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ABSTRACT
Background and Context. Modern programming is replete with

features like closures, callbacks, generators, asynchronous func-

tions, and so on. These features can be subtle in their behavior and

interaction with the rest of the language, so students need notional

machines that are both accurate and manageable. We specifically

focus on stacks and their associated environments, which are key

to understanding these features.

Objectives. What conceptions do students have of stacks and

environments on entry to a tertiary, upper-level programming lan-

guages course?What impact does coursework around an interpreter-

based approach to programming languages education have on their

understanding? What is the value of the tooling we create for stu-

dents to express notional machine states?

Method. Our studies were conducted at two different institutions
in a tertiary, upper-level course on programming languages. The

intermediate interventions were different, but both used a pre-

/post-test format conducted at the beginning and near the end of

the semester. We also created a Snap!-based tool to assist in notional
machine description.

Findings. We found that students have a relatively weak under-

standing of stacks and environments at entry, and exhibited various

misconceptions. At one institution, which primarily relied on in-

terpreters, we found numerous problems persisted at the end of

the semester. At the other, which in addition to interpreters also

used direct instruction and the Snap!-based tool, students did much

better—but still not on aspects that we would have liked to have

transferred from interpreters.

Implications. Our findings suggest that it is important for other

educators to also assess their students’ understanding of stacks and

environments, especially in light of modern programming concepts.

Assuming similar misconceptions are widespread, we believe the

community needs to invest much more effort into notional ma-

chines, so that students can better understand the features and

programs they are working with. In particular, the “standard” stack
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presentation is insufficient and in some cases even “harmful” (since

it reinforces some misconceptions), and hence must be revised. Fi-

nally, our study forces a reconsideration of the learning objectives

met by interpreters in programming languages education.

CCS CONCEPTS
• Applied computing → Education; • Software and its engi-
neering→ General programming languages.

KEYWORDS
stacks, environments, misconceptions, scope, control

ACM Reference Format:
John Clements and Shriram Krishnamurthi. 2022. Towards a Notional Ma-

chine for Runtime Stacks and Scope: When Stacks Don’t Stack Up. In Pro-
ceedings of the 2022 ACM Conference on International Computing Educa-
tion Research V.1 (ICER 2022), August 7–11, 2022, Lugano and Virtual Event,
Switzerland. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/

3501385.3543961

1 INTRODUCTION
Modern programming uses a variety of rich control features, such

as generators, threads, callbacks, exceptions, coroutines, recursion,

and so on. These, in turn, can depend on first-class functions, such

as the lambda construct (henceforth, closures) of many languages.

Some of these can appear early in a programming curriculum, e.g.,

if a student programs GUIs, asynchronous input-output, or with

higher-order functions.

To make sense of these constructs, students need an accurate

notional machine. A key part of a notional machine for these kinds

of constructs is an accurate depiction of the stack, and of its related

name bindings (the mapping of variables to values). The premise

of this paper is that the traditional depiction of the stack, as a

sequence of self-contained frames, is insufficient and potentially

misleading, mirroring and even creating troubling misconceptions.

We investigate this in the context of courses on the principles of

programming languages, with students who already have extensive

programming background and some awareness of the stack from

prior systems programming courses.

Concretely, we address the following research questions:

(1) What understanding do students have of stacks at entry into

a tertiary, upper-level programming languages course?

(2) What problems remain after a term of instruction? In particu-

lar, is the interpreter-based approach (see section 2) effective

at addressing their initial misconceptions?

(3) What value do we find in the tooling we created for students

to depict stacks, environments, and heaps?
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2 THEORIES OF INSTRUCTION IN
PROGRAMMING LANGUAGES

There are many approaches to teaching programming languages.

Here we discuss those most relevant to this paper.

One approach, popularized by a number of widely-used books [1,

12, 16, 17], is based on definitional interpreters. Following the tradi-

tion of McCarthy’s [20] seminal paper, students write interpreters

for the essence of programming languages. This approach has the

virtue that the differences between languages can often be captured

very concisely: e.g., only a few lines of code distinguish eager and

lazy evaluation, and students can focus on the consequences of

these lines. This approach is constructionist (and hence construc-

tivist), because it believes there is value to students implementing

languages for themselves, giving them a medium with which to

experiment with language designs.

In the specific courses we study, students implement interpreters

in Racket [8], a descendant of Scheme, again following a long tra-

dition [1, 12]. Concretely, the courses both follow the textbook

Programming Languages: Application and Interpretation [17], which

is used at more than 50 institutions.
1

Another approach is the use of mystery languages (ml) [4, 24].
Here, students explore comparative linguistics by writing programs

in one syntax that is fed to multiple different implementations, each

of which may produce different answers. These answers represent

different language designs. For instance, when exploring different

designs for arithmetic, 1 + 2 may return 3 in all the implemen-

tations, but 1 / 0 may produce an error in one, NaN in a second,

and 0 in a third, reflecting what different languages have done. In

this approach, students are expected to construct programs to tell

apart the languages, using a version of the “scientific method”: they

explore until they hit on a difference, hypothesize the underlying

theory, derive consequences from the theory, generate new pro-

grams to explore those consequences, and run them to confirm

their understanding.

These approaches are complementary. Interpreters focus on im-

plementations, leaving the consequential behaviors for students

to derive. mls focus on behaviors, leaving the implementations for

students to derive. In both cases, students actively engage in con-

structing meaning through writing code. Traditionally, however,

as in our courses, interpreter approaches give students a fair bit

of initial instruction (with additional exploration found in writing

strong test suites!), while ml approaches tend to be more purely

exploratory, with minimal hints on how students should explore.

Another theory of instruction, not just for understanding lan-

guages but also for programming itself, is that notional machines [5]

are a useful and perhaps even necessary tool for program compre-

hension.
2
Being a kind of programming language semantics [18],

they connect directly to a programming languages course. We be-

lieve notional machines have been discussed in enough detail in

computing education that, given space constraints, we do not need

to belabor the point here; we refer readers to Sorva’s survey [27]

and dissertation [26]. We simply note that we adhere to this theory,

1
Information provided by the author.

2
We specifically use the term to mean a mechanical description of system behavior,

not a mental model in the student’s head.

and hence focus on the analysis of existing notional machines and

make progress towards a new one.

Terminology. There does not seem to be a canonical order for

stack growth. In our presentation, stacks grow “downward”. How-

ever, nothing in our work depends on this, and indeed we did not

observe (see section 7 and section 9) any problems in student work

that could be traced to the stack growing in a direction opposite

what they may have been taught earlier. To avoid confusion in this

paper, we do not refer to the spatial position of frames (“above” and

“below”, for instance), but rather to their temporal (age) ordering,
i.e., “earlier” or “older” and “later” or “newer” frames. Visually, older

frames will appear above and newer frames below.

3 RELATEDWORK
Sorva’s works [26, 27] provide an extensive discussion of notional

machines and visualizations. It is notable that most of these do not

cover features like closures and threads and/or have the problems

that we discuss in section 4.

The Python Tutor [14] is widely used. However, in our esti-

mation, its conflation of stack frames and environments leads to

non-stack-like popping of intermediate frames; its handling of un-

bound identifiers may or may not resolve scope misconceptions;

and its line-orientedness and lack of context information (see sec-

tion 8) makes it a poor fit for programs with fine-grained returns.

Finally, it does not handle control features like threads, concurrency,

and asynchrony at all (which, again, would benefit from context

information). We have looked for formal evaluations of its visu-

alization. Unfortunately, neither our searches nor the references

cited by Guo [13] yield papers that focus on the features we cover

in this paper: the only usability evaluations are for rudimentary

programs, for which Python Tutor may be well-suited.

Other authors have proposed visualization systems that do bet-

ter:

• Sorva’s UUhistle [26] uses evaluation-context-like context

descriptions (see section 8), and has been tested for usability.

However, it may suffer from suggesting dynamic scope due

to the placement of frames. We do not believe this aspect of it

has been evaluated. It also does not support more advanced

control like generators. A recent paper discusses many more

tools that are expression- rather than line-oriented [6, section

6.2.6], but most of these lack evaluation, especially of the

aspects we focus on.

• Pollock, et al. [23] present Theia, a framework to generate
notional machine visualizations. Their paper echoes some

of our criticisms of visualizations in Python Tutor (e.g., in

the handling of closures and suggestion of dynamic scope).

However, the paper does not include any evaluation of Theia.

• How to Design Programs [7] provides a correct and complete

series (based on language levels [11]) of notional machines

using substitution. This is also implemented by the Racket

Algebraic Stepper [3]. However, we have encountered sev-

eral usability problems with this tool. Unfortunately, we are

not aware of any usability evaluation of the tool at all. Our

contexts (see section 8) are inspired by the Stepper but also

attempt to fix the problems that we have seen.



Towards a Notional Machine for Runtime Stacks and Scope:
When Stacks Don’t Stack Up ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland

Figure 1: Call Stack (from Wikipedia). [Image credit:
R. .S. Shaw, placed in public domain.]

Both Lewis [19] and Tunnell Wilson, et al. [28] ask students to hand-

trace recursive programs using a substitution notional machine.

Though they have somewhat different details, both use this to gain

interesting insights into student performance. The latter work, in

particular, also shows the shortcomings of hand-tracing, which

motivates our tooling effort (see section 8).

Beyond the above literature, we also conducted an informal

survey on stacks education through colleagues and social media.

We find that:

• Many, including ones who use closures, do not use a clear

notional machine for environments and stacks at all.

• Some use the conventional pictorial representation, which

has many difficulties (section 4).

• Some use Python Tutor, which they acknowledge can be

misleading or confusing for some of their programs.

• Some use an environment model [1]. This addresses issues

of scope but not necessarily those of the stack and their

interaction.

• Some use a substitution model [7], including its materializa-

tion in the DrRacket Stepper [3]. While this is technically

correct and in principle covers all issues, they report that

has numerous human-factors problems in both the notional

machine and its visualization.

4 TECHNICAL BACKGROUND:
(MIS)CONCEPTIONS

As a representative of a “typical” depiction of the stack, we use

the image found on Wikipedia (fig. 1). Set against this type of

representation, we discuss some of the issues that motivate this

paper. We do this through four small, illustrative programs that

help motivate why a student might need a notional machine, and

for which an overly simple notional machine might be insufficient

or even misleading.

Closures Outlive Stack Frames. Consider this program:

def f(x):
return lambda y: x + y

p = f(3)
p(4) # should produce 7

In the traditional stack drawing, x is allocated on the stack, but dis-
appears once f finishes evaluating. Therefore, when p(4) evaluates,
it is reasonable for a student to assume that x has been lost, and

that the program results in an error. In fact, we saw some students
provide exactly this explanation (see section 7). Thus, the traditional

drawing is actively misleading.

Observe that the returned lambda is itself a first-class value

whose lifetime exceeds that of the stack frame that created it. There-

fore, the environment of that closure also needs to have an existence

independent of that stack frame. Either x is initially allocated on

the stack and subsequently moved to some environment structure,

or it is allocated onto the heap right away.
3

Control and Name Lookup Chain Differently. Now consider this

program:

def f(x):
return g(x + 1)

def g(y):
return y + x

f(3) # error: `x` is not defined

In this program, x is not in the scope of g, resulting in an error.

However, in a stack drawing, x is present in f’s frame, which is

the next frame. Furthermore, students have been conditioned that

the stack “goes to the next frame after the current one”, without

necessarily realizing that this applies only to the control portion

of the stack, not the data. Hence, it is easy to incorrectly conclude

that this program also produces 7. Again, we saw some students
provide exactly this explanation, sometimes justifying it using the

stack drawing (see section 7).

Unfortunately, then, this representation leads students naturally

to dynamic scope (when the value of a variable is given by the most

recent binding in execution order, rather than from where it was

bound in the source program). Dynamic scope has an infamous

history in programming language design, having been present in

the original LISP before it was removed. It was also present in

original versions of Python and JavaScript before having to be

steadily excised from them. In JavaScript, especially, its presence is

a source of security attacks. Therefore, it is important for students

who might design languages (which is a premise of the particular

courses being studied studied in this paper) to be cognizant of and

avoid making this mistake.

At a mechanical level, the problem here is a clash between the

two purposes of the stack: to represent control and to represent the

environment. These two entities chain differently. Control chains
in the order of frames in the stack. The environment, however,

chains to the environment that was present at its point of creation.

The traditional stack drawing, and its interpretation, largely or

3
This distinction corresponds to what different language implementations also do [2].

However, a notional machine is free to use a model that does not correspond to the

underlying implementation.
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entirely neglect the latter, inducing or reinforcing this dangerous

misconception.

Depicting Fine-Grained Return is Tricky. Third, consider this pro-
gram:

def lucas(n):
if n == 0:

return 2
elif n == 1:
return 1

else:
return lucas(n - 1) + lucas(n - 2)

lucas(5)

In principle, each stack frame has a return address. However, this is
difficult to present in a useful, human-comprehensible manner, so

many visualizations instead point to a line of code. Unfortunately,
where there are multiple possible calls on a line, it can be very

difficult to keep track of which calls are in progress and which

are pending, and what the value is of the computation so far. Such

visualizations are therefore not very useful even for classic program

comprehension tasks like tracing recursion.

Modern Control Requires Multiple Stacks. Finally, consider this
program, which uses a Python generator:

def nats():
n = 0
while True:

yield n
n = n + 1

ns = nats()
next(ns)
next(ns)
next(ns)

How is a student to make sense of this computation? At the point

where the generator yields, the generator does not stop computing

the way a function would; rather, it suspends its computation. Thus,

a student needs to accurately track the current state of the generator

separately from that of the rest of the program. (Observe that in

Python Tutor, the value of n disappears from the heap between calls

to next, which is inaccurate and hence misleading.)

Moreover, generators in Python are quite simple. In some lan-

guages, generators can call other functions, which can perform the

yielding. Therefore, each generator needs its own local stack to

keep track of what remains to be done.

Of course, even in Python, other operations require multiple

stacks, e.g., threading. However, Python Tutor does not support

threading (the “unsupported features” document includes “Multi-

threaded / concurrent / asynchronous code”). Therefore, it does not

need to confront this issue. However, students who are going to

work with control features used in modern languages need a way

to depict and hence understand them.

Summary. These programs demonstrate that even quite simple

examples, of the sort that can occur early in some tertiary education

curricula, demand quite a rich notional machine. In the absence

of one, students either have no ability to explain program behav-

ior or, worse, arrive at the wrong conclusions. Unfortunately, the

traditional stack presentation is inadequate or even misleading for

all these examples. (The last class of issues can be addressed using

multiple stacks, but each of those stacks is subject to the earlier

problems.)

PAPER PLAN
In section 5, we describe the two contexts in which we conducted

our studies. Next, we describe the overall structure of our study: sec-

tion 6. We then describe the results of the pre-test (section 7) and

post-test (section 9). In between (section 8), we describe the tooling

that we introduced with the hope of improving the quality of post-

test responses. After presenting threats to validity (section 10), we

discuss the research questions and other issues in section 12.

5 STUDY CONTEXT
We ran studies at two universities in the USA. At both, the studies

were conducted in the context of an upper-level course on program-

ming languages in which students wrote interpreters that imple-

mented the features studied here. These do not teach programming
but rather assume knowledge of it, and instead study the design

and implementation of languages, following ideas from section 2.

We describe them in turn.

Priv. is a highly-selective private university. It runs on a se-

mester schedule; the instruction time runs for three months. Some

entering students have programmed only in mainstream languages

(primarily Java and some Python), while others (a majority) have

also programmed in Racket, OCaml, Java, Pyret, and other func-

tional languages. About 75% students have also taken one or more

second-year courses that use C and explore low-level computer rep-

resentations (including the details of the stack). The post-graduate

students (especially PhD students) come from other institutions

and therefore may have a more varied background.

In Fall 2021,116 students completed the course. Students enter

the class with a variety of backgrounds. 72% had finished two or

three years in college (with extensive programming background);

about 11% were post-graduate or other students. Only 16% were

second-year students, but most of these had extensive high school

computing. Many students had also done one or more summer

internships in industry.

Instructionally, the course used both the interpreter and ml ap-

proaches described in section 2. It also used other methods (such as

quizzes) to try to develop students’ mental models of programming

language semantics. A particularly constant theme in the class was

the importance of avoiding dynamic scope. This was reinforced

through interpreters, mystery languages, as well as other activities,

and through extensive lecturing (to the point where, when teaching

assistants prepare recruiting materials, they use the tagline, “Want

to join the crusade against dynamic scope?”). The course also made

use of the tooling presented in section 8, using it live in several

lectures as well as in lecture notes.

Since students are free to drop the course even late in the semes-

ter, we limited our analysis to students who had completed both the

pre- and post-tests. We also made the post-test optional, to reduce

the workload on students near the end of the semester. Thus, in
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the end we had 69 student responses to evaluate. We do not believe

this materially affects the result of this formative study. The issues
we find are a clear lower bound on the set of problems that students

might have in the class.

Pub. is a public university. It runs on a quarter schedule; the

instruction time runs for 10 weeks. The course is required. It is

indicated for students at the end of their second year of study, but

is taken later by many. Indeed, as it is not a prerequisite for any

other courses, students often take the course in their last quarter.

Students entering this course have done required work in Python,

Java, C, and Assembly, with several courses that discuss stacks at

both the C and Assembly level. Typically, about a tenth of the

students have some prior self-guided exposure to functional pro-

gramming. In Winter 2022, running from January through March

2022, the studied section of the course held 27 students, all under-

graduates; one had sophomore standing, three had junior standing,

and the remainder all had senior standing.

Pub’s curriculum in this course is a much purer representative

of the interpreter approach, following its textbook [17] closely and

focusing almost entirely on the process of understanding language

features by implementing them as part of an interpreter. The course

did not use mls or any stack-modeling tool.

Sampling. Due to the large amount of effort it takes to assess

each student submission on each problem, for this formative study,

we randomly sampled 50% of student submissions at each of the

institutions from each of pre- and post-tests. However, we did also

eyeball the submissions that were not assessed deeply to confirm

that there were no surprising results that would materially throw

off our findings.

6 STUDY DESIGN
Our study had two rounds. Though we use the term “test” below,

students were not given any course grade in return for this work. At

Priv, the instruments and rounds were modified on-the-fly based

on prior student responses. The instructor, however, has a prin-

ciple of announcing all graded work before the semester begins

and adhering to these dates. Therefore, this work could not be

administered for a grade. Pub offers three sections of the course

that have to agree on a shared grading schema, and we had access

to only one section. At both institutions, in return for the lack of

grading, we expect vastly less potential for academic dishonesty,

giving us a much purer view of student performance. Furthermore,

from reviewing student responses, we can see that students took

the work seriously; even though their work contained mistakes, it

was not frivolous.

Pre-Test. The pre-test was administered early in the course, be-

fore students were exposed to any course material on stacks or

interpreters. This was to obtain a sense of their incoming notions

and conceptions of this material. Concretely, students were given

the programs shown in fig. 2 and asked to draw the stack (through

any means they wish) at the point(s) when the programs paused.

How do we unambiguously indicate the point of a pause? We

were concerned that various graphical notations may be unclear.

For that reason, we included the following pause procedure with
every program:

fun pause():
# suspend here before continuing computation ...
0

This has no effect on the computations (because it returns 0 to

positions that perform addition). We believe this gives us a clear

and consistent way to describe a moment in the computation. This

appears to haveworked, andwe did not notice any confusion caused

by this choice of notation.

The programs were designed to capture the following:

(1) Simple function call behavior.

(2) Handling of global and local variables.

(3) Keeping track of the state of a loop.

(4) Dynamic scope (students should consider this program erro-

neous).

(5) Function calls in a parameter position.

(6) Recursion. We intentionally chose a program that was not a

standard recursive function they might have seen before, so

they could not depend on recall.

(7) Nested functions.

(8) Functions returned as values, requiring closure creation.

Students were explicitly told that the programs were in a “hy-

pothetical infix syntax meant to represent an idealized language

reminiscent of Python, Java, OCaml, Scheme, etc.”. This was inten-

tional: we wanted them to use a standard model of evaluation and

not get bogged down in the whimsical details of specific languages

such as Python [22]. Thus, the instructions also said, “In case you

happen to know about some peculiar behavior of any of those

languages, don’t assume it here, because this is meant to repre-

sent what is common to all these languages” (emphasis in original).

Indeed, we did not get any inquiries from students about the mean-

ings of the syntax they were given, and we observed only a few

instances where the syntax might have been a cause of confusion.

(Concretely, though the instructions explained it, some students

were not accustomed to seeing a “functional” style where the body

of a function automatically returns a value; they expected to see

an explicit return statement. But most students were able to infer

this without difficulty.)

Students were asked to do three things for each program: “draw

the stack” at the point where the program calls pause, indicate the
final value produced by the program, and describe whether the

stack helps them in determining the answer (and if so, how).

Our interest is in the conceptions students have of the stack

coming in. Students who have either never studied it formally (like

some at Priv) or are do not feel familiar with it (at either institution)

may well have various misconceptions, but those are not relevant to

our study. We wanted to focus on those students who self-identified

as being familiar with stacks. Therefore, the study first asked them

whether they were “familiar with the computer’s run-time stack,

as covered in systems courses”. To avoid confusion, it added, “Note:

not the generic stack *data structure* from introductory computing”.

Students who answered negatively were led to the egress. Those

who answered affirmatively were asked to confirm both parts again.

Our findings are only from those students who self-identified as

being familiar with stacks.

For each of the programs in the test, students answered three

questions: What the stack looks like at the point (or points!) where
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1

2

3 PROGRAM 1
4 ---------
5

6 fun f(x,y):
7 x + g(y + 1)
8

9 fun g(z):
10 z + pause() + z
11

12 f(2, 4)
13

14 ---------
15 PROGRAM 2
16 ---------
17

18 z = 19
19

20 fun f(x,y):
21 q = 9
22 x + pause() + y + q
23

24 f(2,4)
25

26 ---------
27 PROGRAM 3
28 ---------
29

30 fun f(x):
31 ans = 0
32 for y in range(0, 5): # y has values 0 through 4
33 if (y == 2) or (y == 3):
34 ans = ans + g(y + x)
35

36 fun g(z):
37 pause() + z
38

39 f(1)
40

41 ---------
42 PROGRAM 4
43 ---------
44

45 fun f(x):
46 g(3)
47

48 fun g(y):
49 pause() + y + x
50

51 f(2)

1

2

3 PROGRAM 5
4 ---------
5

6 fun f(x):
7 g(g(x - 1) - 1) - 2
8

9 fun g(y):
10 pause() + 1 + y
11

12 f(9)
13

14 ---------
15 PROGRAM 6
16 ---------
17

18 fun f(x):
19 if (x < 0):
20 pause() + 4 + x
21 else:
22 f(x - 2)
23 end
24

25 f(3)
26

27 ---------
28 PROGRAM 7
29 ---------
30

31 fun f(x):
32 fun g(y):
33 pause() + x + y
34 g(99)
35

36 f(4)
37

38 ---------
39 PROGRAM 8
40 ---------
41

42 fun f(x):
43 fun g(y):
44 pause() + x + y
45 g
46

47 fun h(i,x):
48 i(4)
49

50 h(f(3),5)

Figure 2: Pre-Test Programs
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pause is called, what the program produces (which could include

an error), and whether the stack diagram helped them figure out

what it produces.

Post-Test. The post-test was administered after students had com-

pleted all the educational components. The programs used in the

post-test are shown in fig. 3. These were based on what issues

were left from earlier rounds at Priv, and capture these important

aspects:

(1) Multiple function calls, with the return of at least one func-

tion before the use of pause.
(2) Function calls in a parameter position.

(3) Simulation of i/o and global state mutation, showing the

suspension and resumption of computation.

(As such, there may be—and indeed, appear to be (see section 9)—

more issues left at Pub.)

At Priv, the post-test was given in the third month of the course,

near the end of the semester. This was actually the fourth round of

the study. Two intermediate rounds occurred in preceding months.

Both used simpler forms of the stack visualization tool described

in section 8, and students were sent auto-graded feedback and

shown reference solutions. Thus, students taking the post-test had

received feedback about prior mistakes and had had a chance to

practice with the tool. Of course, there is no reason to believe all

students paid particularly close attention to the feedback, especially

because it was not tied to any course grade. To keep the workload

reasonable we consolidated and eliminated questions based on the

feedback from each round, which is why the post-test instrument

is much smaller; including more questions may very well expose

more misconceptions.

At Pub, the post-test was given in the final week of the course. To

harmonize with the other sections, the instructor had not used the

stack visualization tool in the course. However, the Pub students,

like those at Priv, had implemented interpreters that made explicit

use of environments, including a careful examination of the role

of closures, the necessity of capturing the environment at the time

of closure creation, and the importance of supplying that captured

environment to the evaluation of the called closure’s body. This

had been the explicit subject of lectures as well.

Evaluation. For both rounds, student workwas evaluated by both
authors, who used the methods of grounded theory to create rubrics.

The pre-test rubric is shown in fig. 9 and fig. 10. The evaluation

elements were grouped into five “axes”. After 3 rounds over the

course of a month, we achieved Cohen κ scores of 0.84, 0.90, 1.0,

1.0, and 1.0 along the five axes. These axes are indicated by textual

prefixes: e.g., the b/ in b/missing indicates the “behavior” axis.

Not all codes can apply to all programs. Whenever a rubric

element contains numbers in parentheses (such as b/pop(358)), it

means the code should only occur in the programs listed (in this

case, 3, 5, and 8).

Both authors then used this rubric as a starting point for the

post-test evaluation. We examined student submission samples to

look for codes that should be either added, dropped, or modified.

The end result was the rubric shown in fig. 11 and fig. 12, including

an additional axis to capture whether students elected to use the

Snap!-based tool in their post-test. Developing this rubric required

3 rounds over the course of 3 weeks, and we ended after achieving

κ scores of 0.74, 0.76, and four axes with perfect agreement.

When a code is listed as unchanged, it means we retained the

same meaning and even the same prose, except for modification to

reflect the new problem numbers.

What changed in the latter rubric? Because of the semester of

educational intervention, one in which—in particular—students im-

plemented interpreters with explicit environments and closures, we

expected students to do a much more detailed job of environments;

they did, resulting in codes for environments (e/) (fig. 11). At Priv,

issues with closures seemed to disappear, so we dropped those

codes. (This was less true of Pub, but we used the same instrument

and rubric for both.) The other big change is that, having given

Priv students a representation of the control context, we expected

students to use it. This led to significant extension of the c/ codes

(fig. 12) to cover their use and misuse.

7 FINDINGS: PRE-TEST
At Priv, 86 of 119 students indicated they were familiar with

the stack. All but two reported having had one or both of the

intermediate-level systems courses at Priv or a comparable course

elsewhere, and in some cases had also had upper-level systems

courses (like compilers) that had discussed the stack.

At Pub, 25 of 27 students indicated that they were familiar with

the stack. Every one of the students reported having taken the same

preparatory course, an introduction to C and basic UNIX system

calls.

Students generally got the answers to the given programs right,

with these notable exceptions:

(1) Some students were thrown off by the dynamic scope prob-

lem, for which they incorrectly gave the wrong answer, in

some case directly attributing it to the stack diagram (e.g.,

“the variable x was in scope, since it was in a higher/parent

stackframe”). Even more interesting were some of the writ-

ten answers from students who got the right answer. Figure 4
gives some representative student comments and our obser-

vations on them.

(2) On the last problem, over a third of the respondents at Priv

and more than a half at Pub thought it produces an error. We

have seen this in other settings also, where students assume

a function name not followed by a call must be an error,

rather than the function being referred to as a value.

Of course, we can simply put this down to lack of experience

with functional programming. Much more interesting is that

even the correct answers largely had little to no idea about

how the stack applies to such a program. As comments in

fig. 4 and their ilk indicate, students were only used to think-

ing of the stack for “stack-based” languages like C. Program 8

requires the creation of a closure, which effectively “extracts”

the binding part of the stack frame onto the heap. Students

were clearly not trained to handle such programs.

Quantitatively, fig. 5 shows the results from coding. We present

numbers as percentages because some codes apply to only a few

problems (e.g., b/missing only applies to programs 3 and 5), so
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1 PROGRAM 1 PROGRAM 2
2 --------- ---------
3 fun k(i, j): fun f(x):
4 i + g(j - 1) + h(j) g(k(x))
5

6 fun g(w): fun k(w):
7 w + 7 (w + pause()) - 4
8

9 fun h(a): fun g(z):
10 z = a + 1 z + 1
11 a + pause() + z
12 f(2)
13 k(8, 14)
14

15

16 ---------
17 PROGRAM 3
18 ---------
19 prompt = ""
20 response = 0
21

22 # Observe that reading a value from a user requires pausing the program.
23 # To avoid getting into all the details of input-output, we simulate it as follows:
24 # The prompt string provided is assigned to `prompt`.
25 # Assume this is sent to the user, who types a response.
26 # Their response is assigned to `response`.
27 # The `read` procedure then returns this value, as if the user had typed it in.
28

29 fun read(new_prompt):
30 prompt := new_prompt
31 pause() # Assume that `response` is set BEFORE the call to `pause` begins
32 response
33

34 print(read("First number") + read("Second number"))
35

36 During the evaluation of this program, assume that during the first call to pause
37 the global variable response is set to 11, and during the second call it’s set to 4.

Figure 3: Post-Test Programs

absolute numbers would look artificially small.
4
We round to the

nearest whole number for simplicity.

Some data stand out. Most of all, we see numerous instances of

problematic codes like b/pileup, bnd/noparams, and bnd/nolocals.

Many students did not consider the control portion of the stack at

all (c/none). The fact that about 20% of Priv students drew con-

texts is probably explained by the fact that one of the introductory

courses teaches functional programming using a substitution-based

notional machine [7]. In the other direction, all Pub students were

required to have taken a systems class, which probably explains

the much larger ratio choosing byte representations.

4
There is a slight imprecision here: a handful of codes applied to other problems, e.g.,

if a student asserted that a program doesn’t run at all and hence there is no stack,

this too would be a b/missing. However, there were only a few of these cases, so the

numbers are still very broadly representative.

Also, in an open coding exercise such as this one, there are

bound to be a number of uncategorizable errors, marked here with

b/othererr. In a number of these, certain frames of the stack are

simply omitted without obvious cause. In quite a number of them,

students imagined that a program containing the code f(g(x))
would have a stack showing a call to g inside a call to f. At least
one student indicated that the stack would be nonexistent because

the program could be compiled to run entirely in registers. Finally,

several of them produced representations that we were unable to

map to any notion of a “stack” whatsoever.

8 STACK REPRESENTATION TOOLING
Pre-Test Lessons. One highlight of the pre-test responses is the

utter lack of standardization in stack drawings we saw. Even though

prior classes had used fixed notations, essentially no two students
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Student Comment Commentary
“yes? it made me think x was still available to fun g(), though I am

not sure how the scope is defined in this assignment”

A few students found the traditional stack diagram actually inspired

a dynamic-scope misconception.

“Not really, since scoping rules are the determining factor here and

a stack by itself seems to imply global scope”

This is similar to the previous comment: the stack seems to suggest

all variables are in scope, even though the student realizes they

should not be.

“It helped to see f and g as two different stack frames to see that x
was not in scope for g.”

Several students wrote answers that suggest that a function can

never refer to variables from another frame, which is false in the

presence of first-class functions.

“The stack actually created some confusion for me on this one as I

realized I wasn’t sure how to show what part of the stack a func-

tion had access to. I believe this would error, but just by looking

at the stack (at least how I have been drawing them), that is not

immediately apparent.”

Here the student realizes the stack ought to help them find the scope

problem, but can’t see how.

“the way I drew it, it wasn’t useful for determining scope. i’m not

particularly sure how the stack and scope interact.”

Some students found themselves simply confused about scope by

the stack diagram, even though the stack ought to be useful precisely

for determining what is and isn’t in scope.

Figure 4: Student Comments from the Pre-Test

Code Priv Pub

s/bytes 50% 82%

s/logical 46% 9%

b/missing 13% 36%

b/extra 1% 1%

b/pop 68% 30%

b/pileup 8% 15%

b/tailcall 3% 3%

b/othererr 7% 30%

c/addr 33% 36%

c/ctxt 20% 0%

c/none 46% 55%

bnd/params 78% 77%

bnd/noparams 20% 14%

bnd/locals 88% 73%

bnd/nolocals 18% 23%

bnd/noclosures 1% 1%

clo/opaqe 47% 27%

clo/clear 18% 9%

Figure 5: Qualitative Analysis of Pre-Test Responses

drew stacks the same way. Many seemed to invent notations on

the fly, use the stack as a scratchpad, and so on. Out of respect for

the students we choose to not reproduce any of their images here,

but some are quite extreme and took a great deal of time for the

two (expert) authors to decipher; others are excessively simplistic.

Another highlight is how few students had means to represent

what remains to be done in the computation. Many did not even

seem to realize this is (half) the job of the stack! Even many of

their written comments suggested they did not have a clear under-

standing of this point. Unfortunately, this means that they probably

do not have a good model for control operations such as threads,

coroutines, generators, etc.

Design Goals. We therefore devised a new visual representation.

We focused on showing the instantaneous state of the system (stack,

environment, and heap). A full notional machine of course also

requires rules of program execution, but our students already had

significant prior programming experience. For a more elementary

class, our representation can easily be combined with a model of

execution.

We wanted students to be able to describe system states for

us. This meant we had to minimize tedium, error, and boredom,

to avoid problems noticed in prior work [28] where students got

bored and skipped steps.

Our ultimate goal was therefore to create a tool that would (a)

facilitate state rendering, (b) provide a standard notation, and (c)

nudge students towards representing what remains to be done in

the computation; our hope was to also direct students away from

misconceptions.

This implied several features:

(1) We wanted to keep a familiar “stack” feel, with the ability to

“push” and “pop” frames.

(2) We wanted the stack frames to refer to familiar components

such as the parameters and local bindings. We also wanted

each frame to have an explicit record of what remains to be

done.

(3) We wanted to avoid the dynamic scope misconception (sec-

tion 4). This required making the variable resolution process

explicit, and separate from the stack order.

(4) We wanted to make it possible to capture how closures keep

track of variables bound in their lexical context. This is diffi-

cult to do if all variables are allocated on the stack, because

when a call finishes, those variables disappear. Instead, these

bindings must reside outside the stack frame.



ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland John Clements and Shriram Krishnamurthi

Figure 6: Palette of Notional Machine State Blocks

Tooling Choice. We were initially inspired by the notion of Par-

sons problems [21], and intended to repurpose a Parsons library—

using linear stack frames rather than program statements. Because

we wanted students to actively fill in parts of the frames and

even whole frames, we considered the faded Parsons problems

toolkit [29]. However, this is still a fairly restrictive environment,

without room to accurately depict detached environments as well

as closures and other heap-allocated values.

Instead, we successfully repurposed Snap! [15] for our purpose.
Snap! blocks have all the features we want—easy to construct, easy

to manipulate, unambiguous, visually distinctive, available in a

structured format for automated assessment, etc.—while being flex-

ible and not limited to just one dimension.

Block Design. We created a Snap! configuration that gets rid of

all the pre-existing blocks and has only a small number of custom

blocks that we defined, shown in fig. 6:

Stack Frames These intentionally do not record variables lo-

cally, but rather in a separate Environment Frame, identified

by an address. This enables bindings to outlast a function call,

as required by closures. The Call field records the function

call that caused the current frame to appear on the stack, and

the Context reflects what remains to be done in the compu-

tation (explained in more detail below). These are chosen to

be blocks that can be “stacked” vertically. The Environment

reference must be numbers.

Environment Frames These blocks record the parameters

and local variables. Their Rest field is used to chain refer-

ences; this chaining can follow lexical scope rather than the

calling order (to avoid dynamic scope). These blocks are in-

tentionally chosen to not be “stackable”. Both Address and

Rest are constrained to be numbers.

Closures These are heap-allocated values that contain the

code of a function and “close over” its defining (lexical) envi-

ronment. The address and Environment fields are similarly

required to be numeric. All Parameters and Local Variables

slots are arrays of Bindings. Every Call and Body slot is code.

Mutable Vectors These representmutable, heap-allocated data.

They were used in class but not in this paper.

Solution to Problem 1

Solution to Problem 2

Solution to Problem 3, First Stack

Solution to Problem 3, Second Stack

Figure 7: Solutions to Post-Problems
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Problem Number These blocks are to help the auto-grader.

These blocks were introduced incrementally at Priv. The first

round (pre-test) had no blocks at all. In the second round students

were given Stack Frames with Contexts but with the content of the

Environment Frame inlined, much like the standard stack diagram.

In the third round the Environment Frame separated from the stack,

and the Closure data structure was introduced. Mutable Vectors

were introduced for use during lecture before the fourth round

(post-test).

Based on these blocks, fig. 7 shows the solutions for the post-test

problems. It is important to remember that these Snap! configura-
tions are not programs; it does not make any sense to “run” these.

They are just visual depictions of instantaneous program states; i.e.,

we are using Snap! purely as a drawing medium.

We chose numbers to represent references for two reasons. First,

very simply, even if we had preferred drawing direct arrows, this

is currently not possible with Snap! . Second, numeric references

do confer a degree of authenticity, since they reflect how memory

addressing works.

Utility for Instruction and Assessment. We note that this tool is

very useful in both in-class instruction and in written notes. Due to

draggability and the small amount of typing, it was very useful for

generating stacks on-the-fly in class. It also became easy to generate

(and, by saving the xml file, modify) stacks for inclusion in notes.

In addition, it may help students to use exactly the same imagery in

the notes, on screen in class, and in the student assignments. (The

lack of tooling may explain the wide variation we saw in the pre-

test. This leaves students to their own devices, resulting potentially

in both lack of reinforcement and divergence in presentation.)

This tool also greatly simplifies providing feedback. It is essen-

tially a drawing medium that produces unambiguous, structured

output. Thus, students can quickly get automated responses. It also

aids manual assessment by producing standard and clear visuals.

Contexts. Finally, we explain the Context field of a Stack Frame.

Evaluation contexts are a standard mechanism in programming

language semantics [9] for expressing what remains to be done

in the computation, i.e., both the binding and control part of the

stack. We adapt this idea to our context. At every function call, the

Context is an expression that shows what remains to be done in
this function and Call shows what the newer frame will compute.

This avoids the “return line” problem (section 4).

The expression []—called the “hole”—stands for where evalua-

tion is currently occurring, i.e., the hole will be filled in by whatever

is returned by the newer stack frame. All sub-expressions that have

finished evaluating are replaced with their values; all those waiting

to evaluate are left as source (e.g., 14 + [] + z in Problem 1). For

instance, when evaluating lucas(4) (section 4), we will see the

context [] + lucas(n - 2) with the Call lucas(3), and later

4 + [] (where lucas(3) is 4) with the Call lucas(2). In particular,

in the presence of mutable variables, it is important to not substitute
variables with values prematurely, since those values may change

before the variable is eventually evaluated.

A full discussion and formalization of these contexts can be

found in other work [9] and is outside the scope (and available

space!) of this paper. In addition to the explanations above, the

Code Priv Pub

scorable 95% 83%

snap 82% 0%

s/bytes 0% 42%

s/logical 95% 42%

b/missing 0% 8%

b/extra 1% 0%

b/pop 79% 67%

b/pileup 12% 13%

e/separate 85% 0%

e/chain 55% 0%

e/badchain 49% 83%

c/addr 0% 0%

c/ctxt 95% 15%

c/nohole 7% 4%

c/subright 1% 0%

c/other 12% 0%

c/none 0% 65%

bnd/params 94% 63%

bnd/badparams 1% 21%

bnd/locals 97% 83%

bnd/badlocals 3% 0%

bnd/toplevels 85% 46%

bnd/badtoplevels 10% 33%

Figure 8: Qualitative Analysis of Post-Test Responses

reader can also see examples of their use in fig. 7. In particular,

we note that integrating this into the course at Priv was effective

and the notation was easily within reach of students, as section 9

shows.

9 FINDINGS: POST-TEST
Students were asked to present the outputs of programs. In contrast

to the pre-test, students essentially predicted the answers correctly

(excepting some arithmetic mistakes).

We therefore focus on coding the post-test state presentations.

These are shown in fig. 8. As before, codes are shown as a percent-

age of students who had them, and normalized for the number of

problems that could have manifested that code. Thus, with 83% of

Pub solutions scorable, the 83% with a c/badchain tells us that all
scorable solutions had a bad environment lookup chain!

Overall the results are fairly good for Priv, which is perhaps

unsurprising (and a relief) given multiple rounds of practice (in-

cluding feedback) with increasingly richer notional machines. We

see high use of Snap! , and quality use of contexts. Students remain

somewhat confused about where to put top-level variables, which

we can attribute to our pedagogy, which may have left this unclear.

Two issues stand out. One is the number of students who still had
b/pileup (i.e., treating the stack like a journal rather than as a struc-

ture with pops in addition to pushes). The other is the large number

of b/badchain. Because correct environment chaining in the in-

terpreter was an explicit topic of class lecture, textbook coverage,

as well as implementation, and students were expected to write a

number of tests that covered this as well, we see a clear failure to
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transfer from the various interpreter-related settings—as well as

the various exhortations against dynamic scope—to this setting.

The results are much worse for Pub. Because Pub did not have

several intermediate rounds, didn’t use Snap! in class, and didn’t use
all the educational techniques that Priv did, it is not surprising to

see a difference. That said, Pub is a much more accurate evaluation

of a “pure” interpreter-based class (see section 2). These numbers

show that such an approach leaves a great deal wanting if we want

students to understand the features discussed in this paper.

Identifying which of the interventions at Priv were necessary to

close this gap, and also what Priv needs to do to fix its remaining

issues, remain open tasks for future work.

10 THREATS TO VALIDITY
This work naturally has many threats to validity. We discuss them

below. In general, our work does not carefully tease out the effect

of specific curricular interventions.

Internal Validity. Our studies were conducted without grade

pressure. However, our reading indicated that students took the

work seriously. (Student submissions were not anonymous.) By

making the post-test optional at Priv, we obtained responses from

only a subset of students; expanding the population could affect

the percentage of students exhibiting difficulty in either direction.

Also, students might be learning about stacks from other concurrent

courses; this could aid or hurt their performance on our instruments.

External Validity. Our work is clearly difficult to extract from our

specific contexts. The nature of the institutions and their students,

the students’ programming background, and the particular interme-

diate systems programming courses they took, would surely have

a big impact. Despite these differences, however, we find problems

across the two institutions. This suggests the problems are unlikely

to be isolated, and would benefit from a large-scale, multi-national,

multi-institutional [10] study.

Ecological Validity. Our use of small and artificial programs helps

us keep the study manageable. It is tempting to expect that larger

programs would only exacerbate these problems. However, the use

of an artificial language not only reduces familiarity, it also robs

students of tools (such as debuggers) they can use in practice. In

general, it remains unproven that students actually need notional

machines to understand and debug programs. Nevertheless, we find

it difficult to imagine that misunderstandings of basic concepts like

the stack would not translate into real-world difficulty.

11 RESEARCH ETHICS
Per Brown University’s Institutional Review Board guidelines, our

work does not require review. Nevertheless, we have applied stan-

dard research protections to protect our students.

12 DISCUSSION
Answering the Research Questions. Based on the above, we find

the following answers to our initial research questions:

(1) At entry, we find that students have a somewhat poor under-

standing of stacks. They have difficulty with its relationship

to scope, which is exhibited when asking them to reason

about a program that relies on dynamic scope to run. Only

68% of the submissions from Priv students and a mere 30%

of submissions from Pub students correctly illustrate the

“pop” stack operation that should occur when a function call

returns. They are unable to relate programming concepts

like closures to the stack. Finally, they largely overlook the

control portion of the stack, which suggests that they might

have trouble with advanced control features.

(2) After a term of instruction with just interpreters at Pub,

student performance was distressingly similar to their pre-

test results, albeit with a pronounced swing toward frame-

based (s/logical) representations. In contrast, at Priv, where

interpreters were augmented with mls and direct instruction

on the stack and use of our tool in class, students did much

better. (Of course, there are likely also differences in the

student population.) However, even at Priv, students were

not able to transfer knowledge about environments from

interpreters (where they had implemented them explicitly).

This forces a reconsideration of the utility and impact of

interpreters, and suggests the need for more and different

educational interventions.

(3) Our tooling was useful up to a point. At Priv, students were

exposed to it through multiple intermediate tasks (with the

tool growing in complexity). Left to their own devices, 82%

of them voluntarily chose to use it in their post-test. At Pub,

where students were not given this instruction or experience,

nobody used the tool. This suggests that students find it

useful and will adopt it with practice, but will not do so

otherwise.

Overall, we find our results very sobering. Despite intermediate

coursework on systems programming that explains stacks in some

detail, students have only a fragile understanding of them. In par-

ticular, their knowledge does not generalize even to concepts like

closures.

Our study did not ask students to explain the behavior of more

modern control constructs like threads and coroutines; based on

what we have seen, we conjecture that doing so would have ex-

posed even more difficulties. For the same reason, though we did

not explicitly check for it, we strongly conjecture that students

would struggle even to explain nested scopes, an idea that has been

documented since at least 1964 [25, section 2.2.1.1.3].

Depicting References. In section 8, we discuss the use of num-

bers to show reference between components. We note there that

these references could be drawn using arrows instead. This is not

currently possible using Snap! . Between the benefits of Snap! and
the argument for authenticity, we chose to not implement such

a system for this study. However, doing so and comparing these

representations would be very interesting. In particular, one can

easily imagine students starting out with arrows and, after they

have mastered the ideas, switching to numeric addresses to better

understand the underlying machine representation.

Spatial and Numeric Factors. As fig. 7 shows, our official solu-

tions tended to present Environment Frames in a neat, linear order,

and with numbers evenly spaced apart. In retrospect, both seem

unwise, because they seem to “stack up” the frames—precisely the
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phenomenon that led to dynamic scope misconceptions. Though a

combination of interventions removed that at Priv, in their absence,

this misconception might remain. We believe it would be healthier

to place the Environment Frames in a more haphazard manner, and

to use more “random” addresses.

Consequences for Interpreters. Interpreters are a valuable imple-

mentation technique and are even used in practice. Thus, they are

a useful learning objective in themselves. Interpreters are also a

constructionist (and hence constructivist) way of learning about

programming languages. Students build the essence of languages,

get to play with them, and can see how small changes in these

implementations can have an impact on the resulting language.

However, our paper suggests that interpreters may have limited

impact on conceptual understanding, which requires transfer from

the implementation. While our evidence is preliminary, it suggests

that people who are using interpreters with the hope of such trans-

fer need to carefully examine whether they are getting the benefit

they imagine.
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Notions of the stack:

s/bytes The stack is a sequence of bytes or bits. Frames are not delineated, contexts (if present) are indicated by

return pointers, environment values may not be labeled.

s/logical The stack is a logical part of a step in a notional machine. Frames are clearly separated, contexts may be

represented as source code with holes, environment values are definitely labeled. Regions of the stack

may be labeled with function names.

Behavior of the stack:

b/missing(35) This solution is missing at least one full stack. That is, the solution missed a call to pause.
b/extra This solution contains an extra stack. That is, the solution imagines an extra call to pause.

b/pop(358) Stack frames are created when a function is called, and deleted when the function returns. In problems

where no function has returned when the pause is called, no popping can be observed, and no box should

be checked. Absence of this code on problems 3, 5, or 8 probably implies that b/pileup should be checked.

b/pileup(358) Stack frames are created when a function is called, and never deleted. These solutions suggest that frames

are essentially a record of every function that is ever called. Absence of this code on problems 3, 5, or 8

probably implies that b/pop should be checked.

Some solutions include separate slots for the loop variable, e.g.,

y = 2
y = 1
y = 0

These solutions should be coded as b/pileup unless it’s very clear from the presentation that the bindings

are all contained in a single stack frame.

b/tailcall(468) Stack frames are created when a function is called, but may be replaced by a tail call.

b/othererr Some other error is present. Make a note of what it is.

Handling of contexts:

c/addr Opaque address: the solution uses the words “return address” or similar language to indicate that the

function returns to some earlier point of execution. Note that this is definitely distinct from the frame

pointer, pointing to the earlier frame.

c/ctxt Source context: the solution represents context using a short snippet of source code containing a hole or

other placeholder. Ideally this would be the full context, but in the presence of multi-line functions, few

or no students include the following lines. The most obvious example of this occurs in the loop example,

program 3.

Solutions that include the call made as part of the context should receive this mark, e.g. those with

pause() + 4.
c/none No context: the solution omits any reference to context, containing only bindings and/or frame pointers.

Figure 9: Rubric for Pre-Test, Part 1. Continues in fig. 10.
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Handling of bindings, both parameters and local variables:

bnd/params At least one parameter binding appears in the stack. This includes solutions that show only the names of

the bindings, and not their values.

bnd/noparams At least one parameter value does not occur in the stack. This includes solutions that show the call as

e.g. f(2,4) (that is, where the parameter values can be deduced from the drawing but are not shown as

taking independent space in the stack). This also includes solutions where the student has performed

substitution on a copied body of the called function.

bnd/locals(23) The problem contains at least one local or top-level binding that appears in the solution.

Note that global bindings such as z = 9 should be regarded as local bindings at the outermost scope.

Note further that function bindings (including top-level function bindings) can plausibly be regarded

as local bindings, but that for the purposes of coding, we are ignoring these. This applies to functions

declared in the current scope (as in problem 7), but not to functions passed as parameters (as in problem

8).

bnd/nolocals(23) The program contains at least one local variable that does not appear in the solution.

Note that some solutions may show the parameter bindings as the lowest part of the caller’s frame,

above the saved frame pointer. This corresponds to certain abi conventions, and should probably not be

considered wrong.

bnd/noclosures Parameter bindings do occur in the stack, but not those whose value is a closure. Note: This implies

bnd/params.

Handling of closures:

clo/opaqe(8) Closures are written as opaque structures, such as g* or f(3) or g(def) or an arrow to a function

definition location or similar.

clo/clear(8) Closures are written as structures with contents, ideally including source, parameter names, and environ-

ments. Including a name and the closure’s environment is enough, though.

Figure 10: Rubric for Pre-Test, Part 2. Continued from fig. 9.
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Scorability:

scorable This solution is sufficiently correct to be assigned scores. Specifically, it differs from the correct solution in

ways that are attributable to comprehensible errors. Solutions that have stack frames that seem unrelated

to the problem, or supply many disconnected stacks, or are entirely blank, should not receive marks in

this box, or in any other category. Solutions that don’t get a mark in this box should have some kind of

comment indicating the nature of the submitted solution.

Use of Snap!:

snap This solution uses Snap! , submitting either a screenshot of a solution using the blocks or just the xml file

that is generated by Snap.

Notions of the stack:

s/bytes Unchanged.
s/logical The stack is a logical part of a step in a notional machine. Frames are clearly separated, probably have

arrows connecting them, contexts may be represented as source code with holes, environment values are

definitely labeled.

Note that solutions using Snap! will always have this property.

Behavior of the stack:

This section did not change.

Handling of environments:

e/separate This solution separates environments from stack frames. Solutions that place an box around the envi-

ronment should receive this mark, even if that box is drawn inside of the stack frame box in a non-snap

solution.

Solutions that use Snap! will always have this property.
e/chain This solution correctly links the environment of a stack frame to that of the lexically enclosing frame at

least once.

e/badchain This solution incorrectly links the environment of a stack frame to that of the lexically enclosing frame,

or is missing a link in a non-top-level frame.

Note that both e/chain and e/badchain can be assigned to a single solution.

Figure 11: Rubric for Post-Test, Part 1. Continues in fig. 12.



Towards a Notional Machine for Runtime Stacks and Scope:
When Stacks Don’t Stack Up ICER 2022, August 7–11, 2022, Lugano and Virtual Event, Switzerland

Handling of contexts:

c/addr Unchanged.
c/ctxt Unchanged.

c/nohole At least one of this solution’s contexts do not contain a hole. If this box is checked, c/ctxt should also be

checked.

c/subright At least one variable to the right of the hole has been replaced with a value. If this box is checked,

c/nohole must not be checked, and c/ctxt must be checked.

c/other The context contains a different error. Certain clerical errors should not be included here; the reduction

order of a three-armed plus is not important, a minor arithmetic error like adding 3 and 4 to get 8 is not

important. Also, ignore errors related to the omission of earlier or later lines in a multi-line context.

When this box is checked, make a note to indicate the nature of the error.

c/none No context: the solution omits any reference to context, containing only bindings and/or frame pointers.

For solutions using Snap! , this should be assigned for completely blank context slots.

Handling of bindings, both parameters and local variables:

bnd/params Unchanged.
bnd/badparams At least one parameter binding is missing or there is a parameter binding that does not belong (either

because it is in the wrong place or it is just extra). This includes drawn solutions that show the call as e.g.

f(2,4) (that is, where the parameter values can be deduced from the drawing but are not shown as taking

independent space in the stack). This also includes drawn solutions where the student has performed

substitution on a copied body of the called function.

bnd/locals(1) The problem contains at least one local binding that appears in the solution in the correct stack frame or

environment. This does not include top-level bindings.

bnd/badlocals(1) Unchanged. (This is just bnd/nolocals renamed.)

bnd/toplevels(3) The problem contains at least one top-level binding that appears in the solution in the correct place.

bnd/badtoplevels(3) The problem is missing at least one top-level binding. Note further that function bindings (including

top-level function bindings) can plausibly be regarded as local bindings, but that for the purposes of

coding, we are ignoring these.

Figure 12: Rubric for Post-Test, Part 2. Continued from fig. 11.
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