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Chapter 1

Research Overview

RNA-Seq , or “Whole Transcriptome Shotgun Sequencing,” is a relatively new tool

for transcriptomics that involves the use of deep sequencing technology. Studies

using RNA-Seq have already changed our understanding of the transcriptome [41].

Although RNA-Seq provides a method of expression profiling that is far more precise

than other methods currently available [41], it also has a new suite of interesting

bioinformatics problems that must be solved before it is able to entirely reach its

promise. As an example, an RNA-Seq experiment necessitates the mapping of RNA

reads back to a reference genome, or alternatively, their assembly into contigs, to

reveal transcriptome structure. However, these reads are not uniformly sampled from

the transcriptome, and often contain extensive alternative and trans-splicing, making

the problem much more difficult.

1.1 Problems Investigated

This thesis focuses on one of the problems encountered during RNA-Seq experiments—

namely, the development of algorithms to cluster genes that exhibit similar expression

patterns. Because of the challenges and complexity of real-life RNA-Seq datasets, this

is a very difficult problem and an active area of research [35].
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1.1.1 The Simulation of RNA-Seq Experiments

In order to test and eventually develop transcriptome clustering algorithms, it is

helpful to have a method of simulating RNA-Seq datasets. With such a tool, these

clustering algorithms may be evaluated over a wide range of possible RNA-Seq exper-

iments. Further, using such a tool makes it possible to know the “true” clusters from

a simulated dataset, consequently making the analysis of these clustering algorithms

much more straightforward and accurate.

The first work accomplished in this thesis is the development of a program that

is capable of generating simulated RNA-Seq datasets. While based on a model that

has been shown to fit RNA-Seq data well, my program does not intend to exactly

simulate biological datasets—at this point the level of complexity within such datasets

make them very difficult to simulate and well as analyze. Instead, I aim to produce

simplified datasets for which the correct clustering may be feasibly obtained. This

can be seen as a first step towards the analysis of real-life datasets.

1.1.2 Clustering Algorithms for RNA-Seq Data

The second work in this thesis is the implementation of algorithms to cluster RNA-

Seq datasets. The algorithms implemented are a slightly altered versions of Lloyd’s

algorithm (k-means), the unweighted pair group method with arithmetic mean, and

a self-organizing map.

Finally, the performance of these algorithms on the simulate dataset is analyzed

with the use of three quantitative methods of cluster goodness: the adjusted Rand

index, normalized mutual information, and the Silhouette validation metric. This

analysis shows that the implemented and slightly altered version of k-means, along

with the self-organizing map, perform best under almost all experiment parameter-

izations. Interestingly, the hierarchical clustering algorithm performs strictly worse

than both other algorithms in the vast majority of simulations.

It must be noted that these results depend on the accuracy of the simulated data,

which is a greatly simplified version of reality. However, this work comprises the
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beginning of the development of a framework that may be used in the future for

the realistic simulation of RNA-Seq data, as well as the validation, selection, and

development of RNA-Seq clustering algorithms.
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Chapter 2

Research Background

2.1 Relevant Molecular Biology

A review of some relevant biology is helpful to understand the models and algorithms

contained within the remainder of this thesis. The following is a very brief introduc-

tion to the genome and transcriptome, as well as common methods of transcriptome

quantification. This chapter is by no means a biological treatise; biology abounds

with details and exceptions, most of which are abstracted away for the purpose of

simplicity, feasibility, clarity, and relevance to the problem at hand.

2.1.1 The Genome and Transcriptome

The genome contains an organism’s hereditary information in the form of DNA. The

genome can be understood as a set of chromosomes , G = {G1, G2, ..., Gc} where c is

the number of chromosomes. For the human genome, c = 23. Each Gi is a sequence

of coding and non-coding regions such that Gi = (Ci
0,a, C

i
a,b, ..., C

i
y,n). A coding or

non-coding region Ci
xy is the substring of chromosome i from symbol x to symbol y

To become RNA, the region Ci
xy must first undergo transcription, Ci

xy → Ri
xy,

which produces the RNA complement of coding sequence Ci
xy. RNA is a string

over alphabet ΣRNA = {A,C,G, U} and transcription is symbol-by-symbol bijective

mapping from ΣDNA → ΣRNA.
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RNA that codes for a protein is called mRNA. However, RNA can have a va-

riety of other biological functions. For example, tRNA are molecules that are used

during translation, rRNA forms part of the ribosome, the protein synthesis enzyme,

and snRNA is involved in a variety of biological processes such as RNA splicing,

transcriptional regulation, and telomere maintenance.

Transcripted coding regions are then translated to proteins, which are biochem-

ical compounds consisting of folded polypeptides that have some biological function.

Polypeptides are the strings of amino acids that are the result of translation, a map-

ping from mRNA to protein.

The transcriptome at sample time i, Ti, is the set of all RNA molecules present

in a set of cells, along with their count. If we define N i
x,y as the number of copies of

Ri
x,y present in the cell population, then the transcriptome is

Ti = {(Ri
x,y, N

i
x,y) | Ci

x,y ∈ Gi}.

Unlike the genome, which is mostly invariant over time, the transcriptome is a function

of external conditions, and thus reflects the genes or coding regions that are actively

expressed or transcribed.

2.1.2 Expression Profiling using RNA-Seq

Transcriptomics , also called expression profiling , is the attempt to discover informa-

tion about how T changes over time and with new environments. Given k experi-

ments, samples, or time points, expression profiling seeks to discover

T = {Ti | 0 ≤ i ≤ k}.

Expression profiling has been historically most often accomplished through the use of

microarray technology. However, expression profiling using next-generation sequenc-

ing technology, or RNA sequencing, is known as RNA-Seq.

RNA-Seq is the next-generation of expression profiling tools. RNA-Seq provides
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researchers with a way to experimentally quantify the transcriptome, and offers many

advantages over DNA microarray technologies, as well as a new set of difficulties.

In a typical RNA-Seq experiment a population of RNA is converted into a library

of cDNA fragments with adapters. Each cDNA molecule is then sequenced (occa-

sionally after amplification) using next-generation sequencing technology to obtain

sequences from the ends of the molecule inwards, typically 30 to 400 base pairs. Af-

ter sequencing, these reads are maps to a reference genome or assembled de novo

to produce a genetic map of the transcriptome, consisting both of the transcriptome

structure, as well as some function of the level of expression for each gene.

454 Sequencing Illumina SOLiD
Sequence chemistry Pyrosequencing Sequence-by-

synthesis
Ligation-based

Amplification approach Emulsion PCR Bridge amplif. Emulsion PCR
Paired end separation 3 kb 200bp 3 kb
Mb per run 100 Mb 300 Gb 3,000 Mb
Time per paired end run 7 hours 7-14 days 5 days
Read length 250 bp 100 bp 35 bp
Cost per run $8,438 USD $11,750 USD $17,447 USD
Cost per Mb $84.39 USD $1.00 USD $5.81 USD

Table 2.1: A comparison of the most popular next-generation DNA sequencers used
for RNA-Seq experiments.

While RNA-Seq is still a developing technology, it presents some key advantages

over other methods of transcriptome profiling. First among these is that RNA-Seq

is capable of assembling transcriptomes for which there exists no existing genomic

sequence or reference genome. Second, RNA-Seq has much lower background signal

than DNA microarrays [41]. This is because each DNA sequence can be mapped

directly to unique regions of the genome, and there is no upper limit for the number

of reads that can be mapped in this way. Finally, because it does not any cloning steps,

an RNA-Seq experiment requires less DNA than a corresponding DNA microarray

experiment [41].

Due to its status as a new technology, RNA-Seq also has an interesting array

of new challenges to confront. First, an RNA-Seq experiment requires the building
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of a cDNA library, the necessary manipulations of which complicate the analysis of

the experiment results. For example, amplification can introduce PCR artifacts that

are difficult to distinguish from small RNA reads. Second, RNA-Seq experiments

involve the same bioinformatic problems that are encountered in high-throughput

sequencing experiments, including the necessity for efficient methods of manipulating

large datasets, mapping the reads to a reference genome or assembling them into

contigs. Further complicating the matter are problems such as alternative splicing

and polymorphisms.

2.2 Motivations for Research

People have relied on biological sources of energy for the majority of human history,

from wood combustion to muscle contractions. The switch to so-called non-renewable

energy sources has occurred relatively recently. This can be seen in figure 2-1, pro-

duced using historical data from the United States Energy Information Association.

The increase in energy-hungry technological development, as well as a growing

global population, has vastly increased the worlds energy requirements. As expected

by economic theory, the rapid increase in use of non-renewable energy sources, such as

coal, petroleum, natural gas, and nuclear materials, has resulted in a corresponding

decrease in supply and increase in cost. This drop in supply is coupled with a decrease

in energy security resulting from regional conflicts, as well as alarming environmental

devastation and greenhouse gas emissions (GHG) [23]. The net effect is a rising cost

of energy, despite arguably exponential increases in energy-enabling technology; in

1970, energy cost, on average, $1.651per million British thermal units (Btus). By

2008, that value had risen to $12.93.

There are several possible outcomes from the currently unstable energy situation.

One one extreme are Malthusian catastrophe-esque scenarios2 On the other extreme

1This value includes taxes and is not adjusted for inflation; in 2008 dollars, this would be $9.05.
As mentioned above, this becomes especially significant when one considers the exponential pace of
technological development, which would be expected to exponentially decrease the cost of energy.

2First formulated by Thomas Malthus in 1798 in An Essay on the Principle of Population, a
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Figure 2-1: The relative contribution of energy sources to total energy production in
the United States, from 1645 to 1945.

is the development of an energy source that approaches a perpetual motion machine3;

a clean, renewable, inexpensive, and efficient energy source.

While renewable energy current makes up only 8% of total energy production, in

the future that number is expected to rise considerable [39]. The United Nations Di-

rective on Renewable Energy has mandated that by 2020, 20% of all energy produced

by member states be from a renewable source. Even the United States Air Force and

Department of Defense have began programs to sharply reduce their dependencies

Malthusian catastrophe is the result of a rate of population growth that outpaces agricultural devel-
opment. This disparity would force a return to subsistence farming lifestyle, further aggravated by
the effect of population growth on the environment. This theory is especially interesting and relevant
to this thesis as it can be generalized to apply to energy, rather than agricultural, development. In
this case, the rate of population growth supersedes the rate of advancements in energy production,
resulting in a return to basic energy sources as the energy demands of the growing population far
outweigh the energy generating potential of even rapidly developing energy generating technologies.

3A perpetual motion machine describes a hypothetical mechanism that generates more energy
that it consumes, thus producing an infinite source of energy with no inputs or side effects. The
development of such a machine would violate the first law of thermodynamics and is impossible, given
current understandings of physics. An interesting and relevant thought experiment popularized by
Richard Feynman is as follows: Consider a paddle connected to a ratchet, so that its rotation
is limited to a single direction. Brownian motion—random particle movements—would cause the
surrounding molecules to strike the paddle in a random fashion, but the ratchet would allow it to
turn in only one direction [30]. The fallacy in this experiment quickly becomes obvious. For criticism
of this theoretical machine, see Parrondo and Espanol (1996).

16



on foreign oil through research in oil alternatives [9, 15]. The development of new

sources of biological energy holds enormous potential in helping meet these goals and

providing a clean, carbon-neutral, environmentally-friendly, and inexpensive energy

source.

2.2.1 Bioenergy

In this thesis, bioenergy is defined as energy produced from relatively recent, biologically-

induced carbon fixation. Note that while fossil fuels are the consequence of biological

carbon fixation, they are not considered biofuels because they are considered to have

been “out” of the carbon cycle for a long time and also because their rate of accu-

mulation is inconsequential when compared with their rate of usage. Biofuel, while

most often used to refer to liquid bioenergy, can be considered a synonym of bioen-

ergy, and is used as such in this thesis. By this definition, the set of energy sources

that may be considered biofuel is very large, including, for example, solid biomass

such as switchgrass and wood, liquid fuels such as bioethanol and biodiesel, and even

biogasses4.

First-generation biofuels are defined as those produced from a specific subset of

bioenergy sources: sugar, starch, and vegetable oil [23]. These biofuels are in rel-

atively common use worldwide, especially in Europe and Brazil. However, while

first-generation biofuels offer certain advantages, their production and deployment

has been hindered by a poor distribution infrastructure, low consumer demand, an

unavailability of compatible vehicles, and a lack of a coordinated expansion plan

[15]. While there are many issues and disadvantages with biofuels in general, first-

generation biofuels often offer so many disadvantages so as to provide zero or even

negative net utility. [15]. One such issue is the energy sources for first-generation

4Bioethanol refers to the alcohol produced by fermentation of carbohydrates produced in a sugar
or starch crop. Biodisel refers to a biofuel made from animal fat and vegetable oils through transes-
terification, which is often used as a diesel additive, although it may also be utilized in a pure form.
Biodiesel is the most common biofuel in Europe. Biogas refers to a gas formed during the anaerobid
fermentation of organic matter. The most prevalent biogasses are methane, CH4, carbon dioxide,
CO2, and hydrogen sulphide, H2S.
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biofuels, which are largely grain-based to allow for easy extraction and fermentation

of simple sugars. However, such energy sources are themselves costly to produce,

and often compete for resources with the production of foodstuffs such as corn [8].

Economically, the production of first-generation biofuels often relies largely on gov-

ernmental subsidies, and in most cases is limited by a production threshold above

which further biofuel production becomes threatening to food supplies, the environ-

ment, and biodiversity. Further, the amount of carbon emissions produced by the

usage of these biofuels, including production and transportation, often approaches or

even exceeds that of traditional fossil fuels [13].

Second-generation biofuels are the latest attempts to produce clean, efficient

energy by harnessing the energy in waste and byproduct materials and non-food

biomass. In this thesis, second-generation biofuels are defined as fuels produced from

sustainable feed-stock, where sustainability is a function of factors including availabil-

ity, GHG emissions, biodiversity impact, and land use. An especially large amount of

research and funding has gone towards the use of lignocellulosic biomass , defined as

biomass composed of cellulose, hemicellulose, and lignin [7]. While second-generation

biofuels are often much more promising than their first-generation counterparts, they

too suffer from a host of problems that must also be considered.

2.2.2 The Upsides of Biofuels

There are economic incentives driving the adaptation of second-generation bioenergy.

On a macro scale, these include a $23.1 billion increase in United States gross domestic

product (GDP), the creation of over 163,000 new jobs, a $6.7 billion increase in mean

household income, and tax revenue increases of $2.7 billion and $2.2 billion for the

federal and state governments, respectively [14].

This economic incentive has spurred interest and billion of dollars in funding in

the public and private sectors. These investments include the formation of companies

such as Amyris, Solazyme, Gevo, and KiOR5, all of which have attracted international

venture capital and media attention, although their success is, so far, very debatable.
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Figure 2-2: Total oil consumption in the United States by original source. Data from
U.S. Energy Information Association (2011).

There also exist political advantages in the adoption of biofuels, primarily due to a

potentially decreased reliance on imported oil. Many nations are highly dependent on

imported energy, and the United States is the top importer of petroleum in the world.

While foreign oil dependence peaked in 2005 and has since decreased, see figure 2-2,

the United States remains highly dependent on foreign oil, consuming almost 7 billion

barrels a day, of which 49% is imported [39].

Further, as is shown in figure 2-3, much of this oil is imported from nations

that are either unstable or are located in troublesome regions of the world. As a

result, securing production requires substantial U.S. investment of both economic

and political capital. Further, this reliance on importation results in price volatility,

decreasing net U.S. efficiency and GDP. Biofuels, as well as any other type of domestic

energy production, are a potential route to ameliorating this dependence.

5Amyris and Solazyme were both founded in 2003 and have market capitalization of $170 million
and $687 million, respectively. Gevo was founded in 2005 and has a current market capitalization
of $243 million, and KiOR was founded in 2007 and has market capitalization of $1.11 billion [29].

19



Figure 2-3: Oil imports from select countries as a percentage of total U.S. consump-
tion. Data from the U.S. Energy Information Association (2011).

2.2.3 The Downsides of Biofuels

One must also, however, explore the potential downsides of bioenergy, of which there

are many. When considering the billions of dollars in funding that is going into

bioenergy research in both the public and private sectors, these various disadvantages

become very serious. Addressing these problems is equally as important a research

topic as enabling the technology in the first place. Some of the key issues with the

production and use of biofuels include competition with food production, the often

high carbon emissions associated with the production and transportation of biofuels,

deforestation, and pollution [21].

A serious problem with the development of biofuels that rely on agriculture for

their feedstock production is the risk of diverting farmland from food production.

This introduces competition for resources, driving up the prices of the food stables

that are typically produced on such land [3]. In fact, it has been shown that the

expansion of the use of ethanol as a fuel in the United States increased maize prices

by 21% in 2009, in comparison with what they would have been had ethanol stayed

at 2004 levels of production [3]. Another, even more recent study has shown the

production of biofuels and their subsidies to be the leading causes of shocks in the
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agricultural market. Perhaps the most negative outcome from this conflict between

food and fuel is the decrease in the amount of food that can be purchased by the most

impoverished and at-risk sector of society. The counter-argument is that new, second-

generation biofuels use parts of corn or other plant matters that are not suitable for

human consumption, and that this competition for land use only exists in relation to

first-generation biofuels.

While the goal of biofuel research is the creation of an energy source that is carbon

negative, or at least carbon neutral, it has been observed that some biofuels fall far

short from this goal, sometimes producing as much or even more carbon emissions

than their corresponding fossil fuels. When carbon emissions are calculated using

a life cycle analysis (LCA), all carbon emitted during the production of biofuels

are summed. This includes everything from tractor emissions during planting to

transportation costs. Many such studies have been done for many different types

of biofuels, with varying results (see figure 2-4) [40, 14, 37]. One interesting, hidden

aspect of carbon emissions discussed by a study from Princeton University is the fixed

carbon released during the clearing of new land for the production of biofuels [37].

While these issues are well characterized for first-generation biofuels, accepted LCAs

for second-generation biofuels are still to be produced.

Another, related criticism of biofuels is that they result in large-scale deforestation

of old, mature trees. These trees are then usually replaced with sugar cane or some

other feedstock crop. However, these crops have a much lower capacity for CO2

removal through photosynthesis than the large trees they are replacing. This also

contributes to high atmospheric levels of greenhouse gasses and, consequently, to

global warming and a reduction in biodiversity both on land and sea [31]. Further,

the removal of cellulosic biomass for biofuel production, which is called for in second-

generation biofuels, is claimed to deplete soils of their necessary nutrients.

The effect of biofuels on chemical pollution has also been studied, to alarming

results. The chemicals that have received the most attention in this area are the

aldehydes , especially formaldehyde and acetaldehyde. Most aldehydes are toxic to

living cells—formaldehyde cross-links amino acids and has been banned by the Eu-
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Figure 2-4: Carbon emissions per Megajoule of energy produced for various biofuel
sources. From Carbon and Sustainability Reporting Within the Renewable Transport
Fuel Obligation.

ropean Union, while acetaldehyde is carcinogenic and mutagenic. Alarmingly, only a

10% mixture of ethanol in gasoline (as in E10 gasohol) increases aldehyde emissions by

40% [17]. Studies using gas chromatography in São Paulo, Brazil, which uses ethanol

fuel, and Osaka Japan, which does not use ethanol fuel, were performed to measure

atmospheric levels of aldehydes [6]. It was found that atmospheric formaldehyde was

160% higher in Brazil, while acetaldehyde was 260% higher. However, these findings

are controversial, and some claim that the lowered sulfer content of biofuels actually

lowers net acetaldehyde levels [17].

Clearly, while biofuels have great promise, they also hold great controversy. It is

likely that the portrayal of first or even second-generation biofuels as the “holy grail”

of renewable energy are far overblown. It is also likely that the more alarming of the

anti-bioenergy reports are also exaggerated. In any case, there is certainly a need

for further research and study to reduce the downsides of biofuels, improving their

efficiency and making them a more viable alternative energy source.
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2.2.4 The Biofuel Problem

On the most high level, biofuel researchers seek an algorithm to solve the biofuel

problem, outlined in algorithm 2.1. That is, on a very high level, an algorithm

that takes as input a sustainable energy source derived from relatively recent carbon

fixation and returns as output a biofuel with the largest amount of energy possible

and the minimum number and magnitude of undesirable effects, where undesirable

effects include issues such as deforestation, impact on food prices, carbon emissions,

decrease in biodiversity, and impact on water resources.

Algorithm 2.1 The biofuel problem

Require: An energy source derived from recent carbon fixation
Ensure: A biofuel with maximum energy and minimum negative side effects

In the popular and specific case of biofuels derived from lignocellulosic biomass, the

biofuel problem can be divided into three sub-problems. The first such sub-problem

is the design of feedstocks that are optimized for use as a biofuel energy source,

where feedstocks are defined as the biomass crop and are generally warm season

perennial grasses, fast growing woody grops, and common garden or agricultural

waste [18]. A solution to the feedstock design problem is an algorithm that outputs

a biofuel energy source, such as sugar cane, with fermentable sugars that are more

easily deconstructed. Research in this area seeks to produce plants with optimized

production of easily fermentable sugars through genetic engineering and manipulation

of the genes and enzymes involved in the creation of lignocellulose. These engineering

efforts may also be aimed at improving the plant itself; for example, making it more

disease resistant or tolerant of low-nutrient conditions.

The second sub-problem within the biofuel problem is the development and im-

provements of methods to convert lignocellulosic biomass into fermentable sugars.

There are three enzymes that are known to be required for the conversion of cellulose

to glucose: endoglucanases, exoglucanases, and cellobiases. However, lignocellulosic

biomass is recalcitrant to hydrolysis by these enzymes, partially due to its compli-

cated cell wall matrix shown in figure 2-5, and the direct conversion of this biomass
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Figure 2-5: A simplified diagram of the plant cell wall matrix structure with an
emphasis on cellulose. From Harris (2010).

to fermentable sugars requires a large imput of energy. Thus, feedstocks are often

pre-treated with a chemical cocktail to lessen the bonds between the lignin, cellulose,

and other polysaccharides, as well as to increase the surface area available for enzyme

function [18].

Research in this area is aimed at developing an understanding of the chemical and

biological environments that occur during the feedstock deconstruction. This includes

the development of optimized enzyme cocktails or novel pretreatment methods [26].

However, perphaps the most active reaserch in this area is devoted to the discover,

design, and optimization of deconstruction enzymes. This involves both searching

within novel environments, such as tropical rain forests and compost piles, for existing

enzymes that excel at the deconstruction of plant biomass6, as well as optimizing the

structure and catalytic efficiency of these enzymes so as to improve efficiency [1, 4, 26].

6The search of useful organic compounds, biological or genetic, in this case novel enzymes, is
called bioprospecting . Often, bioprospecting involves the testing and sequencing organic compounds
in microrganisms, plants, and fungi that grow in extreme environments such as hot springs, deserts,
rainforests, or even landfills.
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As mentioned before, first-generation biofuels are based mostly on the use of

starch-based biomasses because the sugars within such biomasses are easily fermentable

by microbes such as yeast. On the other hand, the sugars resulting from the decon-

struction of lignocellulose are complex and often contain chemicals that prevent their

fermentation by yeast. Research in this area involves tools such as synthetic biology

and mathematical models of cell regulation and metabolism in an attempt to create

new microbes that are optimized for the fermentation of these more complex sugars

[22].

Work in this area requires a very strong understanding not only of genetic struc-

ture of various microbes, but also the ability to manipulate microbe metabolism to

increase overall biofuel yield, as well as dealing with the side effects of such alter-

ations. For example, the creation of microbes to convert biomass to ethanol requires

microbes with unnaturally high levels of ethanol tolerance. This can be resolved

through knowledge and of a microbe’s natural pathways, which may lead to genetic

engineering to artificially regulate networks related to ethanol tolerance in a new way,

or proteomic work to increase or decrease the efficiency of enzymes related in ethanol

tolerance, such as dehydrogenases [4].

2.2.5 RNA-Seq Clustering

As mentioned earlier, many governments including the United States have funded

research in the development and implementation of biofuels. The U.S. Department

of Energy has established three Bioenergy Research Centers (BRCs) in 2007. The

goal of these centers is to investigate high-risk, high-return biological solutions for

the biofuel problem, with research categorized under the three sub-problems outlined

above: the development of next-generation bioenergy crops, the development of novel

enzymes and microbes with exceptional biomass-degrading abilities, and the creation

of microbe-based biofuel production strategies. These BRCs are the Joint BioEn-

ergy Institute in Emeryville, California, the Great Lakes Bioenergy Research Center

in Madison, Wisconsin, and the BioEnergy Science Center at Oak Ridge National

Laboratories in Oak Ridge, Tennessee.
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I was given the opportunity to visit one of these BRCs, the BioEnergy Science

Center at Oak Ridge National Laboratories in Tennessee. While there, I visited

Jeremy Smith, Ph.D., the Director of the Department of Molecular Biophysics, to

better understand the role that computational genomics must play in the solving of

the biofuel problem.

Much of the research in the Department of Molecular Biophysics is in structural

simulations of protein interactions using physical models and the massive computing

power available at Oak Ridge National Laboratories. These simulations are often

focused on modeling enzymes involved in the biofuel problem, particularly those in-

volved in biomass construction. However, it is sometimes helpful to understand the

role of these enzymes in terms of the organisms transcriptional structure—what type

of expression pattern it contains, and what other expressed regions contain a similar

expression pattern [36].

To this end, there is a need for computational algorithms that find regions with

similar changes in expression over different time points. Such algorithms would take

as input a set of genes and regulatory information about each gene, and output

the genes, partitioned into groups such that each group shares regulatory behavior.

These groups then imply correlation of regulation. For example, if genes known to be

involved in the cellulose degradation pathway of some microbe are outputted within

a partition with other genes, then those genes would merit further attention and

inquiry, such as biophysical modeling or biological experimentation to determine their

function. While such clustering does not imply causation, with sufficient data points

and a sufficient number of treatments, the associations will likely prove interesting,

and often do reflect true biological relationships [36, 11, 43, 42].

Of special interest is the clustering of variability in gene expression among bio-

logical samples from a single group, rather than simple mean expression levels [43].

Some notable investigations that utilized clustering analysis on transcriptome data

are outlined below.
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Figure 2-6: Heat map of the eigengenes representing each gene module. The columns
represent tissue samples, and the rows represent eigengenes.

The maize reproductive transcriptome

Maize (Zea mays L.) is a vital worldwide crop, with over 36 billion hectares grown

in the United States alone in 2010 [11]. Maize makes an interesting species to study

as it is used for food, animal feed, and also biofuel production. As demand for all

three of these sources increase, genetic engineering will be necessary to improve the

currently available species. This, in turn, requires the use of computational algorithms

to understand the maize genes and phenotypes.

Davidson et al. (2011) describes attempts to elucidate the functioning of some

maize genes involved in reproduction through the use of clustering algorithms. As

a result, see figure 2-6, modules of genes were found that were expressed in specific

stages of maize development. Also discovered were sets of genes whose expression

varied across male, female, or seed maize tissue. These analyses, combined with

others within the same paper, offer a set of genes as candidates for further research

into maize productive development and grain yield potential.

Functional transcriptome organization in the human brain

Microarray and, more recently, RNA sequencing technologies have been used to dis-

cover transcriptome organization across tissues, and also across species. Organiza-

tion of the transcriptome typically involves creating several groups of genes, or gene
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Figure 2-7: Meta-network of co-expressed gene modules in the human brain.

modules, whose expression levels are correlated across samples. Finding these rela-

tionships offers insight into the transcriptional regulation represented in the genome.

Further, if these gene modules are capable of being reproduced across samples and

each module is able to be organized into a clear functional category, then it is possible

to use this clustering to elucidate the underlying organizational structure of the tissue

being samples [42].

Winden et al. applied a type of cluster analysis to transcriptome data sets from

human brain samples. Modules of co-expressed genes were identified via hierarchical

clustering, and gene modules representing different brain tissues and cell types were

identified. Using this information (see figure 2-7). Winden et al. were able to annotate

novel genes based on their correlation with eigengenes from specific modules, and some

genes were identified that had no previous report of neuronal function.

Drug targets in oncogenic signaling networks

One of the most lethal of all cancers, and also the most common primary malignant

adult brain tumor, is glioblastoma [19]. New methodologies of treatment are drasti-

cally needed, and it has been shown that inhibition of the epidermal growth factor
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receptor, which is commonly over-expressed in glioblastoma, promoted significant re-

sponse in some glioblastoma patients. The next step in development a treatment was

identifying possible drug targets.

Horvath et al. (2006) applied cluster analysis to identify a drug target. For this

study, two datasets were analyzed using cluster analysis. The results showed highly

conserved gene modules. Another dataset of breast cancer samples was introduced

and analyzed, and all three samples showed a high degree of gene module preservation.

The module representing genes involved in cell cycle and mitosis was selected, and

the most highly connected genes in that module were investigated. The ASPM gene

stood out because it has previously been reported as highly expressed in other types

of cancers and because it is typically expressed at very low levels in most cells under

the majority of conditions. Subsequent experiments showed ASPM-knockout cells

had a strong, specific inhibition of proliferation.

Comparison of human and chimpanzee brains

Humans and chimpanzees are known to share a remarkable number of genes related

to brain function. Using eighteen human and eighteen chimpanzee samples, Oldham

et al. (2006) identified modules of similarly expressed genes in both samples. Upon

analysis, it was found that several of these modules were highly conserved, and several

were not. Further, it was found that the percentage of human-only connections in each

module relate known evolutionary hierarchies. Many of these connections converged

to the same hub genes. Gene expression patterns were found to have particularly

strong differences in the cerebral cortex, which is consistent with rapid cerebral cortex

expansion after human evolutionary divergence from chimpanzees.

This study was later expanded on, and the modules from an eigengene network

analysis were found to have good agreement with human-only modules, which is to

be expected as most human modules are preserved in chimpanzees. Overall, these

studies resulted in novel insights into the differences between human and chimpanzee

brain transcriptome arrangement.
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Chapter 3

Modeling and Simulating RNA-Seq

Data

Model selection is one of the most basic methods of scientific inquiry, and selection of

a good model—where good is defined as a qualitative balance between simplicity and

goodness of fit—is of paramount importance. In past research, RNA-Seq data has

been modeled using the Poisson [5, 28] or negative binomial [33] distributions. While

neither model is complicated, the goodness of fit of each model varies according to the

dataset. The Poisson distribution is appropriate when technical replicates are used

[28, 5], while the negative binomial is a better fit for datasets containing biological

replicates [2]. This can be understood intuitively; biological replicates will likely

introduce greater variability than is allowed for by the Poisson distribution (this has

been called the “over-dispersion phenomenon” [2]). A negative binomial model that

allows for over-dispersion has been several times applied to RNA-Seq data analysis

[33, 2, 35]. Herein, I will describe a model for RNA-Seq datasets with biological

replicates that is based on the negative binomial distribution and follows the work

of Si and Liu (2011). I then implement and use this model to generate synthetic

datasets which will be used to analyze the performance of clustering algorithms of

use in the biofuel problem.
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3.1 Modeling RNA-Seq Data

RNA-Seq data can be extremely high dimensional and complex. In the model that

follows, I opt for simplicity and clarity over biological accuracy. As this simulation and

subsequent analysis is the first step towards more complex models and algorithms for

RNA-Seq data, the successful implementation and testing of this model is a landmark

on the way to biological accuracy.

3.1.1 Negative binomial distribution

Consider a sequence of Bernoulli trials, parameterized by the probability of success

p. The distribution of the number of successes before r failures follows a negative

binomial distribution. This number of successes, Y , defines a negative binomial ran-

dom variable, which is notated Y ∼ NB(r, p). For k ∈ N1, the negative binomial

distribution has the probability mass function

f(y | r, p) =

(
y + r − 1

y

)
(1− p)r py.

If instead of r and p the known parameters are the mean, λ, and dispersion, φ, an

alternative expression is necessary. Because this is the case in the following model, I

follow instead the alternative parametrization of Robinson and Smyth (2008). Let Y

be a negative binomial random variable with mean λ and dispersion φ. The proba-

bility mass function becomes

f(y | λ, φ) =
Γ (y + φ−1)

Γ (φ−1) Γ (y + 1)

(
1

1 + λφ

)φ−1 (
λ

φ−1 + λ

)y
,

giving E [Y ] = λ and Var [Y ] = λ + φλ2. Given the standard parameters p and r, it

can be derived that

p =
φ

φ+ λ
, r = φ,

which is used below. Note that as φ approaches 0, this model approaches a Poisson

model.
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3.1.2 Model

Define the random variable N , where Ngij as the number of reads mapped to gene

g = 1, ..., G during treatment i = 1, ..., I and replicate j = 1, ..., J . Thus, G is the

total number of genes, I is the number of different treatment groups, and J is the

number replicates per treatment group. Define αg as the mean expression level for

gene g, and let βgi be the expression level of gene g in treatment group i relative to

αg. Let sgij be the normalization value, which can be a function of many factors such

as gene length and the total number of mapped reads in a library [35]. Assuming

that Ngij follows a negative binomial distribution as defined above, our model is

represented by the probability mass function

f(Ngij | λgij, φg) =
Γ
(
Ngij + φ−1g

)
Γ
(
φ−1g
)

Γ (Ngij + 1)

(
1

1 + λgijφg

)φ−1
g
(

λgij
φ−1g + λgij

)Ngij

, (3.1)

where λgij = E [Ngij] = exp(αg+βgi+sgij), and also Var [Ngij] = E [Ngij]+φgE [Ngij]
2.

Likelihood and independence

To gain a better understanding of our model, it is helpful to analyze its likelihood.

Assume that we have K distinct clusters. Define the center of each cluster k ∈ K as

µk = (µk1, ..., µkI), which is a vector of the cluster centers for all I treatments of a

specific gene, where for k ∈ {1, ..., K} and
∑I

i=1 µji = 0. The likelihood that gene g

belongs in the kth cluster is then f(Ng | αg, βg = µg). Adding mixing probabilities

for each cluster, pk ≥ 0 and
∑K

k=1 = 1, the entire likelihood function is

∏
g

∑
k

pkf(Ng | αg, βg = µg). (3.2)

The likelihood function makes explicit the assumption of independence among genes.

This is clearly an inaccurate assumption, and one of the drawbacks of this model.

However, the relationships between many thousands of genes is extremely difficult to

capture. This problem is discussed later on.
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3.2 Simulating RNA-Seq Data

This model can be used to generate simulated data from theoretical RNA-Seq ex-

periments, which can then be used to analyze the performance of various RNA-Seq-

focused algorithms. In this section, I first describe a program developed to sample

RNA-Seq data from the model described above. Several parameters are introduced

to control various aspects of the simulated dataset, from the magnitude of expression

changes across treatments to the level of fluctuation around gene clusters. I then

discuss the implementation of this algorithm and present some sample results and

visualizations.

3.2.1 Algorithm

To sample from the model discussed above and produce mapped read counts in a

similar way to real RNA-Seq data, it is necessary to introduce several new parameters

and concepts. These parameters, as well as all variables used in the algorithm, are

described in table 3.1.

The most significant of these new parameters are K, {δki}, τµ, τε, τα, and τφ, as

well as the parameters defining the normal and gamma distributions that are sampled

from, εµ, εσ2 , αµ, ασ2 , and φα and φβ. The parameter K controls the number of distinct

expression patters in the simulated data, and δki for k = 1, ..., K and i = 1, ..., I

determines the type of expression change for expression pattern k during treatment

i. The τ parameters control characteristics of the data being analyzed by RNA-Seq

and in many ways determine the difficulty of analyzing the data; τµ controls the level

of change in gene expression across treatments, τε determines the level of expression

fluctuation or change relative to the average of the corresponding expression pattern,

τα controls the level of average expression, and τφ controls the level of dispersion, with

τφ = 0 corresponding to a Poisson model. The algorithm used, described in algorithm

3.1, takes as input the vector (G, I, J,K, τµ, τε, τα, τφ, {δki}, εµ, εσ2 , αµ, ασ2 , φα, φβ) and

outputs the G × I × J matrix N , with Ngij sampled appropriately from f(Ngij |

λgij, φg).
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G Total number of genes whose expression is being modeled
I Number of distinct treatments or expression experiments
J Number of replicates for each expression experiment
K Number of distinct expression patterns
τµ Controls the level of change in gene expression across experiments
τε Controls the level of expression fluctuation
τα Controls the level of average gene expression
τφ Controls the level of dispersion in the experiments
δki Determines the type of expression change for expression pattern k in experiment i
εµ The mean of the normal distribution εgi is sampled from
εσ2 The variance of the normal distribution εgu is sampled from
αµ The mean of the normal distribution αg is sampled from
ασ2 The variance of the normal distribution αg is sampled from
φα The shape of the gamma distribution φg is sampled from
φβ The rate of the gamma distribution φg is sampled from
Zgk An indicator variable representing whether or not gene g has expression pattern k
µki The average expression for pattern k in experiment i
εgi The fluctuation of the expression of gene g in experiment i
βgi The variance of expression level of gene g caused by experiment i
αg The overall mean expression for gene g
φg The overall dispersion of gene g
sgij The normalization factor for gene g in replicate j of expression experiment i
λ The mean of the negative binomial distribution to be sampled from
r The r parameter for the negative binomial distribution to be sampled from
p The p parameter for the negative binomial distribution to be sampled from.
Ngij The number of reads assigned to gene g in replicate j of experiment i

Table 3.1: Definition of parameters and variables in algorithm 3.1
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Algorithm 3.1 An algorithm to simulate RNA-Seq data

Require: (G, I, J,K, τµ, τε, τα, τφ, {δki}, εµ, εσ2 , αµ, ασ2 , φα, φβ)
Ensure: {Ngij} ∼ f(Ngij | λgij, φg)
{Zgk} ← Mu

(
1,
{

1
K

}
i=1,...,K

)
µ← τµδ
{εgi} ← τµτεN (εµ, εσ2)
β ← (Z × µ) + ε
αg ← ταN (αµ, ασ2)
φg ← τφGam(φα, φβ)
{sgij} ← N (0, 1)
for g = 1, ..., G do

for i = 1, ..., I do
for j = 1, ..., J do

λ← exp(αg + βgi + sgij)
r ← φg
p← φg

φg+λ

Ngij ← NB(r, p)
end for

end for
end for

3.2.2 Sample Simulations

Using an implementation of algorithm 3.1 it is possible to generate sample RNA-Seq

data from a variety of experiments, with an arbitrary number of genes, experiments,

replicates, and distinct expression patterns. This data can be high dimensional,

and thus difficult to visualize. However, by reducing dimensionality, it is possible to

visually and more intuitively understand the workings of the algorithms and especially

the consequence of altering the control parameters. Sample results for a toy dataset

generated using the parameters listed in table 3.2 are shown in figure 3-1. In these

figures, the color of the data points represent the original expression pattern, and

the axes are β1 × β2 × β3, which is the variance in expression levels by gene across

experiments. Because there are three experiments, this can be visualized in three

dimensions. Note that, as τε, increases, the clusters of expression patterns becomes

less discernible.
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Figure 3-1: Simulated RNA-Seq data from algorithm 3.1, using the parameters from
table 3.2. Here, τε is varied from 10−1, 100, 101, and 102. As is intuitive, an increase
in τε results in increased experiment-independent variability. Note the axes values.
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Parameter Value Parameter Value
G 1000 εµ 0
I 3 εσ2 (1/5)2

J 2 αµ 4
K 6 εσ2 (1/5)2

τµ 1 ασ2 1
τε {10i | i = −1, 0, 1, 2} φα 3/4
τα 1 φβ 2

τφ 1 δ

−1 0 1 −1 0 1
0 1 −1 1 −1 0
1 −1 0 0 1 −1

T

Table 3.2: Parameters used in the implementation of algorithm 3.1 to generate a the
toy simulated RNA-Seq dataset visualized in figure 3-1.

3.3 Limitations of Model and Simulation

While the model described and implemented holds true to true biological datasets

in many ways, including incorporating normalization constants on a gene-experiment

level and modeling differential expression rather than mean expression, it falls far

short from mimicking a true RNA-Seq dataset for several reasons. While much can

be learned from analyzing a small, known set of clusters, it must be noted that this

behavior cannot simply be immediately extrapolated to true biological datasets.

One of the faults of this model is that it assigns clusters of roughly uniform size.

Because cluster assignments are sampled, on an individual basis, from a uniform

distribution, the expected cluster sizes are equal. This is a far cry from true biological

datasets, where clusters representing core metabolic pathways are often orders of

magnitude larger than the average cluster, and the variance in size between clusters

of interest will likely be very large [41]. However, this functionality could be added to

the model by sampling cluster distributions from a different, more uneven distribution.

Another problem with this simulator is that the expected cluster shapes are also

equivalent. While simulations and visualizations show that cluster shape certainly

does vary substantially, and while nice defined clusters make appealing data to test

clustering algorithms on, the biological reality is again very different. Cluster shapes
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from true biological datasets can be expected to be widely disparate in shape [41],

and thus more difficult to cluster correctly.

A serious issue with the simulator, which extends to the function and economics

of RNA-Seq itself, is a question of dimensionality. Discovering clusters of genes that

vary their expression together becomes an easier task as the number of sample points,

I in the parametrization of the sampling algorithm, increases. However, for various

reasons, including the cost of RNA-Seq analysis, true RNA-Seq data often has low

dimensions in I and very high dimensions in G, making the clustering an increasingly

difficult task as the parameters increasingly become more realistic.

There are, of course, many other areas in which my simulated RNA-Seq data

differs from the biological reality. However, again, beginning with a small, more easily

digestible dataset and then moving towards real biology is a sensible way to approach

RNA-Seq data simulation. The next set of issues lies in the implementation of the

clustering algorithms, where ever-complex biology is again simplified and abstracted

in several ways, discussed in section 4.5
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Chapter 4

Algorithms for Cluster Analysis of

RNA-Seq data

4.1 The General Clustering Problem

Cluster analysis, or clustering, is perhaps the most important problem in unsuper-

vised statistical analysis algorithms. The general clustering problem is to create a

partitioning on a set of data points such that those data points that share a partition

are more similar, given some definition of similarity, than those data points in other

partitions.

Because there are many different definitions of what constitutes a cluster, there is

no one algorithm to solve—clustering is, then, a multi-objective optimization problem,

and the correct clustering algorithm and parameter settings depend on the dataset

under analysis.

However, given these caveats, a general cluster analysis proceeds with the defini-

tion of some metric of distance between two data points in some sub-space, d(x, y),

and then an attempt to find a k-partitioning S∗ = {S1, S2, ..., Sk} on n data points

x1, ..., xn in that space such that the sum of the distances between the points in any

cluster k, ∑
xi,xj∈Sk

d(xi, xj),
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is minimized while the distance between any two clusters k and k′,

∑
xi∈Sk,xj∈Sk′

d(xi, xj),

is maximized. While the exact objective varies from formulation to formulation, this

intuition is consistent throughout.

It is often helpful to perform cluster analysis on RNA-Seq data, as mentioned

earlier. Now that I have developed an algorithm and program to simulate RNA-Seq

data, I turn to the description of several important clustering algorithms and their

implementation on this simulated RNA-Seq data.

4.2 Lloyd’s Algorithm

Lloyd’s algorithm was first described by Stuart Lloyd in 1957 as a tool for pulse-code

modulation, and was first published in 1982 [27]. Known less-specifically as “the”

k-means algorithm, Lloyd’s algorithm aims to partition n data points into k clusters

so that each data point belongs to the cluster with the closest mean. Because this

problem is NP -hard [10], there exist heuristic algorithms that are often converge

quickly to a local optimum. Lloyd’s algorithm is similar in some ways to expectation

maximization algorithms, as they both proceed through an arbitrary number of cycles,

calculating new parameters and determining new clusters in each cycle.

4.2.1 Standard Lloyd’s Algorithm

To outline Lloyd’s algorithm, assume again a set of observations X = {x1, x2, ..., xn}

where xi ∈ Rd, as well as an integer k representing the number of clusters to be found.

Lloyd’s algorithm seeks to find a partition S∗ = {S1, S2, ..., Sk} with corresponding

means µ1, µ2, ..., µk such that

S∗ = argmin
S

k∑
i=1

∑
xj∈Si

||xj − µi||2 ,
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where ||•||2 represents Euclidean distance1. Lloyd’s algorithm is a heuristic for the

minimization of this objective function, and is described in algorithm 4.1, from Lloyd

(1982).

Algorithm 4.1 Lloyd’s algorithm

Require: (X = (x1, x2, ..., xn), k, T ) where xi ∈ Rd, k, T ∈ Z
Ensure: S∗ ≈ argmin

S

∑k
i=1

∑
xj∈Si

||xj − µi||2

Sample initial means µ1, µ2, ..., µk at random
for t = 1, ..., T do

for i = 1, ..., k do

S
(t)
i =

{
xj

∣∣∣ ∣∣∣∣∣∣xj − µ(t)
i

∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣xi − µ(t)
r

∣∣∣∣∣∣2 ∀1 ≤ r ≤ k

}
end for
for i = 1, ..., k do

µ
(t+1)
i = 1

|S(t)
i |

∑
xj∈S

(t)
i
xj

end for
end for

4.2.2 Lloyd’s Algorithm for RNA-Seq Data

However, when working with RNA-Seq data, it is necessary to pre-process the data

before using Lloyd’s algorithm. There are several reasons for this. First, the basic

Lloyd’s algorithm uses Euclidean distance, although it can be easily modified for

use with most distance metrics, which is not appropriate for use with exponentially

distributed data. Second, in seeking genes that modify their expression together and

1It is interesting to note that, in any optimal solution S∗, µj = 1
||Sj ||

∑
xi∈Sj

xi, the mean of

the points in cluster j. Therefore, µj may be removed from the objective function in the following
manner [10]. Let X and Y be chosen independent and identically distributed samples from the

cluster Sj . Then, because E
[
||X − Y ||2

]
= 2E

[
||X − E [X]||2

]
,

∑
xj∈Si

||xj − µi||2 =
1

2 | Si |
∑

xj ,xk∈Si

||xj − xk||2

and the objective function can be rewritten as

k∑
i=1

1

2 | Ci |
∑

xj ,xk∈Si

||xj − xk||2 .
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thus are likely involved in similar functions or networks, it is desirable to cluster genes

by their change in expression, βg, and not by their overall expression, as is implied in

either N or αg + βg. Third, the introduction of normalization constants, which are

commonly used with RNA-Seq data [35], represented in algorithm 3.1 by the matrix

{sgij}, should be accounted for.

For these reasons, I have slightly modified Lloyd’s algorithm to allow it to be

used with RNA-Seq data. The modified version proceeds as follows and is outlined

in detail in algorithm 4.2. The count data contained within the matrix N is log-

normalized, and the normalization constants within S are subtracted. This data is

then thresholded at 10−6, and the replicates are averaged. The mean expression for

each gene is found, and subtracted from all averaged treatments. The data points are

then normalized to have zero mean and unit variance. Any data points with standard

deviation less than 10−6 are removed. Finally, a version of Lloyd’s algorithm is run on

this data. However, herein the distance metric used, d(r, s), is one minus the sample

correlation between points, or

d(r, s) = 1− (xr − x̄r)(xs − x̄s)′√
(xr − x̄r)(xr − x̄r)′

√
(xs − x̄s)(xs − x̄s)′

(4.1)

The cluster centroids, ci for i = 1, ..., K, are defined as the component-wise mean of

all the data points in the cluster.

4.2.3 Implementation Using Simulated Data

Algorithm 4.2 was implemented. To visualize the results of running this modified

Lloyd’s algorithm on simulated RNA-Seq data, it is helpful once again to limit our

number of treatments to three, and then visualize our results in three dimensions.

Running this implementation on simulated data generated using the parameters in

table 3.2, I obtain the results shown in figure 4-1. Here, the data points are shown

graphed by their true β values, which in a real experiment would not be known, but

are helpful here. The colors of the data points are assigned by the program.
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Algorithm 4.2 Modified Lloyd’s algorithm for RNA-Seq data

Require: (N,S, k, T )
Ensure: S∗ ≈ argmin

S

∑k
i=1

∑
xj∈Si

d(xj, ci)

if N ′gij ≤ 0 then
N ′gij = 10−6

end if
for g = 1, ..., G do

for i = 1, ..., I do
Dgi = 1

J

∑J
j=1N

′
gij

end for
end for
for i = 1, ..., I do

D:i = D:i − 1
I

∑I
i=1D:i

end for
for g = 1, ..., G do

µg = 1
I

∑I
j=1Ddj

σg =
√

1
I

∑I
k=1(Dg,i − µg)2

if σg ≤ 10−6 then
Remove row Dg: from D

end if
Dg: = Dg: − µg
Gg: = Dg:/σg

end for
for t = 1, ..., T do

for i = 1, ..., k do

S
(t)
i =

{
xj

∣∣∣d(xj, ci) ≤ d(xj, cr) ∀1 ≤ r ≤ k
}

end for
for i = 1, ..., k do

c
(t+1)
i = 1

|S(t)
i |

∑
xj∈S

(t)
i
xj

end for
end for
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Figure 4-1: Algorithm 4.2 run on simulated RNA-Seq data with varying values for
τε. As the distance between the centroids of the simulated clusters is increased, the
clustering algorithm becomes more accurate.

4.3 Agglomerative Hierarchical Clustering

Eisen (1998) was one of the first scientists to apply hierarchical clustering to analyze

expression data [12]. Agglomerative, as opposed to divisive, clustering is the process

of partitioning data into sets by starting with a single element, and aggregating them

into clusters. Hierarchical clustering algorithms result in a dendrogram, or rooted tree,

which can be sorted according to some criteria and are often displayed alongside a gene

expression heat map. Perhaps the most commonly used agglomerative hierarchical

clustering algorithm is the unweighted pair group method with arithmetic mean, or
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UPGMA.

4.3.1 Unweighted Pair Group Method with Arithmetic Mean

UPGMA is a simple hierarchical clustering algorithm that is very commonly used in

bioinformatics. UPGMA assumes a constant rate of evolution2, which is often cited as

a drawback of using this algorithm. There exist many variations of UPGMA that are

used in bioinformatics, including single-linkage clustering , average-linkage clustering ,

complete-linkage clustering , weighted pair group average, within-groups clustering ,

and Ward’s method . These algorithms vary in their complexity, and each works

better with some datasets than with others. For example, complete-linkage clustering

is efficient at finding compact, uniformly sized clusters, while the weighted pair-group

average should be used when cluster sizes are expected to be greatly uneven.

The input of the UPGMA algorithm is a distance or similarity matrix D repre-

senting the differences between data points, and the output is a dendrogram. At each

step in the algorithm, the two clusters that are determined to be most similar are

joined. Distance between clusters is defined as the mean distance between elements

in each cluster, or, equivalently, the average of all the distances between all pairs of

objects. For two clusters X and Y , this is defined as

DXY =
1

|X|+ |Y |
∑
x∈X

∑
y∈Y

Dxy

. The UPGMA algorithm proceeds as follows. Let n be the number of data points

being clustered, and let N be the set of all data points. Create n clusters, and

initialize each one with a distinct gene (or species, etc). Iteratively, find the clusters

i, j such that Dij ≤ Dxy ∀x, y ∈ N . Form a new cluster by joining these two clusters,

and give the branches connecting i and j each a length of d(i,j)
2

. Compute the distance

2This is known as the molecular clock hypothesis. This idea is first attributed to Emile Zick-
erkandl and Linus Pauling who discovered in 1962 that the change in the number of amino acids in
hemoglobin between lineages is roughly linearly correlated with time. This observation was based
on the use of fossilized data, and was then generalized to say that the rate of evolutionary change
of any general, specific protein is roughly constant over time and lineage.
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Figure 4-2: The resulting dendrogram from UPGMA run on simulated RNA-Seq data
for τµ = 1. The dendrogram has been colored to show the cluster assignments.

from this new cluster to all other clusters in the set N \ {i, j} by

D(ij),k =
|I|

|I|+ |J |
Dik +

|J |
|I|+ |J |

Djk.

Delete the rows and columns in D corresponding to i and j and add a column for the

new cluster (i, j) as computed above. Continue to iterate in this manner until only

one cluster remains.

4.3.2 UPGMA for RNA-Seq Data

It is necessary to modify slightly the UPGMA algorithm to find better results with

our simulated RNA-Seq data. As is described in detail in 4.2.2, the count data was log

normalized, the normalization constants were subtracted, the data was thresholded,

replicates averaged, and the mean expression for each gene subtracted from all of

the treatments. The data was then normalized to have zero mean and unit variance,

and any data point with a very low variance was removed. A distance matrix D was

created using sample correlation, as per equation 4.1. The UPGMA algorithm was
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run on D, outputting a dendrogram. Finally, the dendrogram was processed to find

the smallest height at which a horizontal cut through the tree would leave k or fewer

clusters, for a specified value of k.

4.3.3 Implementation Using Simulated Data

I implemented this above described algorithm and ran it using simulated data. Again,

the number of treatments was limited to three, and the visualization is in three

dimensions with axes β1 × β2 × β3, and the colors of the points were assigned by the

algorithm. The results are shown in figure 4-3

4.4 Artificial Neural Networks

It has long the case that, while digital computers are far superior in number manip-

ulations, the human brain is capable of seemingly effortlessly solving very difficult

computational problems. For example, although years of research and enormous

amounts of funding have gone into speech and face recognition, even the best algo-

rithms will struggle to understand a foreign accent in a busy room, or to recognize a

face across a dimly-lit room. Human brains, on the other hand, excel at these tasks.
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Figure 4-4: The purple dots represent the values of the trained weights for each of

the six neurons in the implemented SOM, and the red lines show the inter-neuron

connections. The green dots are a scatter plot of the first two principal components of

the simulated data. Notice the ‘incorrectly’ placed neurons in the middle and between

the two top-right clusters.

In 1943, a neuron was modeled as a binary switch, receiving input from other

neurons and, depending on whether the total weighted value of those inputs exceeded

some threshold, outputting an ’active’ or ’inactive’ response [25]. Later, in 1960, it

was shown that these model neurons behave in ways similar to the brain—they are

capable of advanced pattern matching, and can sustain function even with a fluctuat-

ing number of total neurons. Attempts to simulate this behavior computationally are

called artificial neural networks , a computational mechanism which seeks to simulate

a net of neurons. Interest in artificial neural networks has waxed and waned, and are

often criticized for reasons ranging from technical difficulty to the requirement of large

amounts of training data. Regardless, they have been used to solve many interesting

problems, and are frequently used in bioinformatics to partition gene expression data.

Of particular use and interest is the self-organizing map.
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4.4.1 Self-organizing map

Figure 4-5: Here the topological arrangement for the SOM is visualized, along with

the number of data points assigned to each neuron. Notice that the left-most neuron

has roughly double the average of the others; this neuron corresponds to the blue

cluster in figure 4.4.3.

The self-organizing map (SOM) induces a mapping of a high-dimensional distribution

onto a regular, low-dimensional grid. In doing so, a SOM is capable of converting non-

linear statistical relationships between high-dimensional data points into a group of

simple, geometric relationships [24]. Because of these properties, SOMs are often used

for the visualization of high-dimensional data, and it is this type of dimensionality

reduction that makes them useful for cluster analysis. SOMs are frequently used in

the clustering of transcriptome data [35].

The learning of a SOM is an iterative process, wherein input vectors are classified

according to their grouping in input space. Consider a set of weight vectors wi ∈ Rn

and a set of observation vectors x ∈ Rn. When the training vector x(t) enters the

network, the winning neuron i∗ and all neurons i ∈ Ni∗ are adjusted by

w
(t+1)
i = w

(t)
i + Φ(t)α(t)(x(t) − w(t)

i ),
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where 0 ≤ α(t) ≤ 1 is the learning rate factor, which decreases monotonically with

the number of iterations. Also, Ni∗ defines the neighborhood function that contains

the indices of all the neurons within radius r of i∗,

Ni = {j | d(i, j) ≤ r} .

Weight vectors wi are often randomly initialized, originally because this allowed the

self-organizing properties of the SOM to become apparent. However, training time

can be decreased by orders of magnitude by initializing the weight vectors with the

eigenvectors that correspond to the two principal components of the input data [24].

4.4.2 SOM for RNA-Seq data

To create a SOM suitable for use on the simulated RNA-Seq data, it is first necessary

to manipulate our data as was described in section 4.3.2. Following this, a principal

component analysis (PCA) is used. A SOM of dimensions appropriate for the number

of expected clusters is then created and and trained with the PCA results. Data points

are then clustered by finding the nearest neuron to each point in the data set.

4.4.3 Implementation using simulated data

This SOM algorithm was implemented and run with simulated data as well, as de-

scribed with UPGMA and Lloyd’s algorithm. A sample clustering result is shown in

figure 4.4.3. Also, a plot of the SOM network over a scatter plot of the first two prin-

cipal components of the data is shown in figure 4-4. These two figures are interesting

because several distinct clusters been clustered together by the SOM. Looking at the

graph of SOM weights, we see that, while four of the weights are correctly positioned

in the center of the clusters, one is located at the center of the graph, and another

between two clusters, thus causing the incorrect clustering. The two-dimensional

structure of the implemented SOM is visualized, along with the number of vectors

assigned to each neuron, in figure 4.4.1.
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Figure 4-6: The results of running the six-neuron SOM on the simulated data. Notice

that two actual clusters have been joined as one, as is implied by the plot of neuron

weights in figure 4-4.

4.5 Issues with Discussed Algorithms

The algorithms discussed and implemented were chosen for their ubiquity. These

algorithms are often used as an initial test for function, and are used so here. However,

as is the case with the described RNA-Seq data simulator, these algorithms also are

the result of a trade-off between accuracy and simplicity. There are several key issues

with the proposed algorithms when considering their implementation with true RNA-

Seq datasets.

Primary among these simplifications is the assumption of knowledge of the true

number of clusters, k. In real data the correct choice of k is often unknown—indeed,

even defining what would constitute a correct number of clusters is a difficult task.

This is a difficult problem because, as is intuitive, simply increasing k without penalty
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will always result in reduction in clustering error (consider the extreme case when

k = n, the number of data points, resulting in 0 error). The correct value for k will

find some balance between maximum compression of data and maximum accuracy

of clustering. If some value for k is not expected, as is assumed in the algorithms

outlined above, there are several methods of estimating k.

One such method of choosing the parameter k is maximizing some information

criterion, such as the Akaike information criterion (AIC), the Bayesian information

criterion (BIC) or the Deviance information criterion (DIC). As the likelihood func-

tion for our simulation is known, finding a value for k through this method would be

a straightforward process.

Another such method would be using the Silhouette validation metric, which is

discussed further in sub-section 5.1.1. Combining this validation metric with an

optimization technique to determine the number of clusters that produces the largest

Silhouette validation metric is another way to determine an approximation for the

correct number of clusters.
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Figure 4-3: UPGMA run on simulated RNA-Seq data with varying values for τµ.
Again, as expected, as the distance between the centroids of the simulated clusters is
increased, the clustering algorithm becomes more accurate.
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Chapter 5

Analysis of cluster performance on

simulated data

In a typical experiment, after an appropriate clustering algorithm has been run on the

selected features of the data, it is necessary to validate the output of the algorithm.

This process is denoted cluster validation. As shown in figure 5, cluster validation

can lead to refined feature selection, algorithm selection, or to interpretation new

knowledge.

Figure 5-1: The procession of a clustering experiment.
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5.1 Quantitative measures of cluster goodness

There exist many different metrics of cluster goodness. In general, these methods are

based either on internal criteria or on external criteria.

A metric based on internal criteria is evaluated solely on the basis of the clus-

tered data. Often, this means assigning the best score results with a high degree of

intra-cluster similarity, as measured by some distance metric, and low inter-cluster

similarity. The drawback of using internal criteria for cluster validation is that a high

score does not necessarily reflect a high level of information retrieval. Further, such

metrics are biased towards algorithms that optimize the same criteria—for example,

the k-means algorithm is designed so as to maximize cluster distances, so with high

probability internal criteria will overrate its results [16]. Well-known validity metrics

based on internal criteria include Silhouette validation, the Davies-Bouldin index , and

the Dunn index .

Cluster validation based on external criteria evaluates results based on data that

was not used in clustering, such as known class labels. Often used external criteria

metrics include the Rand index , Jaccard index , and mutual information.

Below, I outline in detail silhouette validation, an internal cluster validation met-

ric, as well as the Rand index and mutual information, two external validation met-

rics. These metrics will then be used to evaluate the clustering algorithms presented

in section 4.1 on simulated data generated using the model from sub-section 3.1.2.

5.1.1 Silhouette validation

The silhouette validation metric was originally described by Peter Rousseeuw in 1986

as a technique for visualizing and evaluating clustering validity [34]. To visualize

the cluster goodness, each cluster is represented by a silhouette object, which is

based on the tightness and separation of the data. The result is a figure that shows

which objects are well-clustered and which objects lie somewhat between clusters.

Further, as described by Rousseeuw (1986), the average silhouette width provides a

quantitative score of cluster validity.
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Figure 5-2: Sample silhouette visualizations.

Let ai be the be the average distance of data point i from all other data points

assigned the same cluster, Si, or ai = 1
|Si|
∑

j∈Si
d(i, j). As always, any appropriate

distance function d may be used. Intuitively, ai measures how well i fits its cluster.

Also, let bi represent the lowest average distance between i and all the data points

j ∈ Sj for all j 6= i, or bi = minSj 6=Si

1
|Sj |
∑

j∈Sj
d(i, j). Clearly, cluster Sj is the cluster

that best fits i after Si. Define si on the interval [−1, 1] as

si =
bi − ai

max{ai, bi}
.

As |ai − bi| grows, then, si approaches 1. At si = 0, data points i is on the border

between Si and Sj, and as si approaches −1, i is misclassified and would be more ap-

propriately placed within Sj. The overall average silhouette width, 1
k

∑
i si, evaluates

the clustering of the entire dataset. See figure 5-2 for sample silhouette visualizations

for both the k-means and self-organizing map algorithms run on the same simulated

data.
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5.1.2 Rand index

The Rand index was first described by William Rand in 1971, and can be understood

as the mathematical accuracy1of the clustering. The Rand index requires knowledge

of the correct clustering, and so is an external criteria metric. Calculating the Rand

index results in a value in the interval [0, 1], where 1 indicates totally correct clustering

and 0 indicates totally incorrect clustering [32].

To find the Rand index, define two clustering over n items, S1 and S2. Let a be

the number of pairs of data pints that are in the same set in both S2 and S2, and b

be the number of pairs in different sets in both S1 and S2. The Rand index, R, can

be quickly calculated by

R =
a+ b(
n
2

)
.

To evaluate the goodness of the clustering algorithms in this thesis, I use a modified

version of the Rand index, denoted the adjusted Rand index . The adjusted Rand

index corrects the Rand index for chance clustering [20]. To find the adjusted Rand

index as per Hubert (1985), define the contingency matrix {nij} where nij denotes

the number of data points in partition i of S1 and partition j of S2, or nij = |S1
i ∩S2

j |.

Also, define ai =
∑k

j=1 nij and bj =
∑k

i=1 nij, as shown in table 5.1.2. Using {nij}, ai,

S2
1 S2

2 · · · S2
k

S1
1 n11 n12 · · · n1k a1
S1
2 n21 n22 · · · n2k a2
...

...
...

. . .
...

...
S1
k nk1 nk2 · · · nkk ak

b1 b2 · · · bk

Table 5.1: Contingency matrix for the adjusted Rand index.

1Accuracy is a statistical metric used in binary classification tests to measure how well a condition
is correctly identified or excluded—it is the percentage of correct results. Let the number of true
positives, true negatives, false positives, and false negatives be pt, nt, pf , nf , respectively in a given
test. The accuracy, a, of the test is found by a = pt+nt

pt+pf+nt+nf
.
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and bj, the adjusted Rand index, AR, is calculated by

AR =

∑
i,j

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/
(
n
2

) .
5.1.3 Mutual information

In information theory, mutual information measures the dependence of two random

variables. Effectively, mutual information indicates the reduction in uncertainty in

one random variable due to the knowledge of another. In cluster validation, mutual

information is used to quantify the shared information between the known, true par-

tition and the found partition. A high value for mutual information indicates strong

dependence, the presence of more shared information. Consider two continuous ran-

dom variables, X and Y . Given the joint and marginal probability density functions

p(x), p(y) and p(x, y), the mutation information of X and Y is

M(X, Y ) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
.

In the case of discrete random variables, the double integral is replaced with a double

summation and the marginal and joint probability distribution functions are used

[38].

Because I(X, Y ) has no upper bound, in this thesis I use normalized mutual in-

formation from Strehl and Ghosh (2002). The normalized mutual information NMI

is defined as

NMI(X, Y ) =
I(X, Y )√
H(X)H(Y )

,

where H(X) is the entropy of X.

5.2 Analysis

The three metrics of cluster validity discussed above—silhouette validation, Rand

index, and normalized mutual information—were implemented. The algorithms from
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chapter 4.1 were run on the on simulated RNA-Seq data sampled from the model

described in chapter 3.1.2 with various parameter settings, and these metrics were

used to analyze the results. For each parameter setting for each algorithm, data was

simulated and clustered and goodness of fit using each metric was calculated multiple

times, and averages were plotted, along with standard error.

Figure 5-3: Results with four clusters using different clustering algorithms. For each

parameter settings, results from 20 data sets were averaged and plotted. The length

of each vertical bar represents standard error.

I first performed this analysis on the initial versions of the algorithms outlined

above on a toy dataset consisting of k = 4 clusters, G = 1, 000 genes, and I = J = 3

experiments and replicates per experiment. I performed this analysis on experiments

with varying values for τµ, the level of expression change across expression clusters,

and τε, the level of expression dispersion within a cluster. Each experiment param-

eterization was repeated 20 times, with results shown in figure 5-3. In these results,

each algorithm produced results that were roughly statistically equal, although it

seems likely that both SOM and k-means outperformed UPGMA for most experi-
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ments. It is also apparent that the Silhouette validation metric is the least predictive

of cluster goodness, which makes sense since it does not utilize external information

in the form of correct labeling.

Figure 5-4: Results with six clusters using different clustering algorithms. For each

parameterization, 50 results were averaged and plotted. The length of each vertical

bar represents standard error.

After these results, I implemented the improvement mentioned in k-means, and

re-ran a simulation with k = 6 clusters, maintaining the other parameters the same.

For this analysis, each experiment was simulated 50 times before results were averaged

and plotted. The results are much clearer and have much lower variance, as is shown

in figure 5-4. From these experiments, it is clear that the improved version of k-means

is strictly better than UPGMA for almost all experiment settings. SOM performs in

a manner very close to k-means.

Finally, I simulated a RNA-Seq dataset with the number of clusters k varying from

1 to 80. This simulation was done to check the limits of the clustering algorithms as

the complexity of the generated data increased, somewhat more closely approximating

a true RNA-Seq dataset. As expected, this drastic increase in the number of clusters
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over a small number, I = 3, of sample points resulted in a much lower cluster scores,

shown in figure 5-5.
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Figure 5-5: Results with k = 1, ..., 80 using different clustering algorithms. Note
the decrease in cluster score as the complexity of the data increases and becomes
unmanageable.
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Chapter 6

Conclusion

In conclusion, this work has shown that clustering by change in expression can find co-

expressed gene modules in simulated and simplified RNA-Seq data. Also, it has been

shown that for most experiment parameterizations, given this simulated RNA-Seq

data, an improved version of k-means is the best algorithm amongst those discussed

to discovered clusters, given the number of clusters k.

Further, the implemented RNA-Seq experiment simulator, algorithm implemen-

tations, and cluster validation metrics form a framework that can currently be used

in the simulation and validation of simple RNA-Seq experiments and clustering al-

gorithms. These tools also form a foundation that may be expanding to increase

complexity and approach a truer reflection of the true biological structures present in

RNA-Seq data.

6.1 Future Direction

The next step in the progression of this research is the validation of the created frame-

work with real-world RNA-Seq data. This validation will take the form of a statistical

analysis between simulated RNA-Seq data and true RNA-Seq data, preferably with

known gene modules. The model behind this simulator may then be intelligently

improved to better simulate true RNA-Seq data.

Another, perphaps parallel, direction is the investigation of other clustering algo-
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rithms. Algorithms to be investigated should include standard implementations of

support vector machines (SVMs), as well as model and density-based clustering al-

gorithms. Another interesting class of classification algorithms are network-inference

based, such as weighted gene co-expression analysis [43]. These implementations may

be run on the simulated RNA-Seq data, and iteratively validated and improved.
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