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Abstract

In studying the correlations between genetic mutations and cancer
development, the relationship between mutations and patient survival is
one of the most significant from both academic and clinical perspectives.
Survival analysis being an established field, assessing the correlation
between any given mutation or collection of mutations and survival is a
straightforward process. This paper seeks to develop techniques to use
survival analysis to identify de novo collections of mutations correlated
with low survival. This requires exploring a very large search space
of collections of genes, which cannot be effectively enumerated with
computational resources. Instead local search in the form of steepest
ascent hill climbing and a more generalized branching algorithm will be
used to iteratively construct strongly correlated sets. Theoretical analysis
of the runtimes demonstrate the feasibility of these algorithms under
some limited assumptions. Empirical results demonstrate the ability of
these algorithms to recover sets strongly correlated with survival. Some
evidence is presented indicating that these techniques, while somewhat
effective at present, will be significantly more so when cancer genomic
datasets reach two to three times there current size.
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1 introduction

Somatic mutations, occurring throughout one’s lifetime, can mutate healthy
cells to cancerous ones. These mutations vary greatly between individuals,
even those with the same variety of cancer. This is because most mutations
are passenger mutations and do not strongly increase risk of cancer and
are considered, adding noise to genomic data. More importantly the driver
mutations do not all need to affect the same gene, they simply need to affect
any member of a collection of genes that in some way inhibits the production
or survival of cancerous cells. Finding de novo collections of such genes is a
major part of computational cancer genomics [3]. Another task is differenti-
ating and characterizing them based on correlation with clinical phenotypes
especially survival. Genetic mutations leading to low patient survival are
in many senses the most important to study in terms of treating patients.
Establishing the statistical significance of the correlation between two groups
of patients, e.g. those carrying one of a set of mutations and those not has
long been established. Thus characterizing the impact of known mutations
on survival is well established. However there has been less work on using
correlation with survival to find de novo mutations in the first place[2].

The difficulty in using correlation with survival (or any other statistic calcu-
lated over groups of patients) to identify collections of genes is size of the
problem space. There are over six thousands of genes in the The Cancer
Genome Atlas[4] leading to thousands of orders of magnitude too many
ways to group them. To explore this vast space, local search must be used to
restrict the focus to strongly correlated sets.

2 methods and analysis

We wish to identify the set of genes most correlated with survival. Each set
of genes divides patient into two groups, those carrying mutations in one or
more of the genes in the set and those not carrying any mutation. Evaluating
any set of genes is then as simple as evaluating any division of patients. This
is done with the logrank test, as is standard for survival analysis[1]. It is
not feasible to test all possible sets. It is also infeasible to deterministically
find the set of maximal weight. However local search allows us to find
the maximal set efficiently with high probability under certain assumptions
about the underlying data.

2.1 Model

In our simulated model there are m patients P divided into two groups of
samples P1, correlated with lower survival, and P2, correlated with higher
survival. There are also n genes U divided into a survival correlated gene
set G and its relative complement U − G. Specifically for each sample pi, the
survival information consists of a survival time ti and censoring information
ci. For pi in P1, the real survival time, si, and the censoring time, ri, come
from exponential distributions with parameters λ1 and λc respectively; if
si ≤ ri then ti = si and ci = 1, otherwise ti = ri and ci = 0. Survival data
(time and censoring) for a sample pi in P2 are generated in a similar way,
with si, and the censoring time, ri, coming from exponential distributions
with parameters λ1 and λc respectively.

We view mutations as a m × n binary matrix A, where Aij is 1 if sam-
ple i is mutated in gene j. The correlated set G only is mutated in P1, while
the rest of the genes are mutated randomly across all patients. For each
random gene g there is a probability pg that it is mutated in a sample in,
independently of all other events. Each sample in P1 has exactly one mutated
gene g mutated in G chosen uniformly at random.
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Our parameters were set to reflect real clinical data as much as possible,
although this was not possible in setting the parameters of somatic mutations.
|P1| was set to 15% of m. λ1 was set to 1 and λ2 was varied. λc was set to
censor 20% of all samples in expectation (this censors more frequently P2).
|G| was set to 5. The number and frequency of mutations of random genes
were taken from real data sets.

2.2 Logrank test

The logrank test is only interested in the order events, not when they actually
occur. To establish the order, we assume the rows of A are sorted so that
t1 < t2 < . . . < tm. for a set T = {g1, g2, . . . , gk} of k genes we denote by
M(T ), the set of samples in which at least one of the genes in T is mutated:
M(T ) =

{
i : ∑gj∈T Aij > 0

}
we denote by M̄(T ), the set of samples where

no gene in T is mutated. For a set T of genes and any sample i, let xT (i) = 1
if i ∈ M(T ), and xT (i) = 0 otherwise. For a sample i we define its weight
as

wi = ci −
i

∑
j=1

cj

m− j + 1

For a set T of genes we define its weight as

W(T ) = ∑m
i=1 xT (i)wi√

|M(T )|(m−|M(T )|)
m(m−1)

(
∑m

i=1 ci

(
1− 1

m−i+1

))
This signed weight is maximized for sets correlated with low survival and
minimized for sets correlated with high survival. It always has mean 0 and
the denominator is the standard deviation of the numerator assuming |M|
is a fixed ration of m. In the limit it thus goes to N (0, 1).

2.3 Local search

Using local search to explore the possible sets of genes requires a notion of
adjacency, where adjacent sets of genes are probably close in weight. The
most natural such notion is a directed acyclic graph where A gene set b
is the child of gene set a if b is a with one additional gene. Thus starting
with a root of the empty set one can consider larger and larger sets of genes.
One could also consider deletions, but it is very unlikely that this would
be helpful over random genes, and it removes the guarantees of the acyclic
structure. At each set the search algorithm considers all sets containing the
initial set and a single gene not in that set and keeps some number of them
for future consideration. In the first greedy algorithm, steepest ascent hill
climbing, we simply keep one gene. In our improved branching algorithm
we take all sets above a threshold determined by the current set.

It is worth noting that while children are probabilistically bound to their
parents in weight (especially under the model of random genes), there are
very few deterministic guarantees about weight. Negative genes can combine
into positive sets and vice-versa. This is because when considering the union
of mutations across genes, Patients with few mutations are given the same
weight as patients with many mutations in the set.

2.4 Steepest ascent hill climbing

The simplest form of local search is steepest ascent hill climbing (SAHC). This
greedy algorithm simply stores a single set of genes at each step. It then uses
this set to continue the process. It inherently finds sets of genes dominated
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by initial elements. Small sets found by SAHC being so dominated could
potentially be found by examining individual genes, but under our union
operator, it can find individually worse genes that fit together with initial
strong genes to create better sets than simply combining highly weighted
genes.

2.5 Branching agorithm

Since we are interested in sets of genes that are difficult to discover by
looking at their genes individually, it is important that we hold on to less
promising subsets, giving them the chance to build into the best sets. Thus
in the branching algorithm (BA) instead of only selecting the best gene we
select the k best genes and build out a tree of searched sets. Determining the
appropriate value of k, or which genes to keep, is a difficult task, because it
requires balancing false negatives, where we lose correlated sets with false
positives, which bog down our runtime. The following argument establishes
that as the number of samples grows, a very simple and generous threshold-
ing policy is sufficient to guarantee with high probability, a low degree of
branching, and thus a feasible runtime. More detailed analysis reveals that
this asymptotic view is idealistic, and in the range of our computation, we
will be forced to put a strict upper limit on k.

2.6 Branching agorithm thresholding analysis

Consider the following threshold to determine children of a given set in
our search tree. Suppose we currently have a set of genes T0 and we are
considering adding one gene g ∈ U − T to T0 to create a child. We keep the
set T1 = T0 ∪ {g} as a child if the weight of the set of samples mutated in
T1, but not T0 is positive. That is ∑m

j=1 xT1(j)(1− xT0(j))wj > 0. Ignoring the
numerator this is effectively whenW(T 1) >W(T 0).

Theorem: As long asW(T 0) ∈ ω(1), The probability of keeping T1 goes to
0 as m goes to ∞, if g is a random gene.

Proof: Assume the following. m is arbitrarily large. The data is uncen-
sored i.e. ci = 0 (this is possible if we throw out censored data, which
only decreases mby a constant factor). |M(T 0)| = k0 = φm. Let gene g
be mutated in k1 = ψm samples (chosen uniformly at random) outside of
M(T 0) (in expectation ψ = (1− φ)pi).
Let W0 =W(T 0). We wish to choose k1 distinct samples out of P −M(T 0).
Let Xi be the weight of ith sample selected. Let µ = E[Xi], this will be the
same for all Xi. Let Y0 = 0 and Yi = Xi − µ + Yi−1 for i > 0. Clearly Yi
is a martingale. Further since Xi < 1, Yi < 1− µ . This let’s us bound
P(Yk1 > −k1µ) = P(∑k1

i=1 Xi > 0) with Azuma’s bound and this exactly
when we threshold.
Azuma’s bound states that for martingale Yi, where Yi+1 − Yi < c P(Yn −
Y0 > t) < e−t2/2nc2

. In this case we have

P(
k1

∑
i=1

Xi > 0) = P(Yk1 > −k1µ) (1)

< e−(k1µ)2/2k1(1+µ)2
(2)

= e−ψm(µ2/2(1+µ)2) (3)
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That probability goes to 0 as long as µ2 ∈ ω(1/m)

µ = E[Xi] (4)

=
1

m− |M(T 0)|
m

∑
i=1

(1− xT0(i))wi (5)

=
1

m− φm

(
m

∑
i=1

(
1−

i

∑
j=1

1
m− j + 1

)
−

m

∑
i=1

xT0(i)wi

)
(6)

=
1

(1− φ)m

(
m

∑
i=1

(1− Hm + Hm−i)−
m

∑
i=1

xT0(i)wi

)
(7)

=
1

(1− φ)m

(
m−mHm +

m−1

∑
i=0

Hi −
m

∑
i=1

xT0(i)wi

)
(8)

≈ 1
(1− φ)m

(
m−m(γ + log(m)) + γ +

m−1

∑
i=1

(γ + log(i))−
m

∑
i=1

xT0(i)wi

)
(9)

=
1

(1− φ)m

(
m−m log(m) + log((m− 1)!)−

m

∑
i=1

xT0(i))wi

)
(10)

≈ 1
(1− φ)m

(
m−m log(m) + (m− 1) log((m− 1))− (m− 1)−

m

∑
i=1

xT0(i)wi

)
(11)

≈ 1
(1− φ)m

(
1− log(m)−

m

∑
i=1

wixT0(i)

)
(12)

< −∑m
i=1 wixT0(i)
(1− φ)m

(13)

Where Hi ≈ γ + log(i) is the ith harmonic number, γ is the Euler-Mascheroni
constant, and (11) follows from Sterling’s approximation. Since,

W0 =W(T0) (14)

=
∑m

i=1 xT0(i)wi√
|M(T0)|(m−|M(T0)|)

m(m−1)

(
∑m

i=1

(
1− 1

m−i+1

)) (15)

=
∑m

i=1 xT0(i)wi√
φm(m−φm)

m(m−1) (m− Hm)
(16)

≈ ∑m
i=1 xT0(i)wi√
φ(1− φ)m

(17)

we have ∑m
i=1 xT0(i)wi = W0

√
φ(1− φ)m and

µ < −W0

√
φ

(1− φ)m
(18)

Thus µ2 ∈ ω(1/m), when W0 ∈ ω(1). This concludes the proof.

The above analysis ignores φ and ψ as constants. They are however very
small constants and can be almost as low as 1/m, in both the real and simu-
lated data. This is sufficient to drive the provably negligible probability of
failing to threshold to over 1/2, even for moderately large W0, which allows
for exponential blow up in the run time. This means that k needs be set to a
maximum of a constant in the algorithm and the depth of the search must
be limited to keep the algorithm feasible.
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2.7 Null Hypotheses

While the logrank test is itself a measure of the significance of our results. It
is a measure we are using in finding the results and further it makes under-
lying assumptions about the generation of the data. It is thus unfit to simply
use logrank test to generate a p-value. Instead two permutation tests will be
use. Each views a different permutation of the data as the null hypothesis
for the generation of the mutation and survival data. The significance is
given by the frequency of the algorithm finding a result of equal or greater
weight. Thus if a particular dataset does follow the assumptions of logrank
and returns consistently higher than expected weights, this will not affect
the returned significances.

The first hypothesis HP
0 is the permutation of the survival data, with mu-

tation matrix fixed. It selects a permutation of m elements uniformly at
random and applies it to the survival times and censoring data jointly. The
second hypothesis HM

0 is the permutation of each column of the mutation
matrix. It independently selects a permutation of m elements uniformly at
random for each column and applies them to each column. The survival
data is unchanged. The HP

0 removes correlation between survival data and
the mutation data, but preserves correlations between genes. HM

0 removes
both correlations.

3 results

3.1 Simulated Data

Data was simulated according to the model described above for varying
number of sampled patients m. A set G of 5 genes was planted and the
remaining random genes were generated using frequencies from ovarian
(OV) and acute myeloid leukemia (AML) datasets. The patients in P1 were
expected to live 20 months and the patients in P2 were expected to live 60.

The first question assessed was how often will the algorithms return the
planted set as the best set found. Both algorithms were run to a depth of
5 gene sets and the branching algorithm was bounded to keeping at most
4 sets at each level. Since th AML dataset was smaller than the OV set,
it led to fewer random genes and fewer possibilities for a random set to
do better than the planted set. This is shown in SAHC’s performance in
Figure 1a, where performance is better of AML. By the time there are 2,000

samples, the planted set is almost always returned in both datasets. Since the
algorithm fails frequently at lower sample sizes, it is worth asking whether
the algorithm fails to find the optimal set and whether the planted set is
optimal. The second is more easily answered Figure 1b shows that the set
returned by SAHC is almost always of weight at least that of the returned
set.

This might make BA seem irrelevant if SAHC can already recapture all
that is desired in the model. BA can still outperform SAHC by returning a
ranked list of weighted sets (instead of just a single set). If the planted set
is near the top of the list this can be viewed as a partial success. Figure 2

shows that BA returns the planted set in the top two significantly more often
than as the top result, And in the top 10 results significantly more often. It is
not shown, but under the parameterization used, BA very seldom returned
the planted set at all if it was not in the top 10. There is also the question of
BA and SAHC’s performance when they do not return the planted set. BA
dominates SAHC, since it returns any set SAHC would return, but that does
not say how often that set is the top set. Figure 3 shows that BA initially
far outperforms SAHC, but this diminishes as they both start returning the

6



(a) Not returning planted set

(b) Returning a set worse than planted set

Figure 1: The frequencies of different failures of SAHC

planted set, the advantage drops off as it must.

Figure 4 shows both algorithms p-values under all tests dropping off
together. This shows how the significance of the planted set increases with
the number of samples under both algorithms, which somewhat validates
both the model and the algorithms.

3.2 Real Data

BA and SAHC were run on three datasets of glioblastoma multiforme (GBM),
kidney renal clear cell carcinoma (KIRC), and AML. The sets returned were
all of 5 genes, to match with simulated data, and because there was no
cleaner break in logrank weight or p-values for smaller or larger sets. Every
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Figure 2: The frequencies of BA not returning the best set

Figure 3: The frequencies of BA outperforming SAHC

top set found by BA, was the set returned by SAHC, again demonstrating
SAHC’s performance. p-values were calculated just using BA, since it is
inherently stronger than SAHC. All gene sets are listed in order of the level
to which they were added to BA. Thus the initial genes can be viewed as
most significant.

The GBM dataset yielded the gene set {TBC1D2, CASKIN2, BID, SLC9A4,
HDAC9}. It had logrank weight of 4.54, an HP

0 p-value of 0.9100, and an
HM

0 p-value of 0.9775. The KIRC dataset yield the gene set {CDCA2, KIF27,
TDRD7, PDE4C, OGT}. It had logrank weight of 7.30, an HP

0 p-value of
0.2733, and an HM

0 p-value of 0.3016. The AML dataset yield the gene set
{TP53, DNMT3A, RUNX1, FAM5C, MLL-MLLT3}. It had logrank weight of
5.24, an HP

0 p-value of 0.0004, and an HM
0 p-value of 0.0006. GBM and KIRC

datasets were significantly larger than AML. This could possibly explain
AML’s relative strength when it came to p-values. the AML dataset was
dominated by a few strong genes, whereas the other sets had many middling
genes, some of which became much stronger under permutation.

4 conclusion

Using local search to find sets de novo somatic mutations strongly correlated
with low survival is theoretically and empirically feasible. Using the current
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(a) SAHC p-values

(b) BA p-values

Figure 4: The significance of the two algorithms

model of such collections, results should be significantly improve when
datasets grow into the low thousands of samples. SAHC is a very strong
preliminary technique for finding such sets, but BA is still more powerful,
especially if the data does not necessarily follow the intended model.

Future work could generalize the model and explore other parameterizations
specifically the mean survival of P1 and P2. Finding the limit of the use of the
algorithms on the proximity of the two means could show how much impact
a set needs on survival to be detected. Another important generalization are
models with multiple planted sets, since the biological explanation of the
model requires multiple such sets. Other local search algorithms could also
be considered, but most are not viewed to be suitable by the author. A more
serious theoretical treatment of the problem space should also be attempted.
The alternative hypothesis (of a correlated set), deserves its own theoretical
treatment. This would combine well.
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