Proofs of Storage from Homomorphic Identification Protocols

Giuseppe Ateniese - Johns Hopkins
Seny Kamara - Microsoft Research Jonathan Katz - University of Maryland

Cloud Storage

Cloud Storage

- Advantages
- Lower startup costs
- Location independence
- Device independence
- Higher reliability
- Better scalability
- Disadvantages
- confidentiality
- integrity

Q: how do we verify the integrity of outsourced data?

Naïve Solutions

Linear in length of file

Server can just store hash

Proofs of Storage ${ }_{\text {Aactor, , , кол }}$

- $(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{Gen}\left(1^{k}\right)$
- $\left(s t, \underline{f}^{\prime}\right) \leftarrow \operatorname{Encode}(s k, \underline{f})$
- $\mathrm{c} \leftarrow$ Chall(pk)
- $\quad \pi:=\operatorname{Proof}(\mathrm{pk}, \mathrm{f}, \mathrm{c})$
- $\mathrm{b}:=\operatorname{Vrfy}(\mathrm{pk}, \mathrm{st}, \mathrm{c}, \pi)$

Our Goals

- Functionality
- arbitrary data
- unbounded number of challenges
- public verifiability
- Client storage
- O(1)
- Server storage
- small O(1) overhead
- Communication complexity
- O(1)
- Locality
- Sub-linear

Related Work

- [Juels-Kaliski07]
- Privately verifiable, bounded challenges, encrypted data
- [Ateniese et al 07]
- scheme \#1: privately verifiable, RSA, ROM
- scheme \#2: publicly verifiable, RSA, ROM
- O(n)-size challenges (w/o RO), O(1)-size proofs
- unbounded challenges, arbitrary data
- [Shacham-Waters08]
- scheme \#1: privately verifiable, PRFs
- scheme \#2: publicly verifiable, bilinear CDH, ROM
- $\mathrm{O}(\mathrm{n})$-size challenges (w/o RO), O(1)-size proofs
- unbounded challenges, arbitrary data

Related Work

- [Dodis-Vadhan-Wichs09]
- general methodology for constructing PoS
- privately verifiable, bounded challenges, arbitrary data
- O(1)-size challenges (w/o RO), O(1)-size proofs
- derandomization of hitting set generators using expander graphs
- Our contributions
- general methodology for constructing PoS
- scheme based on factoring (in ROM)
- O(1)-size challenges (w/o RO), (O(k) + log n)-size proofs
- publicly verifiable, unbounded challenges, arbitrary data

How to Construct a Publicly-Verifiable PoS

3-Move ID Protocol

- Protocol between a prover and a verifier
- " \mathbb{P} convinces V he knows the secret key corresponding to a public key..."
- ...without revealing any (additional) information about the secret key"
$\underline{P(p k, s k)}$

$$
\underset{\beta \leftarrow \operatorname{ChSp}}{\underset{\alpha:=\operatorname{Resp}(p k, s k, r, \beta)}{ }}
$$

Homomorphic ID Protocol

Public-key HLA from hID

RO: H
hID: Setup, Comm, Chall, Resp
$\quad \&$ Comb $_{1}$, Comb

$$
\gamma_{i}:=\operatorname{Resp}\left(\mathrm{pk}, \mathrm{sk}, \mathrm{H}(\mathrm{st}, \mathrm{i}), \mathrm{f}_{\mathrm{i}}\right)
$$

$(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{Setup}\left(1^{\mathrm{k}}\right)$
p : k -bit prime $s t \leftarrow\{0,1\}^{k}$

$$
\begin{aligned}
& \underline{f}=\left(f_{1}, \ldots, f_{n}\right) \\
& \underline{t}=\left(\gamma_{1}, \ldots, \gamma_{n}\right)
\end{aligned}
$$

$$
\underline{\mathrm{c}} \leftarrow\left[\mathbb{Z}_{p}\right]^{n}
$$

$$
\mu=:\langle\underline{c}, \underline{f}\rangle
$$

$$
\tau:=\operatorname{Comb}_{3}(\underline{\mathrm{t}}, \underline{\mathrm{c}})
$$

$$
\underline{\alpha}:=\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

$\left.\mathrm{b}:=\operatorname{Vrfy}^{(p k}, \operatorname{Comb}_{1}(\underline{\alpha}, \underline{c}), \mu, \tau\right)$

How to Construct a Publicly-Verifiable PoS

New scheme based on factoring

Compact PoS from hID

RO: H
hID: Setup, Comm, Chall, Resp
$\quad \&$ Comb $_{1}$, Comb
3
PRF: ${\text { Finto } \mathbb{Z}_{p}}$

$($ pk,sk $) \leftarrow \operatorname{Setup}\left(1^{k}\right)$
$\mathrm{p}: \mathrm{k}$-bit prime
st $\leftarrow\{0,1\}^{k}$
$\underline{\alpha}=\{\mathbb{C}, p]^{n}$

$$
\begin{aligned}
& \mu=:\langle\underline{\mathrm{c}}, \underline{\underline{1}}\rangle \\
& \tau:=\operatorname{Comb}_{3}(\underline{\mathrm{t}}, \underline{\mathrm{c}})
\end{aligned}
$$

$$
\underline{c}:=\left(F_{K}(1), \ldots, F_{K}(n)\right)
$$

$$
\underline{\alpha}:=\left(\alpha_{1}, \ldots, \alpha_{n}\right)
$$

$\mathrm{b}:=\operatorname{Vrfy}\left(\mathrm{pk}, \operatorname{Comb}_{1}(\underline{\mathrm{\alpha}}, \underline{\mathrm{c}}), \mu, \tau\right)$

Properties of a PoS

- Completeness
- if server "knows" file then Vrfy outputs 1
- Security
- if Vrfy outputs 1 , then server "knows" file
- Q: How do we formalize "knowledge"?
- Knowledge extractor [Feige-Fiat-Shamir88,Feige-Shamir90,BellareGoldreich92]
- Witness extended emulation [Lindell03]
- "there exists exp. poly-time extractor \mathcal{K} that extracts file, and view from any PPT adversary that outputs valid proofs"

Extraction w/o PRF

- K sends random vectors to server and rewinds until:

1. n challenge vectors $\left(\underline{c}_{1}, \ldots, \underline{\mathrm{c}}_{\underline{n}}\right)$ are linearly Independent
2. n proofs $\left(\mu_{\mathrm{i}}, \tau_{i}\right)$ that are "valid", i.e., Vrfy outputs 1

- HLA guarantees that $\mu_{\mathrm{i}}=\left\langle\mathrm{c}_{\mathrm{i}, \mathrm{f}} \mathrm{f}\right\rangle \mathrm{w} /$ overwhelming prob.

Extraction w/o PRF

μ_{i}, τ_{i}
$\mathrm{b}:=\operatorname{Vrfy}\left(\mathrm{pk}, \mathrm{st}, \mu_{\mathrm{i}}, \mathrm{\tau}_{\mathrm{i}}\right)$
solves system of n equations in n unknowns for \underline{f}

- $\mathrm{c}_{11} \mathrm{f}_{1}+\ldots+\mathrm{c}_{1 \mathrm{n}} \mathrm{f}_{\mathrm{n}}=\mu_{1}$
- $\mathrm{c}_{\mathrm{n} 1} \mathrm{f}_{1}+\ldots+\mathrm{c}_{\mathrm{nn}} \mathrm{f}_{\mathrm{n}}=\mu_{\mathrm{n}}$

Extraction w/ PRF

- [ABC07,SW08]
- can we replace random vectors with PRF key?
- how do we reduce security to PRF if adversary sees key?
- We show:
- PRF vs. non-uniform adversaries suffices to prove extraction
- exploit the fact that such PRFs produce linearly independent vectors

PoS Based on Factoring

Gen(1^{k})

- $N=p q$
- $p=q=3 \bmod 4$
- $y \leftarrow Q R_{N}$
- $\mathrm{pk}=(\mathrm{N}, \mathrm{y})$ and $\mathrm{sk}=(\mathrm{p}, \mathrm{q})$

PoS based on Factoring

RO: H into $J_{N}(+1)$
PRF: F into \mathbb{Z}_{p}

Efficiency

- Client storage: $\mathrm{O}(1)$
- Server storage overhead: O(n)
- Communication: $\mathrm{O}(\mathrm{k})+\log \mathrm{n}$

Questions

22

