
Software Transactional Memory in the Linux Kernel

Garrett Bressler
Department of Computer Science

Brown University
garrett bressler@brown.edu

May 2012

Abstract

Transactional memory (TM) is a synchronization
paradigm which is an alternative to locking. Instead
of relying on the programmer to manage entry into
critical sections, TM realizes automatic conflict reso-
lution through conceptually atomic transactions and
attempts to avoid many of the classical problems as-
sociated with locks. Traditionally, TM is thought
of as a system implemented at the processor level,
though implementation in software is also possible.
This paper examines the latter approach, by study-
ing the effects of replacing locks with software trans-
actions in FUSE (Filesystem in Userspace), which in
part is implemented as a module bundled with the
Linux kernel. Results show varying performance in
different cases, with performance penalties for TM at
20% or lower under many scenarios, but over 1000%
in a few instances, and show that 4-core transaction-
alized FUSE is frequently more efficient than its 2-
core counterpart.

1 Introduction

Transactional memory, or TM, provides an alterna-
tive to the use of mutual exclusion, which dominates
synchronization in multithreaded systems today. In-
stead of creating separate locks to manage access
to separate shared data structures, the programmer
specifies transactions covering sequences of instruc-
tions that may access any shared memory. They have
the properties of linearizability (separate transactions

take effect in their real-time order, and there is a
canonical ordering for the transactions) and atomic-
ity (a transaction either succeeds completely or does
nothing at all). [10] In this way (except perhaps in
critical parts of the TM implementation itself) there
is no explicit locking, but rather the TM system de-
tects and resolves conflicts during runtime.

Special measures must be taken to enforce the the-
oretical guarantees of TM discussed earlier, and to
ensure that in all likelihood some thread will be able
to make progress. First, an implementation must en-
sure linearizability and atomicity: this is usually done
through a versioning system which makes distinctions
between the current and tentative versions of shared
memory, and atomically starts and commits trans-
actions (likely through a machine compare-and-swap
operation). Beyond atomicity and linearizability, an
implementation might offer a non-blocking guaran-
tee. Roughly speaking, “Non-blocking” means that,
at least when certain conditions are met, some thread
is guaranteed to make progress. There are several
kinds of non-blocking guarantees, some stronger than
others. One of these is obstruction-freedom, which en-
sures that if a thread runs long enough on its own,
it will eventually make progress. An implementation
might also satisfy the strictly stronger guarantees of
lock-freedom, meaning that at any time some thread
will eventually make progress, or wait-freedom, mean-
ing that at any time all threads will eventually make
progress. [9] Herlihy et al. [10] argue that settling
for obstruction-freedom, though theoretically inade-
quate for avoiding starvation, in practice is usually

1



sufficient and greatly simplifies implementation. To
accomplish this goal, an implementation should pro-
vide one or more contention managers to handle be-
havior for when two transactions conflict. Such be-
havior could be as simple as aborting the thread that
caused the conflict, or could involve using techniques
such as adaptive backoff and prioritization to forgive
the conflicting thread until some threshold is met.
[10]

Some authors, however, argue that even
obstruction-freedom is not necessary, at least in
STM. Ennals [6] essentially argues that obstruction-
freedom is not a strong enough guarantee to matter.
For example, it does not guarantee that a given
transaction will be able to complete, but only
that some transaction will be able to complete.
Ennals gives the example of a year-long transaction
operating on an object, which either must have
exclusive access to the object for a year, or can never
complete. He also notes that, even if in theory a
task switching out in the middle of a transaction
can block others from running, in reality this is
temporary and its occurrence can be minimized.
Most importantly, Ennals makes the case that
implementing obstruction-freedom requires foregoing
many optimizations involving cache locality and
processor sharing. With all this in mind, the system
we use, TL2-x86, is not obstruction-free.

Herlihy and Moss [11] describe a TM interface sim-
ilar to the following. The body may include special
load/store instructions that refer to or depend upon
shared memory — these are the instructions man-
aged by TM. The lt and st are the transactional
load and store operations, respectively. They are ten-
tative updates and reads for the values on which they
operate. Note that these are special instructions and
must be used explicitly: a processor would also sup-
port regular load and store, which have no effect on
the transaction. The data locations that a transac-
tion accesses through lt or st are its read set and
write set, respectively; the combination of these two
is the data set. Two concurrent transactions conflict
if and only if the write set of one has nonempty in-
tersection with the data set of the other.

Upon reaching a commit, all tentative updates
are applied if no conflicts occurred during the trans-

action, returning True; otherwise the transaction
aborts, discarding all tentative updates, and returns
False. [11] also describes a validate instruction,
which aborts a transaction early if there have been
conflicts. Finally, a program can decide to uncondi-
tionally abort a transaction with an abort instruc-
tion.

In the system just described, an aborted transac-
tion simply fails to commit — the programmer must
decide how to deal with a failed transaction. How-
ever, in the systems we shall discuss, a transaction is
normally retried automatically. Therefore it is help-
ful to think of the inclusion of a start operation,
which commences a transaction. When a transac-
tion aborts, it jumps back to the start instruction
and retries the transaction. From the programmer’s
perspective the code between start and commit is
executed atomically, and the code that comes after is
what happens after the transaction has (successfully)
completed.

1.1 Motivation

The most popular method of synchronization, lock-
ing, has been the dominant method for realizing syn-
chronized systems since the dawn of multithreading.
But despite its persistence, locking suffers from nu-
merous well-known drawbacks. From the program-
mer’s perspective, two of the greatest pitfalls are race
conditions, in which improperly non-synchronized
code leads to illogical behavior, and deadlock, in
which cyclical lock dependencies cause two or more
threads to be blocked forever. Another problem, pri-
ority inversion, occurs when a high-priority process
is blocked waiting on a lock held by a lower-priority
process. Worse, the process holding the lock may un-
expectedly abort, in which case this becomes a dead-
lock. A programmer must anticipate such problems
ahead of time ahead of time and deal with those ac-
cordingly. There is usually a tradeoff between par-
allelism and ease of correct implementation. At one
extreme, the program may be single-threaded and as
such require no synchronization at all, and at the
other individual components of a data structure (such
as nodes in a tree) may each have their own locks,
requiring careful consideration of possible conflicts.

2



The potential number of errors rises rapidly with the
number of locks, so in many cases one settles for no
synchronization or for a few coarse-grained locks, and
the potential benefits of synchronization are never
fully realized. [17]

Transactional memory aims to relieve the program-
mer from the burden of making this tradeoff. Be-
cause of the dynamic nature of transactions, the pro-
grammer does not have to determine ahead of time
which object accesses may potentially conflict. Fur-
thermore, the automatic handling of conflict resolu-
tion, and (if present) the presence of guarantees such
as obstruction-freedom, allow the contention man-
ager to ensure with high probability that a thread
will make progress. This paper examines the use of
transactional memory in operating systems, a domain
in which correct synchronization is of paramount im-
portance but is oftentimes very difficult to achieve.
Yet although operating systems and OS developers
could potentially benefit substantially from TM, rel-
atively little research to date has been conducted on
this topic.

1.2 Methods

In order to be able to study TM in as close to a real-
world situation as possible, we have decided to study
STM in the Linux kernel. There are two parts to this
endeavor. First, we needed to place an STM subsys-
tem in the Linux kernel. For this, we use an adapted
version of the TL2-x86 transactional memory system.
[5] Second, we wanted to change some part of the
Linux kernel in such a way that would model how a
direct change to TM would affect behavior. For this
purpose we have chosen to convert certain locked sec-
tions in FUSE to use transactional memory, creating
“FUSE-TM”. FUSE (Filesystem in Userspace) is an
intermediary between the kernel FS subsystem and
userspace. This allows filesystem writers to imple-
ment the entire filesystem at the user level, which
could be useful for portability, security, or other rea-
sons. [7] With this in mind, there are several filesys-
tems layered above FUSE that can be used to test it.
We have chosen to test using ZFS-FUSE, an imple-
mentation of ZFS on top of FUSE. [23]

FUSE is an ideal subject for several reasons:

filesystems are easy to benchmark, it is a significant
project in real-world use, its locking is relatively sim-
ple and straightforward, and it does not have too
many sections that are problematic to convert. We
have executed several tests intended to maximize the
parallelization of FUSE. We compared performance
between the original FUSE and FUSE-TM and be-
tween two and four cores, and also in FUSE-TM mea-
sured the extent to which transaction conflicts were
actually occurring.

Our tests were conducted on a 2-core and a 4-core
x86-64 machine, the former a 2 GHz AMD Athlon 64
X2 Dual Core with 2 GB RAM, the latter a 2.4 GHz
Intel Core 2 Quad with 4 GB RAM. The operating
system was Debian 6.0.4 (“squeeze”), and our kernel
is a modified version of Linux 3.1.0.

2 Related Work

Hardware transactional memory (HTM ) and soft-
ware transactional memory (STM ) are the main two
ways to realize transactional memory. HTM is the
traditional conceptualization of transactional mem-
ory, and originally most research was conducted with
this in mind. The first paper to articulate something
similar to the concept of TM seems to be [2], which
is based on page locks and relies on the hardware to
manage per-process locking of transactional memory.
However, [11] is the first paper to truly articulate the
modern conceptualization, and as such most of the
terminology and philosophy used to think about TM
begins here. In this paper, a dual-cache system is
used, with both the main cache and “transactional”
caches private to the processors. Transactional op-
erations are made in the executing processor’s trans-
actional caches, and when a transaction successfully
commits, these lines are made available to other pro-
cessors and to the main cache. If the transaction
aborts, the cache lines are invalidated. Papers such
as [14, 8, 3] extend this concept to allow for features
such as unbounded transactional memory and im-
plicit transactions, but we will not delve into these
details any further.

Unfortunately, despite its potential usefulness for
authors of software code, and the relative simplic-

3



ity of the architecture just described, only one physi-
cal architecture that supports transactional memory
has been publicly released, the BlueGene / Q super-
computer from IBM. [12] Hence, most HTM research
heretofore has taken place on conceptual or simulated
architectures.

Of greater importance to us is STM. Obviously,
STM has the advantage of portability: it can be
architecture-dependent aside from machine instruc-
tion(s) to ensure atomicity, typically read-modify-
write operations such as compare-and-swap. [20, 10]
Additionally, STM is more flexible in that differing
implementations and paradigms can be used in the
same system or perhaps even in the same applica-
tion. But it also has the obvious drawback of perfor-
mance, with the conflict resolution implemented in
software instead of at the processor level. Shavit and
Touitou [20] were the first to propose implementing
TM in software, and use an approach based on lock-
ing transactional locations in a predetermined order.
The disadvantage of this approach is that the transac-
tions must be defined statically ; that is, the memory
accesses in any transactions must be specified before
compilation. A more intuitive approach is given by
[10], which specifies a dynamic STM system imple-
mented in Java and C++. This approach involves
having a transactional object which points to “old”
and “new” versions of the data, as well as to the last
transaction to operate on the object. When a trans-
action first accesses an object, the object is copied
and modifications are made to the “new version”;
when a transaction succeeds, the transaction’s sta-
tus is atomically changed to “commit”, which causes
the new version of an object to be interpreted as the
current version of the object and the old object ver-
sion to be ignored.

There is also research into the application of STM
towards existing problems. In recent years, papers
examining the use of STM in application-level soft-
ware have proliferated, [22, 1, 15, 4] being just a few
examples. However, research on TM in operating sys-
tems is relatively sparse. [21] describes how to adapt
TM to better support operating system events such
as context switches and paging, but doesn’t explicitly
deal with how to implement OS facilities to take ad-
vantage of these features. TxLinux [18] is a system of

significant interest to us, as it is the only other known
implementation of TM in the Linux kernel. However,
TxLinux’s approach differs radically from ours. For
one, it uses HTM via a simulator, MetaTM, which
behaves much like the original system described in
[11], with the added benefit of unbounded transac-
tional memory. Furthermore, while we are replac-
ing locks manually with transactions, TxLinux’s ap-
proach is “automatic”: critical sections protected by
locks in the kernel are replaced by transactions. A
major problem with doing this is the irreversibility of
I/O operations: when such an operation takes place,
it cannot simply be reverted or discarded. Whenever
an I/O operation is encountered during a transaction,
the transaction aborts and a spinlock is used to pro-
tect the section is instead. To minimize the number
of times this is necessary, a transaction is suspended
when an interrupt occurs, so I/O operations during
an interrupt need not interfere. In this way, TxLinux
uses a “best effort” approach to replacing locks, re-
quiring essentially no restructuring on the program-
mer’s part.

The last system we shall describe, “Transactional
Xinu” [19], probably comes closest to what this pa-
per attempts to accomplish. Transactional Xinu, like
its parent Embedded Xinu, is a research kernel which
stays compact while still making use of modern ker-
nel facilities. Schultz uses the Intel 2PL library [13]
to implement transactions in Xinu, adapting it to
be compatible with the kernel. In his research, he
adds transactions to certain device drivers to im-
plement synchronization, and observes the effects of
transactionalization. In particular, he compares the
performance between a locking Ethernet driver and
its transactionalized counterpart, and notes perfor-
mance not much worse than the original version.

To our knowledge, this paper is the first to exam-
ine the implementation of transactional memory in
a production-use kernel on a physical architecture.
It is, in a sense, a combination of the research on
TxLinux and Transactional Xinu.

4



3 Implementation

3.1 TM Subsystem

The STM system in use is adapted from TL2-x86 [16],
a general-purpose C library for transactional memory
on the x86 and x86-64 architectures. TL2-x86 itself
is based on the TL2 system by Dice et al.[5] Several
things in particular made TL2 an excellent candidate
for porting to the Linux kernel. First, it is written en-
tirely in C, which is a requirement for interfacing with
the kernel. Second, it is very self-contained: most of
the special facilities, even the CAS, are implemented
as part of the library, and the ones that aren’t are
either relatively unimportant, or are procedures like
malloc() that can readily be replaced by equivalent
kernel facilities. Third, it is designed to be efficient —
it foregoes obstruction-freedom so that it can make
optimizations. Finally, TL2 does not require a spe-
cial runtime environment to enforce safe behavior —
it can be used in a normal C program.

The TL2 system deals with transactions as follows.
There is a global logical clock which is used as a ver-
sion number, and is updated through a CAS instruc-
tion whenever a write operation occurs. There is a
spinlock for every memory location transactionally
accessed, and each such spinlock has such a version
number. There is also a version number rv associated
with each transaction. The protocol for a transaction
in TL2-x86 is as follows: [5]

• When doing an lt operation: before doing the
load, read the associated location’s lock’s version
number. After the lt is complete, check that
a) the version number did not change, b) the
lock’s version number rv is less than the trans-
action’s version number, and c) the lock is (and
was) free. If any of these conditions does not
hold, the transaction aborts.

• When doing an st operation: If someone else
owns the lock, wait until it is free for some
bounded number of tries. If this fails, abort.
Also, if we observe that some location read set
is incoherent (that is, the version number of the
lock for that location exceeds rv), abort. Other-
wise, tentatively update the value by putting the

new value in the log and add it to the write set
(if it is not already there). Note that we never
actually acquire the lock.

• When doing a commit operation: Try to acquire
all the locks for locations in the write set in some
order. For each lock, use some bounded number
of tries, and abort if this is exceeded. Check that
the read set is coherent; if not, abort. Update
the global version clock to a new value wv. Up-
date the addresses in the write set with the new
value. Set the version number for each lock to
wv. Release the locks.

• When doing an abort operation: Release any
held locks and jump back to the start of the
transaction.

Most of the necessary modifications involved hook-
ing the TL2 system up with the kernel. The basic
unit of execution is modeled as a TxThread, which
stores all transaction state. Normally, it is up to
the programmer to handle initialization and destruc-
tion of this structure, but in the kernel it is not easy
to decide when to create or destroy it. Nonethe-
less, this decision is important because the default
size of a TxThread can be quite large, due to stor-
age for the read and write sets. One option would
be to create it in fork(), the time at which new a
new task struct (basically the kernel’s concept of
“thread”) is created, and destroy it in exit(), when
the task struct is destroyed. The problem with this
is that we might initialize a thread which creates a
TxThread and never uses it. In fact, this would be by
far the most common scenario, given that presently
transactions occur only in a single module of the en-
tire kernel. Our approach is to initialize a TxThread

only at the first time a transaction is actually en-
countered, and then keep it around until the thread
exits. The downside to waiting until exit() for de-
struction is that a thread might only encounter only a
few transactions and then go on to do something else,
at which point it is left over with a stale TxThread

which it never needs. However, if a thread encoun-
tered a transaction at least once, it is a very good
bet that it will use transactions often in the future,
so keeping the TxThread around is probably a good

5



idea. Another issue is that initialization can fail (nor-
mally from running out of memory) and dealing with
this at thread initialization. So suddenly starting a
transaction is now an operation that can fail, and it
is probably not clear what to do when this happens.
On the other hand, if TxThread creation fails the sys-
tem is probably so overloaded anyway that any hope
of getting useful work done is lost.

The interface we will describe is in terms of sim-
ple wrappers we have defined around the TL2-x86
interface proper. Mostly they just ensure that the
TxThread in use is the TxThread in the task struct,
and then call the corresponding Tx* function. The
exception is tm start(), which may have to perform
TxThread initialization, as described above. What
follows is a brief description of the main procedures
used by modules that wish to make use of transac-
tions.

• tm start(env, roflag): Starts a transaction.
Before this, the user should call setjmp on a
jmp buf field. env is a pointer to the jmp buf,
and roflag is a pointer to an optional flag indi-
cating if this transaction is read-only (We never
make use of this, but TL2 does have special op-
timizations for this case — see [5]).

• tm commit(): Tries to commit the current trans-
action.

• tm abort(): Aborts the current transaction.

• tm load(l): Transactionally loads a 64-bit word
from location l.

• tm store(l, v): Transactionally stores 64-bit
word v in location l.

• tm store local(l, v): Transactionally stores
64-bit word v in location l, where the program-
mer guarantees that l will only be accessed by
the current transaction. This is not strictly nec-
essary, but optimizes the store: the new data
at l must be revoked on abort, but it need not
appear in the write set. The reasoning is that l
may need to be updated tentatively if it was used
before the transaction started. In the case of an
abort, we want l to have the value which it had

at the time of tm start(), so to ensure atomic-
ity we need TM to restore its original value when
the transaction aborts.

• tm alloc(sz, flags): Transactionally dynam-
ically allocates sz bytes, returning the location
or NULL on failure. That is, the allocation is
revoked (freed) on abort. flags includes the
kernel memory allocation flags include/linux/,
which specify the memory pool and mode of allo-
cation. (This should probably be GFP KERNEL.)

• tm free(p) tentatively frees the memory at p

allocated with tm alloc().

In addition to this, there are macros
TM {LOAD/STORE/STORE LOCAL}{8/16/32/64}(),
which operate on various-size words. But there
are still more operations needed to deal with the
idiosyncrasies of kernel operations. Before we noted
that certain kernel operations do not fit nicely in
the TM model. Most of these operations cannot
normally appear in a transaction. However, we
might want critical sections containing them to
be synchronized with transactions, because they
might have to be executed atomically from other
transactions. The solution is the TM LOCK() protocol.
TM LOCK() allows one to define a spinlock to protect
these operations. Once this happens, the kernel
does whatever operations it needs to (as normal
code, not under a transaction) until it frees the lock
with TM UNLOCK(). The waiting on and acquisition
of the spinlock occur in one transaction. Other
transactions that need to be exclusive from what
is protected by the TM LOCK(p) should honor it by
including TM WEAK LOCK(p) at the beginning of the
transaction. TM WEAK LOCK() works by spinning on
the spinlock until it is free, but does not acquire it.
Thus when some other thread calls TM LOCK(), this
thread is preempted and must abort its transaction.
In summary, the lock operations are:

• TM LOCK(p): Spins while someone else holds the
spinlock p, and then acquires exclusive owner-
ship of p, which is a 64-bit word. (Called on its
own, not in a transaction)

6



• TM UNLOCK(p) Releases ownership of the spin-
lock p.

• TM WEAK LOCK(p) Called by transactions at the
start to ensure mutual exclusivity from opera-
tions protected by p.

Note how this is not unlike the approach used by
TxLinux, [18] except with our system the program-
mer must define statically which sections are pro-
tected by locks and which are protected by trans-
actions. In this paper, we have simply left a critical
section protected by a TM LOCK rather than a transac-
tion if it would execute some problematic operation.

3.2 FUSE-TM

The sections we have transactionalized are those pro-
tected by the spinlock lock in the fuse conn struct.
fuse conn is the structure that gives a connection
between the user and a mounted filesystem, and or-
ders requests to the filesystem. Among other times,
fuse conn->lock is locked when modifying the at-
tributes of an inode, when creating an inode, and
at certain times when reading and writing pages.
In our conversion, all instances of fuse conn->lock

have been removed and replaced with synchroniza-
tion based on TL2-x86.

However, as we hinted at before, some of these
locked sections are difficult to straightforwardly con-
vert, because they modify state outside of FUSE or
use a kernel facility that doesn’t know about TM.
For these, we have simply replaced the spinlock with
a TM LOCK() on a TM spinlock. For the transac-
tionalized sections to remain synchronized with these
parts, every transaction invokes TM WEAK LOCK() on
this spinlock, as we described in the previous sub-
section. In essence, these sections are not transac-
tionalized, but they are guaranteed not to interfere
with the operation of the existing transactions. To
understand how this can be used, it is probably eas-
iest to study an example. The following is the code
for queue request() in dev.c (the function is called
under lock)

static void queue_request(

struct fuse_conn *fc,

struct fuse_req *req)

{

req->in.h.len = sizeof(struct fuse_in_header)

+ len_args(req->in.numargs,

(struct fuse_arg *)

req->in.args);

list_add_tail(&req->list, &fc->pending);

req->state = FUSE_REQ_PENDING;

if (!req->waiting) {

req->waiting = 1;

atomic_inc(&fc->num_waiting);

}

wake_up(&fc->waitq);

kill_fasync(&fc->fasync, SIGIO, POLL_IN);

}

The code that waits on fc->waitq is located in
request wait() in dev.c. The thread makes itself
non-runnable, deschedules itself, then (after it has
been woken up) continues assuming a new request is
ready. If, after this, it sees there are no pending re-
quests, it returns with the error code -ERESTARTSYS.
The assumption is that if it was woken up, then
(barring some system failure) a request must have
been made available. However, this does not hold if
the wake up() occurred in a transaction which later
aborted, or if the thread wakes up before the transac-
tion commits — in either case, no request has really
been queued. Other problems with wait queues are
also possible. Suppose, for instance, that instead of
continuing on after being woken up, a thread checks
a condition variable to determine if the resource it
was waiting on has become available. (This is the
behavior in particular for fi->page waitq.) This
will prevent the problem wherein a thread executes
code prematurely. We have another potential prob-
lem, however: the thread might wake up before the
transaction commits, thus entering an eternal sleep.

To correct this, one option might be to have the
woken thread not permanently go back to sleep af-
ter it re-checks its condition variable — after all, if
it’s been woken up there is a high probably a trans-
action will complete very soon (or already has com-
pleted) and it doesn’t have to wait much longer. A
more general solution is to defer the processing of
the wakeup to the point that the transaction actu-

7



ally commits. One issue with these approaches is that
we don’t observe the “tentative” consequences of the
wakeup. That is, if the transaction that does the
wakeup ends up depending on the woken-up thread
in some way, we will not see the expected behavior
and might stall. Though this is probably a pretty
unlikely problem, it’s useful to keep in mind that dif-
ferent circumstances may call for different solutions.
kill fasync() sends a signal to the process that

sent the request, to notify it that its request has been
sent out. This results in a similar problem, except
that the external process (which is beyond FUSE’s
control) decides how to respond to the signal. It may
ignore it, or it may execute processing that should be
delayed until the commit happens. Or, it may receive
a signal twice (once as a side effect of an aborted
transaction), prompting the execution of the wrong
signal handler the second time. Fortunately, however,
signal processing usually isn’t very time-sensitive, so
using a general strategy of postponing the signal until
commit would probably suffice in most cases.

In any case, to keep behavior as straightforward
and as close to original FUSE as possible, we have
taken the conservative approach of leaving any po-
tentially problematic sections locked. Fortunately, as
our tests shall show, the sections that were trans-
actionalized still make up a great proportion of the
most important parts of FUSE.

4 Benchmarks

In each test, we measured at several configurations
the amount of time taken for the 2-core and 4-
core machines to complete the test each using stan-
dard FUSE (hereafter “FUSE”) or transactionalized
FUSE (hereafter “FUSE-TM”). Also, when using
transactionalized FUSE, we counted the total num-
ber of aborts that occurred during the run. The final
results were taken from a 20% trimmed average of fif-
teen runs per configuration (except for the last test).

For each test, there are five graphs. The first two
compare performance at each configuration between
the different versions of FUSE on two and four cores,
respectively. The next two give the average number of
aborts at each configuration when using FUSE-TM.

The final graph compares the percentage increase in
time at each configuration between the 2- and 4-core
runs.

A general analysis of the tests follows in the Anal-
ysis section.

4.1 Write File

The first test involved many threads appending to
a single file at once. The test was intended to de-
termine how FUSE-TM handles sequential accesses
on a single resource. The size of the file was kept
invariant, while the number of threads was allowed
to vary. In this and the next two tests, we took
measurements for 64, 128, 256, 512, 1024, 2048, and
4096 simultaneous threads. To ensure simultaneous
execution, the threads were synchronized with a
barrier.

Figure 1: Performance for Write File, 2-core

Figure 2: Performance for Write File, 4-core

8



Figure 3: Aborts for Write File, 2-core

Figure 4: Aborts for Write File, 4-core

Figure 5: Comparative Performance for Write File

In every case, time is roughly proportional to the
number of threads. In terms of performance com-
pared with standard FUSE, at lower numbers of
threads, the 2-core and 4-core performed roughly
equivalently, but at the last two points showed op-
posite behavior, with a particularly noticeable spike

at 2048 threads in the 2-core case. Aborts in either
case were minimal.

4.2 Many Files

In this test, several threads each wrote their own 4-
KB file to a single directory simultaneously. The test
was intended to model the common scenario of sev-
eral processes making use of the same directory, and
to determine the behavior when several requests were
executed in parallel. Only the number of threads was
varied, and as in the last test, a barrier was used to
coordinate the threads. The configurations used were
the same as in the last test.

Figure 6: Performance for Many Files, 2-core

Figure 7: Performance for Many Files, 4-core

9



Figure 8: Aborts for Many Files, 2-core

Figure 9: Aborts for Many Files, 4-core

Figure 10: Comparative Performance for Many Files

Again we see a roughly proportional relationship
between number of threads and time in each case,
with the time about doubling at each point. Aborts
exhibited similar behavior, and the number of aborts
could get quite large with very many threads. In
terms of time compared with standard FUSE, there

was a general steadily-increasing trend, but with the
4-core performing far better in all except the first
case. An exception was noted for the 64-thread case,
in which both the 2-core and 4-core comparatively
performed quite poorly.

4.3 Many Reads

In this test, many threads were reading from a single
1-MB file. Only the number of threads was varied,
and as in the last two tests, a barrier was used
to coordinate the threads. This test was mainly
intended as the read-only counterpart of the first
test, and models a very common use case for a
filesystem. The configurations used were the same
as in the last test.

Figure 11: Performance for Many Reads, 2-core

Figure 12: Performance for Many Reads, 4-core

10



Figure 13: Aborts for Many Reads, 2-core

Figure 14: Aborts for Many Reads, 4-core

Figure 15: Comparative Performance for Many
Reads

As in the last two tests, we note a generally pro-
portional trend. Aborts did not follow this trend,
seeming to spike unpredictably at certain points,
and mostly being insignificant. However, they were
more common than in the Write File test. Percent-
age changes also did not follow this trend, showing

marked volatility in the 2-core case and staying rel-
atively low in the 4-core case. It is noted, however,
that relative performance was much better in the 4-
core case.

4.4 Make Tree

This and the next test are both fairly dissimilar
from the previous ones. We created a directory tree
through a recursive procedure, using one thread per
directory. With this test, we intended to determine
the behavior of FUSE-TM under heavy load, as well
as to see what happens when threads are being cre-
ated asynchronously. We also wished to elucidate the
consequences of having FUSE threads operate in sep-
arate directories. Instead of running several threads
at the same time, having them perform the same task,
and waiting for completion, we create threads dy-
namically. The test takes parameters (d, b), creating
a directory tree b levels wide d levels deep. That is to
say, the root directory, and every directory except the
ones at the very bottom, contain b directories. Addi-
tionally, b files, of size 10000, 20000, ..., b·10000 bytes,
are created in each directory (again, except at the
bottom). Including the top directory, the directories
are nested d times, and the bottommost directories
are empty.

The tree was created through the following recur-
sive procedure. There is some number of threads, all
performing the same function. Each thread is passed
a path; this can be considered the “root” for the
thread. If a thread notices that its root is at the dth
level of the tree, it terminates immediately. Other-
wise, it creates the b directories and b files in its root
described in the last paragraph. For each of the b di-
rectories, the thread spawns a new thread whose root
equals the path to the new directory (i.e., the name
of the original root concatenated with the name of
the new directory). Once it has started a thread for
each new directory, this thread terminates, and the
new threads start the procedure anew. Threads are
detached immediately after they are created; that is,
the parent thread does not wait for its child threads
to run to completion.

In total (1+b+b2+...+bd−1) non-terminal threads
are created. This is one greater than the total number

11



of files and directories created. Using the formula for
a geometric series, this number is

d−1∑
k=0

bk =
bd − 1

b− 1

Note that in this test, it is harder to show a trend
because the data points were varied on two axes, the
breadth and the depth. Nonetheless, we have ordered
the tests in terms of performance so that we can at-
tempt to detect patterns.

The next three figures show the progression of
Make Tree with breadth and depth equal to 3.
Each black bar represents a thread, each rounded
rectangle a directory, and each white square a file.
The first thread “starts” at the (already-existing)
top directory. In the next figure, it creates the files
and subdirectories in that directory, and starts a
thread for each subdirectory. Next, each of the new
threads creates files in its own directory and three
new directories each along with their threads. These
new threads notice that their root has depth 3, so
they terminate immediately.

Figure 16: Make Tree with depth = breadth = 3,
start

Figure 17: Make Tree with depth = breadth = 3, first
thread has spawned three new threads

Figure 18: Make Tree with depth = breadth = 3, end

Figure 19: Performance for Make Tree, 2-core

12



Figure 20: Performance for Make Tree, 4-core

Figure 21: Aborts for Make Tree, 2-core

Figure 22: Aborts for Make Tree, 4-core

Figure 23: Comparative Performance for Make Tree

Overall, increasing either the breadth or depth
could significantly impact performance. But depth
seems to be more important than breadth in deter-
mining performance: namely, going from (3, 7) to
(4, 5) and from (4, 7) to (5, 5) we are decreasing the
breadth and number of threads (1093 to 341 and 5461
to 781, resp.), but this might increase time by as
much as a factor of 3. The aborts followed a similar
trend. Also note that the absolute number of aborts
rapidly became very large.

In terms of percentage change comparisons, in gen-
eral we actually have a decreasing trend, with “big-
ger” trees giving more favorable comparisons. Fur-
thermore, the 4-core tests perform slightly worse than
their 2-core counterparts. These are opposite trends
from the first three tests. Frankly, in absolute terms
the performance of FUSE-TM is quite poor, espe-
cially with “smaller” trees, where we see a 5- to 10-
fold degradation in performance. Even in the best
cases, performance was about halved by FUSE-TM.

4.5 Scan Tree

This is very similar to the previous test, except we
are not creating the tree, but traversing the tree
created from the previous test. It was intended to
determine whether traversing a tree would yield a
similar effect to creating it. Wherever we would
create a file or directory in the last test, in this
test we stat() it instead. (Only the time of the
traversal, not the time of creating the tree, was
measured.) Results were measured at the same
configurations as the last test.

13



Figure 24: Performance for Scan Tree, 2-core

Figure 25: Performance for Scan Tree, 4-core

Figure 26: Aborts for Scan Tree, 2-core

Figure 27: Aborts for Scan Tree, 4-core

Figure 28: Comparative Performance for Scan Tree

In terms of trends, this is similar to what was seen
with the Make Tree test. In absolute terms, FUSE
performed very efficiently well, whereas FUSE-TM
performed very poorly, markedly more so even than
in the last test. However, we still see an improve-
ment in terms of percentage increase in performance
with “bigger” trees in the 2-core case; in the 4-core
case, the percentage increase is roughly steady at just
under 800 %.

4.6 Compiling

In this test, we complied the text editor Vim with
parallel make. It was intended to show performance
of FUSE-TM in a relatively realistic usage case. In
attempting to keep the test realistic, we kept the
total amount of parallelization fairly low. Our par-
allelization parameters to make were -j 16, -j 32,
and -j 64. We also took just three measurements
for each configuration, since the differences in results

14



from run to run were not significant.

Figure 29: Performance for Vim Compile, 2-core

Figure 30: Performance for Vim Compile, 4-core

Figure 31: Aborts for Vim Compile, 2-core

Figure 32: Aborts for Vim Compile, 4-core

Figure 33: Comparative Performance for Vim Com-
pile

Overall, we don’t see much improvement in perfor-
mance with more parallelization. In the 2-core case,
FUSE-TM is roughly 20 % less efficient than FUSE,
and about 25 % less efficient in the 4-core case. How-
ever, the amount of parallelization did affect the num-
ber of aborts, though not in a predictable way. The
spike in aborts for -j 32 in either case is notable, but
it is not immediately explainable.

5 Analysis

As has likely become evident, it is hard to generalize
about the net results of using STM in the Linux ker-
nel. For one, different tests yielded radically different
behavior, and we have only studied a small subset of
the possible use cases of FUSE, let alone Linux. Also,
at this initial stage, it is difficult to prove exactly
what makes FUSE-TM perform admirably in certain

15



circumstances and much worse in others. However,
the relationship between aborts and performance as
well as the differences we see between tests give us
some clues.

First, in the first three tests, more aborts tend to
indicate worse performance in comparison to stan-
dard FUSE. In the Write File and Read File tests, we
see fewer aborts and less of a trend of comparative
performance becoming worse and worse. In the Many
Files case, there seems to be a decrease in compara-
tive performance with an increase of threads (which
correlates with an increase in aborts). Intuitively,
this makes sense: aborting is costly. It means having
to run the same code twice (or more) in one thread.
On the other hand, with spinlocks the critical sec-
tions are guaranteed to execute only once in each
thread. The benefits of TM normally come in when
aborting doesn’t happen: that is to say, when, in the
non-transactional version, one lock would be waiting
on another but doesn’t need to be.

But this relationship does not always hold: the
Scan Tree and Read Tree tests indicate no increas-
ing trend in comparative performance, even though
the aborts show a dramatic increasing trend. This
demonstrates that aborts are not the only factor that
matters. Despite the increase of aborting transac-
tions, there is likely also an increase in transactions
that run in parallel with no conflicts. If the pro-
portion of non-conflicting transactions were increas-
ing, this would explain why comparative performance
improves. The following observation bolsters this hy-
pothesis. Each thread is operating on a separate di-
rectory. Threads at separate directories may conflict
at the inodes that correspond to common components
in their pathnames. In fact, at least one inode ac-
cess will occur for each component; these accesses
are necessary for FUSE to check permissions. (These
accesses are not read-only because FUSE uncondi-
tionally updates an inode when it gets its attributes).
However, in FUSE-TM they will not conflict at sep-
arate inodes, because they are entirely different in-
stances. However, in FUSE, all inodes are protected
by the same spinlock, so contention is possible on
different inodes.

We observe that 4-core performs better than 2-core
in many cases, particularly in the first three tests.

However, in the Tree tests, it performs about the
same or even worse. This is probably due to the dra-
matic increase in aborts for the 4-core case. It is pos-
sible that that the 4-core tends to run all the threads
spawned by another thread at about the same time
(which could happen if nearly each thread is assigned
its own processor), while in the 2-core case one such
thread often finishes completely before another can
be scheduled.

There were many results that are difficult to eas-
ily explain. For example, the 64-thread Many Files
test has unusually poor comparative performance (for
both 2- and 4-core), as does the 2048-thread 4-core
Write File test. In the latter case, for instance, the
data indicate that it is not so much that FUSE-
TM performed unusually poorly, but that FUSE per-
formed unusually well. Certain numbers of threads
may simply be scheduled “just right”, or “just wrong”
at certain configurations. The scheduler, of course, is
oblivious to transactions, and does nothing to try to
prevent contention. This alludes to one of the diffi-
culties in analyzing kernel behavior: the factors in-
volved go far beyond just FUSE and TL2 and are
very difficult to theoretically model. We also note
the unusual bump in aborts for -j 32 in the com-
pilation test, which also could have occurred due to
unfavorable scheduling.

6 Conclusion

To some extent, it is difficult to deduce the actual
significance of these tests or draw general conclu-
sions from them, since they measure the effects of
changing only a very small part of the Linux kernel.
Nonetheless, the results show that TM in the kernel
holds promise in many ways. First of all, the success
of simply converting non-transactional code to trans-
actional code testifies to the possibility of adapting
parts of an OS kernel to use transactional memory.
Using “TM locks” in certain parts proved to be a
workable compromise between using transactions and
maintaining the integrity of special kernel operations.
Whether other parts of the kernel are as readily con-
vertible as FUSE remains to be seen, but one should
keep in mind that straightforward conversion is not

16



necessarily the way TM would be introduced to the
kernel. Though both [18] and this paper used the ap-
proach of conversion in situ, a module designed to use
TM naturally could differ significantly from its lock-
ing counterpart. In particular, writing from scratch
could allow one to isolate any operations that would
be problematic under a transaction, or to minimize
interactions with the rest of the kernel. Finally, the
use of TM diminishes the temptation of fine-tuning
algorithms to make critical sections as small as pos-
sible, and the flexibility of transactions might allow
one to choose from a wider variety of algorithms.
For instance, an RB-tree must be implemented very
carefully in order to take advantage of parallelism
through locking, but an RB-tree synchronized by sim-
ply transactionalizing the sequential version shows
impressive performance.[10] The greater freedom al-
lowed by the transactional approach could effect algo-
rithmic improvements that surpass the advantages of
optimizing existing algorithms for fine-grained lock-
ing. Hence, the traditional efficiency and simplicity
of locking may become less of a selling point for mu-
tual exclusion in the long run.

While a performance degradation of 25-50% (as
seen in many of our tests) is not desirable, it is
not necessarily a deal-breaker – software that is al-
ready very efficient may not suffer greatly from such a
penalty. Also, in many cases using four cores instead
of two yielded a significant performance increase. If
machines with more cores become standard in the
future, the observed penalty could be reduced. Al-
though this isn’t a certainty (our compilation test,
for instance, yielded worse relative performance for
the 4-core version), the improvements from using four
cores in some of our more intensive tests are promis-
ing.

Of course, there were instances of our tests that
exhibited admittedly unacceptable performance for
FUSE-TM. But one could make the argument that
most users will not use FUSE as intensively as most
of our benchmarks. The worst case scenario is im-
portant for showing the limits of TM, but it is also
important to keep in mind that it may be rare in
practice. Even today, many parallelizable operations
are implemented as a single thread, and operating
on its own part of the filesystem. This use case is

far removed from benchmarks involving thousands of
threads manipulating inodes in the same directory.
Further testing will be necessary to show how likely
worst-case or near-worst-case behavior is in practice.
Nonetheless, it is conceded that our research does
not show any performance benefits from using STM
in Linux.

What, then, is the payoff of our research? FUSE is
probably one instance where TM was not necessary
to improve code maintainability. Most importantly,
we believe that this research shows the plausibility of
using TM to replace locking in the kernel, thus open-
ing the door for conversions or rewrites of more com-
plicated synchronous systems. By doing research on
a system as straightforward as FUSE, it was possible
to easily study the effects and successfully implement
the correct behavior. The relative simplicity of FUSE
also provides a relatively non-biased way of compar-
ing the experiment to the control, since more involved
systems might require modifications that cause it to
deviate in ways that interfere with the effects of TM
itself. Furthermore, it gives us hints as to how TM
might behave in an actual filesystem. If TM were
used to implement a filesystem (for which one could
easily make the case that manual locking is a great
burden on the programmer), then this research might
yield some basic ideas of the contention one would ex-
pect in certain scenarios. In short, the research gives
us some idea of the issues STM in a kernel might face,
and argues against the notion that systems-level TM
is a “lost cause”.

7 Further Investigation

From our view, there are two obvious directions that
follow from this research. The first direction is to in-
vestigate FUSE-TM further, in order to test the hy-
potheses in the Conclusions, and potentially to try to
improve on these results. We could time the critical
sections themselves, giving us a better idea of their
cost with and without contention. We might mea-
sure, in addition to how much contention occurs, how
often transactions run successfully in parallel, help-
ing us answer some of the hypotheses posed about the
Tree tests. Inserting some probes into the scheduler

17



might give us an idea of how often context switching
occurs during a transaction and help answer our hy-
pothesis about the differences between TL2-x86 on
2- and 4-cores. In order to gather information on ex-
actly what parts of FUSE are generating the most
contention, we might label the data to indicate how
often and when each transaction occurs. In a related
approach, we might write some tests to target specific
sections of FUSE directly. Finally, we might attempt
to transactionalize some of the sections that we did
not in this paper. This would involve either replacing
the special operations with transactional equivalents,
or allowing for such operations to be separated from
the rest, by e.g. having them be executed at the end
of a transaction.

The second direction is outward, involving the use
of TM in other parts of the Linux kernel or other
systems software. Though trying to put TM in the
heart of the kernel is probably beyond reach at this
point, there are other viable targets. However, we
might try to make the kernel more TM-aware by, for
example, telling the scheduler not to switch out a
task in the middle of a transaction, as suggested in
[6]. Another logical place to go (and in fact one of the
original ideas for this paper) would be to transaction-
alize a filesystem, be it a simple one such as UFS or a
more modern one like BTRFS. We could also try to
transactionalize a device driver, such as an Ethernet
driver, as in [19]. And of course, if consumer-grade
HTM ever becomes available in the future, replacing
our STM implementation with HTM would give in-
sight as to how many of our problems are caused by
the inherent inefficiency of software algorithms.

8 Acknowledgements

We would like to thank advisors Tom Doeppner and
Maurice Herlihy for their encouragement and sup-
port. Also, we owe a heavy debt to the authors of
TL2 and TL2-x86, without which this research would
not have been possible.

References

[1] N. Carvalho et al. Versioned transactional
shared memory for the FénixEDU web appli-
cation. In Proceedings of the 2nd workshop on
Dependable distributed data management, pages
15-18, March 2008.

[2] A. Chang and M.F. Mergen. 801 Storage: Archi-
tecture and Programming. In ACM Transactions
on Computer Systems 6(1), February 1988.

[3] W. Chuang et al. Unbounded page-based trans-
actional memory. In Proceedings of the 12th in-
ternational conference on Architectural support
for programming languages and operating sys-
tems, pages 347-358, 2006.

[4] J.W. Chung, M. Dalton, H. Kannan, and C.
Kozyrakis. Thread-Safe Dynamic Binary Trans-
lation Using Transactional Memory. In Proceed-
ings of the 18th international symposium on
High-performance computer architecture, pages
279-289, February 2008.

[5] D. Dice, O. Shalev, and N. Shavit. Transac-
tional Locking II. In Proceedings of the 20th in-
ternational symposium on Distrubted computing,
2006.

[6] R. Ennals. Software Transactional Memory
Should Not Be Obstruction-Free. Technical Re-
port Nr. IRC-TR-06-052, Intel Research Cam-
bridge Tech Report, January 2006.

[7] Filesystem in Userspace. January 2012. Re-
trieved 16 April 2012 from http://fuse.

sourceforge.net/.

[8] S. Hammond et al. Transactional Memory Co-
herence and Consistency. In Proceedings of the
31st annual internation symposium on Com-
puter architecture, pages 102-113, June 2004.

[9] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-Free Synchronization: Double-
Ended Queues as an Example. In Proceedings of
the 23rd international conference on Distributed
computing systems, pages 522-529, June 2003.

18

http://fuse.sourceforge.net/
http://fuse.sourceforge.net/


[10] M. Herlihy, V. Luchangco, M. Moir, and W.N.
Scherer. Software Transactional Memory for
Dynamic-Sized Data Structures. In Proceedings
of the 22nd ACM symposium on Principles of
distributed computing, pages 92-101, July 2003.

[11] M. Herlihy and J. Moss. Transactional Memory:
Architectural Support for Lock-Free Data Struc-
tures. In Proceedings of the 20th annual inter-
national symposium on Computer architecture,
pages 289-300, May 1993.

[12] IBM Corporation. IBM Systems and
Technology Group. IBM System Blue
Gene/Q. 2011. Retrieved 10 April 2012
from http://www-03.ibm.com/systems/

deepcomputing/solutions/bluegene/.

[13] Intel Corporation. Intel C++ STM Com-
piler, Prototype Edition. April 2009.
Retrieved 24 April 2012 from http:

//software.intel.com/en-us/articles/

intel-c-stm-compiler-prototype-edition/.

[14] S. Lie. Hardware Support for Unbounded Trans-
actional Memory. MS thesis, Massachussets Inst.
of Technology, May 2004.

[15] P. McGachey et al. Concurrent GC leveraging
transactional memory. In Proceedings of the 13th
AM SIGPLAN Symposium on Principles and
practice of parallel programming, pages 217-226,
February 2008.

[16] C.C. Minh. Stanford Transactional Applica-
tions for Multi-Processing. Standford U., 2008.
Retrieved 13 April 2012 from http://stamp.

stanford.edu/.

[17] R. Rajwar and J.R. Goodman. Transactional
Lock-Free Execution of Lock-Based Programs.
In Proceedings of the 10th international confer-
ence on Architectural support for programming
languages and operating systems, October 2002.

[18] C.J. Rossbach et al. TxLinux and MetaTM:
transactional memory and the operating system.
In Communications of the ACM, 51(9):83-91,
September 2008.

[19] M.J. Schultz. Using Software Transactional
Memory in Interrupt-Driven Systems. MS the-
sis, Marquette U., May 2009.

[20] N. Shavit and D. Touitou. Software Transac-
tional Memory. In Proceedings of the 14th ACM
symposium on principles of distributed comput-
ing, pages 204-213, August 1995.

[21] S. Wang et al. DTM: Decoupled Hardware
Transactional Memory to Support Unbounded
Transaction and Operating System. In Proceed-
ings of the 39th international conference on Par-
allel processing, pages 228-236, September 2009.

[22] R.M. Yoo et al. Kicking the Tires of Software
Transactional Memory: Why the Going Gets
Tough. In Proceedings of the 20th annual sym-
posium on Parallelism in algorithms and archi-
tectures, pages 265-274, 2008.

[23] ZFS-FUSE: ZFS for Linux. March 2011. Re-
trieved 16 April 2012 from http://zfs-fuse.

net/.

19

http://www-03.ibm.com/systems/deepcomputing/solutions/bluegene/
http://www-03.ibm.com/systems/deepcomputing/solutions/bluegene/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition/
http://stamp.stanford.edu/
http://stamp.stanford.edu/
http://zfs-fuse.net/
http://zfs-fuse.net/

	Introduction
	Motivation
	Methods

	Related Work
	Implementation
	TM Subsystem
	FUSE-TM

	Benchmarks
	Write File
	Many Files
	Many Reads
	Make Tree
	Scan Tree
	Compiling

	Analysis
	Conclusion
	Further Investigation
	Acknowledgements

