Cloud Cryptography

Seny Kamara Cryptography Group Microsoft Research

Outline

- Cloud Architecture
 - What is cloud computing?
- Cloud Ecosystem
 - Who provides and who consumes cloud services?
- Cloud Cryptography
 - What are the security concerns & how can cryptography help?

Computing as a Service

• Computing is a vital resource

• Enterprises, governments, scientists, consumers, ...

- Computing is manageable at small scales...
 - o e.g., PCs, laptops, smart phones
- ...but becomes hard to manage at large scales
 - build and manage infrastructure, schedule backups, hardware maintenance, software maintenance, security, trained workforce, ...
- Why not outsource it?

Computing Architecture

Cloud Services

- Infrastructure as a service
 - Service: customer can store data in the cloud
 - Customer: enterprise, developers
 - o e.g., MS Azure storage, Amazon S3

Platform as a service

- Service: customer can run its apps in the cloud
- Customer: developers
- o e.g., MS Azure, Amazon EC2, Google AppEngine,

Software as a service

- Service: customer makes use of app in the cloud
- Customer: consumers & enterprise
- e.g., web-based email, Flickr, delicious, Facebook, Office Web, Google Docs, ...

Cloud Deployment Models

Public

Private

The Cloud Ecosystem

• • •

Who Provides Cloud Services?

Cloud Infrastructure Providers

- Provide access to infrastructure
 - o e.g., Amazon, Microsoft, Google, IBM, EMC, Equinix, AT&T, Verizon

Characteristics

- Requires very large investments
 - build data centers
 - acquire expertise
 - provide physical security
 - energy consumption
 - ...
- Large (often) publicly traded companies
- Have a reputation to uphold

Cloud Service Companies

- Provide cloud-based applications
 - o e.g., Salesforce, GoGrid, NetSuite
- Characteristics
 - Requires small investment
 - developers
 - Platform/infrastructure services from larger cloud providers
 - Startups (often) privately held

Who Consumes Cloud Services?

- Consumers
 - o e.g., Facebook (500+ M), Web-based email (840 M), Flickr, Dropbox, ...
- Enterprise
 - E.g., Amazon EC2/S3, MS Azure, Google AppEngine, Google Apps

Governments

- 120,000 US Dept. of Agriculture employees will move to MS cloud services
- o 17,000 Gen. Serv. Admin. Employees will move to Google cloud services

Local Governments

- 100,000 NYC emplyees will move to MS cloud services
- o 34,000 L.A. emplyees will move to Google cloud services

Cloud Cryptography

Concerns

- Outsider security
 - Can other tenants, hackers, competitors access my data?
- Insider security
 - Can the cloud operator (and its employees) access my data?
- Intellectual property
 - Can outsiders or insiders see my code and algorithms?
- Compliance
 - Can I remain compliant if I move to the cloud?
- Availability
 - Can I access my data or service at all times?

Modern Cryptography

- Primitives
 - e.g., encryption, digital signatures, hash functions, pseudo-random generators, ...
- Protocols
 - o e.g., key agreement, zero-knowledge proofs, multi-party computation
- Security definitions
 - Formal definition of what it means to be secure
- "Proofs" of security
 - Proof that primitive/protocol meets security definition
 - Unconditional security (e.g., one-time pad)
 - Conditional security (e.g., RSA, El Gamal,...)
- Leads to very strong security guarantees
 - o e.g., digital signatures are widely accepted in court
 - SHA-2, AES, ECC are certified for government use by NIST & NSA

Modern Cryptography

Cloud Cryptography

- Current crypto tools are inappropriate for the cloud
 - Due to assumptions about how tools will be used
 - Results in efficiency loss & insecurity

• New tools

- Homomorphic encryption
- Searchable/Structured encryption
- Proofs of storage
- Server-aided secure computation

[...,G09,...]

Homomorphic Encryption

- Encryption that supports comp. on encrypted data
 - Fully homomorphic [G09, DGHV10]
 - Partially homomorphic [SYY99, BGN05, IP07, GHV10a, GHV10b, KR11]

Guarantees that

Cloud never sees plaintext/message

Pros

- FHE is general-purpose
- Partial & parallel HE can be efficient

Cons

• FHE is inefficient (but improvements are being made rapidly)

Homomorphic Encryption

Searchable Encryption

- Encryption that supports search on encrypted text
 - Symmetric key [SWP01,Goh03,CM05,CGK006]
 - Public key [BDOP06, BKOS07,...]

Guarantees that

- Cloud never sees documents
- Cloud never sees search keywords
- Pros
 - Symmetric variant is very efficient!
- Cons
 - Reveals access and search patterns
 - o [GO96] shows how to hide this but it is expensive

Searchable (Symm.) Encryption

Structured Encryption

- Encryption that supports queries on encrypted data
 - Query over encrypted graphs [CK10]
 - Query over encrypted web graphs [CK10]

Guarantees that

- Cloud never sees data
- Cloud never sees queries
- Pros
 - Symmetric variant is very efficient!
- Cons
 - Reveals access and search patterns

Structured Encryption

[JK07, ABC+07]

Proofs of Storage

- Tamper detection without knowing original file
 - Symmetric-key [JK07, SW08, DVW10]
 - Public-key [ABC+07, SW08, AKK10]
- Guarantees that
 - Cloud will be caught if it tampers with data

Pros

- Symmetric variant is efficient!
- Verification does not require copy of original data
- Cons

0 --

Server-Aided Secure Comp.

- Joint computation w/o revealing inputs
 - o (plain) secure computation [Yao82,GMW87,...]
- Guarantees that
 - Parties will not learn each other's inputs
 - Cloud will not learn parties' inputs
- Pros
 - General-purpose (e.g., data mining, voting, negotiations,...)
 - o Efficient
- Cons
 - 0 --

Server-Aided Secure Comp.

2/24/11 • 26

Questions?

• • •

- [MG09]
 - The NIST Definition of Cloud Computing
 - o <u>http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc</u>
- [G09]
 - Craig Gentry
 - Fully Homomorphic Encryption from Ideal Lattices.
 - ACM Symposium on Theory of Computing, 2009.
- [DGHV10]
 - o Martin van Dijk, Craig Gentry, Shai Halevi and Vinod Vaikuntanathan
 - Fully Homomorphic Encryption Over the Integers
- [SYY99]
 - Tomas Sanders, Adam Young and Moti Yung
 - Non-interactive Cryptocomputing for NC1
 - IEEE Symposium on the Foundations of Computer Science, 1999

- [BGN05]
 - Dan Boneh, Eu-Jin Goh and Kobi Nissim
 - Evaluating 2-DNF Formulas on Ciphertexts
 - Theory of Cryptography Conference, 2005
- [IP07]
 - Yuval Ishai and Anat Paskin
 - Evaluating branching programs on encrypted data
 - Theory of Cryptography Conference, 2007
- [GHV10a]
 - Craig Gentry, Shai Halevi and Vinod Vaikuntanathan
 - A Simple BGN-style Encryption Scheme from LWE
 - Advances in Cryptology Eurocrypt, 2010

- [GHV10b]
 - Craig Gentry, Shai Halevi and Vinod Vaikuntanathan
 - i-hop Homomorphic Encryption Schemes
 - Advances in Cryptology CRYPYO, 2010
- [KR11]
 - Seny Kamara and Mariana Raykova
 - Parallel Homomorphic Encryption
 - Under submission
- [SWP01]
 - Dawn Song, David Wagner and Adrian Perrig
 - Practical Techniques for Searches on Encrypted Data
 - IEEE Security and Privacy Symposium, 2000

- [Goh03]
 - o Eu-Jin Goh
 - Secure Indexes
 - o http://eprint.iacr.org/2003/216
- [CM05]
 - Yang-Chen Chang and Michael Mitzenmacher
 - Privacy preserving keyword searches on remote encrypted data
 - Conference on Applied Cryptography and Network Security, 2005
- [CGKO06]
 - Reza Curtmola, Juan Garay, Seny Kamara and Rafail Ostrovsky
 - Symmetric Searchable Encryption: Improved Definitions and Efficient Constructions.
 - ACM Conference on Computer & Communication Security, 2006

- [BDOP04]
 - Dan Boneh, Giovanni di Crescenzo, Rafail Ostrovsky and Giuseppe Persiano
 - Public-Key Encryption with Keyword Search
 - Advances in Cryptology Eurocrypt, 2004
- [BKOS07]
 - o Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, William E. Skeith III
 - Public Key Encryption That Allows PIR Queries
 - Advances in Cryptology CRYPTO, 2007
- [CK10]
 - Melissa Chase and Seny Kamara
 - Structured Encryption and Controlled Disclosure
 - Advances in Cryptology Asiacrypt, 2010

- [JK07]
 - o Ari Juels and Burt Kaliski
 - PORs: Proofs of Retrievability for Large Files
 - ACM Conference on Computer & Communications Security, 2007
- [ABC+07]
 - Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary N. J. Peterson, Dawn Xiaodong Song
 - Provable Data Possession at Untrusted Stores
 - ACM Conference on Computer & Communications Security, 2007
- [SW08]
 - Hovav Shacham, Brent Waters
 - Compact Proofs of Retrievability
 - Advances in Cryptology Asiacrypt, 2008

- [DVW09]
 - Yevgeniy Dodis, Salil P. Vadhan, Daniel Wichs
 - Proofs of Retrievability via Hardness Amplification
 - Theory of Cryptography Conference, 2009
- [AKK10]
 - o Giuseppe Ateniese, Seny Kamara and Jonathan Katz
 - Proofs of Storage from Homomorphic Identification Schemes
 - Advances in Cryptology Asiacrypt, 2010
- [KMR11]
 - Seny Kamara, Payman Mohassel and Mariana Raykova
 - Server-Aided Secure Computation
 - Under submission