
Co-Location-Resistant Clouds

Yossi Azar

ú

Tel-Aviv University

azar@tau.ac.il

Seny Kamara

Microsoft Research

senyk@microsoft.com

Ishai Menache

Microsoft Research

ishai@microsoft.com

Mariana Raykova

ú

SRI International

mariana.raykova@sri.com

Bruce Shepherd

ú

McGill University

bruce.shepherd@mcgill.ca

ABSTRACT
We consider the problem of designing multi-tenant public
infrastructure clouds resistant to cross-VM attacks without
relying on single-tenancy or on assumptions about the cloud’s
servers. In a cross-VM attack (which have been demonstrated
recently in Amazon EC2) an adversary launches malicious
virtual machines (VM) that perform side-channel attacks
against co-located VMs in order to recover their contents.

We propose a formal model in which to design and analyze
secure VM placement algorithms, which are online vector
bin packing algorithms that simultaneously satisfy certain
optimization constraints and notions of security. We intro-
duce and formalize several notions of security, establishing
formal connections between them. We also introduce a new
notion of e�ciency for online bin packing algorithms that
better captures their cost in the setting of cloud computing.

Finally, we propose a secure placement algorithm that
achieves our strong notions of security when used with a new
cryptographic mechanism we refer to as a shared deployment
scheme.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

Keywords
Cloud Computing; Cross-VM Attacks; Co-Location Attacks;
Isolation; Co-Location Resistance; Bin Packing; Cryptogra-
phy

1. INTRODUCTION
Cloud computing platforms make computational resources

available to clients as a service. With cloud computing, a
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client can outsource its computation and/or storage to a
cloud provider, paying only for the resources used at any
time. Cloud computing platforms can be roughly categorized
as either public or private. In a private cloud, the underlying
infrastructure (i.e., servers, network and storage) is owned
and operated by the client whereas in a public cloud (e.g.,
Amazon EC2 or Microsoft Azure) it is owned and managed
by a cloud provider and made available as a service. The
benefits of using a public cloud include reliability, elasticity
(i.e., computational resources can be increased and decreased
quickly) and cost-savings. As such, many private and public
organizations are considering migrating their IT infrastruc-
tures to a public cloud.

Roughly speaking, a cloud is composed of physical servers
and of a controller. The servers are virtualized which means
that a single physical server can execute several virtual ma-
chines (VM) concurrently. This concurrent execution is
implemented through a hypervisor which is responsible for
isolating the co-located VMs from each other and making
sure that the server’s resources are allocated fairly. The
allocation of VMs to physical servers is handled by the con-
troller which monitors the servers’ resources and executes a
placement algorithm. To use a cloud, a tenant creates and
sends to the controller a deployment, i.e., a set of VMs that
execute its computation. The cost-e�ectiveness of public
clouds stems from several reasons but the most important
is multi-tenancy, i.e., the cloud provider’s ability to execute
the workloads of several clients on the same physical server.
Multi-tenancy is made possible through virtualization

Cross-VM attacks. While multi-tenancy is crucial to cloud
computing it also introduces a number of security concerns,
including the possibility of cross-VM attacks. In a cross-VM
attack, a malicious VM bypasses the hypervisor-level isola-
tion to attack co-located VMs. Possible cross-VM attacks
range from taking over other VMs by exploiting vulnera-
bilities in the hypervisor and guest OS, to stealing secrets
through side-channels attacks [15, 24].

Currently, the best solution to these attacks is single-
tenancy, i.e., letting clients run their VMs on a dedicated
server. While single-tenancy obviously mitigates cross-VM
attacks, it does not scale since at some point it obviates the
economic benefits of public clouds. The design of cross-VM
mitigation techniques that preserve multi-tenancy is therefore
an important and well-motivated problem in cloud security.
Many recent works [21, 22, 14, 1, 16, 20, 7, 25, 11, 9, 19]
have explored cross-VM mitigation techniques but all these
approaches are restricted to cache-based attacks. In addition,
these solutions rely on systems-level assumptions, i.e., they



rely on the integrity of the servers’ hardware, hypervisors
and/or OSs.

Co-location attacks. A basic, but crucial, observation
about cross-VM attacks is that they first necessitate the suc-
cessful completion of a co-location attack; that is, an attack
in which the adversary strategically creates and launches
VMs so that they are co-located with its target VMs. As
discussed by Ristenpart et al. [15], there are at least two
di�erent kinds of co-location attacks in public clouds. The
first are what we refer to as complete co-location attacks,
where the adversary wants to co-locate with each VM in a
given set of target VMs. The second is what we refer to
as a fractional attack, where the adversary only wants to
co-locate with some fraction of the target VMs.

1.1 Our Contributions
In this work, we consider the problem of cross-VM at-

tacks in public clouds, seeking solutions that do not rely
on single-tenancy or on systems-level assumptions. At a
very high-level, our focus is on mitigating co-location at-
tacks since they are a necessary first step to performing
cross-VM attacks. More concretely, our approach is to assign
VMs to physical servers in such a way that attack VMs are
rarely co-located with target VMs. To do this, we formalize
and design co-location-resistant placement algorithms which,
roughly speaking, protect VMs against complete and frac-
tional co-location attacks. Our main placement algorithm
uses randomization to place VMs in a manner that is unpre-
dictable to the adversary and that reduces its probability of
successfully completing a co-location attack.

We note that the naive strategy of placing VMs on servers
chosen uniformly at random is not feasible in our setting since
VMs cannot be placed arbitrarily in practice. Indeed, VM
placement algorithms have to satisfy non-trivial optimization
constraints which cannot be met by simply placing VMs at
random. One of the major contributions of our work is the
design of an algorithm that optimizes for these constraints
while remaining co-location-resistant to the adversary.

Secure optimization. As far as we know, ours is the first
work to consider the design of such “secure optimization”
algorithms; that is, optimization algorithms that also pro-
vide some form of security. We believe the study of secure
optimization algorithms is an interesting research direction
at the intersection of algorithms, security and cryptography
and could have applications, not only to cloud computing,
but more generally to distributed systems.

Theoretical cloud security. While cloud security has at-
tracted a lot of attention from the research community, there
are no formal security models in which to rigorously analyze
the security of cloud systems. Another major contribution of
our work is to provide such a model for the study of security
against cross-VM and co-location attacks. Though our main
results are algorithmic in nature (with the exception of our
notion of shared deployments from Section 6), our model is
cryptographic. More precisely, we model and analyze the
properties of our placement algorithm using the provable
security methodology from Theoretical Cryptography. While
we focus here on VM placement, we believe that our core
model and principles can be extended in future work to ana-
lyze the security of cloud systems against other threats. As
a concrete example, we believe our ideas could be extended

and applied to hypervisor-level core scheduling to prevent
cache-based attacks on multi-core servers.

1.2 Overview of Our Work
In our model, a cloud Cld consists of a set of virtual-

ized physical servers (Srv1, . . . , Srvn) and a controller Ctrlr�
that allocates VMs to servers according to a placement algo-
rithm �. VMs are created by running a deployment scheme
�. Each VM includes a resource vector r which captures
its resource requirements (e.g., I/O, CPU and memory re-
quirements); each dimension of the vector corresponds to
a particular resource. Similarly, each physical server has a
capacity vector which determines the maximum amount of
any resource it can provide. In our work, we require two
main properties from such a cloud: e�ciency and security.

E�ciency. In our context, the e�ciency of a cloud refers to
its total resource usage when executing deployments and not
just the time to execute a VM. In fact, the most expensive
resource when running a cloud is energy. So, intuitively,
an e�cient cloud is one that minimizes its total resource
consumption. E�ciency in this sense is therefore determined
by the controller and its placement algorithm �. The problem
of allocating VMs to servers is known to be an instance of the
online vector bin packing problem, where one must allocate
a stream of vectors to bins in such a way as to minimize
the number of bins and without exceeding the capacity of
the bins (see, e.g., [13, 8] for detailed discussions). The
quality of online algorithms are evaluated using the notion
of competitive ratio which bounds the ratio between the cost
of the algorithm and the cost of the optimal algorithm over
the worst-case input stream. For bin packing algorithms the
cost is usually defined to be the number of bins used.

We point out in Section 4, however, that the number-of-
bins cost is inappropriate for cloud computing where e�-
ciency is determined by the total amount of resources used.
To address this, we propose a more relevant cost function
which we refer to as server-time which is the sum over time
of the number of utilized servers. We believe minimizing
server-time in infrastructure clouds is crucial for at least two
reasons. First, it seems to be correlated to energy consump-
tion. 1 The second is that minimizing server-time in a public
cloud increases the amount of resources available in the data
center for other purposes (e.g., for use as a private cloud).

Security. The second property we want is security which,
in our setting, corresponds to security against cross-VM
attacks. As we will see, however, formalizing this notion
is non-trivial and several interesting subtleties arise. The
intuitive security guarantee that we expect from a cloud is
isolation, which means that each VM is executed indepen-
dently of other VMs and, in particular, in such a way that
cross-VM attacks are not possible. We formalize this intu-
ition in Section 3 using the ideal/real-world paradigm which
is typically used to analyze the security of secure multi-party
computation protocols. Roughly speaking, our definition
guarantees that the execution of a tenant’s deployment in a
cloud is equivalent to an execution of the deployment by a
trusted party. And since cross-VM attacks are impossible by
definition when VMs are executed by a trusted party, they
are also impossible in the cloud. As we will see, isolation
1 We note that while this seems to be intuitively the case,
we are not aware of any experimental studies that validate
this intuition.



is a very strong property that implies security beyond just
protecting the honest tenant’s inputs and/or the state of his
VMs. For example, as described, isolation also protects the
VMs’ resource vectors (i.e., the amount of resources they
need) which may not always be necessary. This leads us to
distinguish between two notions of isolation: weak isolation
which leaks the resource vectors and strong isolation which
protects the resource vectors.

While isolation (either strong or weak) is clearly a desirable
property from a cloud, in practice, one may be satisfied
with something weaker. In particular, in some settings a
guarantee that the adversary cannot co-locate with more
than a certain fraction of one’s deployment may be enough.
We formalize this property in Section 4.2 as the notion
of co-location-resistance (CLR). Informally, we say that a
placement algorithm � is (n, q, t, ”, Á)-CLR if an adversary
that submits at most q attack VMs can co-locate with at
least a ” fraction of a t-size deployment with probability
at most Á (here n is the number of servers in the cloud).
CL-resistance is interesting for several reasons. First, as
discussed above, it can be a useful security guarantee in and
of itself. In addition, we also show in Theorem 4.3 that the
(n, q, t, 1/t, Á)-CL-resistance of a placement algorithm � gives
an upper bound on the perfect isolation provided by a cloud
Cld = (Ctrlr�, Srv1, . . . , Srvn), where perfect refers to the
adversary being computationally unbounded. Throughout,
we refer to CL-resistance with ” = 1/t as single CL-resistance.
It turns out that designing placement algorithms with strong
single CL-resistance (i.e., with very small Á) is di�cult to
achieve.

This motivates us to consider a weaker notion of isolation:
namely, computational isolation where the adversary is as-
sumed to be computationally-bounded and where tenants
can use cryptography to secure their deployments. In this
setting, we introduce in Section 6 the notion of a shared
deployment which guarantees that no information about the
tenant’s input can be recovered unless all VMs in the de-
ployment are compromised. We show how to construct such
deployments for arbitrary functions from multi-worker dele-
gation protocols which were introduced in [6]. We then show
that the computational isolation of a shared deployment is
upper-bounded by the (n, q, t, 1, Á)-CLR of a placement al-
gorithm �. Throughout, we will refer to CL-resistance with
” = 1 as complete CL-resistance.

Our algorithm. Having established a model, notions of
e�ciency and security definitions, we turn to the problem
of designing CL-resistant placement algorithms in Section
5. Our algorithm is parameterized with a value ⁄ which
influences both its CL-resistance and its competitive ratio.
We show in Theorem 5.1 that the higher ⁄ is, the worse its
competitive ratio is. Conversely, in Theorems 5.4 and 5.6
we show that the higher ⁄ is, the better its CL-resistance
becomes. In Theorem 5.4 we analyze our algorithm with
respect to complete CL-resistance (i.e., when ” = 1) and in
Theorem 5.6 with respect to fractional CL-resistance (i.e.,
when ” < 1). Combining this with our results connecting
CL-resistance and isolation (i.e., Theorem 4.3), we show in
Corollary 5.7 that our algorithm performs poorly with respect
to perfect isolation and in Theorem 6.2 that it performs well
with respect to computational isolation when used with a
shared deployment scheme.

2. PRELIMINARIES AND MODEL
Clouds. We provide an overview of our model of cloud
computing. At a high-level, we view a cloud as a set of n
physical servers and a controller. The servers are virtualized
which means that each server can execute a number of VMs
subject to the amount of computational resources it has.
The assignment of VMs to physical servers is handled by the
controller which constantly monitors each server’s resources.
To use a cloud, a tenant creates and sends a set of VMs to
the controller. This set of VMs—referred to as the tenant’s
deployment—is a distributed instantiation of the tenant’s
computation. So for example, if the tenant wishes to deploy
a web service in the cloud, then its deployment might consist
of a set of VMs that each run a web server. If, on the other
hand, the tenant just wishes to outsource the evaluation of
a function f then its deployment would consist of a single
VM that executes f on some input x.

A cloud Cld = (Ctrlr�, Srv1, . . . , Srvn) consists of a con-
troller and a set of n virtualized physical servers Srv1, . . . , Srvn.
Each virtualized server Srvi has a d-dimensional capacity
vector bi = (c1, . . . , cd), where each dimension corresponds
to a resource provided by the server (e.g., I/O, CPU, disk)
and where the value cj œ N is the maximum amount of a
resource provided by the server. Throughout we consider,
without loss of generality, the case where all capacities are
equal; that is, ci = c for all 1 Æ i Æ d.

Virtual machines and deployments. A cloud executes
VMs that are created and sent to the controller. Given a
VM, the controller executes a placement algorithm � to
decide on which physical server to execute the VM. A virtual
machine vm = (F , x, r) consists of a functionality F , an
initial input x and a resource vector r. The resource vector r
is a d-dimensional vector over [0, 1], where ri is the amount
of the ith resource needed by the VM.

To generate VMs for a cloud, a tenant runs a deploy-
ment scheme � that takes as input a functionality F , an
initial input x, a deployment size t and a set of resource
vector (r1, . . . , rt). It returns a t-size deployment vm =
(vm1, . . . , vmt). For ease of exposition, we describe all of our
results for non-reactive functionalities; that is, functionalities
F that consist of a single function and no state. We defer
the treatment of reactive functionalities to the full version
of this work.

3. ISOLATION
We now describe our main notion of security. In our setting,

we are concerned with an adversarial tenant that submits
malicious VMs to the cloud. The purpose of these VMs is to
execute cross-VM attacks on honest VMs that are co-located
on its server. Throughout this work, we assume that if a
malicious VM is placed on a server Srvi, then it can corrupt
the entire server and learn the state and input of all the VMs
on that server. This captures a worst-case scenario where
malicious VMs can execute cross-VM attacks with certainty.
Clearly, this can be relaxed and one could consider cases
where malicious VMs succeed in their cross-VM attacks with
some probability.

Intuitively, we say that a deployment scheme � is isolated
in a cloud Cld = (Ctrlr�, Srv1, . . . , Srvn) if, with high enough
probability, a malicious tenant cannot recover any partial
information about the tenants’ inputs (which includes non-



initial inputs in the case of a reactive deployment). We
formalize this in the ideal/real-world paradigm typically
used to define the security of secure multi-party computation
protocols [3]. All parties below are assumed to be interactive
Turing Machines.

Real-world execution. The real-world execution is a prob-
abilistic experiment in which an honest tenant uses a cloud
Cld = (Ctrlr�, Srv1, . . . , Srvn) in the presence of an adver-
sary A and an environment Z to compute a function f .
At the beginning of the experiment, the tenant receives an
input x, a deployment size t and a set of resource vectors
R = (r1, . . . , rt) from the environment Z. It also receives
the auxiliary string z. The tenant runs �(f, x, t, R) to gen-
erate a deployment vm = (vm1, . . . , vmt) which it submits
to the controller. The adversary is given the size t of the
deployment and the auxiliary string z and sends a set of
attack VMs (am1, . . . , amq) and an execution schedule to
the controller. The execution schedule is the order in which
all VMs should be processed. The controller processes the
honest and attack VMs according to A’s execution schedule
and assigns each one to a physical server according to �.
Once the VMs start running on their assigned servers, both
the tenant and adversary are allowed to interact with their
VMs.

Whenever an attack VM is placed on a physical server the
adversary is allowed to corrupt all the VMs on that server.
If A is semi-honest, then he sees the state and initial input
to the VMs but cannot interfere with its processing. If, on
the other hand, A is malicious, then it can also interfere
with the VMs arbitrarily (we only consider semi-honest ad-
versaries in this work but define security in the malicious
model for completeness). At the end of the execution the
tenant sends its output to the environment Z while A sends
an arbitrary function of its view. Z then outputs a bit.
We denote the random variable that outputs this bit by
Real�,�,Z,A(n, q, t).

Ideal-world execution. The ideal-world execution is a
probabilistic experiment in which the honest tenant, the
cloud Cld = (Ctrlr�, Srv1, . . . , Srvn) and the ideal adversary
S, all have access to a trusted party. At the beginning of
the execution, the tenant receives an input x, a deployment
size t and a set of resource vectors R = (r1, . . . , rt) from
the environment Z. It also receives the auxiliary string
z. The tenant runs �(f, x, t, R) to generate a deployment
vm = (vm1, . . . , vmt) which it submits to the trusted party.
The attacker is given the size t of the honest deployment
together with the resource vectors R and the auxiliary string
z. The adversary sends a set of attack VMs (am1, . . . , amq)
to the trusted party which executes all the VMs. During
these executions, the honest tenant and adversary are allowed
to interact with their VMs.

At the end of the experiment, the tenant sends its output to
the environment Z while S sends an arbitrary function of its
view. The environment Z outputs a bit. We denote the ran-
dom variable that outputs this bit by Ideal�,�,Z,S(n, q, t).

Definition 3.1 (Isolation). A deployment scheme �
is (n, q, t, Á)-isolated in a cloud Cld = (Ctrlr�, Srv1, . . . , Srvn)
if for all functions f , for all PPT adversaries A, there
exists an ideal PPT adversary S such that for all PPT
environments Z and all auxiliary strings z œ {0, 1}ú, the

following expression is at most Á

|Pr [ Real�,�,Z,A(n, q, t) = 1 ] ≠ Pr [ Ideal�,�,Z,S(n, q, t) = 1 ]| ,

where Á = negl(k). If A, S and Z are unbounded, then we
say that � is perfectly (n, q, t, Á)-isolated in Cld. When n, q
and t are clear from the context, we sometimes say that � is
Á-isolated in Cld.

Intuitively, the definition guarantees that anything an
adversary can achieve in the real-world execution can be
achieved in the ideal-world execution, where the VMs are
isolated by definition since they are executed by a trusted
party. Note, however, that in the ideal-world execution the
adversary is given the resource vectors of the honest deploy-
ment which implies that the definition allows the adversary
to learn this information in real-world executions.

Strong isolation. A stronger definition, which we refer to
as strong isolation, results from not giving the adversary the
resource vectors in the ideal-world execution. This distinction
between weak and strong isolation highlights that it could
be possible to protect the honest tenant’s inputs without
necessarily hiding the resource vectors of its deployment (of
course this is provided the resource vectors are independent
of the input). The resource vectors, however, could also be
sensitive in some scenarios so we believe the notion of strong
isolation is interesting as well.

Relationship to co-location-resistance. A simple but
crucial observation about isolation and cross-VM attacks is
that the latter require the completion of a co-location attack,
i.e., the adversary first needs to co-locate its malicious VMs
with the target’s deployment. Since in infrastructure clouds
VM placement is not under adversarial control, the adversary
must create and launch its attack VMs in such a way as to
influence the controller into co-locating them with the target’s
deployment. Concrete examples of such attacks were first
described by Ristenpart et al. against Amazon EC2 in [15].
In that work, the authors describe two types of co-location
attacks. The first are what we refer to as complete attacks,
where the adversary’s goal is to co-locate at least one attack
VM with each VM from a target set (not necessarily all from
the same deployment). The second are what we refer to as
fractional attacks where the adversary just wants to co-locate
with some fraction of a target set (again, not necessarily from
the same deployment).

In Section 4, we formalize the notion of co-location resis-
tance and in Sections 4 and 6, respetively, we show that the
various forms of co-location-resistance imply either perfect
or computational isolation (the latter when used in conjunc-
tion with a shared deployment). Establishing relationships
between these notions serves several purposes. The first—
as is usually the case in cryptography—is that it increases
our confidence in the definitions. The second is that it al-
lows us to use the notion of co-location-resistance which
is easier to work with when analyzing secure placement al-
gorithms (this is similar to the situation of game-based vs.
simulation-based definitions in Cryptography). The third
is that both notions—and their variants—may each prove
useful in practice depending on the setting.

4. SECURE PLACEMENT ALGORITHMS
Here, we are concerned with the design and analysis of

“secure” placement algorithms; that is, algorithms that place



VMs in such a way that it is “hard” for the adversary to co-
locate attack VMs with target VMs. To formally analyze the
security of such algorithms we introduce and formalize the
notion of co-location resistance which captures the intuitive
notion of hardness above. In Theorem 4.3 in Section 4.2
below, we show that a certain variant of CL-resistance implies
weak isolation.

Though we provide a cryptographic treatment of CL-
resistance, it is important to note that our notion of security
is fundamentally di�erent than standard cryptographic no-
tions. The security of standard cryptographic algorithms
is typically quantified by the time-to-success ratio, i.e., the
worst-case (over all adversaries within some class) ratio of
the time invested by the adversary and its probability of
breaking the algorithm. This is typically reflected, in the
asymptotic setting, by the requirement that all polynomially-
bounded adversaries be able to break the algorithm with
probability at most negl(k) = k≠Ê(1), where k is the security
parameter. In our setting, we are interested instead in an
adversary’s success probability as a function of the number
of attack VMs it uses.

4.1 Competitive Ratio
In infrastructure clouds such as Amazon EC2 or Microsoft

Azure, VMs are assigned to servers according to carefully
designed placement algorithms. To minimize the amount
of resources used, these algorithms typically try to pack
as many VMs as possible on each server. Viewing each
VM as a d-dimensional vector over [0, 1] (with dimensions
corresponding to some computational resource) and each
server as a d-dimensional vector over [0, c] (with c being
the maximum amount of a resource made available by the
server), the problem of VM assignment becomes an instance
of the online vector bin packing problem. We refer the reader
to [13, 8] for detailed discussions on the relationship between
VM placement and the bin packing problem.

Bin packing. In the vector bin packing problem, we are
given a sequence of d-dimensional vectors (v1, . . . , vn) over
[0, 1] and a set of n bins (b1, . . . , bm) each of capacity c (i.e.,
each bi œ [0, c]d) and must assign the vectors to bins subject
to never exceeding the bin capacity in any dimension. In the
online version, we receive the sequence of vectors as a stream
and must assign each vi before seeing vi+1. Bin packing is
a classic and well-studied problem in computer science. The
o�ine vector bin packing problem is NP-hard. While there
exists an asymptotic polynomial-time approximation scheme
(PTAS) 2 for the one-dimensional case, it is not practical
as the constants are too high. For dimension d Ø 2, the
problem is APX-hard [23] which means that no PTAS exists
unless P = NP.

Competitive ratio. The quality of an online optimization
algorithm � is evaluated using the notion of competitive
ratio [17] which is the worst-case (over input sequences)
ratio between the online performance of � and the o�ine
performance of the optimal algorithm. The performance of
the algorithm is quantified using a cost function which is
chosen to reflect the real-world cost of the algorithm. In the
case of bin packing the cost function is typically chosen to
be the total number of bins used. The online bin packing
2A PTAS is an algorithm that takes as input an instance of
the problem and a value Á > 0 and is guaranteed to return a
solution that is within a (1 + Á) factor of optimal.

problem can be solved using the generalized first-fit algorithm
[5] which is O(d)-competitive. In light of a recent lower bound
of �(d1≠Á) by Azar et al. [2] this is e�ectively optimal.

A new cost function. Like any online algorithm, the qual-
ity of CL-resistant placement algorithms should be evaluated
using the competitive ratio. There are subtleties, however,
in exactly how this should be done. In particular, we note
that the standard cost function used for bin packing is not
appropriate in our setting. The reason is that in the context
of VM assignments the true cost of a packing algorithm is
the total amount of resources expended by the servers/bins.
While total resource consumption is correlated with the num-
ber of bins used in the o�ine setting, this is not true in the
online case.

To see why, consider the following two simple algorithms.
The first algorithm, �1, turns on one server per hour for a
duration of n hours while the second algorithm, �2, turns
on n servers in the first hour and keeps all servers on for n
hours. Note that both algorithms use n servers but obviously
the second algorithm is less e�cient with respect to total
resource consumption and, in particular, to energy.

This example illustrates the fact that we need a new cost
function in order to evaluate the quality of a placement
algorithm in the online setting. We describe such a function
precisely in Definition 4.1 below. Intuitively, our new cost
function, which we refer to as the server-time, works as
follows. We partition the execution of a placement algorithm
� into T time steps. At Step 1, all the servers are assumed
to be o�. We also assume that once a VM is placed on a
server, it runs perpetually. At each step, � either receives
a VM or not. If so, it assigns the VM to a server, choosing
to place it either on a server that was already on or on a
server that was previously o� (after turning it on, of course).
The cost of � is defined as the sum over time of the number
of servers that are on at each time step. Returning to our
example above, note that under this new function, �1 has
cost n · (n + 1)/2 whereas �2 has cost n2.

Definition 4.1 (Competitive ratio). Consider the fol-
lowing probabilistic experiment between an adversary A and
a challenger that places m VMs on n servers using an algo-
rithm �:

• Cost�,A(n, m, T): Let On0 = ÿ and, for each time
step 1 Æ i Æ T, set Oni = Oni≠1 and proceed as
follows. If the adversary A outputs a virtual machine
vmi, then the challenger places vmi according to �.
If � placed vmi on a server that was previously o�
then add that server to Oni. The experiment outputsqT

i=1 |Oni|.

We say that � is (n, m, T, ”)-competitive if for all (un-
bounded) adversaries A,

Cost�,A(n, m, T) Æ ” · min
�ı

;
Cost�ı,A(n, m, T)

<
.

4.2 Co-Location Resistance
In a co-location attack, the adversary seeks to co-locate at-

tack VMs with some fraction of target VMs. More precisely,
given t target VMs (tm1, . . . , tmt) the adversary launches
q attack VMs (am1, . . . , amq) so that a ” fraction of the
target VMs are co-located with at least one attack VM.



Intuitively, we say that a placement algorithm � is CL-
resistant if the probability of this occurring is bounded by
some small value Á. We formalize this intuition as a prob-
abilistic experiment between an adversary A and a cloud
Cld = (Ctrlr�, Srv1, . . . , Srvn) with a controller that runs the
placement algorithm �.

Definition 4.2 (Co-location-resistance). Consider
the following probabilistic experiment between an adversary
A and a cloud Cld = (Ctrlr�, Srv1, . . . , Srvn):

• CLR�,A(n, q, t, ”): the adversary A generates q attack
machines (am1, . . . , amq), t target machines (tm1, . . . ,
tmt) and an execution schedule. The controller pro-
cesses all the VMs according to the adversary’s exe-
cution schedule and places them according to �. The
experiment outputs 1 if at least ” · t target VMs are
co-located with at least one of the q attack VMs and 0
otherwise.

We say that � is (n, q, t, ”, Á)-CL-resistant if for all adver-
saries A,

Pr [ CLR�,A(n, q, t, ”) = 1 ] Æ Á.

When n, q and t are clear from the context, we sometimes
say that � is (”, Á)-CLR.

A few words about our definition are in order. First, note
that the adversary A can choose both the attack VMs and
the target VMs. This captures the worst-case scenario where
a client chooses its VMs according to the instructions of
the adversary. The implication is that if one can show that
an algorithm � is secure according to this definition, an
adversary will have at most an Á probability of co-location
even in the worst-case. Another note about the definition is
that the adversary can schedule attack VMs before target
VMs. This captures the worst-case scenario with respect to
the distribution of VMs on the servers right before the target
VMs are placed.

Alternative definitions. Our notion of CL-resistance is
very general and captures several scenarios of interest de-
pending on the parameter ranges. For instance, setting ” = 1
captures what we refer to as complete CL-resistance, where
the adversary wishes to co-locate attack VMs with all the
target VMs. Similarly, by setting ” = 1/t, we get the notion
of single CL-resistance where the adversary is only interested
in co-locating with at least 1 of the t target VMs. We refer
to the case where 0 < ” < 1, as fractional CL-resistance.

The range of t is also important as it determines the
types of deployments that can be handled. For example, for
single VM deployments we are only interested in the setting
t = 1 and ” = 1. In other cases, where the honest tenant
deploys several VMs (e.g., for cluster computing or for a
load-balanced web server) we are interested in t > 1 and
” Ø 1/t.

Relationship to isolation. We now show that single CL-
resistance implies weak isolation. The intuition is straightfor-
ward: if � is (1/t, Á)-CLR then with probability at least 1≠Á
none of the attack VMs will be co-located with the honest
deployment and therefore the adversary will not learn any
information about the honest tenant’s inputs. We point out,
however, that this does not imply strong isolation. In fact,
for our proof to go through we explicitly need the simulator

to receive the resource vectors of the honest deployment.
This suggests that even if the placement algorithm is CL-
resistant, the adversary could still learn information about
the deployment’s resource vectors. Intuitively, this makes
sense since CL-resistance only guarantees that, with some
probability, the attack VMs will not be co-located with some
fraction of the deployment which a-priori does not imply
any privacy for the resource vectors. To see why, consider
the case of complete CL-resistance, from which we can get a
lower bound on the probability that none of the attack VMs
are co-located with the deployment. Clearly, this is the best
possible case from the perspective of protecting the honest
tenant’s inputs. In such a scenario, the only co-locations that
occur are between attack VMs so the adversary only learns
his own inputs from a cross-VM attack. Note, however, that
even from this seemingly innocuous information he can infer
something about the current placement of VMs in the cloud.
3 For example, it will learn that a particular server is execut-
ing a specific set of his attack VMs. The placement of VMs
on servers, however, is a function of the resources required
by both the honest and malicious VMs so learning anything
about the current placement of VMs in the cloud can reveal
information about the honest VMs resource vectors.

Theorem 4.3. Let � be a deployment scheme and � be
an (n, q, t, 1/t, Á)-CL-resistant placement algorithm. Then �
is (n, q, t, Á)-isolated in Cld = (Ctrlr�, Srv1, . . . , Srvn).

Proof. Let A be an arbitrary real-world adversary and
consider the ideal adversary S that works as follows. Given
the resource vectors of the honest deployment, S simulates
A by feeding it the auxiliary string z. When A returns a
set of q attack VMs and an execution schedule, S sends the
attack VMs to the trusted party. S then creates a dummy
target deployment (tm1, . . . , tmt) that consists of VMs with
the same resource vectors as the honest deployment but that
execute arbitrary functions over arbitrary inputs. It then
simulates Ctrlr�, feeding it the dummy deployment and the
attack VMs according to A’s execution schedule. Whenever
an attack VM is co-located with another attack VM, S sends
their contents to A. Throughout, S forwards any messages
between attack VMs and A. If at any point during this
simulation, Ctrlr� co-locates an attack VM with a dummy
VM, S aborts. At the end of the simulation, S outputs
whatever A outputs.

Let E be the event that no target VMs are co-located
with attack VMs. Conditioned on E , it follows by construc-
tion that A’s simulated view is distributed exactly as in a
Real�,�,Z,A(n, q, t) execution and therefore so is its output.
Notice also that by construction Ctrlr�’s view is distributed
exactly as in a CLR�,A(n, q, t, 1/t) experiment so it follows
by the CL-resistance of � that the event E occurs with prob-
ability at least 1 ≠ Á. Putting the two together, it follows
that Cld is Á-isolated.

5. OUR PLACEMENT ALGORITHM
We now describe and analyze our placement algorithm.

The algorithm is very simple and is described in detail in Fig.
1. It is a randomized stateful vector bin packing algorithm
3This is assuming the adversary can distinguish between his
own attack VMs, which can be done trivially



Let Srv1 through Srvn be n servers such that Srvi œ [0, c]

d
,

where d Ø 1 is the dimension and c Ø 2 is the capacity of

the servers. Let ⁄ Ø 2 be a parameter of the algorithm.

Algorithm �⁄

!
vm

"
:

1. Choose a subset of ⁄ open servers Opn ™)
Srv1, . . . , Srvn

*
;

2. Set Emp =

)
Srv1, . . . , Srvn

*
/Opn.

3. Repeat

(a) choose a server Srv from Opn uniformly at ran-

dom and let ¸ œ [0, c]

d
be its current load;

(b) assign vm to Srv;

(c) if ¸[i] + vm[i] > c ≠ 1 for at least one i œ [d],

i. remove Srv from Opn and add it to Cl;

ii. remove an empty server from Emp and add

it to Opn

Figure 1: A CL-resistant placement algorithm

that is parameterized by a value ⁄ Ø 2. It takes as input a
vector vm œ [0, 1]d and outputs a server identifier i œ [n].

Here, we assume the server capacity c is at least 2. This is
in order to remove a dependence on c in the competitive ratio.
Since VM resource vectors are in [0, 1]d, this is equivalent
to assuming that no VM will use up more than 1/2 of a
resource available on a server.

At a high level, the algorithm works as follows. It labels
servers as either o� or on and open or closed. O� and on
refer to whether the server is powered on (i.e., consuming
energy) and open and closed refer to whether the server can
receive more VMs or not. Note that a closed server can be
on. When referring to closed servers, we do not count servers
that are o�. The algorithm will always keep exactly ⁄ servers
open and assign an incoming VM to one of these servers
Srv uniformly at random. If any of Srv’s resources increases
to being larger than c ≠ 1 due to the new VM (where c is
the capacity of Srv) then Srv is closed and a new server is
opened. Note that VM resource vectors are in [0, 1]d so the
algorithm never assigns VMs to a server that does not have
the required capacity.

In the following Sections we analyze our algorithm’s com-
petitive ratio and its security against complete and fractional
CL attacks.

5.1 Competitive Ratio
We now prove that our algorithm is a good vector bin

packing algorithm in the sense that its competitive ratio is
a factor of ⁄ + 2d o� from optimal, where d is the number
of resources provided by the servers and ⁄ is the number of
servers the algorithm keeps open at all times.

Theorem 5.1. The algorithm �⁄ from Fig. 1 is (n, T, ”)-
competitive, where ” = ⁄ + 2d.

Proof. At each time step i, the total resources needed
by (vm1, . . . , vmi) is

Ri =
iÿ

j=1

dÿ

l=1

vmj [l],

so the number of servers needed at step i by any algorithm is
at least Ri/(d · c). In the following we let Onı

i denote the set

of servers opened by an optimal algorithm for the instance;
hence

|Onı
i | Ø Ri/(d · c). (1)

Recall that we wish to bound

” =
qT

i=1 |Oni|qT
i=1 |Onı

i |
. (2)

Let Opni and Cli be the open and closed servers at time
i by our algorithm, and ¸(Opni) and ¸(Cli) denote the load
(i.e., total resources) on the open and closed servers at time
i, respectively. Note that by construction each of the closed
servers has at least one of its dimensions filled up to c ≠ 1
and therefore ¸(Cli) Ø |Cli| · (c ≠ 1). It follows that

¸(Opni) = Ri ≠ ¸(Cli) < Ri ≠ |Cli| · (c ≠ 1),

from which we have that

Ri > ¸(Opni) + |Cli| · (c ≠ 1) > |Cli| · (c ≠ 1). (3)

Note next that
Tÿ

i=1

|Oni| =
Tÿ

i=1

|Opni + Cli| = T · ⁄ +
Tÿ

i=1

|Cli|,

where the second equality is because |Opni| = ⁄ for all i
since �⁄ always keeps ⁄ servers open by construction. Hence
by Eq. (2) we have

” =
T · ⁄ +

qT
i=1 |Cli|qT

i=1 |Onı
i |

Æ ⁄ +
qT

i=1 |Cli|qT
i=1 |Onı

i |
, (4)

where the second inequality follows from the fact that
q

i
|Onı

i | Ø
T. We now use Eqs. (1) and (3) to upper bound the second
term in Eq. (4), resulting in
qT

i=1 |Cli|qT
i=1 |Onı

i |
Æ

qT
i=1 |Cli|qT

i=1 Ri/(d · c)
Æ d · c

c ≠ 1 ·
qT

i=1 |Cli|qT
i=1 |Cli|

Æ 2d,

where the final inequality follows since c Ø 2 and hence
c/(c ≠ 1) Æ 2.

5.2 Complete Co-Location Resistance
Here, we analyze the complete CL-resistance of our al-

gorithm (i.e., for ” = 1). At a high-level, our analysis is
based on a balls and bins process and proceeds in three steps.
First, we show in Lemma 5.2 a bound on the probability
that each bin among a given subset of bins contains at least
one ball. As far as we know—and perhaps surprisingly—no
concrete analysis of this particular balls and bins process has
appeared prior to this work.

We note that while the process can be viewed as a coupon
collector problem where the bins are the coupons, we cannot
apply the Erdos-Renyi Theorem [4] since it is asymptotic and
only holds for infinitely many bins. We therefore believe that
Lemma 5.2 is of independent interest. Intuitively, Lemma
5.2 will help us bound the probability that—conditioned on
the target VMs being placed on some number of servers—our
algorithm will co-locate each target VM with at least one
attack VM.

In the second phase of our analysis we prove in Lemma
5.3 a lower bound on the probability that at least t/2 bins



are occupied when throwing t balls in b bins uniformly at
random. Intuitively, this Lemma will allow us to analyze the
number of servers on which our algorithm places the target
VMs. Finally, in Theorem 5.4 we combine both Lemmas to
analyze our algorithm’s co-location-resistance.

Lemma 5.2. Consider a process that throws balls uni-
formly at random into b bins and let C be a subset of these
bins. If the process throws q Æ b · log |C| balls, then the
probability that each bin in C has at least one ball is at most

1/ exp
3

“ ·
33

1 ≠ q

b · log |C|

4
· log |C|

424
,

if |C| Ø 2, where “ is some constant strictly less than 1. If
|C| = 1, then the probability is at most

1 ≠
11

4

2q/b

.

Proof. This process can be viewed as a variant of the
coupon collector problem where the bins in C are the coupons.
Let epoch i denote the set of samples between the time where
we found the ith and (i + 1)th new coupons. So epoch 0,
for example, is the set of samples made until a ball is first
placed in a bin in C. Let Xi be the length of epoch i (i.e.,
the number of samples needed to collect the (i + 1)th coupon
once we have the ith) and let X =

qc≠1
i=0 Xi be the total

number of samples needed to find all |C| coupons.
Clearly, if |C| = 1 then

Pr [ X Æ q ] = 1 ≠
1

1 ≠ 1
b

2q

Æ 1 ≠
11

4

2q/b

so we focus on the case |C| Ø 2. Since the Xi are non-
negative independent random variables, it follows by [12]
that

Pr [E[X] ≠ X Ø a ] Æ 1/ exp
3

a2

2 ·
q

i
E[X2

i ]

4
.

Setting a = – · E[X] we have,

Pr [ X Æ (1 ≠ –) · E[X] ] Æ 1/ exp
3

–2 · E[X]2

2 ·
q

i
E[X2

i ]

4
. (5)

Note that Xi satisfies a geometric distribution with pa-
rameter pi = (|C| ≠ i)/b since, in epoch i, the probabil-
ity of finding a new coupon is (|C| ≠ i)/b. It follows that
E[Xi] = 1/pi = b/(|C| ≠ i) and therefore that

E[X] =
|C|≠1ÿ

i=0

E[Xi] Ø b ·
|C|≠1ÿ

i=0

1
|C| ≠ i

Ø b · log |C|, (6)

where the first equality is by the linearity of expectation.
Since Xi is geometric, we also have Var[Xi] = (1 ≠ pi)/p2

i

and

E[X2
i ] = E2[Xi] + Var[Xi] = 2 ≠ pi

p2
i

Æ 2b2

(|C| ≠ i)2 .

From the above, it follows that
|C|≠1ÿ

i=0

E[X2
i ] Æ

ÿ

i

2b2

(|C| ≠ i)2 Æ — · b2, (7)

where — is some constant which is about 12/fi2. Combining
this with (5) and (6), we obtain

Pr [ X Æ (1 ≠ –) · E[X] ] Æ 1/ exp
3

–2 · E[X]2
2— · b2

4

Æ 1/ exp
3

–2 · b2 log2 |C|
2— · b2

4

= 1/ exp
3

–2 · log2 |C|
2—

4

Setting q = (1 ≠ –) · E[X], i.e., – = 1 ≠ q/E[X], we have

Pr [ X Æ q ] = 1/ exp
3

“ ·
33

1 ≠ q

b · log |C|

4
· log |C|

424
,

where “ = 1/(2 · —) ¥ fi2/24 as long as |C| Ø 2.

Lemma 5.2 upper-bounds the probability that each bin
in C holds at least one of q balls. As will become clear in
the proof of Theorem 5.4 this Lemma allows us to upper
bound the probability that our algorithm will co-locate at
least one attack VM with each one of t target VMs. The
bound, however, depends on the size of the subset C which,
intuitively, will correspond to the number of servers on which
the t target VMs are located. In the following Lemma we
upper bound the probability that less than t/2 bins will
be occupied when throwing t balls, or in other words, the
probability that our algorithm places the t target VMs on
less than t/2 servers.

Lemma 5.3. Consider a process that throws t balls into b
bins uniformly at random. If t Æ b/e, then the probability
that there are at most t/2 occupied bins is at most 2≠t/2.

Proof. The probability that at most m bins are occupied
is at most

3
b

m

4
·
3

m

b

4t

Æ
3

eb

m

4m

·
3

m

b

4t

= em ·
3

m

b

4t≠m

.

Setting m = t/2, we get m/b Æ 1/2e and the above expres-
sion is at most

et/2 ·
3

1
2e

4t/2

= 1
2t/2 .

Our main Theorem. We now turn to our CL-resistance
analysis and Theorem 5.4. We discuss our Theorem and its
implications below.

Theorem 5.4. If t Æ ⁄/e and q < ⁄ · log(t/2) then the al-
gorithm �⁄, described in Fig. 1, is (n, q, t, 1, Á)-CL-resistant
for

Á = 2≠t/2 + 1/ exp
3

“ ·
33

1 ≠ q

⁄ · log(t/2)

4
· log(t/2)

424
,

for some constant “ < 1.



Proof. Let A be an arbitrary adversary and consider
a CLR�⁄,A(n, q, t) experiment. In the following we omit
the subscripts �⁄ and A and the parameters (n, q1, q2, t)
for visual clarity. Let S be the random variable denoting
the number of servers on which the target VMs are located.
Recall that �⁄ assigns attack VMs uniformly at random
amongst a set of ⁄ open servers. The VM assignments can
therefore be viewed as a balls and bins process. We then
have,

Pr [ CLR = 1 ] = Pr [ CLR = 1 | S < t/2 ] · Pr [ S < t/2 ]
+ Pr [ CLR = 1 | S Ø t/2 ] · Pr [ S Ø t/2 ]

Æ 2≠t/2 + Pr [ CLR = 1 | S Ø t/2 ],

where the inequality follows from upper bounding the first
and fourth terms in the first equality by 1 and upper bounding
the second term using Lemma 5.3.

The probability that CLR = 1 conditioned on S Ø t/2,
can be bounded using Lemma 5.2 by setting b = ⁄ and
|C| = i for t/2 Æ i Æ t. Note, however, that this probability
is maximized when S = t/2 so we have,

Pr [ CLR = 1 ] Æ 2≠t/2 + Pr [ CLR = 1 | S = t/2 ]

Æ 2≠t/2

+ 1/ exp
3

“ ·
33

1 ≠ q

⁄ · log(t/2)

4
· log(t/2)

424
.

Remarks. Note that the bound on CL-resistance we estab-
lish holds for a certain range of parameters. In particular,
as long as the number of target VMs t is at most ⁄/e and
the number of attack VMs q is less than ⁄ · log(t/2). In this
regime, our algorithm achieves a good complete CL-resistance
for large t.

In large public infrastructure clouds, the number of servers
n can be very large. For example, Amazon EC2 is rumored to
have anywhere from 150K [18] to 450K [10] servers. Taking
the smallest estimates of n = 150K and assuming that a
cloud provider is willing to have at least 1/3 of its servers
on at any time, we could set ⁄ = 50K in our algorithm. Our
analysis would then hold for deployments of size at most
18, 394 and adversaries with a budget of at most 456, 331
attack VMs, both of which are very large. The tradeo� in
e�ciency is that the placement would be 50K + 2d o� of the
optimal placement in terms of server-time.

On the other end of the spectrum, assuming the cloud
provider is willing to have less than 1% of its servers on at
any time (say 0.5%) we could set ⁄ = 1K in our algorithm.
Our analysis would then hold for deployments of size at most
3678 and adversaries with a budget of at most 3912 attack
VMs. Here, the tradeo� in e�ciency would be 1K + 2d o�
of the optimal placement in terms of server-time. In this
regime, where ⁄ = 1K, Theorem 5.4 bounds the complete
CL-resistance of the algorithm by 0.009 for deployments of
size t = 100 against an adversary with 1K attack VMs. For
even smaller ⁄, say ⁄ = 100, the analysis would hold for
deployments of size up to about 18 and adversaries with
budgets of up to 290 attack VMs with e�ciency that is
100 + 2d o� from optimal.

Another important observation about our bound is that it
is not tight. This is due to our analysis overestimating the

probability of co-location by ignoring the fact that target
VMs on closed servers cannot be co-located with new attack
VMs. This indicates that, in practice, our algorithm will
likely perform better than what our analysis suggests.

5.3 Fractional Co-Location Resistance
In this Section we analyze the fractional CL-resistance

of our algorithm (i.e., for ” < 1). The overall structure of
our analysis is similar to the targeted case: we first show
in Lemma 5.5 a bound on the probability that a ” fraction
of a given set of bins is occupied when throwing q balls. In
Theorem 5.6 below, we then combine Lemma 5.5 and Lemma
5.3 to prove our main bound.

Lemma 5.5. Consider a process that throws balls uni-
formly at random into b bins and let C be a subset of these
bins. If the process throws q balls, then the probability that at
least ” · |C| of the bins in C have at least one ball is at most

1/ exp
3

” · |C|
6

4

if q Æ ” · b/2 and at most

1/ exp

A
” · |C|

6 ·
3

” · b

q
≠ 1

42
B

,

if ” · b/2 < q < ” · b.

Proof. Let Xi be the random variable that outputs 1 if
the ith bin from C has at least one ball. The probability
that Xi = 0 is at least (1 ≠ 1/b)q so

Pr [ Xi = 1 ] Æ 1 ≠
3

1 ≠ 1
b

4q

.

Now, if X =
qt

i=1 Xi is the total number of bins that have
at least one ball, we have

E[X] =
|C|ÿ

i=1

E[Xi] Æ |C| ·
3

1 ≠
3

1 ≠ 1
b

4q4
Æ |C| · q/b. (8)

since 1 ≠ (1 ≠ 1/b)q Æ q/b. Because X1 through Xt are
negatively associated, we have

Pr [ X > (1 + –) · E[X] ] Æ 1/ exp
3

–2 · E[X]
2 + –

4
,

for – Ø 0 by a Cherno� bound. Setting (1+–) ·E[X] = ” · |C|,
we have

Pr [ X > ” · |C| ] Æ 1/ exp
3

–2 · ” · |C|
(2 + –)(1 + –)

4
, (9)

with

– = ” · |C|
E[X] ≠ 1 Ø ” · |C| · b

q · |C| ≠ 1 = ” · b

q
≠ 1, (10)

where the first inequality follows from Eq. 8. We consider
only q < ” ·b and break our analysis into two cases: q Æ ” ·b/2
and ” · b/2 < q < ” · b. If q Æ ” · b/2, we have – Ø 1 and
therefore

–2

(2 + –) · (1 + –) Ø 1
6 .



Combining this with Eq. 9, we have

Pr [ X > ” · |C| ] Æ 1/ exp
3

” · |C|
6

4
.

We now consider the case ” · b/2 < q < ” · b which, by Eq.
10, implies that 0 < – < 1. Since – < 1, we have

–2

(2 + –) · (1 + –) >
–2

6 Ø (” · b/q ≠ 1)2

6 ,

where the second inequality follows from Eq. 10. Again,
combining this with Eq. 9 we obtain

Pr [ X > ” · |C| ] Æ 1/ exp
3

” · |C|
6 ·

3
” · b

q
≠ 1

424
.

We now turn to analyzing the fractional CL-resistance of
our algorithm. We make use of Lemmas 5.3 and 5.5 in our
Theorem.

Theorem 5.6. The algorithm �⁄, described in Fig. 1, is
(n, q, t, ”, Á)-CL-resistant for

Á = 2≠t/2 + 1/ exp
3

” · t

12

4

when q Æ ” · ⁄/2 and

Á = 2≠t/2 + 1/ exp
3

” · t

12 ·
3

” · ⁄

q
≠ 1

424
,

when ” · ⁄/2 < q < ” · ⁄.

Proof. The proof is similar to that of Theorem 5.4. We
consider an adversary A in the experiment CLR�⁄,A(n, q, t, ”)
and in the following we omit the subscripts and parameters
for visual clarity. Let S be the random variable denoting the
number of servers on which the target VMs are located. Since
�⁄ assigns attack VMs uniformly at random amongst a set
of ⁄ open servers, we obtain the following from Lemma 5.3:

Pr [ CLR = 1 ] = Pr [ CLR = 1 | S < t/2 ] · Pr [ S < t/2 ]
+ Pr [ CLR = 1 | S Ø t/2 ] · Pr [ S Ø t/2 ]

Æ 2≠t/2 + Pr [ CLR = 1 | S Ø t/2 ].

We use Lemma 5.5 to bound the probability that CLRunt
�⁄,A =

1 conditioned on S Ø t/2 by setting b = ⁄ and |C| = i for
t/2 Ø i Ø t. We consider two cases, the first being when
q Æ ” · ⁄/2 and the second when ” · ⁄/2 < q < ” · ⁄. Note
that in both cases, the bound of Lemma 5.5 is decreasing
in |C| = S therefore, if S Ø t/2, it is maximized at S = t/2.
This gives us,

Pr [ CLR = 1 ] Æ 2≠t/2 + 1/ exp
3

” · t

12

4

when q Æ ” · ⁄/2 and

Pr [ CLR = 1 ] Æ 2≠t/2 + 1/ exp
3

” · t

12 ·
3

” · ⁄

q
≠ 1

424

when ” · ⁄/2 < q < ” · ⁄.

5.4 Perfect Isolation
While we are mainly interested in computational isolation,

for completeness we provide a Corollary that quantifies the
perfect isolation provided by our placement algorithm. The
Corollary results from combining Theorems 4.3 and 5.6 and
essentially shows that our algorithm performs poorly with
respect to perfect isolation.

Corollary 5.7. Let � be an arbitrary deployment scheme
and � be the algorithm described in Fig. 1. Then � is
(n, q, t, Á)-isolated in Cld = (Ctrlr�, Srv1, . . . , Srvn), where

Á = 2≠t/2 + 1/e1/12 ¥ 2≠t/2 + 0.92

when q Æ ⁄/2t and

Á = 2≠t/2 + 1/ exp
3

1
12 ·

3
⁄

t · q
≠ 1

424
Ø 2≠t/2 + 0.92,

when ⁄/2t < q < ⁄/t.

6. SHARED DEPLOYMENTS AND COMPU-
TATIONAL ISOLATION

As Theorem 4.3 shows, single CL-resistance bounds per-
fect isolation but, unfortunately, Corollary 5.7 shows that
our algorithm has poor single CL-resistance. On the other
hand, Theorem 5.4 shows that our algorithm achieves good
complete CL-resistance. Intuitively, what these results show
is that, against our algorithm, an adversary has a good prob-
ability of co-locating with at least one out of t target VMs
but a low probability of co-locating with all t.

In this Section, we show how to take advantage of com-
plete CL-resistance through the use of cryptography. At
a high-level, our approach is to assume the adversary is
computationally-bounded and to cryptographically “split” a
tenant’s computation among a set of VMs in such a way that
the tenant’s secrets can only be recovered if the adversary
co-locates with all the VMs in the set.

We then show in Theorem 6.2 that if a computation is exe-
cuted using a shared deployment, its computational isolation
in a cloud is upper bounded by the complete CL-resistance
of the cloud’s placement algorithm. Combining this with
Theorem 5.4, we show in Corollary 6.3 that our algorithm
provides good computational isolation.

6.1 Shared Deployments
A shared deployment scheme � takes as input a security

parameter 1k, a functionality f , an input x, a deployment
size t and a set of resource vectors R = (r1, . . . , rt). It out-
puts a shared deployment vm = (vm1, . . . , vmt). Intuitively,
the security guarantee a shared deployment scheme should
provide is that no computationally-bounded adversary can
learn any partial information about the input unless it cor-
rupts at least „ out of the t VMs. We formalize this in the
following definition.

Definition 6.1 (Secure shared deployment). Consider
the following probabilistic experiment between an adversary
A and a cloud Cld = (Ctrlr�, Srv1, . . . , Srvn):

• Shrd�,A,F („, t): the adversary A sends two inputs x0
and x1 for the functionality F to the challenger. The
challenger samples a bit b uniformly at random and
computes vm Ω �(1k, F , xb, t). The adversary then



chooses which subset C ™ [n] of „ VMs to corrupt
and, given {vmi}iœC , outputs a bit bÕ. The experiment
outputs 1 if bÕ = b and 0 otherwise.

We say that a shared deployment � is („, t, Á)-secure if for
all PPT adversaries A, for all functionalities F ,

Pr [ Shrd�,A,F („, t) = 1 ] Æ 1
2 + Á.

Constructing shared non-reactive deployments. Us-
ing fully-homomorphic encryption, one can construct a (1, 1,
negl(k))-secure deployment scheme by storing in a single VM
the functionality F and an FHE encryption of x1 and having
the VM execute the functionality homomorphically. One
can avoid the use of FHE, however, by using a multi-worker
delegation (MWD) protocol. MWD protocols were first con-
sidered in [6], where a construction based on secret sharing
and secure function evaluation was proposed. Due to space
limitations we defer the details of our MWD-based shared
deployment construction to the full version of this work.

6.2 Computational Isolation
In Theorem 6.2 below, we show that for any placement

algorithm �, the computational isolation of a shared deploy-
ment scheme � in a cloud Cld = (Ctrlr�, Srv1, . . . , Srvn) is
negligibly-close to �’s complete CL-resistance.

Theorem 6.2. If � is a (t ≠ 1, t, negl(k))-secure shared
deployment scheme and � is (n, q, t, 1, Á)-CLR, then � is com-
putationally

!
Á + negl(k)

"
-isolated in Cld = (Ctrlr�, Srv1, . . . ,

Srvn).

Proof. Let A be an arbitrary real-world PPT adversary
and consider the ideal PPT adversary S that works as follows.
Given the resource vectors R = (r1, . . . , rt) of the honest
deployment, S simulates A by feeding it the auxiliary string
z. When A returns a set of q attack VMs and an execution
schedule, S sends the attack VMs to the trusted party. S
then chooses some arbitrary input x and generates a dummy
target deployment (tm1, . . . , tmt) Ω �(1k, f, x, t, R). It
then simulates Ctrlr�, feeding it the target deployment and
the attack VMs according to A’s execution schedule. When-
ever an attack VM is placed on a (simulated) server, S sends
the state and inputs of all co-located VMs to A. Throughout,
S forwards any messages between attack VMs and A. If at
any point during this simulation, Ctrlr� co-locates an attack
VM with up to t target VMs, S aborts. At the end of the
simulation, S outputs whatever A outputs.

Note that the simulation of Ctrlr� is indistinguishable from
its execution in a Real�,�,Z,A experiment and, therefore,
so is the placement of VMs. This is because the dummy
target deployment has the same resource vectors as the real
deployment. But since the VM placements are indistinguish-
able, so is the adversary’s corruption set (i.e., the VMs it is
co-located with). Now, let E be the event that at most t ≠ 1
VMs of the dummy deployment are co-located with attack
VMs. It follows by the (t ≠ 1, t, negl(k))-security of � that,
conditioned on E , A cannot distinguish between the real
and dummy deployments. So, conditioned on E , both the
corruption set and the deployments are indistinguishable. It
follows then that, conditioned on E , A’s view and, therefore,
its output is also indistinguishable.

We also have that the simulated view of Ctrlr� is dis-
tributed exactly as in a CLR�,A experiment, so the proba-
bility that E occurs is exactly 1≠Pr [ CLR�,A(n, q, t, 1) = 1 ]
which, by the complete CL-resistance of �, is at least 1 ≠ Á.
In other words, the simulation will fail with probability at
most Á + negl(k) from which the theorem follows.

6.3 Our Algorithm’s Computational Isolation
We give a Corollary that quantifies the computational

isolation provided by our placement algorithm. The Corollary
results from combining Theorems 5.4 and 6.2 and shows that
our algorithm performs well with respect to computational
isolation.

Corollary 6.3. Let � be a (t≠1, t, negl(k))-secure shared
deployment scheme and � be the algorithm described in Fig.
1. If t Æ ⁄/e and q < ⁄ · log(t/2) then � is computationally
(n, q, t, Á)-isolated in Cld = (Ctrlr�, Srv1, . . . , Srvn), where Á
is negligibly-close in k to

2≠t/2 + 1/ exp
3

“ ·
33

1 ≠ q

⁄ · log(t/2)

4
· log(t/2)

424
,

for some constant “ < 1.

7. FUTURE DIRECTIONS
There are many future directions suggested by this work.

The most immediate are to establish a bound on our algo-
rithm’s CL-resistance that is tighter and/or applicable to
a wider range of parameters. Another problem is to find
new algorithms with better CL-resistance and, in particu-
lar, better single CL-resistance which in turn would imply
better perfect isolation. Designing algorithms with better
tradeo�s between competitive ratio and CL-resistance would
also prove to be very useful in practice. Another direction of
interest is to achieve strong isolation, where the VM resource
vectors are protected.

In addition to finding improved algorithms, an interesting
line of results would be to establish lower bounds. For exam-
ple, finding a lower bound on single CL-resistance and, there-
fore, on perfect isolation would be very interesting (though
lower bounds for any ” would be welcome). Similarly, estab-
lishing lower bounds on the tradeo�s between competitive
ratio and CL-resistance would help us better understand the
inherent “cost of security” in this context.
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