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Abstract

Cryptographic accumulators have often been proposed for use in security protocols, and the theoretical
runtimes of algorithms using them have been shown to be reasonably efficient, but their performance in
the real world has rarely been measured. In this paper I analyze the performance differences between
two cryptographic accumulator constructions, RSA accumulators and bilinear-map accumulators, based
on a realistic practical implementation in C++. I first discuss the theoretical differences between the
constructions and their runtimes, showing that both algorithms present the opportunity for parallel
computation. Then I describe an experiment that measures the actual running time of these algorithms
on current commodity hardware, and discuss the optimizations I was actually able to make in their code.
Finally, I present and analyze the experimental results, which show that the bilinear-map accumulator
performs faster than the RSA accumulator in almost all cases, and should be the preferred implementation
for practical security systems as long as the size of the set to be accumulated can be given a reasonable
upper bound.

1 Introduction

One-way accumulators are an important cryptographic primitive that form the basis of a large number of
security systems. Similar to a one-way hash function, they provide a fixed-size digest representing an arbi-
trarily large set of inputs. More interestingly, a one-way accumulator can provide a fixed-size witness for any
element of the set, which can be used in combination with the accumulated digest to verify that element’s
membership in the set. As a result of this ability to efficiently verify set membership, cryptographic accu-
mulators have been used in security applications that require some form of authentication as an alternative
to digital signatures. For example, accumulators are a component of anonymous credential systems, as in
[14], e-cash schemes, as in [1], and authenticated data structures, as in [20].

Most existing work describing security algorithms that use accumulators, however, considers the per-
formance of these algorithms only in the theoretical sense. Few publications include a working software
implementation of their accumulator-based security system, describing the algorithms only in pseudocode.
Unlike, for example, one-way hash functions, the average real-world performance and useability of crypto-
graphic accumulators is not generally known, since they have not been widely adopted in current computer
systems. The fact that accumulators have good asymptotic performance does not guarantee that they will
be practical to use in real life, since the constants involved in their constant-time operations may turn out
to be very large. In order for security schemes such as anonymous credential systems to be adopted by real
users, it is important to determine whether accumulators demonstrate reasonably fast performance.

Another open question in the area of cryptographic accumulators is the choice of which version of the
accumulator construct should be used when implementing a security system based on accumulators. Two
different protocols have been described that fulfill the basic contract of a cryptographic accumulator, which
are commonly referred to as the RSA accumulator and the bilinear-map accumulator. The RSA accumula-
tor was first described by Beneloh and de Mare [5], when they introduced the concept of a cryptographic
accumulator, and it was further developed and formalized by Barić and Pfitzmann [2]. The bilinear-map
accumulator was introduced by Nguyen [19], and uses elliptic curve operations instead of modular expo-
nentiation as the basis for computing accumulation values. While there are some theoretical differences
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between these accumulators, they have largely the same capabilities, and both have been extended to dy-
namic accumulators (RSA accumulators in [9] and bilinear-map accumulators in [8]). In many constructions,
such as authenticated data structures, they could be used interchangeably because they both provide the
needed features, e.g. proving set membership. It then becomes important to consider which one has one
provides faster performance when actually implemented, since the choice of a slow accumulator could make
an otherwise efficient authenticated data structure impractical for use in real life.

This paper will therefore focus on benchmarking the performance of a concrete implementation of both
an RSA accumulator and a bilinear-map accumulator, comparing the results to determine which accumu-
lator performs faster. In Section 2 I provide the formal definitions of the two types of accumulators I am
considering. In Section 3 I discuss the algorithms involved in using these accumulators from a theoretical
perspective. This includes a discussion of the parts of each accumulator that can be computed in parallel,
an optimization opportunity often overlooked in considering how security algorithms can be implemented on
modern multicore processors. In Section 4 I describe the setup of my experiment, including implementation
details of the accumulators and optimizations I was able to make to the accumulator algorithms. Section
5 contains the results of my experiments, and in section 6 I comment on these results and conclude that
the bilinear-map accumulator is much faster than the RSA accumulator, placing it in the realm of practical
runtimes.

1.1 Related Work

Little previous work has been done on measuring the real-world performance of cryptographic accumulators.
The most potentially relevant work is an extensive study of the real-world performance of authenticated
dictionary schemes by Crosby and Wallach [11]. In this paper, the authors use an authenticated dictionary
based on RSA accumulators as one of their test systems, and conclude that the RSA accumulators intro-
duce a significant performance overhead that make this authenticated dictionary too slow for practical use
compared to digital signatures. However, the results do not show the specific amounts of time taken by RSA
accumulator operations because they are formatted in terms of authenticated dictionary operations such as
inserts and updates. Furthermore, the tests were all carried out on a single-core processor, so none of the
available concurrency within the RSA accumulator’s algorithms was exploited.

2 Background

The concept of one-way accumulators was first introduced by Benaloh and de Mare [5], who defined them
as one-way hash functions with the property of being quasi-commutative. A quasi-commutative function is
a function f : X × Y → X such that, for all x ∈ X and for all y1, y2 ∈ Y

f(f(x, y1), y2) = f(f(x, y2), y1) (1)

If this function is also a one-way hash function, i.e. it is difficult for a polynomially-bounded adversary to
invert, then it is a one-way accumulator. A one-way accumulator function h can thus be used to compute a
secure digest z for a set of values {y1, y2, . . . , ym} ∈ Y given a starting value x by applying h repeatedly to
each yi, and this value does not depend on the order in which the yi are accumulated. It can also be used
to generate a witness zj for a value yj in the set, by accumulating all yi such that i 6= j. Since the order of
accumulation does not matter, the only difference between zj and z is that zj has not yet accumulated yj ,
so h(zj , yj) = z.

Barić and Pfitzmann [2] generalized the definition of an accumulator to any set of functions that can,
given a security parameter k,

• Generate an accumulator key that can be used in all other functions

• Compute an accumulation value z for a set {y1, y2, . . . , ym}

• Compute a witness value wi for an element yi in the set, with respect to z
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• Authenticate an element yi using witness wi and accumulation z.

They also introduced the concept of collision-free accumulators, a stronger guarantee than one-way accu-
mulators, and note that Benaloh and de Mare’s original implementation of accumulators with modular
exponentiation is not collision-free. Briefly, an accumulator is collision-free if, for all set sizes N , it is difficult
for a probabilistic polynomial-time adversary to find a set {y1, . . . , yN}, a value y′ (not in the set) and a
witness w′ such that y′ is authenticated by w′ and the accumulation value z for {y1, . . . , yN}.

There are two different implementations of accumulators that satisfy Barić and Pfitzmann’s definition.
The first, RSA accumulators, were described by Barić and Pfitzmann themselves in the same paper in which
they gave this definition.

2.1 The RSA Accumulator

The RSA accumulator is based on modular exponentiation with an RSA modulus. In its simplest form, it
works as follows. The accumulator key is an RSA modulus N = pq, where p and q are strong primes [17],
and a base x ∈ ZN. The modulus should be at least k bits, where k is the number of bits in the largest
element that will be accumulated. The accumulation function computes the accumulation value for a set
P = {p1, . . . , pn} of prime numbers as

acc(P) = xp1···pn mod N (2)

The witness-generation function computes the witness Wpi,P for element pi in P by accumulating all elements
of P except pi:

Wpi,P = xp1···pi−1pi+1···pn mod N (3)

Finally, the authentication function authenticates an element pi and a witness Wpi,P with an accumulation
acc(P) by testing

(Wpi,P)pi
?≡ acc(P) mod N (4)

Prime Representatives. It is important to note that the inputs to this accumulator must be restricted
to prime numbers in order for it to be collision-free. Since most practical uses of accumulators need to be
able to accumulate arbitrary integer values, it is necessary to compute a prime representative of each desired
input to use as the actual input for the RSA accumulator.

One method of computing prime representatives, proposed by Sander, Ta-Shma, and Yung in [23] and
described by Goodrich, Tamassia, and Hasić in [15], is based on two-universal hash functions (introduced by
Carter and Wegman in [10]). It involves defining a two-universal function h(x) = Fx, where F is a k × 3k
binary matrix, and searching for a prime 3k-bit preimage of a k-bit element e by sampling O(k2) times from
the set of inverses h−1(e). However, this method generates very large prime representatives and performs
slowly in practice. In my experiments, I use a more practical method of computing prime representatives,
which is more efficient and produces smaller representatives but is slightly less secure because it relies on
the random oracle model.

The second method of computing prime representatives was described by Barić and Pfitzmann, also in
[2]. They refer to it as the “RSA Accumulator with Random Oracle,” but it is essentially the same as the
standard RSA accumulator with a random oracle prime representative generator. Let Ω(y) be a random
oracle; on input y, it returns a random number r and stores the pair (y, r), and if it receives y as input
again it returns the same r. Using this oracle, the prime representative of composite element y is 2tΩ(y) +d,
where d is a t-bit number that, when appended to Ω(y), makes it prime. As Papamanthou, Tamassia, and
Triandopoulos showed in [21], if a is the output of a b-bit random oracle, the interval [2ta, 2ta + 2t − 1]
contains a prime with probability at least 1− 2−b provided b ≤ blog(1 +

√
2t + 4e2t−1)− 1c. Therefore if t is

of sufficient size given the size of the oracle’s output, d can be found with high probability by incrementing
from 1 to 2t − 1 until 2tΩ(y) + d is prime. This method can produce prime representatives of a fixed size
regardless of the size (k) of the elements to be accumulated.
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A more complete definition of the RSA accumulator, taking into account prime representatives, is the
following. Suppose we have a set of k-bit elements A, and a function r(a) for computing j-bit prime
representatives for elements in A. Let N be a k′-bit RSA modulus (k′ > j), namely N = pq, where p, q are
strong primes [17]. The accumulation value of A is

acc(A) = g
∏
a∈A r(a) mod N , (5)

which is a k′-bit integer, where g ∈ QRN. The RSA modulus N, the exponentiation base g, and the prime
representative generator r comprise the public key pk for the accumulator. The factorization of N is the
accumulator’s secret key and is kept hidden from any adversary. Subject to the accumulation acc(A), the
witness for element ai ∈ A is

Wai,A = g
∏
a∈A−ai

r(a) mod N . (6)

More generally, the proof of subset containment for any set B ⊆ A [22] is the subset witness WB,A where

WB,A = g
∏
a∈A−B r(a) mod N . (7)

Subset containment for a set B in set A can be authenticated by testing

W
∏
b∈B r(b)

B,A
?≡ acc(A) mod N , (8)

which can be done by any verifier that has access to the correct accumulation value acc(A) and the public
key.

This accumulator is collision-free under the Strong RSA Assumption, which was also defined by Barić
and Pfitzmann:

Assumption 1 (Strong RSA assumption [2]) Let k be the security parameter. Given a k-bit RSA mod-
ulus N and a random element x ∈ Z∗N, there is no probabilistic polynomial-time algorithm that outputs y > 1
and β such that βy = x mod N, except with probability neg(k)1.

2.2 The Bilinear-Map Accumulator

The second well-known implementation of accumulators is the bilinear-map accumulator, which was first
introduced by Nguyen in [19]. Nguyen describes them in terms of additive groups, but most subsequent
work with them describes them in terms of multiplicative groups. I will be using the multiplicative group
definition, as presented in e.g. [21] and [13], since it better shows the parallels with the RSA accumulator.
First, it is necessary to define bilinear pairings. Let G1 and G2 be two cyclic multiplicative groups of prime
order p generated by g1 and g2, for which there exists an isomorphism ψ : G2 → G1 such that ψ(g2) = g1.
If GT is a cyclic multiplicative group with the same order p, then e : G1 ×G2 → GT is a bilinear pairing (or
bilinear map) with the following properties:

1. Bilinearity: e(P a, Qb) = e(P,Q)ab for all P ∈ G1, Q ∈ G2 and a, b ∈ Z∗p

2. Non-degeneracy: e(g1, g2) 6= 1

3. Computability: There is an efficient algorithm to compute e(P,Q) for all P ∈ G1 and Q ∈ G2.

The groups and the pairing can be chosen by a bilinear pairing instance generator, which is a probabilistic
polynomial time algorithm that takes a security parameter k and produces a tuple t = (p,G1,G2,GT ,
e, g1, g2) such that p grows exponentially with k. Most descriptions of the bilinear-map accumulator set
G1 = G2, but in my experimental setup I keep them separate, since pairing functions are actually faster to
compute when the input groups are distinct [18].

1Function f : N → R is neg(k) iff for any nonzero polynomial p(k) there exists N such that for all k > N , f(k) < 1/p(k).
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Given an instance of a bilinear pairing, the bilinear-map accumulator is constructed as follows. Suppose
we have a set of n elements E = {e1, e2, . . . , en}, all of which are in Z∗p (where p is the prime order of the
groups). Let s be a value randomly chosen from Z∗p. Then the accumulation value of E is

acc(E) = g
(e1+s)(e2+s)···(en+s)
1 , (9)

which is an element of G1. Note that the exponent of g1 can be seen as a polynomial on s of degree n, that
is, fE(s) =

∏
e∈E(e+ s). The witness for element ei ∈ E with respect to the accumulator acc(E) is

Wei,E = g

∏
ej∈E:ej 6=ei

(ej+s)

2 (10)

The exponent of g2 here is also a polynomial on s, of degree n − 1, and can be defined as f ′E,ei(s) = fE(s)
ei+s

.

The value s is the accumulator’s secret key sk, and the set {gsi1 , gs
i

2 : 0 ≤ i ≤ q} is the accumulator’s public
key pk, where q is an upper bound on n. A verifier with access only to pk, the correct accumulation value
acc(E), and the bilinear pairing instance can authenticate element ei by testing

e(gei1 · gs1,Wei,E)
?
= e(acc(E), g2) (11)

since g1, gs1, and g2 are part of pk. This is mathematically equivalent to

W
(ei+s)
ei,E

?
= acc(E) (12)

but can be done without knowledge of s. Note that unlike the RSA accumulator, prime representatives are
not required at any point; this accumulator can accept as input any integer less than p.

This accumulator is collision-free under the Strong Diffie-Hellman Assumption, which was introduced by
Boneh and Boyen:

Assumption 2 (q-Strong Diffie-Hellman Assumption [7]) Let G be a cyclic group of prime order p

generated by g, and let κ ∈ Z∗p. Any probabilistic polynomial-time algorithm A that is given set {gκi : 0 ≤
i ≤ q} can find a pair (x, g

1
x+κ ) ∈ Z∗p ×G with probability at most O(1/p).

3 Accumulator Algorithms

Given these mathematical definitions, I will now consider the algorithms involved in using each type of
accumulator. As they are defined above, both kinds of accumulators have a public key, pk, and a secret
key, sk. Although it may not be apparent from the definition, in both accumulators there is a significant
difference between computing an accumulation value or witness with access to the secret key and computing
the same values with access to only the public key.

Consider the RSA accumulator. With access to the secret key sk = {p, q}, i.e. the factorization of N,
it is possible to compute the totient φ(N) = (p − 1)(q − 1). As a result of Euler’s Totient Theorem, the
exponent of g in the accumulation value is equivalent to

∏
a∈A r(a) mod φ(N), so with knowledge of the

totient it feasible to compute the entire exponent by reducing mod φ(N) after each multiplication. Only
one modular exponentiation then needs to be done. Without sk, however, φ(N) remains unknown, so the
exponent would need to be computed as an unbounded integer in order to compute its value all at once
before doing the modular exponentiation. This quickly becomes infeasible as the size of A increases, because
the product of |A| j-bit integers can be up to j|A| bits. Computing the accumulation value with only
the public key therefore requires computing g

∏
a∈A r(a) mod N as (((gr(a1))r(a2))r(a3))··· mod N, doing a

modular exponentiation for each element of A. The same argument applies to computing a witness value,
since the computation is the same except for the one element that is excluded from the exponent’s product.
Computing a witness value with access to sk can be done by computing the product in the exponent directly,
reducing mod φ(N), while computing the same witness value with only pk requires turning the product into
a series of modular exponentiations.
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Now consider the bilinear-map accumulator. With the secret key sk = s, the exponent of g1 can be
computed directly, using addition and multiplication mod p (operations in the exponent of group elements
are always modulo the group order). Thus computing the accumulation value requires only a single group
exponentiation operation. On the other hand, without sk, the exponent must be treated as a polynomial
on s, which cannot be evaluated directly. Instead it is necessary to find the coefficients of this polynomial
and use each coefficient as the power of a public-key element, since pk contains g1 raised to powers of s. If
{c0, c1, . . . , cn} are the coefficients of fE(s) in ascending order (i.e. c1 is the coefficient of the s term), the

accumulation value acc(E) is computed as gc01 · (gs1)c1 · (gs21 )c2 · · · (gsn1 )cn . Due to the rules of exponentiation
this is equivalent to evaluating fE(s), but it requires a group multiplication and exponentiation operation
for each coefficient of the polynomial, which is generally more computationally expensive than modular
arithmetic. The same argument applies to computing a witness value: with sk, the desired exponent of g2
can be computed directly, but without it the polynomial must be evaluated by pairing its coefficients with
elements of pk. If {c0, c1, . . . , cn} are the coefficients of f ′E,ei(s) in ascending order, the witness value Wei,E

is computed as gc02 · (gs2)c1 · (gs22 )c2 · · · (gsn2 )cn .
These differences are very important in practice, as we will see in the experimental results. However,

in theory, both accumulators still perform a constant number of operations per element to be accumulated,
so for both accumulators the runtime of the “accumulate” function for a set of size n is O(n) regardless of
whether pk or sk is used. The runtime of the witness-generation function for both accumulators is also O(n),
and the runtime of the verification function for both accumulators is O(1) (since verifying a single element
against a witness requires a fixed number of operations and a comparison). In fact, the only algorithm for
which these accumulators have different runtimes is the key-generation algorithm. Key generation for the
RSA accumulator involves choosing an RSA modulus and an exponentiation base, and possibly generating
a matrix for a two-universal hash function. Both of these operations are polynomial in k, the size in bits
of an element of the set to be accumulated (this affects the number of probabilistic primality tests needed
and the number of matrix bits that must be generated), but they are constant with respect to the size of
the set (n). On the other hand, key generation for the bilinear-map accumulator involves generating the

set {gsi1 , gs
i

2 : 0 ≤ i ≤ q}, which is O(q). Since q must be an upper bound on the size of the set to be
accumulated, this is affected by the size of the set to be accumulated; the runtime of key generation must
be at least O(n).

It would appear, as a result of the last conclusion, that the bilinear-map accumulator is less desirable
than the RSA accumulator, because it has an asymptotically worse runtime for key generation. However, as
the experimental results will show, this disadvantage is usually outweighed by the fact that the linear-time
algorithms of the bilinear-map accumulator have much smaller constants than the RSA accumulator.

3.1 Parallel Computation

Another important aspect of the accumulator algorithms to consider is the degree to which they can be
computed in parallel. Almost all computers in use today have multi-core processors, so any algorithm that
can be parallelized will be able to exploit hardware concurrency to gain improved performance. Both kinds
of accumulators have some easily available concurrency in their algorithms, which I will now describe.

RSA Accumulator. Each element in the set accumulated by the RSA accumulator needs a prime repre-
sentative. However, the representatives do not need to be computed on-the-fly as the accumulation value is
computed; they can be pre-computed and stored by the entity computing the accumulation values (although
they will not be available to the verifier). Computing a set of prime representatives {r1, . . . , rn} for a set of
composite values {a1, . . . , an} can easily be done in parallel, since each ri = r(ai) can be computed indepen-
dently of all the others. There are thus n independent tasks that can be performed in parallel by up to n
threads, allowing the entire set to be computed in O(nc ), where c is the number of processor cores available.

When computing an accumulation value with access to the private key, the majority of the work is in
computing the product

∏
a∈A r(a) mod φ(N), with one modular exponentiation at the end. Since modular

multiplication is associative, this product can be computed with the parallel prefix sum algorithm [6], a
technique for mapping an associative operation over a set using a tree-organized grouping of operations. The
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parallel prefix sum algorithm can compute the product of the entire set in O(nc +log c) [6], which is dominated
by n

c when n
c > log c. The same can be said for computing a single witness value with access to the private

key, since that also involves modular multiplication of (almost) the entire set of prime representatives.
When computing accumulation values or witnesses with only the public key, parallel computation is not

feasible because modular exponentiation is not associative – computing the value (gr1)r2 in a right-associative
manner would require reducing the power rr21 mod φ(N), since it is to be used as an exponent for g mod N.
However, it is often the case that an entity needing to compute acc(A) also needs to compute a witness Wai,A
for every element of A. In this case, the task of computing all of the witnesses can be easily parallelized,
since computing each witness does not depend on any other witness and requires read-only access to the set
of prime representatives of elements. As with prime representative generation, this means there are up to n
independent tasks that can be performed in separate threads, so computing all n witnesses for a set of size

n will take O(n
2

c ) time.
Verification of elements with witnesses is already constant-time, but it may be worth noting that verifying

a large number of elements could easily be done in parallel, since each witness-verification task would require
only read access to the shared accumulator value.

Bilinear-Map Accumulator. Computing the public key for the bilinear-map accumulator requires two
sets of exponentiations with the same powers of s: one to compute g1, g

s
1, g

s2

1 , . . . , g
sq

1 , and one to compute

g2, g
s
2, g

s2

2 , . . . , g
sq

2 . These powers of s can first be computed in parallel using the parallel prefix sum algorithm,
using as input a set of q copies of s and the multiplication operation, which will take O( qc + log c). (The
parallel prefix sum algorithm can also be used to compute all prefix sums of a set, not just the sum of the
entire set). Then each of the group element exponentiations can be computed in parallel, with all threads
sharing read-only access to the set of powers of s. There are up to 2q independent tasks, so this step will take
O( qc ), and the total runtime of computing the public key is O( qc + log c), where c is the number of processor
cores available.

Similar to the RSA accumulator, computing an accumulation value or witness with access to the private
key involves computing the modular product of a set of n (or n− 1) values. This product can be computed
with the parallel prefix sum algorithm in O(nc + log c).

Computing an accumulation value with the public key also presents an opportunity for parallel compu-
tation because it involves a series of associative multiplications. First the product

∏
e∈E(e + s) must be

turned into a set of polynomial coefficients by multiplying out the binomials. Polynomial multiplication
could feasibly implmented as an associative operation, i.e. in a library where polynomials are represented
with an encapsulated data type that does not care about term order, and a single-threaded library function
uses Fast Fourier Transform to multiply two polynomial objects. In that case, finding the polynomial coef-
ficients can be accomplished with the parallel prefix sum algorithm in O(nc + log c). Once the coefficients
of the polynomial representing the set to be accumulated have been computed, the accumulation value is
gc01 · (gs1)c1 · (gs21 )c2 · · · (gsn1 )cn . The group multiplication operation is associative, so this product can also

be computed with the parallel prefix sum algorithm, with an additional step in which each exponent (gs
i

1 )ci

is evaluated in parallel before the multiplication operations begin. The runtime of computing the product
would then be O(nc + log c) (acknowledging a larger constant term than usual for parallel prefix sum because
of the exponentiation step), and the total runtime of computing an accumulation value is also O(nc + log c)
because the two steps have the same asymptotic runtime.

The same argument can be made for computing a witness value with the public key, since it is almost
the same as computing an accumulation value, differing only by the one element that is not included in the
polynomial. Thus computing a single witness takes O(nc + log c). As with RSA accumulators, there is also
parallelism in the common case where a witness must be computed for every element in the set E , because
each witness can be computed in its own thread. However, since computing a single witness already uses
multiple threads, this would only provide an advantage when c > n

2 , i.e. there are idle threads leftover after
using the optimal number for the parallel prefix sum algorithm.

As with RSA accumulators, it may be worth noting that verifying a large batch of elements and witnesses
could be done in parallel, since the shared accumulation value and public key elements are not modified by
computing a verification.
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4 Experimental Setup

Given this theoretical background, my research experiment was to measure and compare the actual running
times of these accumulators as they performed each component function. In order to get the best possible
performance, I implemented both accumulators in C++, using the fastest available libraries that were also
thread-safe. For modular arithmetic over large integers (needed by both accumulators) and the polynomial
operations needed by bilinear-map accumulators, I used FLINT [16], an open source C library for number
theory computations. For the RSA modulus generation and SHA-256 hashing needed by the RSA accumu-
lator, I used Crypto++ [12], a thread-safe C++ library implementing various cryptographic operations (the
standard C library for cryptography, OpenSSL, is not thread-safe). Finally, I used DCLXVI [18], the fastest
available library for elliptic curve computations (written in C), to implement the bilinear maps and cyclic
groups needed for the bilinear-map accumulator.

I set up benchmark tests of these implementations to measure three different factors of their performance:
how running time changes as the size of the input set changes, how running time changes as the number
of available hardware threads changes, and the difference in running time between equivalent operations in
the two types of accumulators. Each test was further broken down into seven parts, corresponding to the
functions available in each accumulator:

1. Public/private key generation

2. Prime representative generation

3. Accumulation of a set using the private key

4. Accumulation of a set using the public key

5. Witness generation for each element in the set using the private key

6. Witness generation for each element in the set using the public key

7. Verification of elements with witnesses

Unfortunately, it turned out to be infeasible to run part 6 of this test on sets larger than 10,000 elements,
or with fewer than 2 threads, because public-key-only witness generation can be several orders of magnitude
slower than any other operation in the test. This is the reason why results for this test are not shown in
all of the graphs below. The sets used as inputs for the accumulators were random sets of 256-bit numbers,
which I pre-generated and saved for each desired set size from 1000 to 100,000 elements. Since DCLXVI
and FLINT use different data formats to represent integers, the input format for the two accumulators was
slightly different, and I had to generate separate random sets for each accumulator.

The tests were run on a 64-bit 3.4 GHz Intel Core i7 machine, with 8 hardware threads, an 8 MB cache,
and 16 GB of RAM, running Sabayon Linux. To run the tests involving fewer threads, some processor cores
were disabled using Linux kernel commands. The code was compiled using g++ version 4.7 in C++11 mode,
with native architecture tuning and optimization level 3 enabled. Libraries were installed as system packages
and linked dynamically at runtime.

Timing for all of the tests was done using the computer’s system clock. Although more accurate timing
methods are possible, such as counting the number of processor cycles used by each function, the test machine
was otherwise completely idle while the tests were running (i.e. not even a window manager was running),
so wall-clock time should be a good measure of processor time.

4.1 Implementation Details

There are several ways in which my implementations of the accumulators differs from their theoretical
definitions, and a few configuration choices I needed to make as I implemented these algorithms. Most of my
implementation decisions were made with practicality in mind, and my goal was always to create a system
reflecting the way an accumulator might actually be implemented. Whenever possible I made sure to use
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the same design for the RSA accumulator and bilinear-map accumulator, so that the differences in their
performance would not be the result of my failing to optimize one of them as well as the other.

As I mentioned in the background section, the standard method of computing prime representatives for
composite elements in the RSA accumulator is to use the inverse of a two-universal hash function. However,
my implementation uses the more practical method based on random oracles. A truly random oracle is,
of course, impossible in practice, but there are several acceptable ways of approximating one with a hash
function, some of which are described in [4]. I used the following construct for my random oracle: On input
value x, the first 64 bits of x are used to seed a linear-congruential pseudorandom number generator, which is
used to generate a random 16-bit number r. The random number is appended to x, and xr is used as input to
the SHA-256 cryptographic hash function, which generates the oracle’s output. This oracle is deterministic
(the PRNG will always produce the same 16 bits given the same seed) but avoids the “structure” of the
SHA-256 hash by salting its input.

Although I discussed several ways in which the accumulator algorithms could be parallelized in section
3, I did not end up implementing all of the parallel algorithms as they are described in theory. In particular,
the parallel prefix-sum algorithm is difficult to implement in software because it requires fine-grained control
over the operation of individual threads and the location of shared memory, and is most useful in real life
when it is implemented on specialized hardware such as GPUs. The C++ threading library is better suited
to parallel algorithms defined in terms of “task” functions that can be executed asynchronously. As a result,
I did not use any concurrency for computing a single accumulation value with the private key in either type
of accumulator. For computing all the witness values for a set with the private key, I did not use the parallel
prefix sum algorithm for the products in the exponents, but I implemented a different parallel algorithm (in
both accumulators) that takes advantage of the fact that any pair of witness values require almost the same
multiplication, differing by only a single term.

This algorithm is, as far as I know, my own design, so I will describe it in detail. If we consider the
exponent being computed to generate a witness value for either accumulator to be the product of a set of
values {x1, . . . , xn} (prime representatives in the case of the RSA accumulator, sums e + s in the case of
the bilinear-map accumulator), then generating all the witnesses for a set requires a series of very similar
multiplications:

Witness 1: x2x3x4x5 · · ·xn
Witness 2: x1x3x4x5 · · ·xn
Witness 3: x1x2x4x5 · · ·xn

...

Witness n: x1x2x3x4 · · ·xn−1

These can be separated into a set of “left side” and a set of “right side” products, each of which has the
property of being a sequence of partial products that adds one new factor at each iteration:

1 x2x3x4x5 · · ·xn
x1 x3x4x5 · · ·xn
x1x2 x4x5 · · ·xn
...

...

x1x2x3x4 · · ·xn−2 xn

x1x2x3x4 · · ·xn−1 1

The witness exponents are simply the product of an element from the left side and an element from the right
side. Since each set can be computed by sequentially computing its largest element and saving each partial
product, generating all of the exponents in this way will take O(2n), whereas naively computing all of the
witness exponents individually would take O(n2) (n multiplications for each of n witnesses). The parallel
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component of the algorithm is the fact that each set can be computed independently of the other, so the
algorithm can run in O(n) time (eliminating the constant 2) with two parallel tasks.

In addition to this algorithm, I parallelized the compute-all-witnesses operation for both accumulators
by running the exponentiation steps in parallel. After all of the witness exponents were computed, I created
a separate parallel task for each witness to do the exponentiation operation. This is more analogous to the
theoretical observation that generating each witness in a set of witnesses can be done in its own thread.

For computing the public key elements of the bilinear-map accumulator, I did not use the parallel prefix
sum algorithm to compute the powers of s, but I did implement a more basic parallel algorithm using only
two parallel tasks. Each task computes the powers gs, gs

2

, gs
3

, . . . , gs
q

for either g1 or g2 by sequentially
raising each partial power to s and storing the result (so after gs is computed, gs

2

is computed as (gs)s).
This still takes O(q) time, but it is twice as fast as computing both sets of powers sequentially.

I also used a nonstandard parallel algorithm to compute accumulation values and witnesses with only
the public key in the bilinear-map accumulator, as a result of the features of the DCLXVI library. This
library provides a highly-optimized (but single-threaded) function for computing a large batch of group
exponentiation and multiplication operations, i.e., it efficiently computes gxa · g

y
b · gzc · · · for a set of group

elements {ga, gb, gc, . . .} and a set of scalars {x, y, z, . . .}. Since this is exactly what I need to compute in
order to accumulate a set with the public key, my code takes advantage of it by splitting the polynomial
coefficients and public-key elements into large batches (1000 coefficients each) and computing each batch in
parallel. The results of the parallel calls to the batch function are multiplied together sequentially, since there
are usually few enough of them that the effect of doing the multiplication in parallel would be negligible. I
did not use the parallel prefix sum algorithm to compute the polynomial coefficients, since as I mentioned
above it is difficult to implement in software, and testing showed that the public-key accumulation function
was spending more time multiplying and exponentiating group elements than finding polynomial coefficients.

For both accumulators, I implemented the parallel algorithm I described in theory for generating all
witnesses for a set using only the public key. Given a set, the witness for each element was computed as a
separate parallel task, which simply invoked the public-key accumulation function with a subset excluding
the desired element. For the RSA accumulator, I implemented the parallel algorithm I described in theory for
precomputing the set of prime representatives in parallel, generating each prime representative in a separate
task.

On the other hand, I did not implement any concurrency for verifying a large set of elements because
I considered it unlikely that a single entity would use an accumulator to verify every element in a set.
While many applications of accumulators involve some kind of server or authority generating a large set of
witnesses, verification is usually done on an individual or per-client level. Keeping the verification algorithm
single-threaded allowed me to accurately measure the amount of time it would take a single client to verify
an element with a witness.

Note that in all of my parallel algorithms I refer to parallel tasks as opposed to threads. This is because
my implementation uses a thread pool instead of explicit thread creation to handle concurrency. Since thread
creation and deletion is expensive and could occur many times in the course of an accumulator’s operation if
each parallel algorithm created its own threads, a thread pool is a useful optimization that moves all thread
creation to the beginning of the program and all thread deletion to the end. Code needing to run some
operations in parallel can submit a “task” to the thread pool (specifically a function and its arguments),
where it will be evaluated by the next available worker thread. In my program I initialize the thread pool
with 16 threads, a number I chose to ensure there would be at least one software thread available to run on
each hardware thread, even accounting for some threads being blocked, in systems with up to 8 cores.

The way in which I handled the computation and use of prime representatives in my test programs is a
design decision worth mentioning. Technically, according to the way the RSA accumulator is defined, the
prime representative of each element in the set must be computed before that element is used in each stage
of the accumulator (accumulation, witness generation, and verification). However, in many cases the entity
that computes the accumulation value for a set will also compute some or all of the witnesses for the same
set, and will thus be able to re-use stored values of prime representatives instead of generating them again in
the witness step. To allow for this case, and to make the RSA accumulator’s tests more comparable to the
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bilinear-map accumulator’s, I separated the computation of prime representatives into a separate test and
allowed all the accumulation and witness-generation tests to use the stored representatives. On the other
hand, a verifier must always compute the prime representative of an element before verifying it (since the
verifier is by definition distinct from the entity that computed the accumulator), so the verification function
for the RSA accumulator does include computing a prime representative for the element to be verified.

Finally, an important design decision I had to make was choosing the security parameter of each accu-
mulator so that they had equivalent levels of security. The performance comparison would be fairly useless
without this condition, since the security parameter can significantly affect performance. Since the DCLXVI
library has a hard-coded group order of 256 bits, this amounted to finding an RSA modulus size that would
provide the same level of security. Different standards bodies have proposed different equivalence sizes for
RSA moduli and elliptic curve orders; NIST, in [3], defines the 128-bit security level to include 256-bit-order
elliptic curves and 3072-bit RSA moduli, while ECRYPT, in [24] claims that a 256-bit-order elliptic curve
is equivalent to a 3248-bit RSA modulus, also at the 128-bit security level. I chose to follow NIST’s slightly
more permissive standard, since 3072 bits is also a common RSA modulus size, and I wanted to give the
RSA accumulator a chance at performing as quickly as the bilinear-map accumulator.

4.2 Public Key and Witness Sizes

One important factor when comparing the practical usefulness of these two types of accumulators is the
amount of information that must be transmitted between sources and verifiers under each scheme. Deter-
mining the size of a public key and of an element’s witness could be considered an experimental result,
but these sizes are constant across all of the tests I performed and hence do not appear in my results sec-
tion. They are more like an implementation detail, since they are fixed once an implementation of RSA
accumulators and bilinear-map accumulators has been chosen.

In my implementation, the RSA accumulator has a public key of size 6161 bits. This includes 3072 bits
for the RSA modulus, 17 bits for the accumulator base (which is hard-coded to the standard value 65537)
and 3072 bits to represent the modulus in the modular-integer data type used to store the base (integers
modulo some p in my code are represented as two integer values, the mantissa and the modulus). Since the
oracle algorithm used to compute prime representatives is deterministic and depends on no instance-specific
data, I will assume that it is public knowledge and can be re-implemented by the verifier without needing
to download code from the entity computing accumulations. The size of a witness for the RSA accumulator
is up to 6144 bits, which is a single modular-integer value composed of a 3072-bit integer and a 3072-bit
modulus. Since the large-integer data type in FLINT is constructed as a growing array of “limb” data types
(integers the size of a machine word), the witness may be less than this size if its mantissa is significantly
less than N and can be represented in fewer than 3072 bits.

Meanwhile, the bilinear-map accumulator’s public key size varies depending on the parameter q, which
is an upper bound on the size of the set to be accumulated; it is 9216 · q bits in length. The public key
must contain q pairs of G1 and G2 elements, each G1 element is represented in 3072 bits as four 768-bit
coordinates on the elliptic curve, and each G2 element is represented in 6144 bits as four 1536-bit coordinates
on the elliptic twist (these representation details were determined by the DCLXVI library). The size of a
witness for the bilinear-map accumulator is 6144 bits, since it is a single element of the group G2.

5 Results

The following graphs show how the running time of each accumulator operation changes as the set size
increases, running with 8 hardware threads available.
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The following graphs show how the running time of each accumulator operation changes as the number
of hardware threads available increases, assuming a set size of 10,000 elements. These tests were all run on
the same machine, with some cores disabled.
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Finally, the following graphs show the running time of each accumulator operation as the set size increases,
running with 8 hardware threads available, but with much smaller sets of elements that allowed the public-key
witness computation algorithm to finish in a reasonable amount of time.
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Unfortunately, as a result of the exceedingly slow performance of public-key witness computation, it was
not feasible to run these experiments with fewer cores enabled, so there is no data on the effect of available
hardware threads on public-key witness computation. Finally, this table shows the average time per element,
in seconds, for each operation, calculated by finding the slope of the regression line fitting each graph of the
test with 8 threads and large sets of elements.

Key Generation Prime
Representative
Generation

Accumulation
with Private
Key

Accumulation
with Public Key

RSA Accumulator 2.23852× 10−6 0.000481499 1.53345× 10−6 0.002675604
Bilinear-Map Accumulator 0.000857809 0 3.98997× 10−6 9.53584× 10−5

Witness Generation
with Private Key

Witness Generation
with Public Key2

Verification

RSA Accumulator 0.005933464 5.4446684333 0.004967992
Bilinear-Map Accumulator 0.000461254 0.453206817 0.002990075

6 Discussion

At first glance, these results may seem to indicate that there is no clear advantage to using one accumulator
over the other; the bilinear-map accumulator is faster in some operations, while the RSA accumulator is
faster in others. However, a closer look reveals that not all operations are equally significant. Although the
bilinear-map accumulator appears to be much slower at computing accumulations with the private key, the
difference between it and the RSA accumulator even at the most extreme is only a few hundred milliseconds,
spread over the course of 100,000 elements. The slopes of the lines only look significantly different because
of the small scale of the y-axis; their actual values, as shown in the table, are actually within 3 × 10−6 of
each other. For very small set sizes the bilinear-map accumulator is actually a bit faster, as the last set of
tests showed. Meanwhile, the RSA accumulator is slower than the bilinear-map accumulator by a significant
amount, with slopes that differ by at least an order of magnitude, in public-key accumulation, public-key
witness generation, and private-key witness generation. The RSA accumulator is also slightly slower (within
the same order of magnitude) at verification.

The bilinear-map accumulator has a definite disadvantage in the area of key generation, since its key-
generation algorithm requires linear instead of constant time. This results in an average of .85 ms extra
processing time per element when accumulating a set with the bilinear-map accumulator. However, the RSA
accumulator has a definite disadvantage in the area of prime representative generation, which the bilinear-
map accumulator doesn’t need to do at all. This adds an average of .48 ms extra processing time per element
when accumulating a set with the RSA accumulator. These asymmetric processing overheads almost cancel

2This is actually the slope of the graph for the small-sets test, since the tests with larger sets were unable to complete the
public-key witnesses test. It is also less accurate because it is the result of a linear regression of a quadratic curve.
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each other out; in fact, since prime representative generation may need to be done more than once (i.e.
by an accumulation-computing entity and again by a separate witness-computing entity), while public-key
generation will only ever need to be done once, the bilinear-map accumulator can come out ahead in some
protocols.

The results of the tests across different number of hardware threads are less interesting and informative,
though they do show approximately the expected behavior. Increasing the number of threads did significantly
decrease the running times of the accumulator functions that were parallelized, while having no effect on the
ones that were sequential: key generation for bilinear-map accumulators improved (while staying constant
for RSA accumulators), prime representative generation for RSA accumulators improved, and public-key
accumulation for bilinear-map accumulators improved (while staying constant for RSA accumulators). The
results for private-key witness generation were somewhat odd, with only the RSA accumulator showing
a speedup from multithreading despite the fact that the bilinear-map accumulator also used a parallel
algorithm to compute witness exponents in bulk. However, this can probably be attributed to the fact that
the modular multiplication operations being parallelized in the bilinear-map accumulator were over a much
smaller modulus (the 256-bit group order rather than a 3072-bit RSA modulus), and thus were sufficiently
inexpensive to make the impact of threading negligible. The RSA accumulator generally showed a more
significant speedup from multithreaded computation, but only because it was (usually) so much slower than
the bilinear-map accumulator to begin with.

7 Conclusion

Overall, the bilinear-map accumulator is generally faster than the RSA accumulator, and can be expected to
perform better in most situations that call for accumulators. An instructive example of just how much faster
the bilinear-map accumulator can be is to consider the expected average “round-trip” time of a single element,
that is, the total time spent by the accumulator in accumulating, generating a witness for, and verifying that
element. (This includes time spent generating a public key or computing prime representatives). Assuming
accumulation and witness generation are done using the private key, the round-trip time per element for
the RSA accumulator based on the table above is 11.4 ms, while the round-trip time per element for the
bilinear-map accumulator is 4.3 ms. This makes the bilinear-map accumulator over twice as fast as the RSA
accumulator. The difference is even more pronounced assuming accumulation and witness generation are
done using the public key, in which case the round-trip time for the RSA accumulator is 5.4 seconds, while
for the bilinear-map accumulator it is 0.45 seconds, roughly 12 times faster.

Some of the bilinear-map accumulator’s speed advantage is undoubtedly due to the fact that the RSA
accumulator was instantiated with a very large modulus, three times larger than the standard RSA mod-
ulus size used for many public-key cryptography applications today. The larger the modulus, the more
computationally expensive the accumulator’s modular arithmetic operations, particularly the modular ex-
ponentiations needed for public-key accumulation. The fact that such a large modulus was required in order
to make the RSA accumulator as secure as the bilinear-map accumulator indicates the powerful security of
elliptic-curve cryptosystems, which are a promising area of research for secure but practical cryptography.

There still remain some interesting questions to explore in the area of practical cryptographic accumulator
performance. Future work could include an implementation that focuses more strongly on the parallel
aspects of the accumulator algorithms, using the best available concurrent algorithms and fine-tuning the
management of threads, to more fully investigate the degree to which each algorithm can benefit from
multicore processors. Alternatively, this implementation could be extended to include features of dynamic
accumulators, to determine if the additional functions introduced by the dynamic accumulator contract
show the same performance differences as the ones tested here. Finally, it would be valuable to implement
an entire accumulator-based security scheme using both types of accumulators and verify that the speed
advantage of the bilinear-map accumulator holds out when it is used as part of a real system. An interesting
experiment would be to find an accumulator-based system that has already been implemented and tested
with RSA accumulators, and re-implement it with bilinear-map accumulators to see if its performance can
be improved simply by substituting a different implementation for the general accumulator interface.
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