
The Brown Simulator (version 2)

Jason Lango
Keith Adams

Michael Castelle
David Powell

Spring 1998

2

Revision

$Id: intro.tex,v 1.3 1998/09/28 10:37:36 jal Exp $
$Id: vm.tex,v 1.14 1998/09/28 10:37:37 jal Exp $
$Id: cpu.tex,v 1.20 1998/09/28 10:37:34 jal Exp $
$Id: format.tex,v 1.10 1998/09/25 16:46:01 jal Exp $
$Id: dev.tex,v 1.13 1998/09/28 10:37:34 jal Exp $
$Id: intr.tex,v 1.13 1998/09/28 10:37:36 jal Exp $
$Id: code.tex,v 1.3 1998/09/25 16:45:59 jal Exp $
$Id: boot.tex,v 1.14 1998/09/28 10:37:33 jal Exp $

Contents

1 Introduction 5
1.1 Overview . 5
1.2 Machine model . 5

2 Booting the simulator 7
2.1 Running a kernel on the Brown Simulator . 7

2.1.1 simrun options . 7
2.1.2 Simulator Environment Variables . 7

2.2 Starting up... 8
2.2.1 Multiple processors . 8

2.3 Machine Configuration . 8

3 The Processor 9
3.1 Modes . 9

3.1.1 Supervisor mode . 9
3.1.2 User mode . 9

3.2 Processor contexts . 9
3.2.1 Creating a context . 10
3.2.2 Context switching . 11
3.2.3 Examples . 11

3.3 Registers . 11
3.3.1 PSR - Processor status register . 11
3.3.2 TVB - Trap/interrupt vector block register 12
3.3.3 IPL - Interrupt priority level register . 12
3.3.4 PIR - Pending interrupt register . 13
3.3.5 CLK - Clock register . 13
3.3.6 Examples . 13

3.4 Multiple processors . 13
3.4.1 Detecting the number of processors . 13
3.4.2 Atomic memory operations . 14
3.4.3 Examples . 14

4 Traps, exceptions, and interrupts 15
4.1 Traps . 15
4.2 Exceptions . 15

4.2.1 Floating Point Error Exceptions . 15
4.2.2 Memory Access Exceptions: Bus error and address error 15

3

4 CONTENTS

4.2.3 Illegal Instruction Exceptions . 15
4.2.4 TLB-related Exceptions: Refill, modified, and invalid 16

4.3 Interrupts . 16

5 Virtual Memory 17
5.1 Overview . 17

5.1.1 Constants and Macros . 17
5.1.2 Examples . 19

5.2 Physical Memory . 19
5.3 User Space . 20
5.4 The Translation Look-aside Buffer (TLB) . 20

5.4.1 TLB Entries . 20
5.4.2 TLB-related exceptions . 21
5.4.3 TLB-related functions . 21
5.4.4 Examples . 22

6 Devices 23
6.1 Introduction . 23

6.1.1 Programmed I/O vs. Direct Memory Access 23
6.2 Device registers . 23

6.2.1 Device control register . 23
6.2.2 Device status register . 23
6.2.3 PIO device registers . 23
6.2.4 DMA device registers . 24
6.2.5 Examples . 24

6.3 Configuration files . 24
6.4 Terminal device . 24

6.4.1 Control . 25
6.4.2 Status . 25
6.4.3 Configuration file parameters . 25
6.4.4 Device-specific parameters . 25
6.4.5 Examples . 26

6.5 Disk device . 26
6.5.1 Control . 26
6.5.2 Status . 26
6.5.3 Configuration file parameters . 27
6.5.4 Device-specific parameters . 27
6.5.5 Examples . 27

6.6 Detecting devices and configurations . 28
6.6.1 How many devices are configured? . 28
6.6.2 Finding a device’s configuration . 28

A Simulator C interface 29
A.1 sim.h . 29
A.2 sim arch solaris.h . 36

Chapter 1

Introduction

1.1 Overview

The Brown Simulator is a program which simulates a machine upon which students and re-
searchers can implement and test prototype operating systems.

The key goal of the Brown Simulator is to provide an environment in which a student or
researcher may implement, compile, test, and debug the prototype operating system using the
native operating system, hardware, and software tools on their desktop. The point is to explore
operating systems concepts, but not to test an operating system which runs on an actual machine.

As such, the Brown Simulator does not simulate actual machine code, but is merely a library
of functions, callable from C or C++ code, which provide the user with functionality which would
be expected from actual machine hardware, such as privileged processor registers, device control
registers, virtual memory hardware interfaces, etc. The actual code for the student’s operating
system is loaded by the Simulator as an executable shared library on the native operating system.
Section 1.2 contains a technical overview of the simulated machine.

Since the Simulator does some pretty gruesome things in order to provide the illusion of
virtual memory, the student’s operating system should not make use of native operating system
calls. Particularly, the only library and system calls supported are the standard string and
memory functions (e.g. strcpy(), strcat(), memcpy(), etc.), printf(), sprintf() (and friends), and
alloca(). All other library and system calls should be avoided (and will result in undefined
behavior). Particularly, calls to malloc() and free() will not work under the Brown Simulator
(though it would be cheating to use the native operating system’s allocation routines anyway
:-).

1.2 Machine model

The Brown Simulator allows the configuration of the simulated machine to be specified at run-
time and provides functions so that the student’s operating system can probe the machine to
determine how many processors, devices, etc. are installed in the simulated machine. Chap-
ter 2 talks about the process of booting the simulated machine and detecting the hardware
configuration.

Each simulated processor has a set of registers which control how the processor behaves, such
as whether interrupts can occur, whether the processor is executing in user or kernel mode, etc.
Chapter 3 talks about the simulated processor

5

6 CHAPTER 1. INTRODUCTION

Sometimes an external event occurs that the processor must handle immediately, such as
when the user presses a key. Device generated events are generally called interrupts. The code
that the processor is executing can also generate certain internal events, or exceptions, such as
referencing invalid memory, that the processor must deal with immediately. User code which
needs to request a service from the kernel can generate a special event, known as a trap. Traps,
exceptions, interrupts are covered in Chapter 4.

While the processor is executing a user program, the kernel may wish to present a virtual
memory abstraction to the user process. The simulated hardware provides a mechanism wherein
the kernel may request that read or write operations at certain locations in memory will result
in an exception being generated, so that the kernel (which handles the exception) can control
what physical memory the process has access to. Virtual memory is described in Chapter 5.

Devices, such as several disks or terminals, may be connected to your simulated machine.
The simulator provides a mechanism where the user may specify the devices which are connected
to the simulated machine in a configuration file. The kernel may probe to find out which devices
are connected at run-time. Each device may use either a direct memory access (DMA) or
programmed I/O (PIO) model of interaction. Chapter 6 describes configuring, probing, and
using the simulated devices.

Chapter 2

Booting the simulator

2.1 Running a kernel on the Brown Simulator

The simrun executable is used to run your kernel on the Brown Simulator. The kernel image
is passed as a command-line parameter to simrun.

The kernel image should be a shared object (or shared library) which has at least one global
function: kern boot()

2.1.1 simrun options

• -m memory-in-Mb
Number of megabytes of physical memory for the machine.

• -p ncpus
Number of simulated processors for the machine.

• -d device-config-file
Configuration file, containing a list of devices and configuration options1. If this option is
not specified on the command-line, a default file named simconfig is searched for in the
config file search path SIM CONFIG PATH.

• -s simulator-library
Specify a different simulator runtime library. Mostly for debugging purposes.

• -D debug-flags
Specify a comma-separated list of debugging flags to use with the simulator. These flags will
cause the simulator to print messages to standard-output. The list of currently supported
flags can be viewed by typing simrun -h.

2.1.2 Simulator Environment Variables

The following environment variables alter the behavior of the Brown Simulator. Environment
variable defaults, if any, can be displayed by running ”simrun -h”.

1See section 6.3.

7

8 CHAPTER 2. BOOTING THE SIMULATOR

SIM DEV PATH A colon-separated list of directories to search for simulator device files and the
device server.

SIM CONFIG PATH A colon-separated list of directories to search for the default simulator config-
uration file, simconfig.

SIM DBG A comma-separated list of debugging flags, same as the -D option to simrun.

2.2 Starting up...

kern boot() will be the first function called in your kernel. It will be called on a special stack,
which will be discarded once the first call to SIM set context() is issued2. Within this function,
the kernel should set up the trap vector block3 (TVB), including all interrupt and exception
handlers.

At the point that kern boot() is called, each processor will be at HIGH ipl (meaning that
all interrupts are masked).

2.2.1 Multiple processors

If the machine is configured to contain multiple processors, kern boot() will be called in parallel
on each processor, with the processor number passed as a parameter.

2.3 Machine Configuration

At boot time, the kernel must determine certain configuration parameters for the simulated
machine, such as the number of processors installed, the amount of physical memory available,
the attached devices, etc.

SIM num cpus() returns the number of processors installed in the simulated machine.
SIM num devs() returns the number of devices configured for the machine. See section 6.6

for more information on detecting the parameters of configured devices attached to the machine.
SIM num phys pages() returns the number of pages of physical memory installed in the

simulated machine. See section 5.2 for more information on the usage of physical memory and
chapter 5 for a general discussion of the simulator virtual memory model.

2See section 3.2.2.
3See section 3.3.2.

Chapter 3

The Processor

3.1 Modes

The processor has two major modes of operation: user mode and supervisor mode.

3.1.1 Supervisor mode

When the processor is in supervisor mode, the currently executing program has access to all of
the machine’s resources, including privileged processor registers. The kernel code executes in
supervisor mode.

3.1.2 User mode

When the processor is in user mode, the following restrictions apply:

• Privileged processor registers cannot be read or written. This includes the PIR, PSR, IPL,
and TVB.

• Physical memory cannot be read from or written to directly. All memory accesses must go
through the TLB (see section 5.4).

• Device registers cannot be read or written.

A program executing in user mode can switch to supervisor mode only by executing a trap
instruction. The function SIM trap() simulates the trap instruction, causing the processor to
switch to supervisor mode and the kernel’s trap handler to be called1. SIM trap() is the only
simulator function which may be called while executing in user mode.

3.2 Processor contexts

A processor context can be considered a snapshot of the entire state of the simulated processor.
The simulator provides functions for setting up and manipulating processor contexts, switching
between processor contexts, etc. Another way of thinking of a processor context is as the snapshot
of a thread of execution.

1See section 4.1.

9

10 CHAPTER 3. THE PROCESSOR

All of the information for a processor context is encapsulated in the sim context t structure.
The structure contains the following members.

sc psr The processor status register (PSR). See section 3.3.1 for more information on the PSR
and its associated values.

sc ipl The interrupt priority level (IPL). See section 3.3.3 for more information on the IPL
register and its associated values.

sc kstack, sc kstack size The kernel stack for that context. See section 3.2.1 for more infor-
mation on the kernel stack and when it is used.

sc ucontext The opaque representation of the rest of the processor state.

3.2.1 Creating a context

SIM make context(ctx, func, arg1, arg2, stack, stack size, kstack, kstack size, psr, ipl, return ctx)
is used to initialize a sim context t structure.

The arguments to SIM make context() are as follows:

ctx Pointer to the context to initialize.

func, arg1, arg2 Pointer to the function which will be executed when this context is first run,
via SIM set context() or SIM swap context(), and arguments to that function. The
function pointer type is sim thread func t.

stack, stack size The stack on which this thread will execute. See the notes below for more
information on where the memory for this stack should come from. The range of addresses
from stack to stack + stack size will be used as the stack for this context.

kstack, kstack size The kernel stack for this thread. See section 3.2.1 for more information
on when the kernel stack is used.

psr, ipl Values for the PSR and IPL registers. See section 3.3 for more information on the
simulated processor’s registers.

return ctx Pointer to another sim context t which will automatically be executed when con-
trol returns from this processor context, i.e. when the originally executed function returns.
This argument can only be specified for supervisor mode contexts (whose PSR has the
SIM SUPERVISOR MODE bit set).

Note that whether the given stack should be in user space or in the physical memory space2

depends on the value given for the PSR (whether the context will execute in user or supervisor
mode). This is not to be confused with the kernel stack given, which is the stack on which traps
will be handled. For a context which is executing in kernel mode, it is valid for both stacks to
refer to the same memory (since the kernel mode code will not be executing any traps).

If the given stack is in user space, the call to SIM make context() will result in accesses to
user space and possibly associated TLB exceptions3 .

2See chapter 5 for more information on virtual memory and address spaces.
3See section 5.4.2.

3.3. REGISTERS 11

3.2.2 Context switching

SIM swap context(old ctx, new ctx) is used to atomically switch between two thread contexts.
It will save the current machine context and start executing the new context.

SIM set context(ctx) immediately sets the current processor’s state to the contents of the
given sim context t. This function is rarely used, as SIM swap context() is the preferred
method of switching contexts, although there are two special cases in which one must use
SIM set context():

1. When the machine first boots, the kernel will wish to start the first thread of control
without saving the initial context. SIM set context() comes in handy in this case.

2. If the kernel wishes to preemptively switch threads while in the clock interrupt handler,
SIM set context() must be used. The reason for this is that you don’t want to save the
current context when switching to the next, since that context is an interrupt context. The
context which must be saved is that which the clock is interrupting. There is some example
code below which illustrates how to use SIM set context() in an interrupt handler.

3.2.3 Examples

1. Preemptively switch between contexts during a clock interrupt. next and current are of
type sim context t. Note that the kernel is saving the context which is being interrupted,
not the current interrupt context.

void clock_intr(sim_device_t dev, sim_context_t *ctx)
{

current = *ctx;

/* Other context-switch code here, e.g.
* SIM_tlb_flush() ...
*/

SIM_set_context(&next);
}

3.3 Registers

3.3.1 PSR - Processor status register

The processor status register contains general information about the processor.
The only information currently supported is the mode of execution of the processor, which

can be gotten at through the mode bits specified with the mask SIM PSR MODE and which
will be one of SIM USER MODE or SIM SUPERVISOR MODE. The macros SIM PSR USER MODE() and
SIM PSR SUPERVISOR MODE() test for these two conditions, given a PSR value.

The context switching functions SIM set context() and SIM swap context() might result
in changes to the PSR, and thus to the processor mode.

12 CHAPTER 3. THE PROCESSOR

3.3.2 TVB - Trap/interrupt vector block register

The trap vector block (TVB) register points to a structure in physical memory which in turn
contains a set of function pointers (vectors) used by the kernel to handle exceptional conditions,
interrupts, traps, etc.

The TVB contains the following members:

st intr Points to a function which will handle device interrupts. Interrupt handlers are described
in section 4.3.

st ipi Points to a function which will handle interprocessor interrupts.

st clock Points to a function which will handle clock interrupts, on a per-processor basis. The
processor clock and associated interrupts are described in section 3.3.5.

st illinst Points to a function which will handle illegal instruction exceptions. Illegal instruction
exceptions are described in section 4.2.3.

st trap Points to a function which will handle traps. Trap handlers are described in section 4.1.

st break Points to a function which will handle breakpoint instructions placed in the code by
an interactive debugger. Don’t worry about this if you’re not implementing a debugging
system.

st fpe Points to a function which will handle floating point exceptions, such as divide by zero,
etc.

st buserr Points to a function which will handle misaligned memory accesses (e.g. bus error or
SIGBUS).

st addrerr Points to a function which will handle invalid memory accesses (i.e. user accesses
to addresses outside of user space; see chapter 5).

st tlbrefill, st tlbmodified, and st tlbinvalid Point to functions which will handle tlb-related
exceptions. The TLB is described in section 5.4 and its exceptions are described in section
5.4.2.

SIM set tvb() is used to set the value of the TVB register.

3.3.3 IPL - Interrupt priority level register

The interrupt priority level (IPL) register controls the set of interrupts which will be handled at
a particular point in time.

When the IPL is set to a particular level, the processor will queue interrupts at that level
and below. The handling of queued interrupts is deferred until a time when the IPL is later
lowered, at which point those queued interrupts will be delivered in priority order.

The value of the interrupt priority level register is retrieved using the function SIM get ipl().
The interrupt priority level is set using SIM set ipl(). Note that interrupt handlers4 may be
called as a direct result of lowering the IPL.

4See section 4.3.

3.4. MULTIPLE PROCESSORS 13

3.3.4 PIR - Pending interrupt register

The pending interrupt register marks which interrupts are queued to be executed when the IPL
is lowered.

Bit N in the value of the PSR corresponds to IPL N, so if bit 6 is set then there is an interrupt
at IPL 6 waiting to be delivered.

The value of the pending interrupt register is retrieved using the function SIM get pir().

3.3.5 CLK - Clock register

Each processor has a real-time clock, which can be configured to generate interrupts at periodic
time intervals. For more information on handling interrupts, see section 4.3. Note that because
the clock is not really a device, the sim device t passed to the interrupt handler will be NULL.

The value of the clock register specifies the time interval (in milliseconds) between clock
interrupts.

The clock always generates interrupts at ipl level SIM CLK IPL (usually the highest ipl sup-
ported by the machine).

The clock register is set using the function SIM set clk().

3.3.6 Examples

1. Execute a critical section of code, disabling all interrupts.

int oldipl;
oldipl = SIM_set_ipl(SIM_HIGH_IPL);

... critical section code goes here ...

SIM_set_ipl(oldipl);

2. Set the clock to fire an interrupt every half second.

SIM_set_clk(500);

3. Run some code if there’s an interrupt pending at IPL 5.

if (SIM_get_pir() & (1 << 5)) {
... some code ...

}

3.4 Multiple processors

3.4.1 Detecting the number of processors

SIM num cpus() will return the number of configured processors in the machine.

14 CHAPTER 3. THE PROCESSOR

3.4.2 Atomic memory operations

In a multiprocessor kernel, certain sections of kernel code will need to be protected by critical
sections and certain variables might need to be atomically updated such that no interleaving of
operations between processors will cause the variables to be left in an inconsistent state.

The simulator provides one atomic memory operation, atomic swap, upon which others can
be built.

SIM atomic swap() is a function which takes a variable of type atomic t and atomically
sets the value of the variable and returns its old value.

3.4.3 Examples

1. Use SIM atomic swap() to implement a spin lock.

typedef atomic_t spinlock_t;

void spin_lock(spinlock_t *lock)
{

while (SIM_atomic_swap(&lock, 1) != 0)
;

}

void spin_unlock(spinlock_t *lock)
{

*lock = 0;
}

Chapter 4

Traps, exceptions, and interrupts

4.1 Traps

When a user-mode program calls SIM trap(arg1, arg2), the kernel trap handler will be called
with the same arguments passed to the user-mode function and a sim context t* which points
to the context at the time of the trap. This sim context t will be stored on the kernel stack.

The trap handler will be executed on the current kernel stack.
The trap handler expects an integer return value, which will be the value returned from the

user’s call to SIM trap().

4.2 Exceptions

When an exception occurs the processor switches to supervisor mode and control is immediately
passed to a particular handler function registered in the trap vector block (TVB, section 3.3.2).
The handler function will execute on the current kernel stack and will be passed the processor
context which was interrupted.

4.2.1 Floating Point Error Exceptions

When program code attempts to perform an illegal operation on floating point numbers, e.g.
divide by zero, etc., in user or supervisor mode, a floating point error (FPE) exception will be
generated. The st fpe member of the TVB will be used to handle this exception.

4.2.2 Memory Access Exceptions: Bus error and address error

When program code attempts to load or store to an address which is incorrectly aligned, in
user or supervisor mode, a bus error is generated. When user-mode program code attempts to
load or store to memory outside of user space, an address error is generated. The st buserr and
st addrerr members of the TVB will be used (respectively) to handle these exceptions.

4.2.3 Illegal Instruction Exceptions

When the processor attempts to fetch and execute an illegal instruction in user or supervisor
mode, an illegal instruction exception will be generated. The st illinst member of the TVB will
be used to handle this exception.

15

16 CHAPTER 4. TRAPS, EXCEPTIONS, AND INTERRUPTS

4.2.4 TLB-related Exceptions: Refill, modified, and invalid

Programs executing in user mode may generate TLB-related exceptions, which are described in
section 5.4.2.

4.3 Interrupts

Interrupts can be generated by devices whether in user or supervisor mode. The kernel may set
up one interrupt handler per interrupt priority level (IPL) in the TVB (3.3.2).

The particular interrupt handler called will be given as its arguments the device handle1 (of
type sim device t) and the context2 (of type sim context t*) which was interrupted.

When an interrupt is delivered, the processor’s IPL register is set to the IPL level of the
current interrupt (meaning that interrupts at that priority or lower are queued/deferred until
the current interrupt handler finishes executing). The kernel may choose to block interrupts
temporarily at any point by setting the processor’s IPL register3 . The processor will switch to
supervisor mode, if it is currently executing in user mode, and the handler function will execute
on the current kernel stack.

1See chapter 6.
2See section 3.2.
3See section 3.3.3.

Chapter 5

Virtual Memory

5.1 Overview

The address space is partitioned into two main areas, user space and physical memory space.
Figure 5.1 shows the partitioning of the simulator’s virtual address space.

The virtual memory space is divided into fixed size chunks known as pages. The page is the
fundamental unit of virtual memory. Each page is a region of bytes of memory, of size PAGE SIZE.

Each byte of memory is said to exist at some address1. When an address points to the
beginning of a page, we’ll say that it is page aligned. The high order bits of an address will be
known as the page frame number, that is they’ll identify a particular page of memory. We’ll refer
to setting the value of memory at a particular address as storing or writing to that address, and
getting a value from memory as loading or reading.

When we talk about address spaces we’ll be referring to some range of addresses (which
usually start and end on page boundaries). An address space should be considered distinct from
actual memory in that all addresses in the space don’t necessarily need to map directly to pages
of real memory. An unmapped region of an address space consists of some number of unmapped
pages. Typically when unmapped pages are accessed, they generate an exception (sometimes
referred to as a fault or page fault). The real memory underlying a page (when it is mapped) is
known as the page frame2.

5.1.1 Constants and Macros

The simulator has some predefined constants and macros which pertain to virtual memory:

PAGE SIZE Number of bytes in a page.

PAGE MASK Mask which extracts the page frame bits in an address.

PAGE ALIGN() Align the given address to the next page boundary.

PAGE SHIFT Number of bits of the address which represent the offset into the address’ page.

1The distinction between an address and a pointer is that typically we’ll consider pointers to be addresses
which point to an object of a particular type.

2Note the distinction between page frame and page frame number.

17

18 CHAPTER 5. VIRTUAL MEMORY

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

via current TLB entries, a
per-processor mapping.

Mapped from physical memory

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

USER_HIGH_MEMORY

SIM_LOW_MEMORY
PHYS_HIGH_MEMORY

PHYS_LOW_MEMORY

SIM_HIGH_MEMORY

USER_LOW_MEMORY

Physical Memory

User Space

Simulator Private

Simulator Address Space

System Private

Shared by all processors.

0x00000000

0xFFFFFFFF

PHYS_LOW_MEMORY +
SIM_num_phys_pages() * PAGE_SIZE

Figure 5.1: Simulator virtual address space

5.2. PHYSICAL MEMORY 19

Address: 0x002D2169→ 0000000001011010010000101101001b

⇓
000000000101101001
︸ ︷︷ ︸

Page frame

0000101101001
︸ ︷︷ ︸

Offset into page
PAGE MASK: 1111111111111111110000000000000b

PAGE SIZE: 0000000000000000010000000000000b

Figure 5.2: Breakdown of an address into page frame number, offset, etc.

Figure 5.2 shows an example of how an address is broken down into parts corresponding to
some of the above definitions and constants. The figure shows the address and its correspond-
ing binary representation. Note that this example is for the particular case of a machine with
PAGE SIZE of 8192 and 32 bit addresses.

5.1.2 Examples

1. Find the page frame number pfn for a given address addr:

pfn = addr >> PAGE_SHIFT;

2. Given an address addr, find a pointer to it’s page pagep and the offset of the address into
that page offset:

pagep = addr & PAGE_MASK;
offset = addr & ~PAGE_MASK;

3. Two equivalent ways to determine the number of bytes in 8 pages:

nbytes = 8 * PAGE_SIZE;
nbytes = 8 << PAGE_SHIFT;

5.2 Physical Memory

Physical memory is the simulator’s notion of the real memory installed in the simulated machine.
The range of addresses between PHYS LOW MEMORY and PHYS HIGH MEMORY is known as the

physical memory space of the simulator. The actual physical memory of the simulated machine
doesn’t actually take up all of this space. Physical memory starts at the address PHYS LOW MEMORY
and takes up as many pages as are actually installed in the machine.

The function SIM num phys pages() returns the number of pages of physical memory which
actually exist in the machine. These pages of physical memory start at the address PHYS LOW MEMORY
and go up to the address PHYS LOW MEMORY + PAGE SIZE * SIM num phys pages().

Dealing directly with physical memory is the kernel’s responsibility. The kernel will generally
allocate all of its data structures directly in physical memory, as well as control the allocation
of pages of memory for individual processes.

Physical memory is not directly accessible when the machine is running in user mode3. The
next section describes in general how physical memory is made available to user mode programs.

3See section 3.1.

20 CHAPTER 5. VIRTUAL MEMORY

5.3 User Space

User space is the area of memory which can be accessed by programs running in user mode. The
kernel has explicit control over what memory user mode programs can access.

Pages of memory in user space are actually mapped to physical memory via a simulated piece
of hardware known as the TLB. By controlling the TLB, the kernel can manipulate the virtual
address space of user mode programs.

Essentially, when a user mode program accesses memory at a particular address, the memory
access first proceeds through the TLB which typically translates the virtual address in user space
directly to a physical address in physical memory.

User space is the range of addresses between USER LOW MEMORY and USER HIGH MEMORY. In
contrast to the physical memory space, any and all of the pages in user space may refer to valid
locations in physical memory (granted that this will imply a many-to-one mapping between user
space and physical memory).

5.4 The Translation Look-aside Buffer (TLB)

The translation look-aside buffer (or TLB) keeps a cache of virtual-to-physical page translations
for recently accessed pages of memory. The TLB is the only memory management hardware
in the simulator. The simulator TLB is a simplified version of the TLB found in the MIPS
architecture.

In order to provide a full virtual address space abstraction to user processes, the kernel must
keep its own notion of the layout of user space in a set of page tables. The format of these page
tables is up to the particular kernel implementation. Using the TLB and a set of page tables,
the kernel can implement arbitrary virtual memory mappings of user space.

The TLB contains a predefined, fixed number of TLB entries, each representing the transla-
tion of one virtual page. Each TLB entry has a virtual frame number, physical frame number,
and a set of flags. The number of entries in the TLB is defined by SIM TLB NENTRIES.

5.4.1 TLB Entries

Each TLB entry represents the translation of one page of addresses from the virtual address
space (user space) to the physical address space (physical memory). All addresses which lie on
that page in the virtual address space will be converted by the TLB to the same offset within
the associated physical page. The TLB will swap the high-order bits of the address (specified by
the PAGE MASK) containing the virtual page number with the associated physical page number.

TLB entries contain the following three elements.

VFN The virtual frame number, the page number in user space of the page to be mapped. This
could be considered the address to convert from.

PFN The physical frame number, the page number in physical memory of the page to be
mapped. This could be considered the address to convert to. Note that in some cases
this field is ignored, as described below.

Flags The flags affect how that address translation takes place (or if it takes place at all). The
flags can be some combination of the following bit values:

SIM TLB UNUSED This TLB entry is empty. It is not used for address translation and the
VFN and PFN are ignored.

5.4. THE TRANSLATION LOOK-ASIDE BUFFER (TLB) 21

SIM TLB VALID This TLB entry is valid, therefore addresses on the given virtual page will
be translated to addresses on the given physical page. If the valid bit is not set, the
PFN is ignored and all accesses to the given virtual page cause tlbinvalid exceptions.

SIM TLB DIRTY This TLB entry represents a dirty page, that is a page of memory which
can be modified. The TLB entry should also have SIM TLB VALID set. If the dirty bit
is not set, then all write accesses to that virtual page cause tlbmodified exceptions.

5.4.2 TLB-related exceptions

The TLB generates three exceptions, which must be handled by the kernel implementation:

• tlbrefill is called when a virtual page is accessed for which no TLB entry exists. The
kernel implementation must provide an appropriate TLB entry for this memory reference
to proceed. Typically, the kernel implementation will look through the page tables of the
current process to determine what page (if any) should be mapped at that address, then
call SIM tlb wr() to add an appropriate entry to the TLB or raise an exception if that
section of the address space is meant to be unmapped.

• tlbinvalid is called when a virtual page is accessed for which an invalid TLB entry exists.
The handling of this exception depends on the kernel implementation, since the kernel
will have placed the invalid entry in the TLB for a reason, typically to represent a page
which should not be accessed. An invalid TLB entry is an entry whose flags don’t have
the SIM TLB VALID bit set.

• tlbmodified is called when an attempt is made to modify a page whose TLB entry isn’t
marked as SIM TLB DIRTY (meaning that the page can be modified).

Some of the TLB exceptions are passed a cause argument, which specifies how the page was
accessed in order to generate the exception. This argument can be one of the following values:
SIM ACCESS READ, SIM ACCESS WRITE, and SIM ACCESS EXEC, for reading, writing, and executing
memory, respectively.

5.4.3 TLB-related functions

The following functions are used to interface with the TLB.

SIM tlb p(vfn) Probes the TLB for an entry matching the given virtual page number. Returns
the index of the entry, or -1 if no matching entry was found.

SIM tlb wr(vfn, pfn, flags) Writes to a random entry in the TLB, given a virtual page number,
a physical page number, and a set of flags.

SIM tlb wi(index, vfn, pfn, flags) Writes to a particular entry in the TLB, given an entry index,
a virtual page number, a physical page number, and a set of flags.

SIM tlb ri(index, *vfn, *pfn, *flags) Reads a particular entry from the TLB, given an entry
index, and pointers to a virtual page number, physical page number, and flags.

SIM tlb flush() Clears out all entries in the TLB, setting their flags to SIM TLB UNUSED.

22 CHAPTER 5. VIRTUAL MEMORY

5.4.4 Examples

1. Map the virtual page containing the address vaddr to the physical page containing the
address paddr, allowing the page to be modified:

SIM_tlb_wr(vaddr >> PAGE_SHIFT, paddr >> PAGE_SHIFT,
SIM_TLB_VALID | SIM_TLB_DIRTY);

2. Flush the TLB, essentially unmapping all pages in user space efficiently:

SIM_tlb_flush();

3. Flush mappings in the virtual range [start, end) (useful if the kernel is changing attributes
or removing an existing mapping):

sfn = start >> PAGE_SHIFT;
efn = end >> PAGE_SHIFT;
for (index = 0; index < SIM_TLB_NENTRIES; index++) {

unsigned long vfn, pfn;
int flags;
SIM_tlb_ri(index, &vfn, &pfn, &flags);
if (vfn >= sfn && vfn < efn)

SIM_tlb_wi(index, 0, 0, SIM_TLB_UNUSED);
}

Chapter 6

Devices

6.1 Introduction

6.1.1 Programmed I/O vs. Direct Memory Access

All devices use either a programmed I/O (PIO) model or a direct memory access (DMA) model.
PIO devices transmit and receive data entirely through special device registers. In the case of
DMA, data is transmitted and received directly through physical memory.

6.2 Device registers

6.2.1 Device control register

All devices have a control register, which is used by the kernel to issue commands to the device.
SIM dev ctl(dev, value) sets the value of this register. Setting the value of this register may
have side-effects which depend on the type of the device. It is not possible to read a device’s
control register.

6.2.2 Device status register

All devices have a status register, which is used by the kernel to detect the status of the device,
such as whether the device is ready to receive data, etc. SIM dev sts(dev) gets the value of
this register. Reading a device’s status register generally has no side-effects. It is not possible
to write to a device’s status register. The contents of the device’s status register may change at
any time, depending on the operation of the device.

6.2.3 PIO device registers

The kernel interacts with a PIO device using two registers: a read register and a write register.
The function SIM dev rreg(dev) gets the value of a PIO device’s read register and the function
SIM dev wreg(dev, value) sets the value of a PIO device’s write register.

Reading and writing these registers generally have no side-effects, although manipulating the
registers while the device is not ready usually has undefined results.

Typically, when a device is ready to receive data (signaled by an interrupt or change in device
status bits), the kernel should first set the value of the write register, then set the appropriate

23

24 CHAPTER 6. DEVICES

bits in the control register to allow the write operation to proceed. A similar strategy is used
for reading from a device, except that the kernel waits for the device to have data ready to read
(signaled by an interrupt or change in device status bits), then reads from the device’s read
register and signals that the device can provide more data by setting the appropriate bits in the
control register.

6.2.4 DMA device registers

DMA devices have two registers: a memory address register and a device address register. The
functions SIM dev maddr(dev, value) and SIM dev daddr(dev, value) set the values of these
registers, respectively.

Reading and writing these registers generally have no side-effects, although manipulating the
registers while the device is not ready usually has undefined results.

The memory address register is set to a value in physical memory, which the device will either
read from or write to (depending on the operation the kernel specifies in the device’s control
register).

The device address register is set to a device-specific address, which the device will either
read from or write to (again, depending on the operation being performed).

The procedure for using these registers is similar to that of PIO, except values go directly to
and from memory.

6.2.5 Examples

For specific examples, look at the disk and terminal sections, below.

6.3 Configuration files

The simulator supports a flexible scheme for configuring devices. The configuration of devices is
specified in a configuration file, specified on the command-line. If none is specified, the simulator
will use a default configuration file.

The device configuration file is specified as a command-line option to simrun or defaults to
the file simconfig in the config search path, as described in section 2.1.

The configuration file is a series of lines of the form
<OBJECT FILE> <IPL> [<INIT STRING> ...], where <OBJECT FILE> is the shared object for
the device, <IPL> is the interrupt priority level at which the device interrupts, and <INIT STRING>
is a device-dependent initialization string. Anything to the right of a hash mark (’#’) is consid-
ered a comment and ignored by the Simulator.

The simulator includes shared objects for terminal devices and disk devices.

6.4 Terminal device

The terminal is a PIO device which is capable of reading and writing characters sequentially
from the user and to the display (respectively). The terminal currently emulates a DEC VT102
(actually an XTerm, of course), so VT100 code sequences should produce highlighting, clearing
the screen, moving the cursor, etc. Simple device drivers can treat the device as a dumb terminal
and leave fancy output to higher level (e.g. tty) drivers.

6.4. TERMINAL DEVICE 25

6.4.1 Control

The terminal device has several meaningful bits in the control register which the kernel may set
in order to control the terminal. The bit masks are as follows:

SIM TERM RGO Begin a read operation. The terminal will enter the SIM TERM RREADY state when
the user has pressed a key (and therefore the terminal has a character for the kernel to
read).

SIM TERM RENABLE If set, the terminal will generate an interrupt when it enters the SIM TERM RREADY
state.

SIM TERM WGO Begin a write operation. The terminal will write the character in its write register
to the display. When the terminal is ready to write another character, it will enter the
SIM TERM WREADY state.

SIM TERM WENABLE If set, the terminal will generate an interrupt when it enters the SIM TERM WREADY
state.

Note that not setting the SIM TERM RENABLE bit is meaningful even if you are beginning a
write operation, since there might be a read in progress and setting the bit to zero disables read
interrupts! The same goes for not setting the write enable when starting a read operation.

6.4.2 Status

The terminal device has several meaningful bits in its status register which determine the state
of the terminal device. The bit masks for accessing these bits are as follows:

SIM TERM RREADY Is the terminal ready to give you a character? If this bit is set, then the
terminal’s read register contains the next character that the user has typed.

SIM TERM WREADY Is the terminal ready to accept a character? If this bit is set, then the terminal
is ready to write a character to the display. The terminal’s write register is clear and waiting
to be set, then begin a write operation.

Note that the terminal may be both RREADY and WREADY at the same time, since they
are both bits in the status register. A properly written device driver needs to handle these cases
independently.

6.4.3 Configuration file parameters

The <INIT STRING> for the terminal is of the form:
<NUM ROWS> <NUM COLS>, where the parameters are the number of rows and columns (respec-
tively) which control the size of the terminal.

6.4.4 Device-specific parameters

The sim term params structure allows the kernel to discover how many rows and columns of
characters the terminal is capable of displaying, as the members tp rows and tp cols respectively.

26 CHAPTER 6. DEVICES

6.4.5 Examples

1. Configure an 80 by 24 character terminal which generates interrupts at IPL 5, in your
simconfig file:

term.so 5 24 80

2. Write a character to the terminal, keeping both read and write interrupts enabled. ch is
the character to write and dev is the device.

SIM_dev_wreg(dev, ch);
SIM_dev_ctl(dev, SIM_TERM_WGO | SIM_TERM_WENABLE | SIM_TERM_RENABLE);

6.5 Disk device

The disk is a DMA device which is capable of reading or writing blocks in a random-access
fashion by first seeking to a location then performing the read or write operation.

6.5.1 Control

The disk device has several meaningful bits in the control register which the kernel may set in
order to control the disk. The bit masks are as follows:

SIM DISK GO Begin an operation. Must be combined with one of the SIM DISK OP * operations.

SIM DISK ENABLE If set, the disk will generate an interrupt when it enters the SIM DISK READY
state.

SIM DISK OP WRITE Begin a write operation. The disk will take the values stored at the physical
memory location in its memory address register and write those values to the current disk
location. When the write operation is finished, the disk will enter the SIM DISK READY
state.

SIM DISK OP READ Begin a read operation. The disk will take the values stored at the current
disk location and write those values to the physical memory location in its memory address
register. When the read operation is finished, the disk will enter the SIM DISK READY state.

SIM DISK OP SEEK Begin a seek operation. The disk head will move such that the current disk
location is that which is specified in the device address register. When the seek operation
is finished, the disk will enter the SIM DISK READY state.

Note that the SIM DISK GO bit is required to be set to begin any operation. Also note that the
disk must SEEK to a disk location each time before a READ or WRITE operation.

6.5.2 Status

The disk device has one meaningful bit in its status register, specified by the bit mask SIM DISK READY.
When this bit is set, the disk has completed its requested operation and is ready for the next
operation.

6.5. DISK DEVICE 27

6.5.3 Configuration file parameters

The <INIT STRING> for the disk is of the form:
<NUM BLOCKS> <BLOCK SIZE> <SEEK DELAY> <DISK FILE> [<DIFF FILE>], where

<NUM BLOCKS> Number of blocks on the disk.

<BLOCK SIZE> Size of each disk block in bytes.

<SEEK DELAY> Delay of disk seeks, in milliseconds.

<DISK FILE> Name of file used to store disk contents.

<DIFF FILE> Optional parameter, specifying the name of a file used to store modifications to
the disk contents. If this option is specified, the file named by <DISK FILE> is not modified
by the simulator (and will be opened read-only). This option can be used to save disk
space if many individuals wish to share a large disk file whose contents will remain mostly
unmodified.

6.5.4 Device-specific parameters

The sim disk params structure allows the kernel to discover the configuration of a particular
disk device. The members of the structure are as follows:

dp num blocks The number of blocks in the disk.

dp block size The size of each block in the disk.

dp seek delay The amount of time, in milliseconds, that it takes to move the head to a partic-
ular location on disk (the disk seek latency).

6.5.5 Examples

1. Configure a disk (whose file is named “silly”) which generates interrupts at IPL 7, with
128 8k blocks and a seek latency of 20 milliseconds, in your simconfig file:

disk.so 5 128 8192 20 silly

2. Seek to block blocknum, keeping interrupts enabled.

SIM_dev_daddr(dev, blocknum);
SIM_dev_ctl(dev, SIM_DISK_GO | SIM_DISK_OP_SEEK | SIM_DISK_ENABLE);
/* ... wait for interrupt ... */

3. Read the current block into buffer, keeping interrupts enabled. (Note that the data in
buffer won’t be valid until the interrupt occurs.)

SIM_dev_maddr(dev, buffer);
SIM_dev_ctl(dev, SIM_DISK_GO | SIM_DISK_OP_READ | SIM_DISK_ENABLE);
/* ... wait for interrupt ... */

28 CHAPTER 6. DEVICES

6.6 Detecting devices and configurations

The simulator has an interface for the kernel to detect configured devices and get their configu-
ration parameters.

The sim devconfig t structure is used to store the configuration parameters of a particular
device. This structure contains the following members:

• dc type - Device type, which may be one of SIM TYPE DISK, SIM TYPE TERM, or SIM TYPE FB,
or a user-defined type.

• dc dev - Device handle, which should be passed to all SIM dev *() functions.

• dc ipl - IPL1 at which this device generates interrupts, if any.

• dc params - Device-specific parameters.

6.6.1 How many devices are configured?

SIM num devs() will return the number of configured devices in the machine.

6.6.2 Finding a device’s configuration

SIM dev config(dev, *cfg) returns a device’s configuration parameters, given a device handle
of type sim device t.

SIM dev config n(n, *cfg) returns the configuration parameters of the nth device, where n
can be in the range 0 . . . (SIM num devs() - 1).

1See section 3.3.3.

Appendix A

Simulator C interface

A.1 sim.h

/* The Brown Simulator.
Copyright (C) 1998 Jason Lango, Keith Adams, Michael Castelle, David Powell

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or (at
your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of 10

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */

/*
** sim.h - Simulator public interface.
** Jason Lango <jalcs.brown.edu> 20

** Keith Adams <kmacs.brown.edu>
*/

#ifndef SIM H
#define SIM H

#include <ucontext.h>
#include <limits.h>
#include <stdarg.h>

30

#ifdef cplusplus
extern "C" {
#endif

#if defined(sun)
#define SOLARIS 1
#include "sim_arch_solaris.h"

#elif defined(sgi)
#include "sim_arch_irix.h"

29

30 APPENDIX A. SIMULATOR C INTERFACE

#endif 40

#define SIM MAJOR VERSION 1
#define SIM MINOR VERSION 1
#define SIM PATCH VERSION 0
#define SIM VERSION CODE ((((SIM MAJOR VERSION << 8) + \

SIM MINOR VERSION) << 8) + \
SIM PATCH VERSION)

#define SIM MAX CPUS 256
#define SIM MAX DEVS 32 50

#define PAGE SIZE (1 << PAGE SHIFT)
#define PAGE MASK (˜(PAGE SIZE−1))
#define PAGE ALIGN(addr) (((addr)+PAGE SIZE−1)&PAGE MASK)
#define PAGE SAME(a1,a2) (((a1)>>PAGE SHIFT) == ((a2)>>PAGE SHIFT))

#define WORD SIZE (sizeof(long))
#define DWORD SIZE (sizeof(long long))
#define WORD MASK (˜(WORD SIZE−1))
#define DWORD MASK (˜(DWORD SIZE−1)) 60

#define WORD ALIGN(addr) (((addr)+WORD SIZE−1)&WORD MASK)
#define DWORD ALIGN(addr) (((addr)+DWORD SIZE−1)&DWORD MASK)

#define USER LOW MEMORY 0
#define PHYS LOW MEMORY USER HIGH MEMORY

#define SIM ACCESS READ 0
#define SIM ACCESS WRITE 1
#define SIM ACCESS EXEC 2

70

#define SIM NUM IPL 16
#define SIM LOW IPL 0
#define SIM HIGH IPL (SIM NUM IPL − 1)
#define SIM CLK IPL SIM HIGH IPL

#define SIM CPU ALL −10
#define SIM CPU NOTME −11

#define SIM PSR MODE 0x0001 /* mask for psr mode */
#define SIM USER MODE 0 80

#define SIM SUPERVISOR MODE 1
#define SIM PSR USER MODE(psr) (((psr) & SIM PSR MODE) == SIM USER MODE)
#define SIM PSR SUPERVISOR MODE(psr) (!SIM PSR USER MODE(psr))

/*
* device types
*/
#define SIM TYPE TERM SIM TYPE INTERNAL(1)
#define SIM TYPE DISK SIM TYPE INTERNAL(2)
#define SIM TYPE FB SIM TYPE INTERNAL(3) 90

#define SIM TYPE RESERVED 0x80000000
#define SIM TYPE INTERNAL(x) (SIM TYPE RESERVED | (x))

#define SIM DEV MAXPARAMS (10)
#define SIM DEV INVALID ((sim device t)NULL)

/*
* disk constants
*/

/* control reg constants */ 100

A.1. SIM.H 31

#define SIM DISK GO 0x100
#define SIM DISK ENABLE 0x10
#define SIM DISK OP WRITE 0x2
#define SIM DISK OP READ 0x4
#define SIM DISK OP SEEK 0x8
/* status reg constants */
#define SIM DISK READY 0x1

/*
* terminal constants 110

*/
/* control reg constants */
#define SIM TERM RGO 0x100
#define SIM TERM WGO 0x200
#define SIM TERM RENABLE 0x10
#define SIM TERM WENABLE 0x20
/* status reg constants */
#define SIM TERM RREADY 0x1
#define SIM TERM WREADY 0x2

120

typedef unsigned long sim addr t;

typedef struct sim term params {
unsigned long tp rows;
unsigned long tp cols;

} sim term params t;

typedef struct sim disk params {
unsigned long dp num blocks;
unsigned long dp block size; 130

unsigned long dp seek delay;
} sim disk params t;

typedef struct sim fb params {
unsigned long fbp width; /* Width of the framebuffer */
unsigned long fbp height; /* Height of the framebuffer */
unsigned long fbp padding; /* Bit padding per scanline */
unsigned long fbp bits; /* Bits per pixel */
unsigned long fbp rmask; /* The red mask */
unsigned long fbp gmask; /* The blue mask */ 140

unsigned long fbp bmask; /* The green mask */
} sim fb params t;

typedef struct sim context {
ucontext t sc ucontext;
int sc ipl;
int sc psr;
sim addr t sc kstack;
size t sc kstack size;

} sim context t; 150

typedef void *sim device t;
typedef void (*sim intr func t)(int ipl, sim device t dev, sim context t *ctx);
typedef int (*sim trap func t)(unsigned long arg1, void *arg2,

sim context t *ctx);
typedef void (*sim thread func t)(unsigned long arg1, void *arg2);

typedef struct sim devconfig {
int dc type;
sim device t dc dev; 160

int dc ipl;

32 APPENDIX A. SIMULATOR C INTERFACE

unsigned long dc params[SIM DEV MAXPARAMS];
} sim devconfig t;

typedef struct sim tvb {
/* Interrupts.
**
** intr - device interrupt.
** ipi - interprocessor interrupt.
** clock - clock interrupt. 170

**
** dev is the device causing the interrupt, if any.
*/
void (*st intr)(int ipl, sim device t dev, sim context t *ctx);
void (*st ipi)(int ipl, sim context t *ctx);
void (*st clock)(sim context t *ctx);

/* Traps and exceptions.
**
** illinst - illegal instruction exception. 180

** trap - trap instruction.
** break - trace/breakpoint instruction exception.
** fpe - floating point error exception.
*/
void (*st illinst)(sim context t *ctx);
int (*st trap)(unsigned long arg1, void *arg2, sim context t *ctx);
void (*st break)(sim context t *ctx);
void (*st fpe)(sim context t *ctx);

/* Memory access errors. 190

**
** buserr - when an address has invalid alignment.
** addrerr - when a user-mode program tries to access non-user memory.
**
** cause is one of SIM ACCESS {READ,WRITE,EXEC}.
*/
void (*st buserr)(unsigned long vaddr, int cause, sim context t *ctx);
void (*st addrerr)(unsigned long vaddr, int cause, sim context t *ctx);

/* TLB-related exceptions. 200

**
** tlbrefill - no TLB entry matches a given address.
** tlbinvalid - address referenced which is marked INVALID in TLB.
** tlbmodified - attempted store to address not marked DIRTY in TLB.
**
** cause is one of SIM ACCESS {READ,WRITE,EXEC}.
*/
void (*st tlbrefill)(unsigned long vaddr, int cause,

sim context t *ctx);
void (*st tlbinvalid)(int index, unsigned long vaddr, int cause, 210

sim context t *ctx);
void (*st tlbmodified)(unsigned long vaddr, sim context t *ctx);

} sim tvb t;

/**/
/* Machine Interface */
/**/

/* num phys pages - Get the number of pages of physical memory in the
* machine. 220

*/
unsigned long SIM num phys pages(void);

A.1. SIM.H 33

/* abort - Same as abort(3c), but simulator-safe. Dumps core for the
* current simulated processor.
*/

void SIM abort(void);

/* halt - Halts the machine, effectively exiting the simulator
* cleanly. 230

*/
void SIM halt(void);

/* printf - Simulator-safe printf() function. */
int SIM printf(const char *fmt, . . .);
int SIM vprintf(const char *fmt, va list ap);
#ifndef SIM NO OVERRIDE PRINTF
#define printf SIM printf
#define vprintf SIM vprintf
#endif /* SIM NO OVERRIDE PRINTF */ 240

/**/
/* Processor Interface */
/**/

/* num cpus - Get the number of configured processors. */
int SIM num cpus(void);

/* cpu id - Get the processor number on which we’re executing. */
int SIM cpu id(void); 250

/* make context - Setup/modify the given sim context. */
void SIM make context(sim context t *ctx,

sim thread func t func,
unsigned long arg1, void *arg2,
sim addr t stack, size t stack size,
sim addr t kstack, size t kstack size,
int psr, int ipl, const sim context t *return ctx);

/* set context - Switch to sim context, discarding current processor state. */ 260

void SIM set context(const sim context t *new ctx);

/* swap context - Switch between sim contexts. */
void SIM swap context(sim context t *old ctx, const sim context t *new ctx);

/* set tvb - Set the trap vector block. */
void SIM set tvb(sim tvb t *tvb);

/* trap - Trap instruction, transfers control to the kernel trap
* handler, on the interrupt stack. 270

*/
int SIM trap(unsigned long arg1, void *arg2);

/* set ipl - Set the interrupt priority level. Interrupts at this
* level and lower will be masked until the ipl is lowered. Returns
* the old value of the ipl.
*/

int SIM set ipl(int ipl);

/* get ipl - Get the interrupt priority level. */ 280

int SIM get ipl(void);

/* get psr - Get the value of the processor status register. */

34 APPENDIX A. SIMULATOR C INTERFACE

int SIM get psr(void);

/* get pir - Get the value of the pending interrupt register. */
int SIM get pir(void);

/* set clk - Set the processor clock register. This will set the
* clock on the current processor to generate interrupts every msecs 290

* milliseconds. Setting the clock register to zero will disable
* clock interrupts. The clock generates interrupts at SIM CLK IPL.
*/

void SIM set clk(int msecs);

/* idle - Cause the processor to idle, saving “power”. :-)
* In reality, this causes the simulator to use less compute time
* during idle loops.
*/

void SIM idle(void); 300

/* ipi - Send an interprocessor interrupt to a set of processors.
* cpu is one of:
* - a processor number, to send to a particular processor
* - SIM CPU ALL, to send to all processors
* - SIM CPU NOTME, to send to all but this processor
* ipl is any valid ipl.
*/

void SIM ipi(int cpu, int ipl);
310

/**/
/* Device Interface */
/**/

/* num devs - Get the number of configured devices. */
int SIM num devs(void);

/* dev config n - Get the configuration of the Nth device. */
void SIM dev config n(int n, sim devconfig t *cfg);

320

/* dev config - Get the configuration of this device. */
void SIM dev config(sim device t dev, sim devconfig t *cfg);

/* dev sts - Get the value of this device’s status register. */
unsigned SIM dev sts(sim device t dev);

/* dev ctl - Set the value of this device’s control register. */
void SIM dev ctl(sim device t dev, unsigned val);

/* dev rreg - Get the value of this device’s read register. 330

* Only valid for certain programmed I/O (PIO) devices.
*/

unsigned SIM dev rreg(sim device t dev);

/* dev wreg - Set the value of this device’s write register.
* Only valid for certain programmed I/O (PIO) devices.
*/

void SIM dev wreg(sim device t dev, unsigned val);

/* dev maddr - Set the value of this device’s memory address register. 340

* Only valid for certain direct memory access (DMA) devices.
*/

void SIM dev maddr(sim device t dev, unsigned long addr);

A.1. SIM.H 35

/* dev daddr - Set the value of this device’s device address register.

* Only valid for certain direct memory access (DMA) devices.

*/

void SIM dev daddr(sim device t dev, unsigned long addr);

/**/ 350

/* Translation Look-aside Buffer (TLB) Interface */

/**/

/* PFN - page frame number, the upper bits of the physical page

* address

*

* VFN - virtual frame number, the upper bits of the virtual page

* address

*

* Flags: 360

* V - entry is valid

* D - entry is dirty (page is modifiable)

*/

#define SIM TLB NENTRIES 64

/* TLB entry flags */

#define SIM TLB VALID (0x0001)

#define SIM TLB DIRTY (0x0002)

#define SIM TLB UNUSED (0x0004) 370

/* tlb p - Probe TLB for an entry matching the given VFN.

Returns the index, or -1 if no entry found. */

int SIM tlb p(unsigned long vfn);

/* tlb wr - Write into a random entry in the TLB. */

void SIM tlb wr(unsigned long vfn, unsigned long pfn, int flags);

/* tlb wi - Write into a particular indexed entry in the TLB. */

void SIM tlb wi(int index, unsigned long vfn, unsigned long pfn, int flags); 380

/* tlb ri - Read from a particular indexed entry in the TLB. */

void SIM tlb ri(int index, unsigned long *vfn, unsigned long *pfn, int *flags);

/* tlb flush - Clear out the entire tlb. */

void SIM tlb flush(void);

/**/

/* Kernel Entry Point */

/**/ 390

void kern boot(int cpu num);

#ifdef cplusplus

}
#endif

#endif /* SIM H */

36 APPENDIX A. SIMULATOR C INTERFACE

A.2 sim arch solaris.h

/* The Brown Simulator.
Copyright (C) 1998 Jason Lango, Keith Adams, Michael Castelle, David Powell

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or (at
your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of 10

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */

/*
** sim arch solaris.h - Architecture-dependent code for SPARC/Solaris.
** Jason Lango <jalcs.brown.edu> 20

** Keith Adams <kmacs.brown.edu>
*/

#ifndef SIM ARCH SOLARIS H
#define SIM ARCH SOLARIS H

#ifndef ASM
#include <sys/frame.h>
#endif /* ! ASM */

30

/* The following constants are determined experimentally, based on
* where ld.so locates the shared libraries within the process address
* space.
*/
#define USER HIGH MEMORY (0xC0000000UL)
#define PHYS HIGH MEMORY (0xD0000000UL)
#define SIM HIGH MEMORY (0xE0000000UL)

/* The log base 2 of the page size, as returned by getpagesize().
*/ 40

#define PAGE SHIFT (13UL)

/* The maximum number of mappings in a shared library.
*/
#define SIM MAX SHLIB MAPPINGS 4

#define SIM IS LOADSTORE(x) ((x) & 0xC0000000UL)
#define SIM IS STORE INSTR(x) (SIM IS LOADSTORE(x) && (x) & (1 << 21))
#define SIM IS LOAD INSTR(x) (SIM IS LOADSTORE(x) && !SIM IS STORE INSTR(x))

50

#define SIM CONTEXT PC(uc) \
((void*)(uc)−>uc mcontext.gregs[REG PC])

#define SIM CONTEXT SP(uc) \
((void*)(uc)−>uc mcontext.gregs[REG SP])

#define SIM CONTEXT EXEC PAGE(uc) \
(((unsigned long)(uc)−>uc mcontext.gregs[REG PC]) >> PAGE SHIFT)

#define SIM CURRENT INSTR(uc) \
(*(unsigned long*)SIM CONTEXT PC(uc))

A.2. SIM ARCH SOLARIS.H 37

/* Architecture-dependent mode switch code. 60

*/

#define SIM ARCH SET USER() \
do { \
} while(0)

#define SIM ARCH SET SUPER() \
do { \
} while (0)

70

/* Architecture-dependent post-makecontext context initialization.
*/
#define SIM UCONTEXT POSTINIT(uc) \

{ \
struct frame *f ; \
/* Clear out the saved frame pointer. */ \
f = (struct frame*) (uc)−>uc mcontext.gregs[REG O6]; \
f−>fr savfp = 0; \
f−>fr savpc = 0; \
/* We never want to return. Ever. */ \ 80

(uc)−>uc mcontext.gregs[REG O7] = 0; \
}

/* Since it is architecture dependent whether stacks grow upwards,
* downwards, sideways, etc. we’ll use an architecture-dependent macro
* for setting the stack t members.
*/
#define SIM SET STACK(s, stack, stack size) \

{ \
(s)−>ss sp = (void*) (stack + stack size − DWORD SIZE); \ 90

(s)−>ss size = stack size; \
(s)−>ss flags = 0; \

}

/* Get the arguments to a trap.
*/
#define SIM TRAP ARGS(uc,a1,a2) \

{ \
struct frame *f ; \
f = (struct frame*) (uc)−>uc mcontext.gregs[REG O6]; \ 100

(a1) = (unsigned long) f−>fr arg[0]; \
(a2) = (void*) f−>fr arg[1]; \

}

/* Advance the PC past a simulated trap instruction.
*/
#define SIM TRAP ADVANCE(uc) \

{ \
(uc)−>uc mcontext.gregs[REG PC] += 4; \
(uc)−>uc mcontext.gregs[REG nPC] += 4; \ 110

}

/* Set the return value for a trap.
*/
#define SIM TRAP RETURN(uc,retval) \
{ \

(uc)−>uc mcontext.gregs[REG O0] = (retval); \
}

#ifndef ASM 120

38 APPENDIX A. SIMULATOR C INTERFACE

typedef unsigned atomic t;
extern atomic t SIM atomic swap(atomic t*, atomic t);

void sim flush windows(void);

#endif /* ! ASM */

#define SIM TRAP START (0xdfffe000) /* magic */
#define SIM TRAP SIM TRAP START 130

#define SIM TRAP END (SIM TRAP START + (1UL << PAGE SHIFT))

#endif /* SIM ARCH SOLARIS H */

Index

atomic t, 14

dc dev, 28
dc ipl, 28
dc params, 28
dc type, 28
dp block size, 27
dp num blocks, 27
dp seek delay, 27

kern boot(), 7, 8, 8

PAGE ALIGN(), 17
PAGE MASK, 17, 19, 20
PAGE SHIFT, 17
PAGE SIZE, 17, 17, 19
PHYS HIGH MEMORY, 19
PHYS LOW MEMORY, 19, 19

sc ipl, 10
sc kstack, 10
sc kstack size, 10
sc psr, 10
sc ucontext, 10
SIM ACCESS EXEC, 21
SIM ACCESS READ, 21
SIM ACCESS WRITE, 21
SIM atomic swap(), 14, 14
SIM CLK IPL, 13
SIM CONFIG PATH, 7, 8
sim context t, 10, 10, 11, 15
sim context t*, 15, 16
SIM DBG, 8
SIM dev config(), 28
SIM dev config n(), 28
SIM dev ctl(), 23
SIM dev daddr(), 24
SIM dev maddr(), 24
SIM DEV PATH, 8
SIM dev rreg(), 23
SIM dev sts(), 23

SIM dev wreg(), 23
sim devconfig t, 28
sim device t, 13, 16, 28
SIM DISK ENABLE, 26
SIM DISK GO, 26, 26
SIM DISK OP READ, 26
SIM DISK OP SEEK, 26
SIM DISK OP WRITE, 26
sim disk params, 27
SIM DISK READY, 26, 26
SIM get ipl(), 12
SIM get pir(), 13
SIM make context(), 10, 10
SIM num cpus(), 8, 13
SIM num devs(), 8, 28, 28
SIM num phys pages(), 8, 19
SIM PSR MODE, 11
SIM PSR SUPERVISOR MODE(), 11
SIM PSR USER MODE(), 11
SIM set clk(), 13
SIM set context(), 8, 10, 11
SIM set ipl(), 12
SIM set tvb(), 12
SIM SUPERVISOR MODE, 10, 11
SIM swap context(), 10, 11
sim term params, 25
SIM TERM RENABLE, 25, 25
SIM TERM RGO, 25
SIM TERM RREADY, 25, 25
SIM TERM WENABLE, 25
SIM TERM WGO, 25
SIM TERM WREADY, 25, 25
sim thread func t, 10
SIM TLB DIRTY, 21, 21
SIM tlb flush(), 21
SIM TLB NENTRIES, 20
SIM tlb p(), 21
SIM tlb ri(), 21
SIM TLB UNUSED, 20, 21
SIM TLB VALID, 21, 21

39

40 INDEX

SIM tlb wi(), 21
SIM tlb wr(), 21, 21
SIM trap(), 9, 9, 15
SIM TYPE DISK, 28
SIM TYPE FB, 28
SIM TYPE TERM, 28
SIM USER MODE, 11
simconfig, 7, 8, 24, 26, 27
simrun, 7, 7, 8, 24
st addrerr, 12, 15
st break, 12
st buserr, 12, 15
st clock, 12
st fpe, 12, 15
st illinst, 12, 15
st intr, 12
st ipi, 12
st tlbinvalid, 12
st tlbmodified, 12
st tlbrefill, 12
st trap, 12

tlbinvalid exception, 21
tlbmodified exception, 21
tlbrefill exception, 21
tp cols, 25
tp rows, 25

USER HIGH MEMORY, 20
USER LOW MEMORY, 20

