Garbled Circuits via Structured Encryption

Seny Kamara - Microsoft Research
Lei Wei - University of North Carolina

Garbled Circuits

Fundamental cryptographic primitive
Possess many useful properties
Homomorphic
Functional
General-purpose
Verifiable
Computationally efficient (free XOR, pipelining, garbled row reduction, ...)

Applications of Garbled Circuits

Two-party computation [Yao82]
Server-aided multi-party computation [K.-Mohassel-Raykova12]
Covert multi-party computation [Chandran-Goyal-Sahai-Ostrovsky07]
Homomorphic encryption [Gentry-Halevi-Vaikuntanathan10]
Functional encryption [Seylioglu-Sahai10]
Single-round oblivious RAMs [Lu-Ostrovsky13]
Leakage-resilient OT [Jarvinen-Kolesnikov-Sadeghi-Schneider10]
One-time programs [Goldwasser-Kalai-Rothblum08]
Verifiable computation [Gennaro-Gentry-Parno10]
Randomized encodings [Applebaum-Ishai-Kushilevitz06]

Yao's Garbled Circuits

AND: | 0 | 0 | 0 |
| :--- | :--- | :--- |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

$\operatorname{Enc}_{\mathrm{Ko}_{0}}\left(\right.$ Enc $\left.\left(\mathrm{K}_{0}\right)\right)$
$\operatorname{Enc}_{\mathrm{K}_{0}}\left(\right.$ Enc $\left.\left(\mathrm{K}_{0}\right)\right)$
$\operatorname{Enc}_{K_{1}}\left(\right.$ Enc ($\left.K_{0}\right)$)
$\operatorname{Enc}_{\mathrm{K}_{1}}\left(\operatorname{Enc}\left(\mathrm{~K}_{1}\right)\right)$

Yao's Garbled Circuits

Defining Garbled

 Circuits
Garbling Scheme

$$
\begin{aligned}
& \operatorname{Grb}\left(1^{k}, C\right) \models(\tilde{C}, d k, s k) \\
& \operatorname{GI}(s k, x) \models \tilde{x} \\
& \operatorname{Eval}(\tilde{C}, \tilde{x}) \models \tilde{y} \\
& \operatorname{Dec}\left(\mathbf{d k}_{i}, \tilde{y}\right) \models\left\{\perp, y_{i}\right\}
\end{aligned}
$$

Input Privacy

SIM1: "($\tilde{C}, \tilde{x}, d k)$ can be simulated given only \tilde{C} and $f(x)^{"}$

SIM2: "($\tilde{C}, \tilde{x}, d k)$ can be simulated given only C and $f(x)$, even when x is chosen as a function of \tilde{C} "

Designing Garbled Circuits

General-Purpose Garbling Schemes

BOOLEAN CIRCUITS
[Yao82]: public-key techniques
[Lindell-Pinkas09]: double encryption
[Naor-Pinkas-Sumner99]: hash functions
[Bellare-Hoang-Rogaway12]: dual-key
ciphers

ARITHMETIC CIRCUITS

[Applebaum-Ishai-Kushilevitz12]: affine randomized encodings

General-Purpose Garbling Schemes

Boolean circuits
Efficient: bit-wise operations (e.g., shifts, comparisons, ...) Inefficient: arithmetic operations

Arithmetic circuits
Efficient: arithmetic operations (e.g., additions, multiplications, polynomials, ...) Inefficient: bit-wise operations

Many problems are neither
[Naor-Nissim01]: circuits with lookup tables \approx RAMs [Barkol-Ishai05]: constant-depth circuits [Gordon et al.12]: DB lookups

Structured Circuits

Efficient for "structured problems"
Search, graphs, DFAs, branching programs
Can be garbled
2PC, homomorphic encryption, one-time programs, verifiable computation, ...

Structured Encryption [chase .:.10]

$$
\begin{aligned}
& \operatorname{Gen}\left(1^{k}\right) \Rightarrow \mathrm{K} \\
& \operatorname{Enc}_{K}(\delta, \bar{m}) \Rightarrow \gamma \\
& \operatorname{Token}_{K}(q) \Rightarrow \tau \\
& \operatorname{Query}(\gamma, \tau) \Rightarrow I \\
& \operatorname{Dec}_{K}\left(c_{i}\right) \Rightarrow m_{i}
\end{aligned}
$$

How to Garble a Structured Circuit

Correctness
Encrypt data structures
Associativity (store \& release tokens)
Dimensionality (merge tokens)

Security
CQA1 enc \Rightarrow SIM1 \& UNF1 garbling
CQA2 enc \Rightarrow SIM2 \& UNF2 garbling

Previous Structured Encryption

Associativity

[Curtmola-Garay-K.-Ostrovsky06]: CQA1 \& CQA2 inverted index encryption [Chase-K.10]: CQA2 matrix, graph \& web graph encryption

Dimensionality
All previously-known constructions are 1-D

2-D Matrix Encryption

1-D Matrix Encryption [chase-..10]

$$
F_{k}(1,3) \oplus m_{13}
$$

Encrypt: permute \& XOR with PRF-based pad
Search: $\tau(1,3)=F_{K}(1,3), P(1,3)$

2-D Matrix Encryption

Synth $\left[F_{K}(\right.$ row $\mid P(1)), F_{K}(\operatorname{col} \mid Q(3)] \oplus m_{13}$
Encrypt: permute \& XOR with synthesizer-based pad
Search: $\tau(1)=\mathrm{F}_{\mathrm{K}}($ row $\mid \mathrm{P}(1)) \quad \tau(3)=\mathrm{F}_{\mathrm{K}}(\operatorname{col} \mid \mathrm{Q}(3))$

Matrix Garbling Schemes

[Chase-K.10] + synthesizers \Rightarrow SIM1-secure Garb schemes for matrices
[Chase-K.10] + synthesizers + SIM1-to-SIM2 \Rightarrow SIM2-secure schemes for matrices

Observation: Yao garbled gate \Longleftrightarrow 2-D associative CQA1 matrix encryption scheme

Applications

New Special-Purpose Garbling Schemes!

DFAs
Branching programs
Boolean circuits w/ cheaper gate evaluation than Yao
Adjacency queries on graphs
Neighbor queries on graphs
Focused subgraph queries on web graphs

More efficient: Two-party computation, server-aided multi-party computation, covert multi-party computation, homomorphic encryption, functional encryption, singleround oblivious RAMs, leakage-resilient OT, one-time programs, verifiable computation, randomized encodings, ...

Secure Two-Party Graph Computation

Are \bigcirc and \bigcirc friends?

Who are 's friends?
Find the friends of anyone who likes my product
Find the friends of anyone with disease X

Thanks

