which describe a Boltzmann distribution of conformations are typical

for PSP problems. Statistical mechanics dictates that the probability pN of the native structure is given by

pN =
e−EN /(kT )∑
m e−Em/(kT )

(3)

where EN is the energy of the native structure, k is the Boltzmann constant, T is the absolute tempera-

ture, and m ∈ M , the set of all possible conformations. pN is the greatest probability in the sum of the

denominator.[9] Taking the natural logarithm of this above equation, we achieve

max(kT ln pN ) = max(−EN + F ) (4)

where F is the free energy quantity, and is equal to the average energy minus an entropy term TS. Using

the above equation we can solve for the energy of the native structure in terms of pN and the free energy.

We can substitute the definition of free energy (Eq. 6) and decompose our formula into an energy term for

a single pairwise interaction (Eq. 7).

EN = −kT ln pN − F (5)

F = 〈E〉 − TS = −kT ln pXX − TS = −kT ln po
XX (6)

∀A,B ∈ {amino acids}, EAB(r) = −kT ln[pAB(r + δr)/po
XX(r + δr)] (7)

Equation 7 gives the calculation for the energy of the interaction of two amino acid types A and B with

respect to a reference state denoted by the “generic” amino acid pair XX. The function pAB(r ± δr) is

the probability of observing residues A and B separated by the distance r ± δr. pXX
o(r ± δr) gives a

reference probability for residues separated in distance by r ± δr; as implied by Equation 6 this constant

corresponds to an average probability adjusted by the entropy term TS.[9] Using an interaction matrix of

probabilities pAB with the correct empirical properties, it is reasonable that a protein folded such that the
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pairwise distance between residues approximates the “native” distribution will have the lowest energy state.

Physical chemistry has developed methods for constructing the potential functions pAB(x) and pXX(x) in

order to make structural prediction.[31]

In off-lattice models, Function 7 is minimized over the length of the protein by assuming empirical

probability parameters and computing the maximum likelihood structure; however, as we seek a model for

on-lattice proteins and particularly one that is as fundamental as possible, we use Dill’s HP model as a

starting point for energy function inference. The HP model proposes to simplify the function above by

summing only pairwise hydrophobic interactions and assigning each of these contacts an energy of −1.[7]

Formally, a contact is made between two residues which are adjacent on the lattice, but not adjacent in

the protein backbone. (The argument for this definition is that local interactions dominate at a close-range

scale, whereas the fold energy is derived from “long-range” interactions of atoms which are brought to close

proximity in the native.)

3.2 Construction of the HP Model

The classical HP model classifies each amino acid sidechain as either ‘H’ (hydrophobic) or ‘P’ (hydrophilic).

Of the twenty amino acids, eight are defined as hydrophobic: alanine, cysteine, isoleucine, leucine, phenylala-

nine, proline, tryptophan, and valine. Arginine, asparagine, aspartate, glutamine, histadine, lysine, serine,

threonine, and tyrosine are hydrophilic residues. Glycine can act like either of the two, due to its small

size, and the sulfuric amino acid methionine is also typically specified as “special”; in the HP model, we will

ignore this complication and declare them both hydrophobic amino acids.[7][19]

The energy potential in Dill’s HP model is

E =
∑

i,j ci,j (8)

ci,j =

 −1 if j > i+ 1 and Si, Sj = H

0 otherwise
(9)

E is thus the sum of pairwise contacts on lattice. More generally, this may be extended to a symmetric

interaction matrix indexed by the nominal values assigned to the sidechain residues. More sophisticated
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H P
H -1 0
P 0 0

Figure 2: The most frequently used protein energy function in HP model algorithms for PSP.

models also adopt a solvent term. The biochemistry of proteins dictates that protein structure is in large

part determined by interactions with the solvent environment. Hydrophobic residues are observed to bury

themselves into the protein and form compact structures in the presence from solvent (as suggested by the

hydrophobic collapse). The “hydrophobic effect” maximizes the entropy of the solvent, without which the

energy landscape is disrupted and no “funnel” develops for fast energy minimization.[3] Hydrophilic residues

are expected to tolerate the aqueous environment without frustration of the energetically favorable state.

(Note: Beware that this is by no means a comprehensive view on the importance of solvent! It would be

wrong to claim that hydrophilic residues “like water” or that hydrophobic residues do not normally come in

contact with solvent. In fact, we observe that there is a complex interaction between aqueous solvents and

the polar or “hydrophilic” residues, and depends partly on dissolved substances in the solvent. Moreover,

hydrophobic residues are observed on the outer regions of biological proteins. The above statements refer to

that which is energetically and entropically favorable.)

Solvent is introduced into the model by adding a new category to the interaction matrix. Shown in

Figure 3 are three commonly used matrices in the HP model.[10] For the purposes of my model, I define

HP H P S
H -1 0 0
P 0 0 0
S 0 0 0

SHP H P S
H -2 0 1
P 0 0 0
S 1 0 0

ASA H P S
H 0 0 1
P 0 0 0
S 1 0 0

Figure 3: The interaction matrix depends on which parameters are believed to be significant in the folding
process, or otherwise derived by some fitting process. HP is the standard hydrophobic-polar model, and is
equivalent to the previous figure. SHP is the solvent-exposed hydrophobic-polar, wherein a penalty is made
for interactions between solvent and hydrophobic residues. ASA is the accessible surface area, in which the
collapse is explained by entropic effects alone, driven by the hydrophobic effect.[10]

the solvent interaction as occurring between all pairs of residues which are not adjacent to any backbone or

sidechain coordinate, except for the α-carbon to which it is attached. This identifies sidechains which are

not “buried” inside the molecule. Note that there is a dependency on the number of contact interactions;

11



since most of the residues which do not form any contacts are declared “solvent-interacting”, then there is

a strong negative correlation. Furthermore, the number of solvent interactions are proportionally smaller:

whereas a single hydrophobic residue could in theory make up to twelve contacts, a hydrophobic-solvent

interaction is only counted once per residue. Nevertheless, both the number of hydrophobic-hydrophobic

contacts and the number of hydrophobic-solvent interactions both grow asymptotically linearly [not proven

here] so this does not pose a grand problem.

Thomas and Dill showed that an optimum three-parameter model (’H-H’, ’H-P’, ’P-P’) with values

EHH = −5, EHP = −1, EPP = −2 fit all 2040 PDB models for 14-mer chains on a simple cubic lattice.

When reversing the method – to extract from these proteins values for the three parameters by statistical

fitting of these 2040 structures under the Boltzmann function described above, Thomas and Dill observed

empirical parameters eHH = −5, eHP = −1.1, ePP = −2.1.[31] Their result is restricted in scope to those

very short polypeptides, and in general, findings about on-lattice models only hold for their underlying lattice

model. However, the success of the statistical method inspires this paper’s analysis for longer, more realistic

proteins fit to FCC-sidechain lattice.

3.3 Model fitting in general

Typically, simple symmetric interaction matrices of size no greater than 3× 3 are applied to the HP model.

However, the field is open for science to propose and score new candidate functions for protein folding.. The

goal of the model fitting problem is to construct a model M and the optimal parameters θ1, θ2, etc. Define

Θ = (M, θ1, θ2, ...). Then the optimum model minimizes some metric of the distance between structures

predicted under that model and the respective PDB structures. The aforementioned cRMSD is frequently

applied to this purpose, although at times dRMSD is chosen as metric because it is tolerant of transformation

or reflection in the predicted structure.

optimum model Θ∗ = argminΘRMSDΘ(predicted, native) (10)

For example, Huang et al. exploit the geometric properties of hydrophobic cores in order to develop

a unique energy function. Their “hydrophobic fitness score” is designed to reach a maximum when the
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hydrophobics are (1) optimally packed and (2) buried into the exact center of the protein. They define the

hydrophobic fitness score F [15]

F = − (
P

i Bi)(
P

i(Hi−Ho
i ))

n2 1 ≤ i ≤ n = # hydrophobic residues (11)

where Bi is the hydrophobic burial function, Hi is the number of hydrophobic contacts, and Ho
i is the

number of hydrophobic contacts by expectation under a random model. In Huang et al, Bi is defined as

the number of sidechain coordinates within 10Å, which may be adapted to the discrete formulation (lattice

distance ≈ 3.8Å) as within 3 lattice units.

For our particular model fitting problem, we choose a discrete formulation of the problem which achieves

a similar goal to Equation 10: the “predicted” structures used to score our models will be decoy structures.

“Decoy” proteins are suboptimal structures with large similarity to the native fold, such that they might

appear – to a poor energy function – to be the biological native for that protein.

Decoy Generation

Decoy generation is a challenging problem that requires close attention to mimicing both the mathematical

and biological properties of the native. Principally, decoys must meet the hard constraints of connectedness

and self-avoidance; lattice decoys must also place all α-carbons and sidechains on the lattice. It is important

that the decoys could not be separated from native folds by any trivial means (for example, dihedral angles

which never occur in biological proteins). Park and Levitt describe four desiderata for decoy proteins:[26]

1. decoy sets must include structures “close to” native structures (by RMSD)

2. “be native-like in all properties of the real polypeptide chain.” For example, secondary structures must

be retained.

3. “be diverse” so they are representative of other likely folds of low energy

4. be of sufficient quantity. This is a challenge because frequently researchers generating decoy sets have

worked on small subsets of the PDB. Levitt’s Decoys R’ Us, for example, has thousands of decoys

13



per protein, but covers a subset of size ≈ 200 of all proteins. Given that computing near-optimal

folds is difficult – and to do so respecting these four desiderata is particularly difficult – computing a

comprehensive decoy set would be of interest to protein research.

Decoys used to discriminate models were generated from the LatFit dataset. The dataset, generally

derived from newer, high-resolution PDB models and longer sequences than the Levitt data, had no over-

lap with any known decoy databases. I generated for each of the proteins in the dataset some number

of decoys averaging between 15 and 25. Care was taken to respect connectedness, self-avoidance, and the

above desiderata, with one caveat: the decoys do not entirely replicate all properties of the native. In some

instances, secondary structures such as α-helices may have been disrupted by the method. The algorithm

applied was as follows:

Algorithm DecoyMaker(P, p,R)

Input: P = set of PDB proteins
Input: p = probability of perturbation
Input: R = number of repeats
Output: return a set {Di} of decoys for each Pi ∈ P
for R ∈ {1...R} do

for amino acid k ∈ Pi do
if randomUniform ∈ {0, 1} < p then

m = Choose a move from ∆x,∆y,∆z
if connected and self-avoiding after move then

∆0 = Find the change m (eg. ∆x) from amino acid k − 1 to k
∆′ = Find the change m from amino acid k to k + 1
acidk = acidk −∆0 + ∆′

acidk+1 = acidk+1 −∆′ + ∆0

Repeat for sidechain
end

end
end

end
The above algorithm makes randomly chosen perturbations in the protein structure such that the chain is still

connected and self-avoiding. 25 decoy generation attempts are made for each protein, with 2 possible modes

of failure: insufficient difference from native (due to too many proposed moves being non-self-avoiding) or

program error (if it returns an incorrect, crossed chain, or if too many hydrophobic interactions were dropped

in the decoy). Failures were purged from the decoy sets.
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Any proposed decoy method deserves criticism, and if this work were to be extended, there are a variety

of different decoy methods that are to be explored. As noted above, this method may distort realistic

protein structures which are known to form on these sequences, such as secondary structures. In addition,

there are compact domains in the proteins which are difficult to perturb in a manner which is self-avoiding.

Empirically, the algorithm can in some cases attempt to misfold to a molten globule state (which might

account for the high number of apparent hydrophobic contacts on these decoys).

The decoy-making algorithm changed an average of 16.1% residues over the PDB set and for the given

parameters (p = .2, R = 20). In rare cases, moves in later iterations of the main loop may cancel earlier

moves, thus the total displaced residues are a little less than 15%. It should be said that these decoys are

fairly close to the native conformation, as the above algorithm is unlikely to greatly change the shape of the

protein; rather, it alters the chain residue-by-residue. While it was beneficial to have decoys within such a

close distance of the native, a number of other techniques can be attempted. For example, Park and Levitt

use a method which retains the structure in small blocks along the protein and slightly modify the “hinges”

between these domains. In addition, it is generally good practice to relax the protein energy by filtering out

interactions which are chemically unstable due to steric hindrance or unrealistic bond angles. Frequently

perturbed structures may be returned to a more native-like fold by a variety of finishing steps which use

statistical data (for example, the expected number of interactions of a given type) to restore properties of

biological proteins.[26]

3.4 Model inference for the FCC-fit protein dataset

We attempted to fit an energy function to the observed intrachain interactions in our lattice-fit PDB set.

That is, we sought to find an equation which is a function of the long-range interactions within the protein

chain. The objective function for scoring said function was its capacity to discriminate true natives from

decoys; in other words, the biological native is scored with a lower energy than all of its decoys. Since this

may not be possible, we choose to optimize an objective function maximizing the the number of decoys which

are scored at a higher energy than their native. For the following objective function, let P be the set of PDB

natives (indexed by i), f be the energy function, and I be an indicator variable that valued at 1 when the
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predicate is satified (0 otherwise).

S =
∑

i

∑
d∈{ decoys for Pi}

I[f(d) > f(Pi)] (12)

Our decoy set consisted of 19,492 decoys, so S is valued between 0 (all false classifications) and 19,492

(perfect classication). A random guess of the native would yield a S approximately one-half times the size

of the PDB set (≈ 9726).

Before assessing a more complicated energy function, we attempted the simple HP energy function

described by interaction matrix HP (Figure 3). The score of the objective function function for this model

was 12,206, achieving a 63% success rate. We then allowed all of HH, HP, and PP to be free variables, and

this model was optimized by the parameter vector (−.14, .01,−.04) with a score of 13,541. Using the full

five-variable model that we have before described, we add solvent terms for each of the two types of residues.

The optimum linear model was thus

opt-linear H P S
H -.13 0 -.05
P -.04 -.06
S X

Figure 4: The best linear model as scored by the objective function S. Note that the hydrophobic-
hydrophobic interaction is strongest in magnitude, and that hydrophilic-hydrophilic interactions are also
favorable. Hydrophobic-hydrophilic interactions are found to have no effect on protein energy. Solvent in-
teractions are have an effect on energy with the same magnitude as hydrophilic-hydrophilic interactions,
yielding evidence to a body of protein research studying the utility of exposed residues.

The optimum set of parameters was first found using gradient descent, and later confirmed by exhaustively

enumerating a 10× 10× 10× 10× 10 hypercube centered at the origin. The exhaustive enumeration yielded

a solution which converged onto a multiple of that found in Figure 4 after a refinement step. The optimum

parameterization had a score S of 13,997 (72% success rate). In assessing the model, it should be noted that

the inclusion of solvent terms only increases the success rate by about 2.5%, and therefore it may be that

the additional parametrization is not useful.It is not so surprising that the solvent terms do not add greatly

to the predictive capability of the model, as they are partly dependent on the number of residue-residue

interactions (as interactions in the molecule increase, the number of solvent interactions decreases under our
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definition).

The model has interesting mathematical and biological consequences for understanding protein kinetics.

As is the expectation of Ken Dill’s HP model, hydrophobic-hydrophobic interactions are highly favorable

for biological proteins. Hydrophilics also appear to interact favorably with each other, to a lesser extent.

The solvent interactions are more difficult to understand, but they agree with recent findings showing that

the solvent helps guide the protein to a native conformation. The dissatisfying dillemma with the model is

that it only achieves 72% success in discriminating decoys from native, which is not greatly more powerful

than random classification (50%). Our goal is to develop a model that universally describes optimality

for protein energy, with (perfect or) near 100% accuracy. However, decoys generated under our method

did not necessarily have fewer hydrophobic-hydrophobic contacts than the native, and a nontrivial portion

had greater numbers of hydrophobic-hydrophobic contacts. This may be the result, for example, of the

tendency of the decoy generating method to alter the molecule to a more “molten globule” conformation.

The parameters we have chosen appear to satisfy biological expectations for proper folding, but the energy

function does not satisfy our requirement of selecting the native from all possible conformations.

The functions we have so far explored are linear in the arguments, and furthermore, are functions ex-

clusively of pairwise interactions. We attempted fitting models that are non-linear (but nevertheless used

data from the same pairwise data), for example, by squaring or multiplying different terms and evaluating

the value of S for that model. None of the non-linear models tested outperformed the 5-parameter linear

model. It may be desirable, for the purposes of folding algorithms, to make the energy function as minimal

as possible. The two-parameter linear model α1(H-H contacts) + α2(P-P contacts) with parametrization

α = (−.15,−.04) achieves a score S = 13365 (69%), which was superior to any non-linear model tested which

multiplied these terms or powers thereof.

More sophisticated energy functions incorporate variables that represent different quantities than pairwise

interactions. In fact, pioneering work on protein decoys and energy function inference by Michael Levitt

[15][26] suggest that functions which mix a variety of known properties for good folds tend to perform better

in practical applications. Park and Levitt state that a “combination function” of pairwise interactions, van

de Waals forces, surface energy, and residue burial yields the best results for proteins for the 200 or so
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proteins they extracted from the PDB. Levitt explains that this type of function excels because each of the

interaction measures we use are highly distance-dependent, and therefore, combining multiple functions of

the data reduces the error in any one measure.[26] If this work is to be continued, experimentation with

incorporating these terms into the objective function might yield better results. (Note, on the other hand,

that we desire a potential that is simple enough to be minimized, so the addition of variables must be weighed

against the increased complexity of the function.)

In an attempt to test Levitt’s hypothesis, we assessed each of the natives and the decoys using the

Hydrophobic Fitness (HF) score in Equation 11. Clearly, terms represent a quantity containing information

more complex than the pairwise interactions. Using the PDB set, we computed an expected number of

hydrophobic contacts for a given length of protein Ho
i . Then we computed an HF score for each of the

PDB proteins and its decoys, and calculated S where the HF score of the native structure exceeded that of

the chosen decoy. Although Huang et al. report that this scheme separates better than the standard HP

interaction matrix, it was not the case in our analysis, where we computed S = 11222 (58%). The cause

of the failure of this function is as yet unknown, but probably is a result of differences in the discrete vs.

continuous models and/or different methods of decoy generation.

We wish to do better than the 72% classifier, which was the optimum linear model with hydropho-

bic/hydrophilic interactions and solvent terms. The difficulty in fitting a function of this form to the dataset

suggests that there is no possible energy function which incorporates only pairwise interactions between

residues. In collaboration with Warren Schudy and Sorin Istrail, we conjecture impossibility for two prob-

lems in energy function inference: the Unique Native Linear Pairwise Energy problem and the General

Optimal Linear Pairwise Energy Problem which are to be described in the following subsection.

3.5 Pairwise Function Impossibility Conjecture [2]

We have reason to suspect that the difficulty in modeling true proteins is inherent to the laws of physics

governing biochemical energies. Our potential function belongs to the general set of functions where pairwise

interactions between residues have some additive score, and thus the potential is calculated by a sum once

the contacts are specified. This function is convenient, but in all likelihood the true potential has terms
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which consider multiple interacting factors at once – and such a potential is more difficult to optimize. We

conjecture that no pairwise linear function sufficiently approximates the native potential of the set of PDB

proteins. We propose to demonstrate this via a generalized linear programming technique where we show

that a linear model with the desired properties of a proper energy function is infeasible (no solution to the

parametrization exists).

Define: Let P be a set of proteins from the Protein Data Bank (PDB). Define a distance d: d is the

maximum acceptable Euclidean distance between the center of mass of any two sidechains for which a pair

may be called “in contact”. Then, for each Pi, those pairs of sidechains which are “in contact” compose a set

Si(d) of contacts. Each “contact” s ∈ Si is a tuple (l, j) of the two amino acid types which are “in contact.”

Let M be a matrix of real-valued numbers indexed by the twenty types of amino acids. M is a symmetric

matrix with up to 190 unique elements, and M(x,y) is the potential assigned to an amino acid x being “in

contact” with amino acid y.

where Pi is the native structure of an arbitrary protein from the PDB and D is a reasonable domain for

the distance between an interaction classified “in contact”. That is, any nontrivial function f will fail to

assign to all native PDB proteins at a minimum energy state. We must show that this is also invariant on

the distance d chosen to distinguish contacts from non-contacts, within a reasonable domain D.

As you can see, the conjecture is proven true under the infeasibility of a linear model which is to be

described below. Such a proof is a “hard” problem under the requirement of ∀p. Our computer-assisted

proof must be able to propose protein folds p which challenge the native structure Pi. It is possible that

the computational method may fail to generate a p which proves infeasibility of the function f (due to the

NP-hardness of protein structure prediction). Therefore, a positive result for f is not a rigorous solution,

nor is it necessarily a “true” energy function. However, in the case that the computational method gives an

infeasibility result we can definitively conclude that no linear function of this form admits a solution. Thus,

the “true” energy function must either be non-linear and/or must be a function of k-tuples of sidechain

residues where k > 2.

Conjecture: We conjecture that there exists no protein energy function Ep = f(p, d,M) for which

f(p, d,M) is a linear combination of the elements of M . In other words, we will let the distance d define the
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number of sidechains k, ` in contact nk,`(P, d) for the protein P . All nontrivial functions f of the form

f(p, d,M) =
∑

k,`Mk,`nk,`(Pi, d), k, ` ∈ amino-acids (13)

will not satisfy

∀i,∀p,∀d ∈ D, f(p, d,M) ≥ f(Pi, d,M) (14)

Formulation: In order to efficiently prove an infeasibility result, we propose a linear program. Such a

linear program will attempt to find the optimum linear sum of pairwise potential values (parameters) M .

Under the assumption that protein structures in the PDB are at a minimum energy (“native” structure),

we will attempt to minimize the energy function for all PDB structures. Therefore, we define our objective

function as the minimization of the sum of the potential of all PDB structures:[32]

Objective : min
M

∑
i

EPi = minM

∑
i f(Pi, d,M) =

∑
i

∑
k,`Mk,`nk,`(Pi, d) (15)

If there exists an “true” energy function Ep, then the M∗ which is argmin to the above function would be

the true parametrization: it gives a minimum energy for all PDB proteins. Recall that due to the hardness

of the problem, we have no means of proving that any output M∗ corresponds to the energy function for

proteins in nature; it might be that we have simply not enumerated a p for which the energy function is less

than that of a PDB structure.

There are are at least N × (# decoys/structure) constraints, too many to enumerate in their entirety.

Therefore, we plan to implement a separation oracle which is called by the LP solver. The oracle as input

the set of proteins P , the distance d, and a matrix M and returns “true” if M is feasible, “false” otherwise.

The crucial constraint is as follows:

∀d ∈ D,∀i,∀p 6= Pi f(p, d,M) ≥ f(Pi, d,M) + ε Unique Native (16)

∀d ∈ D,∀i,∀p f(p, d,M) ≥ f(Pi, d,M) Generalized Optimum (17)
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The constraint is defined by our conjecture and it must hold for a feasible solution under the conditions

of an energy function. We require that the energy function distinguishes each decoy from its native, for each

protein in the PDB. There are two hypotheses to test: Equation 16 is true under the hypothesis that the

biological native structure is uniquely minimum in the energy landscape. A weaker constraint (Equation

17 does not suppose that all sequences have a single global minimum conformation. Some natural proteins

have a small ensemble of energetically favorable states, and furthermore, we also wish to solve the problem

on discrete lattices. We desire to show impossiblility for the latter, although the computation may be more

difficult.

Summary of Pairwise Function Impossibility Conjecture
Purpose: show impossibility of a pairwise energy function of the following form
Let P be the set of proteins in the PDB repository and d be a distance within a appropriate
domain D of maximum contact distance

EPi
= f(Pi, d,M) =

∑
k,`

Mk,`nk,`(Pi, d), k, ` ∈ amino-acids

.Unique Native Linear Pairwise Energy∑
1≤i≤# of decoys

(F (native for decoy i) > F (decoy i))

Problem
Let ~m be the vector representation of parameter matrix M , indexed by an amino acid pair
(i, j).

min~m

∑N
i=1 ~m · n(Pi, d)

st.∀d ∈ D,∀i,∀p 6= Pi Ep ≥ EPi
+ ε

General Optimal Linear Pairwise Energy Problem (GOLPE)
Let nb

k,` be an additional parameter vector: nb
k,`(P, d) is a estimate for the number contacts

we expect between residues k, ` in the database P (the sum of expectations over each Pi’s
decoy set).

min~m

[∑N
i=1 ~m · n(Pi, d)

]
st.∀d ∈ D,∀i,∀p Ep ≥ EPi

∀k, ` −Mk,` ≥ ε if
N∑

i=1

nk,`(Pi, d) > nb
k,`(P, d)

∀k, ` Mk,` ≥ ε if
N∑

i=1

nk,`(Pi, d) < nb
k,`(P, d)
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Specifically, without any additional constraints to Equation 17, the LP admits a pathological “solution”:

if M equals the all-zeroes matrix, then the constraint is trivially satisfied (the inequality is not strict). We

must place an additional constraint to enforce good properties of an energy function. One method is to

require, ∀k, `,
∑

k,`Mk,` = c. However, this heuristic is ad hoc because there is no biochemical basis for

inferring a net positive, net negative, or net zero potential over all possible residue pairings (additionally it

could be dependent on d. Under linearity of the objective function, a feasible solution is easily scaled to sum

to c, but it supposes a choice of positive, negative, or zero which is possibly restrictive of a solution. We

suggest an alternative workaround for this difficulty by enforcing a “parameters sign constraint”: suppose

that the decoy sets for all proteins in P comprise a background distribution of proteins. Then, compute a

number nb
k,`(P, d) of contacts which represents a reference number of contacts for the k ↔ ` interaction over

the entire set P . For those k, ` pairs which are enriched in the natives (P ) set a constraint that Mk,` is

negative, and for those pairs which are deficient, set a positive constraint. This constraint makes f(Pi, d,M)

behave like the Boltzmann distribution described earlier, in which we reward residues which have more

contacts in the native structures. We conjecture further that for any non-zero feasible solution of M , this

additional constraint is also satisfied (by linearity of f). There shall be a greater number of those contacts

in the natives, and thus the negative value is chosen under minimization of the objective.

As the function is non-linear in the choice of d (d defines the discrete inclusion or exclusion of residue

pairs from Si), we propose to prove infeasibility for several values of d in some domain D. We define the

domain D by the underlying biochemistry of long-range interactions in proteins. The minimum value of

d ∈ D should be some value such that there exist many contacts in the protein structure. For completeness,

the minimum d could be the minimum distance between the center of mass for any two sidechains in the the

entire PDB repository. The maximum d value might be chosen to be a value such that not too many residue

pairs are in contact; perhaps we could choose a d such that fewer than βn residue pairs are in contact when

there are n possible residue pairs over the entirety of the proteins in the PDB repository.

We must take care when choosing the input and algorithm used for computing the LP result. There exist

conditions under which an LP solver might declare infeasibility but the result might not be valid. First, an

appropriate LP solver must be chosen. There exist dual simplex algorithms and ellipsoid solvers which may
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make use of a separation oracle with linear constraints. In addition, there are biological complications for the

input set P of PDB proteins. The PDB must be filtered to prevent the introduction of proteins for which other

factors like ligands or obscure solvents influence the conformation of the protein recorded under X-ray models.

For example, we must exclude multiple-chain proteins; in these proteins, multiple chains form quaternary

structures and the interaction between chains might interfere with the calculation of an energy function. In

addition, many PDB structures are made for the purposes of demonstrating alternate conformations of the

protein under binding or dimerization scenarios and these must also be excluded. Lastly, a non-redundant,

high-resolution reduction of the PDB repository should be used. For several polypeptides with the same

sequence, the PDB gives multiple (divergent) structures. We may not assume that these proteins have equal

energies. In all likelihood, they too depict alternative conditions for the protein’s environment. If we were

to allow a redundancy in the database, then it is likely that even under a reasonable energy function f that

equal-sequence proteins Pi = p′ and Pj = p′′ would not satisfy the constraint f(p′′, d,M) ≥ f(Pi, d,M). We

suggest that the set of proteins P be derived from a curated non-redundant (but representative) repository

derived from PDB such as Pisces[33], and furthermore, there might be additional curation performed to

remove multiple-chain proteins.

The separation oracle will need to either (1) test the energy function against a database of decoys for

each PDB entry Pi or (2) produce such folds by Monte Carlo simulation. If we are to use the sign constraints

on parameters Mk,` then the database is especially important for generating the background distribution.

It seems likely that decoy construction methods will come to bear in this problem: not only do we require a

comprehensive decoy database (covering all Pi with thousands of decoys each) but the decoy database must

compile decoys constructed by a variety of different algorithms. Even stochastically generated decoys might

have some substructure which make them unsuitable for proving impossibility, if similar methods are used

for each decoy. To prove impossibility in any reasonable amount of time, we must prepare by “stocking” the

decoy database well.

Under an infeasible model, the LP algorithm returns an IIS and an MIS. The IIS, or Irreducible

Infeasible Subset, is a set of constraints which are simultaneously unsatisfiable. This corresponds to a

subset of P (the PDB repository), P (infeasible). No model defined by f is feasible for the set P (infeasible),
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but removing any single PDB structure from P (infeasible) is feasible. Ideally, P (infeasible) would consist

of several classes of proteins such that we may infer that no pairwise contact function can fit the diverse

landscape of proteins. The MIS, a minimum-cardinality IIS set cover, is the smallest set which must be

removed from P such that the objective function is feasible. The MIS consists of one element from each IIS

such that P\MIS is feasible. The minimum-cardinality IIS set cover problem is NP-complete, but many

LP programs solve for the MIS in reasonable time using heuristics. We might demand that the MIS is not

too small. It is well-known that there are some PDB structures in error (and historically several have been

withdrawn). An infeasibility result with a very small MIS may not be satisfactory because a small MIS is

likely to consist of those PDB structures which exhibit high error or poor experimental procedure.

To address the problem of testing for d at several discrete points in some domain D, we may replace

the single value Mx,y for the pairing of amino acid x to amino acid y by a function Mx,y(r) which varies

in the distance r which separates the two sidechains. Some suggested functions for this are the Boltzmann

distribution (a logarithmic, non-linear function) or the Lennard-Jones potential (a function linear in the its

parameters but which does not deviate greatly from “true” energy curves).[32] Lennard-Jones potential has

the form

Mx,y(r) = mx,y,0
r6 − mx,y,1

r12 (18)

and thus under this new model we would need to prove that there exist no 380 parameters (Mx,y,z, x, y ∈

amino acids, z ∈ {0, 1}) which satisfy the constraints which we have defined. This may provide more

conclusive evidence that there is no “potential-like function” of pairwise residue potentials contacts which

governs the folds of biological proteins.

4 Modelling Hydrophobic Collapse

4.1 The State of the Art

Since the proposed energy function of the standard HP model only accounts for the pairwise contacts

of hydrophobic residues, a large body of work in the literature confronts the protein folding problem by
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prioritizing the hydrophobic collapse. Under the interaction matrix HP (Figure 3), an optimum packing of

hydrophobic sidechains optimizes the fold energy. Standard HP algorithms attempt principally to form a

molten globule structure in the center of the fold, as are observed in the globular class of proteins.

A frequently explored method is to make well-chosen folding points such that the hydrophobic residues in

one block are adjacent to another block of hydrophobic residues. That is, these algorithms form a partition

of the residues into several contiguous blocks and match those with similar hydropathy. We can arrive at

this intuition by observing that in any lattice L there exists a linear bound on the number of contacts for

fold F defined by the number of hydrophobic residues and their positions in the sequence S (and the lattice

coordination number):[16]

#Contacts(F (S), L) ≤ g(S,L) (19)

For example, in the 2D square lattice (a plane with residues at 90 degree angles to one another), any two

residues may only come in contact if and only if there is a path of even length which brings the downstream

residue to an adjacent position; therefore, any odd amino acid can only create a contact with some other

odd amino acid. This defines a function g(O(S), E(S)) = 2 min(O(S), E(S)) which bounds the number of

contacts.

The algorithmic procedure for hydrophobic-block-based folding chooses the partition into x and y blocks

such that x and y blocks alternate, as in x1y1x2y2 and so forth. We choose the partitioning such that the

number of hydrophobics in x blocks exceeds that of y blocks. Then a fold in which x blocks are aligned and

in contact (with turns at the x-y boundaries) is produced. A crucial feature of these Hart-Istrail partitions is

that they are computable in linear time (per the aforementioned partition function) and provide guaranteed

approximation of the optimum value of the contact potential. Once the partition is made, x blocks are

aligned to maximize contacts and the length of the y blocks are used to bridge between the x-x pairs. In

this 2D square lattice, the “worst-case” scenario in which #x hydrophobics = #y hydrophobics for every

adjacent x and y block dictates that only half of all even or odd hydrophobics (whichever is minimum) pairs

may come in contact. Therefore, a lower bound on the algorithm’s performance is 1
2 min(O(S), E(S)). It

25



follows that the approximation guarantee of this algorithm is

G2D =
1
2 min(O(S), E(S))
2 min(O(S), E(S))

=
1
4

(20)

As the coordination number increases and the combinatorics allow an increased number of ways to join pairs

of amino acids on-lattice, then the Hart-Istrail improves in performance.[12][13]

Methods like Hart-Istrail belong to the “approximation algorithms” class, by which we mean that the al-

gorithm always produces a result within some fraction of the optimum (native) fold’s energy. As noted above,

it has some beneficial characteristics: linear runtime and determinism (the result does not vary randomly).

In protein folding, approximation algorithms are by no means the most popular. The most frequently used

algorithms have advanced heuristics coupled to an analytical optimization method. The Rosetta program

for off-lattice inference uses heuristics and a highly-parallelized linear programming algorithm to optimize

computation speed. Classically, Monte Carlo algorithms have been applied to folding in which “moves” (var-

ious geometric transformations of the protein which retain connectedness and self-avoidingness) are chosen

randomly with some defined probability.

Novel techniques such as Genetic Algorithms (GA) and Constraint Programming (CP) algorithms are

increasingly popular in the twenty-first century. A great many GA approaches have been applied to protein

folding; these algorithms tend not to require biological intuition, but rather, mate randomly generated

solutions so as to descend in conformational energy. They are reported to have good results, but are not as

respected as more analytical methods. CP algorithms are also gaining momentum because their performance

has improved given the increase in computational power and wider knowledge of optimization techniques

such as branch-and-bound. Advanced CP algorithms such as Palú et al’s Constraint Logic Programming

over finite domains (CLP(FD)) solution use a large library of biological knowledge as constraints to guide

the algorithm.[24] GA and CP favor practicality over the geometric and combinatorial dilemmas of protein

folding. At the same time, they introduce a great number of assumptions to the folding problem which make

analysis difficult. In exploring PSP, this paper will embrace more traditional approximation algorithms, but

with an eye towards the practical goal of making a performant general-purpose algorithm. I use quantitative

data from the PDB repository to make empirical judgments on the quality of the approximation algorithm
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and will try to drive at novel intuition.

4.2 Evaluating the biplanar model for hydrophobic collapse

Hart and Istrail propose a model in which the hydrophobic mass of the protein is localized to a biplane in

the center of the protein conformation. More specifically, the algorithm C which they describe constructs a

4× 2 biplane in the center of the protein. That is, eight large columns (long hydrophobic blocks are brought

into contact with each other; these columns are orthogonal with the planes of the FCC lattice. The intuition

of the algorithm is that packing all hydrophobics in the center maximizes the energy when only hydrophobic

interactions are considered. Then, when a fold is made according to algorithm C with the correct height of

columns, then the 4x2 biplane forms at least 14 contacts between H residues on this plane. At most the

other 8 adjacent positions (which are inhabited by other residues on the chain) could have been hydrophobic

residues for each plane. Therefore, Hart and Istrail arrive at an approximation which covers the core in at

least 14 of the 22 accessible columns. Then the energy of the algorithm for h hydrophobic residues arranged

with width B in a B × 2 biplane is

E ≤ −(B + 2)
31
8
h− 14

8
h+ Z, Z > 0 (21)

For the choice B = 4 the approximation ratio is 86% on the FCC-sidechain lattice, which is as of yet unbeaten

for PSP approximation algorithms in the HP model.

In order to better develop the relationship between real, continuous proteins and the rigorous lattice

model, we developed an experiment to validate the observation of biplanes in the PDB dataset used for the

energy function energy problem. We formulated the following statistical question: can we show that, in

general, PDB proteins (or a subset thereof) may be described as biplanar structures with slight deviations

by random error? Among the various methods that could be used to answer this question, we formulated the

problem in terms of the relative hydrophobicity of the central plane to the entire protein. Can we account

for a majority of the magnitude of the native energy by the sidechain interactions formed in some biplayer

superimposed on the discretized PDB structure? If so, we conclude that that native belongs to a class of

biplane-like proteins, and otherwise, the evidence contradicts the model.
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Figure 5: A 4× 2 biplane conformation as folded by the Hart-Istrail algorithm on the FCC-sidechain lattice.
The algorithm guarantees a conformation within 86% of optimal. The authors showed that this biplanar
fold achieves a 98% approximation of the native energy. From Hart and Newman[11].

We developed a method to fit the best possible cutting biplane on the protein structure. Operating on the

set of FCC-sidechain lattice-fit structures, we sampled 100 random planes in three-dimensional space (which

are each determined by three points in the space) which intersected the center of mass for each protein. We

discard a plane as a failure if and only if more than 2/3 of the residues fell on one side of some “center axis”

(ie. to enforce cutting along the central axis). We then created a threshold two lattice units orthogonal to

the center axis in both directions, and identified each of the hydrophobic sidechains contained within.1

Our hypothesis was as follows: if PDB proteins are biased towards a biplanar conformation, then we

would expect to see a significant amount of hydrophobicity contained within this small window. If the

hypothesis were false, then very little of the total hydrophobicity of the polypeptide could be located to
1Thresholds with “interplane” width k were scored for each of k ∈ {1, 2, 3, 4, 5}. We chose k = 2 because it describes a

biplane and one additional unit of distance to account for errors in crystallography and lattice fitting.
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this region. The method used to score this was as follows: using the hydrophobic residues annotated in the

“biplanar region” we computed the hydrophobic contacts which arise from only this subset of hydrophobic

contacts, and partitioned our set of PDB proteins by the classifier (22):

biplanar ⇐⇒ τ × (# H-H contacts) < (# biplane H-H contacts) (22)

For τ = 1
3 , classifying a subset of the PDB proteins yielded a ratio of 1 biplanar : 1 not biplanar (29:29).

We infer that approximately half of the PDB proteins can be characterized as “biplanar” and the other half

is “not biplanar”. The observation is not striking, as certain classes of proteins are known to be nearly

biplanar; for example, a globular protein has a strongly hydrophobic core which would be likely to have high

hydrophobicity along a plane).

A striking trend in the data is that proteins tended to be strongly biplanar or strongly non-biplanar.

Qualitatively, we observed that the distribution of hydrophobic contacts in the biplanar region was bimodal.

To quantify this, we normalized the hydrophobicity within the biplane region to the total number of hy-

drophobic interactions in the entire protein and took a logarithmic ratio (all values were negative as the

biplane hydrophobicity cannot exceed the total). The sample variance of the natural log ratios was 1.26,

indicating a wide distribution of ratios which included proteins for which biplanar hydrophobics ≈ total

hydrophobicity and some in which the optimal biplane had very few hydrophobic residues.

The tables in Appendix 7.3 give the accession numbers and descriptions for PDB proteins which scored

as biplanar and those which we classify as not biplanar. We found that the types of proteins in each set were

diverse, having no clear bias in their SCOP or CATH annotations (which classify proteins by structure and

function). However, there were general characteristics in common for each set. The biplanar proteins were

of similar length (mean 119 residues biplanar vs. 123 residues not biplanar). Using the SSpro secondary

structure prediction software on the SCRATCH server [5] we also analyzed the secondary structures on

these proteins. Biplanar proteins contained fewer residues in α-helices (30% vs. 37%) and were slightly more

unstructured (49% vs. 44%). The proportion of β structures was approximately equal (19% vs. 20%), as was

solvent accessibility (46% vs. 47% of residues with more than 25% solvent accessibility). We conclude that

the biplanar approximation is applicable to a great number of cases in the PDB, and that it has favorable
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a. b.

Figure 6: Two α-helix motifs with specific patterns of hydrophobicity. In the coiled coil (a), both hydrophobic
and hydrophilic interactions occur at the intersection of two α-helices. Hydrophobic residues and ionic
interactions occur diagonally rather than at right angles to one another, as expected in a biplane. In the
helical wheel (b), hydrophobic residues (red) cluster on the left side of the structure, whereas hydrophilic
residues (blue) form a hydrogen-bonding domain on the right side.

properties for optimizing protein energy. However, the equally large number of counterexamples shows that

conformations similar to biplanes do not characterize realistic proteins in a universal sense, and that the

α-helical secondary structure does not conform to the approximation.

The α-helix may reduce the conformational energy of the protein in a more complicated manner than

supposed by the energy functions we have so far discussed. The α-helix forms an electrostatic bipole in which

a net charge points down the barrel of the helix. The helix places demands on the sequence of amino acids

such that polar atoms on the hydrophilic sidechains point parallel to the axis of the helix so as to come in

align to hydrogens on nearby residues (hydrogen bonding). A consequence of this arrangement is that that

hydrophobic residues in the α-helix sequence will align on one side of the helix, whereas hydrophilics inhabit

the opposite side.[3] Therefore, α-helices tend to create their own domains of hydrophobicity which do not

conform to the biplane model. (See Figure 6) That is, a protein with several α domains is likely to have

several hydrophobic regions in its 3D conformation but no such “biplane”. On the other hand, a protein with

significant lengths of β-sheets or unstructured regions is more likely to have an axis along which hydrophobic

residues pair and form energetically favorable biplanes. While the biplane model is not “wrong”, we must

develop additional structures to account for the interruption in biplanarity caused by α-helices and which

have flexibility for the multiple, secondary-structure-specific domains of hydrophobicity which might arise in
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Figure 7: Rotamer conformations in the FCC lattice which correspond to the main features of protein
secondary structure. A gives a right-handed α-helix. B is a left-handed α-helix, which does not occur
naturally. C/D gives an approximation of the antiparallel or parallel β-sheet.

a complex protein.

4.3 α-helices and polyhedra in the FCC lattice

Previous studies suggest that the face-centered cubic lattice and its capacity for describing octahedrons

are applicable to the protein folding problem.[17][18][14] In Toma and Toma 1999, the authors describe

Simulated Annealing algorithms for folding proteins into cuboctahedrons. A cuboctahedron is the medial

of an octahedron and is the analog of cube for the FCC lattice in that it describes a cube rotated about a

central sphere. Therefore, it can be inferred that a near-optimal algorithm for folding on the FCC lattice will

form one or several octahedral conformations threaded along the protein backbone. The authors describe

other properties of the FCC which may be exploited to form known protein structures; Toma and Toma

describe conformations (Figure 7) that agree roughly with right-handed (1) and left-handed α-helices, and

β-sheets. In real proteins the average right-handed α-helix rotamer angles are 55o and −55o whereas they

are 50o and −56o respectively in real proteins. Similarly the torsional angles for a β-sheet are 180o and 72o

in the model compared to 180o and 56o in biological proteins.[17]
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Figure 8: Three models for on-lattice interactions of four α-helices in the FCC. (b) simulates a hydrophobic
core, whereas (a) and (c) represent neighboring four-helix bundles. From Pokarowski et al.[27]

Pokarowski et al. [27][28] report a series of four vectors in the FCC lattice which correspond roughly to

the torsion of the true α-helix, visualized in Figure 8. The sequence of vectors may be repeated for a longer

helix, or two vector sequences may be placed on opposite sides of a polypeptide “turn” in order to form a

bundle. Their study finds that the FCC lattice is a minimal protein model for expressing α-helical motifs.

So far, we have shown that the biplanar model does not allow the hydrophobic signature of highly α-

helical proteins which we observe in nature. However, we conjecture – and multiple sources of evidence

agree – that the FCC model is capable of approximating the geometric constraints of helices. Furthermore,

the vectors in FCC space which describe this helix resemble the outline of a path around the surface of an

octahedron, with sidechain residues pointing into and closing the octahedral shape. From this intuition, we

have analyzed near-octahedral shapes in the FCC as a potential partner to the biplane for folding.

To compare the optimality of a biplanar structure against an octahedron on the FCC lattice, a small

example of twenty hydrophobic residues was constructed for both structure types. (20 is chosen, as you

will see, because this number of spheres coincides with a perfect near-octahedron fold which is known as

a locally optimal value. See Figure 13 where i = 6, Ti = 20.) Spheres were plotted onto an FCC lattice
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Figure 9: Favorable structures in the FCC: We compare 20 hydrophobic residues packed in (a) a 5×2 biplane
conformation and a (b) near-octahedral conformation to be described in the next subsection (i = 6, Ti = 20).
Using the HP contact function (Equation 8) (a) has 69 hydrophobic contacts and (b) has 73.

in a Mathematica notebook. For this example (Figure 9) the 5 × 2 × 2 biplane achieves 69 contacts and

the near-octahedron only achieves 73. Mathematica notebook for this example can be downloaded from

http://www.brown.edu/Research/Istrail Lab/Allanthesis/fcc20 example.nb or viewed as an XML

page for those without Mathematica software. The octahedron – analogous to a cube – is favorable on the

FCC lattice. However, the caveats are clear: octahedral conformations in FCC space may have favorable

properties yet not be optimal under all circumstances. Hart and Istrail’s algorithm within 86% of optimal

suggests to us the conjecture that the biplane is the single universal structure that achieves near-optimality

for a variety of HP sequences. The optimality of the octahedron is dependent on the number of hydrophobic

residues falling within a confined set of values, whereas the biplane can be constructed for any even number

of residues and is abundant in contacts. When a comparison like the above (Figure 9) was constructed for

18 residues, a 3 × 3 × 2 biplane outscored the near-octahedron 53 to 52. It follows that a future algorithm

for PSP on face-centered cubic lattices ought to incorporate multiple substructures into its folding routine.

The biplane is a single best approximation (by conjecture), but not sufficient as a solution for PSP.

In exploring novel models of hydrophobic collapse, we will scrutinize these octahedral structures to derive

conjectures and mathematical results. We report these results in terms of their relative optimality under the

HP model, even though it is of interest to propose a model where these conformations are more favorable.

The octahedron is a regular polyhedron well-suited for the FCC lattice because the lattice angles match the

face angles of 120 deg. In addition, the octahedron is compact with a surface area to volume ratio of 5.72.
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While there exist a multitude of folding schemes which could incorporate small polyhedra along the chain,

we will attempt to characterize a method which assembles masses of hydrophobicity into one octahedral

“core” within the protein. This process is known as self-assembly, wherein the hydrophobic residues select

an ideal packing which is highly energetically favorable.

In order to further develop the octahedron idea for FCC lattices, we will further simplify the protein to

a bipole model. Suppose that we no longer enforce the backbone – the “string” on which residues lie – as

a constraint on the folding problem. Thus, we decompose each protein into its constituent “α-carbon with

attached sidechain” fragments. Each fragment is a bipole with strong hydrophobicity on one side (as is the

case for a hydrophobic sidechain) and nearly neutral hydropathy on the other. Then, we can ask: how can

one arrange the bipole fragments so as to minimize the energy? I will propose a bipole packing method

in the HP model with approximation ratio of greater than 44% (developed in the following subsection and

proven (sketch) in Appendix 7.1) which develops on the intuition of octahedrons in the FCC model.

4.4 Optimal Bipole Packing: folding’s paralog

Figure 10: (a) The OBP problem models each residue as a unit length segment with an “H” sphere on one
end and “B” sphere on the other end. (b) The general goal of the Stewart algorithm for bipole packing on
FCC is to place bipoles on the borders of an octahedron, with “H” ends facing in. (b) is from Hoque et
al.[14]

First, we must give a formal definition of bipole packing. Istrail and Lam define the Optimal Bipole

Packing (OBP) problem[16] as follows: Given a fixed number of bipoles, find a non-overlapping conformation

of bipoles and an assignment for the bipole labels such that
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1. ”each bipole has one endpoint labeled H (representing the hydrophobic side chain) and one endpoint

labeled B (the relatively neutral backbone)

2. the number of contacts between endpoints labeled H is maximized over all possible assignments” (ie.

energy is minimized)

To construct an approximation algorithm for OBP, I take the approach of forming an near-octahedral

hydrophobic core. That is, we thread the protein such that the hydrophobic sidechains face into the center of

a surface formed by two tetrahedrons reflected over a center axis. Although there may be unused area in the

center which is inaccessible in the case of a large octahedron, this conformation maximizes the hydrophobic

contacts which are possible by forming a large octahedral surface.

For certain quantities of bipoles, we are capable of forming an “optimal-octahedral packing”. Define an

optimal-octahedral packing as one in which the hydrophobic sides of bipoles are laid on the layers of the

FCC lattice in triangles of sequentially increasing size towards some largest center plane. From this center

plane, the size of triangles tapers off symmetrically to the other side. The triangle layer comes in contact

with the layers above and below. One acceptable conformation is to have a singleton below a three-unit

triangle and a singleton above. The next possible conformation has a singleton with two three-unit layers in

the center, then a singleton at the top, and so on. (See Figure 13)

Triangle index j Number of residues on border tj
1 1
2 3
3 6
4 12
5 24
6 48
7 96
n ≥ 2 6× 2n−2

Figure 11: Triangles which are allowable under the model of the Stewart algorithm. Triangle j admits tj
residues on its border. An optimal packing on the FCC-sidechain lattice places all of its hydrophobic residues
on the boundary of these triangles, forming a hydrophobic molten core through which the backbone (or its
hydrophilic residues) does not pass.

The optimal-octahedral packing is achievable when the number of hydrophobic residues equals one of the

Tis for an acceptable conformation in (Figure 13). In this case, the packing is perfect and admits a maximum
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Figure 12: Overlapping inverted triangles form a well-packed, tetrahedron-like shape on the FCC lattice.
The FCC lattice consists of many layers of the above pattern, where the odd-numbered layers are shifted in
one position. We overlay triangles which are reflected relative to the ones above and below, each of increasing
size, until the size reaches a maximum in the middle plane. Here we show a layer with 24 border bipoles,
signified by the green bonds. The hydrophobic side of the bipoles face into the center of the core, forming
the border of each triangle for every plane in the conformation. The adjacent layers are shown in color,
where odd-numbered level layers are offset in accordance to the FCC basis vectors. The borders of adjacent
layers create contact points, with hydrophobicity concentrated at corners.

number of hydrophobic contacts. However, as the series of values Ti increases rapidly, it is rare that any

Ti equals the number of hydrophobics in a given protein exactly. The proposed Stewart FCC-sidechain

algorithm is as follows: thread the protein such that the hydrophobic residues point into the symmetric mass

as described above (“optimal packing”), supposing that it is possible to do so in a self-avoiding manner.

Suppose there are h bipoles, and let T ∗ be the Ti for which T ∗ ≥ h. Build the protein with the optimal-

octahedral conformation for T ∗, but omit residues in the core T ∗− h times. (For a true protein, a backbone

or hydrophilic residue might inhabit this location.)

In order to prove an approximation ratio for this folding method, we must show that the omission of

hydrophobics in the “optimal-octahedral packing” (due to restriction on the number of bipoles) reduces

the number of contacts by some quantity which we may bound. This amounts to finding the “worst-case”
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approximation ratio when some number of bipoles in between two of the Ti (Figure 13) is selected. Supposing

an HP model in which only hydrophobic-hydrophobic contacts reduce energy and the hydrophilic ends of

bipoles have no effect on the energy potential, an approximation ratio of 44% is shown for this bipole packing

method in Appendix 7.1.

Size index i Hydrophobic residues Ti Hydrophobic residues on all planes tj (Figure 11)
1 1 1
2 2 1 + 1
3 5 1 + 3 + 1
4 8 1 + 3 + 3 + 1
5 14 1+3+6+3+1
6 20 1+3+6+6+3+1
7 32 1+3+6+12+6+3+1
8 44 1+3+6+12+12+6+3+1
9 68 1+3+6+12+24+12+6+3+1
10 92 1+3+6+12+24+24+12+6+3+1
11 140 1+3+6+12+24+48+24+12+6+3+1
12 188 1+3+6+12+24+48+48+24+12+6+3+1
13 284 1+3+6+12+24+48+96+48+24+12+6+3+1
14 380 1+3+6+12+24+48+96+96+48+24+12+6+3+1
15 572 1+3+6+12+24+48+96+192+96+48+24+12+6+3+1
16 764 1+3+6+12+24+48+96+192+192+96+48+24+12+6+3+1
17 1148 1+3+6+12+24+48+96+192+384+192+96+48+24+12+6+3+1
18 1532 1+3+6+12+24+48+96+192+384+384+192+96+48+24+12+6+3+1

Figure 13: Optimal hydrophobic cores using the octahedral planes model on an FCC sidechain lattice. Each
core consists of triangles increasing in size towards a large central triangle in the center plane.

4.5 Discussion and caveats: Algorithms on discrete lattice

Even the best protein folding algorithms raise several issues, the two most problematic being (1) inadequacy

of the energy function and (2) in the case of deterministic algorithms, a deliberately confined set of possible

conformations. The first problem is simple to state: the energy function domains which these algorithms

require are typically missing terms which we know to be thermodynamically crucial to the stable structure

of proteins. The approximation algorithms described above have proven optimality for the standard HP

interaction matrix. Once additional solvent terms are added, or even more challenging quantities – non-

pairwise interactions for example – then the proof must be restructured. Biologically, it is not entirely
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concrete that hydrophobic-hydrophobic interactions are the single most important forces for folding; several

experts in protein folding argue that the repulsion of hydrophobics away from solvent drives the protein fold.

Furthermore, our energy functions overlook the significance of thermodynamic entropy. Recall that in

adapting Boltzmann’s distribution to describe the fold energy, we found that

EN = −kT ln pN − F (23)

F = 〈E〉 − TS (24)

F , the reference free energy, is a function of the average energy and the entropy S, scaled by the absolute

temperature T . The entropy term is quite important: if it were not for entropy, the air you are breathing right

now would lazily lie on the floor! When developing a universal protein energy function, we are computing

the expectation of F over all proteins and for all temperatures. In the environment of the cell, and given

the residue-specific determinants of the reference free energy F , these proteins may reach entirely different

energy minima than we would expect from observing the “average” protein. (Not surprisingly, for example,

the native can be very sensitive to changes in temperature.) Therefore, it is not entirely clear whether the

conditions assumed by most protein folding problems are widely applicable to all possible proteins. But we

forge ahead, looking for “tricks” that will fold a number of biological proteins correctly.

When we fold with a deterministic algorithm, we restrict the space of solutions in a way which might

not be appropriate. This is related to the first concern; proteins have evolved in and exist in a random

environment, so we cannot presuppose the likelihood that they attain a steady-state that rigidly conforming

to the global optimum. In this paper, we celebrate the approximation algorithm for shedding light on general

geometric and statistical mechanics principles. These algorithms are provably good, but we must also look

for good randomized (Monte Carlo) algorithms which might converge on structures the algorithm designer

never foresaw. It is clear from observing PDB structures that these proteins take on forms far and beyond the

biplane or octahedron. In addition, heuristics may be applicable, such as the Bounded Block Fails (BBF)

method used in CP algorithms.[24] BBF divides the protein into several blocks and folds, sequentially, a

random permutation of the blocks. A “fail” statistic tracks when the current block being folded does not

reach a certain threshold expectation, upon which the algorithm backtracks to a previous block and “fixes”
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the previously made error. The heuristic works well when there are wide enough valleys in the energy

landscape to allow descent towards the minimum. Coupling this with other optimization techniques allows

researchers to explore the regions of the energy function most likely to lead to minima.

Educated scholars of protein folding implicitly disagree about the efficacy of ab initio and informed

methods in PSP. For practical purposes, algorithms which incorporate secondary structure information

into the objective function have faster runtimes and more accurate prediction. These methods can rely

on repositories of secondary structure data which are mature and reliable. For example, we can align the

sequences of short secondary structure domains to X-ray crystallography models in order to infer the tertiary

structure of the protein at multiple segments along the chain. In particular, the Ramachandran aligner uses

protein-protein alignment and known Ramachandran trajectories in order to select rotamer bond angles which

are energetically favorable.[30] See that these methods incorporate statistically known properties which we

observe in the true biology – with solvent and all – and not just the geometric intuition of contacts. Ab

initio is the ideal target for PSP, but is it too idealistic? Does biological data distort the physical principles

governing PSP and bias it towards what is known, or is it necessary for successful prediction? The answer

is yet unknown.
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7 Appendices

7.1 Proof sketch of approximation ratio for the Stewart FCC-sidechain algo-

rithm

Suppose that the algorithm is input protein P with h bipoles. If there exists a Ti for which T ∗ = h, then

there exists an optimal packing in the octahedral conformation as shown by Toma and Toma[18]. Therefore,

the number of hydrophobic-hydrophobic contacts is optimal: let
∑

i,j ci,j = OPT (P ). In the more likely

case, h falls in between two Ti values: let the lesser be T− and the greater be T ∗. We may compute the

number of contacts in the folded algorithm by supposing a model in which the octahedral conformation for

T ∗ is used, but some contacts are lost due to the absence of hydrophobic residues at this position.

Since this is a worst case analysis, the computation for the approximation ratio will be the minimum

over all values of h lying between T− and T ∗:

R∗ = lim
h→∞

minh∈{T−+1...T∗}

∑
(i,j) ci,j

OPT (P )
(25)

Since the output of the Stewart algorithm gives a conformation which omits some of the hydrophobic

ends from the T ∗ core (the larger core with T ∗ ‘H’s), we can compute for any h that
∑

i,j ci,j = cT
∗

i,j −

(# max contacts of (T ∗ − h) hydrophobics).We will create a bound for
∑

(i,j) ci,j by bounding the contri-

bution of the T ∗ − h hydrophobics.

In the worst case, we remove T ∗ − h hydrophobics from the border of the largest plane(s) in the con-

formation. These hydrophobics form the greatest number of contacts. In fact, since the volume within the

core is hollow, we can bound the number of contacts of any one of these hydrophobics to less than 12. The

number of contacts formed by a hydrophobic residue removed from the “optimal packing” is 7, since at the

boundary of the shape the residue makes contacts with at most two neighbors in its plane, two neighbors in

the smaller of the two adjacent planes, and 3 neighbors in the plane of larger size (or possibly equal size in

the same of Ti for i even).

To compute the contribution of the lost hydrophobics we must also bound T ∗ − h. The recursion for the
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Tis (number of hydrophobics at boundary of the core) is

Tn = Tn−1 + tdn/2e (26)

Substituting T ∗ for Tn we get

T ∗ = T− + tdn/2e (27)

T ∗ − h = T− + tdn/2e − h (28)

T ∗ − h < tdn/2e, h > T− (29)

T ∗ ≥ t1 + t2 + t3...+ tdn/2e > 2 ∗
∑bn/2c

i=2 6 ∗ 2i−2 (30)

T ∗ ≥ ε+ 1 + tdn/2e + 2 ∗
∑bn/2c

i=2 6 ∗ 2i−2, ε ≥ 0 when n > 2 (31)

T ∗ > 2(6 ∗ 2(bn/2c−2)) + 6 ∗ 2(dn/2e−2) (32)

T ∗ > 6 ∗ (2(bn/2c−1)+(dn/2e−2)) (33)

T ∗ > 2tdn/2e (34)

◦◦◦T ∗ − h < 1/2T ∗ (35)

h > 1/2T ∗ (36)

Using the knowledge that we lose no more than 1/2T ∗ hydrophobics (and at most 7 contacts for each),

we can bound the number of contacts that the algorithm outputs for protein P :

∑
i,j

ci,j ≥ cT
∗

total − 7(1/2T ∗) (37)

and this is true for any value of h by Equation 36. Then it follows that the approximation ratio is the

number of hydrophobic-hydrophobic interactions divided by the upper bound on contacts OPT (P ) for the

set of bipoles P . Recall that the bound depends on the worst possible value in T− + 1...T ∗, so we minimize
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this ratio (equivalent to maximizing the energy).

R∗ ≥ lim
h→∞

minh∈{T−+1...T∗}
cT

∗

total − 7(1/2T ∗)
OPT (P )

(38)

We then use the result from Hart and Istrail that, in the limit as number of hydrophobics nS in the protein

S increases to infinty, the number of optimal contacts OPT (S) ≤ 9nS

2 .[13]. Now we use the fact that we can

precompute a perfect packing for T ∗ bipoles in order to substitute cT
∗

total with OPT (T ∗).

R∗ ≥ lim
h→∞

minh∈{T−+1...T∗}
OPT (T ∗)− (7/2)(T ∗ − h)

OPT (P )
(39)

R∗ ≥ lim
h→∞

minh∈{T−+1...T∗}
(9/2)T ∗ − (7/2)(T ∗ − h)

(9/2)(T ∗ − h)
(40)

The minimum of the function occurs when h is at its minimum, but we have proven (Equation 36) that

T ∗ − h < 1/2T ∗ so

R∗ ≥ (9/2)T ∗ − (7/2)T ∗

(9/2)(1/2)T ∗
(41)

R∗ ≥ 1
2.25

=
4
9

= .44̄ (42)

Therefore, we show evidence that the performance of the algorithm (supposing that the construction of the

imperfect polyhedron is feasible) returns a solution with at which minimizes the energy function to within

44% of the optimal value for any generic protein. As has been reiterated frequently, the algorithm is not

likely to generate a biologically reasonable solution; only globular proteins are characterized entirely by their

hydrophobic cores. However, given the previous arguments that a model composed of octahedrons leads

to favorable folds which are expressive of protein structure, it is forseeable that applying these principles

could develop better algorithms in the future. For example, an algorithm which folds blocks of the protein

into their optimal octahedrons and threads the backbone through the domains might fold proteins to their

biologically favorable conformations. In addition, it could be adapted to a more complex model than the

standard HP interaction matrix (valued at -1 for hydrophobic contacts and 0 otherwise).
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7.2 A protein and its decoy: 8RXN

8RXN is a short (52 residue) rubredoxin protein in the bacterium Desulfovibrio vulgaris, with high resolution

(1.0Å rms).

The following illustrates residues which are moved (“perturbed”) to construct a decoy.
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7.3 PDB IDs Associated with Biplanar and Non-Biplanar Structure

The tables which follow describe in Table 14 subset of PDB proteins for which the number of hydrophobic

residues located on a biplane contributes to at greater than τ = 33% of the hydrophobic interactions observed

in the lattice-fit molecule and in Table 15 the subset of PDB proteins for which the number of hydrophobic

residues located on a biplane contributes to no greater than 33% of the hydrophobic interactions. A larger set

of proteins is to be published to http://www.brown.edu/Research/Istrail Lab/Allanthesis/biplane.html.



PDB ID Title Resolution Keyword
1P6O The crystal structure of yeast cytosine deaminase bound to 4(r)-

hydroxyl-3
1.14

1P7W Crystal structure of the complex of proteinase k with a designed
heptapeptide inhibitor pro-ala-pro-phe-ala-ser-ala at atomic reso-
lution

1.02 Hydrolase

1PB7 Crystal structure of the nr1 ligand binding core in complex with
glycine at 1.35 angstroms resolution

1.35 Ligand binding pro-
tein

1PIN Pin1 peptidyl-prolyl cis-trans isomerase from homo sapiens 1.35 Isomerase
1PP0 Volvatoxin a2 in monoclinic crystal 1.42 Toxin
1PSR Human psoriasin (s100a7) 1.05 Ef-hand protein
1PZ4 The structural determination of an insect (mosquito) sterol carrier

protein-2 with a ligand bound c16 fatty acid at 1.35 a resolution
1.35 Lipid binding protein

1WBE X-ray structure of bovine gltp 1.36 Lipid transport
1WDD Crystal structure of activated rice rubisco complexed with 2-

carboxyarabinitol-1
1.35

1WM3 Crystal structure of human sumo-2 protein 1.20 Protein transport
1WMH Crystal structure of a pb1 domain complex of protein kinase c iota

and par6 alpha
1.50 Transferase/cell cycle

1WMS High resolution crystal structure of human rab9 gtpase: a novel
antiviral drug target

1.25 Protein transport

1WZD Crystal structure of an artificial metalloprotein: fe(10-ch2ch2cooh-
salophen)/wild type heme oxygenase

1.35 Oxidoreductase

1X6Z Structure 1: cryocooled crystal structure of the truncated pak pilin
from pseudomonas aeruginosa at 0.78a resolution

0.78 Structural protein

1X8Q Crystal structure of nitrophorin 4 from rhodnius prolixus in com-
plex with water at ph 5.6

0.85 Ligand binding pro-
tein

1XAW Crystal structure of the cytoplasmic distal c-terminal domain of
occludin

1.45 Cell adhesion

1YBK Rhcc cocrystallized with capb 1.45 Protein binding
2CAR Crystal structure of human inosine triphosphatase 1.09 Hydrolase
2CCV Structure of helix pomatia agglutinin with zinc and n-acetyl-alpha-

d-galactoseamine (galnac)
1.30 Lectin

2CF7 Asp74ala mutant crystal structure for dps-like peroxide resistance
protein dpr from streptococcus suis.

1.50 Peroxide resistance

2CFE The 1.5 a crystal structure of the malassezia sympodialis mala s 6
allergen

1.50

2CS7 1.2 a crystal structure of the s. pneumoniae phta histidine triad
domain a novel zinc binding fold

1.20 Structural genomics

2CVD Crystal structure analysis of human hematopoietic prostaglandin
d synthase complexed with hql-79

1.45 Isomerase

3BLN Crystal structure of acetyltransferase gnat family from bacillus
cereus

1.31 Transferase

3BOI Snow flea antifreeze protein racemate 1.00 Antifreeze protein
3CJS Minimal recognition complex between prma and ribosomal protein

l11
1.37 Transferase/ribosomal

protein
3CX2 Crystal structure of the c1 domain of cardiac isoform of myosin

binding protein-c at 1.3a
1.30 Contractile protein

3F5V C2 crystal form of mite allergen der p 1 1.36 Hydrolase
3SEB Staphylococcal enterotoxin b 1.48 Toxin

Figure 14: PDB proteins which fit a biplanar characterization per the method described in Evaluating the
biplanar model for hydrophobic collapse.
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PDB ID Title Resolution Keyword
1PKO Myelin oligodendrocyte glycoprotein (mog) 1.45 Immune system
1PQ7 Trypsin at 0.8 a 0.80
1PVM Crystal structure of a conserved cbs domain protein ta0289 of un-

known function from thermoplasma acidophilum
1.50 Structural genomics

1PWA Crystal structure of fibroblast growth factor 19 1.30 Hormone/growth fac-
tor

1WL8 Crystal structure of ph1346 protein from pyrococcus horikoshii 1.45 Ligase
1WLU Crystal structure of tt0310 protein from thermus thermophilus hb8 1.45 Structural genomics
1WVQ Structure of conserved hypothetical protein pae2307 from pyrobac-

ulum aerophilum
1.45 Structural genomics

1WXC Crystal structure of the copper-free streptomyces castaneoglobis-
porus tyrosinase complexed with a caddie protein

1.20 Oxidoreductase/metal
transport

1X1Z Orotidine 5’-monophosphate decarboxylase
(odcase) complexed with bmp (produced from 6-cyanoump)

1.45 Lyase

1YBI Crystal structure of ha33a 1.50
1YCC High-resolution refinement of yeast iso-1-cytochrome c and com-

parisons with other eukaryotic cytochromes c
1.23 Electron transport

(cytochrome)
2BK9 Drosophila melanogaster globin 1.20 Oxygen transport
2BWQ Crystal structure of the rim2 c2a-domain at 1.4 angstrom resolution 1.41 Transport protein
2CBZ Structure of the human multidrug resistance protein 1 nucleotide

binding domain 1
1.50 Transport

2CC6 Complexes of dodecin with flavin and flavin-like ligands 1.27 Flavoprotein
2CE0 Structure of oxidized arabidopsis thaliana cytochrome 6a 1.24 Electron transfer
2CG7 Second and third fibronectin type i module pair (crystal form ii). 1.20 Signaling protein
2CIA Human nck2 sh2-domain in complex with a decaphosphopeptide

from translocated intimin receptor (tir) of epec
1.45 Sh2-domain

2CIO The high resolution x-ray structure of papain complexed with frag-
ments of the trypanosoma brucei cysteine protease inhibitor icp.

1.50 Hydrolase/inhibitor

2CM5 Crystal structure of the c2b domain of rabphilin 1.28 Protein transport
2CVI Crystal structure of hypothetical protein phs023 from pyrococcus

horikoshii
1.50 Structural genomics

2CWS Crystal structure at 1.0 a of alginate lyase a1-ii 1.00
3BHD Crystal structure of human thiamine triphosphatase (thtpa) 1.50 Hydrolase
3BHW Crystal structure of an uncharacterized protein from magnetospir-

illum magneticum
1.50 Structural genomics

3BOG Snow flea antifreeze protein quasi-racemate 1.20 Antifreeze protein
3BPV Crystal structure of marr 1.40 Transcription regula-

tor
3CI3 Structure of human-type corrinoid adenosyltransferase from lacto-

bacillus reuteri
1.11 Transferase

3CJW Crystal structure of the human coup-tfii ligand binding domain 1.48 Transcription
3CWR Crystal structure of transcriptional regulator of tetr family from

rhodospirillum rubrum
1.50 Transcription regula-

tor

Figure 15: PDB proteins which are not characterizable as “mostly biplanar”. On average, 37% of the residues
were part of α-helices while 30% of those residues in the mostly biplanar set were classified as α-helix.
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