
Proofs of Storage

SENY KAMARA

MICROSOFT RESEARCH

Computing as a Service

 Computing is a vital resource

 Enterprises, governments, scientists, consumers, …

 Computing is manageable at small scales…

 e.g., PCs, laptops, smart phones

 …but becomes hard to manage at large scales

 build and manage infrastructure, schedule backups,

hardware maintenance, software maintenance, security,

trained workforce, …

 Why not outsource it?

2

Cloud Services

 Software as a service

 Gmail, Hotmail, Flickr, Facebook, Office365, Google Docs, …

 Service: customer makes use of provider applications

 Customer: consumers & enterprise

 Platform as a service

 MS SQL Azure, Amazon SimpleDB, Google AppEngine

 Service: customer makes use of provider’s software stack

 Customer: developers

 Infrastructure as a service

 Amazon EC2, Microsoft Azure, Google Compute Engine

 Service: customer makes use of provider’s (virtualized) infrastructure

 Customer: enterprise, developers

3

Cloud Advantages

 Providers

 Monetize spare capacity

 Consumers

 Convenience: backups, synchronizations, sharing

 Companies

 Elasticity

 Can focus on core business

 Cheaper services

4

Cloud Risks

 Risks

 100% reliability is impossible

 Downtime can be costly (startups can go out of business)

 AWS outages

 December 12th, 2010: EC2 down for 30 mins (Europe)

 April 21, 2011: storage down for 10-12 hours (N. Virginia)

 Foursquare, Reddit, Quora, BigDoor and Hootsuite affected

 August 6th, 2011: storage down for 24 hours (Ireland)

 August 8th, 2011: network connectivity down for 25 mins (N.
Virginia)

 Reddit, Quora, Netflix and FourSquare affected

 July 7th, 2012: storage down for few hours (Virginia)

 Instagram, Netflix, Pinterest affected

5

Q: is my data still there?

6

Outline

 Motivation

 Naïve Solutions

 Overview of Proofs of Storage

 Defining Proofs of Storage

 Designing Proofs of Storage

 Applying Proofs of Storage

7

Q: is my data still there?

8

Digital Signatures/MACs

 Signatures

 Gen(1k) ⟾ (sk, vk)

 Sign(sk, m) ⟾ σ

 Vrfy(vk, m, σ) ⟾ b

 Security

 Message Authentication Codes

 Gen(1k) ⟾ sk

 Tag(sk, m) ⟾ σ

 Vrfy(sk, m, σ) ⟾ b

9

UNF: “given m and σ, no A can output a

valid σ’ for an element m’ ≠ m ”

Communication Channels 10

Local Storage 11

Cloud Storage 12

Simple Solutions

?
H

H

Cloud can just store hash!

?
H

Linear comm. complexity

13

Simple Solutions

K1

TK1

TK2

TK3 TK3

TK1

…Large client storage
Bounded # of verifications

14

Proofs of Storage

15

Proof of Storage
[Ateniese+07,Juels-Kaliski07]

O(1)

Petabytes

π

K

c

16

PoS = PoR or PDP

 Proof of retrievability [Juels-Kaliski07]

 High tampering: detection

 Low tampering: retrievability

 Proof of data possession [Ateniese+07]

 Detection

17

PoS Security

 Completeness

 Soundness

COMP: “if Server possesses file, then Client accepts proof”

SOUND: “if Client accepts proof, then

Server possesses file”

18

Formalizing Possession

 Knowledge extractor

 [Feige-Fiat-Shamir88, Feige-Shamir90, Bellare-Goldreich92]

 Algorithm that extracts information from other algorithms

 Typically done by rewinding

 Adapted to PoS soundness

SOUND: “there exists an expected poly-time extractor

K that extracts the file from any poly-time A that

outputs valid proofs”

19

Designing PoS

20

Designing PoS

 Based on sentinels

 [Juels-Kaliski07]

 Embed secret blocks in data and verify their integrity

  Very efficient encoding

  Only works with private data

 Based on homomorphic linear authenticators (HLA)

 [Ateniese+07]

 Authenticates data with tags that can be aggregated

  works with public data

21

HLA-based PoS

Semi-compact PoR

Compact PDP

Semi-compact PDP

Compact PoR

Erasure code

1 2 3 4

1 2 3 4

t1 t2 t3 t4

1 2 3 4 EC EC

t1 t2 t3 t4 t5 t6

1 2 3 4 EC EC

HLA

PRF PRF

22

HLA

1 2 3 4

Extracting via Linear Algebra

SOUND: “there exists an expected poly-time extractor

K that extracts the file from any poly-time A that

outputs valid proofs”

K

c

π

c

π

23

Extracting via Linear Algebra

SOUND: “there exists an expected poly-time extractor

K that extracts the file from any poly-time A that

outputs valid proofs”

K
⟨c1, f⟩

⟨c2, f⟩

C1∈[ℤp]n

C2∈[ℤp]n

1 2f = =
Extract f
1. If c1 and c2 are lin. Indep.

2. solve for f using linear algebra

24

Extracting via Linear Algebra

 What if c1 and c2 are not linearly independent?

 Just pick them at random

 What if A doesn’t compute inner product?

 Use HLAs!

K
⟨c1, f⟩

⟨c2, f⟩

C1∈[ℤp]n

C2∈[ℤp]n

1 2f = =
Extract f
1. If c1 and c2 are lin. Indep.

2. solve for f using linear algebra

25

HLA

 Syntax

 Gen(1k) ⟾ K

 Tag(K, f) ⟾ (t, st)

 Chall(1k) ⟾ c

 Auth(K, f, t, c) ⟾ α

 Vrfy(K, μ, c, st) ⟾ b

 Security
UNF: “given f and c, no A can output a

valid α for an element μ ≠ ⟨c, f⟩”

26

Constructing HLAs [AKK09]

 HLAs from homomorphic identification protocols

 Multiple execs. can be verified at once (i.e., batched)

 Identification schemes

 roughly zero-knowledge proofs of knowledge

 Ex: Schnorr, Guillou-Quisquater, Shoup,…

 Previous HLAs are instances of AKK transform

 New HLA based on Shoup’s ID scheme

27

Simple HLA [Shacham-Waters08]

1 2 3 4

t1 t2 t3 t4

ti = HK(i) + fi ∙w

W, K

C⬿[ℤp]n

μ = ⟨c, f⟩ and α = ⟨c, t⟩

α = ⟨c, (HK(1), …, HK(n))⟩ + μ ∙w

28

Simple HLA

 UNF: α proves that μ is the inner product of f and c

 Why is Simple HLA unforgeable?

 For intuition see [Ateniese-K.-Katz10]

 Connection to 3-move identification protocols

UNF: “given f and c, no A can output a

valid α for an element μ ≠ ⟨c, f⟩”

29

Simple HLA = Semi-Compact PoS

1 2 3 4

t1 t2 t3 t4

ti = HK(i) + fi ∙w

W, K

C⬿[ℤ*p]n

μ = ⟨c, f⟩ and α = ⟨c, t⟩

α = ⟨t, (HK(1), …, HK(n))⟩ + μ ∙w

O(n)!

O(1)

30

Compressing Challenges

 Idea #1

 [Ateniese+07]

 Send key to a PRF and have server generate challenge vector

 Problem: how do we reduce to PRF security if A knows the PRF key?

 Idea #2

 [Shacham-Waters08] Use a random oracle

 Idea #3

 [Dodis-Vadhan-Wichs10] Use an expander-based derandomized
sampler

 [Ateniese-K.-Katz10]

 Idea#1 is secure

 Security of PRF implies that PRF-generated vectors are linearly
independent with high probability

31

HLA-based PoS

Semi-compact PoR

Compact PDP

Semi-compact PDP

Compact PoR

Erasure code

1 2 3 4

1 2 3 4

t1 t2 t3 t4

1 2 3 4 EC EC

t1 t2 t3 t4 t5 t6

1 2 3 4 EC EC

HLA

PRF PRF

32

HLA

1 2 3 4

Constructions 33

Assmpt. Verif. ROM Dyn. Unbounded

[ABC07+] RSA+KEA public Yes No Yes

[JK07] OWF private No Yes No

[SW08] BDH public Yes No Yes

[SW08] OWF private No No Yes

[APMT09] OWF private Yes Yes No

[EKPT09] Fact public Yes Yes Yes

[DVW09] OWF private No No No

[AKK09] Fact Public Yes* No Yes

Applying PoS

34

PoS Applications

 Verifying integrity [Juels-Kaliski07, ABC+07,…]

 Providing availability

 HAIL [Bowers-Juels-Oprea09]

 Iris [Stefanov-vDijk-Juels-Oprea12]

 Verifying fault tolerance [Bowers-vDijk-Juels-Oprea11]

 Verifying geo-location

 [Benson-Dowsley-Shacham11,

Watson-SafaviNaini-Alimomeni-Locasto-Naranayan12,

Gondree-Peterson13]

 Malware-resistant authentication [Ateniese-Faonio-K.-Katz13]

35

Identification 36

pwd

H(pwd)

Identification Schemes 37

pk
sk

Bounded Retrieval Model

 High-level idea

 A can recover λ bits of secret key

 Make secret key larger than λ bits

 Efficiency independent of secret key size

 Concretely

 20GB secret key

 Long time needed for A to recover 20GB w/o detection

 Scheme efficiency independent of key size

38

BRM-ID via PoS [AFKK13] 39

sk = f ⬿ {0,1}k

st

O(1)

PoS

BRM-ID via PoS [AFKK13] 40

sk = f ⬿ {0,1}k

st

O(1)

ZK-PoS

Zero-knowledge PoS

 [Wang-Chow-Wang-Ren-Lou09]

 Bilinear DH (?)

 Based on [Shacham-Waters08]

 [Ateniese-Faonio-K.-Katz13]

 Construction #1: RSA

 Construction #2: Factoring

 Based on [ABC07+]

 Full proof of security

41

HLA-Based PoS Design 42

HLA Compact PoS

PoR

PDP

Zero-Knowledge

BRM-ID

Hom. ID

[AKK09]

PRF

[AKK09]

Erasure Code

[SW08]

[ABC+07]

[AFKK13]

BRM-ID

 [Alwen-Dodis-Wichs09]

 3 BRM-IDs

 Based on Okamoto ID scheme

 Asymptotically less efficient than ours

43

Our RSA-Based BRM-ID
[AFKK13]

 Machine #1: PC1-HD

 Pentium Dual-Core 2.93GHz

 2MB L2 cache

 2GB DDR2 800MHz of RAM

 1TB SATA 6Gb/s rotating hard drive

 Machine #2: PC1-USB

 Machine #1 + USB drive

 Machine #3: PC2-SSD

 Intel Xeon 8-Core 2.2GHz

 16MB L3 cache

 256GB DDR3 1600MHz of RAM

 RAID 4 512GB SATA SSD hard drives

44

Our RSA-Based BRM-ID
[AFKK13]

 1020 bits of security + 256MB of leakage

 348MB secret key

 PC1-HD: 0.18s

 PC1-USB: 0.5s

 PC2-SSD: 0.12s

 1020 bits of security + 4GB of leakage

 5584GB secret key

 PC1-HD: 2.5-3s

 PC1-USB: 1s

 PC2-SSD: 0.12s

45

Conclusions

 PoS are interesting in practice

 Well motivated

 Different guarantees (PDPs and PORs)

 Efficient constructions

 Based on variety of assumptions (RSA, BDH, OWF)

 PoS are interesting in theory

 Non-trivial security definitions and constructions

 Interactive proofs, signatures, coding theory

 PoS are useful

 Integrity, availability, geo-location, malware-resistant
authentication

46

The End

47

