
Garbled Circuits via
Structured Encryption
Seny Kamara – Microsoft Research

Lei Wei – University of North Carolina

Garbled Circuits
Fundamental cryptographic primitive

Possess many useful properties

Homomorphic

Functional

General-purpose

Verifiable

Computationally efficient (free XOR, pipelining, garbled row reduction, …)

Applications of Garbled Circuits
Two-party computation [Yao82]

Server-aided multi-party computation [K.-Mohassel-Raykova12]

Covert multi-party computation [Chandran-Goyal-Sahai-Ostrovsky07]

Homomorphic encryption [Gentry-Halevi-Vaikuntanathan10]

Functional encryption [Seylioglu-Sahai10]

Single-round oblivious RAMs [Lu-Ostrovsky13]

Leakage-resilient OT [Jarvinen-Kolesnikov-Sadeghi-Schneider10]

One-time programs [Goldwasser-Kalai-Rothblum08]

Verifiable computation [Gennaro-Gentry-Parno10]

Randomized encodings [Applebaum-Ishai-Kushilevitz06]

Yao’s Garbled Circuits

AND

a b

c

AND

K0 & K1 K0 & K1

K0 & K1

EncK0(EncK0(K0))
EncK0(EncK1(K0))
EncK1(EncK0(K0))
EncK1(EncK1(K1))

0 0 0

0 1 0

1 0 0

1 1 1

AND:

Yao’s Garbled Circuits

AND

OR AND

EncK0(EncK0(K0))
EncK0(EncK1(K0))
EncK1(EncK0(K0))
EncK1(EncK1(K1))

EncK0(EncK0(K0))
EncK0(EncK1(K1))
EncK1(EncK0(K1))
EncK1(EncK1(K1))

EncK0(EncK0(K0))
EncK0(EncK1(K0))
EncK1(EncK0(K0))
EncK1(EncK1(K1))

0 1 1 1

1

K0 K1 K1 K1

K1

Defining Garbled
Circuits

Garbling Scheme

Grb(1k
, C) ⟾ (C, dk, sk)

GI(sk, x) ⟾ x

Eval(C, x) ⟾ y

Dec(dki, y) ⟾ {⊥, yi}

Input Privacy

SIM1: “(C, x, dk) can be simulated given only C and f(x)”

SIM2: “(C, x, dk) can be simulated given only C and f(x),
even when x is chosen as a function of C ”

Designing Garbled
Circuits

General-Purpose Garbling Schemes

BOOLEAN CIRCUITS

[Yao82]: public-key techniques

[Lindell-Pinkas09]: double encryption

[Naor-Pinkas-Sumner99]: hash functions

[Bellare-Hoang-Rogaway12]: dual-key
ciphers

ARITHMETIC CIRCUITS

[Applebaum-Ishai-Kushilevitz12]: affine
randomized encodings

⋀ ⋁

⋁

+ ×

+

General-Purpose Garbling Schemes
Boolean circuits

Efficient: bit-wise operations (e.g., shifts, comparisons, …)

Inefficient: arithmetic operations

Arithmetic circuits

Efficient: arithmetic operations (e.g., additions, multiplications, polynomials, …)

Inefficient: bit-wise operations

Many problems are neither

[Naor-Nissim01]: circuits with lookup tables ≈ RAMs

[Barkol-Ishai05]: constant-depth circuits

[Gordon et al.12]: DB lookups

Not Garbling Schemes

Structured Circuits

Efficient for “structured problems”

Search, graphs, DFAs, branching programs

Can be garbled

2PC, homomorphic encryption, one-time programs, verifiable computation, …

Gen(1𝑘) K

Enc𝐾 𝛿, 𝑚 𝛾

Token𝐾(𝑞) 𝜏

Query(𝛾, 𝜏) 𝐼

Dec𝐾(𝑐𝑖) 𝑚𝑖

Structured Encryption [Chase-K.10]

How to Garble a Structured Circuit

Correctness
Encrypt data structures

Associativity (store & release tokens)

Dimensionality (merge tokens)

Security
CQA1 enc ⇒ SIM1 & UNF1 garbling

CQA2 enc ⇒ SIM2 & UNF2 garbling

EncK

EncK

EncK

𝜏 𝜏

𝜏 𝜏

0/1

Previous Structured Encryption
Associativity

[Curtmola-Garay-K.-Ostrovsky06]: CQA1 & CQA2 inverted index encryption

[Chase-K.10]: CQA2 matrix, graph & web graph encryption

Dimensionality

All previously-known constructions are 1-D

2-D Matrix Encryption

Encrypt: permute & XOR with PRF-based pad

Search: 𝜏(1,3) = FK(1,3), P(1,3)

1-D Matrix Encryption [Chase-K.10]

m11 m12 m13

m21 m22 m23

m31 m32 M33 C1,3

1 2 3

1

2

3

=
FK(1,3) ⊕ m13

P: [n] x [n] → [n] x [n]

Encrypt: permute & XOR with synthesizer-based pad

Search: 𝜏(1) = FK(row|P(1)) 𝜏(3) = FK(col|Q(3))

2-D Matrix Encryption

m11 m12 m13

m21 m22 m23

m31 m32 M33 C1,3

1 2 3

1

2

3

P : [n] → [n]
Q: [n] → [n]

=
Synth[FK(row|P(1)) , FK(col|Q(3)]⊕m13

Matrix Garbling Schemes
[Chase-K.10] + synthesizers ⇒ SIM1-secure Garb schemes for matrices

[Chase-K.10] + synthesizers + SIM1-to-SIM2 ⇒ SIM2-secure schemes for matrices

Observation: Yao garbled gate ⟺ 2-D associative CQA1 matrix encryption scheme

Applications

New Special-Purpose Garbling Schemes!
DFAs

Branching programs

Boolean circuits w/ cheaper gate evaluation than Yao

Adjacency queries on graphs

Neighbor queries on graphs

Focused subgraph queries on web graphs

More efficient: Two-party computation , server-aided multi-party computation, covert
multi-party computation, homomorphic encryption, functional encryption, single-
round oblivious RAMs, leakage-resilient OT, one-time programs, verifiable
computation, randomized encodings, …

Our transform + [Chase-K.10]

Secure Two-Party Graph Computation

Are and friends?

Who are ‘s friends?

Find the friends of anyone who likes my product

Find the friends of anyone with disease X

Thanks

