
265

A Grounded Conceptual Model for Ownership Types in Rust

WILL CRICHTON, Brown University, USA

GAVIN GRAY, ETH Zürich, Switzerland

SHRIRAM KRISHNAMURTHI, Brown University, USA

Programmers learning Rust struggle to understand ownership types, Rust’s core mechanism for ensuring
memory safety without garbage collection. This paper describes our attempt to systematically design a
pedagogy for ownership types. First, we studied Rust developers’ misconceptions of ownership to create the
Ownership Inventory, a new instrument for measuring a person’s knowledge of ownership. We found that
Rust learners could not connect Rust’s static and dynamic semantics, such as determining why an ill-typed
program would (or would not) exhibit unde�ned behavior. Second, we created a conceptual model of Rust’s
semantics that explains borrow checking in terms of �ow-sensitive permissions on paths into memory. Third,
we implemented a Rust compiler plugin that visualizes programs under the model. Fourth, we integrated the
permissions model and visualizations into a broader pedagogy of ownership by writing a new ownership
chapter for The Rust Programming Language, a popular Rust textbook. Fifth, we evaluated an initial deployment
of our pedagogy against the original version, using reader responses to the Ownership Inventory as a point
of comparison. Thus far, the new pedagogy has improved learner scores on the Ownership Inventory by an
average of 9% (# = 342,3 = 0.56).

CCS Concepts: • Theory of computation ! Type structures; • Human-centered computing! Visual-

ization systems and tools; • Social and professional topics! Computing education.

Additional Key Words and Phrases: Rust, ownership types, program state visualization, concept inventory

ACM Reference Format:

Will Crichton, Gavin Gray, and Shriram Krishnamurthi. 2023. A Grounded Conceptual Model for Ownership
Types in Rust. Proc. ACM Program. Lang. 7, OOPSLA2, Article 265 (October 2023), 29 pages. https://doi.org/10.
1145/3622841

1 INTRODUCTION

Ownership is a programming discipline for managing the aliasing and mutation of data, enforced
statically through ownership types. The �agship programming language for ownership is Rust,
which empowers programmers to write memory-safe code without garbage collection. Rust’s
ownership model synthesizes several ideas from PL research such as linear logic [Girard 1987], class-
based alias management [Clarke et al. 1998], and region-based memory management [Grossman
et al. 2002]. History shows that developers cannot write memory-safe C and C++ in practice [MSRC
Team 2019], so the software industry is turning toward Rust. For example, Google’s Android team
has found zero memory vulnerabilities in 1.5 million lines of Rust code [Vander Stoep 2022].
This rosy picture of PL tech transfer belies a persistent obstacle: teaching ownership types

to prospective users. Over the last four years, studies have found that Rust learners struggle to
�x ownership type errors [Zeng and Crichton 2019; Zhu et al. 2022], and users self-report that

Authors’ addresses: Will Crichton, Department of Computer Science, Brown University, Providence, Rhode Island, 02912,
USA, wcrichto@brown.edu; Gavin Gray, Department of Computer Science, ETH Zürich, Zürich, Switzerland; Shriram
Krishnamurthi, Department of Computer Science, Brown University, Providence, Rhode Island, 02912, USA.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/10-ART265
https://doi.org/10.1145/3622841

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-8639-6541
HTTPS://ORCID.ORG/0000-0002-2960-1198
HTTPS://ORCID.ORG/0000-0001-5184-1975
https://doi.org/10.1145/3622841
https://doi.org/10.1145/3622841
https://orcid.org/0000-0001-8639-6541
https://orcid.org/0000-0002-2960-1198
https://orcid.org/0000-0001-5184-1975
https://orcid.org/0000-0001-5184-1975
https://doi.org/10.1145/3622841

265:2 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

ownership is among their biggest barriers to learning Rust [Fulton et al. 2021; The Rust Survey Team
2020]. To wit: advances in the technical factors of type systems require commensurate advances in
the human factors of type systems.

Our work started with the question: how can we systematically design a pedagogy for ownership
types? Today, popular pedagogies for advanced type systems are driven by experts’ intuitions about
how people learn, as well as by intuitions about what makes type systems di�cult to understand.
As practicing (computer) scientists, we wanted to approach pedagogic design through scienti�c
principles: grounding the pedagogy in observations about the struggles of Rust learners, and then
evaluating the pedagogy by its e�ects on learning outcomes. This paper describes how we put
these principles into practice:

(1) We ran a formative user study to identify misconceptions about ownership types held

by Rust learners (Section 2). We designed a new instrument for evaluating understanding of
ownership, the Ownership Inventory, by drawing tasks from commonly-reported Rust issues on
StackOver�ow. We studied # = 36 Rust learners trying to solve Ownership Inventory problems.
We found that learners can generally identify the surface-level reason for why a program is
ill-typed with respect to ownership. However, they do not understand what unde�ned behavior
(if any) would occur if an ill-typed program were executed. This misunderstanding is re�ected
in often ine�cient and incorrect strategies that participants used to �x ownership errors.

(2) We developed a conceptual model of ownership types to address these misconceptions

(Sections 3.1.2 and 3.2.2). The conceptual model represents the aspects of Rust’s static and
dynamic semantics that are relevant to ownership, while abstracting other details. The model
provides learners a foundation to understand essential concepts such as unde�ned behavior
and the incompleteness of Rust’s ownership type-checker, or “borrow checker.”

(3) We implemented tools to visualize Rust programs under the conceptual model (Sections
3.1.3 and 3.2.3). We leveraged existing executable models of Rust’s dynamic and static semantics
to generate traces for a given Rust program. We visualize these traces to help learners “see” the
abstract conceptual model rei�ed into concrete examples.

(4) We designed a pedagogy around our conceptual model to explain ownership types

(Section 4). We wrote a chapter on ownership that explains how and why Rust’s type system pre-
vents unde�ned behavior, illustrating code with diagrams generated by our tool. We integrated
this chapter into a popular Rust textbook, The Rust Programming Language (����) [Klabnik and
Nichols 2022]. We setup and advertised a public website that hosts our ���� fork.

(5) We A/B tested our pedagogy against the ���� baseline (Section 5). We measured learning
outcomes with two kinds of quizzes: simpler comprehension questions about the conceptual
model, and more di�cult multiple-choice versions of the Ownership Inventory. Learners could
correctly answer comprehension questions with 72% accuracy. Our initial deployment improved
the average Inventory score from 48% to 57% (# = 342, ? < 0.001,3 = 0.56).

The thesis of our pedagogy is that to understand ownership types, Rust learners need to un-
derstand two key concepts: unde�ned behavior and incompleteness. What are the “stuck states”
of Rust’s dynamic semantics? Why does Rust’s static semantics avoid stuck states? What valid
programs are rejected by the static semantics? Existing Rust pedagogies accurately characterize
the syntactic properties enforced by the compiler. However, they fall short of explaining the coun-
terfactual unde�ned behavior that could occur without the borrow checker, especially regarding
memory safety. For example, three popular Rust books explain mutable references like this:

• Rust in Action [McNamara 2021]: “Borrows can be read-only or read-write. Only one read-write
borrow can exist at any one time.” (No justi�cation is provided.)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

A Grounded Conceptual Model for Ownership Types in Rust 265:3

• Hands-on Rust [Wolverson 2021]: “Rust’s safety features make a mutable borrow exclusive. If a
variable is mutably borrowed, it cannot be borrowed—mutably or immutably—by other statements
while the borrow remains.” (No justi�cation is provided.)

• The Rust Programming Language [Klabnik and Nichols 2022]: “If you have a mutable reference to
a value, you can have no other references to that value. [...] The bene�t of having this restriction
is that Rust can prevent data races at compile time. [...] Users of an immutable reference don’t
expect the value to suddenly change out from under them!”

Of these resources, only ���� provides a sense of the counterfactual by abstractly gesturing towards
the issue of data races. But learners likely need to see concrete “negative” examples of counterfactual
behavior to better grasp the overall logic of ownership [Dyer et al. 2022]. Furthermore, none of
these resources explain incompleteness, or even suggest that safe programs can be rejected by the
compiler. Programmers need di�erent strategies to �x ownership errors if a program is rejected
due to incompleteness [Crichton 2020].
To address these issues, we designed our pedagogy around a new conceptual model of Rust’s

dynamic and static semantics. To explain unde�ned behavior, we “turn o�” Rust’s borrow checker
to interpret and visualize programs that would otherwise be rejected by the compiler. These
counterfactual visualizations help learners understand unde�ned behavior that is avoided by the
compiler. To explain incompleteness, we reframe ownership type-checking as a form of abstract
interpretation. The abstract state of the program is a mapping from paths to permissions such
as “readable” or “writable.” We visualize these abstract permission states to show learners how
incompleteness arises from phenomena such as �eld-insensitivity and limitations of the alias
analysis within the borrow checker.

2 A CONCEPT INVENTORY FOR OWNERSHIP

To develop a pedagogy for ownership types, we �rst sought to understand the core misconceptions
that underlie the struggles of Rust learners. Many learning resources are developed based on educa-
tors’ intuitions about what makes concepts di�cult. Instead, we sought to ground our pedagogy in
experimental data about the experiences of Rust learners. Our overarching methodology was the
development of a concept inventory for ownership, henceforth called the “Ownership Inventory.”

2.1 Background

In education research, a concept inventory (CI) is a test, usually composed of multiple-choice
questions, about a narrow domain where the questions and distractors are drawn from common
misconceptions about the domain [Hestenes et al. 1992]. There is no singular method for devising a
CI [Lindell et al. 2007], but the general idea is to articulate a range of important concepts in the
target domain, and then to elicit misconceptions from learners about those concepts. The CI helps
evaluate curricula for whether they e�ectively address such misconceptions.
CIs are an increasingly popular tool for CS education researchers. The last decade has seen a

Cambrian explosion of CIs for CS topics such as CS1 [Kaczmarczyk et al. 2010], CS2 [Wittie et al.
2017], algorithms [Farghally et al. 2017], recursion [Hamouda et al. 2017], data structures [Porter
et al. 2019], digital logic [Herman et al. 2010], operating systems [Webb and Taylor 2014], and
cybersecurity [Poulsen et al. 2021]. The development of these CIs has proved useful in demon-
strating both the existence and frequency of misconceptions. For example, the Java-focused CI of
Kaczmarczyk et al. [2010] revealed that many students who completed a CS1 course ended up with a
“dearth of even basic conception of an Object.” As another example, Farghally et al. [2017] developed
an algorithms CI based on 17 misconceptions predicted by educators. After administering the CI to
two iterations of the algorithms course at their university, they found that 7 misconceptions were

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

265:4 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

(a) StackOverflow question #32338659 that asks
about moving out of a shared reference (a form of
illegal borrow promotion).

1 /// Gets the string out of an option if

2 /// exists, returning a default otherwise

3 fn get_or_default(arg: &Option<String>)

4 -> String

5 {

6 if arg.is_none() {

7 return String::new();

8 }

9 let s = arg.unwrap();

10 s.clone()

11 }

(b) The program we adapted from the question for the

ownership inventory. The type Box<i32> has been

simplified to String , the function has been given a

meaningful name, and a doc-string has been added.

Fig. 1. An example of how we created snippets for the Ownership Inventory.

held by at least 1/3 of students. This kind of data helps guide instructors in determining which
misconceptions are most important to address in curricular development.

2.2 Development

We set out to design the Ownership Inventory for two reasons. First, the misconceptions we would
observe in creating the Inventory would inform our later pedagogy. Second, we could use the
Inventory to evaluate the e�cacy of an intervention. If our pedagogy is better than before, then it
should cause learners to score higher on the Inventory.
To construct the Inventory, we designed open-ended questions about ownership in situations

that frequently stymie Rust learners. As we will describe in Section 2.3, we invited Rust learners
to answer these questions, and then qualitatively analyzed their responses to characterize their
misconceptions. Finally, we converted each open-ended question to multiple-choice by turning
common misconceptions into distractors.

This method presents a chicken-and-egg problem: how do we know which situations are hard for
Rust learners until we study them? So we turned to the world’s largest repository of programmer
struggles: StackOver�ow. We searched for the most common questions asked about Rust on
StackOver�ow that pertain to ownership. Speci�cally, we queried the top 50 “Most Frequent”
questions with the [rust] tag and manually �ltered the list to 27 questions involving ownership.
We iteratively categorized each question, and identi�ed four main categories of ownership problems:

• Dangling pointers: references to stack-allocated values that escape their scope.

• Overlapping borrows: mutating data that is aliased by another reference.

• Illegal borrow promotion: writing to read-only data or moving borrowed data.

• Lifetime parameters: taking multiple references as input and returning references as output,
but failing to specify the relationship between these references’ lifetimes.

For each category, we selected a few representative StackOver�ow questions and cleaned up
the snippet in question. For example, Figure 1 shows a StackOver�ow question in the “illegal
borrow promotion” category and the corresponding clean program. This process created eight total
programs. The full set of programs is provided in Appendix A.1.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

A Grounded Conceptual Model for Ownership Types in Rust 265:5

(1) The following Rust function is rejected by the Rust compiler. What error message would you expect
from the compiler?
(You do not need to exactly reproduce the wording — the question is about whether you generally understand how

Rust would justify rejecting this function.)

(2) Assume that the compiler did NOT reject this function.
(a) What is a program that calls this function which would violate memory safety or cause a data race?

(If no such program exists, then leave this �eld blank and explain your reasoning below. If you are uncertain of

a particular Rust syntax, you may use pseudocode notation.)

(b) In a few sentences, explain why you believe your program will violate memory safety or cause a
data race, or why it is impossible to write such a program.

(3) (a) How can this function be changed to pass the compiler while (1) preserving its intent and (2)
minimally impacting runtime performance?
(You may use the standard library documentation and Rust compiler for this task. There is no right answer —

use your judgment. You can change any aspect of the function, including the type signature.)

(b) In a few sentences, explain why your �x satis�es the criteria above.

Fig. 2. The template for open-ended Ownership Inventory questions about a given program that is rejected
by the compiler. The small parenthetical text is provided as additional context.

We designed a single set of template questions that apply to each program. The template
represents each stage of reasoning involved in �xing an ownership error. Figure 2 shows the exact
wording of the questions. The phrasing of the questions is open-ended to elicit misconceptions
without biasing respondents towards preconceived incorrect answers.

2.3 Methodology

After developing the open-ended Ownership Inventory, we next administered the Inventory to
elicit misconceptions that Rust learners have about ownership.

2.3.1 Participants. We recruited # = 36 participants for the study. We found Rust learners by
embedding an advertisement for the study within the online version of ����. Participants were
required to be 18 years or older, and they were required to have completed reading ���� before
participating. Participants were compensated $20. Participants on average had 1.7 (f = 2.2) prior
years of experience with either C or C++.

2.3.2 Materials. We created a web interface that presents participants with a program and prompts
for open-ended responses to each question in Figure 2. The interface uses the Monaco code editor
running a Rust language server via a WebAssembly build of Rust Analyzer. The in-browser IDE
allows participants to get information about the type and functionality of unfamiliar methods.
The materials include a tutorial that guides participants through both the technical details of

using the interface, as well as a sample program paired with a sample response to each of the
questions. The full source code for the experiment is provided in the artifact.
An important caveat: in our initial materials, participants were instructed to answer questions

Q2b and Q3b by writing a code comment in the same editor used for questions Q2a and Q3a,
respectively. However, after reviewing data from the �rst half of the experiment (18 participants),
we found that most participants either ignored or forgot this instruction. For the next 18 participants,
we modi�ed the website such that Q2b/Q3b had separate text boxes, which succeeded in eliciting
responses from participants. Consequently, our results contain fewer data points for Q2b/Q3b than
the other questions.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

265:6 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

Table 1. Percentage of correct responses by program and question for the open-ended Ownership Inventory.

Program Category Q1 T Q2a T Q2b T Q3a T Q3b T

make_separator Dangling pointer 77% 15 50% 15 35% 10 80% 15 65% 10
get_or_default Illegal borrow promotion 80% 15 73% 15 0% 4 80% 15 0% 4
remove_zeros Overlapping borrows 85% 13 54% 13 25% 4 42% 13 75% 4
reverse Overlapping borrows 75% 16 22% 16 10% 10 72% 16 45% 10
find_nth Illegal borrow promotion 88% 17 15% 17 5% 11 12% 17 18% 11
apply_curve Overlapping borrows 60% 15 30% 15 28% 9 37% 15 33% 9
concat_all Lifetime parameters 10% 15 3% 15 11% 9 43% 15 11% 9
add_displayable Lifetime parameters 38% 16 6% 16 5% 10 6% 16 10% 10

Average accuracy: 64% 31% 15% 46% 31%

2.3.3 Procedure. Participants provided informed consent via the web interface, �lled out informa-
tion about their programming background, and then followed the tutorial. After learning about
the style of task, participants were given three randomly selected programs in a random order.
Participants had up to 15 minutes to answer all questions for a given program. Participants could
complete the experiment at any time, and were not supervised by research sta�.

At the end of the experiment, participants were given the option to provide open-ended feedback
on their experience in the experiment. During the experiment, we continually monitored feedback
for confusions with the materials. We did not ultimately make any changes based directly on
participant feedback, which was most commonly of the form “I found some of the questions
di�cult.”

2.3.4 Analysis. To evaluate the overall accuracy of participants, the �rst two authors independently
coded each response as correct or incorrect. After the �rst round of coding, the authors resolved
major disagreements, then independently re-coded the data. After the second round, the inter-
rater reliability was 91% in terms of raw agreement and ^ = 0.81 as measured by Cohen’s ^,
which is generally considered “excellent” [Fleiss et al. 2013] or “almost perfect” [Landis and Koch
1977] agreement. We considered this su�cient agreement to proceed with the analysis. For the
quantitative results, we report scores as the average of the two raters’ scores on each item.
To characterize the speci�c misconceptions that led to incorrect answers, we performed a

thematic analysis of participant responses. The �rst author coded each incorrect response for the
category of error displayed in the response, such as “changing a type from &Option<String> to

Option<String> .” Error categories were further categorized based on similarities across problems,

such as “using clone to satisfy the borrow checker.”

2.4 Results

Table 1 shows the percentage of total correct responses per-question. Participants could usually
predict why the borrow checker would reject a program (Q1). However, participants could only �x
the program in 46% of cases (Q3a), and could only create a counterexample in 31% of cases (Q2a).
Their accuracy further drops when asked to justify their answer (Q2b and Q3b). Participants could
sometimes create counterexamples and �xes without understanding why their answer is correct.

2.4.1 Misconceptions about undefined behavior. Participants’ reasonable performance on Q1 sug-
gests that Rust learners generally understand the surface-level reason for why a program is rejected.
However, participants’ comparatively poor performance on Q2a and Q2b suggests that Rust learn-
ers do not understand the deeper reasons that justify the ownership rules. Participants’ incorrect
attempts to construct counterexamples reveal a range of misconceptions about unde�ned behavior.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

A Grounded Conceptual Model for Ownership Types in Rust 265:7

1 fn make_separator(user_str: &str) -> &str

2 {

3 if user_str == �� {

4 let default = �=�.repeat(10);

5 &default

6 } else {

7 user_str

8 }

9 }

Participants frequently struggled to construct a cor-
rect counterexample to an unsafe function. For ex-
ample, consider the make_separator program, shown
on the right, which returns a dangling pointer to the
variable default . 5/15 responses to Q2a provided a
counterexample that called make_separator(��) but
did not use the output of the function call. These par-
ticipants considered calling this function su�cient
to violate memory safety, not realizing the need to
actually use the dangling pointer.

1 fn add_displayable<T: Display>(

2 v: &mut Vec<Box<dyn Display>>,

3 t: T

4) {

5 v.push(Box::new(t));

6 }

As a more complex example, consider the add_displayable

program (left) which lacks correct lifetime parameters. If
the type T contains a reference, then the lifetime of that
reference is erased when converting T into a trait ob-
ject Box<dyn Display> . Without specifying how T relates to

dyn Display , that erasure allows v to outlive references in
its elements.

1 let mut v = Vec::new();

2 {

3 let some_string = String::from(�Some string�);

4 add_displayable(&mut v, some_string);

5 }

6 dbg!(v.last().unwrap());

No participants managed to write a cor-
rect counterexample for this task. The an-
swer closest to correct is shown on the right
(4/15 participants gave a comparable answer).
This answer is not a counterexample because
add_displayable moves the input string into
the vector, so no data is deallocated upon ex-
iting the nested scope. This snippet becomes a correct counterexample if a reference is added to
v , e.g. the function call is changed to add_displayable(&mut v, &some_string) . Then v contains a

dangling pointer to some_string , and a read of that pointer would be unde�ned behavior.

1 fn reverse(v: &mut Vec<i32>) {

2 let n = v.len();

3 for i in 0 .. n / 2 {

4 std::mem::swap(

5 &mut v[i],

6 &mut v[n - i - 1]

7);

8 }

9 }

Participants also struggled to identify when a function
is actually safe and no counterexample exists. Consider the
reverse program (left), a case of overlapping borrows. Rust
considers &mut v[i] and &mut v[n - i - 1] to possibly alias.
But 8 < = � 8 � 1 for 8 2 [0,=/2) so this program is actu-
ally safe. Only 3/15 participants identi�ed this fact, and only
1 of those 3 gave a correct justi�cation. Participant perfor-
mance was comparably poor on Q2a and Q2b for the other
two safe programs, find_nth (6% / 0%) and apply_curve (29%
/ 25%).

2.4.2 Misconceptions about fixing ownership errors. Participants could usually change a broken
function to pass the borrow checker, but these �xes were not always correct and idiomatic.

1 fn reverse(v: &mut Vec<i32>) {

2 let n = v.len();

3 let mut v2 = v.clone();

4 for i in 0 .. n / 2 {

5 std::mem::swap(

6 &mut v[i], &mut v2[n - i - 1]);

7 }

8 }

One common strategy we observed is the use of the
.clone() method. In Rust, cloning avoids aliasing by
creating a deep copy of data. However, participants often
incorrectly used clone . As shown on the right, when
�xing the reverse program, 2/16 participants avoided
overlapping borrows by cloning the input vector v , and
then swapping between the two vectors. This “�x” only
reverses the �rst half of the input vector.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

265:8 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

1 fn add_displayable<T: Display + �static>(

2 v: &mut Vec<Box<dyn Display>>,

3 t: T

4);

5

6 fn add_displayable<�a, T: Display + �a>(

7 v: &mut Vec<Box<dyn Display + �a>>,

8 t: T

9);

When �xes required editing the type signature
of a function, participants often created type signa-
tures that were too restrictive or non-idiomatic. For
example, returning to the add_displayable program,
12/16 participants �xed the function by adding the
+ �static bound to the generic type T , as shown
on the left on lines 1-4. (Notably, this solution is
suggested in the compiler error for the original func-
tion.) However, this type signature is unnecessarily
restrictive — it prevents add_displayable from being

used on any type containing a non-static reference. An idiomatic solution is shown on lines 6-9,
where a lifetime parameter �a is added to the bounds of both T and the trait object dyn Display

to indicate the aliasing relationship between the two types. Only one participant provided the
correct and idiomatic solution.

2.5 Discussion

These results show that participants were quite capable at understanding the surface rules of
ownership types. Excluding the two questions about lifetime parameters, participants could correctly
predict the compiler’s reason for rejection in 78% of cases. However, the subsequent questions reveal
that this understanding is shallow. On average, participants could not construct counterexamples
to demonstrate unde�ned behavior, nor could they e�ectively �x an ownership error.

Given these results, the key question for pedagogy is: why do Rust learning resources like ����
lead to these learning outcomes? Learning is a complex process, so it is di�cult to point to a speci�c
passage and say, “this is the problem.” But in light of the misconceptions observed during this study,
we hypothesized that a major learning challenge is that ���� does not provide the foundations to
reason counterfactually about unde�ned behavior. Nor does ���� explain how the borrow checker
actually works, especially with respect to soundness vs. completeness.

3 A CONCEPTUAL MODEL FOR OWNERSHIP

To understand unde�ned behavior and incompleteness, a person needs to understand Rust’s
dynamic and static semantics. At least, they need to understand a way of thinking about these
semantics that is viable for tasks like debugging ownership errors. The responses to the open-ended
Ownership Inventory showed that our participants had a fragile mental model of Rust’s semantics.
Therefore, we designed a new way of thinking (a “conceptual” model) of Rust that is precise enough
to explain the relevant aspects of ownership, but approximate enough to avoid unnecessary detail.
To characterize the tension between precise and approximate conceptual models, consider a

person who wants to understand integer addition in Rust. That is, they want a conceptual model
of the semantics of the statement let z = x + y where x, y : i32 . The true dynamic semantics
of Rust’s integer addition include aspects like two’s complement over�ow and auto-vectorization
due to LLVM’s optimizations. But for the average Rust user, these details are usually irrelevant
for correctly using addition in routine programming tasks. A mental model that approximates the
semantics as “G,~ 2 Z and G + ~ is standard integer addition” is a generally viable model.

In this section, we describe our conceptual model of Rust’s semantics designed to give learners a
viable understanding of ownership. We provide a model for Rust’s dynamic semantics (Section 3.1)
and for Rust’s static semantics (Section 3.2). For each model, we articulate three aspects. First, the
informal model, an intuitive and visual representation of the model, as it would be presented to
a Rust learner. Second, the formal model, a precise and logical representation of the model for

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

A Grounded Conceptual Model for Ownership Types in Rust 265:9

Fig. 3. The dynamic model visualized for the get_or_default Ownership Inventory program. The state of

memory is shown at three locations L1-L3. At L1, the diagram includes a heap pointer to the string data
“Rust” and a stack pointer from the callee to the caller. At L2, the string has been deallocated on behalf of s

a�er the call to get_or_default ends. At L3, undefined behavior occurs upon a double-free of s_opt . Note

that the L-= labels and the undefined behavior text are part of the visualization, not edited into the figure.

communication and reasoning within this paper. And third, the implementation, a description of
the tool that executes Rust programs under the model and generates the visualizations.

For a Rust learner, our models must be described in terms of Rust’s surface syntax. Rust learners
do not see or think in terms of core calculi or intermediate representations. However, this fact is
in tension with our own need to design models that are both (1) simple to formally reason about
and (2) feasible to implement. To resolve this tension, the formal model and implementation are
described using the “Mid-level Intermediate Representation,” or MIR [2023], a control-�ow graph
IR within the Rust compiler. The informal model is described using the surface syntax, and the
implementation uses source-mapping information to lift the analysis from MIR to the surface.

3.1 Dynamic Model

An essential property of the dynamic model is that it must be able to express the unde�ned
behavior in Rust programs that is normally caught by the borrow checker. Conveniently, a similar
need already exists in the Rust ecosystem to �nd unde�ned behavior caused by unsafe blocks.
Miri [2023a] is a MIR interpreter that instruments a program’s runtime to detect unde�ned behavior
like out-of-bounds memory accesses and use-after-free, comparable to Valgrind. Miri provides
a de facto dynamic semantics to the MIR that can express unde�ned behavior while avoiding
unnecessary details like compiler optimizations.
Therefore, our dynamic model is basically “what Miri does.” The MIR does not have a formal

semantics, although multiple projects are currently underway to design one [Niko Matsakis 2023;
Ralf Jung 2023]. Rather than provide a complete formal semantics for MIR, we will instead provide
a didactic subset of Miri’s semantics that su�ces to explain our pedagogy.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

265:10 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

P������� Variable G Number = Function Name 5

Projection @ ::= Y | @.=

Path ? ::= G | ? .@ | ⇤?

Constant 2 ::= = | true | false

Ownership �alifier l ::= shrd | uniq

Loan ✓ ::= &l ?

Rvalue AE ::= 2 | ? | ✓ | (?8) | box ?

Instruction � ::= ? := AE | if ? then =1 else =2 | 5 (?8) |

return ? | drop ?

CFG ⌧ ::= h�8i

Function � ::= fn 5 hr1 :> r2i(G8 : g8) ! g> {⌧}

T����

Concrete Lifetime A Abstract Lifetime r

Lifetime ; ::= A | r

Type g ::= u32 | bool | (g1, . . . , g=) |

&; l g | box g

R������ Heap Location L

Segment B ::= frame (=, G) | heap L

Address 0 ::= B .@

Value E ::= 2 | 0 | (E1, . . . , E=)

Envk ::= hG8 7! E8i

Frame f ::= (5 ,=,k)

Stack (::= hf8i

Heap � ::= hL8 7! E8i

Fig. 4. The syntax and runtime structure of MIR Rust programs.

3.1.1 Informal Model. A Rust program acts upon memory organized into a stack of function frames
and a heap of long-lived data. Each stack frame maps syntactically-scoped variables to values,
which are primitives (ints, bools, etc.), composites (structs, enums), or pointers. A path describes a
particular value in memory, and pointers are essentially “paths as values” (as opposed to numeric
addresses that can be arithmetically manipulated).
Figure 3 shows an example of how we visualize the dynamic model. The state of memory is

visualized at multiple points throughout the program. The diagram is fairly similar to prior work
in program state visualization [Sorva et al. 2013], so we will not belabor its design. In brief: one key
aspect is that states are unrolled over time. Unrolling lets a person more easily compare changes
between states, and it allows a person to see all the information in the diagram without interaction.
This contrasts with tools like Python Tutor [Guo 2013], which shows one state at a time and requires
users to actively scrub a slider between states. Another key aspect is that certain core data-types
like boxes, strings, and vectors can be abstracted. For example, the abstracted version of s_opt just
shows a pointer to heap data, while the expanded version would show a struct containing �elds
like the string’s length (a button in the diagram permits toggling between these views).

3.1.2 Formal Model. Figure 4 provides the syntax for a subset of the MIR. A control-�ow graph ⌧
consists of a sequence of indexed instructions � . Instructions are either assignments, conditionals,
function calls, returns, or deallocations. The basic primitives are standard (numbers, booleans,
tuples, functions), but the interesting operations are those that involve memory.

Memory is arranged into two segments: a stack (of frames f , and a heap � that maps locations
L to values E . Stack allocations are created as frame-local variables through instructions such as
G := (0, 1), and heap allocations are created with boxes such as ~ := box 2. Data in memory are
accessed via paths ? , such as G .0 and ⇤~. Finally, references to paths can be created with loans

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

A Grounded Conceptual Model for Ownership Types in Rust 265:11

✓ ::= &l ? , where l quali�es the loan as either shared (shrd) or unique (uniq). (We will say more
about the type system when discussing the static model.)

Miri’s operational semantics for this model is a judgment ((,�) ! ((0,� 0). The key idea is that
Miri’s semantics can express unde�ned behavior such as dangling pointers. Consider this program:

G := box 0; drop G ; ~ := ⇤G

Miri will give the following execution trace for this program:

((= (G := box 0, ú), � = ú) !

((= (drop G, {G 7! L}), � = {L 7! 0}) !

((= (~ := ⇤G, {G 7! L}), � = ú) !

unde�ned behavior

Miri’s semantics are not expressive enough to represent aspects of the compiler like register
allocation and auto-vectorization. But if those optimizations are implemented correctly, a Rust
program that does not have unde�ned behavior under Miri’s semantics should also not have
unde�ned behavior under the Rust compiler’s actual semantics for its various assembly targets.

3.1.3 Implementation. Given a Rust program, we run Miri to collect an execution trace that
describes the state of the stack and heap after each instruction. We use the debug information
within Miri (e.g., the types of variables on the stack) to reconstruct the structure of the data
in memory. Based on source-mapping information in the Rust compiler, we group contiguous
subsequences of the trace into steps that represent source-level expressions and statements. Then
this data is passed to a script in a web browser which visualizes the data through a combination of
HTML, CSS, and Javascript.
One subtlety is that Miri does not normally execute programs which would be rejected by the

borrow checker, such as the one in Figure 3. However, in the current implementations of Rust and
Miri, the borrow checker does not substantially in�uence the translation of a program into an
Miri-interpretable CFG. Therefore, we can con�gure the compiler to simply ignore borrow checking
errors, and then ask Miri to attempt to execute programs regardless. Miri is already well-suited to
catching unde�ned behavior (just normally in unsafe code), so it su�ces for catching unde�ned
behavior in unchecked code in the safe subset of Rust as well.

3.2 Static Model

The dynamic model provides the foundation for understanding how programs can go wrong. The
static model should then help learners understand how Rust’s borrow checker catches programs
that could go wrong (soundness), as well as when safe programs may be rejected (incompleteness).
As a �ow-sensitive analysis, borrow checking is more complex than the usual type system

encountered by today’s programmers. So in designing a conceptual model of the borrow checker,
our main goal was to condense the complex intermediate state of the analysis into a comprehensible,
visualizable object. The result is the permissions model of borrow checking.

3.2.1 Informal Model. At compile-time, Rust’s borrow checker uses a system of permissions to
check whether an operation might cause unde�ned behavior. The borrow checker tracks whether
a path is readable (R), writable (W), or ownable (O). Focusing on Figure 5a, a variable has RO
permissions by default, and it has theW permission if declaredwith let mut . The string x therefore
has RWO permissions. With these permissions, the string can be read like x.len() , written like

x.push_str(..) , and owned like drop(x) . The plus sign indicates that the permissions were gained,
and the cause of the change is indicated by the icon (up-arrow � for variable initialization). The

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

265:12 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

(a) Each table shows the changes in permission state
a�er a given statement.

(b) Operations on paths indicate which permissions
are expected, and whether those permissions exist.

Fig. 5. Visualizations of the permissions model over two programs that borrow a string.

borrow let y = &x removes WO permissions from x (right-arrow � for path borrowed); this
action provides RO permissions to y and the R permission to *y . Once y is no longer used, then
its permissions are eliminated (down-arrow � for the end of a variable’s live range) and x regains
WO permissions (cycle-left � for regaining borrowed permissions).

Turning to Figure 5b, operations expect permissions from paths. The expectations are visually
placed between the operator requiring permissions and the path operand. The borrowing operation
&x expects that x has theR permission, represented as a yellow circle. The circle is �lled in because
x has the R permission. The operation x.push_str(...) expects RW permissions, represented
by the stack of the two letters. (The user of the diagram generator can place annotations on the
source code to make an expectation be represented as either a letter or a circle, depending on
where the user wants to focus their readers.) However, by swapping the order of the push_str

and println lines, x no longer has the W permission, visualized as a hollow letter. Therefore the
borrow checker will reject this program.

3.2.2 Formal Model. Rust’s ownership types are often viewed as enforcing “aliasing XOR mutabil-
ity”, which recent work has started to articulate through the metaphor of permissions [Yanovski
et al. 2021]: what can or can’t a program do on a particular path at a particular program location?We
advance this idea by designing a conceptual model of the borrow checker that rei�es permissions
into formal objects that can be analyzed, visualized, and taught to Rust learners.

To precisely characterize the permissions model, we �rst need to provide a model of how Rust’s
borrow checker actually works. Polonius [Matsakis 2018] is a model of the borrow checker that is
maintained by the Rust compiler developers and implemented in Datalog. The former aspect means
that Polonius is likely to be a plausible model of Rust’s implementation. The latter aspect enables
us to easily implement our own alternative model that shares a base of facts about properties like
liveness. Sharing facts simpli�es both our implementation and our proof of model equivalence.

Polonius model of borrow checking. Figure 6 shows a subset of the inference rules for the Polonius
model. Both the Polonius and permission models rely on a shared set of judgments about aspects
like liveness and mutation. We do not de�ne these judgments back to their axioms within this

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

A Grounded Conceptual Model for Ownership Types in Rust 265:13

P���B������C�������

✓ live at � ✓ invalidated at �

access-error ⌧

P���M����C�������

? movedbefore � ? read at �

access-error ⌧

P���R����I������

?0 read at � ? # ?0

&uniq ? invalidated at �

P���W�����I������

?0 wri�en at � ? #?0

&l ? invalidated at �

P���M����I������

?0 moved at � ? #?0

&l ? invalidated at �

Fig. 6. The core subset of inferences rules for the Polonius model of the borrow checker.

paper — we refer interested readers to the Polonius source code [2023b]. Instead, we just provide
enough context to understand the di�erences and equivalences of the two model.

Given a control-�ow graph⌧ , Polonius will reject⌧ (written as “access-error ⌧”, consistent with
Polonius’ naming conventions)1 under one of two conditions (note that � 2 ⌧ for all rules):

P���B������C�������: “✓ live at �” means that a loan ✓ ::= &l ? was created somewhere and is
live at an instruction � , i.e., ✓ is used at � or at some instruction reachable from � . “✓ invalidated at �”
means � performs an operation that con�icts with ✓ . The invalidated at judgment is de�ned in three
ways. P���R����I������ states that a unique loan on a path ? is invalidated by a read of a con�icting
path ?0 (written ? #?0). P���W�����I������ states that any loan on a path ? is invalidated by a
con�icting write. P���M����I������ states that any loan on a path ? is also invalidated by a
con�icting move.

For example, consider the program on the right. Because~ is used in I := ⇤~,
then the loan &shrdG is live at the instruction G .0 := 1. However, G .0 := 1

invalidates that loan because G .0 #G , and borrowed data cannot be mutated.
Therefore this program has a loan con�ict and is rejected.

G := (0, 0);

~ := &shrdG ;
G .0 := 1;

I := ⇤~;

P���M����C�������: “? movedbefore �” means that the path ? has been moved before reaching
� . Any use of a movable data type (like a box) that is not through a reference will cause a move.
“? read at �” means that ? is read at � .

For example, consider the program on the right. Because G is moved by
~ := G , and G is read later at ⇤G , then this program has a move con�ict and is
rejected by the borrow checker.

G := box 0;
~ := G ;

I := ⇤G

Permissions model of borrow checking. Next, we describe our permissions model and its relationship
to the borrow checker. The basic idea is that the �ve di�erent judgments used within the two
Polonius access-error rules can be abstracted into two higher-level judgments: “? needs 2 at �” and
“? missing 2 at �”, where 2 ::= R | W | O is a permission to read, write, or own a path, respectively.
A program has a permission violation (written as “permission-error ⌧”) under the P����F��� rule,
where a permission 2 on a path ? is needed but missing at an instruction � .

Figure 7 shows the rules for the permissions model. The needs at rules are straightforward: a
path ? needs the R permission if read, theW permission if written, and theO permission if moved.
The missing at rules describe the conditions under which a path lacks a particular permission. The
P����M�������R rule states that a place ? cannot be read while a loan to a con�icting place ?0 is
live. This is analogous to P���R����I������, i.e. that a read of place ?0 invalidates any loan of a
con�icting place ? . The analogy can be formalized as a correctness theorem: we want to show that

1Type systems are normally formalized as a “positive” judgment, e.g., a program type-checks by constructing a proof of
� ` 4 : g . But Polonius is formulated as a “negative” judgment: a program does not type-check if a proof of access-error⌧
is constructed. For consistency with Polonius, we follow the negative judgment convention in our own model.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

265:14 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

P����F���

? needs 2 at � ? missing 2 at �

permission-error ⌧

P����N�����R

? read at �

? needs R at �

P����N�����W

? wri�en at �

? needs W at �

P����N�����O

? moved at �

? needs O at �

P����M�������R

&uniq?0 live at � ? # ?0

? missing R at �

P����M�������WO

&l ?0 live at � ? # ?0

? missing 2 2 {W,O} at �

P����M�������⇤

? movedbefore �

? missing 2 2 {R,W,O} at �

Fig. 7. The inference rules for the permissions model of borrow checking.

permission-error soundly approximates access-error, i.e., that access-error ⌧ ` permission-error ⌧ .
A simple rearrangement of terms proves this entailment for the case of P���R����I������:

&uniq?0 live at �

? read at � ? #?0

&uniq ?0 invalidated at �

access-error ⌧
`

? read at �

? needs R at �

&uniq?0 live at � ? # ?0

? missing R at �

permission-error ⌧

We can see a similar correspondence for the remaining rules. P����M�������WO states that a path
? is missing the write and own permissions while there exists a live loan to a con�icting path
?0. Correspondingly, P���W�����I������ states that a loan on ?0 is invalidated by a write to ? .
P����M�������⇤ states that a path ? is missing all permissions after being moved. Correspondingly,
P���M����C������� states that a use of a ? cannot occur if ? is moved. These correspondences are
formalized in each case of the proof in Appendix A.2.

An open problem: lifetime parameter errors. Access errors are the most common kind of borrow
checker error encountered by Rust users, accounting for 6/8 programs in the Ownership Inventory.
The other kind of error is a lifetime parameter error.

Consider the identity function on the right. Because G �ows
into the return value, the lifetime r1 must “outlive” the lifetime
r2. Polonius uses this information to modularly analyze the live
ranges of references across function calls, e.g. 1 := id(0) should
cause 0 to be live as long as 1 is live. However, Rust does not infer
outlives-constraints for function types, so the user must explicitly
specify r1 :> r2 or else this function would be rejected.

fn idhr1, r2i(G : &r1 uniq u32)

! &r2 uniq u32
{

~ := G ;

return ~

}

Permissions are not a perfect analogy to explain lifetime parameter errors. For example, an
outlives-constraint cannot always be blamed on a path, while our model is structured around
path-speci�c permissions. We have experimented with a fourth kind of “�ow” permission F:

P���L��������C�������

r1 outlives r2 at � r1 /:> r2

lifetime-param-error ⌧

P����N�����F���

r1 outlives r2 in ? at �

? needs F at �

P����M�������F���

r1 outlives r2 in ? at � r1 /:> r2

? missing F at �

The �rst rule states that Polonius �nds a lifetime parameter error when an instruction � requires
r1 to outlive r2, but the function is not annotated with that outlives-constraint. The corresponding
permission rules narrow the scope to outlives-constraints that can be blamed on a place ? (such as
~ in the id example). The rules state that ? needs F if such a constraint exists, and that ? is missing
F if the function lacks the necessary outlives annotation. Due to the narrowing of scope, our model
does not soundly approximate lifetime parameter errors. In future work, we will investigate either
extensions to the permission model or alternative conceptual models that can better represent
lifetime parameter errors.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

A Grounded Conceptual Model for Ownership Types in Rust 265:15

(a) The function ascii_capitalize capitalizes the

first character in a vector of ASCII characters. It
demonstrates flow-sensitive changes in permissions.

start

_4 = &(*v)

_3 = index(_4, 0)

c = &(*_3)

_6 = &(*c)

_5 = is_ascii_lowercase(_6)

switchInt(_5)

bb0

··· ···bb1 bb2

returnbb3

true false

(b) A simplified MIR control-flow graph for

ascii_capitalize highlighting relevant parts of the

CFG and how they map to the source-level.

Fig. 8. Example of how the MIR CFG relates to source-code constructs.

3.2.3 Implementation. The structure of our static model visualization parallels the P����F���

rule: one component for the needs at relation and one component for the missing at relation,
corresponding to the letters and tables shown in Figure 5. After generating these relations at the
MIR level following Figure 7, the main implementation challenge is to lift the relations to the
source-level. We will brie�y discuss why this source-mapping is non-trivial and how we approach
it, using the ascii_capitalize function in Figure 8 as a running example.

Needs-at analysis. One challenge for the needs at analysis arises with desugared conversions. For
example, consider the method call c.is_ascii_lowercase() in Figure 8a. Intuitively, the method’s
type signature &char -> bool means that the R permission should be needed from the method’s
receiver, the path c . However, as shown in bb0 of Figure 8b, the MIR-level method is not called
directly on c , but rather an automatically generated temporary _6 that is a reborrow of c .
Therefore, to lift the needs-at analysis for method calls, we have to search backwards from the MIR
call instruction to �nd the �rst use of the source-visible receiver path.

Missing-at analysis. The missing at relation de�nes a permission state, or a location-speci�c set
of missing permissions for each path. Rather than visualize the entire permission state at each
instruction, we instead visualize the di�erences in permission state (or “steps”) caused by each
instruction, which help readers better see how operations a�ect permissions. It is straightforward to
compute steps between adjacent MIR instructions, but the implementation challenge is to determine
which clusters of MIR instructions correspond to meaningful source-level steps.

For example, at the beginning of ascii_capitalize in Figure 8-left, c is de�ned as a shared borrow

of v[0] . As a result, v losesO, *v losesW, c gains RO, and *c gains R. Using compiler source
map information, we compute the contiguous subsequence of MIR instructions that correspond to

the source-level statement; in Figure 8 these are highlighted in purple . Then we compute the step

as the di�erence in permission state between the �rst and last instructions.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

265:16 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

4.1 What is Ownership?

4.1.1 Safety is the Absence of Unde�ned Behavior

4.1.2 Ownership is a Discipline for Memory Safety

4.1.3 Variables Live in the Stack

4.1.4 Boxes Live in the Heap

4.1.5 Rust Does Not Permit Manual Memory
Management

4.1.6 A Box’s Owner Manages Deallocation

4.1.7 At Runtime, A Move is Just a Copy

4.1.8 Collections Use Boxes

4.1.9 Variables Cannot Be Used After Being Moved

4.1.10 Cloning Avoids Moves

4.2 References and Borrowing

4.2.1 References Are Non-Owning Pointers

4.2.2 Dereferencing a Pointer Accesses Its Data

4.2.3 Rust Avoids Simultaneous Aliasing and
Mutation

4.2.4 References Change Permissions on Paths

4.2.5 The Borrow Checker Finds Permission
Violations

4.2.6 Mutable References Provide Unique and
Non-Owning Access to Data

4.2.7 Permissions Are Returned At The End of a
Reference’s Lifetime

4.2.8 Data Must Outlives All Of Its References

4.3 Fixing Ownership Errors

4.3.1 Fixing an Unsafe Program: Reference to the Stack

4.3.2 Fixing an Unsafe Program: Not Enough Permissions

4.3.3 Fixing an Unsafe Program: Aliasing and Mutating a Data Structure

4.3.4 Fixing an Unsafe Program: Copying vs. Moving Out of a Collection

4.3.5 Fixing a Safe Program: Mutating Di�erent Tuple Fields

4.3.6 Fixing a Safe Program: Mutating Di�erent Array Elements

Fig. 9. The table of contents for the three sections of our chapter on ownership, designed as a drop-in
replacement for ���� Chapter 4: “Understanding Ownership.”

Steps are not always intra-basic-block subsequences — they can also span across basic blocks, as
shown in Figure 8-right when the else branch is taken. In this case the sequence doesn’t even
include any instructions, just the branch between blocks highlighted in cyan . These changes occur

due to the �ow-sensitive liveness of c , which is indicated in our diagram by the down-arrow next
to the permission changes. Using these techniques, we lift the formal model to a visual description
displayed on the source language.

4 A PEDAGOGY FOR OWNERSHIP

The models in Section 3 provide the conceptual foundation for understanding the aspects of
ownership identi�ed in Section 2 such as unde�ned behavior and incompleteness. Next, we designed
a pedagogy that could help Rust learners internalize these models. Rather than designing an entire
Rust curriculum from scratch, we instead forked the popular open-source Rust textbook The Rust

Programming Language (����) [Klabnik and Nichols 2022]. ���� covers most of the language’s core
features, and it is the o�cial Rust learning resource endorsed by the Rust project.

We designed a new pedagogy of ownership as a replacement for the existing chapter on ownership
in ����. The structure of the pedagogy is apparent in the sequence of headings used to organize
each section, shown in Figure 9. We start by explaining the core ideas of unde�ned behavior and
memory safety through boxes and moves (the dynamic model). We then introduce references, the
borrow checker, and permissions (the static model). Finally, we synthesize these ideas by providing
multiple examples of how a Rust programmer can interpret and �x ownership errors, emphasizing

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

A Grounded Conceptual Model for Ownership Types in Rust 265:17

the distinction between soundness and completeness. The full text of the chapter is available online
at this link: https://rust-book.cs.brown.edu/

4.1 An Illustrative Excerpt

We will provide a sense of the pedagogic principles we used in writing the chapter by walking
through the design of the book’s §4.3.4: “Fixing an Unsafe Program: Copying vs. Moving Out of a
Collection”. Each excerpt is boxed in gray, and the pedagogic justi�cation is beside the box.
The goal of this section is to help learners understand the distinction between movable types

(like String or Vec) and copyable types (like i32 or bool). The section starts like this:

A common confusion for Rust learners happens when copying
data out of a collection, like a vector. For example, here’s a safe
program that copies a number out of a vector:

Each section is anchored around a con-
crete running example, like copying
an element from a vector. Initially, the
example is a valid, compiling program.
The permission annotations show both
the expected permissions on the rele-
vant operation (R on *n_ref) and how
those permissions were gained (via the
borrow &v[0]).

Then a small change is made to
the program such that it no longer
compiles (and in this case, is also
now unsafe). The change is as
small as possible so the reader
canmaximally transfer their under-
standing of the previous snippet
onto the current one. The contrast
in the permission diagrams empha-
sizes how the change in type has
a�ected the internal state of the
borrow checker.

The dereference operation *n_ref expects just the R permission,

which the path *n_ref has. But what happens if we change the

type of elements in the vector from i32 to String ? Then it turns
out we no longer have the necessary permissions:

The �rst program will compile, but the second program will not compile.
Rust gives the following error message:

error[E0507]: cannot move out of �*s_ref� which is behind

a shared reference

--> test.rs:4:9

|

4 | let s = *s_ref;

| ^^^^^^

| |

| move occurs because �*s_ref� has type �String�,

| which does not implement the �Copy� trait

The issue is that the vector v owns the string “Hello world”. When we
dereference s_ref , that tries to take ownership of the string from the
vector. But references are non-owning pointers — we can’t take ownership
through a reference. Therefore Rust complains that we “cannot move out
of [...] a shared reference”.

The reader is then given the
actual output of the Rust
compiler. These error mes-
sages will be the actual text
encountered by Rust learn-
ers in their day-to-day prac-
tice, so it is important to
explicitly relate the text of
the error to the permissions
model. (In future work we
hope to incorporate the per-
missions visualizer into the
IDE.)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

https://rust-book.cs.brown.edu/

265:18 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

Butwhy is this unsafe?We can illustrate the problem by simulating
the rejected program:

What happens here is a double-free. After executing
let s = *s_ref , both v and s think they own “Hello
world”. After s is dropped, “Hello world” is deallocated. Then
v is dropped, and unde�ned behavior happens when the string
is freed a second time.

After establishing that a program
is rejected by the compiler, we then
engage in counterfactual reasoning:
what would happen if the program
were allowed to execute? In this
instance, the code is already exe-
cutable (i.e., not a abstract func-
tion), so we do not need to con-
struct a separate counterexample.

The steps in the diagram are pur-
posefully selected: �rst, we show
a reasonable initial state of mem-
ory with live pointers. Then, we
showwhere a pointer becomes dan-
gling. Finally, we show where the
dangling pointer is used.
In the remainder of the section

(which we elide for brevity), the
case study is generalized into a
pithy principle: “if a value does
not own heap data, then it can be
copied without a move”. Then the
text explores a space of solutions to
avoid the move, such as: only using
a reference, deep copying the data,
or consuming ownership by remov-
ing the element from the collection.

We believe that this style of exposition provides readers with the requisite foundations to reason
about errors like “cannot move out of a shared reference” from �rst principles. Notably, this is the
same kind of error that stymied the StackOver�ow questioner in Figure 1. In their SO post, that
person wrote: “I see there is already a lot of documentation about borrow checker issues, but after
reading it, I still can’t �gure out the problem.” We set out to determine whether our new pedagogy
would su�ce to help learners like this one in such cases.

5 EVALUATION

We sought to evaluate our pedagogy on whether it helps learners understand ownership in Rust.
This raised two immediate questions. First, how do we �nd learners to try out our pedagogy? The
vast majority of CS education research takes place in a classroom, but we explored an alternative
route: free online textbooks. These resources provide access to a larger and more diverse population
of learners than CS undergraduates at a single institution. To that end, we set up a publicly-accessible
website that hosts our ���� fork, and it has been visited by tens of thousands of Rust learners to
date. This site provides a research platform for analyzing and intervening in the Rust learning
process. The intervention described in this paper is the �rst step in an ongoing experiment to
leverage the platform for systematically improving Rust education at scale.

The second key question is: how do we know if learners understand ownership after following
our pedagogy? “Understand” is di�cult to de�ne — ideally, a longitudinal study might measure
understanding as learners’ ability to productively write safe and performant Rust code in their
context of use. But for lack of such data, we instead opted for a common substitute: quiz questions.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

A Grounded Conceptual Model for Ownership Types in Rust 265:19

For example, Ongaro and Ousterhout [2014] faced a similar situation: evaluating a novel conceptual
model (Raft) for a complex problem (distributed consensus) against a baseline technique (Paxos).
They measured understanding by presenting graduate students with a 1-hour lecture on either
system followed by a quiz, �nding that Raft quiz scores were 8% higher than Paxos quiz scores.

We used a similar approach, but adapted to the setting of an online textbook. Rather than present
a monolithic lecture followed by a monolithic quiz, we di�used the quiz questions throughout the
ownership chapter and the rest of the book. Furthermore, we distinguished between two kinds of
quiz questions designed to answer two research questions:

RQ1. Does our pedagogy help learners understand ownership at all?

RQ2. Does our pedagogy help learners understand ownership better than before?

For RQ1, we asked participants simple comprehension questions about ownership, presented
immediately following the book content that is relevant to a given question. These questions
determine whether participants can transfer their ownership knowledge to situations similar to
the text. Because the questions make references to the permissions model, we cannot establish a
score baseline. Therefore we judge the scores in absolute rather than relative terms.

For RQ2, we gave participants a multiple-choice version of the Ownership Inventory. We inserted
these questions later in the book after covering the essential prerequisites for a given program. To
compare the baseline ���� pedagogy against ours, we ran a kind of temporal A/B test. Participants
answered Inventory questions after reading the original ���� content for a few weeks. We then
deployed the intervention and continued receiving responses to the Inventory. We quanti�ed the
pedagogy’s e�ect based on the resulting change in scores.

5.1 Methodology

In designing our methodology, we traded o� between minimizing the amount of infrastructure
required, and maximizing the statistical power of our inferences from data. For example, we did
not gather any demographic information about participants. We did not want to dissuade privacy-
sensitive people from participating in the experiment (reducing the sample size). Moreover, we did
not want to implement the infrastructure necessary to securely manage PII at scale. Nevertheless,
given that our participants came over from a popular Rust textbook, we believe that people visiting
���� are reasonably representative of the average Rust learner.

Additionally, the temporal A/B test is logistically simpler but statistically weaker than a traditional
population-randomizing A/B test. The traditional setup requires a centralized user database to
ensure a reader would not see condition A on their desktop and then accidentally enter condition B
on their phone. Instead, our statistical inferences assume that each new participant is sampled from
an i.i.d. stream of Rust learners. We discuss this and other trade-o�s further in Section 5.4. Our
methodology was evaluated by Brown’s IRB, which determined that the project did not require
institutional review due to the study’s purpose and safeguards to ensure anonymity.

5.1.1 Participants. We recruited participants by advertising in the title page of the o�cial web
version of ����, courtesy of the authors. The advertisement read: “Want a more interactive learning
experience? Try out a di�erent version of the Rust Book, featuring: quizzes, highlighting, visual-
izations, and more.” Since this advertisement was put up on November 1, 2022, our ���� fork has
received an average of 450 visitors per day, as measured by unique session IDs stored via cookies.

5.1.2 Materials. We developed 11 comprehension questions to cover the content of the ownership
chapter. Appendix A.3 contains the full text of each question, and Table 2 contains a short description
of each question. Figure 10a shows one example — to test understanding of permission diagrams,
we asked participants to infer the permissions for a path at a given point.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

265:20 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

Consider the permissions in the following program:

At the point marked /* here */ , what are the per-
missions on the path s ? Select each permission
below, or select “no permissions” if the path has no
permissions.

R O

W No permissions

(a) A comprehension question (“Analysis state in
permissions diagram”) that tests whether a person
can correctly interpret a permission diagram.

1 fn make_separator(user_str: &str) -> &str {

2 if user_str == �� {

3 let default = �=�.repeat(10);

4 &default

5 } else {

6 user_str

7 }

8 }

Assume that the compiler did NOT reject this func-
tion.Which (if any) of the following programs would
(1) pass the compiler, and (2) possibly cause unde-
�ned behavior if executed? Check each program that
satis�es both criteria, OR check “None of these pro-
grams” if none are satisfying.

let s = make_separator(��);

println!(�{s}�);

let s =

make_separator(��);

println!(�{}�,

make_separator(�Hello

world!�));

None of these
programs

(b) A multiple-choice Ownership Inventory question

(Q2a for the make_separator program). The distractors

are drawn from common incorrect answers given for
the open-ended version of the same question.

Fig. 10. Two examples of questions used in the evaluation.

We developed 24 Ownership Inventory questions based on the 8 program in Table 1. For each
program, we created a close-ended version of Q1, Q2a, and Q3a in Figure 2 (the justi�cation
questions Q2b/Q3b did not translate to the multiple-choice setting). Following the concept in-
ventory methodology, we selected distractors from common misconceptions about the Inventory
programs. Figure 10b shows an example of a multiple-choice Ownership Inventory question. The
make_separator task is an instance of a dangling stack reference. A common incorrect counterex-

ample provided by participants in Section 2 was the snippet let s = make_separator(��) which
creates a dangling pointer, but does not use it. By using that incorrect answer as a distractor, the
multiple-choice question is more likely to test for the presence of this misconception.
We spaced out the 24 questions into 4 sets of 6 questions, using the same order as in Table 1.

Each pair of tasks was embedded into the end of the appropriate chapter such that the cumulative
preceding content would cover all necessary features — Chapter 6, 8, 10, and 17, respectively.
Additionally, to ensure participants had access to the relevant documentation on standard library
constructs, all the code snippets in the Inventory questions used the same embedded language
server technology as described in Section 2.3.2. As an example, the Chapter 6 Inventory questions
can be viewed here: https://rust-book.cs.brown.edu/ch06-04-inventory.html
The quiz widget permits participants to take a quiz multiple times if they answer any question

incorrectly. We eliminate any repeat attempts (as determined by the participants’ session IDs) from
the dataset and only evaluate based on each participant’s �rst attempt on a given quiz.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

https://rust-book.cs.brown.edu/ch06-04-inventory.html

A Grounded Conceptual Model for Ownership Types in Rust 265:21

Table 2. Readers’ accuracy on simple comprehension questions about the new ownership pedagogy. Accuracies
are average correctness with the number of data points in parentheses. �estions are presented in the order
encountered by readers. The full text of the questions is in Appendix A.3.

Description Accuracy T

Di�erence of stack and heap 64% 2060
Aliasing in runtime diagram 93% 2060
Moves in runtime diagram 83% 2060
De�ned vs. unde�ned behavior 58% 1958
Compiler error due to move 84% 1958
Dereferencing multiple layers of indirection 47% 1683
How moves a�ect deallocation 95% 1683
Analysis state in permissions diagram 81% 1281
Why borrows change permissions 59% 1281
How references can cause unde�ned behavior 44% 1281
Compiler error due to overlapping borrows 87% 1180

Pooled accuracy 72%

5.1.3 Procedure. On December 13, 2022, we deployed the Inventory questions to our book. After
�xing bugs for a few weeks, on January 3, 2023 we froze the question content and started gathering
pre-intervention data on performance with the baseline ���� pedagogy. After 45 days, on February
17, 2023 we deployed the initial draft of our new ownership chapter.

For the next few months, we iterated on the text. This process consisted of reviewing quiz
data and user feedback (readers had the option to report broken or confusing text, diagrams, and
questions). We did not substantively change the pedagogy during this time, but rather �xed or
clari�ed small issues. Here are two examples of the several changes made in this time:

• The original version of our new ownership chapter illustrated borrowing with an example
involving vectors. One user alerted us to the fact that ���� does not explain vectors until a later
chapter, making the example di�cult to understand. In response, we added context explaining
the aspects of vectors that are needed for the example.

• The original version of the runtime diagram did not visually represent a variable being invalidated
upon move, since technically move-invalidation is not part of the Rust runtime (a move is just a
copy). But readers frequently complained that they expected moves to be visible in the diagram —
that is, their mental model did not match our conceptual model. In this case, we ultimately agreed
with readers that the point was too technical, and added invalidation to the runtime diagram.

A complete list of the changes can be found in the commit log of the GitHub repository for our
book (cognitive-engineering-lab/rust-book). On June 15, 2023 we froze the text and began gathering
post-intervention data. Data collection continued for 45 days until July 30, 2023.

5.2 Results

5.2.1 RQ1: Does our pedagogy help learners understand ownership at all? Table 2 shows readers’
accuracies on the comprehension questions. Overall, the pooled accuracy of 72% shows that readers
could mostly understand the basic concepts within our pedagogy. Readers were able to successfully
interpret both runtime and compile-time diagrams (“Aliasing in runtime diagram” at 93%, “Moves
in runtime diagram” at 83%, “Analysis state in permissions diagram” at 81%). Readers could also

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

https://github.com/cognitive-engineering-lab/rust-book

265:22 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

Table 3. E�ects of the permissions pedagogy for readers’ accuracy on Ownership Inventory questions.
�estions are presented in the order encountered by readers. Only e�ects with ? < 0.15 are included here,
with ? < 0.05 in bold.

Task Q. Before T After T E�ect d p

make_separator Q2 33% 1120 40% 660 +7% 0.14 0.007

make_separator Q3 57% 1120 62% 660 +5% 0.11 0.024

get_or_default Q1 56% 1120 66% 660 +10% 0.21 <0.001

get_or_default Q2 10% 1120 16% 660 +6% 0.19 <0.001

remove_zeros Q3 35% 629 52% 470 +17% 0.34 <0.001

reverse Q2 28% 629 40% 470 +13% 0.27 <0.001

reverse Q3 21% 629 33% 470 +13% 0.29 <0.001

find_nth Q1 86% 314 90% 374 +4% 0.12 0.099
find_nth Q2 16% 314 23% 374 +7% 0.18 0.018

find_nth Q3 27% 316 34% 374 +7% 0.15 0.041

apply_curve Q2 41% 452 58% 374 +17% 0.34 <0.001

Pooled signi�cant e�ect: +10% 0.22

identify when the compiler was going to reject a program (“Compiler error due to move” at 84%,
“Compiler error due to overlapping borrows” at 87%).

However, readers’ mediocre performance on a few of the comprehension questions suggests that
their understanding may be somewhat shallow. For example, the ownership chapter provides an
example program containing a variable x : &Box<i32> , and explains that two dereferences like **x

are needed to access the inner integer. The comprehension question “Dereferencing multiple layers
of indirection” presents a program that constructs an expression of type Box<&Box<i32>> (including
a runtime diagram), and asks respondents to determine the number of dereference operations
needed to access the inner i32 . Only 47% of respondents correctly answer three, suggesting that
readers still leave with a somewhat fragile understanding of an essential concept like pointers.

5.2.2 RQ2: Does our pedagogy help learners understand ownership be�er than before? We focus on
the �rst 18 Inventory questions, as those questions received enough responses to make statistical
inferences. Many readers don’t read to the end of the book — pre-intervention, we only collected
77 responses to the last 6 questions versus 1,120 for the �rst 6. This dropout rate is comparable
to the 90%+ dropout rates seen in MOOCs [Jordan 2015]. Additionally, participants answered
the �rst Inventory question on average 4 days after answering the last comprehension question.
Considerable time elapsed between reading the ownership chapter and taking the Inventory.

First, we analyze the overall Inventory scores for the # = 177 (pre) / 165 (post) participants who
completed the �rst 18 questions. The average pre-intervention score was 48% (f = 16%). Notably, the
average score on the open-ended Inventory questions in Section 2 was 41% (which should be more
di�cult than equivalent multiple-choice questions), showing that the quantitative results of the
formative study reasonably generalized to a larger sample. The average post-intervention score was
57% (f = 15%). Using a two-tailed C-test, the di�erence is statistically signi�cant (? < 0.001). The
normalized e�ect size as measured by Cohen’s 3 is 0.56. Therefore, the pedagogy had a statistically
signi�cant positive e�ect (+9%) on overall Inventory performance. Additionally, the results con�rm
that Inventory questions are substantially harder than the comprehension questions.
Second, we analyze the intervention’s e�ect on each Inventory question individually. The

intervention had a statistically signi�cant e�ect on 10/18 questions. Table 3 shows the size of

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

A Grounded Conceptual Model for Ownership Types in Rust 265:23

these e�ects, including almost-signi�cant e�ects. Overall, the pooled signi�cant e�ect was 10%
or 3 = 0.22 (note that the question-level e�ect size is smaller than the quiz-level e�ect size due
to the higher per-question variance). Between the di�erent types of questions, the intervention
primarily a�ected performance on questions about unde�ned behavior (Q2) and �xing a type
error (Q3) moreso than identifying a type error (Q1). For example with make_separator Q2, the +7%
e�ect corresponds to an 8% decrease in the incorrect response of “does not have counterexamples”.
Conversely, for reverse and apply_curve Q2, the +13%/+17% e�ects correspond to participants
answering correctly that these functions are safe and do not have counterexamples.

5.3 Discussion

The results on the comprehension questions show that our pedagogy is comprehensible to the
average Rust learner. That is notable per se, as we have no control over the learner population,
many of whom come with no experience in relevant areas like systems or functional programming.
The results on the Inventory questions show that the e�ect of our pedagogy is statistically

signi�cant with an e�ect size of 3 = 0.56. For reference, according to the meta-analysis of education
research by Hattie [2008], the average e�ect of educational interventions on learning outcomes
is 3 = 0.40. Hattie [2008, p. 17] argues that “the e�ect size of 0.40 sets a level where the e�ects of
innovation enhance achievement in such a way that we can notice real-world di�erences, and this
should be a benchmark of such real-world change.” Therefore, we interpret our results as saying that
the new ownership pedagogy is a substantive step in the right direction. But a post-intervention
average of 57% clearly demonstrates that we have not “closed the book” on the challenge of teaching
ownership types.

5.4 Threats to Validity

Given the large scope of this experiment, we considered several threats to validity in its design.

5.4.1 Construct Validity. This experiment assumes that the Ownership Inventory is a valid instru-
ment to measure a person’s understanding of ownership. To that end, we designed the Inventory
such that the situations re�ect common ownership problems (by weighting based on StackOver-
�ow), and such that the questions re�ect each stage of reasoning about ownership (based on our
formative study). However, future work should validate the extent to which performance on the
Inventory correlates to performance in solving ownership problems in practice.

5.4.2 Internal Validity. The setting of an online textbook provides the bene�t of scale, but it
also poses methodological challenges due to lack of controls. One such threat is the uncontrolled
quizzing environment. A reader could augment their problem-solving with external aids like a
friend, a compiler, a Google search, a large language model, and so on. Participants could also
be in�uenced by learning material outside of the book, such as the o�cial ���� or Rust-related
YouTube videos. To combat this threat, we explicitly instructed participants to not use external
resources while solving quiz problems, and the quiz widget takes over the browser tab while taking
a quiz. Moreover, we assume that the average participant will be a good actor — our readers are
taking these quizzes for their own edi�cation, not to get paid by us or to get a good grade. Gathering
enough data should turn bad actors into noise.
Another threat is the uncontrolled assignment to experimental conditions. We chose not to

perform a randomized-controlled trial for the reasons discussed in Section 5.1. However, it is
possible that temporal correlations in readership could have a�ected our results. For example, if all
the C++ engineers at one company decided to start learning Rust at the same time, then average
scores would likely go up in that window of time compared to the average in the limit.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

265:24 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

A �nal threat is teaching to the test. Unlike us, the ���� authors were not aware of the Ownership
Inventory when they wrote the book. At the extreme, if our pedagogy taught the exact answers to
Inventory questions, then Inventory scores would not be a useful measure of ownership under-
standing. At the same time, part of the point of our experiment is exactly to teach to the test! For
example, the Inventory is intentionally designed to measure understanding of unde�ned behavior,
and in turn we intentionally designed our new pedagogy to explain unde�ned behavior. Like any
well-meaning educator, we sought a balance. The Inventory materials do not appear anywhere in
the revised text. But we do, for instance, walk through an example of how iterator invalidation
causes unde�ned behavior, which is similar to the remove_zeros problem.

5.4.3 External Validity. Conditioned on construct and internal validity, our results should reason-
ably generalize to the larger population of Rust learners. ���� is the o�cial Rust textbook for the
community, so its readers should be a representative cross-section of the broader Rust ecosystem.

6 RELATED WORK

In response to the reports of learners’ struggles with ownership [Fulton et al. 2021; The Rust Survey
Team 2020; Zeng and Crichton 2019; Zhu et al. 2022], researchers have explored several ways
to help Rust users deal with ownership. For instance, Coblenz et al. [2022] showed that garbage
collection can help users avoid ownership issues and thereby complete a coding task more quickly.

More directly relevant to our work are ownership visualizations. Dominik [2018] and Blaser [2019]
developed a tool that visualizes a graph of the outlives-constraints generated by the Rust compiler.
They did not evaluate the human factors of their tools, and we believe their visualization would
be more appropriate for aiding compiler engineers than learners. Almeida et al. [2022] created
RustViz, a visualization format for ownership annotations on a Rust program. In terms of pedagogy,
RustViz’s premise is that the key challenge with ownership is that “the user must learn to mentally
simulate the logic of the borrow checker”. Our pedagogy is based more on connecting Rust’s static
and dynamic semantics, which we show in our formative study is a more serious problem for
Rust learners. In terms of implementation, RustViz diagrams are constructed by hand using a
DSL, while we automatically generate our diagrams from the compiler. In terms of evaluation,
Almeida et al. deployed RustViz in a classroom, �nding that students responded to a Likert item
that the visualizations were “helpful in terms of improving their understanding of ownership.” Our
evaluation goes further to quantify the e�ect of our pedagogy on learning outcomes.

Our runtime diagram is similar to program state visualizers in prior work — see Sorva et al. [2013]
for a survey. In particular, our work is similar to C runtime visualizations [Egan and McDonald
2021; Ishizue et al. 2018; Taylor et al. 2023]. In the same vein, our �ndings about misconceptions of
unde�ned behavior and memory safety are consistent with prior work on teaching C. For instance,
Lam et al. [2022] found in a study of undergraduates who had taken a computer systems course that
“many students displayed little knowledge or had misunderstandings about memory and memory
layout” and would simply say “something bad” happens when unsafe operations occur.
Our work continues a line of CS education research about conceptual models. Bayman and

Mayer [1988] �rst showed that an appropriate conceptual model for BASIC could help students
“develop fewer misconceptions [...] and perform better on transfer tests.” du Boulay [1986] coined
the term “notional machine” for conceptual models speci�cally of a language’s dynamic semantics,
which has received renewed focus in recent years [Dickson et al. 2020]. Our work di�ers from most
research on notional machines by focusing equally on a conceptual model of static semantics.

Our work also intersects with a line of programming language research on the human factors of
type systems and functional languages. Most prior work has focused on algorithms for identifying
the root cause of confusing type inference errors [Chitil 2001; Wand 1986; Zhang and Myers 2014].

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

A Grounded Conceptual Model for Ownership Types in Rust 265:25

Recent work has broadened scope to develop theories about how programmers read functional
programs [Marceau et al. 2011a], leverage the type system during development [Lubin and Chasins
2021], and solve problems with higher-order functions [Rivera and Krishnamurthi 2022].

This paper focuses on ownership types as they are implemented in Rust, but ownership types have
takenmany forms in priorwork [Clarke et al. 2013]. For instance, early systems of ownership focused
on ensuring uniqueness of access to data by checking for dominance in the alias graph [Clarke
et al. 1998]. Later systems relaxed this constraint by permitting temporary borrowing of data,
both mutably [Aldrich et al. 2002; Boyland 2001] and immutably [Dietl et al. 2012; Östlund et al.
2008]. The connection between ownership and permissions has been well-established within formal
models such as fractional permissions [Boyland 2003] and �own [Krishnaswami and Aldrich 2005].

7 GENERAL DISCUSSION

Future programming languages will undoubtedly have increasingly complex type systems. Rust
is the language du jour, so this work focused on ownership types. But the next popular language
could bring a renewed emphasis to any existing line of PL research: re�nement types, session types,
or even theorem proving. E�ective transfer of these technologies will require pedagogies that do
not expect learners to come equipped with Ph.D.-level knowledge of programming languages,
mathematics, and Greek. While our immediate goal in this work was to make ownership types
more understandable, our broader goal was to explore the viability of di�erent techniques for
improving PL pedagogy. In this section, we will brie�y re�ect on lessons learned.
First, to develop a metric for understanding of ownership, we created a concept inventory by

combining data from StackOver�ow with a formative study of Rust learners. StackOver�ow works
for popular languages like Rust, but is less useful for niche languages. Human factors research
on niche languages can instead consider using telemetry from developer interactions as has been
explored for Racket [Marceau et al. 2011b] and Coq [Ringer et al. 2020]. The concept inventory
is an idea that could easily be reused in the context of other languages. Inventories can serve as
communal benchmarks for progress in education research, like how datasets of programs serve as
benchmarks for performance in compiler research.

Second, to develop a conceptual model for ownership, we carefully selected a level of abstraction
that was concrete enough to explain relevant phenomena like unde�ned behavior, while abstract
enough to avoid unnecessary details. We leveraged the rich prior work on distilling the Rust type
system into a small, explainable set of mechanisms, especially the Oxide [Weiss et al. 2021] and
Polonius [Matsakis 2018] models. However, PL research usually distills type systems to permit
formal reasoning, such as a soundness proof. An open question is how to distill type systems for
didactic reasoning, that is, to help learners acquire a conceptual model valid for common tasks.
For example, one of our principles was that our model must be encodable in a concise visual
representation, which is not a property usually expected of standard PL research. Future work can
investigate the properties of semantics that make them more or less explainable.

Finally, to evaluate the e�cacy of our pedagogy, we publicly deployed our textbook and compared
pre/post-intervention scores on the Ownership Inventory. Collecting telemetry from quizzes in
online learning resources is a readily applicable strategy for other contexts. Learners want to take
quizzes to engage with the content they are reading. Temporal A/B testing o�ers a lightweight
method for evaluating content changes without sophisticated infrastructure. We encourage anyone
interested in programming language learning to try out our methodology. To that end, we have open-
sourced our frontend quiz plugin and our backend telemetry system at: https://github.com/cognitive-
engineering-lab

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

https://github.com/cognitive-engineering-lab
https://github.com/cognitive-engineering-lab

265:26 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

ACKNOWLEDGMENTS

The authors are immensely grateful to Niko Matsakis and Amazon. They provided both the
encouragement and the funding to initiate this project, and supplied additional emergency funding
when our �rst grant application fell through because we were studying Rust instead of C++. We
thank Carol Nichols for taking a leap of faith in allowing us to advertise in ����; this was essential
for driving tra�c to the experiment. Later parts of this work are partially supported by the US NSF
under Grant No. 2319014.

REFERENCES

Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. 2002. Alias Annotations for Program Understanding. In
Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications

(Seattle, Washington, USA) (OOPSLA ’02). Association for Computing Machinery, New York, NY, USA, 311–330. https:
//doi.org/10.1145/582419.582448

Marcelo Almeida, Grant Cole, Ke Du, Gongming Luo, Shulin Pan, Yu Pan, Kai Qiu, Vishnu Reddy, Haochen Zhang, Yingying
Zhu, and Cyrus Omar. 2022. RustViz: Interactively Visualizing Ownership and Borrowing. In 2022 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC). IEEE, New York, USA, 1–10. https://doi.org/10.1109/VL/
HCC53370.2022.9833121

Piraye Bayman and Richard E. Mayer. 1988. Using conceptual models to teach BASIC computer programming. Journal of
Educational Psychology 80 (1988), 291–298. https://doi.org/10.1037/0022-0663.80.3.291 Place: US Publisher: American
Psychological Association.

David Blaser. 2019. Simple Explanation of Complex Lifetime Errors in Rust. Bachelor’s Thesis. ETH Zürich.
John Boyland. 2001. Alias burying: Unique variables without destructive reads. Software: Practice and Experience 31, 6 (2001),

533–553. https://doi.org/10.1002/spe.370 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.370
John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis, Radhia Cousot (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 55–72.
Olaf Chitil. 2001. Compositional Explanation of Types and Algorithmic Debugging of Type Errors. In Proceedings of the

Sixth ACM SIGPLAN International Conference on Functional Programming (Florence, Italy) (ICFP ’01). Association for
Computing Machinery, New York, NY, USA, 193–204. https://doi.org/10.1145/507635.507659

Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. 2013. Ownership Types: A Survey. Springer Berlin Heidelberg,
Berlin, Heidelberg, 15–58. https://doi.org/10.1007/978-3-642-36946-9_3

David G. Clarke, John M. Potter, and James Noble. 1998. Ownership Types for Flexible Alias Protection. In Proceedings of

the 13th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (Vancouver,
British Columbia, Canada) (OOPSLA ’98). Association for Computing Machinery, New York, NY, USA, 48–64. https:
//doi.org/10.1145/286936.286947

Michael Coblenz, Michelle L. Mazurek, andMichael Hicks. 2022. Garbage Collection Makes Rust Easier to Use: A Randomized
Controlled Trial of the Bronze Garbage Collector. In Proceedings of the 44th International Conference on Software Engineering
(Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA, 1021–1032. https:
//doi.org/10.1145/3510003.3510107

Will Crichton. 2020. The Usability of Ownership. In Procedings of the 1st Workshop on Human Aspects of Types and Reasoning

Assistants (HATRA). arXiv:arxiv:2011.06171
Paul E. Dickson, Neil C. C. Brown, and Brett A. Becker. 2020. Engage Against the Machine: Rise of the Notional Machines

as E�ective Pedagogical Devices. In Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer

Science Education (Trondheim, Norway) (ITiCSE ’20). Association for Computing Machinery, New York, NY, USA, 159–165.
https://doi.org/10.1145/3341525.3387404

Werner Dietl, Sophia Drossopoulou, and Peter Müller. 2012. Separating Ownership Topology and Encapsulation with
Generic Universe Types. ACM Trans. Program. Lang. Syst. 33, 6, Article 20 (jan 2012), 62 pages. https://doi.org/10.1145/
2049706.2049709

Dietler Dominik. 2018. Visualization of Lifetime Constraints in Rust. Bachelor’s Thesis. ETH Zürich.
Benedict du Boulay. 1986. Some Di�culties of Learning to Program. Journal of Educational Computing Research 2, 1 (1986),

57–73. https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
Tristan Dyer, Tim Nelson, Kathi Fisler, and Shriram Krishnamurthi. 2022. Applying Cognitive Principles to Model-Finding

Output: The Positive Value of Negative Information. Proc. ACM Program. Lang. 6, OOPSLA1, Article 79 (apr 2022),
29 pages. https://doi.org/10.1145/3527323

Matthew Heinsen Egan and Chris McDonald. 2021. An evaluation of SeeC: a tool designed to assist novice C programmers
with program understanding and debugging. Computer Science Education 31, 3 (2021), 340–373. https://doi.org/10.1080/

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

https://doi.org/10.1145/582419.582448
https://doi.org/10.1145/582419.582448
https://doi.org/10.1109/VL/HCC53370.2022.9833121
https://doi.org/10.1109/VL/HCC53370.2022.9833121
https://doi.org/10.1037/0022-0663.80.3.291
https://doi.org/10.1002/spe.370
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.370
https://doi.org/10.1145/507635.507659
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1145/286936.286947
https://doi.org/10.1145/286936.286947
https://doi.org/10.1145/3510003.3510107
https://doi.org/10.1145/3510003.3510107
https://arxiv.org/abs/arxiv:2011.06171
https://doi.org/10.1145/3341525.3387404
https://doi.org/10.1145/2049706.2049709
https://doi.org/10.1145/2049706.2049709
https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9
https://doi.org/10.1145/3527323
https://doi.org/10.1080/08993408.2020.1777034
https://doi.org/10.1080/08993408.2020.1777034

A Grounded Conceptual Model for Ownership Types in Rust 265:27

08993408.2020.1777034
Mohammed F. Farghally, Kyu Han Koh, Jeremy V. Ernst, and Cli�ord A. Sha�er. 2017. Towards a Concept Inventory

for Algorithm Analysis Topics. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science

Education (Seattle, Washington, USA) (SIGCSE ’17). Association for Computing Machinery, New York, NY, USA, 207–212.
https://doi.org/10.1145/3017680.3017756

Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik. 2013. Statistical Methods for Rates and Proportions (3 ed.). Wiley-
Interscience, Newy York.

Kelsey R. Fulton, Anna Chan, Daniel Votipka, Michael Hicks, and Michelle L. Mazurek. 2021. Bene�ts and Drawbacks
of Adopting a Secure Programming Language: Rust as a Case Study. In Seventeenth Symposium on Usable Privacy and

Security (SOUPS 2021). USENIX Association, Berkeley, CA, 597–616. https://www.usenix.org/conference/soups2021/
presentation/fulton

Jean-Yves Girard. 1987. Linear logic. Theoretical Computer Science 50, 1 (1987), 1–101. https://doi.org/10.1016/0304-
3975(87)90045-4

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Cheney. 2002. Region-Based Memory
Management in Cyclone. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and

Implementation (Berlin, Germany) (PLDI ’02). Association for Computing Machinery, New York, NY, USA, 282–293.
https://doi.org/10.1145/512529.512563

Guide to Rustc Development. 2023. The MIR (Mid-level IR). https://rustc-dev-guide.rust-lang.org/mir/index.html.
Philip J. Guo. 2013. Online Python Tutor: Embeddable Web-Based Program Visualization for Cs Education. In Proceeding of

the 44th ACM Technical Symposium on Computer Science Education (Denver, Colorado, USA) (SIGCSE ’13). Association for
Computing Machinery, New York, NY, USA, 579–584. https://doi.org/10.1145/2445196.2445368

Sally Hamouda, Stephen H. Edwards, Hicham G. Elmongui, Jeremy V. Ernst, and Cli�ord A. Sha�er. 2017. A basic recursion
concept inventory. Computer Science Education 27, 2 (2017), 121–148. https://doi.org/10.1080/08993408.2017.1414728
arXiv:https://doi.org/10.1080/08993408.2017.1414728

John Hattie. 2008. Visible learning. Routledge, London, England.
Geo�rey L. Herman, Michael C. Loui, and Craig Zilles. 2010. Creating the Digital Logic Concept Inventory. In Proceedings of

the 41st ACM Technical Symposium on Computer Science Education (Milwaukee, Wisconsin, USA) (SIGCSE ’10). Association
for Computing Machinery, New York, NY, USA, 102–106. https://doi.org/10.1145/1734263.1734298

David Hestenes, Malcolm Wells, and Gregg Swackhamer. 1992. Force concept inventory. The Physics Teacher 30, 3 (1992),
141–158. https://doi.org/10.1119/1.2343497

Ryosuke Ishizue, Kazunori Sakamoto, Hironori Washizaki, and Yoshiaki Fukazawa. 2018. PVC: Visualizing C Programs
on Web Browsers for Novices. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education

(Baltimore, Maryland, USA) (SIGCSE ’18). Association for Computing Machinery, New York, NY, USA, 245–250. https:
//doi.org/10.1145/3159450.3159566

Katy Jordan. 2015. MOOC Completion Rates. http://www.katyjordan.com/MOOCproject.html.
Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geo�rey L. Herman. 2010. Identifying Student Misconceptions

of Programming. In Proceedings of the 41st ACM Technical Symposium on Computer Science Education (Milwaukee,
Wisconsin, USA) (SIGCSE ’10). Association for Computing Machinery, New York, NY, USA, 107–111. https://doi.org/10.
1145/1734263.1734299

Steve Klabnik and Carol Nichols. 2022. The Rust Programming Language. https://doc.rust-lang.org/book.
Neel Krishnaswami and Jonathan Aldrich. 2005. Permission-Based Ownership: Encapsulating State in Higher-Order Typed

Languages. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementation

(Chicago, IL, USA) (PLDI ’05). Association for Computing Machinery, New York, NY, USA, 96–106. https://doi.org/10.
1145/1065010.1065023

Jessica Lam, Elias Fang, Majed Almansoori, Rahul Chatterjee, and Adalbert Gerald Soosai Raj. 2022. Identifying Gaps in
the Secure Programming Knowledge and Skills of Students. In Proceedings of the 53rd ACM Technical Symposium on

Computer Science Education - Volume 1 (Providence, RI, USA) (SIGCSE 2022). Association for Computing Machinery, New
York, NY, USA, 703–709. https://doi.org/10.1145/3478431.3499391

J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer Agreement for Categorical Data. Biometrics 33, 1
(1977), 159–174. http://www.jstor.org/stable/2529310

Rebecca S. Lindell, Elizabeth Peak, and Thomas M. Foster. 2007. Are They All Created Equal? A Comparison of Di�erent
Concept Inventory Development Methodologies. AIP Conference Proceedings 883, 1 (2007), 14–17. https://doi.org/10.
1063/1.2508680

Justin Lubin and Sarah E. Chasins. 2021. How Statically-Typed Functional Programmers Write Code. Proc. ACM Program.

Lang. 5, OOPSLA, Article 155 (oct 2021), 30 pages. https://doi.org/10.1145/3485532
Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011a. Do Values Grow on Trees? Expression Integrity

in Functional Programming. In Proceedings of the Seventh International Workshop on Computing Education Research

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

https://doi.org/10.1080/08993408.2020.1777034
https://doi.org/10.1080/08993408.2020.1777034
https://doi.org/10.1080/08993408.2020.1777034
https://doi.org/10.1145/3017680.3017756
https://www.usenix.org/conference/soups2021/presentation/fulton
https://www.usenix.org/conference/soups2021/presentation/fulton
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/512529.512563
https://rustc-dev-guide.rust-lang.org/mir/index.html
https://doi.org/10.1145/2445196.2445368
https://doi.org/10.1080/08993408.2017.1414728
https://arxiv.org/abs/https://doi.org/10.1080/08993408.2017.1414728
https://doi.org/10.1145/1734263.1734298
https://doi.org/10.1119/1.2343497
https://doi.org/10.1145/3159450.3159566
https://doi.org/10.1145/3159450.3159566
http://www.katyjordan.com/MOOCproject.html
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1145/1734263.1734299
https://doc.rust-lang.org/book
https://doi.org/10.1145/1065010.1065023
https://doi.org/10.1145/1065010.1065023
https://doi.org/10.1145/3478431.3499391
http://www.jstor.org/stable/2529310
https://doi.org/10.1063/1.2508680
https://doi.org/10.1063/1.2508680
https://doi.org/10.1145/3485532

265:28 Will Crichton, Gavin Gray, and Shriram Krishnamurthi

(Providence, Rhode Island, USA) (ICER ’11). Association for Computing Machinery, New York, NY, USA, 39–44. https:
//doi.org/10.1145/2016911.2016921

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011b. Measuring the E�ectiveness of Error Messages
Designed for Novice Programmers. In Proceedings of the 42nd ACM Technical Symposium on Computer Science Education

(Dallas, TX, USA) (SIGCSE ’11). Association for Computing Machinery, New York, NY, USA, 499–504. https://doi.org/10.
1145/1953163.1953308

Niko Matsakis. 2018. An alias-based formulation of the borrow checker. http://smallcultfollowing.com/babysteps/blog/
2018/04/27/an-alias-based-formulation-of-the-borrow-checker

Tim McNamara. 2021. Rust in Action. Manning Publications, New York, NY.
MSRC Team. 2019. We need a safer systems programming language. https://msrc-blog.microsoft.com/2019/07/18/we-need-

a-safer-systems-programming-language/
Niko Matsakis. 2023. nikomatsakis/a-mir-formality: a model of MIR and the Rust type/trait system. https://github.com/

nikomatsakis/a-mir-formality.
Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Consensus Algorithm. In 2014 USENIX Annual

Technical Conference (USENIX ATC 14). USENIX Association, Philadelphia, PA, 305–319. https://www.usenix.org/
conference/atc14/technical-sessions/presentation/ongaro

Johan Östlund, Tobias Wrigstad, Dave Clarke, and Beatrice Åkerblom. 2008. Ownership, Uniqueness, and Immutability. In
Objects, Components, Models and Patterns, Richard F. Paige and Bertrand Meyer (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 178–197.

Leo Porter, Daniel Zingaro, Soohyun Nam Liao, Cynthia Taylor, Kevin C. Webb, Cynthia Lee, and Michael Clancy. 2019.
BDSI: A Validated Concept Inventory for Basic Data Structures. In Proceedings of the 2019 ACM Conference on International

Computing Education Research (Toronto ON, Canada) (ICER ’19). Association for Computing Machinery, New York, NY,
USA, 111–119. https://doi.org/10.1145/3291279.3339404

Seth Poulsen, Geo�rey L. Herman, Peter A. H. Peterson, Enis Golaszewski, Akshita Gorti, Linda Oliva, Travis Scheponik,
and Alan T. Sherman. 2021. Psychometric Evaluation of the Cybersecurity Concept Inventory. ACM Trans. Comput.

Educ. 22, 1, Article 6 (oct 2021), 18 pages. https://doi.org/10.1145/3451346
Ralf Jung. 2023. RalfJung/minirust: A precise speci�cation for "Rust lite / MIR plus". https://github.com/RalfJung/minirust.
Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner. 2020. REPLica: REPL Instrumentation for Coq Analysis.

In Proceedings of the 9th ACM SIGPLAN International Conference on Certi�ed Programs and Proofs (New Orleans, LA, USA)
(CPP 2020). Association for Computing Machinery, New York, NY, USA, 99–113. https://doi.org/10.1145/3372885.3373823

Elijah Rivera and Shriram Krishnamurthi. 2022. Structural versus Pipeline Composition of Higher-Order Functions
(Experience Report). Proc. ACM Program. Lang. 6, ICFP, Article 102 (aug 2022), 14 pages. https://doi.org/10.1145/3547633

Juha Sorva, Ville Karavirta, and Lauri Malmi. 2013. A Review of Generic Program Visualization Systems for Introductory
Programming Education. ACM Trans. Comput. Educ. 13, 4, Article 15 (nov 2013), 64 pages. https://doi.org/10.1145/2490822

Andrew Taylor, Jake Renzella, and Alexandra Vassar. 2023. Foundations First: Improving C’s Viability in Introductory
Programming Courses with the Debugging C Compiler. In Proceedings of the 54th ACM Technical Symposium on Computer

Science Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery, New York, NY, USA,
346–352.

The Rust Programming Language. 2023a. rust-lang/miri: An interpreter for Rust’s mid-level intermediate representation.
https://github.com/rust-lang/miri/.

The Rust Programming Language. 2023b. rust-lang/polonius: De�nes the rust borrow checker. https://github.com/rust-
lang/polonius.

The Rust Survey Team. 2020. Rust Survey 2020 Results. https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html.
Je�rey Vander Stoep. 2022. Memory Safe Languages in Android 13. https://security.googleblog.com/2022/12/memory-safe-

languages-in-android-13.html.
Mitchell Wand. 1986. Finding the Source of Type Errors. In Proceedings of the 13th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (St. Petersburg Beach, Florida) (POPL ’86). Association for Computing Machinery,
New York, NY, USA, 38–43. https://doi.org/10.1145/512644.512648

Kevin C. Webb and Cynthia Taylor. 2014. Developing a Pre- and Post-Course Concept Inventory to Gauge Operating
Systems Learning. In Proceedings of the 45th ACM Technical Symposium on Computer Science Education (Atlanta, Georgia,
USA) (SIGCSE ’14). Association for Computing Machinery, New York, NY, USA, 103–108. https://doi.org/10.1145/2538862.
2538886

Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed. 2021. Oxide: The Essence of Rust. arXiv:arXiv:1903.00982
Lea Wittie, Anastasia Kurdia, and Meriel Huggard. 2017. Developing a concept inventory for computer science 2. In 2017

IEEE Frontiers in Education Conference (FIE). IEEE, New York, USA, 1–4. https://doi.org/10.1109/FIE.2017.8190459
Herbert Wolverson. 2021. Hands-on rust. Pragmatic Programmers, Raleigh, NC.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

https://doi.org/10.1145/2016911.2016921
https://doi.org/10.1145/2016911.2016921
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.1145/1953163.1953308
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker
http://smallcultfollowing.com/babysteps/blog/2018/04/27/an-alias-based-formulation-of-the-borrow-checker
https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/
https://msrc-blog.microsoft.com/2019/07/18/we-need-a-safer-systems-programming-language/
https://github.com/nikomatsakis/a-mir-formality
https://github.com/nikomatsakis/a-mir-formality
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/3291279.3339404
https://doi.org/10.1145/3451346
https://github.com/RalfJung/minirust
https://doi.org/10.1145/3372885.3373823
https://doi.org/10.1145/3547633
https://doi.org/10.1145/2490822
https://github.com/rust-lang/miri/
https://github.com/rust-lang/polonius
https://github.com/rust-lang/polonius
https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://doi.org/10.1145/512644.512648
https://doi.org/10.1145/2538862.2538886
https://doi.org/10.1145/2538862.2538886
https://arxiv.org/abs/arXiv:1903.00982
https://doi.org/10.1109/FIE.2017.8190459

A Grounded Conceptual Model for Ownership Types in Rust 265:29

Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. 2021. GhostCell: Separating Permissions from Data in Rust.
Proc. ACM Program. Lang. 5, ICFP, Article 92 (aug 2021), 30 pages. https://doi.org/10.1145/3473597

Anna Zeng and Will Crichton. 2019. Identifying Barriers to Adoption for Rust through Online Discourse. In 9th Workshop on

Evaluation and Usability of Programming Languages and Tools (PLATEAU 2018) (OpenAccess Series in Informatics (OASIcs),

Vol. 67), Titus Barik, Joshua Sunshine, and Sarah Chasins (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 5:1–5:6. https://doi.org/10.4230/OASIcs.PLATEAU.2018.5

Danfeng Zhang and Andrew C. Myers. 2014. Toward General Diagnosis of Static Errors. In Proceedings of the 41st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (SanDiego, California, USA) (POPL ’14). Association
for Computing Machinery, New York, NY, USA, 569–581. https://doi.org/10.1145/2535838.2535870

Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song. 2022. Learning and Programming Challenges of
Rust: A Mixed-Methods Study. In Proceedings of the 44th International Conference on Software Engineering (Pittsburgh,
Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY, USA, 1269–1281. https://doi.org/10.
1145/3510003.3510164

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 265. Publication date: October 2023.

https://doi.org/10.1145/3473597
https://doi.org/10.4230/OASIcs.PLATEAU.2018.5
https://doi.org/10.1145/2535838.2535870
https://doi.org/10.1145/3510003.3510164
https://doi.org/10.1145/3510003.3510164

	Abstract
	1 Introduction
	2 A Concept Inventory for Ownership
	2.1 Background
	2.2 Development
	2.3 Methodology
	2.4 Results
	2.5 Discussion

	3 A Conceptual Model for Ownership
	3.1 Dynamic Model
	3.2 Static Model

	4 A Pedagogy for Ownership
	4.1 An Illustrative Excerpt

	5 Evaluation
	5.1 Methodology
	5.2 Results
	5.3 Discussion
	5.4 Threats to Validity

	6 Related Work
	7 General Discussion
	Acknowledgments
	References
	A Appendix
	A.1 Ownership Inventory Snippets
	A.2 Permissions Model Proofs
	A.3 Comprehension Questions

