Modeling Web Interactions

Paul Graunke (Northeastern University),
Robert Bruce Findler (University of Chicago),
Shriram Krishnamurthi (Brown University), and
Matthias Felleisen (Northeastern University)

Abstract. Programmers confront a minefield when they design interactive Web
programs. Web interactions take place via Web browsers. With browsers, con-
sumers can whimsically navigate among the various stages of a dialog and can
thus confuse the most sophisticated corporate Web sites. In turn, Web services
can fault in frustrating and inexplicable ways. The quickening transition from
Web scripts to Web services lends these problems immediacy.

To address this programming problem, we develop a foundational model of Web
interactions and use it to formally describe two classes of errors. The model sug-
gests techniques for detecting both classes of errors. For one class we present an
incrementally checked record type system, which effectively eliminates these er-
rors. For the other class, we introduce a dynamic safety check, which catches the
mistakes relative to programmers’ simple annotations.

1 Introduction

Over the past decade, the Web has become an interactive medium. Far more than half of
all Web transactions are interactive [4]. While this rapid growth suggests that Web page
developers and programmers have mastered the mechanics of interactive Web content,
consumers still encounter many, and sometimes costly, program errors as they utilize
these new services. In short, designing interactive Web programs poses interesting and
complex problems.

To understand these problems, let us briefly recall how Web programs work. When
a Web browser submits a request whose path points to a Web program, the server in-
vokes the program with the request via any of a number of protocas[(6], Java
servlets [6], or Microsoft ASP.NET [15]). It then waits for the program to terminate and
turns the program'’s output into a response that the browser can display. Put differently,
each individual Web program simply consumesHanTp request and produces a Web
page in response. It is therefore appropriate to call such programs “scripts” considering
that they only read some inputs and write some output. This very simplicity, however,
also makes the design of multi-stage Web dialogs difficult.

First, multi-stage interactive Web programs consist of many scripts, each handling
one request. These scripts communicate with each other via external media, because the
participants in a dialog must remember earlier parts of a conversation. Not surprisingly,
forcing the scripts to communicate this way causes many problems, considering that
such communications rely on oft-unstated, and therefore easily violated, invariants.

Second, the use of a Web browser for the consumer’s side of the dialog introduces
even more complications. The primary purpose of a Web browser is to empower con-
sumers to navigate among a web of hyperlinked nodes in a graph at will. A consumer



naturally wants this same power to explore dialogs on the Web. For example, a con-
sumer may wish to backtrack to an earlier stage in a dialog, clone a page with choices
and explore different possibilities in parallel, bookmark an interaction and come back
to it later, and so on. Hence, a programmer must be extremely careful about the invari-
ants that govern the communication among the scripts that make up an interactive Web
program. What appears to be invariant in a purely sequential dialog context may not be
so in a dialog medium that allows whimsical navigation actions.

In this paper, we make three contributions to the problem of designing reliable inter-
active Web programs. First, we develop a simple but formal model of Web interactions.
Using this model, we can explain the above problems concisely. Second, we develop
a type system that solves one of these problems in a provable manner (relative to the
model). Third, because not all the checks can be performed statically, we suggest run-
time checks to supplement the type system.

2 A Sample Problem

Let us illustrate one of the Web programming problems with a commercial example.
Figure 1 contains snapshots from an actual interaction with OYbitzich sells travel
services from many vendors. It naturally invites comparison shopping. In particular, a
customer may enter the origin and destination airports to look for some flights between
cities, receive a list of flight choices, and then conduct the following actions:

1. Use the “open link in new window” option to study the details of a flight that leaves
at 5:50pm. The consumer now has two browser windows open.

2. Switching back to the choices window, the consumer can inspect a different op-
tion, e.g., a flight leaving at 9:30am. Now the consumer can perform a side-by-side
comparison of the options in two browser windows.

3. After comparing the flight details, the customer decides to take the first flight after
all. The consumer switches back to the window with the 5:50pm flight. Using this
window (form), the consumer submits the request for the 5:50pm flight.

At this point, the consumer expects the reservation system to respond with a page con-
firming the 5:50pm flight. Alarmingly, even though the page says a click on some link
would reserve the 5:50pm flight, Orbitz instead chooses the 9:30am flight. A customer
who doesn’t pay close attention may end up reserving the wrong flight.

The Orbitz problem dramatically illustrates our case. Sadly, this is not an isolated
error. Rather it exists in other services (such as hotel reservations) on the Orbitz site.
Furthermore, as plain consumers, we have stumbled across this and related problems
while using several vendor’s sites, including Apple, Continental Airlines, Hertz car
rentals, Microsoft, and Register.com. Clearly, an error that occurs repeatedly across
organizations suggest not a one-time programming fault but rather a systemic problem.
Hence, we believe that it is time to develop a foundational model. Before we do so,
however, we review related attempts at overcoming such programming problems.

! The screenshots were produced on June 28, 2002, but the problems persist as of October 24.



Choices

Bi Orbitz: Flight Search Results- Namestic

6 airfare

35 service fee
1 trip cost

(SELECT
3 airfare

35 service fee
8 trip cost

Alaska Aidines 15

Fri, Aug 16

Alaska Airlines 2168
operated by partner airline
Sat Aug 31

Alaska Airdines 1529
operated by partner aitline
Sat Aug 31

Alaska Aidines 1551
operated by partner airline
Fr, Aug 16

Alaska Aidines 2086
opcratcd by partner aitline

= Fri, Aug 18
16 airfare
55 service fee

11 trip cost Sat Aug 31

Sat, Aug 31

Fri, Aug 16

Co it to
First Choice

Legend

Alaska Airlines 2168
operated by pariner zitline

Alaska Airlines 1529
operated by partner zirline

Alaska Airlines 1551
operated by partner airling

Alaska Airlines 2088
operated by partn:
o

Problem

Flight 2

1 Urbile: Hight | raveler Inorn
|30 3 I Locaden

depart 5:50pm

evening

depart 9:30am  Logan Intern

marning  Boston

2 O B e Loceivr [ &
August 16, 2002

—» Click Submit

— — P suitch Windows

depart % Logan Intern|
&/ Boston

Fig. 1. Orbitz Interactions



3  Prior Work

The Bigwig project [2] (a descendant of Bell Lab’s Mawl project [1]) provides a radical
solution to the problem. The main purpose of the project is to provide a domain-specific
language for composing interactive Web sessions. The language’s runtime system en-
forces the (informal) model of a session as a pair of communicating threads [3]. For
example, clicking on the back button takes the consumer back to the very beginning of
the dialog. While such a runtime system prevents damage, it is also overly draconian,
especially when compared to other approaches to dealing with Web dialogs.

John Hughes [14], Christian Queinnec [18], and Paul Graham [11] independently
had the deep insight that a browser’s navigation actions correspond to the use of first-
class continuations in a program. In particular, they show that an interaction with the
consumer corresponds to the manipulation of a continuation. If the underlying language
and server support these manipulations, a program doesn’t have to terminate to inter-
act with a consumer but instead captures a continuation and suspends the evaluation.
Every time a consumer submits a response, the computation resumes the proper con-
tinuation. Put differently, the communication among scripts is now internalized within
one program and can thus be subjected to the safety mechanisms of the language.

Our prior work explored the implications of Queinnec’s in two ways. First, we built
a Web server that enables Web programs to interact directly with consumers [13]. Pro-
gramming in this world eliminates many of the Web design problems in a natural man-
ner. Second, after we realized that this solution doesn’t apply to languages without such
mechanisms, we explored the automatic generation of robust Web programs via func-
tional compilation techniques [12]. While this idea works in principle, we recognized
that a full-fledged implementation requires a re-engineered library system and runtime
environment for the targeted language (say Perl).

Thiemann [21] started with Hughes’s ideas and provides a monad-based library for
constructing Web dialogs. In principle, his solution corresponds to our second approach;
his monads take care of the “compilation” of Web scripts into a suitable continuation
form. Working with Haskell, Thiemann can now use Haskell's type system to check
the natural communication invariants between the various portions of a Web program.
Haskell, however, is also a problem because Thiemann must accommodate effects (in-
teractions with file systems, data bases, etc) in an unnatural manner. Specifically, for
each interaction, hisGi scripts are re-executed from the beginning to the current point
of interaction. Even though his monad-based approach avoids the re-execution of ef-
fects, it is indicative of the problems with Thiemann’s approach. Like our second solu-
tion, Thiemann’s approach won't easily apply to other languages.

4 Modeling the Web

To study the problems of designing interactive Web programs, we formulate a model
with four characteristics. First, it consists of a single server and a single client, be-
cause we wish to study the problems of simple sequential Web dialogs. Second, it deals
exclusively with dynamically generated Web pages, called forms, to m#Ter’s
sub-language of requests. Third, the model allows the consumer to switch among Web



pages arbitrarily; as we show later, this suffices to represent the “Orbitz problem” and
similar errors. Finally, the model is abstracted over the programming language so that
we can experiment with alternatives; here we usecalculus for forms and basic data.

Our model lacks several properties that are orthogonal to our goals. First, the model
ignores client-side storage, a.k.a. “cookies,” which primarily addresses customization
and storage optimizations. Server-side storage suffices for our goals. Second, Web pro-
grammers must address concurrency via locking, possibly relying on a server that se-
rializes each session’s requests or relying on a database. Distributing the server soft-
ware across multiple machines complicates concurrency further. Third, Monitoring and
restarting servers improves fault tolerance. The model neither addresses nor introduces
any security concerns, so existing solutions for ensuring authentication and privacy ap-
ply [7,9].

4.1 Server and Client

Figure 2 describes the components of our model. Each Web configurdf)jarosists

of a single serverS) and a single client@). The server consists of storagf)(and

a dispatcher (see figure 3). The latter contains a tadjdhat associatesrLs with
programs and an evaluator that applies programs from the table to the submitted form.
Programs are closed termd{) in a yet to be specified language.

W =SxC {",“x", “why”, “zee” } C String
S =XxP {xy2z} cId

P =Url— M° { www.drscheme.orgvww.plt-scheme.or§ C Url
M?° = programs

C =FxF

F = (form Url (1d V}))
V, = Int| String

Fig. 2. The Web

The client consists of the current Web form and a set of all previously visited Web
forms. The set of previously visited forms starts as a singleton set: the home page. It then
grows as the consumer visits additional pages. The model assumes that the consumer
can freely (non-deterministically) replace the current page with some previously visited
page. Since the current page is always an element of all previously visited pages, the
consumer can also return to this page. We claim that this model of a consumer represents
all interesting browser navigation actions, including those not yet conceived by current
browser implementors.

The model distills a Web page to a minimal representation. Every page is simply a
form (F). It contains theyrL to which the form is submitted and a set of form fields. A
field names a value that the consumer may edit at will.

Figure 3 illustrates how the pieces of the model interact. The server and client may
run on different machines, connected by a network. The client sends its current form



Web Server | WebClient
Asubmit .
Dispatcher | Forms

<o read

’ | e l“ |

’ writ (EvaluatoD CProgra">S I wit
submi

Fig. 3. The Web Picture

to the server. The server applies a program to the form and then produces a response,
possibly accessing the store in the process. Finally, the response replaces the current
form on the client and appears in the client’s set of visited forms.

fill-form W —W
(s, ((form u { m ), T)) = (s, ((form u (k v1)), {(form u (kvo))} U F))

switch : W — W
(s, (fo, T)) = (s, (f1, T))wherefy e T

submit W — W

({00, D), (fo, T)) = ({ou, )y (1, {LAYUTY)
where <O’1, f1> = dp(O'o, fo)

Fig. 4. Transitions

To specify behavior, we use rewriting rules to relate Web configurations. Figure 4
contains rules that determine the behavior of the client and server as far as Web pro-
grams are concerned. Tfi#-form rule allows the client to edit the values of fields in
the current form. Thewitchrule brings a different Web form to the foreground. In prac-
tice, this happens in a number of ways: switching active browser windows, revisiting a
cached pageusing the back or forward buttons, or selecting a bookmark. STienit
rule dispatches on the current fornvgL to run the program found in tabje resulting
in a new current client form and updated server storage. The actual dispatching and the
evaluation are specific to the chosen programming language, which we introduce next.

4.2 Functional Web Programming

Figure 5 specifies the WrForm programming language. WrForm extends the call-by-
value A-calculus with integers, strings, and Web forms, which are records with a refer-
ence to a program. The programming language connects to the Web model (figure 2) in
three ways: the syntax for forms, the syntax for terM$, @nd the dispatch functiaf),.

2 Returning to a non-cached page falls undershiemitrule.



The form construct creates Web forms. Thé.ld construct extracts the value of
a form field with the naméd. We specify the semantics of WrForm with a reduction
semantics [8]. There are two reductiofis:andselect.

The bottom half of figure 5 specifies dispatching. It shows Hgyrocesses a sub-
mitted formform,. First, it uses th&RrL in form, to extract a program from its tabje
Second, it applies the program to the form and reduces this application to domiye
The storery remains the same.

Syntax Semantics
M=V E =0I1EMI(VE
| (M M) | (form wrl (id V) (id E) (id M)
| 1d | E.Id
| (form Url (Id M))
| M.Id (Bv)  E[((M (%) body) v)] —., E[body{x\V]]

(select) E[(form url (n; vi) (nj v;) (nk v ) . n;] — E[v;]
V =V, [(A(d)M) | F

Language to Web Connection

dp: Y xF—XxF
dp(oo, (form url (id v;)) = (0o, form,)

where prog = p(url) and (prog (form url (id v))) — form;

Fig. 5. Web Programming Language

4.3 Stateful Web Programming

Up to this point, scripts in our model can only communicate with each other through
forms. In practice, however, Web scripts often communicate not only via forms but
also through external storage (files, session objects). To model such stateful commu-
nications, we extend WrForm wittead andwrite primitives. Figure 6 presents these
language extensions. The two primitives empower programs to read flat values from
and to write flat values to store locations. The reduction relatien,, is the natural
extension of the relation—,,. The extended relation relates pairs of terms and stores
rather than just terms. Consequently the dispatcher starts a reduction with the invoked
program and the current store. At the end it uses the modified store to form the next
Web configuration. Thus, the server model remains sequential and does not include any
concurrency.

5 Problems with the Web

Our model of Web interactions can represent some common Web programming prob-
lems concisely. The first problem is that a Web script expects a different kind of form



Syntax Language to Web Connection

M =-..|(read Id) | (write Id M) YL (d—W)

Semantics dy (00, (form url (id 5))) = (o1, form,)
where prog = p(url)
(00, (prog (form url (id 5))))
—5o (o1, form;)

€0 —wv €1

0, e0) —rwe (0, e1)

(o, El(write id v)]) — e (o[id\v], E[v])
(o, El(read id)]) —ve (0, Elo(id)])
whereid € dom(o)

Fig. 6. Language Extensions for Storage

than is delivered. We dub this problem the “(script) communication problem.” The sec-
ond problem reveals a weakness of the hypertext transfer protocol. Due to the lack of
an update method, information on client Web pages becomes obsolete and misleads
the consumer. We dub this problem theit(P) observer problem” indicating that the
HTTP protocol does not permit a proper implementation of the Observer pattern [10].

5.1 The Communication Problem

Since standard Web programs must terminate to interact with a consumer, non-trivial
interactive software consists of many small Web programs. If the software needs to in-
teractV times with the client, it consists @Y + 1 scripts, and all scripts must commu-
nicate properly with their successdr§Vorse, since the client can arbitrarily resubmit
pages, the programmer cannot assume anything about the scripts’ execution sequence.

Even without the difficulties of unusual execution sequences, splitting Web pro-
grams into pieces can introduce errors. Consider the example in figure 7. The server’s
table contains two programstart.ssandnext.ss Thestart.ssprogram prompts for the
user's name and directs this informationrtext.ss This second program attempts to
verify some properties about the consumer. In doing so, it assumes that the input form
contains botmameandphonefields, and attempts to extract both. The attempt to ex-
tract the non-existerhonefield results in a runtime error. The diagram illustrates the
problem graphically. When programmers mistakenly encode such assumptions into the
store—a mistake that is easily made with Java servlet~mRNET session objects—
these safety errors concerning form field accesses become even more nefarious.

By now, programmers are well-aware of this problem and employ extensive dy-
namic testing to find these mistakes. In the next section, we present a type system that
discovers such problems statically and still allows programmers to develop complex
interactive Web programs in an incremental manner.

3 A good programmer may recognize opportunities for aggregating some of the programs. It is
also possible to use a “multiplexer” technique that merges all these scripts into one single file
and uses a dispatcher to find the proper subroutine. The problems remain the same.



plt-scheme.org/cgi/start.ss

O o |

(form plt-scheme.org/cgi/next.ss . 2o | rsubmit (form start.s3
(name" Your Name"))) e [
0
start |
[
plt-scheme.org/cgi/next.ss (X me(fozmar?]%)f.t.'sf
0 S |

f It-sch .org/cgi/done. -

(form plt-scheme.org/cgi/done.ss nex - ilfbrm
(confirm-namex.name) phone submit
(confirm-phoner.phone))) ! i

o I orm next.ss
i‘ (naﬁme) (name" Ed"))
|

Fig. 7. Collaborating Programs

5.2 The Observer Problem

In a model-view-controllernjvc) architecture, each change to the model notifies all

the views to update their display. Web programs do not enjoy this privilege, because
HTTP does not provide for an update (or “push”) method. Once a browser receives a
page, it becomes outdated when the model changes on the server, which may be due to
additional form submissions from the consumer.

The Observer problem is often, but not always, due to a confusion of environments
and stores, or form and server-side storage. Clearly, a program that reserves flights
needs both. Unfortunately, programmers who don’'t understand the difference may place
information into the store when it really belongs in the Web form.

Figure 8 shows a reformulation of Orbitz’s problem (see section 2) in WrForm.
The first of these programpjck-flight, asks the customer for a preferred flight time.
The second progranspnfirm-flight writes the selected flight time into external storage
before asking the user to confirm the flight time. The third prograseipt-flight reads
the selected flight from storage and charges the customer for a ticket.

It is easy to see that the WrForm program models the problem in section 2. Submit-
ting two requests for theonfirm-flightprogram results in two pages displaying different
flight times on the client, yet only one flight time resides in the server’s external storage.
Submitting the outdated form that no longer matches the storage produces the mistake.

6 Type Checking Communication

Trying to extract a field from a form fails in WrForm if the form does not contain

the named field. To prevent such errors, languages often employ a type system (and/or
safety checks). Our Web model shows, however, that straightforward type checking
doesn’t work, because programs consist of many separate scripts loosely connected via
forms and storage. Checking all the scripts together is infeasible. Not only are these



pick-flight— (A (empty-form (form confirm-flight(departure-timé' hh:mm" )))

confirm-flight— (X (first-form)
(write your-flight first-form.departure-time
(form receipt-flight(confirm-time(read your-flight))))

receipt-flight— (A (confirmed-form
(buy-flight(read your-flight)
(form next-action(itinerary (read your-fligh)))

Fig. 8. Stateful Web Programs

scripts developed and deployed in an incremental manner, they may also reside on dif-
ferent Web servers and/or be written in different programming languages.

We, therefore, provide an incremental type system for Web applications. When the
server receives a request for an unknowrL, it installs a program into its table to
handle the request. Before installing the new program, the server type checks the pro-
gram for “internal consistency.” In addition, the server also derives constraints that this
new program imposes on other Web programs. We refer to this second step as “external
consistency” checking. If either step fails, the program is rejected, resulting in an error.
In practice, a programmer may register several programs of one application and have
them typed checked before they are deployed.

The type system for internal consistency checking heavily borrows from simply-
typed\-calculi with records [5, 17, 19]. Figure 9 defines the type system. In addition to
the usual function type-) and primitive typesnt andString, the type language also
includes types for Web forms. Similar to record typfesm types contain the names
and types of the form fields, which—according to their intended usage—must have flat
(marshallable) types. We overload the type environment to map both variables and store
locations to types. An initial type environmefg maps locations in the external storage
to flat types? Typed WrForm differs from WrForm only by requiring types for function
arguments. That isA((X) M) becomesX (x: 7) M) in typed WrForm.

The type system also serves as the basis for external consistency checking. As it tra-
verses the program, it generates constraints on external programs. Each type judgment,
as shown in figure 9, includes a set of constraints. A constaint(form (id 7,)) in-
sists that the program associated withconsumes Web forms of typ®(m (id 7,)).

Most type rules in figure 9 handle constraints in a straightforward manner. Checking
atomic expressions yields the empty set of constraints. Checking most expressions that
contain subexpressions simply propagates the constraints from checking the subexpres-
sions. The only expressions that generate constrainferaneexpressions.

The expressionférm url (id m)) constructs dorm value, so its type is similar to
a record type. Thisorm expression also indirectly connects the program associated
with url to theform the consumer will submit later. If the type-checker looked up the

4 The environment is fixed when beginning to check an individual program, but programmers
may add extra locations for new programs.



Types Type Judgments
Type = Type— Type

| (form (Id T'ypey)) I'M:Type =
| Type, where
Type, = String| Int = = {url: (form (id 7))}
Type Derivation Rules
I' b string: String{} T'Fm: (form (ida Tha) (ide Tow) (ids T0)), €
F"h:lnt,{} F"’I’n.idz:’ﬂ,w,f
e
I(x)=r I'r-m:m,&m
rex:rn{} I' + (form url (id m)) : (form (id 7,)),

{url : (form (id 7))} U &m
x:mpbFm:7,€
FrEOAX:im)m 7 >71,€ rag)y=m
I't (readl): 7, {}

Fl—moiTz>T,fQ
I'my 7,6 rag=m '-m:mn,¢
' (momi):7,&U& I'F (write Im): 7, &

Fig. 9. Internal Types for WebL

program associated withrl immediately and compared tlierm type with the func-
tion’s argument type, this would suffice. It would not, however, allow for independent
development of connected Web programs. Instead, type checkirigrtheexpression
generates the constraim : (form (id 7,)), which must be checked later.

Figure 10 extends the definition of the server sgatéth a set of constraints’. The
functionInstall-programadds a new programm to the server’s tablg at a givenurl if
the program is okay. That is, the program must type check and the generated constraints
must be consistent with the constraints already on the server. A set of constraints is
consistent iff the set is a function frooRLs to types’. The Constrainfunction ensures
that the programm is well typed, and it extends the existing set of constrafptto
include constraints generated during type checking

With type annotations, type checking, constraint generation, and constraint check-
ing in place, the system provides three levels of guarantees. The first theorem shows that
individual Web scripts respond to appropriately typed requests without getting stuck.

Theorem 1. For all m in M, 7 in Type, and set of Constrain{sif I, - m: 7, £ then
forsomevinV, m— v.

The second theorem shows that the server does not apply Web programs to forms
of the wrong type, as long as the server starts in a good state. Before we can state the
theorem, though, we need to explain what it means for a server state to be well-typed

5 Relaxing this restriction could allow forms to contain extra, unanticipated fields.



Server Extension and Additional Functions

S=XYxPxZ

Install-program: URLM W — W

Install-progran(((o, p, &), ¢)) = ({0, plurl\m], Constrair(§, url,m)), c)
whenConsistentConstrair(¢, url, m))

Constrain: & url M — =

Consistent = boolean .
- Constrair(go, url, m) =

Consistent) =

(url : (form (ido 70))) € & A o U&U{url: (form (idin 7in )}
(url : (form (id1 7 i)) €= wh?rek m: (form (id, 7 3)

— (form (idowt Tout)), &1

Fig. 10.Constraint Checking

and for a submitted form to be well-typed. A server is well typed when all the programs
have function types that map forms to forms and when all the constraints are consistent:

server-typecheck&, p, £)) iff Consistenf) and for eachurl in dom(p),
Iy Fp(url) : (form (idy 7,1)) — (form (ida 7p2)), Eur @nd
&ur € Eandurl @ (form (id 7,1)) € €

A form is well typed with respect to a server if it refers to a program on the server that
accepts that type of form.
form-typecheckda, p, ¢), (form wrl (id v,))) iff

there are types; such thatly - v, : 7, {} andurl : (form (id—nj) isin ¢

Theorem 2. If server-typechecksf) and form-typechecks{, f;) then for some

(s1, (1o TO)s (505 (for )Y —submit (s1, (fi, T)).

If the server’s set of constraints is closed, the resulting configuration also guarantees
the success of the next submission.

Theorem 3. If <<Uv D, §>7 <f0a 7>> > submit <517 <f17 7>>;
server-typecheckq, p, £)), form-typechecksg, p, &), fo),

—_—
and for each constraintri : (form (id 7)) in &, url is in dom(p) then
server-typecheck() and form-typechecks(, f1).

Alternative Web Programming Languages It is not necessary to instantiate our
model with a functional programming language. Instead, we could have used a lan-
guage such asbigwig> , which is the canonical imperative while-loop language over
a basic data type of Web documents [20]. Furthermore<tligwig> language al-
ready provides an internal type system that derives and checks information about Web
documents. Its type system is stronger than ours, allowing programmers to use complex
mechanisms for composing Web documents.

The <bigwig> project and our analysis differ with respect to the ultimate goal.
First, our primary goal is to accommodate the existing Web browser mechanisms. In
contrast,<bigwig> 's runtime system disables the back button. Second, we wish to



accommodate an open world, where scriptssm®.NET, Perl, or Python can collaborate.
Our theorems show how type checks in the language and in the server can accommo-
date just this kind of openness. Thbigwig> project does not provide a model and
therefore does not provide a foundation for investigating Web interactions in general.
Separating constraints on collaborating programs from the type checking of individ-
ual programs lends the system flexibility. For WrForm, the set of forms produced could
more easily be computed by examining the program’s return type. For other languages
the local type checking and the constraint generation may be less connected. Extend-
ing our constraint checking to dynamically typed languages requires a type inference
system capable of determining the types of all possible forms a program might produce.

7 Notifying Outdated Observers

When a script creates a form, it reflects the server’s current state. Dug s short-
comings, a form can lose currency with the server’s state. Submitting such a form may,
from the consumer’s perspective, result in incomprehensible or erroneous behavior.

One way to avoid such errors is to reload pages periodically. Since pages are gen-
erated with scripts, reloading implies re-executing scripts. Of course, the re-execution
must avoid a duplication of effects on the state of the server, which is precisely what
Thiemann’s work enables [21]. Unfortunately, this solution doesn’t work in general for
a number of reasons, some of which were discussed in the section on prict work.

An alternative and general method is to modify the server so that it detects when
a submitted form does not reflect the server state. Roughly speaking, this corresponds
to the execution of a safety check like the one for array indexing or list destructuring.

If the “up-to-date” test fails, the server informs the consumer of the situation, which
prevents the erroneous computation from causing further damage. Again, in analogy
to safety checks, the server signals an exception and thus informs the consumer at the
earliest opportunity that something went wrong. We believe that this approach is gen-
eral, because it is independent of the scripting language, and that dynamic checking
is the appropriate compromise, because these kinds of situations depend on dynamic
configurations rather than statically predictable properties.

To check on the datedness of a submitted form, the server must perform some addi-
tional bookkeeping. Specifically, determining if something is outdated requires a notion
of time, and therefore the server must keep track of time. For us, time is the number of
processed submissions. The external storage changes so that it maps locations not only
to flat values but also to a timestamp for the haste: > C Id — Timex V.

In addition, the server maintaingarrier set of all storage locations read or written
during the execution of a script. When it sends each page to the consumer, the server
adds the current time stamp and this set of locations as an extra hidden field on the page.

With this additional bookkeeping, the server can now check whether each request is
up-to-date. When a request arrives, the server extracts both the carrier set and the page

5 A WASH-CGI program with the problem demonstrated in figure 1, built using WASH-CGI-
1.0 downloaded on October 8, 2002, compiled without complaint using GHC-5.02.2 and “re-
served” the wrong flight when run. Unfortunately, the program is too long to include in (the
margin of) this paper.



creation time. If any of the timestamps attached to the locations in the carrier set are out
of date, then the submitted form may be inconsistent with the current server storage:

A formwith carrier seCSand time stamf submitted to a server with current
stateo is out of dateif and only if any of the locations i€Shave a time stamp
in o that is larger thar .

Clearly, a néve use of this test produces many false positives. For example, a script
may use and modify the server state to compute a page counter, a set of advertise-
ments, or other information irrelevant to the consumer. If a form is out of date only for
“irrelevant” storage locations, the consumer should clearly not receive a warning. We
therefore allow programs to specify whether reading or writing a location in the server
state is aelevant or irrelevant action from the consumer’s perspective. Assuming that
language implementors make this change, the Web server can reduce the carrier set that
it collects during a script execution and the number of warnings it issues.

8 Conclusion

Our paper introduces a formal model of sequential interactive Web programs. We use
the model to describe classes of errors that occur when consumers interact with pro-
grams using the natural capabilities of Web browsers. The analysis pinpoints two classes
of problems with scripting languages and servers.

To remedy the situation, languages used for scripting should come with type check-
ers that compute the shape of expected forms on the input side and the shape of forms
that the scripts may produce. These languages should also allow scripts to specify which
actions on the server’s state are relevant for the consumer. Furthermore, servers should
be modified to integrate the type information from the scripts. In particular, servers
should only submit forms to a script if the form is well-typed and up-to-date.

In short, the formal model helps us to understand what the problems are and which
components of the Web should change to avoid such interactions. We have implemented
a first prototype of our results and hope to report on experiments with the improved
server and servlet language in the near future.

References

1. Atkins, D. L., T. Ball, G. Bruns and K. C. Cox. Mawl: A domain-specific language for
form-based servicesSSoftware Engineering25(3):334—346, 1999.

2. Brabrand, C., A. Mgller, A. Sandholm and M. Schwartzbach. A language for developing
interactive Web services, 1999. Unpublished manuscript.

3. Brabrand, C., A. Mgller, A. Sandholm and M. I. Schwartzbach. A runtime system for inter-
active Web services. ldournal of Computer Networkpages 1391-1401, 1999.

4. BrightPlanet. DeepWeb.
http://www.completeplanet.com/Tutorials/DeepWeb/

5. Cardelli, L. Type systems. IHandbook of Computer Science and Englneer(DBC Press,
1996.

6. Coward, D. Java servlet specification version 2.3, October 2000.
http://java.sun.com/products/serviet/



10.

11.

12.

13.

14.
15.
16.
17.
18.
19.
20.

21.

. Dierks, T. and C. Allen. The transport layer security protocol, January 1999.

http://www.ietf.org/rfc/rfc2246.txt

. Felleisen, M. and R. Hieb. The revised report on the syntactic theories of sequential control

and stateTheoretical Computer SciencE02:235-271, 1992. Original version in: Technical
Report 89-100, Rice University, June 1989.

. Freier, A. O., P. Karlton and P. C. Kocher. Secure socket layer 3.0, November 1996. IETF

Draft http://wp.netscape.com/eng/ssl3/ssl-toc.html

Gamma, E., R. Helm, R. Johnson and J. Vlissidessign Patterns, Elements of Reusable
Object-Oriented SoftwareAddison-Wesley, 1994.

Graham, P. Beating the averagetp://www.paulgraham.com/avg.html

Graunke, P., R. B. Findler, S. Krishnamurthi and M. Felleisen. Automatically restructuring
programs for the Web. IlEEEE International Conference on Automated Software Engineer-
ing, pages 211-222, 2001.

Graunke, P., S. Krishnamurthi, S. van der Hoeven and M. Felleisen. Programming the Web
with high-level programming languages. Buropean Symposium on Programmipgges
122-136, 2001.

Hughes, J. Generalising monads to arrdaence of Computer Programmir8y (1-3):67—

111, May 2000.

Microsoft Corporationhttp://www.microsoft.com/net/

NCSA. The Common Gateway Interfat¢etp://hoohoo.ncsa.uiuc.edu/cgi/

Pierce, B. CTypes and Programming LanguagésIT Press, 2002.

Queinnec, C. The influence of browsers on evaluators or, continuations to program Web
servers. INACM SIGPLAN International Conference on Functional Programmirapes
23-33, 2000.

Remy, D. Typechecking records and variants in a natural extension of MACM Sympo-

sium on Principles of Programming Languagpages 77-88, 1989.

Sandholm, A. and M. |. Schwartzbach. A type system for dynamic Web documents. In
Symposium on Principles of Programming Languageges 290-301, 2000.

Thiemann, P. WASH/CGI: Server-side Web scripting with sessions and typed, compositional
forms. InPractical Applications of Declarative Languaggmges 192—-208, 2002.



