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ABSTRACT
�e performance gap between memory and CPU has grown expo-
nentially. To bridge this gap, hardware architects have proposed
near-memory computing (also called processing-in-memory, or
PIM), where a lightweight processor (called a PIM core) is located
close to memory. Due to its proximity to memory, a memory ac-
cess from a PIM core is much faster than that from a CPU core.
New advances in 3D integration and die-stacked memory make
PIM viable in the near future. Prior work has shown signi�cant
performance improvements by using PIM for embarrassingly paral-
lel and data-intensive applications, as well as for pointer-chasing
traversals in sequential data structures. However, current server
machines have hundreds of cores, and algorithms for concurrent
data structures exploit these cores to achieve high throughput and
scalability, with signi�cant bene�ts over sequential data structures.
�us, it is important to examine how PIM performs with respect to
modern concurrent data structures and understand how concurrent
data structures can be developed to take advantage of PIM.

�is paper is the �rst to examine the design of concurrent data
structures for PIM. We show two main results: (1) naive PIM data
structures cannot outperform state-of-the-art concurrent data struc-
tures, such as pointer-chasing data structures and FIFO queues, (2)
novel designs for PIM data structures, using techniques such as
combining, partitioning and pipelining, can outperform traditional
concurrent data structures, with a signi�cantly simpler design.
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1 NEAR-MEMORY COMPUTING
�e performance gap between memory and CPU has grown ex-
ponentially. Memory vendors have focused mainly on improv-
ing memory capacity and bandwidth, sometimes even at the cost
of higher memory access latencies [11, 12, 14, 35, 37–39, 42, 43].
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To provide higher bandwidth with lower access latencies, hard-
ware architects have proposed near-memory computing (also called
processing-in-memory, or PIM), where a lightweight processor
(called a PIM core) is located close to memory. A memory ac-
cess from a PIM core is much faster than that from a CPU core.
Near-memory computing is an old idea that has been intensively
studied in the past (e.g., [17, 20, 21, 32, 34, 44, 45, 51]), but so far has
not yet materialized. However, new advances in 3D integration and
die-stacked memory likely make near-memory computing viable in
the near future. For example, one PIM design [1, 2, 9, 53] assumes
that memory is organized in multiple vaults, each having an in-
order PIM core to manage it. �ese PIM cores can communicate
through message passing, but do not share memory, and cannot
access each other’s vaults.

�is new technology promises to revolutionize the interaction
between computation and data, as it enables memory to become
an active component in managing the data. �erefore, it invites
a fundamental rethinking of basic data structures and promotes
a tighter dependency between algorithmic design and hardware
characteristics.

Prior work has already shown signi�cant performance improve-
ments by using PIM for embarrassingly parallel and data-intensive
applications [1, 3, 29, 53, 54], as well as for pointer-chasing traver-
sals [23, 30] in sequential data structures. However, current server
machines have hundreds of cores, and algorithms for concurrent
data structures exploit these cores to achieve high throughput and
scalability, with signi�cant bene�ts over sequential data structures
(e.g., [19, 27, 46, 52]). Unlike prior work, we focus on concurrent
data structures for PIM and we show that naive PIM data structures
cannot outperform state-of-the-art concurrent data structures. In
particular, the lower-latency access to memory provided by PIM
cannot compensate for the loss of parallelism in data structure ma-
nipulation. For example, we show that even if a PIMmemory access
is two times faster than a CPU memory access, a sequential PIM
linked-list is still slower than a traditional concurrent linked-list
accessed in parallel by only three CPU cores.

�erefore, to be competitive with traditional concurrent data
structures, PIM data structures need new algorithms and new ap-
proaches to leverage parallelism. As the PIM technology approaches
fruition, it is crucial to investigate how to best utilize it to exploit the
lower latencies, while still leveraging the vast amount of previous
research related to concurrent data structures.

In this paper, we provide answers to the following key questions:
1) How do we design and optimize data structures for PIM? 2) How



do these optimized PIM data structures compare to traditional CPU-
managed concurrent data structures? To answer these questions,
even before the hardware becomes available, we develop a simpli-
�ed model of the expected performance of PIM. Using this model,
we investigate two classes of data structures.

First, we analyze pointer chasing data structures (Section 4), which
have a high degree of inherent parallelism and low contention, but
which incur signi�cant overhead due to hard-to-predict memory
access pa�erns. We propose using techniques such as combining
and partitioning the data across vaults to reintroduce parallelism
for these data structures.

Second, we explore contended data structures (Section 5), such
as FIFO queues, which can leverage CPU caches to exploit their
inherent high locality. As they exploit the fast on-chip caches well,
FIFO queues might not seem to be a good �t for leveraging PIM’s
faster memory accesses. Nevertheless, these data structures exhibit
a high degree of contention, which makes it di�cult, even for the
most advanced data structures, to obtain good performance when
many threads access the data concurrently. We use pipelining of
requests, which can be done very e�ciently in PIM, to design a new
FIFO queue suitable for PIM that can outperform state-of-the-art
concurrent FIFO queues [25, 41].

�e contributions of this paper are as follows:
• We propose a simple and intuitive model to analyze the

performance of PIM data structures and of concurrent data
structures. �is model considers the number of atomic op-
erations, the number of memory accesses and the number
of accesses that can be served from the CPU cache.

• Using this model, we show that the lower-latency memory
accesses provided by PIM are not su�cient for sequen-
tial PIM data structures to outperform e�cient traditional
concurrent data structures.

• We propose new designs for PIM data structures using
techniques such as combining, partitioning and pipelining.
Our evaluations show that these new PIM data structures
can outperform traditional concurrent data structures, with
a signi�cantly simpler design.

�e paper is organized as follows. In Section 2, we brie�y de-
scribe our assumptions about the hardware architecture. In Sec-
tion 3, we introduce a simpli�ed performance model that we use
throughout this paper to estimate the performance of our data struc-
tures using the hardware architecture described in Section 2. In
Sections 4 and 5, we describe and analyze our PIM data structures
and use our model to compare them to prior work. We also use
current DRAM architectures to simulate the behavior of our data
structures and evaluate them compared to state-of-the-art concur-
rent data structures. Finally, we present related work in Section 6
and conclude in Section 7.

2 HARDWARE ARCHITECTURE
In an example architecture utilizing PIM memory [1, 2, 9, 53], multi-
ple CPUs are connected to the main memory, via a shared crossbar
network, as illustrated in Figure 1. �e main memory consists of
two parts—one is a standard DRAM accessible by CPUs, and the
other, called the PIM memory, is divided into multiple partitions,
called PIM vaults or simply vaults. According to the Hybrid Memory

Cube (HMC) speci�cation 1.0 [15], each HMC consists of 16 or 32
vaults and has a total size of 2GB or 4GB (so each vault’s size is
roughly 100MB).1 We assume the same speci�cations in our PIM
model, although the size of the PIM memory and the number of its
vaults can be bigger. Each CPU core also has access to a hierarchy
of L1 and L2 caches backed by DRAM, and a last level cache shared
among multiple cores.

Figure 1: An example PIM architecture

Each vault has a PIM core directly a�ached to it. We say a vault
is local to the PIM core a�ached to it, and vice versa. A PIM core
is a lightweight CPU that may be slower than a full-�edged CPU
with respect to computation speed [1]. A PIM core can be thought
of as an in-order CPU with a small private L1 cache. A vault can be
accessed only by its local PIM core.2 Recent work proposes e�cient
cache coherence mechanisms between PIM cores and CPUs (e.g.,
[2, 9]), but this introduces additional complexity. We show that we
can design e�cient concurrent PIM data structures even if there is
no coherence. Although a PIM core has lower performance than a
state-of-the-art CPU core, it has fast access to its local vault.

A PIM core communicates with other PIM cores and CPUs via
messages. Each PIM core, as well as each CPU, has bu�ers for
storing incoming messages. A message is guaranteed to eventually
arrive at the bu�er of its receiver. Messages from the same sender
to the same receiver are delivered in FIFO order: the message sent
�rst arrives at the receiver �rst. However, messages from di�erent
senders or to di�erent receivers can arrive in an arbitrary order.

We assume that a PIM core can only perform read and write op-
erations to its local vault, while a CPU also supports more powerful
atomic operations, such as Compare-And-Swap (CAS) and Fetch-
And-Add (F&A). Virtual memory can be realized e�ciently if each
PIM core maintains its own page table for the local vault [30].

3 PERFORMANCE MODEL
We propose the following simple performance model to compare
our PIM-managed data structures with existing concurrent data
structures. For read and write operations, we assume

Lcpu = r1Lpim = r2Ll lc

where Lcpu is the latency of a memory access by a CPU, Lpim
is the latency of a local memory access by a PIM core, and Ll lc
1 �ese small sizes are preliminary, and it is expected that each vault will become
larger when PIM memory is commercialized.
2 Alternatively, we could assume that a PIM core has direct access to the remote vaults,
but such accesses are slower than those to the local vault.



is the latency of a last-level cache access by a CPU. Based on the
latency numbers in prior work on PIM memory, in particular on the
Hybrid Memory Cube [6, 15], and on the evaluation of operations
in multiprocessor architectures [16], we may further assume

r1 = r2 = 3.

�e latencies of operations may vary signi�cantly on di�erent
machines. Our assumption that r1 = r2 = 3 is mainly to make
the performance analysis later in the paper more concrete with
actual latency numbers. In our performance model, we ignore the
costs of accesses to other cache levels, such as L1 or L2, as they are
negligible in the concurrent data structures we consider.

We assume that the latency of a CPU performing an atomic
operation, such as a CAS or a F&A, to a cache line is

Latomic = r3Lcpu

where r3 = 1, even if the cache line is currently in the cache. �is
is because an atomic operation hi�ing in the cache is usually as
costly as a memory access by a CPU [16]. When there are k atomic
operations competing for a cache line concurrently, we assume
that they are executed sequentially, that is, they complete in times
Latomic ,2Latomic , ...,k · Latomic , respectively.

We also assume that the size of a message sent by a PIM core
or a CPU core is at most the size of a cache line. Given that a
message transferred between a CPU and a PIM core goes through
the crossbar network, we assume that the latency for a message to
arrive at its receiver is

Lmessaдe = Lcpu

Wemake the conservative assumption that the latency of a message
transferred between two PIM cores is also Lmessaдe . Note that
the message latency we consider here is the transfer time of a
message through a message passing channel, that is, the elapsed
time between the moment when a PIM or a CPU core �nishes
sending o� the message and the moment when the message arrives
at the bu�er of its receiver. We ignore the time spent in other
parts of a message passing procedure, such as in preprocessing and
constructing the message, and in actually sending the message, as it
is negligible compared to the time spent in the message transfer
[6].

4 LOW-CONTENTION DATA STRUCTURES
In this section, we consider data structures with low contention.
Pointer chasing data structures, such as linked-lists and skip-lists,
fall in this category. �ese are data structures whose operations
need to de-reference a non-constant sequence of pointers before
completing. We assume these data structures support operations
such as add(x ), delete(x ) and contains(x ), which follow “next node”
pointers until reaching the position of node x . When these data
structures are too large to �t in the CPU caches and access uni-
formly random keys, they incur expensive memory accesses, which
cannot be easily predicted, making the pointer chasing operations
the dominating overhead of these data structures. Naturally, these
data structures have provided early examples of the bene�ts of
near-memory computing [23, 30], as the entire pointer chasing op-
eration could be performed by a PIM core with fast memory access,
and only the �nal result returned to the application.

However, these data structures have inherently low contention.
Lock-free algorithms [19, 27, 46, 52] have shown that these data
structures can scale to hundreds of cores under low contention [10].
Unfortunately, each vault in PIM memory has a single core. As a
consequence, prior work has compared PIM data structures only
with sequential data structures, not with carefully cra�ed concur-
rent data structures.

We analyze linked-lists and skip-lists, and show that the naive
PIM data structure in each case cannot outperform the equivalent
CPU-managed concurrent data structure even for a small number
of cores. Next, we show how to use state-of-the art techniques from
concurrent computing to optimize data structures for near-memory
computing such that they outperform well-known concurrent data
structures designed for multi-core CPUs.

4.1 Linked-lists
We �rst describe a naive PIM linked-list. �e linked-list is stored in
a vault, maintained by the local PIM core. Whenever a CPU3 wants
to perform an operation on the linked-list, it sends a request to the
PIM core. �e PIM core then retrieves the message, executes the
operation, and sends the result back to the CPU.�e PIM linked-list
is sequential, as it can only be accessed by one PIM core.

Performing pointer chasing on sequential data structures using
PIM cores is not a new idea. Prior work ([1, 23, 30]) has shown
that pointer chasing can be done more e�ciently by a PIM core
for a sequential data structure. However, we are not aware of
any prior comparison between the performance of PIM-managed
data structures and concurrent data structures, for which CPUs can
perform operations in parallel. In fact, our analytical and experi-
mental results show that the naive PIM-managed linked-list is not
competitive with a concurrent linked-list that uses �ne-grained
locks [24].

We use the combining optimization proposed by �at combin-
ing [25] to improve this data structure: a PIM core can execute all
concurrent requests by CPU cores using a single traversal over the
linked-list.

�e role of the PIM core in our PIM-managed linked-list is very
similar to that of the combiner in a concurrent linked-list imple-
mented using �at combining [25], where, roughly speaking, threads
compete for a “combiner lock” to become the combiner, and the
combiner takes over all operation requests from other threads and
executes them. �erefore, we consider the performance of the �at-
combining linked-list as an indicator of the performance of our
proposed PIM-managed linked-list.

Based on our performance model, we can calculate the approxi-
mate expected throughput (in operations per second) of each of the
linked-lists mentioned above, when there are p CPUs making opera-
tion requests concurrently. We assume that a linked-list consists of
nodes with integer keys in the range of [1,N ]. Initially a linked-list
has n nodes with keys generated independently and uniformly at
random from [1,N ]. �e keys of the operation requests are gener-
ated the same way. To simplify the analysis, we assume that the size
of the linked-list does not �uctuate much. �is is achieved when
the number of add() requests is similar to the number of delete()
requests. We assume that a CPU makes a new operation request

3We use the term CPU to refer to a CPU core, as opposed to a PIM core.



immediately a�er its previous one completes. Assuming that n � p
and N � p, the approximate expected throughput (per second) of
each of the concurrent linked-lists is presented in Table 1, where
Sp =

n∑
i=1

( i
n+1 )

p .

Algorithm �roughput

Linked-list with �ne-grained locks 2p
(n+1)Lcpu

Flat-combining linked-list without combining 2
(n+1)Lcpu

PIM-managed linked-list without combining 2
(n+1)Lpim

Flat-combining linked-list with combining p
(n−Sp )Lcpu

PIM-managed linked-list with combining p
(n−Sp )Lpim

Table 1: �roughput of linked-lists

We calculate the throughput values in Table 1 in the following
manner. In the linked-list with �ne-grained locks, which has (n+1)
nodes including a dummy head node, each thread (CPU) executes its
own operations to the linked-list. �e key of a request is generated
uniformly at random, so the average number of memory accesses by
one thread for one operation is (n + 1)/2 and hence the throughput
of one thread is 2/((n + 1)Lcpu ). �ere are p threads running in
parallel, so the total throughput is 2p/((n+1)Lcpu ). �e throughput
of the �at-combining and the PIM-managed linked-lists without the
combining optimization is calculated in a similar manner. For the
�at-combining and the PIM-managed linked-lists with combining,
it su�ces to prove that the average number of memory accesses
by a PIM core (or a combiner) batching and executing p random
operation requests in one traversal is n − Sp , which is essentially
the expected number of pointers a PIM core (or a combiner) needs
to go through to reach the position for the request with the largest
key among the p requests. Note that we have ignored certain
communication costs incurred in some linked-lists, such as the
latency of a PIM core sending a result back to a waiting thread, and
the latency of a combiner maintaining the combiner lock and the
publication list in the �at-combining linked-list (we will discuss the
publication list in more detail in Section 5), as they are negligible
compared to the dominant costs of traversals over linked-lists.

It is easy to see that the PIM-managed linked-list with combining
outperforms the linked-list with �ne-grained locks, which is the
best one among other linked-lists, if Lcpu

Lpim
= r1 >

2(n−Sp )
n+1 . Given

that 0 < Sp ≤ n
2 , the PIM-managed linked-list can outperform

the linked-list with �ne-grained locks as long as r1 ≥ 2. If we
assume r1 = 3, as estimated by prior work, the throughput of
the PIM-managed linked-list with combining should be at least
1.5 times the throughput of the linked-list with �ne-grained locks.
Without combining, however, the PIM-managed linked-list cannot
outperform the linked-list with �ne-grained locks accessed by p ≥
r1 concurrent threads. On the other hand, the PIM-managed linked-
list is expected to be r1 times be�er than the �at-combining linked-
list, with or without the combining optimization applied to both.

We implemented the linked-list with �ne-grained locks and the
�at-combining linked-list with and without the combining opti-
mization. We tested them on a Dell server with 512 GB RAM and
56 cores on four Intel Xeon E7-4850v3 processors running at 2.2
GHz. To eliminate NUMA access e�ects, we ran experiments with
only one processor, which is a NUMA node with 14 cores, a 35 MB
shared L3 cache, and a private L2/L1 cache of size 256 KB/64 KB per
core. Each core has 2 hyperthreads, for a total of 28 hyperthreads.

�e throughput of each of the linked-lists, measured in oper-
ations per second, is presented in Figure 2. �e results con�rm
the validity of our analysis in Table 1. �e throughput of the �at-
combining linked-list without the combining optimization is worse
than the linked-list with �ne-grained locks. Since the throughput
of the �at-combining linked-list is a good indicator of the perfor-
mance of the PIM-managed linked-list, we triple the throughput
of the �at-combining linked-list to obtain the expected through-
put of the PIM-managed linked-list, based on the assumption that
r1 = 3. As we can see, it is still below the throughput of the one
with �ned-grained locks. However, with the combining optimiza-
tion, the performance of the �at-combining linked-list improves
signi�cantly and our PIM-managed linked-list with the combin-
ing optimization now outperforms all other data structures. We
conclude that our PIM-managed linked-list is e�ective.

Figure 2: Experimental results of linked-lists. We eval-
uate the linked-list with �ne-grained locks and the �at-
combining linked-list (FC) with and without the combining
optimization.

4.2 Skip-lists
Like the naive PIM-managed linked-list, the naive PIM-managed
skip-list keeps the skip-list in a single vault and CPU cores send
operation requests to the local PIM core that executes those op-
erations. As we will see, this skip-list is less e�cient than some
existing skip-list algorithms.

Unfortunately, the combining optimization cannot be applied
to skip-lists e�ectively. �e reason is that for any two distant
nodes in the skip-list, the paths threads must traverse to reach
such nodes do not have large overlapping sub-paths. FloDB [7]
uses a multi-insert operation for skip-lists, similar to the combining
optimization we use for linked-lists. However, FloDB can ensure
that the operations performed in a single traversal are close together
because the operations are �rst grouped using a hash-table.



On the other hand, PIM memory usually consists of many vaults
and PIM cores. For instance, the �rst generation of Hybrid Memory
Cube [15] has up to 32 vaults. Hence, a PIM-managed skip-list can
achieve much be�er performance if we can exploit the parallelism
of multiple vaults. Here we present our PIM-managed skip-list with
a partitioning optimization: A skip-list is divided into partitions of
disjoint ranges of keys, stored in di�erent vaults, so that a CPU
sends its operation request to the PIM core of the vault to which
the key of the operation belongs.

Figure 3 illustrates the structure of a PIM-managed skip-list.
Each partition of a skip-list starts with a sentinel node which is a
node with maximum height. For simplicity, assume that the max
height Hmax is prede�ned. A partition covers a key range between
the key of its sentinel node and the key of the sentinel node of
the next partition. CPUs also store a copy of each sentinel node in
regular DRAM (see Figure 1) and this copy has an extra variable
indicating the vault containing the sentinel node. �e number of
nodes with max height is very small with high probability, so the
sentinel nodes can likely be found in the CPU caches because CPUs
access them frequently.

When a CPU performs an operation for a key on the skip-list, it
�rst compares the key with those of the sentinels, discovers which
vault the key belongs to, and then sends its operation request to
that vault’s PIM core. A�er the PIM core retrieves the request, it
executes the operation in the local vault and sends the result back
to the CPU.

Figure 3: A PIM-managed skip-list with three partitions

We now discuss how we implement the PIM-managed skip-list
when the key of each operation is an integer generated uniformly
at random from range [0,n] and the PIM memory has k vaults
available. Initially we can create k partitions starting with fake
sentinel nodes with keys 0, 1/k , 2/k ,…, (n − 1)/k , respectively, and
allocate each partition in a di�erent vault. �e sentinel nodes are
never deleted. If a new node to be added has the same key as a
sentinel node, we insert it immediately a�er the sentinel node.

We compare the performance of our PIM-managed skip-list with
k partitions to the performance of a �at-combining skip-list [25] and
a lock-free skip-list [27], accessed concurrently by p CPUs. We also
apply the partitioning optimization to the �at-combining skip-list,
so that k combiners are in charge of k partitions of the skip-list. To
simplify the comparison, we assume that all skip-lists have the same
initial structure, i.e. skip-lists with partitions have extra sentinel
nodes. We execute an equal number of add() and remove() requests,
so that the size of the skip-list does not change dramatically. �e
keys of requests are generated uniformly at random.

�e approximate throughput of each of these skip-lists is pre-
sented in Table 2, where β is the average number of nodes an opera-
tion has to access in order to �nd the location of its key in a skip-list
(β = Θ(logN ), where N is the size of the skip-list). In the lock-
free skip-list, p threads execute their own operations in parallel,
so the throughput is roughly p/(βLcpu ). Without the partitioning
optimization, a combiner in the �at-combining skip-list and a PIM
core in the PIM-managed skip-list both have to execute operations
one by one sequentially, leading to throughput of roughly 1

(βLcpu )

and 1
(βLpim+Lmessaдe )

respectively, where Lmessaдe is incurred
by the PIM core sending a message with a result back to a CPU.
A�er dividing these two skip-lists into k partitions, we can achieve
a speedup of k for both of them, as k PIM cores and k combiners can
serve requests in parallel now. Note that we have ignored certain
costs in the lock-free skip-list and the two �at-combining skip-lists,
such as the cost of a combiner’s operations on the publication list
in a �at-combining skip-list and the cost of CAS operations in the
lock-free skip-list, so their actual performance could be even worse
than what we show in Table 2.

Algorithm �roughput

Lock-free skip-list p
βLcpu

Flat-combining skip-list 1
βLcpu

PIM-managed skip-list 1
(βLpim+Lmessaдe )

Flat-combining skip-list with k partitions k
βLcpu

PIM-managed skip-list with k partitions k
(βLpim+Lmessaдe )

Table 2: �roughput of skip-lists

�e results in Table 2 imply that the PIM-managed skip-list with
k partitions is expected to outperform the second best skip-list,
the lock-free skip-list, when k >

(βLpim+Lmessaдe )p
βLcpu

. Given that
Lmessaдe = Lcpu = r1Lpim and β = Θ(logN ), k > p/r1 should
su�ce. It is also easy to see that the performance of the PIM-
managed skip-list is βr1

β+r1
≈ r1 times be�er than the �at-combining

skip-list, when they have the same number of partitions.
Our experimental evaluation reveals similar results, as presented

in Figure 4. We have implemented and run the �at-combining
skip-list with di�erent numbers of partitions and compared them
with the lock-free skip-list. As the number of partitions increases,
the performance of the �at-combining skip-list improves, a�esting
to the e�ectiveness of the partitioning optimization. Again, we
believe the performance of the �at-combining skip-list is a good
indicator of the performance of our PIM-managed skip-list. �ere-
fore, according to the analytical results in Table 2, we can triple the
throughput of a �at-combining skip-list to estimate the expected
performance of a PIM-managed skip-list. As Figure 4 illustrates,
when our PIM-managed skip-list has 8 or 16 partitions, it is ex-
pected to outperform the lock-free skip-list with up to 28 hardware
threads.



Figure 4: Experimental results of skip-lists. We evaluated
the lock-free skip-list and the �at-combining skip-list (FC)
with di�erent numbers (1, 4, 8, 16) of partitions.

4.2.1 Skip-list Rebalancing. �e PIM-managed skip-list per-
forms well with a uniform distribution of requests. However, if
the distribution of requests is not uniform, a static partitioning
scheme will result in unbalanced partitions, with some PIM cores
potentially being idle, while others having to serve a majority of
the requests. To address this problem, we introduce a non-blocking
protocol for migrating consecutive nodes from one vault to another.

�e protocol works as follows. A PIM core p that manages a
vault v ′ can send a message to another PIM core q, managing vault
v , to request some nodes to be moved from v ′ to v . First, p sends
a message notifying q of the start of the migration. �en p sends
messages to q for adding those nodes intov one by one in ascending
order according to the keys of the nodes. A�er all the nodes have
been migrated, p sends noti�cation messages to CPUs so that they
can update their copies of sentinel nodes accordingly. A�er p
receives acknowledgement messages from all CPUs, it noti�es q of
the end of migration. To keep the node migration protocol simple,
we don’t allow q to move those nodes to another vault again until
p �nishes its node migration.

During the node migration, p can still serve requests from CPUs.
Assume that a request with key k1 is sent to p when p is migrating
nodes in a key range containing k1. If p is about to migrate a node
with key k2 at the moment and k1 ≥ k2, p serves the request itself.
Otherwise, p must have migrated all nodes in the subset containing
key k1, and therefore p forwards the request to q which will serve
the request and respond directly to the requesting CPU.

�is skip-list is correct, because a request will eventually reach
the vault that currently contains nodes in the key range that the
request belongs to. If a request arrives to p which no longer holds
the partition the request belongs to, p simply replies with a rejection
to the CPU and the CPU will resend its request to the correct PIM
core, because it has already updated its sentinels and knows which
PIM core it should contact now.

Using this node migration protocol, the PIM-managed FIFO
queue can support two rebalancing schemes: 1) If a partition has
too many nodes, the local PIM core can move nodes in a key range
to a vault that has fewer nodes; 2) If two consecutive partitions
are both small, we can merge then by moving one to the vault
containing the other.

In practice, we expect that rebalancing will not happen very
frequently, so its overhead can be ameliorated by the improved
e�ciency resulting from the rebalanced partitions.

5 CONTENDED DATA STRUCTURES
In this section, we consider data structures that are o�en contended
when accessed by many threads concurrently. In these data struc-
tures, operations compete for accessing one or more locations,
creating a contention spot, which can become a performance bot-
tleneck. Examples include head and tail pointers in queues and the
top pointer of a stack.

�ese data structures have good locality; therefore, the con-
tention spots are o�en found in shared CPU caches, such as the
last-level cache in a multi-socket machine when shared by threads
running on a single socket. �erefore, these data structures might
seem to be a poor �t for near-memory computing: the advantage of
faster memory access provided by PIM cannot be exercised because
the frequently accessed data might stay in the CPU cache. How-
ever, such a perspective does not consider the overhead introduced
by contention in a concurrent data structure where many threads
access the same locations.

As a representative example of this class of data structures, we
consider a FIFO queue, where concurrent enqueue and dequeue
operations compete for the head and the tail of the queue, respec-
tively. Although a naive PIM FIFO queue is not a good replacement
for a well cra�ed concurrent FIFO queue, we show that, counterin-
tuitively, PIM can still have bene�ts over a traditional concurrent
FIFO queue. In particular, we exploit the pipelining of requests from
CPUs, which can be done very e�ciently in PIM, to design a PIM
FIFO queue that can outperform state-of-the-art concurrent FIFO
queues, such as the �at-combining FIFO queue [25] and the F&A
FIFO queue [41].

5.1 FIFO queues
�e structure of our PIM-managed FIFO queue is shown in Figure
5. A queue consists of a sequence of segments, each containing
consecutive nodes of the queue. A segment is allocated in a PIM
vault, with a head node and a tail node pointing to the �rst and
the last nodes of the segment, respectively. A vault can contain
multiple (likely non-consecutive) segments. �ere are two special
segments—the enqueue segment and the dequeue segment. To en-
queue a node, a CPU sends an enqueue request to the PIM core
of the vault containing the enqueue segment. �e PIM core then
inserts the node to the head of the segment. Similarly, to dequeue
a node, a CPU sends a dequeue request to the PIM core of the vault
holding the dequeue segment. �e PIM core then removes the node
at the tail of the dequeue segment and sends the node back to the
CPU.

Initially, the queue consists of an empty segment that acts as both
the enqueue segment and the dequeue segment. When the length
of the enqueue segment exceeds some threshold, the PIM core
maintaining it noti�es another PIM core to create a new segment as
the new enqueue segment.4 When the dequeue segment becomes
empty and the queue has other segments, the dequeue segment

4 Alternative designs where a CPU decides when to create new segments based on
more complex criteria are also possible. We leave such designs as future work.



Algorithm 1 PIM-managed FIFO queue

1: procedure enq(cid, u)
2: if enqSeg == null then
3: send message(cid, false);
4: else
5: if enqSeg.head , null then
6: enqSeg.head.next = u ;
7: enqSeg.head = u ;
8: else
9: enqSeg.head = u ;
10: enqSeg.tail = u ;
11: enqSeg.count = enqSeg.count + 1;
12: send message(cid, true);
13: if enqSeg.count > threshold then
14: cid′ = the CID of the PIM core chosen to maintain the new segment;
15: send message(cid′, newEnqSeg());
16: enqSeg.nextSegCid = cid′;
17: enqSeg = null;

18: procedure newEnqSeg()
19: enqSeg = new Segment();
20: seg�eue.enq(engSeg) ;
21: notify the CPUs of the new enqueue segment;

22: procedure deq(cid)
23: if deqSeg == null then
24: send message(cid, false);
25: else
26: if deqSeg.tail , null then
27: send message(cid, deqSeg.tail);
28: deqSeg.tail = deqSeg.tail.next;
29: else
30: if deqSeg == enqSeg then
31: send message(cid, null);
32: else
33: send message(deqSeg.nextSegCid, newDeqSeg());
34: deqSeg = null;
35: send message(cid, false);

36: procedure newDeqSeg()
37: deqSeg = seg�eue.deq();
38: notify the CPUs of the new dequeue segment;

Figure 5: A PIM-managed FIFO queue with three segments

is deleted and the segment that was created �rst among all the
remaining segments is designated as the new dequeue segment.
�is segment was created when the old dequeue segment acted
as the enqueue segment and exceeded the length threshold. If the
enqueue segment is di�erent from the dequeue segment, enqueue
and dequeue operations can be executed by two di�erent PIM cores
in parallel, improving the throughput. �e F&A queue [41] also
allows parallel enqueue and dequeue.

�e pseudo-code of the PIM-managed FIFO queue is presented
in Algorithm 1. Each PIM core has local variables enqSeg and
deqSeg that are references to local enqueue and dequeue segments.
When enqSeg (or deqSeg) is not null, it indicates that the PIM core is
currently holding the enqueue (or dequeue) segment. Each PIM core
also maintains a local queue seg�eue for storing local segments.
CPUs and PIM cores communicate via message(cid, content) calls,
where cid is the unique core ID (CID) of the receiver and content is
either a request or a response to a request.

Once a PIM core receives an enqueue request enq(cid, u) of node
u from a CPU whose CID is cid, it �rst checks if it is holding the
enqueue segment (line 2). If so, the PIM core enqueues u (lines
5-12), and otherwise sends back a message informing the CPU
that the request is rejected (line 3) so that the CPU can resend its
request to the right PIM core holding the enqueue segment (we
will explain later how the CPU can �nd the right PIM core). A�er
enqueuing u, the PIM core may �nd that the enqueue segment is

longer than the threshold (line 13). If so, it sends a message with a
newEnqSeg() request to the PIM core of another vault that is chosen
to create a new enqueue segment. �e PIM core then sets its enqSeg
to null, indicating that it no longer deals with enqueue operations.
Note that the CID cid of the PIM core chosen for creating the new
segment is recorded in enqSeg.nextSegCid for future use in dequeue
requests. As Procedure newEnqSeg() in Algorithm 1 shows, �e
PIM core receiving this newEnqSeg() request creates a new enqueue
segment and enqueues the segment into its seg�eue (lines 19-20).
Finally, it noti�es the CPUs of the new enqueue segment (we will
discuss this noti�cation in more detail later in this section).

Similarly, when a PIM core receives a dequeue request deq(cid)
from a CPU with CID cid, it �rst checks whether it is holding the
dequeue segment (line 23). If so, the PIM core dequeues a node and
sends it back to the CPU (lines 26-28). Otherwise, it informs the
CPU that this request has failed (line 24) and the CPU will have to
resend its request to the right PIM core. If the dequeue segment
is empty (line 29) and the dequeue segment is not the same as the
enqueue segment (line 32), which implies that the FIFO queue is not
empty, the PIM core sends a message with a newDeqSeg() request
to the PIM core with CID deqSeg.nextSegCid. We know that this PIM
core must hold the next segment, according to how we create new
segments in enqueue operations, as shown in lines 14-16. Upon
receiving the newDeqSeg() request, the PIM core retrieves from its
seg�eue the oldest segment it has created and makes it the new
dequeue segment (line 37). Finally the PIM core noti�es the CPUs
that it is holding the new dequeue segment now.

We now explain how CPUs and PIM cores coordinate to make
sure that the CPUs can �nd the right enqueue and dequeue seg-
ments, when their a�empts fail due to enqueue/dequeue segment
changes. We only discuss how to deal with enqueue segments,
because the same methods can be applied to dequeue segments. A
straightforward way to inform the CPUs is to have the owner PIM
core of the new enqueue segment send noti�cation messages to
them (line 21) and wait until all the CPUs send back acknowledg-
ment messages. However, if there is a slow CPU core that doesn’t



reply in time, the PIM core has to wait for it and therefore other
CPUs cannot have their requests executed. A more e�cient, non-
blocking method is to have the PIM core start serving new requests
immediately a�er it has sent o� the noti�cations to all CPUs. A
CPU does not have to reply to those noti�cations in this case, but if
its request later fails, it needs to send messages to all PIM cores to
ask which PIM core is currently in charge of the enqueue segment.
In either case, the correctness of the queue is guaranteed: at any
time, there is only one enqueue segment and only one dequeue
segment; only requests sent to them will be executed.

�e PIM-managed FIFO queue can be further optimized. For
example, the PIM core holding the enqueue segment can com-
bine multiple pending enqueue requests and store the nodes to
be enqueued in an array as a “fat” node of the queue, in order to
reduce memory accesses. �is optimization is also used in the �at-
combining FIFO queue [25]. Even without this optimization, the
PIM-managed FIFO queue still performs well, as we will show next.

5.2 Pipelining and Performance Analysis
We compare the performance of three concurrent FIFO queues—our
PIM-managed FIFO queue, the �at-combining FIFO queue and the
F&A-based FIFO queue [41]. �e F&A-based FIFO queue is the most
e�cient concurrent FIFO queue we are aware of, where threads
perform F&A operations on two shared variables, one for enqueues
and the other for dequeues, to compete for slots in the FIFO queue
to enqueue and dequeue nodes (see [41] for more details). �e �at-
combining FIFO queue we consider is based on the one proposed by
[25], with a modi�cation that threads compete for two “combiner
locks”, one for enqueues and the other for dequeues. We further
simplify it based on the assumption that the queue is always non-
empty, so that it doesn’t have to deal with synchronization issues
between enqueues and dequeues when the queue is empty. �ese
assumptions give an advantage to the �at combining queue, to
make it competitive with the two other queues, which can perform
parallel enqueue and dequeue.

Let us �rst assume that a queue is long enough such that the
PIM-managed FIFO queue has more than one segment, and en-
queue and dequeue requests can be executed separately. Since
enqueue/dequeue segment changes are infrequent, the overhead
of such changes is negligible and therefore not included in our
analysis. For example, if the threshold of segment length in line
13 of enq(cid, u) is a large integer n, then, in the worst case, chang-
ing an enqueue or dequeue segment happens only once every n
requests. Moreover, a segment change only entails sending one
message and a few steps of local computation. In our analysis, we
focus on dequeue operations, because enqueues and dequeues are
isolated from each other in all three FIFO queues when queues are
long enough. �e analysis of enqueues is similar.

Assume there are p concurrent dequeue requests by p threads. In
the F&A queue, each thread needs to perform a F&A operation on a
shared variable, serializing access to this shared variable. �erefore,
the execution time of p requests is at least pLatomic . If we assume
that each CPU makes a request immediately a�er its previous re-
quest completes, the throughput (per second) of the F&A queue is
at most 1

Latomic
.

�e �at-combining FIFO queue maintains a sequential FIFO
queue and threads submit their requests into a publication list. �e
publication list consists of slots, one for each thread, to store their re-
quests. A�er writing a request into the list, a thread competes with
others for acquiring a lock to become the “combiner”, which incurs
one last-level cache access. �e combiner then goes through the
publication list to retrieve requests, executes operations for those
requests, and writes results back to the list, while other threads with
pending requests spin on their own slots, waiting for the results.
�e combiner therefore makes two last-level cache accesses5 to
each slot other than its own, one for reading the request and one
for writing the result back. �us, the execution time of p requests
in this FIFO queue is at least (2p − 1)Ll lc and the throughput (per
second) of this FIFO queue is at most 1

2Ll lc for large enough p.
Note that our analysis of the F&A-based and the �at-combining

queues is performed in favor of them, as we consider only partial
costs of their executions. We have ignored the latency of accessing
and modifying queue nodes in the two FIFO queue algorithms. For
dequeues, this latency can be high: nodes to be dequeued in a long
queue are unlikely to be cached, so the combiner has to perform a se-
quence of memory accesses to dequeue them one by one. Moreover,
the F&A-based queue may also su�er performance degradation
under heavy contention, because contended F&A operations may
perform worse in practice [16].

�e performance of our PIM-managed FIFO queue seems poor at
�rst sight: although a PIM core can update the queue e�ciently, it
takes a lot of time for the PIM core to send results back to CPUs one
by one. To improve its performance, the PIM core can pipeline the
execution of requests, as illustrated in Figure 6(a). Suppose p CPUs
send p dequeue requests concurrently to the PIM core. �e PIM
core then retrieves a request from its message bu�er (step 1 in the
�gure), dequeues a node (step 2) for the request, and sends the node
back to the CPU (step 3). We can hide the message latency in step 3
as follows. A�er sending the message containing the node in step
3, the PIM core immediately retrieves the next request to execute,
without blocking to wait for the previous message to arrive at its
receiver. �is way, the PIM core pipelines requests by overlapping
the latency of message transfer in step 3 and the latency of memory
accesses and local computations in steps 1 and 2 across multiple
requests (see Figure 6(b)). Note that the PIM core still executes
everything sequentially: it �rst sends the message for the current
request before serving the next one.

�e throughput of a PIM core is given by the costs of its memory
accesses and local computations, as long as it has enough band-
width to keep sending messages back to CPUs. In this FIFO queue
algorithm, the PIM core sends a single small message per request,
so bandwidth is unlikely to become a bo�leneck.

Figure 6(b) illustrates that the execution time of p requests is the
sum of the execution times of the �rst two steps for the p requests,
plus the message transfer time of step 3 for the last request. During
steps 1-2 of a dequeue, the PIM core only makes one memory access
to read the node to be dequeued, and two L1 cache accesses to read
and modify the tail node of the dequeue segment. �erefore, the
total execution time ofp requests, including the timeLmessaдe that
5 We assume the combiner �nds the slots in the last-level cache, to the bene�t of the
�at combining algorithm. If the slots are not found in cache, the cost will be higher, as
the combiner will incur memory accesses instead.



(a)

(b)

Figure 6: (a) �e pipelining optimization, where a PIM core
can start executing a new deq() (step 1 of deq() for CPU B),
without waiting for the dequeued node of the previous deq()
to return to CPU A (step 3). (b) �e timeline of pipelining
four deq() requests.

the CPUs spend in sending their requests to a PIM core concurrently
at the beginning this execution, is Lmessaдe + p (Lpim + ϵ ) +
Lmessaдe , where p (Lpim + ϵ ) is the sum of the execution times of
the �rst two steps for the p requests, and the second Lmessaдe is
message transfer time of step 3 for the last request. ϵ is the total
latency of the PIM core making two L1 cache accesses and sending
one message. ϵ is negligible in our performance model.

Assume that each CPU makes another request immediately a�er
it receives the result of its previous request and that there are
enough (at least 2Lmessaдe/Lpim ) CPUs sending requests. We
can prove that the PIM core can always �nd another request in
its bu�er a�er it executes one. Let x be the throughput of the
PIM core in one second. By the same analysis as above, we have
Lmessaдe + x (Lpim + ϵ ) +Lmessaдe = 1, where 1 represents one
second. �erefore, the throughput (per second) of the PIM-managed
FIFO queue is approximately

x =
1 − 2Lmessaдe

Lpim + ϵ
≈

1 − 2Lmessaдe

Lpim
≈

1
Lpim

,

since Lmessaдe is usually only hundreds of nanoseconds and much
smaller than 1 (second).

Comparing the throughput values of the three FIFO queue algo-
rithms, we can conclude that the PIM-managed FIFO queue with
pipelining outperforms the other two FIFO queues when 2r1/r2 > 1
and r1r3 > 1. If we assume r1 = r2 = 3 and r3 = 1, then the through-
put of our PIM-managed FIFO queue is expected to be twice the
throughput of the �at-combining queue and three times that of the
F&A queue.6

6 �is does not imply that the F&A queue is faster than the �at combining queue, since
we only consider part of the costs of these queues in our analysis.

When the PIM-managed FIFO queue is short, it may contain only
one segment which deals with both enqueue and dequeue requests.
In this case, its throughput is only half of the throughput shown
above, but it is still at least as good as the throughput of the other
two FIFO queues.

6 RELATEDWORK
�e PIM model is undergoing a renaissance. Studied for decades
(e.g., [17, 20, 21, 32, 34, 44, 45, 51]), this model has recently re-
emerged due to advances in 3D-stacked technology that can stack
memory dies on top of a logic layer [8, 31, 33, 36, 40]. For example, a
3D-stackedmemory prototype called the HybridMemory Cube [15]
was recently released by industry, and the model has again become
the focus of architectural research. Di�erent PIM-based architec-
tures have been proposed, either for general purpose workloads or
for speci�c applications [1–6, 9, 13, 22, 23, 29, 30, 47–50, 53–55].

�e PIM model has several advantages, including low energy
consumption and high bandwidth (e.g., [1, 4, 53, 54]). Here, we
focus on one more: low memory access latency [6, 23, 30, 40]. To
our knowledge, we are the �rst to utilize PIMmemory for designing
e�cient concurrent data structures. Although some researchers have
studied how PIM memory can help speed up concurrent operations
to data structures, such as parallel graph processing [1] and parallel
pointer chasing on linked data structures [30], the applications
they consider require very simple, if any, synchronization between
operations. In contrast, operations to concurrent data structures
can interleave in arbitrary orders, and therefore have to correctly
synchronize with one another in all possible execution scenarios.
�is makes designing concurrent data structures with correctness
guarantees, like linearizability [28], very challenging.

No prior work compares the performance of data structures
in the PIM model with that of state-of-the-art concurrent data
structures in the classical shared memory model. We analyze and
evaluate concurrent linked-lists and skip-lists, as representatives
of pointer-chasing data structures, and concurrent FIFO queues,
as representatives of contended data structures. For linked-lists,
we compare our PIM-managed implementation with well-known
approaches such as �ne-grained locking [24] and �at combining
[18, 25, 26]. For skip-lists, we compare our implementation with
a lock-free skip-list [27] and a skip-list with �at combining and
the partitioning optimization. For FIFO queues, we compare our
implementation with the �at-combining FIFO queue [25] and the
F&A-based FIFO queue [41].

7 CONCLUSION
In this paper, we study how to design e�cient data structures
that can take advantage of the promising bene�ts o�ered by the
Processing in Memory (PIM) paradigm. We analyze and compare
the performance of our new PIM-managed data structures with
traditional concurrent data structures that were proposed in the
literature to take advantage of multiple processors. To this end, we
develop a simpli�ed performance model for PIM. Using this model,
along with empirical performance measurements from a modern
system, we show that naive PIM-managed data structures cannot
outperform traditional concurrent data structures, due to the lack of
parallelism and the high communication cost between the CPUs and



the PIM cores. To improve the performance of PIM data structures,
we propose novel designs for low-contention pointer-chasing data
structures, such as linked-lists and skip-lists, and for contended
data structures, such as FIFO queues. We show that our new PIM-
managed data structures can outperform state-of-the-art concurrent
data structures, making PIM memory a promising platform for
managing data structures. We conclude that it is very promising to
examine novel data structure designs for the PIM paradigm, and
hope future work builds upon our analyses to develop other types
of PIM-managed data structures.
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