
Proofs of Storage

SENY KAMARA

MICROSOFT RESEARCH

Computing as a Service

 Computing is a vital resource

 Enterprises, governments, scientists, consumers, …

 Computing is manageable at small scales…

 e.g., PCs, laptops, smart phones

 …but becomes hard to manage at large scales

 build and manage infrastructure, schedule backups,

hardware maintenance, software maintenance, security,

trained workforce, …

 Why not outsource it?

2

Cloud Services

 Software as a service

 Gmail, Hotmail, Flickr, Facebook, Office365, Google Docs, …

 Service: customer makes use of provider applications

 Customer: consumers & enterprise

 Platform as a service

 MS SQL Azure, Amazon SimpleDB, Google AppEngine

 Service: customer makes use of provider’s software stack

 Customer: developers

 Infrastructure as a service

 Amazon EC2, Microsoft Azure, Google Compute Engine

 Service: customer makes use of provider’s (virtualized) infrastructure

 Customer: enterprise, developers

3

Cloud Advantages

 Providers

 Monetize spare capacity

 Consumers

 Convenience: backups, synchronizations, sharing

 Companies

 Elasticity

 Can focus on core business

 Cheaper services

4

Cloud Risks

 Risks

 100% reliability is impossible

 Downtime can be costly (startups can go out of business)

 AWS outages

 December 12th, 2010: EC2 down for 30 mins (Europe)

 April 21, 2011: storage down for 10-12 hours (N. Virginia)

 Foursquare, Reddit, Quora, BigDoor and Hootsuite affected

 August 6th, 2011: storage down for 24 hours (Ireland)

 August 8th, 2011: network connectivity down for 25 mins (N.
Virginia)

 Reddit, Quora, Netflix and FourSquare affected

 July 7th, 2012: storage down for few hours (Virginia)

 Instagram, Netflix, Pinterest affected

5

Q: is my data still there?

6

Outline

 Motivation

 Naïve Solutions

 Overview of Proofs of Storage

 Defining Proofs of Storage

 Designing Proofs of Storage

 Applying Proofs of Storage

7

Q: is my data still there?

8

Digital Signatures/MACs

 Signatures

 Gen(1k) ⟾ (sk, vk)

 Sign(sk, m) ⟾ σ

 Vrfy(vk, m, σ) ⟾ b

 Security

 Message Authentication Codes

 Gen(1k) ⟾ sk

 Tag(sk, m) ⟾ σ

 Vrfy(sk, m, σ) ⟾ b

9

UNF: “given m and σ, no A can output a

valid σ’ for an element m’ ≠ m ”

Communication Channels 10

Local Storage 11

Cloud Storage 12

Simple Solutions

?
H

H

Cloud can just store hash!

?
H

Linear comm. complexity

13

Simple Solutions

K1

TK1

TK2

TK3 TK3

TK1

…Large client storage
Bounded # of verifications

14

Proofs of Storage

15

Proof of Storage
[Ateniese+07,Juels-Kaliski07]

O(1)

Petabytes

π

K

c

16

PoS = PoR or PDP

 Proof of retrievability [Juels-Kaliski07]

 High tampering: detection

 Low tampering: retrievability

 Proof of data possession [Ateniese+07]

 Detection

17

PoS Security

 Completeness

 Soundness

COMP: “if Server possesses file, then Client accepts proof”

SOUND: “if Client accepts proof, then

Server possesses file”

18

Formalizing Possession

 Knowledge extractor

 [Feige-Fiat-Shamir88, Feige-Shamir90, Bellare-Goldreich92]

 Algorithm that extracts information from other algorithms

 Typically done by rewinding

 Adapted to PoS soundness

SOUND: “there exists an expected poly-time extractor

K that extracts the file from any poly-time A that

outputs valid proofs”

19

Designing PoS

20

Designing PoS

 Based on sentinels

 [Juels-Kaliski07]

 Embed secret blocks in data and verify their integrity

 Very efficient encoding

 Only works with private data

 Based on homomorphic linear authenticators (HLA)

 [Ateniese+07]

 Authenticates data with tags that can be aggregated

 works with public data

21

HLA-based PoS

Semi-compact PoR

Compact PDP

Semi-compact PDP

Compact PoR

Erasure code

1 2 3 4

1 2 3 4

t1 t2 t3 t4

1 2 3 4 EC EC

t1 t2 t3 t4 t5 t6

1 2 3 4 EC EC

HLA

PRF PRF

22

HLA

1 2 3 4

Extracting via Linear Algebra

SOUND: “there exists an expected poly-time extractor

K that extracts the file from any poly-time A that

outputs valid proofs”

K

c

π

c

π

23

Extracting via Linear Algebra

SOUND: “there exists an expected poly-time extractor

K that extracts the file from any poly-time A that

outputs valid proofs”

K
⟨c1, f⟩

⟨c2, f⟩

C1∈[ℤp]n

C2∈[ℤp]n

1 2f = =
Extract f
1. If c1 and c2 are lin. Indep.

2. solve for f using linear algebra

24

Extracting via Linear Algebra

 What if c1 and c2 are not linearly independent?

 Just pick them at random

 What if A doesn’t compute inner product?

 Use HLAs!

K
⟨c1, f⟩

⟨c2, f⟩

C1∈[ℤp]n

C2∈[ℤp]n

1 2f = =
Extract f
1. If c1 and c2 are lin. Indep.

2. solve for f using linear algebra

25

HLA

 Syntax

 Gen(1k) ⟾ K

 Tag(K, f) ⟾ (t, st)

 Chall(1k) ⟾ c

 Auth(K, f, t, c) ⟾ α

 Vrfy(K, μ, c, st) ⟾ b

 Security
UNF: “given f and c, no A can output a

valid α for an element μ ≠ ⟨c, f⟩”

26

Constructing HLAs [AKK09]

 HLAs from homomorphic identification protocols

 Multiple execs. can be verified at once (i.e., batched)

 Identification schemes

 roughly zero-knowledge proofs of knowledge

 Ex: Schnorr, Guillou-Quisquater, Shoup,…

 Previous HLAs are instances of AKK transform

 New HLA based on Shoup’s ID scheme

27

Simple HLA [Shacham-Waters08]

1 2 3 4

t1 t2 t3 t4

ti = HK(i) + fi ∙w

W, K

C⬿[ℤp]n

μ = ⟨c, f⟩ and α = ⟨c, t⟩

α = ⟨c, (HK(1), …, HK(n))⟩ + μ ∙w

28

Simple HLA

 UNF: α proves that μ is the inner product of f and c

 Why is Simple HLA unforgeable?

 For intuition see [Ateniese-K.-Katz10]

 Connection to 3-move identification protocols

UNF: “given f and c, no A can output a

valid α for an element μ ≠ ⟨c, f⟩”

29

Simple HLA = Semi-Compact PoS

1 2 3 4

t1 t2 t3 t4

ti = HK(i) + fi ∙w

W, K

C⬿[ℤ*p]n

μ = ⟨c, f⟩ and α = ⟨c, t⟩

α = ⟨t, (HK(1), …, HK(n))⟩ + μ ∙w

O(n)!

O(1)

30

Compressing Challenges

 Idea #1

 [Ateniese+07]

 Send key to a PRF and have server generate challenge vector

 Problem: how do we reduce to PRF security if A knows the PRF key?

 Idea #2

 [Shacham-Waters08] Use a random oracle

 Idea #3

 [Dodis-Vadhan-Wichs10] Use an expander-based derandomized
sampler

 [Ateniese-K.-Katz10]

 Idea#1 is secure

 Security of PRF implies that PRF-generated vectors are linearly
independent with high probability

31

HLA-based PoS

Semi-compact PoR

Compact PDP

Semi-compact PDP

Compact PoR

Erasure code

1 2 3 4

1 2 3 4

t1 t2 t3 t4

1 2 3 4 EC EC

t1 t2 t3 t4 t5 t6

1 2 3 4 EC EC

HLA

PRF PRF

32

HLA

1 2 3 4

Constructions 33

Assmpt. Verif. ROM Dyn. Unbounded

[ABC07+] RSA+KEA public Yes No Yes

[JK07] OWF private No Yes No

[SW08] BDH public Yes No Yes

[SW08] OWF private No No Yes

[APMT09] OWF private Yes Yes No

[EKPT09] Fact public Yes Yes Yes

[DVW09] OWF private No No No

[AKK09] Fact Public Yes* No Yes

Applying PoS

34

PoS Applications

 Verifying integrity [Juels-Kaliski07, ABC+07,…]

 Providing availability

 HAIL [Bowers-Juels-Oprea09]

 Iris [Stefanov-vDijk-Juels-Oprea12]

 Verifying fault tolerance [Bowers-vDijk-Juels-Oprea11]

 Verifying geo-location

 [Benson-Dowsley-Shacham11,

Watson-SafaviNaini-Alimomeni-Locasto-Naranayan12,

Gondree-Peterson13]

 Malware-resistant authentication [Ateniese-Faonio-K.-Katz13]

35

Identification 36

pwd

H(pwd)

Identification Schemes 37

pk
sk

Bounded Retrieval Model

 High-level idea

 A can recover λ bits of secret key

 Make secret key larger than λ bits

 Efficiency independent of secret key size

 Concretely

 20GB secret key

 Long time needed for A to recover 20GB w/o detection

 Scheme efficiency independent of key size

38

BRM-ID via PoS [AFKK13] 39

sk = f ⬿ {0,1}k

st

O(1)

PoS

BRM-ID via PoS [AFKK13] 40

sk = f ⬿ {0,1}k

st

O(1)

ZK-PoS

Zero-knowledge PoS

 [Wang-Chow-Wang-Ren-Lou09]

 Bilinear DH (?)

 Based on [Shacham-Waters08]

 [Ateniese-Faonio-K.-Katz13]

 Construction #1: RSA

 Construction #2: Factoring

 Based on [ABC07+]

 Full proof of security

41

HLA-Based PoS Design 42

HLA Compact PoS

PoR

PDP

Zero-Knowledge

BRM-ID

Hom. ID

[AKK09]

PRF

[AKK09]

Erasure Code

[SW08]

[ABC+07]

[AFKK13]

BRM-ID

 [Alwen-Dodis-Wichs09]

 3 BRM-IDs

 Based on Okamoto ID scheme

 Asymptotically less efficient than ours

43

Our RSA-Based BRM-ID
[AFKK13]

 Machine #1: PC1-HD

 Pentium Dual-Core 2.93GHz

 2MB L2 cache

 2GB DDR2 800MHz of RAM

 1TB SATA 6Gb/s rotating hard drive

 Machine #2: PC1-USB

 Machine #1 + USB drive

 Machine #3: PC2-SSD

 Intel Xeon 8-Core 2.2GHz

 16MB L3 cache

 256GB DDR3 1600MHz of RAM

 RAID 4 512GB SATA SSD hard drives

44

Our RSA-Based BRM-ID
[AFKK13]

 1020 bits of security + 256MB of leakage

 348MB secret key

 PC1-HD: 0.18s

 PC1-USB: 0.5s

 PC2-SSD: 0.12s

 1020 bits of security + 4GB of leakage

 5584GB secret key

 PC1-HD: 2.5-3s

 PC1-USB: 1s

 PC2-SSD: 0.12s

45

Conclusions

 PoS are interesting in practice

 Well motivated

 Different guarantees (PDPs and PORs)

 Efficient constructions

 Based on variety of assumptions (RSA, BDH, OWF)

 PoS are interesting in theory

 Non-trivial security definitions and constructions

 Interactive proofs, signatures, coding theory

 PoS are useful

 Integrity, availability, geo-location, malware-resistant
authentication

46

The End

47

