Proofs of Storage from Homomorphic Identification Protocols

Giuseppe Ateniese – Johns Hopkins Seny Kamara – Microsoft Research Jonathan Katz – University of Maryland

Cloud Storage

Cloud Storage

- Advantages
 - Lower startup costs
 - Location independence
 - Device independence
 - Higher reliability
 - Better scalability

- Disadvantages
 - confidentiality
 - integrity

Q: how do we verify the integrity of outsourced data?

Naïve Solutions

Proofs of Storage [ABC+07, JK07]

- (pk, sk) \leftarrow Gen(1^k)
- (st, $\underline{f'}$) \leftarrow Encode(sk, \underline{f})
- c ← Chall(pk)
- π := Proof(pk, <u>f</u>, c)
- **b** := Vrfy(pk, st, c, π)

Our Goals

- Functionality
 - arbitrary data
 - unbounded number of challenges
 - public verifiability

- Client storage
 - O(1)
- Server storage
 - small O(1) overhead
- Communication complexity
 - O(1)
- Locality
 - Sub-linear

Related Work

- [Juels-Kaliski07]
 - Privately verifiable, bounded challenges, encrypted data
- [Ateniese et al 07]
 - scheme #1: privately verifiable, RSA, ROM
 - scheme #2: publicly verifiable, RSA, ROM
 - O(n)-size challenges (w/o RO), O(1)-size proofs
 - unbounded challenges, arbitrary data
- [Shacham-Waters08]
 - **scheme #1**: privately verifiable, PRFs
 - scheme #2: publicly verifiable, bilinear CDH, ROM
 - O(n)-size challenges (w/o RO), O(1)-size proofs
 - unbounded challenges, arbitrary data

Related Work

• [Dodis-Vadhan-Wichs09]

- general methodology for constructing PoS
- privately verifiable, bounded challenges, arbitrary data
 - O(1)-size challenges (w/o RO), O(1)-size proofs
 - derandomization of hitting set generators using expander graphs

Our contributions

- general methodology for constructing PoS
- scheme based on factoring (in ROM)
 - O(1)-size challenges (w/o RO), (O(k) + log n)-size proofs
 - publicly verifiable, unbounded challenges, arbitrary data

How to Construct a Publicly-Verifiable PoS

3-Move ID Protocol

- Protocol between a prover and a verifier
 - "P convinces V he knows the secret key corresponding to a public key..."
 - ...without revealing any (additional) information about the secret key"

Homomorphic ID Protocol

 $Comb_1$ and $Comb_3$ s.t. for all $\underline{c} \in \mathbb{Z}_{2^k}$

Completeness

- Vrfy(pk, Comb₁($\underline{\alpha}$, \underline{c}), $\langle \underline{c}, \underline{\beta} \rangle$,Comb₃($\underline{y}, \underline{c}$)) = 1
- Unforgeability (loosely speaking)
 - no PPT adv. can find $\underline{c}, \mu' \neq \langle \underline{c}, \underline{\beta} \rangle$ and γ' s.t.

Public-key HLA from hID

RO: H hID: Setup, Comm, Chall, Resp & Comb₁, Comb₃

How to Construct a Publicly-Verifiable PoS

Compact PoS from hID

b := Vrfy(pk, Comb₁($\underline{\alpha}$, \underline{c}), μ , τ)

Asiacrypt '09

Properties of a PoS

- Completeness
 - if server "knows" file then Vrfy outputs 1
- Security
 - if Vrfy outputs 1, then server "knows" file
- Q: How do we formalize "knowledge"?
 - Knowledge extractor [Feige-Fiat-Shamir88, Feige-Shamir90, Bellare-Goldreich92]
 - Witness extended emulation [Lindell03]
 - "there exists exp. poly-time extractor *K* that extracts file, and view from any PPT adversary that outputs valid proofs"

b := Vrfy(pk, st, μ_i , τ_i)

- \mathcal{K} sends random vectors to server and rewinds until:
 - 1. n challenge vectors ($\underline{c}_1, \dots, \underline{c}_n$) are linearly Independent
 - 2. n proofs (μ_i , τ_i) that are "valid", i.e., Vrfy outputs 1
 - HLA guarantees that $\mu_i = \langle \underline{c}_i, \underline{f} \rangle$ w/ overwhelming prob.

solves system of n equations in n unknowns for <u>f</u>

•
$$c_{11}f_1 + \ldots + c_{1n}f_n = \mu_1$$

•
$$c_{n1}f_1 + ... + c_{nn}f_n = \mu_n$$

Extraction w/ PRF

• [ABC07,SW08]

- can we replace random vectors with PRF key?
- how do we reduce security to PRF if adversary sees key?
- We show:
 - PRF vs. non-uniform adversaries suffices to prove extraction
 - exploit the fact that such PRFs produce linearly independent vectors

PoS Based on Factoring

- Gen(1^k)
 - N = pq
 - p = q = 3 mod 4
 - $y \leftarrow QR_N$
 - pk = (N,y) and sk = (p,q)

Efficiency

- Client storage: O(1)
- Server storage overhead: O(n)
- Communication: O(k) + log n

Questions

