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ABSTRACT
Most programming problems have multiple viable solutions that
organize the underlying problem’s tasks in fundamentally differ-
ent ways. Which organizations (a.k.a. plans) students implement
and prefer depends on solutions they have seen before as well as
features of their programming language. How much exposure to
planning do students need before they can appreciate and produce
different plans? We report on a study in which students in intro-
ductory courses at two universities were given a single lecture
on planning between assessments. In the post-assessment, many
students produced multiple high-level plans (including ones first
introduced in the lecture) and richly discussed tradeoffs between
plans. This suggests that planning can be taught with fairly low
overhead once students have a decent foundation in programming.
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1 INTRODUCTION
Given a programming problem, students make multiple choices in
crafting a solution. Some choices focus on lower-level concerns
such as which language constructs to use (e.g., a while loop versus a
for loop). Higher-level decisions include how to cluster the subtasks
of a problem into individual functions or code blocks. The cluster-
ing of subtasks is often called a plan [17]. Programming involves
(among other things) implementing plan components in lower-level
constructs and composing those constructs into a solution for the
overall problem.

Planning is not an advanced topic only for upper-level CS stu-
dents. Even casual programmers who write scripts are affected by
planning decisions. A student writing scripts to process data for
a lab experiment encounters changing data requirements, noisy
data, or other situations that get handled through planning, not
just low-level construct choices. Thus, planning is relevant even to
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students in first-year computing courses, including those who may
not take later courses.

But can students learn planning that early and, if so, how? Some
researchers have made notable efforts at teaching such concepts
from the outset [3, 7], but this requires a concerted effort to make
it central to the introductory curriculum. Because these courses
serve a variety of needs for the rest of the program, doing so re-
quires buy-in and prioritization from all the other faculty, who may
have vastly different needs. Thus, we were interested in whether a
lightweight approach to teaching planning could have any effect, or
whether only a comprehensive overhaul of the courses—which may
be impossible given a department’s other needs—would suffice.

Concretely, we assigned students (from two universities) pro-
gramming problems that could be approached through multiple
plans; leveraged those to give a single 50-minute lecture on plans
and tradeoffs; and then assigned a new set of programming prob-
lems. In the post-assessment, we asked students to produce two
solutions to each problem, each embodying a different plan. We also
asked students to rank their solutions by preference, so we could
see what criteria they used. Nearly all students produced two dif-
ferent plans in the post-assessment, often choosing a general plan
structure that was first introduced in the planning lecture. When
asked to preference-rank among their solutions, many students
chose solutions with a different general structure than what they
wrote on the pre-assessment. These results suggest that lightweight
instruction in planning can have an impact.

2 RELATEDWORK
The task of developing and integrating programming plans has been
identified as a recurring problem among programming students
[2, 16, 17]. While some recent studies show students succeeding at
plan composition in specific contexts [5, 15], the pedagogic choices
that help students with this task remain poorly understood.

A growing body of research aims at improving planning skills by
explicit instruction. Porter and Calder suggest a process for building
a vocabulary of common patterns for guiding students through
problem decomposition [13]. Muller, Haberman, and Ginat use this
same concept to develop pattern-oriented instruction [9]: attaching
labels to algorithmic patterns and presenting various problems to
students, while encouraging students to look for common patterns
across problems. Our work differs in trying a more lightweight
approach, in which planning is the focus of a lecture and two
assignments rather than the entire curriculum.

De Raadt, Watson, and Toleman make the explicit distinction
between programming knowledge (language syntax and semantics)
and programming strategies [3]. Their ‘strategy guide’ discusses
abutment, nesting, and merging as ways for integrating strategies;
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their assignments require students to apply specific strategies in
their solutions. Our work, in contrast, focuses on problem-level
techniques (such as cleaning data) rather than code-level techniques
(such as merging code). Our work also asks students to discuss
design tradeoffs, as a way of triangulating what they understand
about patterns.

3 COGNITIVE FOUNDATIONS OF
RECALLING SOLUTIONS

Strategies for teaching planning build on results on how people
construct programs at a cognitive level. Given a programming prob-
lem, programmers (subconsciously) identify solutions to similar
problems and adapt them to the problem at hand [11, 12, 14, 18].
Repeated application of a pattern helps programmers form a mental
schema for that problem (which can be recalled later for solving
other problems); repeated use of a schema strengthens recall [8, 10].
This basic architecture underlies approaches to teaching patterns
explicitly. Research has identified a difference between knowl-
edge schemas and strategy schemas (as both de Raadt et al. and
Caspersen cite [1, 3]): this difference implies that students may
require less direct practice to internalize a new (strategic) pattern
that builds on already-internalized knowledge schemas.

The distinction between knowledge and strategy schemas frames
our experiment because our lecture shows students new ways to
cluster subtasks of programming problems. All of our participants
had been writing list traversals prior to the experiment. The lecture
showed new high-level ways to decompose a problem into (po-
tentially multiple) list traversals. Our study asks whether students
would apply these high-level strategies to new problems based just
on the single lecture (without us telling them which solution style
to produce, as other pattern-based studies have done [3]).

4 STUDY DESIGN
4.1 Study Components
Our study contained three components:1
(1) A pre-assessment (section 4.3) in which students produced so-

lutions to 2–3 programming problems. In one course, students
also preference-ranked solutions to 3 different problems.

(2) A single 50-minute lecture (section 4.4) on planning and design
tradeoffs, framed by the pre-assessment problems. The same
professor gave the same lecture in both courses.

(3) A post-assessment (section 4.5) in which students were asked
to (a) produce two solutions with different plans to each of
4 programming problems and (b) to preference rank between
their solutions (with justification).

We did not ask for multiple solutions on the pre-assessment because
we couldn’t find a way to explain what would distinguish solutions
before doing the intervention lecture.

The questions in the pre- and post-assessment were carefully
chosen to introduce some broadly-applicable strategies in multi-
task programming problems:

• Noisy data that could be cleaned prior to the main computation.

1Actual pre- and post-assessment questions and a full technical report are at
https://github.com/franciscastro/koli-2017.

• Flattened data that could be parsed (or reshaped) to a structure
that was better suited to the main computation.

• Data that could be truncated to a prefix of interest for the main
computation.

In addition, the post-work included computations that targeted a
projection of the data (say to a specific field within an object). We
did not emphasize projection in the pre-assessment as students had
experience with this idea from other assignments in both courses.

The lecture discussed cleaning, parsing, and truncating in the
context of the pre-assessment problems. We also discussed various
design tradeoffs that these offered, including impact on run-time
efficiency, ability to adapt the solution to a different dataset, and
readability and maintainability of the resulting code.

4.2 The Host Courses
We conducted the study in two first-year CS courses at different
universities. Each course was taught by one of the authors. Students
in both courses had some prior programming experience, though it
differed both across and within the populations.
• CrsA is an accelerated CS1 course that compresses much of the
first year into a semester. Most students have prior experience,
usually with imperative or object-oriented programming in Java
or Python. The course is taught in Pyret, a functional language
with syntax reminiscent of Python.

• CrsB is a CS2 course on object-oriented programming and data
structures, taught in Java. Students feed into the course from
one of two CS1 courses taught in functional programming: one
for novice programmers (CrsBnvc), and one for non-novices
(CrsBexp). Students from CrsBnvc have seen little to no imper-
ative programming prior to CrsB, while students from CrsBexp
have prior experience similar to that of CrsA.
Students in both courses had previously learned functional pro-

gramming with the How to Design Programs [4] curriculum. Prior
to the pre-assessment, CrsB had covered both kinds of for loops
for iterating over Java linked lists. In-class examples of for-loops
consisted of simple list traversals that accumulated answers (such
as summing a given field across a list of objects) or filtering out a
subset of elements. The pre-assessment was the first assignment in
the course on programming with lists and for-loops.

Sampled Populations. There were 75 students in CrsA and 290 in
CrsB. While all students completed the study, our (manual) analysis
uses a sample based on final course grade. We sampled up to 10
students from each passing grade (A, B, and C) in each of the three
populations (CrsA, CrsBnvc, CrsBexp). The grade bands were not
significant in our analysis, so we do not discuss them further.

4.3 Pre-Assessment
The programming problems for the pre-assessment came from
Fisler et al.’s recent study [6]. We used slightly different problems
in each course to accommodate different student preparation (such
as whether they knew string manipulation).

In CrsA, the pre-assessment consisted of programming solutions
to Palindrome, Sum Over Table, and Adding Machine. It also asked
students to preference-rank given solutions for the Rainfall, Length
of Triples, and Shopping Cart problems.



In CrsB, we used Rainfall and Length of Triples. We did not
present ranking tasks due to time constraints.

We briefly summarize some of these problems. Rainfall involves
noisy data (negative numbers that should not be averaged) and a
single-character delimiter for the relevant data. Length of Triples
asks for the longest concatenation of three consecutive elements
from a list of strings. Adding Machine is described as follows:

Design a program called addingMachine that consumes
a list of numbers and produces a list of the sums of
each non-empty sublist separated by zeros. Ignore
input elements that occur after the first occurrence of
two consecutive zeros.

It features flattened data that could be parsed into a list of sublists
and a prefix of data (prior to the consecutive zeros) that could be
truncated. Typical solution structures include (1) traversing the
data once while accumulating the sum of the current sublist and
the output, (2) parsing the input into a list of sublists, with a second
traversal to sum the sublists, or (3) using a nested loop to compute
sums of sublists.

4.4 The Lecture
Within two days after the pre-assessment was due, Fisler lectured
about the problems to each course. The lectures were not identical
since the questions were different, but they covered similar content.

In CrsA, the class first discussed the ranking tasks and the trade-
offs students considered. Fisler moderated the discussion, raising
each of efficiency, aesthetics, maintainability, and code structure.
Fisler showed possible solutions to Adding Machine, explicitly dis-
cussing parsing and truncating as applicable strategies.

In CrsB, Fisler showed multiple solutions to each of Rainfall and
Length of Triples. The former was used to point out cleaning and
truncating as strategies; the latter was used to point out parsing.
These solutions were posted for later reference. Again Fisler mod-
erated a classwide discussion of the tradeoffs among the solutions.

In both lectures, the instructor described planning as the general
task of allocating subproblems to traversals of the data. While this is
a somewhat more code-focused definition that we might otherwise
like, it was designed to give students a way to assess whether their
two solutions would be “different” from the perspective of the post-
assessment, though at this point they did not knowwhat theywould
be asked to do on that assignment. However, the emphasis of the
lecture was not on this definition but on concrete strategies, to help
them build a vocabulary of planning operations.

4.5 Post-Assessment
For the post-assessment, we sought problems that resembled the
pre-assessment ones, and were amenable to the parsing, clean-
ing, and truncating strategies discussed in the lecture. The post-
assessment contained four problems; students were required to (a)
submit two solutions (with different structures) for each problem,
and (b) state a preference between their two solutions (with justi-
fication). This paper focuses on two of the problems, due to their
particular similarities with pre-assessment problems:
Data Smoothing Given a list of health records with a numeric

heartRate field, design a program dataSmooth that produces a list
of the heartRates but with each (internal) element replaced with

Figure 1: Adding Machine structures, pre-, CrsA

Figure 2: Earthquake Monitor structures, post-, CrsA

the average of that element and its predecessor and successor. E.g.,
given a list of health-recordswith heart rates [95, 102, 98, 88, 105],
the resulting smoothed sequence should be

[95, 98.33, 96, 97, 105]

This problem, like Length of Triples from the pre-assessment, looks
at 3-element windows within an input list. This problem is a good
candidate for parsing. Other strategies include first extracting all
the heart-rates from the health records (giving a list of numbers to
smooth), or doing the computation in a single input traversal.
Earthquake Monitor Write a program that takes a month and a
list of readings from an earthquake sensor. In the input, 8-digit
numbers are dates and numbers below 500 are readings for the
preceding date. Produce a list of reports containing the highest
reading for each date in the given month. E.g., given this list and
10 for the month,

[20151004, 200, 150, 175, 20151005, 0.002, 0.03, 20151207]

the program should yield [report(4, 200), report(5, 0.03)]

Like Adding Machine, this problem has sublists within the data,
which makes it a candidate for parsing. Like both Adding Machine
and Rainfall, it has a sentinel (in the form of data from a latermonth).
It could be approached with a single traversal that accumulates the
max value per date, a cleaning phase that restricts the input data to
the desired month, or parsing prior to computing the reports.

5 ANALYSIS
We discuss our findings separately for each course. A direct compar-
ison between the two courses is not meaningful due to differences
in the students’ backgrounds and the smaller set of questions used
with CrsB. We still find value, however, in seeing how two groups
of students with some similarities in their backgrounds fared.



5.1 The View from CrsA
The data from CrsA suggest that our lecture had a significant im-
pact on students’ planning behavior. Figure 1 and Figure 2 show the
structures that CrsA students used in Adding Machine on the pre-
assessment and Earthquake Monitor on the post-assessment, respec-
tively. We contrast these two problems because of their similarity.
Students took a variety of approaches in the pre-assessment, with
some using parsing. Usage of parsing jumps significantly (p < .006
with a McNemar’s test) in the post-assessment: about 70% of CrsA
students used parsing in one of their two Earthquake Monitor solu-
tions. Even inData Smoothing, roughly the same number of students
chose to parse as did a single data traversal. Thus, there is strong
evidence that CrsA students learned parsing as a strategy.

Significant contrasts also arise when we examine CrsA students’
ranking preferences between the two assessments. The following
table shows evolution in criteria mentioned per student across the
pre- and post-assessments. The table shows that many students
both dropped and added criteria.

Criterion Pre, not
post

Post, not
pre

Pre and
post

Efficiency 31 - 36
Structure 24 9 15
Aesthetics 14 1 35
Maintainability 7 20 3

All in all, the lecture had the impact we hoped for in CrsA: stu-
dents showed their ability to produce solutions with multiple plans;
most students raised more issues when discussing tradeoffs among
solutions; and many students changed the solution structures that
they preferred in the post-assessment (which is merely a sign that
the lecture impacted their thinking, not that their analyses neces-
sarily grew more accurate).

5.2 The View from CrsB
CrsB offers a more nuanced picture of the lecture’s impact, which
is less significant. We also see interesting differences between
CrsBnvc and CrsBexp, and between CrsA and CrsBexp, who had
been working in different programming languages despite a fairly
common curriculum (and common programming language) just a
month or two prior to the study.

Figure 3 contrasts the Earthquake Monitor solutions across all
three populations in the post-assessment. Two observations jump
out. First, a significant percentage of students in CrsB were unable
to solve the problem at all (the “No Code” group): of the 45 students
sampled, 11 turned in no solution (9 fromCrsBnvc, 2 fromCrsBexp),
while another 6 students turned in only one. Of those with only
one, half used parsing while the others did a loop-based traversal
or nested traversal. In contrast, there was only one “No Code” in
CrsA. We suspect that the “No Code” s came partly from the lack
of programming experience in CrsBnvc and partly from students
running out of time (Earthquake Monitor was the last problem on
the assignment, which was due just before a mid-course holiday.)

Setting “No Code” aside, the dominant solution structures differ
across the populations: “Parse First” dominates in CrsA, “Single
Traversal” dominates in CrsBnvc, while these two are fairly even

Figure 3: Earthquake Monitor structures, post-, all three

in CrsBexp. This suggests that parsing strategies may require more
programming experience for students to adopt.

On Data Smoothing, the two CrsB populations are more similar
to each other, with much heavier use of “Single Traversal” solutions,
especially compared to the dominance of “ExtractFirst” solutions in
CrsA. Programming language constructs are a likely factor. Most
of the CrsA students used a built-in map function to extract the
heart rates from the health records. While Java 8 provides map, it is
somewhat clumsy to use and only a handful of CrsB students had
been exposed to it. A basic Java for loop is straightforward for Data
Smoothing, so we should hardly be surprised that students used it.

Of the 45 CrsB students, 16 produced two Data Smoothing solu-
tions with the same high-level structure. This suggests that many
CrsB students didn’t really understand the idea of multiple pro-
gram plans just from the single lecture, or perhaps that the alternate
plans for Data Smoothing were too subtle for many students. Of the
strategies provided by the lecture (cleaning, parsing, and truncat-
ing), only parsing applies to Data Smoothing; if parsing was indeed
too hard for students, they would have been left without named
strategies to apply to the problem. The pre-assessment data did not
shed light, as all but one student used a “Single Traversal” structure
to program Rainfall. Prior experience is not the explanation either:
these 16 students were roughly evenly split between CrsBnvc and
CrsBexp. Whether CrsB students would have understood this idea
better had they also done ranking tasks on the pre-assessment is a
question for future studies.

5.3 Preference Ranking of Own Post Solutions
The post-assessment asked students in both courses to state a pref-
erence between the approaches taken in their solutions to each
problem. In CrsA, students had a significant preference for parsing
first, which suggests at least the ability to recognize the lecture’s
views on structures that better decomposed plans.

In CrsB, the most interesting finding was the lack of criteria
that students mentioned. Of the 45 students sampled: only 15 men-
tioned any criteria at all; 9 didn’t submit a ranking; the other 21
just described their code (6 of these were from CrsBexp, the rest



Figure 4: Comparing individual CrsA students’ Adding Ma-
chine structures (pre) to that of their preferred Earthquake
Monitor solution (post)

from CrsBnvc). Among the 15 CrsB students who did describe cri-
teria, code structure and aesthetics came up most often (9 and 10
instances, respectively), while efficiency got only 3 mentions.

The contrasts in students’ ability to discuss solutions by at-
tributes is striking, and not readily explained. Neither course had
practiced this skill, either explicitly or implicitly that the instructors
can recall. Both courses had covered rudimentary big-O prior to
the pre-assessment, so students at least had “efficiency” in their
vocabulary. As such, we cannot yet explain these differences.

5.4 Changes in Solution Structures
Changes in the solution structures that students wrote from the pre-
to the post-assessment might indicate that the planning lecture had
impact. Since there were two solutions in post-, we compared the
structure that students wrote in the pre-assessment with whichever
of their solutions they marked as preferred in the post-assessment.

Figure 4 shows the comparison for CrsA, using Adding Machine
from pre- and the preferred Earthquake Monitor solution from post-
. Each row shows a structure for the preferred post- binned by
their pre- structure. The comparisons are per student. Perhaps most
interesting is the lack of a clear internal pattern: students from
each Adding Machine structure are dispersed across the Earthquake
Monitor bins, and each Earthquake Monitor bin is populated with
students from multiple Adding Machine structures. Our key take-
away from this graph is that the lecture got CrsA students to think
about plans and tradeoffs, with many reconsidering choices that
they might have made reflexively during the pre-assessment.

A similar graph for CrsB is not meaningful, since all but one stu-
dent produced the same structure for Rainfall on the pre-assessment.
However, we do see diversification in students’ preferred solutions
in the post-assessment. While “Single Traversal” solutions remain
the most popular amongCrsB students in both the Earthquake Mon-
itor and Data Smoothing problems on the post-assessment, there
is considerable diversity in the Earthquake Monitor preferences
(which admits more interesting plans). Whether this diversification
was caused by the lecture, or by the relatively greater difficulty of
Earthquake Monitor compared to Rainfall, is open to question.

6 DISCUSSION AND FUTUREWORK
As CrsBnvc shows, students seem to need some computing experi-
ence before they can embrace planning. We don’t know how much
or what kind of exposure matters. Some planning strategies may
be easier than others for students to appreciate and apply. Does
exposure to functional programming also matter? Understanding
these nuances would be valuable in creating planning pedagogy.

We do not yet know how to find out what students understand
about planning prior to any formal instruction about choosing
among solution structures. More broadly, the problem of getting
students to discuss solution tradeoffs in terms of criteria rather
than code is more general than this study. We wonder whether
the ability to comprehend planning correlates with the ability to
meaningfully discuss general solution criteria.

This work also proposes a new methodology for studying plan-
ning, in the form of writing two different versions of the same
program. Broadly, plan-composition seems to be having a resur-
gence, but the fieldmust start taking amore holistic look at students’
planning choices and practices (which in turn could better explain
some of the errors that prior studies focused on). We hope this pa-
per will contribute to a larger discussion about research directions
in program planning for both majors and non-majors.
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