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Abstract

This project studies how to jointly assess the extent of damage in�icted upon the electrical grid by a
hurricane and produce a vehicle routing plan to guide restoration. It builds upon previous work that
assumed the extent of the damages done to the electrical grid was known precisely prior to restoration.
It lifts this assumption by o�ering three di�erent approaches for joint assessment and restoration: (1)
An online stochastic combinatorial optimization (OSCO) approach using repair crews; (2) A stochastic
two-stage approach that uses dedicated exploration crews to determine the true extent of the disaster's
impact on the electrical network and then executes an o�ine routing with repair crews; (3) A hybrid
online stochastic combinatorial optimization and exploration (EXPL-OSCO) approach that employs
elements of the �rst two methods. Experimental results generated using information from weather
and fragility simulations based on U.S. infrastructure indicate that EXPL-OSCO produces high quality
routing solutions that most e�ectively reduce the size of the blackout in the disaster's aftermath.
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�Not everything that counts can be counted, and not everything that can be counted counts.�
- Albert Einstein

1 Introduction

The proliferation of networked digital devices throughout the world is making it easier to pro-
vide support to individuals and families in the face of natural or man-made disasters. However,
there is still a lack of robust tools to inform the logistical planning for, and response to, these
devastating situations. Recent disasters such as Hurricane Katrina and the earthquakes in Haiti
and Japan have demonstrated the fragility of infrastructure systems and the pressing need for
decision support for policymakers looking to minimize human su�ering.

Disaster response is a part of the broader �eld of Humanitarian Logistics, which focuses on
using techniques in operations research to manage processes that often center on e�cient hu-
man and capital resource allocation under tight time constraints. One of the major reasons
for disaster response challenges has been the lack of monetary and human resource support for
humanitarian logistics planning. With numerous stakeholders and a multi-faceted bottom line,
problems involving humanitarian logistics have failed to generate the same track record of pos-
itive iteration and improvement when compared to analogously challenging operations research
problems in the private sector. This economic problem is coupled with the inherent complexity
of disasters emanating from broad geographic a�iction, di�culty to anticipate the evolution of
human impact, and uncertain interactivity of di�erent factors that may exacerbate their toll on
societies [13].

Global disaster trends further attest to this anticipative di�culty. While the average num-
ber of mortalities emanating from disasters fell from approximately 140,000 pear year in the
1980s to just over 50,000 in 2003, the death of over 230,000 people as a result of the 2004 Indian
Ocean Tsunami illustrates the inherent uncertainty of a given disaster's impact [2]. Realizing
shortcomings in response, international leaders have started to call for greater e�orts in risk
minimization to empower communities to e�ciently respond to disasters when they occur in-
stead of simply waiting for copious, and slow-moving, international planning and resources in
disaster aftermath [2]. Indeed at their core, disasters are unpredictable, nondeterministically
evolving, and costly from both a monetary and human su�ering standpoint. This makes design-
ing methods for anticipating and responding e�ectively to them all the more challenging�but
vital for a more parallelized, locally-empowering way of ensuring the robustness and progress of
societies everywhere.

1.1 Hurricane Response as an Opportunity

While disasters appear to be virtually impossible to plan for and respond to in practice, think-
ing strategically about the di�erent parts of a disaster both prior to, during, and after impact
can help minimize human and capital losses. One particularly important realization of disaster
response planning is repairing the damaged electrical network after a hurricane strikes. An
operational electrical network is critical to the administration of a number of other vital ser-
vices during disaster response. As [9] discusses, there is an interdependence between di�erent
networks that is often exposed as a result of cascading failures following disasters, e.g., failures
in the information or communication networks that result from dependence on an electrical
grid that has been damaged. This often prevents a number of important, potentially life-saving
activities such as delivering medical services to the injured or enabling communication between
relief crews. Given how fundamental the electrical grid is, it is only natural to investigate how
we can quickly and e�ciently �x it in the face of disasters (hurricanes) that seasonally plague
both the Caribbean and coastal U.S.
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The inherent stochasticity underlying the extent of a hurricane's damage on the electrical net-
work calls for a collaborative e�ort by policymakers and power systems engineers to determine
how to repair the grid in a timely manner. Restoration plans, however, are often motivated pri-
marily by the intuition and expertise of these engineers instead of disaster-speci�c information
such as damage pro�les produced by the National Hurricane Center.

With an idea of how important it is to �x electrical damages after a hurricane hits, this work re-
considers the last-mile disaster recovery for power restoration. This entails producing a routing
schedule for repair crews to restore the electrical network as quickly as possible (i.e., minimizing
the size of the power blackout) after a disaster strikes. Since power network failure response
produces a large combinatorial space of decisions required by policymakers and repair crews
in regards to both power restoration and vehicle routing, earlier models that looked to jointly
optimize these subproblems failed to yield high-quality solutions that could be used in practice.
Instead, this work builds on the decomposition approach, �rst proposed in [11], that was shown
to signi�cantly reduce the size of a blackout overtime in �eld applications. This decomposition
approach has been used in Los Alamos National Labratory (LANL) tools and activated to advise
the U.S. federal government, each time a hurricane of category 3 or above threatens to hit the
U.S.

The main contribution of this work is to lift one of the simpli�cations found in [11]: that
the precise damages in�icted upon the electrical network by a hurricane are known a priori,
i.e., before the power restoration and routing problems are solved. Instead, it considers a joint
infrastructure assessment and repair problem (JIARP) that aims to both identify the extent of
the damage and produce high-quality solutions to restore the electrical network. As inputs, the
JIARP receives a set of possible damages scenarios (i.e., hurricanes) produced by weather and
fragility simulations at LANL. Motivated by �eld practices, the JIARP considers two cases: the
situation where repair crews are also responsible for damage assessment, and the situation where
policymakers have dedicated exploration crews that use faster transportation (e.g., helicopters)
to survey damages, but cannot themselves make repairs.

To address the JIARP, we present three algorithms: (1) an online stochastic combinatorial
optimization (OSCO) algorithm which uses only repair crews to both assess and �x damages,
making routing decisions dynamically as uncertainty about the damage set is revealed through
site visits; (2) a 2-stage approach that �rst uses exploration crews to assess damages before
using the o�ine optimization approach to determine vehicle routes for restoration; and (3) a
hybrid OSCO approach that deploys both crews simultaneously, conducting both exploration
and restoration at the same time. As discussed in detail in the Experimental Results section,
hybrid OSCO consistently outperforms both OSCO and two-stage approaches, particularly for
di�erent damage amounts, since it only increases the blackout size by reasonably small percent-
ages over the clairvoyant solution.

The remainder of this introduction discusses some of the theory and connections to other �elds
underlying the di�erent approaches for joint assessment and repair of the electrical network.
The rest of this work details the power restoration problem and optimization algorithms as
presented in [11]; speci�es the joint assessment and repair problem with a detailed description
of the proposed algorithms (i.e., OSCO, two-stage, and hybrid OSCO); illustrates, through ex-
perimental results, the e�ectiveness of each in reducing the size of the blackout in comparison
to the clairvoyant routing where all damages are known a priori; and concludes the discussion
with analysis and other approaches to be considered in the future.
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1.2 Theory and Approaches for Response Under Uncertainty

This work relates from both a conceptual and modeling standpoint to several topics in op-
timization and machine learning. At their core, the algorithms proposed for the JIARP all
involve systematically revealing the uncertainty of hurricane damages in order to fully restore
the electrical grid. This idea�uncovering some unknown information through iterative inquiry
and decision making�is a core tenet of OSCO and simple decision tree classi�cation in machine
learning.

1.2.1 Online Stochastic Combinatorial Optimization

Online Stochastic Combinatorial Optimization is an adaptive optimization approach that makes
decisions online, in�uenced by some uncertainty underlying this decision making. OSCO com-
bines methods from online algorithms, stochastic programming, and combinatorial optimization
to produce a dynamic decision-making strategy under some exogeneous uncertainty [6]. Here,
the term �exogeneous� simply means that the uncertainty in the problem stems from a source be-
yond the algorithm's past decisions. This is contrasted with Markov Decision Processes (MDPs),
which have endogeneous uncertainty, i.e., uncertainty at a given state that emanates from deci-
sions made at previous states.

OSCO's hybridization of di�erent methods in computer science and statistics yields an ap-
proach that is robust. Much previous work in the space of online algorithms has ignored input
distributions that could signi�cantly improve the online decision making for many problems [6].
Stochastic programming itself considers stochasticity in input �data� instead of uncertainty in
decision variables, such as which customer to visit next for vehicle routing problems.1 In the
context of the JIARP, it is the latter type of uncertainty that is most prevalent.

For disaster response in the JIARP, the objective is to route vehicles to restore the electri-
cal grid under uncertain damage information, which can be extended to a broader uncertainty
about the true path of a given hurricane. The OSCO and hybrid OSCO approaches essentially
entail routing vehicles according to a distinguished plan (selected via a consensus decision over
the o�ine routing plans generated for possible scenarios). When a vehicle reaches a damage site,
it produces a new (o�ine) routing plan for all scenarios based on the assessment of damages at
that location and the locations that have been visited so far. The solution is a composite plan
built on demand as uncertainty about damages is revealed. The details of these methods are
described in the sections below. Given the need for dynamic, �exible decision making in dealing
with damage uncertainty, OSCO is a good modeling choice for problems arising from the joint
assessment and repair of power systems and deserves further exploration.

1.2.2 Decision Trees and Entropy

While OSCO serves as an appropriate formulation for one class of solutions for the JIARP, the
two-stage approach utilizes the concept of decision trees from machine learning to guide the
damage discovery process. Decision trees are used in statistics and machine learning to classify
input data according to certain characteristics. Each node in the tree can represent some char-
acteristic (i.e., the random variable) that will guide classi�cation�e.g., size of screen, weight,
cost, etc. if building a classi�er for di�erent consumer technologies. Each branch represents a
value (or range of values) for a particular characteristic [10].

1 Although there is also a probability distribution over the �data�, i.e., the hazard scenarios that comprise the
pool of possible damages. The key here is that as the OSCO algorithm executes, it gains more �clarity� of the
uncertainty, i.e. the real damages, which manifests itself as the potentially damaged sites the routing algorithm
prescribes for repair crews to visit.



1 Introduction 8

For the purposes of the damage discovery stage in the JIARP, building a decision tree serves
as a reasonable heuristic for initializing the dispatch of exploration crews to di�erent damage
sites. The objective of exploration is to visit damage locations in order to eventually classify
the uncertain scenario as one that belongs to the predetermined set of possible scenarios. Here,
the nodes represent di�erent sites that may or may not be damaged in reality, and the branches
represent which disaster scenarios contain (or do not contain) damages at that site. Hence, the
result is a binary decision tree. The leaf nodes each correspond to a single damage scenario,
where the depth of the leaf node represents the number of sites that may need to be visited in
order to completely isolate the empirical damage set as the real damage scenario. The process
for constructing the decision tree is described in more detail in the sections below.

The concept of (Shannon's) entropy [12] naturally arises when studying this classi�cation prob-
lem in the context of the two-stage approach for the JIARP. For the case of source coding in
information theory (a common application area for this work), Shannon de�nes entropy H for
some random variable X belonging to {xi, ..., xn} as

H(X) = −
n∑
i=1

p(xi)log2p(xi)

Here, xi refer to the possible states of X, and p(xi) the probability of achieving this state. For
the problem of source coding, Shannon proves that the expected number of bits needed to encode
a particular message cannot be less than the entropy as de�ned above.2 This expected code
length increases if the code is designed for source q (which, like p, is a probability distribution
over the states that X can assume) when the true source is p.

While there is no formal or rigorous discussion of entropy as it relates to the JIARP, it is
interesting to think of the exploration problem in this context. Just like the expected code
length is bounded below by the entropy, so too is the expected �exploration length� (i.e., the
number of sites visited) by some analogous measure of entropy before the empirical damage
set is appropriate classi�ed. Moreover, just as designing an encoding scheme for an incorrect
source exacerbates the penalty for encoding, an exploration scheme that operates under the false
assumption that scenario s instead of the true scenario t describes the real set of damages leads
to extra site visits that increase the overall size of the blackout. This knowledge, coupled with
the decision tree theory provided above, suggests that damage scenarios with low �entropy� (i.e.,
the most distinguishable, particularly early on in the exploration, from others) will produce ex-
plorations that take the shortest amount of time. It also justi�es the importance of devising an
exploration scheme that helps us classify as quickly as possible the empirical damages resulting
from a hurricane's actual path.

2 Entropy, here, can be thought of as the �number of questions� that must be asked to uniquely identify the
original message for the which the code has been produced. It makes intuitive sense, then, that the expected
code length cannot be lower than this.
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2 The Power Restoration Problem

The Power Restoration Problem is composed of two subproblems: power �ow and vehicle rout-
ing. This section formalizes the Power Restoration Vehicle Routing Problem (PRVRP) and
generalizes the problem described in [11].

2.1 The Vehicle Routing Problem

The PRVRP is de�ned in terms of a graph G = (S, E), where S refers to sites of interest and
E is the travel time between two given sites. There are 4 di�erent types of sites: H+ represents
where the departure locations of the vehicles; H− is where they must return; W+ are the depots
where resource are stockpiled; andW− are the locations where electrical components (e.g. lines,
buses, and generators) must be repaired. Each location l ∈W+ has a repair supply cl.

3 Due to
infrastructure, the travel times on the edges are typically not Euclidean, but do form a metric
space. For simplicity, this paper assumes that the graph is complete and ti,j is the travel time
between i, j ∈ S.

The restoration has at its disposal a set V of vehicles. Each vehicle v ∈ V is characterized
by its departure depot h+v , its returning depot h−v , and its capacity cv. Vehicle v starts from
h+v , performs a number of repairs, and returns to h−v . It cannot carry more resources than its
capacity. The restoration must complete a set J of restoration jobs. Each job j is characterized
by a repair location p−j , a volume dj , a service time sj , a repair supply cj , and a network item nj .

Performing a job consists of picking up the repair supply cj at some location p+j taking dj units of

the vehicle's capacity, traveling to site p−j and repairing network item nj at p
−
j , which takes some

time sj to complete. After completion of job j, network item nj is working and can be activated.

A solution to the PRVRP associates a route (h+v , w1, ..., wk, h
−
v ) with each vehicle v such that all

repair locations are visited exactly once and all pickup locations at most once (note that there
can be many �pickup locations� at a physical depot where resources have been stockpiled). A
solution, then, assigns to each visited location l ∈ H+ ∪W+ ∪W− ∪H−the vehicle vehicle(l)
visiting l, the load loadl of the vehicle when visiting l, the next destination of the vehicle (i.e.,
the successor σl of l in the route of l), and the earliest arrival time EATl of the vehicle at
location l. The loads at the sites can be de�ned recursively:

load l = 0 if l ∈ H+

loadσl
= load l + dl if l ∈W+

loadσl
= load l − dl if l ∈W−.

Pickup locations increase the load, while delivery locations decrease the load. The earliest arrival
times can also be de�ned recursively:

EAT l = 0 if l ∈ H+

EATσl
= EAT l + tl,σl

if l ∈W+

EATσl
= EAT l + tl,σl

+ sl if l ∈W−.
3 As a relaxation, this work assumes that there is homogeneity in the damaged components, i.e., that any

damaged item can be �xed with any item picked up at W+. The power netowork, however, is still de�ned in
terms of unique electrical components (e.g., lines, buses, loads, and generators). As is discussed in the conclusion,
the homogeneous component routing model is a reasonable approximation given the nature of damages following
a hurricane.
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The earliest arrival time of a location σl is equal to the earliest arrival time of its predecessor, l
plus the travel time (tl, σl) and the service time (sl) for delivery locations. The earliest departure
time EDTl from a location is simply the earliest arrival time to which the service time is added
for delivery locations. A solution must satisfy the following constraints:

load l > 0 ∀l ∈W−
load l ≤ cvehicle(l) ∀l ∈W+ ∪W−.

The �rst constraint speci�es that the vehicle must have repair supplies before performing a
pickup, and the second constraint ensures that the capacities of the vehicles are never exceeded.

2.2 The Power Network

The Power Network is represented as PN = (N,L), where N is the set of nodes and L the set
of lines comprising the underlying graph. The nodes N = N b ∪Ng ∪N l are of three types: the
buses N b, generators Ng, and loads N l. Each bus b is characterized by its set of generators,
denoted Ng

b of generators, its set of N l
b loads, and its exiting (LOb) and entering (LIb) lines.

The maximum capacity or load of a node in Ng ∪N l is denoted by P̂ vi . Each line j is charac-

terized by its susceptance Bj , as well as its transmission capacity P̂ lj . The line j's �from� bus

is denoted as L−j and its �to� bus as L+
j . The network item nk of job k is an item belonging to

the setN ∪L. The set {nk | k ∈ J} represents the damage set of a particular disaster scenario, D.

This work uses the widely accepted linear approximation to the DC power �ow model[7],[8],[5]to
determine the steady-state power �ow. A classic linearized DC model assumes �xed values for
both generation and load. It then aims to determine a phase angle θi for each bus. The �ow
along every line j ∈ L is then given by Bj(θL+

j
− θL−

j
) and Kircho�'s Current Law ensures

that �ow is conserved throughout the network. We can solve this model through a system
of linear equations. In the context of a disaster, however, the appropriate amount of genera-
tion and load is unknown, and so, must be determined. Hence, we employ linear programming
to solve the linearized DC model with the added decision variables of load and generation values.

2.3 The Routing Objective

The objective of the optimization is to minimize the total watts/hours of blackout, i.e.,

ˆ
unservedLoad(t) dt

Each repair job provides an opportunity to reduce the blackout area (e.g., by bringing a generator
up), and the repairs occur at discrete times T1 ≤ T2 ≤ ... ≤ T|J|. The objective, then, can be
rewritting as minimizing the discretized quantity

|J|∑
i=2

unservedLoad(Ti−1)× (Ti − Ti−1)

Here, unservedLoad can be understood as follows: At each discrete time Ti, exactly i network
items have been repaired and can be activated, but it may not be bene�cial to reactivate all of
them.
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Fig. 1: A MIP Model for Minimizing Unserved Load
Inputs:

PN = 〈N,L〉 the power network
D the set of damaged items
R the set of repaired items
MaxFlow the maximum �ow (MW)

Variables:

yi ∈ {0, 1} - item i is activated
zi ∈ {0, 1} - item i is operational

P li ∈ (−P̂ li , P̂ li ) - power �ow on line i (MW)

P vi ∈ (0, P̂ vi ) - power �ow on node i (MW)
θi ∈ (−π6 ,

π
6 ) - phase angle on bus i (rad)

Minimize

MaxFlow −
∑
b∈Nb

∑
i∈N l

b

P vi (1)

Subject to:

yi = 1 ∀i ∈ (N ∪ L) \D (2)
yi = 0 ∀i ∈ D \R (3)
zi = yi ∀i ∈ N b (4)
zi = yi ∧ yj ∀j ∈ N b,∀i ∈ Ng

j ∪N l
j (5)

zi = yi ∧ yL+
i
∧ yL−

i
∀i ∈ L (6)∑

j∈N l
i

P vj =
∑
j∈Ng

i

P vj +
∑
j∈LIi

P lj −
∑
j∈LOi

P lj ∀i ∈ N b (7)

0 ≤ P vi ≤ P̂ vi zi ∀j ∈ N b,∀i ∈ Ng
j ∪N l

j (8)

−P̂ li zi ≤ P li ≤ P̂ li zi ∀i ∈ L (9)
P li ≥ Bi(θL+

i
− θL−

i
) +M(¬zi) ∀i ∈ L (10)

P li ≤ Bi(θL+
i
− θL−

i
)−M(¬zi) ∀i ∈ L (11)
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Figure 1 depicts a MIP model for minimizing the unserved load assuming a linearized DC power
�ow model. The inputs of the model are the power network (with notations as de�ned in the
previous section), the set of D damaged items, the set of R repaired nodes at any given time, and
the value MaxFlow denoting the maximum power when all items are repaired. The activation
variables yi capture the 0/1 values of the main decision in the model, i.e., whether or not to reac-
tivate item i. The variables zi denotes if network item i is or is not operational. The remaining
decision variables give us the power �ow on the lines, loads, and generators, as well as the phase
angles for the buses. The objective function minimizes the quantity unservedLoad(t). Con-
straints (2)− (6) determine which items can be activated and which are operational. Contraints
(2) specify that undamaged items are activated and constraints (3) specify that damaged items
cannot be activated if they have not been repaired yet. Constraints (4) − (6) describe which
items are operational. An item is operational only if all buses to which it is connected are also
operational. Constraints (4) consider the buses, constraints (5) the loads and generators which
are only connected to one bus, and constraints (6) the lines which are connected to two buses.
Constraints (7) express Kircho�'s law of energy conservation, while constraints (8)−(11) impose
restrictions on power �ow, consumption, and production. Constraints (8) impose lower and up-
per bounds on the power consumption and production for loads and generators and ensure that
a non-operational load or generator cannot consume or produce power. Constraints (9) impose
similar bounds on the lines. Finally, constraints (10)− (11) de�ne the �ow on the lines in terms
of their susceptances, as well as the phase angles of corresponding buses. These constraints are
ignored when the line is non-operational through a big M transformation. In practice, M can
be set to Bi

π
3 and the logical connectives can be transformed into linear constraints over 0/1

variables.

2.4 Optimization under Computational Complexity

The PRVRP is extremely computationally challenging because it composes two subproblems
(power restoration and vehicle routing), which are challenging in their own right. On one hand,
pickup and delivery vehicle-routing problems have been studied for a long time in operations
research. For reasonable sizes, they are rarely solved to optimality. In particular, when the
objective is to minimize the average delivery time (which is closely related to the PRVRP ob-
jective), Campbell et al. [3] have shown that MIP models have serious scalability issues.

The combination of constraint programming and large neighborhood search (LNS) have shown
to be very e�ective in practice, and have the advantage of being �exible in accomodating side
constraints and a variety of objective functions. On the other hand, computing the unserved
load generalizes optimal transmission switching, which has also proven to be challenging for MIP
models [5]. In addition to line switching, the PRVRP also considers the activation of loads and
generators. Therefore, it is highly unlikely that taking a direct approach, i.e., combining two
challenging MIP problems, will produce a scalable or e�cient solution for even small restora-
tion problems. Reference [11] presents an approach for decoupling both subproblems, while still
producing high-quality routing schedules.

Decomposing the problem appropriately allows for the possibility of meeting the real-time con-
straints imposed by disaster recovery. The complexity of this task makes direct integration of
both the routing and power �ow models an unfavorable solution. For this reason, reference [11]
explores a multi-stage approach utilizing the idea of constraint injection. Constraint injection
decouples the routing and power �ow models, while capturing restoration aspects in the routing
component. It takes advantage of two properties to obtain the decoupling. First, once all of the
power has been restored, the subsequent repairs do not a�ect the objective and we are able to
focus on the routing exclusively. Second, and most importantly, a good restoration schedule can
be characterized by a partial ordering on the repairs. As a result, a key insight behind constraint
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Algorithm 1 The Multi-Stage PRVRP Algorithm

Multi− Stage− PRVRP(Network PN, PRV RP G)
1 S ←MinimumRestorationSetProblem(G, PN)
2 O ← RestorationOrderingProblem(PN, S)
3 return PrecedenceRoutingProblem(G, O)

injection is to impose, on the routing subproblem, precedence constraints on the repair crew visits
that capture good restoration schedules.

The injected constraints are obtained through two joint optimization/simulation problems.
First, the Minimum Restoration Set Problem (MRSP) computes the smallest set of items needed
to restore the grid to full capacity. Then, the Restoration Ordering Problem (ROP) determines
the order for restoring the selected subset to minimize total blackout hours. This order provides
the precedence constraints injected in the pickup and delivery vehicle-routing optimization. The
�nal algorithm is a multi-stage optimization depicted in Algorithm 1.

The ROP produces an ordering for the repairs, which is then used to inject precedence constraints
on the delivery jobs. This gives rise to a vehicle routing problem that will implement a high-
quality restoration plan while simultaneously optimizing the vehicle dispatching. Note that the
ROP injects a partial order over the jobs. Indeed, several repairs are often necessary to restore
parts of the unserved demand. As a result, the ROP solution partitions the set of repairs into a
sequence of groups and the precedence constraints are imposed between the groups. Imposing
a global ordering between all of the repair crews reduces the �exibility of the routing, thereby
degrading solution quality. Hence, the ordering constraints are imposed only per-vehicle. The
resulting pickup and delivery vehicle routing problem with precedence constraints consists of
assigning a sequence of jobs to each vehicle and satisfying the vehicle capacity and pickup and
delivery constraints speci�ed earlier, as well as the precedence constraints injected by the ROP.
A precedence constraint i → j between job i and j is satis�ed if EDTi ≤ EDTj or if jobs i
and j are scheduled on di�erent vehicles, i.e., vehicle(i) 6= vehicle(j). The objective is de�ned
as minimizing

∑
j∈J EDTj .

4 In this work and in [11], the routing problem is solved using
constraint programming and LNS. The LNS relaxation procedure is implemented adaptively
based on the ratio of completed searches to searches that reach some prede�ned failure threshold.
The relaxation neighborhoods include both the pickup and dropo� task locations, as well as the
vehicle assignments for pickups and dropo�s.

4 This objective approximates the true power restoration objective and is tight when all restoration actions
restore similar amounts of power. When combined with constraint injection, this approximation works well in
practice.
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Algorithm 2 The OSCO Algorithm for Joint Assessment and Repair

OSCO(set{Scenario}H)
1 H∗ ← H
2 σ∗ ← chooseP lan(0, ε, H∗)
3 while |H∗| > 1
4 do r ← earliestRepairV isit(σ∗)
5 H∗ ← updateScenarios(H∗, r, ξ(r))
6 σ∗ ← chooseP lan(time(r, σ∗), σ∗, H∗)

3 Joint Assessment and Repair

The problem description and corresponding algorithmic solution described in the previous prob-
lem assumes that the extent of the damage in�icted upon the network by the disaster is known
precisely a priori. This is not always the case in practice. In general, for hurricanes, there is a
set of hazard scenarios that describe the possible network damages. Each scenario h is obtained
by tracing the path of a hurricane using a fragility simulator and speci�es a set Dh of damaged
sites, the distance matrix th between any two sites since transportation infrastructure may also
be damaged, and the probability of that particular scenario occurring, ph.

This section details the main contributions of this work�i.e., algorithms that aid in the joint
damage assessment and restoration of the power infrastructure. The algorithms use the dam-
ages corresponding to the di�erent h in order to guide the assessment and restoration. For each
damage site r over all h, it is unclear a priori whether or not the site is damaged. This damage
uncertainty, represented by the random variable ξ(r), is revealed when a crew visits r.

To implement joint assessment and repair, this work considers two realistic situations: the
case where repair crews are the only available resources and the case where exploration crews
are also available. The repair crews use trucks as transportation, and the exploration crews use
faster vehicles (e.g., helicopters), but cannot perform repairs.

For simplicity, one assumption of this work is that the exact infrastructural damage is captured
by some h ∈ H, that is, some hazard in our global pool of possible hazards. This assumption can
be lifted by running the selected algorithm (described below) multiple times if it �nds that none
of the scenarios in the pool match reality. Indeed, it su�ces to sample a new set of scenarios
conditional on the revealed uncertainty, and then to rerun the algorithm with this new scenario
pool.

3.1 The OSCO Algorithm

One interesting method for addressing the issue of joint infrastructure repair and assessment
is to use online stochastic combinatorial optimization (OSCO). The key idea behind OSCO
algorithms is to make decisions online, that is, to re-generate near-optimal routing plans as we
uncover ξ(r) for each r. These decisions are taken by relaxing the anticipatory constraints (i.e.,
when the future is revealed), and using optimization algorithms on the resulting o�ine problems.
In particular, relaxing the anticipatory constraints in this problem means that the algorithm
assumes that all damages in each scenario are revealed immediately. The basic structure of the
OSCO algorithm is provided in Algorithm 2. The algorithm is executed until a single hazard
scenario h∗ is left, at which point it su�ces to follow the selected repair plan.
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Algorithm 3 Plan Selection in the OSCO Algorithm

ChoosePlan(Time t, P lan σ, set{Scenario}H)
1 forh ∈ H
2 doσh ← solveRouting(t, σ, h)
3 N ← ∪h∈H nextRepairV isit(σh)
4 return argmaxh∈H ph · score(σh, N)

The algorithm starts with the set of all scenarios (line 1). Every iteration of the loop corresponds
to a repair crew arriving at a site and assessing its damage. For each such event, the algorithm
has the set H∗ ⊆ H of possible scenarios and a distinguished plan σ∗ that is being executed.
The distinguished plan is reconsidered each time a crew reaches a potentially damaged site r,
since the uncertainty ξ(r) is now revealed. Line 4 thus only considers the �rst repair site in the
distinguished plan σ∗. It then updates the current set of scenarios given the damaged state of
r (line 5) and recomputes the new distinguished plan (line 6). Updating the set of scenarios
consists of removing the remaining scenarios that do not share r's true state, i.e.,

H∗ =

{
{h ∈ H∗| r ∈ Dh} if ξ(r)

{h ∈ H∗| r /∈ Dh} if ¬ξ(r)

Note that multiple vehicles may reach di�erent sites r1, r2 at the exact same instant. In this
case, the scenario pool is updated according to ξ(ri) for each i ∈ firstV isitedLocations.

The key step of the OSCO algorithm is to select a distinguished plan based on the �rst-visited
damaged locations of each scenario. To do so, it uses a generalization of the consensus plan
proposed in [4]. This consensus plan selection is depicted in Algorithm 3.

The algorithm �rst determines a set of routing plans for all active hazards H∗ respecting the
routing decisions taken in the past (up to time t), which are represented in σ (lines 1-2). In
particular, if a crew was dispatched to visit a site but has not yet arrived by the time a new
set of plans is generated, the new plan will preserve that decision. This step uses the o�ine
optimization discussed earlier, but avoids recomputing the the MRSP and ROP solutions, which
are abstracted in the injected constraints. Once all routing plans for H∗ are computed, the al-
gorithm builds the set N of all repair sites that are visited next over the total number of newly
produced plans. These sites represent interesting locations to visit next and are used to choose
which plan σh is most desireable overall.

The consensus algorithm [4] ranks the plans by �rst assigning a score to every potential site
N . In particular, for a plan σ, a site s receives a score of 1 if s is visited next by a vehicle in
scenario h and 0 otherwise. We re�ne this scoring mechanism in this paper and assign a score
that depends not only on whether a site s is visited next in a plan, but also on the time s is
visited, i.e.,

score(σ, s) = TimeHorizon− earliestRepairT ime(σ, s)

where TimeHorizon is a large number (e.g., the repair schedule horizon), and earliestRepairT ime(σ, s)
speci�es the repair time of s in σ or TimeHorizon if s is not repaired in σ. The score of a plan
σ is then de�ned as in the consensus algorithm from [4]:

score(σ, N) =
∑
s∈N

score(σ, s)
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This metric favors the plan which is most similar to other plans, i.e., it visits many of the same
repair sites appearing in other plans and tends to visit them at times that are most similar to
these plans. This generalization of the consensus algorithm is important, since many damaged
sites are close to one another and simply crediting the next visit is too coarse in practice.

3.2 The Two-Stage Algorithm

Let us now consider a case where we have at our disposal exploration crews (e.g., helicopters)
and propose the two-stage approach for the joint assessment and repair of power infrastructure.
The two-stage approach consists of the following steps:

1. use the exploration crews to identify the real damage scenario

2. solve the o�ine problem with the damages for this scenario as an input to arrive at a �nal
routing schedule

Since there are multiple exploration crews, the �rst step is a generalization of the isolation prob-
lem used to approximate optimal decision trees and adaptive TSPs under stochastic demands
[1].5 We approach the generalization to multiple vehicles using a greedy algorithm inspired by
decision tree algorithms in machine learning (for example,[10]).

Consider a set of disaster scenarios H and a single crew located at site i that is ready to
be dispatched to another site. To maximally reduce the uncertainty about the real damaged
set, the crew should be sent to the site s that maximizes

min(|H| − |H+
s |, |H| − |H−s |)

where H+
s = {h ∈ H | s ∈ D} and H−s = {h ∈ H | s /∈ D}. However, this expression does

not take into consideration the travel time required to visit site s. We therefore normalize this
expression to

min(|H| − |H+
s |, |H| − |H−s |)/di,s,H

Where di,s,H is the expected distance from the crew location to the site s over all scenarios H,
i.e.,

di,s,H =
∑
h∈H

ph · th[i, s]

Note that we take the expected distance because the travel time matrix may vary according to
di�erent disaster scenarios. The 2-stage algorithm generalizes this approach to multiple crews
by selecting, for each exploration vehicle v, the next �best� site sv. It assumes that the number
of exploration crews is reasonably small (i.e., not more than 10 - and in this work, approximately
4), which is usually the case in practice. The algorithm dynamically dispatches crews as they
become available one at a time, i.e., after they arrive at a particular site and report on its
damage state. Assume that at some point in the exploration, there are H scenarios remaining,
k crews have been dispatched for assessment, and an additional crew i can now be dispatched
to the next potentially-damaged site. Since the damage state of the sites that the k crews are
currently visiting is still uncertain (i.e., they could be either broken or not broken), there are 2k

possible outcomes of these explorations. Each such outcome o ∈ O can be associated with the
set of scenarios Ho ⊆ H that contain that particular con�guration of damages. The two-stage
algorithm then dispatches the available exploration crew to the site that reduces the uncertainty
the most across all scenarios after normalization, i.e.,

argmaxs∈S
∑
o∈O

min(|Ho| − |H+
o,s|, |Ho| − |H−o,s|)/di,s,Ho

5 The isolation problem is solved by a O(log2(|S|)log(|H|)) approximation.
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where H+
o,s represents the set of scenarios in H that re�ect the con�guration prescribed in o with

s actually damaged, and H−o,s is comprised of those scenarios respecting o without s damaged.

3.3 The Hybrid-OSCO Algorithm

The �nal algorithm, which we refer to as EXPL-OSCO, combines elements of both OSCO and
two-stage joint assessment and repair. It proposes proceeding simultaneously with OSCO ve-
hicle routing and the helicopter exploration component of the two-stage approach. As repair
crews are routed according to the OSCO algorithm, they reveal (just like in the strictly-OSCO
approach) ξ(r) for each r visited �rst in the current distinguished plan. However, since now
there is a possibility that exploration crews have revealed some of the uncertainty regarding
the reality damage scenario, even prior to the �rst instance where repair crews reach a damage
node, the EXPL-OSCO algorithm reconsiders its distinguished plan even at pickup locations.
The hybrid algorithm updates its scenario pool with the information ξ(r) but also with the
information revealed from the exploration.

In general, this approach quickly reduces the number of scenarios to consider (i.e., |H∗|) and
produces a better consensus plan. It is also possible for the exploration algorithm to use infor-
mation about revealed damages produced by the OSCO algorithm to reduce the scenarios to
consider when dispatching helicopter crews.6

6 In practice, communication in this direction would not yield tremendous gains as the time it takes the OSCO
algorithm to reach a delivery site tends to be greater than the entire time required for exploration.
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4 Experimental Results

The experimental results capture the behavior of the OSCO, EXPL-OSCO, and two-stage ap-
proaches to solving the JIARP. They also show how di�erent factors a�ect solution quality
and algorithm behavior. The results are split into 2 main parts: �Small Damage Size (SDS)�
refers to experiments for scenario pools of sizes 20 and 40 for which the minimum restoration
set problem (MRSP) has been computed. �Large Damage Size (LDS)� refers to experiments
for 20-scenario and 40-scenario pools as well, but to approximate a larger problem (i.e., one
with more damaged items), the MRSP has been omitted and the restoration is performed on
the entire set of damage items. Note that the Restoration Ordering Problem is still invoked to
obtain the partial ordering of constraints to administer per vehicle.

4.1 The Disaster Benchmarks

The algorithms were evaluated on disaster scenarios based on the US power and transportation
infrastructures. The disaster scenarios were generated at Los Alamos National Laboratory us-
ing state-of-the-art hurricane simulation tools similar to those used by the National Hurricane
Center. The benchmarks are for a speci�c geographic location in the United States with a power
transmission network comprised of about 168 items. There were 16 repair crews available for
restoration, as well as 4 helicopters crews for exploration. The helicopter crews travel twice as
fast as the repair crews.

One benchmark was produced by uniformly sampling 20 scenarios from a pool of 100 disas-
ter scenarios and identifying one of these scenarios as re�ective of the true damages. Another
benchmark was produced by uniformly sampling 40 scenarios from the 100-scenario pool. The
table below illustrates the minimum, maximum, and average number of service tasks for each
experimental setup:

|H| = 20 |H| = 40

MRSP min: 14, max: 30, avg: 20.5 (8) min: 14, max: 29, avg: 21 (20)
no−MRSP min: 38, max: 58, avg: 47.1 (8) min: 38, max: 58, avg: 47.8 (24)

Here, the numbers in parentheses within each cell signify the number of scenarios in the pool
with a number of service tasks greater than or equal to the average over all scenarios.

4.2 Experimental Setting

The optimization algorithms were run on Intel Xeon CPU 2.80GHz machines running 64-bit
Linux Debian. Due to the fast-response requirement in disaster recovery, the o�ine routing
algorithm for each scenario is terminated after 10 minutes. The routing step is a multi-start,
randomized large-neighborhood search algorithm and hence our experimental results report the
average over 5 runs.

4.3 Results for Small Damage Size

4.3.1 20-scenario simulations

Figure 2 reports the solution quality for each algorithm executed over 20 scenarios, computing
the MRSP. It reports the percentage di�erence between the clairvoyant (i.e., o�ine problem
where the exact damage set is known) algorithms and the objective values produced by the
three JIARP algorithms. In essence, it speci�es how much larger the blackout is if the extent
of the damages is unknown, compared to the case where there is no damage uncertainty. The
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Fig. 2: Solution quality for the JIARP algorithms for 20-scenario, MRSP case

x-axis identi�es the scenario selected as the �real damage set� for a particular simulation, and
the y-axis depicts the cost (in percentage) of performing joint assessment and restoration.
The results reveal a number of interesting �ndings. First, the EXPL-OSCO algorithm almost
always dominates the other algorithms. On average, EXPL-OSCO produces a solution that is
only 3% worse than the clairvoyant, while the OSCO and two-stage algorithms produce solu-
tions that are about 10.5% and 25% worse, respectively. Second, the two-stage algorithm is
signi�cantly worse than the other two algorithms in general (with the exception of scenarios 90
and 91, which have damages that are quite di�erent from the other scenarios and hence easier to
isolate during exploration), increasing the routing objective by up to 35% in the worst case (e.g.,
benchmark 29). The EXPL-OSCO algorithm, in contrast, is always under 20%. Benchmark 39
is an outlier where the two OSCO algorithms are very close; it requires very few visits and is
sensitive to noise.

The table in the section 7.1 of the Appendix illustrates the behavior of the OSCO and EXPL-
OSCO algorithms. The table reports, over 5 runs and with rounded values, The number IV of
site visits7 before the reality scenario is isolated, the time IT at which reality is isolated, the
number AV of additional visits8 performed by the algorithms compared to the clairvoyant, and
the completion time FT of the entire restoration.

The results are particularly illuminating. On average, OSCO and EXPL-OSCO completely
reveal the true damage set at approximately 40% and 19% of their respective restorations. This
highlights the bene�t of the hybrid OSCO and exploration approach. OSCO visits, on average,
10 additional sites compared to the clairvoyant, while EXPL-OSCO adds just under 3 visits.
Interestingly, EXPL-OSCO takes only about 1 fewer visit to discover the real damage scenario
via exploration crews than OSCO does using repair crews. The visited sites, however, are rather

7 Here, we only report the number of potential service site visits. Pickup locations visited are omitted from
this value to focus on site visits that could reveal some of the damage uncertainty.

8 This value only includes potential service sites (again omitting pickup locations). It can also be larger than
the value IV because it counts vehicles that eventually reach a damage site not belonging to reality, not simply
those that were reached at the exact time that the damage uncertainty was fully revealed.
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Fig. 3: Example vehicle routes for 20-scenario, MRSP simulations

di�erent and the exploration crews decrease the amount of time required to isolate reality by
more than a factor of 2. It is also worth observing the di�erence between AV and IV in OSCO,
which arises from the fact that repair crews are committed to a particular repair.

The IT column for EXPL-OSCO also corresponds to the reality isolation time for the two-
stage algorithm. Although this step takes only 19% of the restoration of EXPL-OSCO on
average, it signi�cantly delays the restoration at the time when the blackout is the largest. This
delay, coupled with the fact that the OSCO algorithms start by picking up supplies that they
can use to complete many repairs, largely contributes to the two-stage algorithm's relatively
poor performance. Based on a scenario pool size and average number of required repairs per
scenario both totalling 20, it seems unlikely that the two-stage algorithm could be competitive,
even with a more sophisticated exploration scheme. Benchmarks 90 and 91 appear to support
this theory. With damages that are very di�erent from other scenarios in the pool, they require
very little exploration to isolate the reality scenario, but the two-stage algorithm for these still
does not fare well compared to EXPL-OSCO. EXPL-OSCO appears to exploit the strengths of
both the OSCO and two-stage approaches: it identi�es the real damage scenario very quickly
and forces fewer repair crews to make extraneous visits. These combine to only slightly prolong
the blackout when it is at its peak.

Figure 3 illustrates an example vehicle and exploration crew routes for the clairvoyant, OSCO,
and EXPL-OSCO (labeled as �Hybrid online�) algorithms, plotted according to longitude and
lattitude. Routes for crews starting at the same location are represented with the same color.
On the legend, �C. Dropo�� refers to a service site visited in the clairvoyant routing, �Online
Dropo�� refers to a service site visited in either OSCO or EXPL-OSCO, and �Start/End� refers
to the start and end locations of a particular vehicle.

4.3.2 40-scenario simulations

Figure 4 illustrates the percentage penalty for each JIARP algorithm, computed over a set of
40 possible damage scenarios.

The trends depicted here are re�ective for those found in the 20-scenario simulations. Here,
EXPL-OSCO is again the best strategy, increasing the blackout, on average, by only 2%. OSCO
increases the blackout by about 9%, and two-stage by 23%. These values are approximately
equivalent to the values of 3%, 10.5%, and 25% characterizing the 20-scenario simulations.

There are some di�erences, however, in algorithm behavior for individual scenarios. For ex-
ample, scenarios 10 and 38 demonstrate that the maximum percentage delay introduced by
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Fig. 4: Solution quality for the JIARP algorithms for 40-scenario, MRSP case

Fig. 5: Example vehicle routes for 20-scenario, MRSP simulations

two-stage is now over 40% instead of 35% as in the 20-scenario case. Moreover, the two-stage
algorithm for scenarios 90 and 91 no longer dominates OSCO. This is because the isolation step
for those scenarios now takes longer (by approximately 40% - 78 units of time instead of 55).
These scenarios are outliers, however, as the exploration stage takes approximately 86.5 units
of time on average, or 12% less than the 20-scenario case.

Looking at the table in section 7.2 of the Appendix provides an indication of why the results
are so similar. The average time of discovery (IT ), number of additional visits (AV ), and time
of last service (FT ) for the 40-scenario OSCO and EXPL-OSCO algorithms are all virtually
identical to their counterparts in the 20-scenario simulations. Only the number of initial visits
(IV ) is slightly higher in the 40-scenario experiments for both OSCO and EXPL-OSCO. This
most likely stems from the greater number of reoptimizations that the 40-scenario simulations
undergo before uncovering reality (a further discussion on this is included in the �Computational
Considerations� section below).

Figure 5 shows sample vehicle and helicopter routes for the 40-scenario, MRSP simulations.
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Fig. 6: Solution quality for the JIARP algorithms for 20-scenario, no-MRSP case

4.4 Results for Large Damage Size

Scaling the number of damage scenarios without scaling the amount of damage within each
scenario appears to have a minimal e�ect on the perceived quality and behavior of the JIARP
algorithms. The results below illustrate the rami�cations of more service sites for both 20- and
40-scenario simulations on the JIARP algorithms' impact on the size of the blackout.

4.4.1 20-scenario simulations

Figure 6 exhibits the solution quality of the JIARP algorithms for the 20-scenario case.

The results show that, on average, EXPL-OSCO increases the blackout by about 3.5%; OSCO
by nearly 14%; and two-stage by approximately 17%. The values for OSCO and two-stage di�er
from the 20-scenario, MRSP simulations, which yielded a 10.5% and 25%, respectively, increase
in the size of the blackout. The main reason for the smaller percentage discrepancy between the
two-stage and clairvoyant routings is the fact that the results of the exploration, which operated
over the entire damage set even in the initial MRSP simulations, are exactly the same, whereas
the average �nal dropo� time is now nearly doubled because of the larger damage sets.

The table in section 7.3 of the Appendix helps explain the behavior of both OSCO and EXPL-
OSCO in this context. Looking at EXPL-OSCO, the reality scenario is isolated at less than 10%
of restoration, with a discovery time (IT ) and number of vehicle visits (IV ) before discovery that
are identical to their counterparts in the 20-scenario MRSP simulations. This, again, is because
the exploration occurs over the exact same damage set as the initial set of 20-scenario simula-
tions. On the other hand, the statistic AV is over 50% smaller, and can be explained by the
fact that the larger damage set calls for more pickups per vehicle early on in the routing schedule.

IT for OSCO is nearly 40% greater, however, in comparison to the earlier 20-scenario, MRSP
simulations. This means that on average, OSCO algorithms reveal the true damage set at ap-
proximately 31% of the restoration time. This value is less than the 40% mentioned for the initial
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Fig. 7: Example vehicle routes for 20-scenario, no-MRSP simulations

20-scenario results, but is three times larger than the 10% for EXPL-OSCO. Moreover, even
though the number of additional visits (AV ) for OSCO averages to approximately two fewer
than before, OSCO in this context spends over one more vehicle visit to a damaged location
(IV ) before reality is uncovered. This, coupled with the later time of reality discovery, suggests
that the larger damage set prolongs the amount of time before the uncertainty is revealed. This
prolonged uncertainty manifests itself as a prolonged blackout.

Figure 7 shows example vehicle and helicopter routes for the 20-scenario, no-MRSP simula-
tions. Note the denseness of these plots compared to those shown in the previous section. This
is because of the larger number of pickups and dropo�s tasked to each vehicle.

These results suggest a key trend: more damages per scenario do not appear to have a signi�cant
impact on the behavior or solution quality of EXPL-OSCO, but narrow the gap between the
quality of both the OSCO and two-stage approaches.

4.4.2 40-scenario simulations

Figure 8 shows the solution quality for the JIARP algorithms operating on the 40-scenario sim-
ulations without the MRSP invoked.

These results show a trend unseen in previous simulations: the average increase in the size of
the blackout when using OSCO is 18.6%, followed by 15.1% for two-stage and 4.6% for EXPL-
OSCO. These results contrast sharply with the 9%, 23%, and 2% for OSCO, two-stage, and
EXPL-OSCO, respectively, in the 40-scenario simulations that invoked the MRSP. The larger
routing discrepancies from OSCO can be explained by larger individual di�erences per scenario.
For example, scenario 37 has a discrepancy of nearly 35%, which is approximately twice the
percentage di�erence of 18% found in the MRSP simulations. EXPL-OSCO still dominates
both algorithms.

Analyzing the behavior of these algorithms via the chart in section 7.4 of the Appendix helps
explain some of the di�erences. For one, the isolation time (IT ) for OSCO is approximately
20% later than in the 20-scenario, no MRSP case, illustrating one of the contributing factors to
OSCO falling below two-stage in terms of average solution quality. Compared to the 40-scenario
MRSP simulations, IT in this context is 60% greater. The number of sites visited that are ac-
tually damaged before reality is revealed (IV ) is nearly 13, compared to 8 for the 40-scenario,
MRSP instances, while the additional visits (AV ) are approximately equivalent. These values
suggest that a large number of potential hazard scenarios compounded with a large damage set
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Fig. 8: Solution quality for the JIARP algorithms for 40-scenario, no-MRSP case

Fig. 9: Example vehicle routes for 40-scenario, no-MRSP simulations

do not necessarily lead OSCO to guide vehicles to more �incorrect� damage locations (i.e., those
that are not damaged in reality), but do prolong the amount of time that vehicles spend before
learning what the real damage set precisely is. This prolonged uncertainty manifests itself as a
prolonged blackout.

For EXPL-OSCO (and hence, for two-stage), the helicopter exploration is identical to the 40-
scenario MRSP simulations, and so the statistics IT and IV are also the same. The isolation
time (IT ) is approximately 12% earlier compared to both 20-scenario simulations. This, coupled
with the larger problem instance, explains the lower percentage increase in blackout size when
invoking independent exploration and repair stages. EXPL-OSCO in this context, however, has
a later �nish time (FT ) and fewer additional visits (AV ) when compared to the 40-scenario
MRSP case.

Figure 9 illustrates example vehicle and helicopter routes for the 40-scenario, no-MRSP simula-
tions.
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Results for the 40-scenario, no-MRSP simulations con�rm a trend that surfaces in the 20-
scenario, no-MRSP instances: as damage uncertainty grows in terms of both the number of
damages per scenario and total number of possible scenarios, EXPL-OSCO remains the most
dominant algorithm, but two-stage overtakes OSCO in terms of its ability to reduce the size of
the blackout.

4.5 Computational Considerations

It is important to note the computational complexity that the JIARP adds over the PRVRP,
where the extent of the damages are known a priori. For all four simulation scenarios de-
scribed above, the two-stage algorithm requires the least computational overhead compared to
the clairvoyant. The problem consists of simply building the decision tree and greedily routing
helicopters to uncover the damage set. The o�ine clairvoyant routing is then executed to arrive
at a feasible solution.

OSCO tends to be the most expensive for each of the simulations, largely because it gener-
ally takes the longest to isolate the real damage scenario. Each time it arrives at a potential
service location, it runs the o�ine optimization for each scenario that has not yet been pruned.
For both sets of 20-scenario simulations, Each site visit eliminates 3 scenarios on average. This
leads to nearly 80 total o�ine optimizations. For the 40-scenario MRSP simulations, each visit
prunes 6 scenarios on average, yielding nearly 155 total o�ine optimizations. The 40-scenario
no-MRSP simulations are more computationally demanding, pruning on average 5 scenarios per
service site visit, which results in nearly 180 total o�ine optimizations.

EXPL-OSCO is over twice as fast as OSCO for 20-scenario MRSP, pruning on average 8 sce-
narios per site visit and running fewer than 35 total o�ine optimizations. It is slightly more
demaining for the 20-scenario no-MRSP case, pruning 6 scenarios on average per site visit and
requiring nearly 40 o�ine optimizations. In the 40-scenario MRSP context, each site visit prunes
nearly 16 scenarios, leading to under 75 total o�ine optimizations. Slightly more demanding
is the 40-scenario no-MRSP context, which eliminates approximately 13 scenarios per visit and
requires just over 80 o�ine optimizations.

EXPL-OSCO computationally dominates OSCO because it also reoptimizes the distinguished
plan at each pickup location after some of the damage uncertainty is revealed by the exploration
crews. In all, EXPL-OSCO requires fewer than half of the computational resources that OSCO
does to produce high-quality results.

It is easy to parallelize the o�ine optimizations computed before selecting a distinguished plan
under both OSCO and EXPL-OSCO because they are independent. Therefore, a small cluster
of Linux machines is largely su�cient to meet the real-time constraints imposed by disaster
recovery applications.
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This work discussed the joint assessment and restoration of power systems following hurricane-
in�icted damages. It lifted the assumption from previous work [CITE] that the extent of the
damage was known prior to determining vehicle routes to service damaged sites. The Joint
Infrastructure and Repair Problem (JIARP) receives, as input, a number of potential damage
scenarios obtained by weather and fragility simulations. It is then tasked with simultaneously
determining the true damage set following a hurricane and repairing damages to eliminate the
blackout. Approaches for solving the JIARP are motivated by two cases found in �eld practices:
the case where dedicated exploration crews (e.g., helicopters that cannot perform repairs) are
available and the case where only repair crews are available and responsible for both assessment
and repair.

Three algorithms are presented as approaches for solving the JIARP: (1) an online stochas-
tic combinatorial optimization (OSCO) algorithm, which uses repair crews to make visitation
and repair decisions dynamically as the uncertainty about network damages is repealed upon
successive reoptimizations of the routing plan; (2) a two-stage approach that uses exploration
crews to survey potential damages to decide on the real damage set and then runs the o�ine
optimization for the scenario determined to depict reality; and (3) a hybrid OSCO approach that
performs both exploration and restoration simultaneously, taking advantage of both exploration
and repair crews.

Experimental results on hurricane disasters for the U.S. power infrastructure show an inter-
esting trend. For the case of small damage uncertainty (i.e., approximately 20 damages per
scenario) when simulating in both 20- and 40-scenario pools, OSCO and EXPL-OSCO yield
high-quality solutions and increase the blackout by only 10-11% and 3-4%, respectively. Two-
stage, on the other hand, increases the blackout by nearly 25% in both of these cases. As the
damage uncertainty is increased from approximately 20 damaged components to over 40 per
scenario on average, EXPL-OSCO maintains its dominance (never exceeding a 5% increase in
the size of the blackout), but OSCO and two-stage converge in performance. For the case of
a large damage set and simulations involving 20 potential damage scenarios, OSCO increases
the blackout by nearly 14% and two-stage by 17%. However, as we increase the number of
potential scenarios to 40 and hold constant the number of damaged components per scenario,
OSCO increases the blackout by nearly 19% and two-stage by only 15%.

These results indicate that EXPL-OSCO is consistently the best choice out of the three al-
gorithms presented for solving the JIARP. Moreover, for reasonably well-behaved stochasticity
(i.e., damage amounts that are not too large), OSCO yields high-quality solutions to the JIARP
and outperforms the two-stage approach. However, as we increase the damage uncertainty,
relying solely on repair crews to handle both assessment and repair of damages in the power
network prolongs the blackout. Conducting joint assessment and restoration by using repair and
exploration crews in parallel, even with larger damage stochasticity, produces a blackout that
is only marginally bigger than one resulting from a clairvoyant routing.

Future work in this area will include exploring how the OSCO, EXPL-OSCO, and two-stage
joint assessment and restoration algorithms perform for a wider range of disasters (i.e., be-
yond hurricanes), as well as in a multi-infrastructure setting (i.e, beyond the power grid). Our
current research has already expanded upon the single-commodity power restoration problem
presented in this work. Prototype results for a multi-commodity restoration scheme, executed
for the 20-scenario, MRSP case, reveal that the percentage increase in the size of the black-
out due to damage uncertainty is exactly comparable to the results presented here. This is
largely because most electrical components damaged following a hurricane are lines, and thus,
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the multi-commodity setting and single-commodity relaxation are not so di�erent for hurricane
relief e�orts.

Swift and e�cient disaster response is fundamental to reducing the impact of uncontrollable
events on civilizations throughout the world. This work is only a small piece of a larger e�ort to
better understand the rami�cations of disasters and how policymakers and relief agencies can
used informed decision-making to minimize human su�ering. It is our hope that further research
bridging the mathematical and humanitarian spheres will help ensure the progress and vitality
of societies in the coming years.
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7.1 Algorithm Behavior - 20 scenarios, MRSP

H OSCO EXPL-OSCO

IV IT AV FT IV IT AV FT

2 5 215 11 572 6 102 4 542
5 7 222 12 481 5 86 4 454
10 7 191 13 482 6 102 4 432
15 5 206 10 642 6 109 2 521
21 6 226 7 448 5 86 2 390
29 5 206 8 515 7 128 2 482
31 4 213 9 525 5 83 3 459
33 9 241 11 614 7 120 4 531
34 5 218 8 516 5 86 2 518
39 3 160 4 585 6 102 4 577
44 6 235 8 654 6 102 3 579
53 6 243 9 579 5 86 1 457
54 6 235 6 518 6 118 1 475
67 6 219 8 730 6 118 4 701
68 3 221 3 426 5 83 0 386
76 8 284 8 697 7 128 2 630
90 11 269 12 700 3 55 2 678
91 7 253 10 724 3 55 3 721
95 9 227 13 548 7 120 4 455
98 9 260 11 536 5 86 2 517

Av 6.4 227.2 9.9 574.6 5.6 97.8 2.7 525.3
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7.2 Algorithm Behavior - 40 scenarios, MRSP

H OSCO EXPL-OSCO

IV IT AV FT IV IT AV FT

0 12 260 13 564 7 92 3 541
2 7 211 11 611 7 83 4 567
7 6 236 8 466 4 68 3 471
10 8 207 13 473 11 143 4 440
11 4 236 3 493 7 83 2 467
12 11 264 12 615 8 92 3 520
14 8 241 11 619 5 78 2 571
20 5 202 7 418 6 78 3 351
22 0 207 0 425 7 92 2 423
23 7 240 12 699 5 78 3 537
24 7 209 11 597 7 92 4 530
25 5 236 7 703 7 83 1 689
26 7 224 10 561 4 68 5 503
27 11 252 11 576 6 78 2 531
30 6 215 10 537 7 103 2 463
32 10 251 11 516 5 78 3 488
33 8 228 11 637 8 92 3 568
34 13 260 15 543 8 92 4 521
36 8 252 10 583 4 68 2 559
37 7 214 11 622 6 78 3 486
38 10 253 13 531 11 143 6 495
39 8 232 12 652 8 92 3 516
44 5 197 7 642 8 92 3 617
45 8 250 9 499 5 78 3 473
46 11 248 15 563 8 92 4 519
48 9 279 9 616 8 92 1 550
50 5 234 7 444 7 83 2 378
57 8 245 11 641 7 92 2 560
60 8 267 7 544 6 101 5 503
66 6 237 8 535 6 101 2 502
68 5 232 7 434 7 103 1 421
70 5 203 9 538 6 78 3 526
71 11 255 11 624 6 78 3 626
72 13 301 11 632 6 78 2 621
75 7 228 10 637 3 55 2 569
85 9 240 12 612 3 55 3 549
88 11 268 13 639 8 92 2 616
90 10 234 12 698 5 78 1 658
91 9 242 12 709 5 78 2 645
93 6 219 9 629 6 78 3 629

Av 7.9 238.0 10.1 576.9 6.5 86.5 2.7 530.6



7 Appendix 31

7.3 Algorithm Behavior - 20 scenarios, no MRSP

H OSCO EXPL-OSCO

IV IT AV FT IV IT AV FT

2 12 398 11 1011 6 102 1 928
5 7 260 9 928 5 86 2 944
10 4 311 4 914 6 102 1 887
15 7 326 7 1087 6 109 0 1096
21 9 357 9 938 5 86 1 949
29 10 332 9 995 7 128 1 1050
31 7 250 9 855 5 83 2 898
33 6 244 6 961 7 120 1 1036
34 6 293 7 890 5 86 1 882
39 11 354 9 1142 6 102 1 1106
44 8 288 8 1146 6 102 1 1087
53 6 282 7 883 5 86 1 934
54 8 263 8 1002 6 118 2 964
67 11 367 10 1112 6 118 2 1079
68 9 376 8 985 5 83 1 1046
76 5 272 6 1289 7 128 1 1170
90 5 308 2 1206 3 55 1 1281
91 9 349 5 1126 3 55 1 1289
95 8 353 9 924 7 120 2 925
98 7 309 7 892 5 86 2 964

Av 7.8 314.5 7.48 1013.6 5.6 97.8 1.2 1025.6



7 Appendix 32

7.4 Algorithm Behavior - 40 scenarios, no MRSP

H OSCO EXPL-OSCO

IV IT AV FT IV IT AV FT

0 9 318 8 1032 7 92 1 1019
2 9 349 11 903 7 83 0 953
7 9 330 8 986 4 68 1 995
10 14 371 14 943 12 143 1 899
11 18 419 15 825 7 83 0 906
12 13 399 11 1102 8 92 3 1196
14 9 355 9 939 5 78 2 1005
20 13 354 14 974 6 78 1 987
22 15 368 15 1004 7 92 1 932
23 17 427 13 1025 5 78 0 972
24 14 375 12 1085 7 92 1 1132
25 18 406 14 1122 7 83 0 1170
26 11 314 11 914 4 68 0 853
27 6 374 6 1215 6 78 2 1096
30 12 359 10 896 7 103 2 855
32 11 354 11 1042 5 78 2 960
33 7 256 7 1059 8 92 1 999
34 10 335 11 892 8 92 2 900
36 13 348 10 1039 4 68 0 1022
37 10 386 9 1200 6 78 0 1036
38 10 368 9 1006 11 143 1 1035
39 11 360 12 1219 8 92 3 1105
44 14 397 12 1148 8 92 0 1124
45 6 356 4 975 5 78 0 966
46 15 366 14 957 8 92 3 910
48 12 397 8 1082 8 92 1 1009
50 15 421 15 943 7 83 2 946
57 16 408 15 1129 7 92 2 1045
60 10 346 8 1070 6 101 1 1185
66 8 287 8 942 6 101 1 984
68 22 451 17 1006 7 103 3 1033
70 11 356 10 1018 6 78 3 982
71 14 440 10 1216 6 78 1 1134
72 15 492 8 1168 6 78 0 1157
75 21 429 20 1164 3 55 3 1124
85 14 366 10 928 3 55 0 976
88 9 346 7 1188 8 92 2 1040
90 11 397 8 1213 5 78 0 1170
91 14 436 9 1182 5 78 1 1176
93 15 439 11 1250 6 78 4 1210

Av 12.5 376.5 10.7 1050.4 6.5 86.5 1.3 1029.8


