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Abstract

Assessment of population structure is a crucial component of conduct-
ing accurate genetic association studies. While many methods exist to
detect population structure, no single approach is universally preferred.
Furthermore, the desire to leverage large genomic data sets in association
studies requires tools capable of handling the computational burden. Here,
we present an exploratory effort into developing a novel general modeling
framework for inferring population structure from genotype data.

1 Introduction
Non-random mating, mutation, genetic drift, geographic isolation, selective
pressures, and other factors contribute to population structure, the deviation
from an idealized panmictic population. Population stratification, systematic
differences in allele frequencies, can undermine the effectiveness of statistical
analyses which rely on the absence of these factors and on the idealization of a
sampled population. In particular, it has been shown that population stratifi-
cation can confound genome-wide association studies (GWAS), which attempt
to identify disease-causing genetic variants among large sets of genomic data.
Thus, in order to conduct these studies, as well as to learn about the evolu-
tionary history of the human population, the availability of reliable methods to
detect population structure is critical.

Presently, numerous software packages capable of measuring population struc-
ture exist. However, concerns over the accuracy, efficiency, and applicability of
these tools abound; although a few have emerged as most popular, no single
program is universally preferred. There is therefore an ongoing need to develop
new approaches to measuring population structure from genomic data.

We present an exploratory effort in developing a novel modeling framework
for inferring population structure based on Markov random field theory, first
developed in the context of statistical mechanics. We show how relaxations of
modeling assumptions made in the popular software package for inferring pop-
ulation structure, STRUCTURE[1], can fundamentally increase computational
efficiency while maintaining the potential to capture meaningful results. Our
work extends the initial efforts of Lian Garton, who employed the Propp-Wilson
algorithm for perfect sampling from STRUCTURE’s Markov chain Monte Carlo
(MCMC) model for small data sets, in that we seek a Markov random field model
with strong neighborhood properties and with well-defined monotonicity over
configurations[2].

In the remainder of this introduction, we present some detail about how
population stratification can affect genome-wide association studies as well as a
survey of existing techniques for inferring population structure. In the next sec-
tion, we give a brief overview of the mathematics behind Markov random fields
and MCMC. In section 3 we provided a detailed description of the STRUC-
TURE program. After this, we present our own Markov random field model for
inferring population structure, followed by a brief discussion and conclusion.
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1.1 Population Stratification: Contributing to Bias in Case-
Control Studies

As noted in [4], genome-wide association studies (GWAS) conducted since the
mid 2000s have contributed greatly to our understanding of the genetic causes of
a number of human diseases. The most popular design for one of these studies,
largely because of its ability to leverage vast amounts of sequencing data and
its wide applicability, is the case-control study[5]. The goal of this type of study
is to identify alleles which are statistically correlated with the presence of a
particular disease. Such genetic markers are then hypothesized to be either
causal variants of the disease, or at least in linkage disequilibrium (LD) with
the true casual variant.

Conducting a case-control study typically involves obtaining a large number
(now 100, 000 to millions) of single nucleotide polymorphisms (SNPs) for a
sample of individuals both with (case) and without (control) the disease being
studied. The analysis of the data involves determining which SNPs are found
disproportionally in case versus control subjects with statistical significance.
However, such analysis requires the assumption that all correlation between
allele frequencies in the data are due to phenotype differences.

A number of factors can contribute to biased results in these studies because
they affect the allele frequencies of case versus control subjects disproportion-
ately. In particular, different degrees of relatedness between individuals with
different phenotypes can confound these studies if not accounted for. Further-
more, it can often be difficult to assess the relatedness between individuals with
an informal ancestry survey, especially when dealing with admixed populations
such as African Americans or Latinos. Therefore, it is necessary to employ
computational methods to measure the degree of population structure within a
sample of individuals before conducting any disease association study.

1.2 Existing Methods for Inferring Population Structure
Over the last decade, a number of software packages have been developed to aid
in the computational detection and quantification of population structure from
genotype data. Broadly speaking, these come in two flavors.

First, there are dimensionality-reduction methods, such as principal compo-
nents analysis (PCA), which reduce the high-dimensional space of hundreds of
thousands of measurements down to a handful of orthogonal dimensions in an
abstract ancestry space. The program EIGENSOFT is one popular example[6].
Reducing the dimensionality of the genotype data allows fast identification of
subpopulations in many cases, and allows visualization of the data. However, it
is often difficult to assess the biological significance of the results produced by
dimensionality-reduction methods, as their findings do not allow quantification
of population stratification on a per-locus basis.

The next category of methods for detecting population structure are model-
based approaches, which employ parametric statistical inference. While these
approaches tend to be much slower than dimensionality-reduction methods, they
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provide distinct advantages. For example, these methods typically allow for the
quantification of several phenomena at once, such as population allele frequen-
cies and individual genetic admixture. Additionally, many models allow the
natural incorporation of additional sampling information outside of genotype,
such as geography or phenotype. Therefore, our focus will be on this second
class of methods. In particular, we will examine the popular STRUCTURE
program in detail in section 3.

Though STRUCTURE is currently the most widely-used software for pop-
ulation structure due to its age and the extent to which it has been tested, a
number of other methods deserve mention. These include software programs
based on STRUCTURE itself, such as ADMIXTURE[7] and mSTRUCT[8],
which have demonstrated useful speed-ups and modeling improvements over
the original, respectively. Additionally, PLINK is gaining popularity due to its
efficiency and incorporation of a full suite of association analysis tools[9].

2 Mathematical Background
In this section, we provide an introduction to the mathematics underlying
Markov random fields and Markov chain Monte Carlo. We will frame our dis-
cussion of STRUCTURE and of our own method in these terms. For a more in
depth treatment of these topics, we recommend [10].

2.1 Markov Random Fields and the Gibbs Distribution
2.1.1 random fields

Let V be a finite set of elements v ∈ V , and let Λ be a finite set of labels. Then
X = {X (v) : v ∈ V } is random field on the set V with probability distribution
π (x) , P (X = x) where the values x ∈ ΛV are called configurations. A con-
figuration x can be expressed as x = (x (v) : v ∈ V ), where x (v) ∈ Λ for all
v ∈ V . Furthermore, let x (V ′) = (x (v′) : v′ ∈ V ′) denote those labels in the
configuration of x restricted to a subset V ′ ⊂ V .

2.1.2 neighborhoods

A neighborhood system N , {Nv : v ∈ V } on V satisfies, for all v ∈ V ,

– Nv ⊂ V

– v /∈ Nv

– u ∈ Nv ⇒ v ∈ Nu

We callNv the neighborhood of v. Intuitively, if we think of V as a set of vertices,
then N defines a set of edges E such that G = (V,E) is a simple undirected
graph and E contains an edge connecting a pair (u, v) of vertices if and only if
u and v are neighbors.
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2.1.3 Markov random fields

For a set S with elements s ∈ S, let S\A denote the compliment of A in S. We
will use a shorthand notion where S\ {s} is written as S\s for some element
s ∈ S. Then, X is aMarkov random field (MRF) with respect to a neighborhood
system N if, for all v ∈ V ,

πv (x) , P (X (v) = x (v) | X (V \v) = x (V \v))

= P (X (v) = x (v) | X (Nv) = x (Nv)) (1)

In other terms, for all v ∈ V , v and X (V \ {v ∪Nv}) are conditionally indepen-
dent given Nv. πv is called the local characteristic of X.

2.1.4 Gibbs random fields

Any collection of random variables X = (X1, . . . , Xd) with probability distribu-
tion f (x), which factors according to

f (x) =
1

Z

∏
C∈C(G)

ϕC (x (C))

where C ∈ C (G) are the cliques of graph G with vertices V = (V1, . . . Vd) , Z is
the partition function

Z =
∑
x∈Λd

∏
C∈C(G)

ϕC (x (C))

and the ϕCs define a family of functions over the configurations of x (C), is a
Gibbs random field with respect to the graph G. The clique functions ϕC define
the edge set E of G.

2.1.5 Going between Markov and Gibbs

We note that if X is a Gibbs random field with respect to G, the X is also
a Markov random field with respect to G. Furthermore, according to the
Hammersley-Clifford theorem, if X is a Markov random field with respect to G
with f (x) > 0∀x∈Λd then X is a Gibbs random field with respect to G.

2.2 Sampling: Markov Chain Monte Carlo
We now give a brief description of how to leverage the properties of Markov
random fields to construct techniques to sample from the complicated proba-
bility distributions which they define. Both STRUCTURE and our method for
inferring population structure employ this approach to perform sampling. For a
more complete introduction to Markov chain Monte Carlo, we recommend [11].
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2.2.1 Markov chains

Consider a sequence of random variables Θ = (θ1, θ2, . . .), θi ∈ Ω sampled from
a conditional probability distribution

P (θt | θ1, . . . , θt−1) = P (θt | θt−1)

then we say that this sample comes from a first-order Markov chain defined
by the transition matrix Tij , P (θt = j | θt−1 = i). We note the following
definitions of properties of a Markov chain.

homogeneity If T remains the same for all t, then we say that Θ form a
homogeneous Markov chain.

irreducibility Informally, if starting at any state i we have a probability
greater than 0 of ever reaching any other state j, j 6= i, then our Markov
chain is irreducible.

aperiodicity If Tii > 0 for some i, then our Markov chain is aperiodic.

If all of the properties defined above hold for a given Markov chain, then there
exists a unique stationary distribution π, such that∑

i∈Ω

πiTij = πj∀j∈Ω

Furthermore,
P (θt = i)→ πi∀i∈Ω

as t→∞. Thus, if we wish to generate approximate samples from a target dis-
tribution π, we simply construct a homogenous, irreducible, aperiodic Markov
chain with stationary distribution π, initialize the chain at a random initial state
θ1, and run the chain for “a long time”, until we are satisfied that θt, θt+1, . . . rep-
resent a sample approximately from π. This general approach for approximate
sampling is known as Markov chain Monte Carlo.

2.2.2 Gibbs sampling

Gibbs sampling is an MCMC technique for generating approximate samples from
the stationary distribution of a Markov chain defined by the joint probability
of a Markov random field. We will focus on generating samples from the joint
distribution of a collection of random variables X = (X1, . . . , Xd) which are a
Markov random field with respect to a graph G. This technique involves the
following steps

1. Choose an initial state θ1 = x1

2. sample θt ∼ P (· | θt−1)
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(a) choose a vertex v ∈ V in the vertex set of G uniformly at random.

(b) sample a new value for x (v) based on its local specification (see
equation1).

3. repeat 2 many times, and then treat θt+c, θt+c+1, . . . as approximate sam-
ples from f (x).

3 STRUCTURE
In this section, we present the STRUCTURE algorithm as described in the 2000
paper by Pritchard, et. al. STRUCTURE uses a Bayesian approach to cluster
individuals into populations based on genotype data. Their model and algorithm
jointly perform inference on the allele frequency profiles of each population and
the population or populations to which each individual in the data set belongs.

3.1 Model
We now give an overview of the models employed in STRUCTURE for absolute
classification and classification allowing for genetic admixture (partial member-
ship to subpopulations).

3.1.1 modeling assumptions

Let X denote the observed genotypes of a data set of individuals, and let the
unobserved random variables Z and P be the populations of origin of each indi-
vidual and the allele frequency profile of each population, respectively. STRUC-
TURE assumes Hardy-Weinberg equilibrium and complete linkage equilibrium
between loci within each population. Under these assumptions, each individ-
ual’s genotype is made up of independent samples given the appropriate allele
frequency distributions for each locus. Fixing Z and P completely specifies
P (X | Z,P ).

STRUCTURE uses a Bayesian framework to perform inference on Z and P
in the following way. First, note that

P (Z,P |X) ∝ P (Z)P (P )P (X | Z,P )

As we describe in the next section, STRUCTURE uses a Markov chain
Monte Carlo approach to obtain joint samples

(
Zi,P i

)
from the this posterior

distribution.

3.1.2 without admixture

In the STRUCTURE model without admixture, the goal is to assign each in-
dividual to a unique population of origin. To make the notation introduced
above a bit more concrete, let x(i,a)

l ∈ {1, . . . , Jl} be the observed allele copy
a from the genotype of individual i at locus l, where Jl denotes the number
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of possible alleles at locus l. Furthermore, let zi ∈ {1, . . . ,K} be the popula-
tion of origin of individual i, and let pklj be the frequency of allele j at locus
l for population k. As mentioned in the previous subsection, the assumptions
of Hardy-Weinberg equilibrium and linkage disequilibrium allow the probabil-
ities P

(
x

(i,a)
l = j | Z,P

)
to be independent for each l and a. Furthermore,

according to the assumption that individual alleles are random samples from
the appropriate allele frequency profile

P
(
x

(i,a)
l = j | Z,P

)
= pzilj (2)

A priori, STRUCTURE assumes that each individual is equally likely to have
originated from each of the K populations. In other words, for all i

P
(
zi = k

)
=

1

k
(3)

3.1.3 with admixture

The STRUCTURE model allowing for admixture includes an additional set of
parameters, Q, which represent the degree of admixture in each individual. qik
is the proportion of individual i’s genome which originated from population k.
Z now has an extra dimension for each allele copy of each individual. z(i,a)

l is
the population of origin of the allele copy x(i,a)

l . Note that there is a one-to-
one correspondence now between the elements of Z and X, and also that the
distribution of Z now depends on Q. Equations 2 and 3 become, respectively,

P
(
x

(i,a)
l = j | Z,P,Q

)
= p

z
(i,a)
l lj

P
(
z

(i,a)
l = k | X,Q

)
= qik

3.2 Sampling Methods
STRUCTURE uses an MCMC method to perform inference on P and Q by
generating samples from the posterior probability distribution

P (Z,P,Q |X) ∝ P (Z)P (P )P (Q)P (X | Z,P,Q)

Analogous to our description of Gibbs sampling in the previous section, STRUC-
TURE performs the following steps in sampling
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1. Update pkl for all k, l according to

pkl | X,Z ∼ D (λ1 + nkl1, . . . , λJ + nklJ)

where
nklj = #

{
(i, a) : x

(i,a)
l = j, z

(i,a)
l = k

}
2. Update q(i) for all i according to

q(i) | X,Z ∼ D
(
α+m

(i)
1 , . . . , α+m

(i)
K

)
where

m
(i)
k = #

{
(l, a) : z

(i,a)
l = k

}
3. For each z(i,a)

l ∈ Z, sample a new population of origin based on

P
(
z

(i,a)
l = k | X,P,Q

)
= βq

(i)
k p

klx
(i,a)
l

where β is a normalizing factor

β =
∑
k∈K

q
(i)
k p

klx
(i,a)
l

4 A Markov Random Field Model for Population
Structure

We now present our Markov random field model for inferring population struc-
ture. We note that our model allows for the sampling of each z(i,a)

l ∈ Z inde-
pendently, conditioned only to the neighborhood system N , defined below

N (i,a)
l =

{
x

(i′,1)
l , x

(i′,2)
l , z

(i′,1)
l , z

(i′,2)
l : i′ 6= i

}
∪
{
x

(i,1)
l′ , x

(i,2)
l′ , z

(i,1)
l′ , z

(i,2)
l′ : l′ 6= l

}
(4)

Our model also gets rid of the latent variables P,Q in structure, replacing them
with the following quantities

p̃klj | N (i,a)
l = E

[
D (λ1 + ñkl1, . . . , λJ + ñklJ)j

]
=

λj + ñklj∑J
j′=1 λj′ + ñklj′

where

ñklj = #
{

(i, a) : x
(i,a)
l = j, z

(i,a)
l = k, x

(i,a)
l , z

(i,a)
l ∈ N (i,a)

l

}
and similarly,

q̃
(i)
k | N

(i,a)
l = E

[
D
(
α+ m̃

(i)
1 , . . . , α+ m̃

(i)
K

)
k

]
=

α+ m̃
(i)
k

Kα+
∑K

k′=1 m̃
(i)
k′
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where
m̃

(i)
k = #

{
(l, a) : z

(i,a)
l = k, z

(i,a)
l ∈ N (i,a)

l

}
Note that p̃klj and q̃

(i)
k are approximations of their counterpart quantities

in the STRUCTURE program. This model allows a Gibbs sampling technique
for inference in which an allele copy can be chosen uniformly at random, and
updated according to a probability distribution defined only by the populations
of origins of the allele copies in its neighborhood, defined by equation 4.

5 Results
We evaluated our model qualitatively on two data sets for which STRUCTURE
has also been tested. The first data set is comprised of a series of dominant
markers, detected using amplified fragment length polymorphisms (AFLPs),
from a number of whitefish. Half of these fish were known to have a dwarf
phenotype, and the other half were normal. The results of both my model and
of STRUCTURE are shown in Figure 1. Observe that both our model and
STRUCTURE detected admixture in roughly the same individuals. However,
the membership of each individual seems to be more skewed in our model as
compared with STRUCTURE.

The second data set on which we verified our model is a sample of 2810 single
nucleotide polymorphisms (SNPs) from individuals from 53 human populations
across 6 continents[15]. Outputs from our model and STRUCTURE are shown
in Figure 2.

6 Conclusion
In summary, we have described a modification of the STRUCTURE program
for inferring population structure based on Markov random field approach. Our
model is theoretically simpler, more flexible, and faster for sampling and other
computations. We have shown that our model uses a simplifying approximation
while still

7 Future Work
We hope to conduct further model verification in the future by gathering more
quantitative results. Additionally, we would like to implement more of the
modeling layers of the STRUCTURE program in terms of our Markov random
field framework.
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