
Towards an Intelligent Bidding Agent in QuiBids Penny Auctions

David Storch∗

dstorch@cs.brown.edu

Brown University Department of Computer Science

May 2, 2013

Abstract

Empirical data shows that penny auctions on QuiBids
are profitable for the auctioneer at the expense of the
bidders. We seek to determine whether it is possible
to design a bidding algorithm which outperforms ac-
tual QuiBids users, capable of consistently making a
profit in QuiBids auctions over time. The ideal bid-
ding strategy would win the item while minimizing
the total number of bids placed over the course of the
auction—that is, it should only bid when the auction
is on the verge of ending. We use data scraped from
QuiBids in order to train a hierarchical supervised
learning algorithm capable of predicting the end of
novel QuiBids auctions. The results show that we can
predict the end of the auction in most cases within a
resolution of a few hundred bids.

1 Introduction

A penny auction is a form of ascending auction in
which each bidder must pay a fixed fee for each bid it
places. The winner must also pay its bid in order to
acquire the good up for auction, although the bid fees
are often orders of magnitude larger than the good
price. Furthermore, each bid causes the good price
to increase by a small, fixed increment, usually one
cent. Penny auctions are all-pay auctions—the bid
fees must be paid by both winners and losers—and
hence can be immensely profitable for the auctioneer
(Krishna and Morgan, 1997 [6]). Profitability for the
auctioneer is the consequence of penny auction bid-

∗I would like to thank my advisor, Amy Greenwald, and
my collaborator, Eric Sodomka, for many hours of helpful dis-
cussion. I also credit Eric Sodomka for his contributions to
the section defining penny auctions. Thanks also to Jeff and
Eric Stix for their help with the initial stages of this project.
Finally, I would like to thank my parents for their support in
all corners of life.

ders dramatically overbidding in aggregate (Augen-
blick, 2012 [1], Wang and Xu, 2012 [10], Hinnosaar,
2010 [5]).

The penny auction website QuiBids1 advertises the
possibility for outrageous savings on retail items. It is
certainly the case that some auctions result in items
being sold to QuiBids users far below their actual
retail value. But is it really possible to consistently
make a profit by participating in online penny auc-
tions? Or is it more accurate to categorize penny
auctions as a form of gambling, in which the auction
house will inevitably come out ahead over time?

Our past work uses empirical data scraped from
QuiBids to demonstrate that the auctioneer achieves
profit margins on the order of 30%, at the expense of
most bidders (Stix et al., 2013 [8]). The vast majority
of bidders take at least a small loss, and very few end
up profiting. The implication is that it is difficult
to make a profit in QuiBids auctions with a naive
strategy.

We investigate whether a machine learning-based
bidding agent is capable of reliably turning a profit in
QuiBids auctions. At the very least, QuiBids’ adver-
tising campaign is misleading in the sense that naive
bidding behavior is unlikely to lead to large savings
on retail items. We wish to prove, however, that a
more sophisticated agent is in theory capable of at-
taining the advertised savings.

2 Defining Penny Auctions

2.1 Auction Model

At any point in time, a penny auction is characterized
by three state variables: the current highest bid p,
the current highest bidder w, and the time remaining
on the auction clock t. The auction begins with some

1www.quibids.com

1

www.quibids.com

initial bid price p := p and an initial clock time of t :=
t. The high bidder is initially null (w := ∅). The clock
time t begins decreasing, and while t > 0, any bidder
b may place a bid at some fixed incremental amount
δ above the current highest bid. In order to place
its bid, however, bidder b must pay the auctioneer an
immediate bid fee φ. The highest bidder is then set
to w := b, and the new bid price becomes p := p+ δ.
If the time remaining on the clock when the bid is
placed is lower than the reset time treset, then the
clock is set to t := treset. Equivalently, when a bid
is placed, the clock is set to t := max(t, treset) in
order to ensure that other bidders have at least treset
to place an additional bid. The auction ends when
t = 0, at which point the current highest bidder w
wins the item and pays the current bid price p (in
addition to any bid fees paid along the way). Note
that both the winning bidder and the losing bidders
have to pay the bid fee for every bid they place.

2.2 QuiBids’ Rules

QuiBids acts as the auctioneer for multiple penny
auctions that happen both simultaneously and se-
quentially across the day. For each of its auctions,
QuiBids follows with the above model where p = $0,
φ = $0.60, and δ = $0.01. The reset time treset is a
function with range {20, 15, 10} seconds whose out-
put decreases as the auction progresses. The starting
clock time t varies depending on the auction, but is
on the order of hours.

QuiBids adds some variants to the standard penny
auction, including Buy-Now, voucher bids, and the
BidOMatic. We describe these these additional auc-
tion rules below for completeness, but will not ana-
lyze them in greater detail in this work (see (E. Stix
et al., 2013 [8]) for a more thorough discussion). The
Buy-Now feature allows any bidder who has lost an
auction to buy a duplicate version of that good at
a fixed price m. If a bidder uses Buy-Now, any bid
fees the bidder incurred in the auction are subtracted
from m. The Buy-Now price is usually marked up
from the actual retail value of the good, with an av-
erage markup of approximately 21% (E. Stix et al.,
2013 [8]).
Voucher bids are a special type of good auctioned

in packs by QuiBids. When a bidder wins a pack of N
voucher bids, it is able to place N subsequent bids in
future auctions for a bid fee of $0 instead of the usual
fee φ. The Buy-Now price for a pack of N voucher
bids is always m = φN . Voucher bids are identical to
standard bids with one exception: whereas each stan-

dard bid reduces the Buy-Now price by φ, voucher
bids cannot be used to reduce the Buy-Now price. If
a bidder has won a voucher bid pack, it can choose
at any time whether to use these voucher bids or to
use standard bids in subsequent auctions.

The BidOMatic tool allows a bidder to specify a
number of bids between 3 and 25 that will be auto-
matically submitted on the bidder’s behalf, starting
at a particular price p. The BidOMatic will submit
each bid at a random time between the reset time
treset and zero seconds. Whether or not a bid is
placed with the BidOMatic is public information.

3 Data

The dataset used in this paper consists of the com-
plete bid histories for over 6,000 QuiBids auctions.2

The auctions took place between February 21st, 2013
and March 19th, 2013. For each bid in each of these
auctions we record the following information:

1. Auction ID: a unique auction identifier assigned
by QuiBids.

2. Buy-Now Price: QuiBids’ listed price m for the
good being auctioned.

3. Item Name: the name of the good being auc-
tioned.

4. Highest Bid: the new highest bid price p of the
good after this bid is placed.

5. Bidder: a unique identifier for the user who
placed the bid.

6. Bid Type: a flag which is 1 if the bid was placed
by the BidOMatic, or 0 if the bid was a single
bid.

7. Recent Bidders: the number of distinct bidders
who placed a bid in the previous five minutes.

8. Clock Time: the amount of time remaining on
the auction clock when the bid was placed, in
seconds.

9. Reset Time: the time treset, in seconds, to which
the clock was reset following this bid (either 20,
15, or 10).

10. Date: the date on which the bid was placed.

2The dataset was collected with a scraper written in Ruby
using the Watir framework for web application testing (www.
watir.com).

2

www.watir.com
www.watir.com

11. Time: the time of day, measured to the second,
at which this bid was placed.

Voucher bid auctions are excluded from the dataset.
With the exception of voucher bid auctions, the
complete auction histories constitute a representa-
tive sample of QuiBids auctions. There are roughly
even numbers of recorded bids placed on items in each
price category ($0–$50, $50–$100, and so on) and in
each retail category (e.g. electronics, home and gar-
den, gift cards). Only bids placed while t ≤ treset
were recorded.

The raw data consists of a matrix R with the eleven
columns described above. Each row in R corresponds
to a particular bid. We can also think of the raw data
as comprised of a set A of auctions. For an auction
a ∈ A we notate by Ra the matrix of raw data for
that particular auction. The rows of each such Ra are
sorted in ascending chronological order (i.e. the bids
are sorted by the time at which they were placed).
The final row of Ra therefore identifies the winner of
the auction a, the bid price at which the good was
sold, and the time at which the auction ended.

4 Designing An Agent

Our goal is to design an automated bidding agent
for QuiBids penny auctions, relying on the data R
scraped from QuiBids as training data. From the bid-
der’s perspective, the ideal outcome of a penny auc-
tion is winning the auction with a single bid. Plac-
ing a bid is costly, so a rational bidder will refrain
from bidding until the auction would otherwise end.
This, of course, is a drastic simplification since a bid-
der cannot be sure about others’ intentions and can
never be certain whether an auction is about to end.
Furthermore, the very act of bidding when the auc-
tion would otherwise end may influence the behavior
of the other bidders, potentially causing the auction
to continue.

The realization that the actions of an automated
bidding agent alter the behavior of the other bidders
poses a profound problem. The training data, need-
less to say, does not incorporate the effects of the au-
tomated agent’s behavior. Consequently, the train-
ing data might no longer be predictive of the auction
outcome as soon as the agent places a bid. Proper
evaluation of an automated agent, therefore, cannot
be done with training data alone, but rather would
require active experiments with real human partici-
pants.

In order to sidestep this problem, we focus on de-
signing a method which, by passive observation of
an auction a′, can accurately predict the number of
bids ŷ remaining in the auction. The agent should
produce a revised estimate of the number of bids re-
maining after each successive bid is observed, so that
it produces a vector of predictions ŷa′ . The predic-
tion made after observing the first i bids is denoted
ŷa′ [i]. For the purposes of evaluation, we presume
that the bidding agent takes no action, and therefore
has no impact on the course of the auction. How-
ever, the predictions ŷa′ could in theory be basis for
a profitable bidding strategy. We suggest three bid-
ding strategies that can be implemented on top of
end-of-auction prediction:

• Define a threshold ε. Do nothing while ŷa′ [i] > ε.
As soon as ŷa′ [i] ≤ ε, begin bidding aggressively
with the BidOMatic. Stop bidding aggressively
only if the agent’s total expended bid fees equal
the Buy-Now price m of the item, at which point
Buy-Now should be invoked, or when the agent
wins the auction. Aggressive bidding behavior
at the end of an auction has been shown to be
associated with auction winners (J. Stix, 2012
[9]). This finding suggests that aptly timed ag-
gressive bidding behavior might be capable of
winning, despite refraining from submitting bids
for the majority of the auction.

• As before, define a threshold ε, but also define a
clock time threshold tthresh. Instead of bidding
aggressively with the BidOMatic, place a single
bid only when observing that ŷa′ [i] ≤ ε and t ≤
tthresh. This is an extension of the “constant-
time” strategy proposed by (J. Stix, 2012 [9]).

• Store the prediction ŷstart := ŷa′ [1] associated
with the first bid of the auction. Whenever the
auction clock drops below tthresh seconds, bid
with probability min(1,max(0, ŷa′ [i]/ŷstart)).

4.1 A Hierarchical Method for Pre-
dicting the Auction End

We take a two-level hierarchical approach for predict-
ing the auction end. Given a novel auction a′, the first
step is to compare a′ to all training auctions a ∈ A.
The aim of this step is to identify a set of auctions
S ⊂ A that are most similar to a′.

The second step is to use each of the similar auc-
tions s ∈ S in order to predict the number of bids

3

ŷa′ remaining in auction a′. Consider making a pre-
diction ŷa′ [i] after a particular number of bids i has
already elapsed. For each similar auction we obtain
a prediction ŷs. The final prediction is the average of
the individual predictions from the auctions in S:

ŷa′ [i] =
1

|S|
∑
s∈S

ŷs (1)

We develop the details of both steps of the two-level
method in the following sections. See Figures 1 and
2 for a summary of the method.

4.2 Generating Feature Vectors

The first step in the pipeline involves preprocessing
the raw bid histories in order to generate a train-
ing set of feature vectors. We need to generate two
types of feature vectors: per-auction feature vectors
and bid history feature vectors. Per-auction feature
vectors are based on auction-level features such as
the Buy-Now price of the good being auctioned and
the retail category of the good. The per-auction fea-
ture vectors are used in order to determine the set S
of similar auctions. In contrast, bid history feature
vectors are computed using more granular bid-level
information such as the time at which each bid was
placed and the user that placed each bid. The bid his-
tory feature vectors are used to make the predictions
ŷs. The process used to compute both per-auction
feature vectors and bid history feature vectors is de-
scribed below.

We wish to construct a single per-auction feature
vector xa for each a ∈ A. The per-auction fea-
ture vector should be a function of the very first bid
recorded in the complete auction history. This means
that after the bidding agent observes the first bid of
a novel auction, it has enough information to map
that auction into the per-auction feature space and
compute the set S. Let the Ra,i,j denote the subma-
trix of Ra which contains rows i through j of the full
matrix (inclusive). The per-auction feature vector xa
for auction a is some function f of the opening bid:

xa = f(Ra,1,1) (2)

We make use of the remaining rows of Ra in order
to compute the bid history feature vectors. For each
auction in the raw data, the matrix Ra will be con-
verted into the corresponding matrix of feature vec-
tors Xa. Each row in Xa is a bid history feature
vector. Let the ith bid history feature vector (i.e.
the ith row of Xa) be denoted by Xa[i].

The ith feature vector for auction a is a function of
the first i bids in the recorded history. This design,
again, has the bidding agent in mind—the ith feature
vector can only depend on the bids that the agent will
have seen so far. The remaining bids are in the future
and are hence hidden. The ith feature vector can now
be written as a function g of the submatrix comprised
of the first i rows of raw data:

Xa[i] = g(Ra,1,i) (3)

Although f and g are left unspecified here, we define
particular a f and a particular g in order to evaluate
our method.

Each bid history feature vector Xa[i] has an asso-
ciated training label ya[i]. Equivalently, the training
data Xa for auction a has an associated vector of la-
bels ya. Suppose that the bid history for auction a
contains na bids. The label corresponding to the ith
feature vector is the number of succeeding bids:

ya[i] = na − i (4)

Each training example is thus paired with a ground
truth giving the number of bids remaining in the auc-
tion. For evaluation, we compare our predictions ŷa
against the ground truth ya.

4.3 Finding Similar Auctions

Our goal is, given a new auction a′, to find a set
S ⊂ A of auctions which we will use to make a pre-
diction of the number of bids remaining. In order
to do so, we make use of the set of per-auction fea-
ture vectors: {xa : a ∈ A}. We determine S using
k-nearest neighbor where k is some predetermined
small integer. Namely, the problem is to find a sub-
set of auctions S such that |S| = k and for any s ∈ S:

||xs − xa′ || ≤ ||xa − xa′ || ∀a ∈ A \ S (5)

This S is not guaranteed to be unique; we choose a
solution S uniformly at random among all possible
solutions. We efficiently find a solution that satisfies
Equation 5 by using the set of per-auction feature
vectors {xa} to construct a kd-tree, and then query-
ing the kd-tree for the k vectors nearest to xa′ (see
e.g. (Yianilos, 1993 [11]) and (Cormen et al., 2009
[4])). The metric is Euclidean distance.

4.4 Predicting Remaining Bids

Suppose that we are trying to compute a particular
ŷs—we have identified an auction s which looks sim-
ilar to the novel auction a′ and, by comparison to s,

4

QuiBidsTrain(Atrain, R)

1 E ← ∅
2 models← {}
3 for a ∈ Atrain do
4 xa ← f(Ra,1,1)
5 E ← E ∪ xa
6 na ← length(Ra)
7 Xa ← new matrix with na rows
8 ya ← new vector of length na
9 for i = 1, . . . , na do

10 Xa[i]← g(Ra,1,i)
11 ya[i]← na − i
12 models[a]← TrainModel(Xa,ya)
13 output KDTreeConstruct(E),models

Figure 1: Given the raw data for the set of training auctions Atrain, the generic procedure shown here is
used to train the hierarchical model. The procedure returns two data structures: a kd-tree constructed
from the set of per-auction feature vectors, and an associative data structure that maps from an auction to
the corresponding trained model. Depending on whether we are running knn-knn, knn-lin, or knn-poi, the
TrainModel procedure might involve constructing a kd-tree, computing parameters for a linear regression
model, or computing parameters for a Poisson regression model. For details on notation, see the glossary of
symbols (Figure 3).

Symbol Description

Atrain the set of auctions in the full auction
bid histories

Atest the set of auctions in the end auction data
a generic particular auction
f per-auction feature vector function
g bid history feature vector function
na the number of recorded bids in auction a
R matrix of all raw data
Ra matrix of raw data for auction a
Ra,i,j submatrix of Ra consisting of rows

i through j, inclusive
S set of similar auctions found by the first

step of the hierarchical method
Xa matrix containing feature vectors
Xa[i] ith feature vector for auction a
xa per-auction feature vector for auction a
ya vector of training labels for auction a
ya[i] ith training label for auction a
ŷa vector of predicted bids remaining
za actual number of remaining bids upon

predicting the auction end
δ bid increment
ε bid threshold for computing za
φ bid fee
θ vector of model parameters

Figure 3: Glossary of symbols.

we wish to determine the number of bids remaining
in a′. In order to accomplish this task, we harness the
training data Xs and the associated labels ys. If the
first i bids of the novel auction have elapsed, then the
most up-to-date bid history feature vector is Xa′ [i].
Our approach is to train a model with Xs and ys,
and then to use Xa′ [i] as test data which yields the
model prediction ŷs. We compare three models for
solving this problem: 1) single-nearest neighbor, 2)
linear regression, and 3) Poisson regression.

In the single-nearest neighbor case, we train a
model for each a ∈ A by building a kd-tree containing
the feature vectors in Xa. In order to compute ŷs, we
first lookup the kd-tree corresponding to auction s.
Then we use this kd-tree to find the index j of the
feature vector that is closest to Xa′ [i] according to a
Euclidean distance metric. If the training data Xs

consists of ns bids:

j = arg min
1≤v≤ns

||Xs[v]−Xa′ [i]|| (6)

Although evaluating Equation 6 by brute force would
require O(|S|) time, the time complexity of the kd-
tree query is logarithmic in the length of the auc-
tion history. Once we determine index j, we set
ŷs := ys[j]. After following this process for each s, we

5

QuiBidsTest(Atest, R, k, kdtree,models)

1 Y ← ∅
2 Ŷ ← ∅
3 for a ∈ Atest do
4 xa ← f(Ra,1,1)
5 S ← KDTreeQuery(kdtree, k,xa)
6 na ← length(Ra)
7 Xa ← new matrix with na rows
8 ya ← new vector of length na
9 ŷa ← new vector of length na

10 for i = 1, . . . , na do
11 Xa[i]← g(Ra,1,i)
12 ya[i]← na − i
13 ŷa[i]← 0
14 for s ∈ S do
15 ŷs ← Predict(models[s], Xa[i])
16 ŷa[i]← ŷa[i] + ŷs/k

17 Ŷ ← Ŷ ∪ ŷa
18 Y ← Y ∪ ya
19 output Y, Ŷ

Figure 2: The procedure which is used to make predictions for all test auctions. Given the kd-tree and
trained models generated by the QuiBidsTrain procedure, it returns the set of all prediction vectors,
{ŷa : a ∈ Atest}, and the set of all training labels for the test data, {ya : a ∈ Atest}. Depending on
whether we are running knn-knn, knn-lin, knn-poi, the Predict procedure could query a kd-tree for the
single-nearest neighbor, use a trained linear regression model to make a prediction, or use a trained Poisson
regression model to make a prediction. For details on notation, see the glossary of symbols (Figure 3).

6

compute the final estimate ŷa′ [i] according to Equa-
tion 1.

A general problem with nearest neighbor tech-
niques is that Euclidean distance loses its meaning
in a high-dimensional space (Beyer et al., 1999 [2]).
The single-nearest neighbor strategy thus limits us
to using a small number of features (on the order of
10). This “curse of dimensionality” problem moti-
vates using ordinary least squares linear regression
as an alternative approach. Linear regression is also
among the simplest of regression models, so it pro-
vides a baseline for comparison against other regres-
sion techniques.

Linear regression solves the “curse of dimension-
ality” problem, but suffers from a new problem: it
yields negative predictions. The number of bids re-
maining is always a nonnegative integer. We there-
fore explore Poisson regression as a third technique
for computing the estimates ŷs. The Poisson re-
gression model is tailored for making predictions on
count data. It is an instance of a generalized linear
model with a logarithmic link function (Cameron and
Trivedi, 1998 [3]). The model assumes that the data
follows

P (ya[i] | Xa[i], θ) = Poisson(eθ
TXa[i]) (7)

where θ is a vector of the model parameters
and Poisson(λ) is the probability mass function of
the Poisson distribution with mean λ. Equiva-
lently, the labels are Poisson-distributed with means
E[ya] = exp(Xaθ). Training the model requires
maximum-likelihood parameter estimation—finding
arg maxθ L(θ|Xa,ya). There is no closed-form solu-
tion for the MLE, but good estimates can be obtained
by standard gradient descent algorithms.

5 Results and Evaluation

We have described three hierarchical methods for
end-of-auction prediction: k-nearest neighbor fol-
lowed by single-nearest neighbor (knn-knn), k-nearest
neighbor followed by linear regression (knn-lin), and
k-nearest neighbor followed by Poisson regression
(knn-poi). Our implementation uses the k-nearest
neighbor and regression packages provided by Scikit-
learn (Pedregosa et al., 2011 [7]) along with MAT-
LAB’s generalized linear model toolbox. Here we
present and compare the results for these three meth-
ods.

The set of auctions A was split into a training
set Atrain and a test set Atest by randomly select-

ing auctions. Approximately 20% of the auctions are
in Atest, with the remaining 80% in Atrain. For each
auction a ∈ Atest, we have an associated vector of
labels ya. Our goal is to use the training set Atrain

to compute the corresponding vector of estimates ŷa.
The predictions ŷa are plotted against the true labels
ya for an example auction in Figure 4.

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

700

800
knn−poi Predictions for Auction 529632804

Actual bids remaining

P
re

di
ct

ed
 b

id
s

re
m

ai
ni

ng

Figure 4: Predicted bids remaining ŷa versus actual
bids remaining ya for auction a = 529632804. The
auction was for a Cuisinart FP-14DC Elite Food Pro-
cessor with a Buy-Now price of $283.99.

The results use k = 20 for k-nearest neighbor. The
Buy-Now price is the sole per-auction feature, so that
f(Ra,1,1) simply returns the Buy-Now price contained
in the first row of the the raw data matrix. Further-
more, g is defined to compute the following bid-level
features for each Xa[i]:

1. Time Elapsed: the time elapsed between the
placement of the auction’s opening bid and the
placement of the ith bid.

2. Absolute Time: the absolute time of day at
which the ith bid was placed, measured in sec-
onds.

3. Highest Bid: the new highest bid price p of the
good after this bid is placed.

4. Unique Bidders: the number of unique bidders
that have bid so far in the auction.

7

5. Unique Bidders Last 50: the number of unique
bidders in the last 50 bids.

6. Bids Placed: the total number of bids placed
thus far by the current highest bidder.

7. BidOMatic Bids: the total number of BidOMatic
bids placed thus far in the auction.

The first evaluation metric is the residual sum of
squares (RSS):

RSS =
∑

a∈Atest

||ŷa − ya||2 (8)

The smaller the RSS, the more closely ŷa predicts
ya. The results show that knn-lin has the largest
squared residuals; knn-knn’s RSS is 41.3% that of
knn-lin, and knn-poi ’s RSS is 5.9% that of knn-lin.
By this measurement, knn-poi is the favored method.

The RSS indicates how well the method predicts
the number of bids remaining at any point in the auc-
tion. But for the purposes of a bidding agent, it is
not strictly necessary to always generate an accurate
prediction of the number of remaining bids. What
is more important is whether the predictions accu-
rately indicate when the end of the auction is immi-
nent. Figure 4, for example, shows large errors be-
tween the predicted and actual numbers of remaining
bids—when there are 3,000 bids remaining, knn-poi
suggests that there are only 500. This is nevertheless
a “good” case in the sense that the graph lies close
to the origin towards the end of the auction. When
there are a small number of bids remaining, the pre-
diction indeed recovers that few bid remain.

The preference for accuracy specifically when the
end of the auction is impending requires an end-of-
auction aware evaluation scheme. We use the fol-
lowing algorithm to produce an end-of-auction pre-
diction for each a ∈ Atest: find the first bid in the
test auction whose associated prediction ŷa[i] falls
below some threshold ε. After computing the small-
est j such that ŷa[j] ≤ ε, the corresponding label
ya[j] gives the actual number of bids remaining at
this point. Let za := ya[j] so that za can be inter-
preted as the actual number of bids remaining when
we predict the end of auction a. If ŷa[i] > ε ∀i then
the prediction is never sufficiently low. In this case,
za does not exist and the method has failed to predict
the end of a.

We use the end-of-auction predictions za for three
evaluation metrics:

1. The mean bids remaining, or the mean za taken
over the auctions a ∈ Atest. The auctions for
which za does not exist are excluded from this
calculation.

2. The median bids remaining, or the median za
taken over a ∈ Atest. Together, the mean and
median za indicate precision. The lower they are,
the more precise the end-of-auction predictions.

3. The auction recall. This is the fraction of the
auctions in Atest for which za exists.

These evaluation metrics are shown as a function of
the threshold ε in Figure 5.

0 50 100 150 200 250 300 350 400
100

150

200

250

300

End−of−auction threshold, epsilon

M
ea

n
bi

ds
 r

em
ai

ni
ng

knn−knn
knn−lin
knn−poi

0 50 100 150 200 250 300 350 400
60

70

80

90

100

110

End−of−auction threshold, epsilon

M
ed

ia
n

bi
ds

 r
em

ai
ni

ng

knn−knn
knn−lin
knn−poi

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

End−of−auction threshold, epsilon

A
uc

tio
n

re
ca

ll

knn−knn
knn−lin
knn−poi

Figure 5: Evaluation metrics as a function of the
threshold ε: the mean za (top), median za (middle),
and the auction recall (bottom). Results for knn-knn
are shown in blue, with knn-lin shown in green and
knn-poi shown in red.

8

For nearly any choice of ε, knn-knn performs best in
terms of the mean and median za metrics—there tend
to be the fewest bids remaining in the test auction his-
tory when knn-knn predicts the impending end of the
auction. The knn-poi method performs second best,
with knn-lin performing worst (Figure 5, top and cen-
ter panels). These results are consistent with the RSS
in that knn-knn and knn-poi outperform knn-lin. Al-
though knn-knn is better at identifying the auction
end than knn-poi, the Poisson regression method has
considerably better recall, especially for low values
of ε (Figure 5, bottom panel). Poisson regression of-
fers perhaps the best balance between precision and
recall.

The knn-knn and knn-poi hierarchical methods are
capable of predicting the end of the auction within a
resolution of a few hundred bids. For example, setting
the threshold to ε = 2 and using knn-poi, the error
is 149.9 bids as measured by mean za. The median
za more conservatively suggests an error of 73 bids.
The recall for knn-poi with ε = 2 is 60.2%.

6 Conclusion

Although (J. Stix, 2012, [9]) suggests several rule-
based strategies for a QuiBids bidding agent, to our
knowledge no prior research has attempted to ap-
ply machine learning techniques for end-of-auction
prediction in penny auctions. Given the dearth of
research on automated agents for online penny auc-
tions, we anticipate that this work will set a baseline
for supervised learning-based penny auction agents.

Our results demonstrate the promise behind a hier-
archical strategy which trains a model for each auc-
tion individually. The evaluation suggests that the
hierarchical method is capable of obtaining end-of-
auction predictions that err, on average, by less than
200 bids. There is a tradeoff between end-of-auction
prediction precision and recall, but depending on the
desired level of precision, knn-knn and knn-poi can
achieve between 60% and 90% recall.

One direction for future work is to design a loss
function which properly penalizes error at the end
of a training auction more than error at the begin-
ning of a training auction when computing the model
parameters θ. This would ensure that each auction
model closely fits the data at the end of the auction,
and therefore makes accurate predictions when the
end of the auction is imminent. A second direction
for future work is to explore regression models for
count data aside from Poisson regression. In partic-

ular, negative binomial regression might provide an
improvement over knn-poi.

We believe that the discriminative models pre-
sented here for end-of-auction prediction could form
the foundation for implementing a profitable QuiBids
bidding agent. An alternative avenue which may
be interesting to pursue is developing a generative
model capable of modeling the underlying auction
dynamics. A hidden Markov model might be appli-
cable for this purpose given that the full bid histories
are sequential data. Potentially of use here is a hid-
den semi-Markov model (HSMM) in which transition
probabilities are not static, but rather depend on the
time elapsed since entry into the hidden state.

References

[1] Augenblick, N. 2012. Consumer and producer behav-
ior in the market for penny auctions: A theoreti-
cal and empirical analysis. Unpublished manuscript.
Available at http://faculty.haas.berkeley.edu/

ned/Penny_Auction.pdf.

[2] Beyer, K., Goldstein, J., Ramaskrishnan, R., and
Shaft, U. 1999. When Is “Nearest Neighbor” Mean-
ingful? 7th International Conference Jerusalem, Is-
rael, January 10–12, 1999 Proceedings, 217–235: In-
ternational Conference on Database Technology.

[3] Cameron, A. C. and Trivedi, P. 1998. Basic Count
Regression. In Regression Analysis of Count Data, 61–
69. New York: Cambridge University Press.

[4] Cormen, T., Leiserson, C., and Rivest, R. 2009. 3rd
ed. Introduction to Algorithms. Cambridge, MA: MIT
Press.

[5] Hinnosaar, T. 2010. Penny auctions are unpre-
dictable. Unpublished manuscript. Available at http:
//toomas.hinnosaar.net/pennyauctions.pdf.

[6] Krishna, V. and Morgan, J. 1997. An Analysis of the
War of Attrition and the All-Pay Auction. Journal of
Economic Theory 72(2): 343–362.

[7] Pedregosa, F. et al. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Re-
search 12: 2825–2830.

[8] Stix, E., Stix, J., Storch, D., Sodomka, E., and Green-
wald, A. 2013. Empirical Analysis of Auctioneer Prof-
itability in QuiBids Penny Auctions. Association for
the Advancement of Artificial Intelligence. Proceed-
ings: AAAI-13 Workshop on Trading Agent Design
and Analysis. Forthcoming.

[9] Stix, J. 2012. Designing a Bidding Algo-
rithm for Online Penny Auctions. Available at
http://cs.brown.edu/research/pubs/theses/

ugrad/2012/jstix.pdf.

9

http://faculty.haas.berkeley.edu/ned/Penny_Auction.pdf
http://faculty.haas.berkeley.edu/ned/Penny_Auction.pdf
http://toomas.hinnosaar.net/pennyauctions.pdf
http://toomas.hinnosaar.net/pennyauctions.pdf
http://cs.brown.edu/research/pubs/theses/ugrad/2012/jstix.pdf
http://cs.brown.edu/research/pubs/theses/ugrad/2012/jstix.pdf

[10] Wang, Z. and Xu, M. 2012. Learning and
Strategic Sophistication in Games: The Case
of Penny Auctions on the Internet. Unpublished
manuscript. Available at http://www.economics.

neu.edu/zwang/Penny%20auction.pdf.

[11] Yianilos, P. 1993. Data Structures and Algorithms
for Nearest Neighbor Search in General Metric Spaces.
Proceedings, 311–321: ACM-SIAM Symposium on
Discrete Algorithms.

10

http://www.economics.neu.edu/zwang/Penny%20auction.pdf
http://www.economics.neu.edu/zwang/Penny%20auction.pdf

	Introduction
	Defining Penny Auctions
	Auction Model
	QuiBids' Rules

	Data
	Designing An Agent
	A Hierarchical Method for Predicting the Auction End
	Generating Feature Vectors
	Finding Similar Auctions
	Predicting Remaining Bids

	Results and Evaluation
	Conclusion

